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Abstract

The firing rates of individual neurons displaying mixed
selectivity are modulated by multiple task variables. When
mixed selectivity is nonlinear, it confers an advantage by
generating a high-dimensional neural representation that can
be flexibly decoded by linear classifiers. Although the
advantages of this coding scheme are well accepted, the
means of designing an experiment and analyzing the data to
test for and characterize mixed selectivity remain unclear. With
the growing number of large datasets collected during complex
tasks, the mixed selectivity is increasingly observed and is
challenging to interpret correctly. We review recent approaches
for analyzing and interpreting neural datasets and clarify the
theoretical implications of mixed selectivity in the variety of
forms that have been reported in the literature. We also aim to
provide a practical guide for determining whether a neural
population has linear or nonlinear mixed selectivity and
whether this mixing leads to a categorical or category-free
representation.
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Introduction

A major goal of systems neuroscience is to understand
how the activity of neurons relates to behavior. In
studying this relationship, the term “mixed
selectivity,” an extension of the traditional concept of
“neuronal selectivity,” refers to the circumstance in
which activity in an individual neuron is modulated by
more than one parameter as defined by the experi-
menter. Although mixed selectivity was first defined for
neurons in frontal cortex on a cognitive task [1—4],
recent reports have identified neurons with mixed
selectivity in multiple other areas for diverse sensory,
cognitive, and spatial parameters (see e.g., Refs. [5—12]).

Mixed selectivity is emerging as the norm in many brain
areas. The mixing of parameters in the responses of indi-
vidual neurons has been proposed as a computationally
important operation since the early days of neural network
theory (see, ¢g., the associative units of the perceptron
[13]). Though it has been observed frequently, it has been
taken as indicative of particular computations instead of
being recognized as a general property of cortical coding.
For example, mixed selectivity has been described as
“tolerance” for nuisance variables in visual areas [14,15],
“gain fields” in parietal cortex [16], or uninterpretable
encoding in motor cortex [17]. However, understanding
the costs and benefits of such representations awaited the
study of neural response geometry [2].

Identifying mixed selectivity in neural data

To clarify the definition and characterization of mixed
selectivity, an example experimental approach can be
helpful. Suppose, for instance, that on each of many
successive trials, an animal must choose to go left or
right (by moving to a choice port, for instance; Figure 1a,
top). The correct choice is specified by the pitch of a
noisy tone (Figure 1a, middle). Additionally, the value of
a correct left vs. right choice is varied over time, so that
each choice can be thought of as occurring in a particular
“context”: one in which correct right choices are more
rewarding, and another in which correct left choices are
more rewarding (Figure 1a, bottom). We define a “con-
dition” combinatorially, as a particular conjunction of
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Example experiment and schematic single-neuron activity. (a) A subject reports a decision by moving to a left or right reward port. This choice is informed
by the pitch of a tone. The context of these tones is manipulated (perhaps in blocks) so that sometimes left choices are rewarded more richly (“left good”,
green), and other times right choices are rewarded more richly (“right good”, magenta). (b) Schematic single-neuron responses in the task. Color in-
dicates context; line style indicates pitch. Left. neuron with pure selectivity for pitch. Right. neuron with mixed selectivity for context and pitch. This leads to
equivocal responses (red arrow) if only a single-neuron response is considered.

pitch, noise level (or, more generally, stimulus strength),
and context.

When comparing neural activity across conditions, we
might observe single-neuron activity that is modulated
by only a single variable (pure selectivity, Figure 1b, left)
or by more than one task variable— that is, we might
observe mixed selectivity in the traditional sense
(Figure 1b, right).

Once mixed selectivity is confirmed, we can ask how
information is represented across neurons, and how this
information might be read out by downstream struc-
tures. For these purposes, single-neuron responses are of
limited utility, and it becomes necessary to consider the
population of neurons collectively. Once we are given
the full matrix containing the activity of a population of
neurons in response to each experimental condition
(Figure 2), we can determine what sort of structure
exists in this activity matrix and can consider the
computational implications of this structure.

Insights from population activity: linear vs.
nonlinear mixing

The first way to identify structure in the population
response is to analyze the columns of the activity matrix.
Each of these columns is an N-dimensional vector (a
point in neural activity space, NV = number of neurons),
which represents the population response to one
experimental condition (blue in Figure 2). The
arrangement of these points determines the geometry of
the neural representation. If the neural responses are
well approximated by a linear combination of the task-

relevant parameters (linear mixed selectivity), then
the set of points that correspond to all the different
conditions typically defines a relatively low-dimensional
object (the blue square in the figure). For example, if
N = 3, as in the plot in Figure 2, and the firing rates of
the three neurons depend linearly on two variables, then
the points will all lie on a plane. If the variables are
binary, they could define a rectangle, as in the figure.
More generally, if the M firing rates depend linearly on
variables (with /< N), the dimensionality of the object
defined by all the points that correspond to different
conditions will be V.

Neural representations based on linear mixed selectivity
neurons are typically low-dimensional, and they share
similar generalization properties with what are called
disentangled representations in the machine learning
community [18]. In these representations, different
variables are represented in distinct subspaces, and they
allow for better generalization because the coding di-
rection for each variable is independent of coding for the
others. For the experiment shown in Figure 1, if all
neurons have linear mixed selectivity, then the coding
direction for pitch would be the same for the two con-
texts. This means that a linear decoder trained to report
pitch in the first context would readily generalize in the
second context, with no need for retraining (cross-con-
dition generalization [8]). These linearly mixed repre-
sentations have been observed in multiple areas in the
brain [8,19—21,12,6].

By contrast, if the neural responses are poorly approxi-
mated by a linear combination of the task-relevant
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The geometry of the representation, and whether it is categorical or non-categorical, is determined by the matrix of data responses. The matrix (black)
consists of trial-averaged data and is separated by condition (f (C) is the firing rate response of neuron k to condition C). A single row describes one
neuron’s response to all the conditions. Blue: The columns of this matrix are informative about the representational geometry in the neural activity space.
Red: The rows of this matrix are informative about whether categories of responses exist in the data. Categorical representations are characterized by
clear, distinct clusters in the conditions space. In practice, the existence of categories can be evaluated by visualizing (or analyzing) coefficients from, for
instance, a regression that relates the response of each neuron to parameters in the task (pitch and context in our example). The coefficients are indicated
by ris in the figure. In this example, we are considering only a simple linear regression that ignores higher-order or interaction terms. For this reason, there
is no difference between coefficients for low and high-dimensional representations.

parameters (nonlinear mixed selectivity), then the set of
points that correspond to all the different conditions
typically defines a higher-dimensional object (the blue
tetrahedron in the figure). Nonlinear mixed selectivity
confers an advantage because this high-dimensional
representation allows more flexibility in terms of what
can be decoded by a simple linear classifier. This prop-
erty makes it possible for linear classifiers to pick off any
combination of properties desired (just as in some ma-
chine learning methods, such as Support Vector Ma-
chines [22]). This reduces the computational burden on
downstream areas and enables more flexible

representations: for example, using the same sensory
stimulus for two different tasks [3]. Nonlinear mixed
selectivity has, therefore, been observed where flexi-
bility is most critical, in the monkey frontal cortex
[23—25,3,5,2,26,8,27]. To realize this benefit of flexi-
bility fully, the nonlinear mixing performed by different
neurons must have sufficient diversity. The costs of this
coding scheme, however, are twofold. First, generaliza-
tion becomes more challenging because coding for each
variable is not preserved as other variables change.
Second, noise sensitivity must be considered: nonlinear
mixed selectivity can be more susceptible to noise than
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other coding schemes because modest changes in firing
rates can correspond to very different encodings [51].
Note, however, that nonlinear mixing might also improve
robustness to noise under certain circumstances,
because the additional space between points enhances
some (e.g., discrete nearest neighbor) readouts [52].

How then is the dimensionality of the neural repre-
sentations related to mixed selectivity? High dimen-
sionality requires both nonlinear mixing and a diversity
of neural responses. The dimensionality can be probed
using either a classifier-based approach (the shattering
dimensionality [2,8]) or more direct methods which are
typically based on Principal Component Analysis
[28—32]. Note that assessing whether an individual
neuron has linear or nonlinear mixed selectivity depends
on the choice of parameterization. For example, a
neuron that has “mixed selectivity” because it responds
to both reward size, and reward probability might be
described as unmixed relative to action value. By
contrast, the dimensionality of the population activity is
independent of these choices. That is, the dimension-
ality is a property of a set of points (ze¢., the minimal
number of coordinate axes needed to determine the
position of all the points) and does not require any
knowledge about the dependence of the activity on the
task-relevant variables (parameters). Moreover, the
response properties of individual neurons on their own
are not sufficient to determine the dimensionality of the
representation; the signal correlations between the re-
sponses across multiple cells are also important. For
example, the nonlinear component of the response
could be the same for every neuron in a population, and
adding multiple cells with the same response compo-
nent will not affect dimensionality at all. To return to
our original example, consider a population in which
neurons are modulated only by one particular combi-
nation of pitch and context (ze., the nonlinear compo-
nent of the response is the same for every neuron). This
lack of diversity across cells might prevent the repre-
sentations from having the maximal dimensionality, and
increasing the number of neurons will not help.

Insights from population activity:
categorical vs. category-free encoding

A second way to identify interesting structure is to
analyze the rows of the activity matrix. Each row is a
vector containing the responses of an individual neuron
to all the different experimental conditions. It can be
represented as a point in the p-dimensional space as
illustrated in Figure 2, on the right (p is the total number
of conditions, which is the number of columns of the
activity matrix). When the points corresponding to
different neurons cluster together, it means that we will
often encounter neurons with similar response proper-
ties (categorical representations). Category-free mixed
selectivity means the converse that there are not
discrete groups of neurons with particular combinations

of task dependence. Category-free populations suggest
that the same population might be read out in multiple
ways by downstream areas. When categories are found,
this may suggest that neurons are dedicated to a
particular function and are perhaps read-out in a largely
static way by downstream areas. Interestingly, the
observed categories might or might not line up with
other ways of classifying neurons, such as morphology,
physiology, gene expression, or projection patterns (for
review, see Ref. [53]). If they do align, this could be a
mechanism for allowing cells carrying specific informa-
tion to play special roles in the circuit.

Both categorical and category-free representations can
be low or high-dimensional (Figure 2, right). Interest-
ingly, it is also possible to determine the dimensionality
of the representations in the condition space: linear
algebra dictates that the row rank of the matrix is the
same as the column rank. However, in the categorical
case, the number of clusters can limit the maximal
dimensionality in the same way that the total number of
points can. Note that the study of the distribution of
points in the condition space depends less on experi-
menter choices than it does in many types of analysis.
The only choice relevant to the dimensionality of the
neural responses themselves is how trials are grouped
into conditions, if at all.

An alternative way to characterize the structure in the
condition space is to describe the neuronal responses
using a linear encoding model, with each neuron’s
response modeled as a linear combination of task vari-
ables. The distribution of the coefficients is another way
of visualizing clusters of neurons with similar responses
(see Figure 2, rightmost column). If the encoding model
includes only orthogonal variables and excludes
nonlinear mixtures of variables, the coefficients’
dimensionality will be less than or equal to the dimen-
sionality assessed in either way described above.

Importantly, the categorical and category-free examples
here represent the ends of what is likely a continuum.
When faced with data that are intermediate, a reasonable
next step is to consider specific hypotheses about the
representations and apply a statistical test. One possible
hypothesis is that there is a uniform distribution of
values. This situation would correspond to a special type
of category-free representation. To test this hypothesis,
one can use the definition of random mixed selectivity
and represent coding in a low-D coding space via
dimensionality reduction, then test whether the distri-
bution of coding vectors is random. For the latter step,
numerous tests of uniformity on the hypersphere have
been proposed (for review, see Ref. [33]). These include
parametric (e.g., Rayleigh test for von Mises—Fisher
distributions [34,35] and Bingham test for antipodally
symmetric distributions [36]); semi-parametric (e.g,
robust mixture models [37], Ajne test for concentration
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in a hemisphere, and Giné test for axially symmetric
distributions [34,35]); and non-parametric tests (e.g., the
general but low-powered random projections test [38],
Projection Angle Index of Response Similarity (PAIRS)
for clumpy distributions [6], and Elliptical Projection
Angle Index of Response Similarity (¢PAIRS) for clumpy
elliptic distributions [39]; see also [40]). In all cases,
however, statistical power quickly becomes limited when
many dimensions of coding are considered. It is, there-
fore, important to accompany such tests with power
analysis. If these tests are adequately powered but fail to
find deviations from uniformity, this suggests that any
categorical structure in the data is weak. If deviations are
found, the next steps are challenging.

A number of practical challenges arise in determining
whether categorical encoding is present in a population.
Importantly, categorical representations are interesting
when the number of categories (clusters in the condi-
tion space) is significantly smaller than the number of
independent conditions. However, it is not clear how to
estimate this number. For example, if we discretize a
continuous stimulus variable, such as stimulus strength,
the response of a neuron may be correlated across bins
due to smoothness in the tuning curve. Conditions
corresponding to two nearby values of the same variable
would not be independent; therefore, the maximal
number of clusters would be lower than naively ex-
pected. The maximal dimensionality is similarly
affected by the independence of the conditions, making
it difficult to assess whether neural representations are
high-dimensional (ze., with a dimensionality close to
maximal) or low-dimensional (ze., with a dimensionality
that is much smaller than maximal) [41].

Recent literature examining mixed
selectivity and categorical representations
In recent years, a number of papers have reported mixed
selectivity for diverse task parameters across numerous
brain areas. For example, a recent paper [42] focused on
rat frontal cortex and value-based decisions. In this task,
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rats were simultaneously presented with randomized
auditory clicks, and visual flashes indicating reward
probability and volume available at each side port. Upon
training, rats reliably selected the side port with the
greater subjective reward value. The team used clus-
tering methods on a large population of single-unit re-
cordings from the lateral OFC to interpret neural
encoding of task variables (stimulus, reward attributes,
reward outcome, reward history, and choice). Clear
clustering was present, indicating the possible existence
of categories of neurons, but the authors here went a
step further to decode task variables from each cluster.
Interestingly, all variables could be decoded from all
clusters. This observation serves as a critical reminder
that the existence of functional clusters of neurons does
not mean the clusters correspond to individual task
variables; even with clusters, there can be mixed
selectivity. These kinds of recordings can be used to not
only uncover whether mixed selectivity for the
experimenter-defined task variables aligns with single
neurons but also to test whether such mixing is linear or
nonlinear, offering insight into the flexibility of the
mixed representation for downstream readouts.

Mixed selectivity is not restricted to the cortex and has
been observed for diverse variables in the hippocampus
and medial entorhinal cortex (MEC) [43,7,44]. In MEC
and hippocampus (dentate gyrus and CAl), neurons
exhibit mixed selectivity for multiple navigational vari-
ables: spatial position, head direction, and running
speed (Figure 3a). To explore the parameters encoded
by each neuron with fewer assumptions about their
tuning, a recent study [9] benefited from a more flexible
statistical procedure (a nested linear-nonlinear-Poisson
model fit to the spike train of each cell). As a result of
this approach, the study was able to uncover mixed
selectivity in many more cells than had been previously
reported (Figure 3b). Interestingly, single-variable cells
were still present in the population, demonstrating that
mixed and single selectivity can co-exist within a single
area and highlighting the need for analysis methods that
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a) Modulation of example neurons in medial entorhinal cortex by position (P), head direction (H), and speed (S). (b) Scatter plot showing modulation of
neurons by P, H, and S). Colors indicate which two parameters modulated the neuron’s activity, as determined by a flexible model. Cells modulated by all

three parameters are gray.
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allow for multiple types of encoding [37]. Importantly, if
one discards all the cells that encode a particular variable
(like place cells), it is still possible to decode position
from the other cells [7]. The representations are typi-
cally highly distributed, and all neurons contribute to
encoding each variable, whether their response proper-
ties are easily interpretable or not.

In the piriform cortex, recent work demonstrates that
individual neurons not only reflect odor as previously
known but unexpectedly also reflect spatial position [45].
Neural activity was measured while animals engaged in a
spatial odor task in which odor cues could be presented at
any arm of a 4-arm maze, and each odor served as an in-
struction to retrieve a reward at a particular location in
world-centered coordinates. This configuration allowed
the authors to determine the extent to which each piri-
form cortex neuron’s activity was modulated by spatial
position, odor, or both. Linear classifiers based on popu-
lation activity were able to accurately decode either the
animal’s position or the odor, indicating that these are
separable representations. More information about
whether this mixed selectivity is linear or nonlinear
would be helpful here, as this has important implications
for neural coding as discussed above.

Another study, by contrast, explicitly tested for a cate-
gorical representation and concluded that individual
neurons are categorically tuned for decision-related vari-
ables, such as confidence, integrated value, and reward
size [39]. The authors studied rat orbitofrontal cortex
during a task in which reward volume was manipulated in
blocks and animals combined sensory and bias information
to guide a choice. The authors first demonstrated that
selectivity for task parameters was not random, but
instead clustered, based on ePAIRS. ePAIRS is a modified
version of the previously reported PAIRS test; ePAIRS is
more conservative for detecting non-random mixing,
while PAIRS is more conservative for identifying random
mixing. In the case of rat orbitofrontal cortex, ePAIRS
uncovered clear structure, suggesting that the mixing was
not entirely random. The authors next identified putative
clusters using spectral clustering methods [46,47] and
tested that the identification of those clusters was stable.
Finally, they used a Monte Carlo method with LASSO
regression to further refine their understanding of the
neural representation by determining that the clusters
sparsely represented the task variables as they had defined
them. One possible future direction for this work would be
to determine whether all variables could be decoded from
all clusters, despite their resemblance to individual vari-
ables, as discussed above (see also [2]).

Conclusion and outlook

Mixed selectivity has now been reported in diverse brain
structures and contexts. A clear conclusion from these
observations is that mixed selectivity is a common

property across both cortical and subcortical brain re-
gions, and that mixing at the level of single neurons
poses little problem for downstream areas that wish to
decode a parameter of interest. Mixed selectivity, which
is often observed to be very diverse across neurons, re-
quires new tools for the analysis of neural data. Many of
the new methods focus on the collective properties of
populations of neurons, taking a perspective that is more
similar to one of downstream readout neurons. Some of
these methods are based on the computational proper-
ties of the representational geometry [2,8], and others
like dPCA [48] and Targeted Dimensionality Reduction
[49,50] allow the investigators to interpret the signals
that are represented across multiple neurons, despite
the large diversity of the neural responses. In addition to
these methods, it is interesting to assess whether the
representations are categorical or not. A categorical
representation may indicate that there is an interesting
structure to be investigated further.

What is less clear is how often mixed selectivity is
nonlinear, potentially indicating a coding strategy that
emphasizes readout flexibility. Moreover, it is not known
how the transition from linear to nonlinear mixed
selectivity occurs within a circuit, nor whether this is
dependent on an animal’s specific experience of
behavioral needs. Causal experiments to test hypothe-
ses about nonlinear mixed selectivity would also benefit
the field and could have the power to demonstrate the
hypothesized advantages of this coding strategy.
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