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Classification of drainage crossings on high-resolution digital elevation models: 
A deep learning approach
Di Wua, Ruopu Lia, Banafsheh Rekabdarb, Claire Talberta, Michael Edidema and Guangxing Wanga

aSchool of Earth Systems and Sustainability, Southern Illinois University, Carbondale, IL, USA; bDepartment of Computer Science, Portland 
State University, Portland, OR, USA

ABSTRACT
High-Resolution Digital Elevation Models (HRDEMs) have been used to delineate fine-scale hydro
graphic features in landscapes with relatively level topography. However, artificial flow barriers 
associated with roads are known to cause incorrect modeled flowlines, because these barriers 
substantially increase the terrain elevation and often terminate flowlines. A common practice is to 
breach the elevation of roads near drainage crossing locations, which, however, are often unavail
able. Thus, developing a reliable drainage crossing dataset is essential to improve the HRDEMs for 
hydrographic delineation. The purpose of this research is to develop deep learning models for 
classifying the images that contain the locations of flow barriers. Based on HRDEMs and aerial 
orthophotos, different Convolutional Neural Network (CNN) models were trained and compared to 
assess their effectiveness in image classification in four different watersheds across the U.S. 
Midwest. Our results show that most deep learning models can consistently achieve over 90% 
accuracies. The CNN model with HRDEMs as the sole input feature was found to be the best-fit one. 
The addition of aerial orthophotos and their derived spectral indices is insignificant to or even 
worsens the model’s accuracy. The selected best-fit model exhibits excellent transferability over 
different geographic contexts. This work can be applied to improve elevation-derived hydrography 
mapping at fine spatial scales.
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1. Introduction

Hydrologic connectivity is critical for environmental 
management issues such as overland nutrient trans
port and ecological conservation (Good, Noone, and 
Bowen 2015; Pringle 2001; Stieglitz et al. 2003). For this, 
Digital Elevation Models (DEMs) have been widely uti
lized to represent topographic structure and simulate 
hydrologic connectivity (Callow, Van Niel, and Boggs  
2007; Habtezion, Tahmasebi Nasab, and Chu 2016). 
Conventional medium-resolution DEMs are unsuitable 
for resolving subtle terrain variations in a flat topogra
phy and mapping hydrographic features in fine scales 
(Liu, Peterson, and Zhang 2005; Regnauld and 
Mackaness 2006). In contrast, High-resolution DEMs 
(HRDEMs) products, mostly generated from Light 
Detection and Ranging (LiDAR), allow highly accurate 
representation of terrain owing to their fine spatial 
resolution and high vertical accuracy. However, accu
rate delineation of hydrographic features using 
HRDEMs exhibits a challenge arising from unrepre
sented features in HRDEMs. Numerous studies have 

shown that hydrological delineation using HRDEMs is 
susceptible to flow barriers such as roads, which func
tion as “digital dams” (Duke et al. 2003; Li et al. 2013; 
Sofia, Fontana, and Tarolli 2014). Because only the 
elevation of the road surface rather than its underneath 
channel at drainage structures such as culverts and 
bridges are typically represented on the HRDEMs, the 
simulated drainage flowlines often terminate before 
the roads or cross the roads at incorrect locations 
(Poppenga and Worstell 2016).

Research has shown that incorporating drainage 
crossing locations can effectively breach flow barriers 
and improve the spatial accuracy of HRDEM-derived 
watershed boundaries and flowlines (Aristizabal et al.  
2018; Bhadra et al. 2021; Li et al. 2013; Lindsay and 
Dhun 2015). Breaching roads at those locations results 
in a preprocessed, “hydrologic” version of HRDEMs. 
However, the drainage crossing location dataset is 
either unavailable or only available with variable qual
ity (Poppenga and Worstell 2016) in most areas. To 
identify the locations of flow barriers, current efforts 
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have been directed toward manual on-screen digiti
zation (Shore et al. 2013) and field survey (Wang et al.  
2011), which are labor-intensive and costly especially 
over large geographic areas. Thus, it is imperative to 
develop a cost-effective method to efficiently identify 
flow barriers for improving HRDEM preprocessing for 
hydrographic mapping.

As an emerging technique in geospatial informa
tion science, deep learning has shown its superiority 
to solve complex image classification and object 
detection problems (Hu et al. 2020; Krizhevsky, 
Sutskever, and Hinton 2012). It uses multiple layers 
to progressively extract higher-level features from raw 
inputs, which could be adaptively used as “knowl
edge” to create outputs (Sinha, Pandey, and Pattnaik  
2018). For example, Li et al. (2017) used deep learning 
to support automatic craters detection and classifica
tion, providing important information for estimating 
relative regional ages. Ye et al. (2019) proposed 
a deep learning framework with constraints to detect 
landslides on hyperspectral images, resulting in 
a higher overall accuracy than traditional classification 
methods. Li et al. (2020) employed a deep learning 
strategy to detect landforms in the landscape of Loess 
Plateau using integrated data sources of digital eleva
tion model and imagery. Deep learning has been 
found capable of producing results comparable to 
human performance from large samples in 
a supervised, semi-supervised, or unsupervised man
ner. In particular, Convolutional Neural Networks 
(CNN), as a supervised deep learning architecture, 
has its eminence in automatic features selection, 
extraction, and generalization to avoid overfitting 
(Tang et al. 2018; Widyantoko et al. 2021). The rapidly 
developing computing infrastructure and tools (e.g. 
TensorFlow and Keras) also make CNN a viable option 
to address complex classification tasks based on big 
training datasets (Li et al. 2017). In hydrography map
ping, Xu et al. (2021) adopted an attention U-net and 
high-accuracy LiDAR data for developing detailed 
streamline detection, resulting in an improved perfor
mance over traditional method learning methods 
such as ANN and SVM. To generate more accurate 
drainage networks, Stanislawski, Brockmeyer, and 
Shavers (2018) utilized a set of existing roads and 
stream valleys data to train a model with advanced 
CNN architecture, then using the trained model to 
extract all road and stream valley features from 
HRDEMs. The flow barriers from road embankments 

were recognized as an important issue to be 
addressed for future research. CNN has also been 
applied to assess the debris-related blockage condi
tions of drainage culverts (Iqbal et al. 2022), which 
developed CNN algorithms to automate the process 
of classifying visual blockage images captured by HD 
cameras. Talafha et al. (2021) used several advanced 
CNN techniques to distinguish images with drainage 
crossings (i.e. bridges and culverts) in a small 
watershed in the northeast Nebraska based on both 
DEMs and National Agriculture Imagery Program 
(NAIP) aerial orthophotos. However, it is unclear if 
those developed CNN models are transferrable to 
broader geographic areas.

All these studies support that deep learning tech
niques can be leveraged to facilitate the identification 
of drainage crossing locations for improving the mod
eled hydrography. However, the modeled channel 
continuity depends on the availability of high- 
accuracy supplemental training data (e.g. road and 
flowline data), which are often unavailable at fine 
scales. The purpose of this study is to develop 
a deep learning model that can classify the images 
with under-road drainage crossings and evaluate the 
performance and transferability of the model in dif
ferent geographic areas. Drainage crossings were 
focused on those locations where natural streams or 
artificial canals pass roads through underpass struc
tures such as bridges or culverts. We expect that the 
knowledge gained in this study can be used to guide 
the application of deep learning models for improv
ing hydrologic connection in broader geographic 
areas.

2. Study area

The experiments were conducted in four study areas, 
including West Fork Big Blue Watershed, Nebraska, 
Vermilion River Watershed, Illinois, Maple River 
Watershed, North Dakota, and Sacramento-Stone 
Corral Watershed, California (Figure 1). The land
scapes of these areas are dominated by intensive 
agriculture and relatively level topography. Dense 
road networks over these areas complicate the flow 
patterns and segment hydrologic features repre
sented on HRDEMs, resulting in a critical need for 
breaching drainage barriers at culverts and bridges. 
West Fork Big Blue, Nebraska lies on gently undulat
ing loess plain, descending from its west of around 

2 D. WU ET AL.



626 m to its east of around 410 m with the total area 
of 3,471 km2. Land use within the watershed is pri
marily agriculture with over 80% of the land devoted 
to row crops. The hydrology of the region is domi
nated by a poorly developed drainage system with 
many depressional wetlands (Stutheit et al. 2004). The 
Vermilion River Watershed is located in North-Central 
Illinois, encompassing more than 3,453 km2 that drain 
northwesterly into the Illinois River. Its elevation 
ranges from 134 to 260 m. About 95% of the 
watershed is dominated by cultivated crops (88%) 
and pasture (7%). Understanding the routing and 
eroding effect of surface runoff is a top priority for 
local natural resources conservation. The Maple River 
Watershed is mostly within the ecoregion of Northern 
Glaciated Plains of North Dakota, which features flat 
to undulating landforms and shallow river valleys. The 
watershed has a total of 4,089 km2, and generally 
descends toward the east with elevations ranging 

from about 480 to 267 m. Approximately 93% of the 
area is dominated by row crops and pasture owing to 
its deep and fertile soils. The Sacramento-Stone Corral 
watershed is located in northern Central Valley, 
California, one of the most productive 
U.S. agricultural regions. Within an area of 4,880 km2, 
the terrain elevation ranges from 857 to 5 m, descend
ing from its mountainous west to the east plain. Most 
of the watershed is dominated by low-lying plains, 
which support many agricultural commodities ran
ging from rice to row crops.

3. Methods

3.1 Datasets

The sources and specification of HRDEMs and 4-band 
Digital Orthophotos used in this study are listed in 
Table 1. Compared with conventional DEMs, LiDAR- 

Figure 1. Topography and locations of four study areas.
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derived HRDEMs show remarkable improvement in 
representing subtle topographic details of land sur
face. The National Agriculture Imagery Program 
(NAIP) under the USDA Farm Service Agency (FSA) 
acquired color infrared aerial orthophotos at 
a resolution of 1-meter ground sample distance.

3.2 Input features

Unique topographic and spectral signatures at locations 
of flow barriers such as microtopographic patterns and 
soil erosion near drainage crossing locations are com
monly used as indicators to guide manual digitization of 
these structures on HRDEMs and aerial orthophotos 
(Gelder, Zhou, and Yu 2015; Poppenga et al. 2010). In 
this paper, we tested four different combinations of 
features as listed in Table 2. In addition to different 
band combinations, we also derived new features to 
enhance the contrasts of land covers near flow barriers, 
including Normalized Difference Vegetation Index 
(NDVI) and Normalized Difference Water Index (NDWI). 
NDVI has been well known to effectively distinguish 
vegetation and bare soil that are often found near drai
nage crossings, while NDWI can indicate differential 
moisture contents caused by vegetation and topo
graphic variations. To prepare the datasets, we 
resampled all HRDEMs from four study areas to 
1-meter resolution and manually digitized drainage 
crossing locations. Using a square bounding box of 
100 m near each drainage crossing location, five-band 
samples with the identical size (100 by 100-pixel) were 

clipped as True samples (Figure 2a). We also randomly 
generated equal amounts of False samples without 
a drainage crossing along the roads (Figure 2b). The 
sample size for each watershed is shown in Table 3.

3.3 Model development

We selected the CNN deep learning architecture due 
to its excellent flexibility and effectiveness in complex 
data intensive tasks. The combination that includes 
convolution, activation, and pooling layers can be 
regarded as a convolution unit of CNN (Li et al.  
2017). In our study, depending on the complexities 
in the images, this unit could be repeated, resulting in 
a “deep stacking” to capture low-level details, albeit at 
the cost of increasing computational requirement.

Figure 3 demonstrates the architecture of our CNN 
models, which contains four convolution layers, one 
flatten layer, and two fully connected layers. 
Convolution layers automatically extract the feature 
map that is the sum of dot product of all elements in 
sub-regions and the kernels (Hussain, Bird, and Faria  
2018; Li et al. 2017) by applying a group of filters (a.k. 
a., convolutional kernels) with the same predefined 
size to image sub-regions. For feature inputs, each 
convolutional layer contains a different set of image 
features. In our model, 3 × 3 and 5 × 5 filters were 
used, respectively, in different convolution layers. 
Rectified Linear Unit (ReLU) was also utilized in our 
model and applied to the output feature map from 
a convolution layer to change all negative values 

Table 1. Data sources of LIDAR-derived HRDEMs and aerial orthophotos.

Data Locations Sources
Spatial 

resolution
Vertical accuracy 

RMSE

DEM West Fork Big Blue Watershed, Nebraska Nebraska Department of Natural Resource 1.0m 0.185m
Vermilion River Watershed, Illinois Illinois Geospatial Data Clearinghouse 0.30m 1.19ft (~0.36m)
Maple River Watershed, North Dakota North Dakota GIS Hub Data Portal 2.0ft (~0.61m) 0.15m
Sacramento-Stone Corral Watershed, 
California

USGS 1.0m 0.196m

Aerial 
Orthophotos

Four Watersheds USGS National Agriculture Imagery Program 
(NAIP)

1.0m -

Table 2. Input features for flow barriers identification.
Input features Applied methods References

HRDEM (1 band) To remove image dependency on lighting geometry and illumination 
color, the data were normalized to a scale of (0,1). 
Xscaler ¼ X�Xmin

Xmax �Xmin 

Xscaled ¼ Xscaler � max � minð Þ þ min 
max ¼ 1; min ¼ 0

(Finlayson, Schiele, and Crowley 1998; Patro and Sahu  
2015; Saranya and Manikandan 2013).HRDEM, NAIP Orthophotos 

(R, G, B, NIR) (5 bands)

HRDEM, NDVI (2 bands) NDVI ¼ NIR�Red
NIRþRed

(Brown 2015).
HRDEM, NDWI (2 bands) NDWI ¼ GREEN�NIR

GREENþNIR
(McFeeters 1996).
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within the feature map to zero. As a non-linear activa
tion function, it can improve the non-linear properties 
of the model (Agarap 2018).

Batch normalization was implemented between 
convolution operations and average pooling layers 
in the model. Batch normalization is the process of 
applying normalization among layers in a neural 

Figure 2. Examples of 5-band samples, where (a) is the true sample and (b) is false sample. The red circles point to the locations of 
drainage crossings.

Table 3. Training sample sizes for four watersheds located in 
California, Illinois, Nebraska, and North Dakota.

Locations
True sample  

(Label 1, with culvert)
False sample  

(Label 0, without culvert) Total

Nebraska 2022 2022 4044
Illinois 1011 1011 2022
North Dakota 613 613 1226
California 2388 2388 4776

Figure 3. Architecture of the CNN-based deep learning model for this study.
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network, which helps stabilize the learning process, 
reduce overfitting through regularization, and speeds 
up training substantially. Then, the feature map is 
further processed by an average pooling layer for 
reducing the spatial size of the convolved features. 
In order to “pool” the feature map, the feature map 
has been divided into non-overlapping smaller 
regions by a 2 × 2 kernel and the average of values 
in the regions are returned to represent each sub- 
region. The application of pooling layer can decrease 
the computational power requirement for data pro
cessing through dimensionality reduction. It also 
helps maintain the training process effectively by 
retaining the most important information such as 
the dominant features that are rotational and posi
tional invariant. A fully connected layer (a.k.a., the 
classifier) operates on a flattened input where each 
input is connected to all neurons. Based on the errors 
in the prediction of SoftMax function, backpropaga
tion is applied to every iteration of training to adjust 
the bias values and weights.

To train a CNN model, data should be divided into 
training, validation, and test sets. The validation set is 
used for the purposes of tuning hyperparameters of 
the model (Barry-Straume et al. 2018). To avoid the 
randomness from estimates produced by imbalanced 
data and overfitting, K-fold cross-validation was used 
(Berrar 2019; Koul, Becchio, and Cavallo 2018). In 

a sparse dataset, splitting the data only once could 
yield unstable estimates because of unsuitable train- 
test split selected and inadequate amount of observa
tional data (Ziggah et al. 2019). The results from 
a single train-and-test experiment may not provide 
enough evidence of the generalization ability of 
model. K-fold cross-validation is one way to combat 
these defects. In this technique, the whole dataset is 
divided into k parts of equal size and each partition is 
called a fold. One of these (k) folds is chosen as 
validation dataset while the others (k-1) are used for 
the training model. The process is repeated until each 
fold has been used as the validation set and we will 
get the mean of k number of performance estimates. 
Different hyperparameters of the model will undergo 
a cross-validation test and hyperparameters with best 
performance will be selected for different input com
bination. The workflow is shown in Figure 4.

For each watershed, we randomly selected 80% 
among the dataset as training dataset, and 20% as 
the test dataset. In the training dataset we apply 
4-fold cross-validation, which ensures that there are 
20% of whole data as the validation dataset (training 
data: validated data: test data = 60%: 20%: 20%) 
(Kumar 2020). Adam optimizer, an adaptive learning 
rate optimization algorithm was utilized through 
a learning rate of 0.001 (Talafha et al. 2021). 
Different batch sizes (e.g. 8, 16, and 32) are examined 

Figure 4. The workflow of the CNN model development that involves model training, testing, and validation.
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and the results will be compared to find the optimum. 
Using the data samples from West Fork Big Blue 
Watershed, Nebraska, we trained the best-fit CNN 
model, which was then used to test its transferability 
of classifying drainage crossing locations in the other 
three watersheds.

3.4 Model evaluation

To evaluate the performance of CNN models, we 
separate the entire image samples into training, vali
dation, and test datasets. The validation process is 
performed on the validation dataset after every 
epoch, which gives information that helps tune the 
model’s hyperparameters and prevents model from 
overfitting. The test dataset is used to test the model 
after completing the training, providing an unbiased 
final model performance metric in terms of accuracy. 
Since truth labels are encoded with integers, sparse 
categorical cross entropy method was used to calcu
late the loss of model (Eq.1). Entropy of a random 
variable presents the level of uncertainty inherent in 
the possible outcome of variables. Cross entropy loss, 
also called logarithmic loss, measures the perfor
mance of a classification model whose output is 
a probability value between 0 and 1. It compares 
each predicted class probability with the actual 
class. The loss would increase as the predicted prob
ability diverges from the actual label. A binary confu
sion matrix was applied to represent accuracy where 
positive samples represent those samples containing 
flow barriers while negative samples are those with
out flow barriers. A perfect model is expected to only 
produce “true positives” (TP) and “true negatives” 
(TN), and not include any “false positives” (FP) or 
“false negatives” (FN). The accuracy was calculated 
by Eq.2. 

Loss ¼ �
Pn

i¼1
yi log pið Þ (1) 

Where n is number of categories, yi is the truth label 
and piis the Softmax probability for the ith class. 

Acc ¼ TPþTN
TPþFPþTNþFN (2) 

To estimate the contribution of each input features to 
the classification outcome and the relationships 
among them, a multicollinearity analysis was con
ducted. The multicollinearity is the linear relationship 
between two or more variables, where variables are 

all influencing each other and not independent (Chen 
et al. 2019). Since a high multicollinearity increases 
the difficulties for models to establish the relation
ships between inputs and outputs, those input fea
tures that have strong correlation with each other 
should be reduced. Tolerance (TOL) (Eq.3) and the 
variance inflation factor (VIF) (Eq.4) are commonly 
used indexes for multicollinearity diagnoses. 
Theoretically, VIF > 10 or TOL < 0.1 is regarded as 
a threshold for a multicollinearity problem (Tang 
et al. 2019; Yu, Jiang, and Land 2015). 

TOLi ¼ 1 � R2
i (3) 

where R2
i is the coefficient of determination from the 

regression of factor i on all the other factors. 

VIFi ¼ 1
TOLi

(4) 

To assume the performance of the CNN model, we 
compare it with Support Vector Machine (SVM). SVM 
is a supervised learning model for classification pro
blems. SVM exhibits balanced predictive performance 
and complexity, even if the sample sizes are limited 
(Pisner and Schnyer 2020). For classification, if the 
data were linearly separable, the SVM model would 
be used as a non-probabilistic binary linear classifier. 
For nonlinear data, the SVM uses nonlinear kernel 
functions for transforming input data to a high- 
dimensional feature space, in which the input data 
become more separable compared to the original 
input space (Suthaharan 2016). A SVM with linear 
kernel was applied to the West Fork Big Blue 
Watershed in Nebraska. The train-test dataset split 
was 0.8 to 0.2.

4. Results

4.1 Model performance

Different combinations of model parameters and 
input features were used to construct CNN models 
for West Fork Big Blue Watershed, Nebraska. It was 
found that the model consistently achieved high 
accuracies (>90%) when the number of epochs was 
set as 100. CNN models reached over 99% training 
accuracies regardless of the combination of feature 
inputs and batch sizes (Table 4). According to the 
validation accuracies, the optimal batch size for the 
model with inputs HRDEM, HRDEM and NAIP aerial 
orthophotos, HRDEM and NDVI, HRDEM and NDWI are 
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16, 8, 8, and 16, respectively. The test accuracies of 
best-fit models with different combinations of input 
features are in Table 5, which shows that the model 
with input HRDEM and batch size 16 has the best 
testing accuracy (93.33%). Among all combinations 
of input features, HRDEM appears to be a dominant 
feature to accurately classify images with under-road 
drainage crossings being present. The results suggest 
that most CNN models can properly perform the clas
sification tasks. The CNN model with HRDEMs as the 
sole feature allows the best model-fit while maintain
ing relatively a lower computation cost. The addition 
of aerial imagery and derived spectral indices show 
little improvement on the model accuracy. To assess 
the contributions of aerial orthophoto bands to 
model accuracy, we trained CNN models with four 
aerial orthophoto bands, NDVI, and NDWI (with 16 

as the batch size). The outcomes shown in Table 6 
and Figure 5 suggest that NAIP aerial orthophotos 
and their derived spectral indices can be interpe
dently used as features to classify drainage crossing 
locations albeit with relatively lower accuracies. Both 
HRDEMs and aerial orthophotos appear to contribute 
similarly to the classification of images with and with
out drainage crossings.

4.2 Model transferability

Based on the results in Tables 4 and 5, we applied the 
best-fit CNN model (Input: HRDEM; Learning rate: 
0.001; Epoch: 100; Batch size: 16) to the other three 
watersheds in Illinois, North Dakota, and California, 
respectively, to test the selected model’s transferabil
ity in broader geographic contexts. As the results 

Table 4. Results of k-fold cross validation (k = 4). The total sample size is 4044 (50% False, 50% True), where train 
samples are 2426 (60%), validate sample are 809 (20%), and test samples are 809 (20%). The model is with 
optimizer adam, learning rate 0.001, and Epoch 100.

Feature inputs Batch size

Training Validation

Loss Accuracy Loss Accuracy

HRDEM 8 0.0159 0.9968 0.3745 0.9607
16 0.0117 0.9970 0.3826 0.9638
32 0.0094 0.9975 0.2998 0.9601

HRDEM+NAIP Aerial Orthophoto 8 0.0193 0.9965 0.2806 0.9713
16 0.0208 0.9965 0.2545 0.9607
32 0.0053 0.9988 0.3312 0.9592

HRDEM+NDVI 8 0.0108 0.9981 0.3372 0.9710
16 0.0121 0.9965 0.2997 0.9682
32 0.0084 0.9974 0.3141 0.9608

HRDEM+NDWI 8 0.0087 0.9972 0.3884 0.9737
16 0.0219 0.9955 0.1546 0.9743
32 0.0098 0.9973 0.2024 0.9734

Table 5. Classification results of CNN model training, validation, and testing with the combination of HRDEMs and 
NAIP-related spectral features. The total sample size is 4044 (50% False, 50% True), where train samples are 2,426 
(60%), validate sample are 809 (20%), and test samples are 809 (20%).

Feature inputs Batch size

Training Testing

Loss Accuracy Loss Accuracy

HRDEM 16 0.0065 0.9969 0.7398 0.9333
HRDEM +NAIP Aerial Orthophotos 8 0.0062 0.9981 1.0977 0.9246
HRDEM +NDVI 8 0.0269 0.9947 0.8423 0.9197
HRDEM +NDWI 16 0.0187 0.9966 0.7979 0.9271

Table 6. Classification results of CNN model training, validation, and testing with spectral features from NAIP aerial 
orthophotos. The total sample size is 4044 (50% False, 50% True), where train samples are 2,426 (60%), validate sample 
are 809 (20%), and test samples are 809 (20%). The model was set up with batch size 16, optimizer adam, learning rate 
0.001, and epoch 100.

Feature inputs

Training Validation Testing

Loss Accuracy Loss Accuracy Loss Accuracy

NAIP Aerial Orthophotos 0.0242 0.9922 0.9638 0.8591 1.0914 0.8492
NDVI 0.0353 0.9885 1.1865 0.8022 1.1080 0.8232
NDWI 0.0548 0.9802 0.6269 0.8665 0.8215 0.8381
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shown in Table 7, the best-fit CNN model developed 
in Nebraska can be transferable to classify flow bar
riers in watersheds from the other three. The test 
resulted in 87.34% accuracy in the Illinois watershed, 
83.20% in the North Dakota watershed, and 70.67% in 
the California watershed. Among three watersheds, 
California watershed shows the lowest test accuracy. 
Around 30% of image samples with flow barriers were 
classified into the wrong category according to 
results, which are explained in the Discussion.

4.3 Features affecting model accuracies

Table 5 shows that HRDEMs itself allow more accurate 
classification of images containing flow barriers than the 
combinations of HRDEMs with NAIP aerial photos and 
their derived spectral indices. Adding features derived 
from aerial photos barely improved or even decreased 
the model accuracy. Upon a close examination of those 
false positives and true negatives, we found that dense 
vegetation near roads make drainage-crossing patterns 
less visible in aerial photos at some locations. To better 
understand whether HRDEMs and digital numbers (DNs) 
of aerial photos exhibit interdependencies in terms of 
image classification, we conducted a multicollinearity 

test. The multicollinearity analysis is shown in Table 8. 
As shown in Table 8, TOL values are all larger than 0.1 
and VIF values for three models are far less than 10. 
Therefore, there is no serious multicollinearity being 
detected between HRDEMs and aerial photo-derived 
features.

4.4 Baseline model comparison

The classification accuracy of using SVM for the 
Nebraska watershed is shown in Table 9. Based on 
the results, SVM cannot properly distinguish the sam
ples without flow barriers. The CNN model turned out 
to be superior to SVM in terms of classification 
accuracy.

Table 7. Classification results in other watersheds. The model has been trained by the 
HRDEM from Nebraska, with optimizer adam, learning rate 0.001, epoch 100, and 
batch size 16. The HRDEM from Illinois, North Dakota, and California are applied as 
test samples, respectively.

Location Testing loss Testing accuracy

Vermilion River Watershed, Illinois 0.7995 0.8734
Maple River Watershed, North Dakota 1.1490 0.8320
Sacramento-Stone Corral Watershed, California 2.3472 0.7067

Figure 5. Accuracy matrices for the CNN models with sole input feature from aerial orthophotos and their related spectral indexes 
respectively. The inputs feature for model (a) is NAIP orthophotos, (b) is NDVI, (c) is NDWI.

Table 8. Multicollinearity statistics of different input features.

Model input Features

Collinearity statistics

TOL VIF

HRDEM+NAIP HRDEM 0.994 1.006
NAIP-R 0.802 1.248
NAIR-G 0.787 1.271
NAIP-B 0.816 1.226
NAIP-NIR 1.000 1.000

HRDEM+NDVI HRDEM 1.000 1.000
NDVI 1.000 1.000

HRDEM+NDWI HRDEM 1.000 1.000
NDWI 1.000 1.000
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5. Discussion

The best-performing CNN model developed in the 
Nebraska watershed has HRDEM as the sole input fea
ture with an accuracy of approximately 93%. This level 
of accuracy is consistent with our earlier tests on 
a smaller watershed (Talafha et al. 2021). The applica
tion of the model to other watersheds confirmed the 
model’s transferability in other geographic regions. It is 
also interesting to note that testing accuracies for 
Illinois and North Dakota watersheds are higher than 
that for the California watershed. This may be 
explained by the fact that the hydrography in the 
California watershed exhibits more complex drainage 
crossing patterns than that in the selected watersheds 
in Illinois, Nebraska, and North Dakota. This perfor
mance variability is also an example of out-of- 
distribution problems common in deep learning. As 

exemplified in Figure 6(a-b), natural streams dominate 
the hydrography in those watersheds spanning North 
Dakota, Nebraska, and Illinois in North-Central U.S. The 
common pattern of drainage crossing is a low-lying 
natural stream channel intersecting with an elevated 
rural road, which is relatively visible. However, in the 
California watershed, artificial canals often intersect 
with roads with more complex crossing patterns, in 
which artificial structures including canals, canal 
banks and roads form clustered drainage crossings as 
shown in Figure 6(c-d). This finding on the model’s 
transferability also suggests that an image training 
dataset (with flow barriers) collected from broader geo
graphic regions can lead to a robust deep learning 
model. An image dataset containing image training 
samples with variable appearances, positions, view
points, as well as background clutter and occlusions, 
is imperative for image analysis algorithms (Deng et al.  
2009). It has been found that models being developed 
based on a dataset with high variability (e.g. ImageNet) 
usually perform better on computer vision tasks 
(Kornblith, Shlens, and Le 2019). Thus, collecting flow 
barriers training data from broader geographic con
texts can increase data variability, and thus improve 
the transferability of the model.

Table 9. Classification statistics of using SVM as the baseline 
model. The total sample size is 4044 (50% False, 50% True), 
where train samples are 3235 (80%), and test samples are 809 
(20%).

Class Precision Recall F1-score

False Sample 0.00 0.00 0.00
True Sample 0.50 1.00 0.67
Overall Accuracy 0.5006

Figure 6. Drainage crossing examples from watersheds in Nebraska and California. The blue lines in (a) and (b) are natural streams in 
the Nebraska watershed, whereas red lines in (c) and (d) are canal ditches in the California watershed.
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Regarding the model’s feature selection, the CNN 
model with HRDEMs as the sole feature turned out the 
best-fit (~93% accuracy). In particular, the addition of 
NAIP aerial orthophoto bands and their derived spectral 
indices was found to be insignificant to or even worsen 
the model’s performance, although they can be used as 
sole features to achieve 82–85% accuracies (Table 6). As 
the interdependence between HRDEMs and aerial 
photo-derived features is low based on the multicolli
nearity analysis, we argue that two issues may explain 
the comparability of HRDEMs and NAIP aerial orthopho
tos in terms of model performance. First, at the locations 
of flow barriers, the drastic change in elevation between 
a road and a stream is a typical characteristic of a “digital 
dam.” In NAIP aerial orthophotos, although visible sur
face characteristics (e.g. erosion, ponding, and dense 
grass near culverts) can help reveal culverts locations, 
the unique stream-road crossing pattern appears to be 
not as explicit as that represented in HRDEMs because 
streams are often covered by grass, shrubs, and trees 
near crossing locations. Rafique, Zhu, and Jacobs (2022) 
found that only HRDEMs-derived topographic features, 
rather than aerial orthophotos, achieved the success in 
detecting the features of interest in CNN-based deep 
learning models. In addition, NAIP aerial orthophotos 
exhibit data quality issues. The acquisition of NAIP 
images usually involves multiple flights with different 
sensors that may last weeks or potentially even months 
(Davies et al. 2010), resulting in the DN values inconsis
tent among image tiles associated with atmospheric 
interference, viewing geometry, illumination, shadows, 
and even plant phenology. Some images turn out to be 
blurrier and have lower color contrast than others 
(Hogland et al. 2018; Maxwell et al. 2017; Yang et al.  
2018). Although a conversion from DN values to surface 
reflectance could help mitigate the issue (Wulder et al.  
2019), there is a general absence of sensor information 
for such a purpose (Zhang, Zimba, and Nzewi 2019).

For future work, we plan to focus on two areas. First, 
we will further refine the feature selection for the deep 
learning model. For example, as our tests suggested 
potential data quality issue associated with NAIP aerial 
orthophotos, we plan to incorporate the high-resolution 
satellite images via Google Maps Static API (Google  
2023) as a new input feature. Second, we will test differ
ent advanced CNN models (e.g. Faster-RCNN and U-net) 
to locate drainage crossing locations with bounding 
boxes, which can be used for improving the elevation- 
derived hydrography research (Stanislawski, 

Brockmeyer, and Shavers 2018). Feature selection, 
model calibration, and transferability outcomes of the 
CNN models in this study are expected to guide the 
object detection of drainage crossing locations in 
broad geographic areas.

6. Conclusions

Drainage crossings are hydrological features widely 
observed in our agricultural landscapes. Identifying 
their locations is critical for mapping hydrography 
with high quality and managing environmental 
issues. In our study, we explored image classification 
for identifying drainage crossing locations automati
cally based on high-resolution DEMs. We trained CNN 
models and labeled each sample images as “true” 
(with a drainage crossing) or “false” (without 
a drainage crossing). We also evaluated the perfor
mance of the CNN models with different input fea
tures and hyperparameters. Furthermore, we applied 
our best-fit model in a Nebraska watershed to differ
ent watersheds in California, Illinois, and North Dakota 
to test our model’s broad geographic transferability. 
The results suggest that:

(1) Compared with baseline machine learning 
techniques like SVM, CNN-based deep learning 
model is a promising tool to accurately classify 
drainage crossings from our image samples.

(2) Among all models for the study area in 
Nebraska, the one with a batch size of 16, 
a learning rate of 0.01, an epoch of 100, and 
the HRDEM as the sole input feature exhibits 
the best performance (~93% accuracy).

(3) The best-fit CNN model shows its transferability 
in different geographic regions, although the 
classification accuracy appears to link to their 
hydrography similarity.

(4) The addition of aerial orthophotos and their 
derived spectral indices was found to be insignif
icant to or even worsen the best-fit model’s per
formance, which may be explained by the 
interference of vegetation and data quality issues.
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