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ABSTRACT

High-Resolution Digital Elevation Models (HRDEMs) have been used to delineate fine-scale hydro-
graphic features in landscapes with relatively level topography. However, artificial flow barriers
associated with roads are known to cause incorrect modeled flowlines, because these barriers
substantially increase the terrain elevation and often terminate flowlines. A common practice is to
breach the elevation of roads near drainage crossing locations, which, however, are often unavail-
able. Thus, developing a reliable drainage crossing dataset is essential to improve the HRDEMs for
hydrographic delineation. The purpose of this research is to develop deep learning models for
classifying the images that contain the locations of flow barriers. Based on HRDEMs and aerial
orthophotos, different Convolutional Neural Network (CNN) models were trained and compared to
assess their effectiveness in image classification in four different watersheds across the U.S.
Midwest. Our results show that most deep learning models can consistently achieve over 90%
accuracies. The CNN model with HRDEM:s as the sole input feature was found to be the best-fit one.
The addition of aerial orthophotos and their derived spectral indices is insignificant to or even
worsens the model’s accuracy. The selected best-fit model exhibits excellent transferability over
different geographic contexts. This work can be applied to improve elevation-derived hydrography

ARTICLE HISTORY
Received 3 October 2022
Accepted 22 June 2023

KEYWORDS

Deep learning; Convolutional
neural network; LiDAR;
HRDEM; Hydrography

mapping at fine spatial scales.

1. Introduction

Hydrologic connectivity is critical for environmental
management issues such as overland nutrient trans-
port and ecological conservation (Good, Noone, and
Bowen 2015; Pringle 2001; Stieglitz et al. 2003). For this,
Digital Elevation Models (DEMs) have been widely uti-
lized to represent topographic structure and simulate
hydrologic connectivity (Callow, Van Niel, and Boggs
2007; Habtezion, Tahmasebi Nasab, and Chu 2016).
Conventional medium-resolution DEMs are unsuitable
for resolving subtle terrain variations in a flat topogra-
phy and mapping hydrographic features in fine scales
(Liu, Peterson, and Zhang 2005; Regnauld and
Mackaness 2006). In contrast, High-resolution DEMs
(HRDEMs) products, mostly generated from Light
Detection and Ranging (LiDAR), allow highly accurate
representation of terrain owing to their fine spatial
resolution and high vertical accuracy. However, accu-
rate delineation of hydrographic features using
HRDEMs exhibits a challenge arising from unrepre-
sented features in HRDEMs. Numerous studies have

shown that hydrological delineation using HRDEMs is
susceptible to flow barriers such as roads, which func-
tion as “digital dams” (Duke et al. 2003; Li et al. 2013;
Sofia, Fontana, and Tarolli 2014). Because only the
elevation of the road surface rather than its underneath
channel at drainage structures such as culverts and
bridges are typically represented on the HRDEMs, the
simulated drainage flowlines often terminate before
the roads or cross the roads at incorrect locations
(Poppenga and Worstell 2016).

Research has shown that incorporating drainage
crossing locations can effectively breach flow barriers
and improve the spatial accuracy of HRDEM-derived
watershed boundaries and flowlines (Aristizabal et al.
2018; Bhadra et al. 2021; Li et al. 2013; Lindsay and
Dhun 2015). Breaching roads at those locations results
in a preprocessed, “hydrologic” version of HRDEMs.
However, the drainage crossing location dataset is
either unavailable or only available with variable qual-
ity (Poppenga and Worstell 2016) in most areas. To
identify the locations of flow barriers, current efforts
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have been directed toward manual on-screen digiti-
zation (Shore et al. 2013) and field survey (Wang et al.
2011), which are labor-intensive and costly especially
over large geographic areas. Thus, it is imperative to
develop a cost-effective method to efficiently identify
flow barriers for improving HRDEM preprocessing for
hydrographic mapping.

As an emerging technique in geospatial informa-
tion science, deep learning has shown its superiority
to solve complex image classification and object
detection problems (Hu et al. 2020; Krizhevsky,
Sutskever, and Hinton 2012). It uses multiple layers
to progressively extract higher-level features from raw
inputs, which could be adaptively used as “knowl-
edge” to create outputs (Sinha, Pandey, and Pattnaik
2018). For example, Li et al. (2017) used deep learning
to support automatic craters detection and classifica-
tion, providing important information for estimating
relative regional ages. Ye et al. (2019) proposed
a deep learning framework with constraints to detect
landslides on hyperspectral images, resulting in
a higher overall accuracy than traditional classification
methods. Li et al. (2020) employed a deep learning
strategy to detect landforms in the landscape of Loess
Plateau using integrated data sources of digital eleva-
tion model and imagery. Deep learning has been
found capable of producing results comparable to
human performance from large samples in
a supervised, semi-supervised, or unsupervised man-
ner. In particular, Convolutional Neural Networks
(CNN), as a supervised deep learning architecture,
has its eminence in automatic features selection,
extraction, and generalization to avoid overfitting
(Tang et al. 2018; Widyantoko et al. 2021). The rapidly
developing computing infrastructure and tools (e.g.
TensorFlow and Keras) also make CNN a viable option
to address complex classification tasks based on big
training datasets (Li et al. 2017). In hydrography map-
ping, Xu et al. (2021) adopted an attention U-net and
high-accuracy LiDAR data for developing detailed
streamline detection, resulting in an improved perfor-
mance over traditional method learning methods
such as ANN and SVM. To generate more accurate
drainage networks, Stanislawski, Brockmeyer, and
Shavers (2018) utilized a set of existing roads and
stream valleys data to train a model with advanced
CNN architecture, then using the trained model to
extract all road and stream valley features from
HRDEMs. The flow barriers from road embankments

were recognized as an important issue to be
addressed for future research. CNN has also been
applied to assess the debris-related blockage condi-
tions of drainage culverts (Igbal et al. 2022), which
developed CNN algorithms to automate the process
of classifying visual blockage images captured by HD
cameras. Talafha et al. (2021) used several advanced
CNN techniques to distinguish images with drainage
crossings (i.e. bridges and culverts) in a small
watershed in the northeast Nebraska based on both
DEMs and National Agriculture Imagery Program
(NAIP) aerial orthophotos. However, it is unclear if
those developed CNN models are transferrable to
broader geographic areas.

All these studies support that deep learning tech-
niques can be leveraged to facilitate the identification
of drainage crossing locations for improving the mod-
eled hydrography. However, the modeled channel
continuity depends on the availability of high-
accuracy supplemental training data (e.g. road and
flowline data), which are often unavailable at fine
scales. The purpose of this study is to develop
a deep learning model that can classify the images
with under-road drainage crossings and evaluate the
performance and transferability of the model in dif-
ferent geographic areas. Drainage crossings were
focused on those locations where natural streams or
artificial canals pass roads through underpass struc-
tures such as bridges or culverts. We expect that the
knowledge gained in this study can be used to guide
the application of deep learning models for improv-
ing hydrologic connection in broader geographic
areas.

2, Study area

The experiments were conducted in four study areas,
including West Fork Big Blue Watershed, Nebraska,
Vermilion River Watershed, lllinois, Maple River
Watershed, North Dakota, and Sacramento-Stone
Corral Watershed, California (Figure 1). The land-
scapes of these areas are dominated by intensive
agriculture and relatively level topography. Dense
road networks over these areas complicate the flow
patterns and segment hydrologic features repre-
sented on HRDEMs, resulting in a critical need for
breaching drainage barriers at culverts and bridges.
West Fork Big Blue, Nebraska lies on gently undulat-
ing loess plain, descending from its west of around
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Figure 1. Topography and locations of four study areas.

626 m to its east of around 410 m with the total area
of 3,471 km?% Land use within the watershed is pri-
marily agriculture with over 80% of the land devoted
to row crops. The hydrology of the region is domi-
nated by a poorly developed drainage system with
many depressional wetlands (Stutheit et al. 2004). The
Vermilion River Watershed is located in North-Central
Illinois, encompassing more than 3,453 km? that drain
northwesterly into the lllinois River. Its elevation
ranges from 134 to 260 m. About 95% of the
watershed is dominated by cultivated crops (88%)
and pasture (7%). Understanding the routing and
eroding effect of surface runoff is a top priority for
local natural resources conservation. The Maple River
Watershed is mostly within the ecoregion of Northern
Glaciated Plains of North Dakota, which features flat
to undulating landforms and shallow river valleys. The
watershed has a total of 4,089 km?, and generally
descends toward the east with elevations ranging

from about 480 to 267 m. Approximately 93% of the
area is dominated by row crops and pasture owing to
its deep and fertile soils. The Sacramento-Stone Corral
watershed is located in northern Central Valley,
California, one of the most productive
U.S. agricultural regions. Within an area of 4,880 km?,
the terrain elevation ranges from 857 to 5 m, descend-
ing from its mountainous west to the east plain. Most
of the watershed is dominated by low-lying plains,
which support many agricultural commodities ran-
ging from rice to row crops.

3. Methods
3.1 Datasets

The sources and specification of HRDEMs and 4-band
Digital Orthophotos used in this study are listed in
Table 1. Compared with conventional DEMs, LiDAR-
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Table 1. Data sources of LIDAR-derived HRDEMs and aerial orthophotos.

Spatial Vertical accuracy

Data Locations Sources resolution RMSE

DEM West Fork Big Blue Watershed, Nebraska Nebraska Department of Natural Resource 1.0m 0.185m
Vermilion River Watershed, Illinois lllinois Geospatial Data Clearinghouse 0.30m 1.19ft (~0.36m)
Maple River Watershed, North Dakota North Dakota GIS Hub Data Portal 2.0ft (~0.61m) 0.15m
Sacramento-Stone Corral Watershed, USGS 1.0m 0.196m
California

Aerial Four Watersheds USGS National Agriculture Imagery Program 1.0m -

Orthophotos (NAIP)

derived HRDEMs show remarkable improvement in
representing subtle topographic details of land sur-
face. The National Agriculture Imagery Program
(NAIP) under the USDA Farm Service Agency (FSA)
acquired color infrared aerial orthophotos at
a resolution of 1-meter ground sample distance.

3.2 Input features

Unique topographic and spectral signatures at locations
of flow barriers such as microtopographic patterns and
soil erosion near drainage crossing locations are com-
monly used as indicators to guide manual digitization of
these structures on HRDEMs and aerial orthophotos
(Gelder, Zhou, and Yu 2015; Poppenga et al. 2010). In
this paper, we tested four different combinations of
features as listed in Table 2. In addition to different
band combinations, we also derived new features to
enhance the contrasts of land covers near flow barriers,
including Normalized Difference Vegetation Index
(NDVI) and Normalized Difference Water Index (NDWI).
NDVI has been well known to effectively distinguish
vegetation and bare soil that are often found near drai-
nage crossings, while NDWI can indicate differential
moisture contents caused by vegetation and topo-
graphic variations. To prepare the datasets, we
resampled all HRDEMs from four study areas to
1-meter resolution and manually digitized drainage
crossing locations. Using a square bounding box of
100 m near each drainage crossing location, five-band
samples with the identical size (100 by 100-pixel) were

Table 2. Input features for flow barriers identification.

clipped as True samples (Figure 2a). We also randomly
generated equal amounts of False samples without
a drainage crossing along the roads (Figure 2b). The
sample size for each watershed is shown in Table 3.

3.3 Model development

We selected the CNN deep learning architecture due
to its excellent flexibility and effectiveness in complex
data intensive tasks. The combination that includes
convolution, activation, and pooling layers can be
regarded as a convolution unit of CNN (Li et al.
2017). In our study, depending on the complexities
in the images, this unit could be repeated, resulting in
a “deep stacking” to capture low-level details, albeit at
the cost of increasing computational requirement.
Figure 3 demonstrates the architecture of our CNN
models, which contains four convolution layers, one
flatten layer, and two fully connected layers.
Convolution layers automatically extract the feature
map that is the sum of dot product of all elements in
sub-regions and the kernels (Hussain, Bird, and Faria
2018; Li et al. 2017) by applying a group of filters (a.k.
a., convolutional kernels) with the same predefined
size to image sub-regions. For feature inputs, each
convolutional layer contains a different set of image
features. In our model, 3x3 and 5 x5 filters were
used, respectively, in different convolution layers.
Rectified Linear Unit (ReLU) was also utilized in our
model and applied to the output feature map from
a convolution layer to change all negative values

Input features Applied methods

References

HRDEM (1 band)
HRDEM, NAIP Orthophotos
(R, G, B, NIR) (5 bands) Xscaler = 2—2min

= Xoar—Xn ) _
Xscaled = Xscaler * (max - mm) + min
max = 1,min =0

_ NIR—Red
NDVI = NIR-+-Red

__ GREEN—NIR
NDWI = GREEN+NIR

HRDEM, NDVI (2 bands)
HRDEM, NDWI (2 bands)

To remove image dependency on lighting geometry and illumination (Finlayson, Schiele, and Crowley 1998; Patro and Sahu
color, the data were normalized to a scale of (0,1).

2015; Saranya and Manikandan 2013).

(Brown 2015).
(McFeeters 1996).
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(b)

Figure 2. Examples of 5-band samples, where (a) is the true sample and (b) is false sample. The red circles point to the locations of

Table 3. Training sample sizes for four watersheds located in
California, lllinois, Nebraska, and North Dakota.

within the feature map to zero. As a non-linear activa-
tion function, it can improve the non-linear properties
of the model (Agarap 2018).

True sample False sample
Locations (Label 1, with culvert)  (Label 0, without culvert)  Total Batch normalization was implemented between
Nebraska 2022 2022 4044 . . .
linois 1011 1011 2093 convolution operations and average pooling layers
North Dakota 613 613 1226 in the model. Batch normalization is the process of
California 2388 2388 4776 . . . .
applying normalization among layers in a neural
5 Channels
(HRDEM, Red,
Green, Blue, Near
IR)
Conv4
1024@5 x 5 A‘égfgm Flatten
Conv3 AvaPool Relu
512@5 x 5 ng : N N _
252?(;; Zx 3 AvgPool Rela Fully Connected
@ Conv1 RelLu x 2 N N 512, ReLu
128@3 x 3 A‘égpg“ Slodt
Input Image " x M utpu
100 x 100 pixel et N N\ 2, SoftMax
BatchNorm Dropout BatchNorm Dropout BatchNorm Dropout BatchNorm Dropout Dropout
03 03 03 03 05
Culvert?
* 2D Convolution Layer N U - Yes/No
128 Neurons \
3 x 3 Kernel Size BatchNorm: Batch Normalization — —
RelLu Activation AvgPool: Average Pooling \ \

Figure 3. Architecture of the CNN-based deep learning model for this study.
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network, which helps stabilize the learning process,
reduce overfitting through regularization, and speeds
up training substantially. Then, the feature map is
further processed by an average pooling layer for
reducing the spatial size of the convolved features.
In order to “pool” the feature map, the feature map
has been divided into non-overlapping smaller
regions by a 2x 2 kernel and the average of values
in the regions are returned to represent each sub-
region. The application of pooling layer can decrease
the computational power requirement for data pro-
cessing through dimensionality reduction. It also
helps maintain the training process effectively by
retaining the most important information such as
the dominant features that are rotational and posi-
tional invariant. A fully connected layer (a.k.a., the
classifier) operates on a flattened input where each
input is connected to all neurons. Based on the errors
in the prediction of SoftMax function, backpropaga-
tion is applied to every iteration of training to adjust
the bias values and weights.

To train a CNN model, data should be divided into
training, validation, and test sets. The validation set is
used for the purposes of tuning hyperparameters of
the model (Barry-Straume et al. 2018). To avoid the
randomness from estimates produced by imbalanced
data and overfitting, K-fold cross-validation was used
(Berrar 2019; Koul, Becchio, and Cavallo 2018). In

Whole Dataset

Test Set Training Set

Validation fold

e E—

a sparse dataset, splitting the data only once could
yield unstable estimates because of unsuitable train-
test split selected and inadequate amount of observa-
tional data (Ziggah et al. 2019). The results from
a single train-and-test experiment may not provide
enough evidence of the generalization ability of
model. K-fold cross-validation is one way to combat
these defects. In this technique, the whole dataset is
divided into k parts of equal size and each partition is
called a fold. One of these (k) folds is chosen as
validation dataset while the others (k-1) are used for
the training model. The process is repeated until each
fold has been used as the validation set and we will
get the mean of k number of performance estimates.
Different hyperparameters of the model will undergo
a cross-validation test and hyperparameters with best
performance will be selected for different input com-
bination. The workflow is shown in Figure 4.

For each watershed, we randomly selected 80%
among the dataset as training dataset, and 20% as
the test dataset. In the training dataset we apply
4-fold cross-validation, which ensures that there are
20% of whole data as the validation dataset (training
data: validated data: test data=60%: 20%: 20%)
(Kumar 2020). Adam optimizer, an adaptive learning
rate optimization algorithm was utilized through
a learning rate of 0.001 (Talafha et al. 2021).
Different batch sizes (e.g. 8, 16, and 32) are examined

One of Hyperparameter
Combinations

Accuracy 1

:> Accuracy 2
Average
i> Accuracy k
| J
T
Best Hyperparameter
Combination

Test Set [ Predictions ]4—{ Best Model }4— Training Set

N

Accuracy

t Score and

J

Figure 4. The workflow of the CNN model development that involves model training, testing, and validation.



and the results will be compared to find the optimum.
Using the data samples from West Fork Big Blue
Watershed, Nebraska, we trained the best-fit CNN
model, which was then used to test its transferability
of classifying drainage crossing locations in the other
three watersheds.

3.4 Model evaluation

To evaluate the performance of CNN models, we
separate the entire image samples into training, vali-
dation, and test datasets. The validation process is
performed on the validation dataset after every
epoch, which gives information that helps tune the
model’s hyperparameters and prevents model from
overfitting. The test dataset is used to test the model
after completing the training, providing an unbiased
final model performance metric in terms of accuracy.
Since truth labels are encoded with integers, sparse
categorical cross entropy method was used to calcu-
late the loss of model (Eq.1). Entropy of a random
variable presents the level of uncertainty inherent in
the possible outcome of variables. Cross entropy loss,
also called logarithmic loss, measures the perfor-
mance of a classification model whose output is
a probability value between 0 and 1. It compares
each predicted class probability with the actual
class. The loss would increase as the predicted prob-
ability diverges from the actual label. A binary confu-
sion matrix was applied to represent accuracy where
positive samples represent those samples containing
flow barriers while negative samples are those with-
out flow barriers. A perfect model is expected to only
produce “true positives” (TP) and “true negatives”
(TN), and not include any “false positives” (FP) or
“false negatives” (FN). The accuracy was calculated
by Eq.2.

n
Loss = — > yilog(p;) (1)
i=1
Where n is number of categories, y; is the truth label
and pjis the Softmax probability for the jth class.

_ _ TPLIN
ACC = Tprp INTEN (2)

To estimate the contribution of each input features to
the classification outcome and the relationships
among them, a multicollinearity analysis was con-
ducted. The multicollinearity is the linear relationship
between two or more variables, where variables are
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all influencing each other and not independent (Chen
et al. 2019). Since a high multicollinearity increases
the difficulties for models to establish the relation-
ships between inputs and outputs, those input fea-
tures that have strong correlation with each other
should be reduced. Tolerance (TOL) (Eq.3) and the
variance inflation factor (VIF) (Eq.4) are commonly
used indexes for multicollinearity diagnoses.
Theoretically, VIF>10 or TOL<0.1 is regarded as
a threshold for a multicollinearity problem (Tang
et al. 2019; Yu, Jiang, and Land 2015).

TOL =1 — R? (3)

where R? is the coefficient of determination from the
regression of factor i on all the other factors.

F = @

To assume the performance of the CNN model, we
compare it with Support Vector Machine (SVM). SVM
is a supervised learning model for classification pro-
blems. SVM exhibits balanced predictive performance
and complexity, even if the sample sizes are limited
(Pisner and Schnyer 2020). For classification, if the
data were linearly separable, the SVM model would
be used as a non-probabilistic binary linear classifier.
For nonlinear data, the SVM uses nonlinear kernel
functions for transforming input data to a high-
dimensional feature space, in which the input data
become more separable compared to the original
input space (Suthaharan 2016). A SVM with linear
kernel was applied to the West Fork Big Blue
Watershed in Nebraska. The train-test dataset split
was 0.8 to 0.2.

4, Results
4.1 Model performance

Different combinations of model parameters and
input features were used to construct CNN models
for West Fork Big Blue Watershed, Nebraska. It was
found that the model consistently achieved high
accuracies (>90%) when the number of epochs was
set as 100. CNN models reached over 99% training
accuracies regardless of the combination of feature
inputs and batch sizes (Table 4). According to the
validation accuracies, the optimal batch size for the
model with inputs HRDEM, HRDEM and NAIP aerial
orthophotos, HRDEM and NDVI, HRDEM and NDWI are
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Table 4. Results of k-fold cross validation (k = 4). The total sample size is 4044 (50% False, 50% True), where train
samples are 2426 (60%), validate sample are 809 (20%), and test samples are 809 (20%). The model is with

optimizer adam, learning rate 0.001, and Epoch 100.

Training Validation
Feature inputs Batch size Loss Accuracy Loss Accuracy
HRDEM 8 0.0159 0.9968 0.3745 0.9607
16 0.0117 0.9970 0.3826 0.9638
32 0.0094 0.9975 0.2998 0.9601
HRDEM-+NAIP Aerial Orthophoto 8 0.0193 0.9965 0.2806 0.9713
16 0.0208 0.9965 0.2545 0.9607
32 0.0053 0.9988 0.3312 0.9592
HRDEM-+NDVI 8 0.0108 0.9981 0.3372 0.9710
16 0.0121 0.9965 0.2997 0.9682
32 0.0084 0.9974 0.3141 0.9608
HRDEM-+NDWI 8 0.0087 0.9972 0.3884 0.9737
16 0.0219 0.9955 0.1546 0.9743
32 0.0098 0.9973 0.2024 0.9734

16, 8, 8, and 16, respectively. The test accuracies of
best-fit models with different combinations of input
features are in Table 5, which shows that the model
with input HRDEM and batch size 16 has the best
testing accuracy (93.33%). Among all combinations
of input features, HRDEM appears to be a dominant
feature to accurately classify images with under-road
drainage crossings being present. The results suggest
that most CNN models can properly perform the clas-
sification tasks. The CNN model with HRDEMs as the
sole feature allows the best model-fit while maintain-
ing relatively a lower computation cost. The addition
of aerial imagery and derived spectral indices show
little improvement on the model accuracy. To assess
the contributions of aerial orthophoto bands to
model accuracy, we trained CNN models with four
aerial orthophoto bands, NDVI, and NDWI (with 16

as the batch size). The outcomes shown in Table 6
and Figure 5 suggest that NAIP aerial orthophotos
and their derived spectral indices can be interpe-
dently used as features to classify drainage crossing
locations albeit with relatively lower accuracies. Both
HRDEMs and aerial orthophotos appear to contribute
similarly to the classification of images with and with-
out drainage crossings.

4.2 Model transferability

Based on the results in Tables 4 and 5, we applied the
best-fit CNN model (Input: HRDEM; Learning rate:
0.001; Epoch: 100; Batch size: 16) to the other three
watersheds in lllinois, North Dakota, and California,
respectively, to test the selected model’s transferabil-
ity in broader geographic contexts. As the results

Table 5. Classification results of CNN model training, validation, and testing with the combination of HRDEMs and
NAIP-related spectral features. The total sample size is 4044 (50% False, 50% True), where train samples are 2,426
(60%), validate sample are 809 (20%), and test samples are 809 (20%).

Training Testing
Feature inputs Batch size Loss Accuracy Loss Accuracy
HRDEM 16 0.0065 0.9969 0.7398 0.9333
HRDEM +NAIP Aerial Orthophotos 8 0.0062 0.9981 1.0977 0.9246
HRDEM +NDVI 8 0.0269 0.9947 0.8423 0.9197
HRDEM +NDWI 16 0.0187 0.9966 0.7979 0.9271

Table 6. Classification results of CNN model training, validation, and testing with spectral features from NAIP aerial
orthophotos. The total sample size is 4044 (50% False, 50% True), where train samples are 2,426 (60%), validate sample
are 809 (20%), and test samples are 809 (20%). The model was set up with batch size 16, optimizer adam, learning rate

0.001, and epoch 100.

Training Validation Testing
Feature inputs Loss Accuracy Loss Accuracy Loss Accuracy
NAIP Aerial Orthophotos 0.0242 0.9922 0.9638 0.8591 1.0914 0.8492
NDVI 0.0353 0.9885 1.1865 0.8022 1.1080 0.8232
NDWI 0.0548 0.9802 0.6269 0.8665 0.8215 0.8381
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Figure 5. Accuracy matrices for the CNN models with sole input feature from aerial orthophotos and their related spectral indexes
respectively. The inputs feature for model (a) is NAIP orthophotos, (b) is NDVI, (c) is NDWI.

Table 7. Classification results in other watersheds. The model has been trained by the
HRDEM from Nebraska, with optimizer adam, learning rate 0.001, epoch 100, and
batch size 16. The HRDEM from lllinois, North Dakota, and California are applied as

test samples, respectively.

Location Testing loss Testing accuracy
Vermilion River Watershed, Illinois 0.7995 0.8734
Maple River Watershed, North Dakota 1.1490 0.8320
Sacramento-Stone Corral Watershed, California 2.3472 0.7067

shown in Table 7, the best-fit CNN model developed
in Nebraska can be transferable to classify flow bar-
riers in watersheds from the other three. The test
resulted in 87.34% accuracy in the Illinois watershed,
83.20% in the North Dakota watershed, and 70.67% in
the California watershed. Among three watersheds,
California watershed shows the lowest test accuracy.
Around 30% of image samples with flow barriers were
classified into the wrong category according to
results, which are explained in the Discussion.

4.3 Features affecting model accuracies

Table 5 shows that HRDEMs itself allow more accurate
classification of images containing flow barriers than the
combinations of HRDEMs with NAIP aerial photos and
their derived spectral indices. Adding features derived
from aerial photos barely improved or even decreased
the model accuracy. Upon a close examination of those
false positives and true negatives, we found that dense
vegetation near roads make drainage-crossing patterns
less visible in aerial photos at some locations. To better
understand whether HRDEMs and digital numbers (DNs)
of aerial photos exhibit interdependencies in terms of
image classification, we conducted a multicollinearity

Table 8. Multicollinearity statistics of different input features.
Collinearity statistics

Model input Features TOL VIF
HRDEM+NAIP HRDEM 0.994 1.006
NAIP-R 0.802 1.248
NAIR-G 0.787 1.271
NAIP-B 0.816 1.226
NAIP-NIR 1.000 1.000
HRDEM+NDVI HRDEM 1.000 1.000
NDVI 1.000 1.000
HRDEM-+NDWI HRDEM 1.000 1.000
NDWI 1.000 1.000

test. The multicollinearity analysis is shown in Table 8.
As shown in Table 8, TOL values are all larger than 0.1
and VIF values for three models are far less than 10.
Therefore, there is no serious multicollinearity being
detected between HRDEMs and aerial photo-derived
features.

4.4 Baseline model comparison

The classification accuracy of using SVM for the
Nebraska watershed is shown in Table 9. Based on
the results, SVM cannot properly distinguish the sam-
ples without flow barriers. The CNN model turned out
to be superior to SVM in terms of classification
accuracy.
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Table 9. Classification statistics of using SVM as the baseline
model. The total sample size is 4044 (50% False, 50% True),
where train samples are 3235 (80%), and test samples are 809
(20%).

Class Precision Recall F1-score
False Sample 0.00 0.00 0.00
True Sample 0.50 1.00 0.67

Overall Accuracy 0.5006

5. Discussion

The best-performing CNN model developed in the
Nebraska watershed has HRDEM as the sole input fea-
ture with an accuracy of approximately 93%. This level
of accuracy is consistent with our earlier tests on
a smaller watershed (Talafha et al. 2021). The applica-
tion of the model to other watersheds confirmed the
model’s transferability in other geographic regions. It is
also interesting to note that testing accuracies for
lllinois and North Dakota watersheds are higher than
that for the California watershed. This may be
explained by the fact that the hydrography in the
California watershed exhibits more complex drainage
crossing patterns than that in the selected watersheds
in lllinois, Nebraska, and North Dakota. This perfor-
mance variability is also an example of out-of-
distribution problems common in deep learning. As

exemplified in Figure 6(a-b), natural streams dominate
the hydrography in those watersheds spanning North
Dakota, Nebraska, and Illinois in North-Central U.S. The
common pattern of drainage crossing is a low-lying
natural stream channel intersecting with an elevated
rural road, which is relatively visible. However, in the
California watershed, artificial canals often intersect
with roads with more complex crossing patterns, in
which artificial structures including canals, canal
banks and roads form clustered drainage crossings as
shown in Figure 6(c-d). This finding on the model’s
transferability also suggests that an image training
dataset (with flow barriers) collected from broader geo-
graphic regions can lead to a robust deep learning
model. An image dataset containing image training
samples with variable appearances, positions, view-
points, as well as background clutter and occlusions,
is imperative for image analysis algorithms (Deng et al.
2009). It has been found that models being developed
based on a dataset with high variability (e.g. ImageNet)
usually perform better on computer vision tasks
(Kornblith, Shlens, and Le 2019). Thus, collecting flow
barriers training data from broader geographic con-
texts can increase data variability, and thus improve
the transferability of the model.

(c)

(d)

Figure 6. Drainage crossing examples from watersheds in Nebraska and California. The blue lines in (a) and (b) are natural streams in
the Nebraska watershed, whereas red lines in (c) and (d) are canal ditches in the California watershed.



Regarding the model's feature selection, the CNN
model with HRDEMs as the sole feature turned out the
best-fit (~93% accuracy). In particular, the addition of
NAIP aerial orthophoto bands and their derived spectral
indices was found to be insignificant to or even worsen
the model’s performance, although they can be used as
sole features to achieve 82-85% accuracies (Table 6). As
the interdependence between HRDEMs and aerial
photo-derived features is low based on the multicolli-
nearity analysis, we argue that two issues may explain
the comparability of HRDEMs and NAIP aerial orthopho-
tos in terms of model performance. First, at the locations
of flow barriers, the drastic change in elevation between
aroad and a stream is a typical characteristic of a “digital
dam.” In NAIP aerial orthophotos, although visible sur-
face characteristics (e.g. erosion, ponding, and dense
grass near culverts) can help reveal culverts locations,
the unique stream-road crossing pattern appears to be
not as explicit as that represented in HRDEMs because
streams are often covered by grass, shrubs, and trees
near crossing locations. Rafique, Zhu, and Jacobs (2022)
found that only HRDEMs-derived topographic features,
rather than aerial orthophotos, achieved the success in
detecting the features of interest in CNN-based deep
learning models. In addition, NAIP aerial orthophotos
exhibit data quality issues. The acquisition of NAIP
images usually involves multiple flights with different
sensors that may last weeks or potentially even months
(Davies et al. 2010), resulting in the DN values inconsis-
tent among image tiles associated with atmospheric
interference, viewing geometry, illumination, shadows,
and even plant phenology. Some images turn out to be
blurrier and have lower color contrast than others
(Hogland et al. 2018; Maxwell et al. 2017; Yang et al.
2018). Although a conversion from DN values to surface
reflectance could help mitigate the issue (Wulder et al.
2019), there is a general absence of sensor information
for such a purpose (Zhang, Zimba, and Nzewi 2019).

For future work, we plan to focus on two areas. First,
we will further refine the feature selection for the deep
learning model. For example, as our tests suggested
potential data quality issue associated with NAIP aerial
orthophotos, we plan to incorporate the high-resolution
satellite images via Google Maps Static APl (Google
2023) as a new input feature. Second, we will test differ-
ent advanced CNN models (e.g. Faster-RCNN and U-net)
to locate drainage crossing locations with bounding
boxes, which can be used for improving the elevation-
derived  hydrography  research  (Stanislawski,
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Brockmeyer, and Shavers 2018). Feature selection,
model calibration, and transferability outcomes of the
CNN models in this study are expected to guide the
object detection of drainage crossing locations in
broad geographic areas.

6. Conclusions

Drainage crossings are hydrological features widely
observed in our agricultural landscapes. Identifying
their locations is critical for mapping hydrography
with high quality and managing environmental
issues. In our study, we explored image classification
for identifying drainage crossing locations automati-
cally based on high-resolution DEMs. We trained CNN
models and labeled each sample images as “true”
(with a drainage crossing) or “false” (without
a drainage crossing). We also evaluated the perfor-
mance of the CNN models with different input fea-
tures and hyperparameters. Furthermore, we applied
our best-fit model in a Nebraska watershed to differ-
ent watersheds in California, lllinois, and North Dakota
to test our model’s broad geographic transferability.
The results suggest that:

(1) Compared with baseline machine learning
techniques like SVM, CNN-based deep learning
model is a promising tool to accurately classify
drainage crossings from our image samples.

(2) Among all models for the study area in
Nebraska, the one with a batch size of 16,
a learning rate of 0.01, an epoch of 100, and
the HRDEM as the sole input feature exhibits
the best performance (~93% accuracy).

(3) The best-fit CNN model shows its transferability
in different geographic regions, although the
classification accuracy appears to link to their
hydrography similarity.

(4) The addition of aerial orthophotos and their
derived spectral indices was found to be insignif-
icant to or even worsen the best-fit model’s per-
formance, which may be explained by the
interference of vegetation and data quality issues.
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