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Abstract

Lattice materials are interesting mechanical metamaterials, and their mechanical properties are
often related to the presence of mechanisms. The existence of periodic mechanisms can be indicated
by the presence of Guest-Hutchinson (GH) modes, since GH modes are sometimes infinitesimal ver-
sions of periodic mechanisms. However, not every GH mode comes from a periodic mechanism. This
paper focuses on: (1) clarifying the relationship between GH modes and periodic mechanisms; and
(2) answering the question: which GH modes come from periodic mechanisms? We focus primarily
on a special lattice system, the Kagome lattice. Our results include explicit formulas for all two-
periodic mechanisms of the Kagome lattice, and a necessary condition for a GH mode to come from a
periodic mechanism in general. We apply our necessary condition to the two-periodic GH modes, and
also to some special GH modes found by Fleck and Hutchinson using Bloch-type boundary conditions
on the unit cell of the Kagome lattice.

1 Introduction

Mechanical metamaterials are artificial materials. These carefully designed materials exhibit properties
that cannot be realized by conventional materials [1]. Among the family of mechanical metamaterials,
2-dimensional lattice materials are already interesting. For any given 2D lattice, i.e. a spatially periodic
structure in the plane, we can consider it as an elastic material by viewing the edges as Hookean
springs and the nodes as perfect hinges. We emphasize that we are studying a nonlinear problem in
considering the mechanics of these lattice materials, i.e. we are interested in large local and global
deformations. In particular, for a deformation u(x), the elastic energy of the spring connecting x; and
z; is the elastic constant times (w - 1)2.

In many cases, the elastic behavior of such lattice materials is related to the presence of mecha-
nisms, i.e. deformations other than rigid motions that have zero elastic energy. Lattice materials with
mechanisms are degenerate elastic materials, i.e. they cannot sustain every boundary load, due to

the existence of deformations with zero elastic energy. Among mechanisms, there is a special type of
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mechanism that deforms the reference lattice to a different periodic structure, i.e. a new lattice. We
call such mechanisms periodic mechanisms. Some periodic mechanisms have the property that their
deformed states have the same periodicity as that of the reference lattice. We call these one-periodic
mechanisms. In other cases, the periodicity of the deformed state is N2 times larger than the refer-
ence lattice (N times larger in each lattice direction). We call these N-periodic mechanisms. Many
lattice materials have periodic mechanisms: examples include the family of Kagome lattices (see e.g.
[16, 28]), the rotating square metamaterial' (see e.g. [7, 8]), and a variant of the rotating square
metamaterial (see e.g. [29, 30]).

The physics literature has already developed some understanding of periodic mechanisms via ma-
trix methods (see e.g. [14, 19]). If we view mechanisms as buckling patterns, then it is natural to look
for a linear elastic way to predict the existence of a periodic mechanism, by analogy to the use of a
linear elastic calculation to predict the buckling of a beam under compressive loading (see e.g. [27]
around Equation 1.6). The onset of a periodic mechanism is sometimes indicated by the presence of
what are now called Guest-Hutchinson modes (henceforth: GH modes). Guest and Hutchinson [11]
studied the linear mechanics of lattice materials and concluded that Maxwell lattices (see section 2.1
for a discussion of Maxwell lattices) cannot be simultaneously statically and kinematically stable?. As
a consequence of their result, a statically stable Maxwell lattice must have at least one GH mode. This
is known as the Guest-Hutchinson theorem, and we review it from a homogenization perspective in
section 2.

However, the relationship between periodic mechanisms and GH modes is not simple. One mystery
is that some lattice materials are known to have periodic mechanisms but do not have GH modes, for
example, the twisted Kagome lattice (T-T) lattice [14]. Another mystery is that some GH modes do
not come from periodic mechanisms [2]. In fact, the GH modes and periodic mechanisms of a lattice
system are like the infinitesimal flexes and nonlinear flexes of a finite bar framework. From the rigidity
theory of Connelly and Whiteley [6], we know that for a finite bar framework, not every infinitesimal
flex comes from a fully nonlinear flex; there is a necessary condition for an infinitesimal flex to come
from a nonlinear flex. The necessary condition is known as the second-order stress test. Similarly,
for our lattice systems, we shall derive a necessary condition for a GH mode to come from a periodic
mechanism.

These mysteries motivate the key questions investigated in this paper: (1) what is the relationship
between the GH modes and the periodic mechanisms of a lattice material? (2) which GH modes come
from periodic mechanisms? We study these questions in detail for a special and very interesting family
of lattice materials: the Kagome lattice (see Figure 1) and its images under periodic mechanisms. Each
lattice within the family is made up of equilateral triangles and hexagons. If the hexagons are regular
hexagons, then we call it the standard Kagome lattice. We call the images of the standard Kagome
lattice under periodic mechanisms the deformed Kagome lattices. The standard and deformed Kagome
lattice are examples of Maxwell lattices [19]. Such lattices are great places to find mechanisms. There

ITo view the rotating square metamaterial as a lattice material, we can start with the square lattice and add extra diagonal
springs to make some squares rigid. For an illustrative example, see Figure 6 in the supplementary information of [7].

2The definition of kinematically stable is on page 7 after we introduce the GH mode; the definition of statically stable is on
page 11 before we prove Theorem 2.1.



is indeed a well-known one-periodic mechanism of the standard Kagome lattice (see section 3.2 for a
discussion of this one-periodic mechanism). The deformed state under this one-periodic mechanism
has a special name, the twisted Kagome lattice (T-T) lattice. The standard Kagome lattice also has
periodic mechanisms with other periodicities, as was discussed at some length in [16]. Our results
include the following:

(a) We find explicit formulas for all two-periodic mechanisms of the standard Kagome lattice (see

section 4).
(b) We identify a necessary condition for a GH mode to come from a mechanism (see section 5).

(c) We study the GH modes found by Fleck and Hutchinson using Bloch-type boundary conditions in
[14], showing that in most cases these special GH modes do not correspond to periodic mecha-
nisms (see section 5.4).

(d) We find all N-by-one periodic mechanisms for any N > 2, and also examples of some non-periodic

mechanisms (see section 6).
(e) We find a special case where every GH mode must come from a mechanism (see section 7).

To make the paper self-contained, we start in sections 2 and 3 with a systematic review about
the mechanics of periodic lattices, including the definition of GH modes, etc. In particular, we show
in section 3.1 that the infinitesimal version of a periodic mechanism is a GH mode only when the
infinitesimal macroscopic deformation vanishes. This explains why the standard Kagome lattice has a
GH mode, while the twisted Kagome lattice does not.

This paper focuses primarily on mechanisms of lattice materials. However, a different question
about these lattice materials is whether we can write a meaningful macroscopic energy for them. Take
the Kagome lattice as an example. If we fill in a region with a scaled version of the Kagome lattice,
i.e. setting the side length of each triangle to be ¢, is there a sense that we can view the region as a
nonlinear elastic material as € approaches zero? For a periodic mixture of nonlinearly elastic materials
that are non-degenerate, the answer is yes using homogenization theory (see e.g. [3, 22]). But for
a lattice material, the answer is not obvious, especially when it has mechanisms. Actually, there is a
meaningful macroscopic energy for the Kagome lattice, and it only vanishes at compressive conformal
maps. This is the focus of our forthcoming paper [18], where we provide a rigorous framework for the
discussion about the macroscopic behavior of the Kagome metamaterial in the physics literature [7].

We close this introduction with a brief discussion of some related work on lattice materials.

e The paper [9] by M. Fruchart et.al. discussed a duality they found in the band structure of the
elastic waves in the twisted Kagome lattice. They observed that two twisted Kagome lattices with
different twisting angles 6 and #* have the same vibrational spectrum and band structure if the
two angles are related by 6 + 0* = 26.. At the critical point 6., there is a two-fold degenerate
Dirac point in the Brillouin zone. Our focus is different from that of [9], since we focus on finding
mechanisms of the Kagome lattice (and the relationship between mechanisms and GH modes),
not the vibrational properties of the deformed lattices under these mechanisms.



e A different focus of work on the Kagome lattice family and its variant, the deformed Kagome
lattice®, involves their topological properties. For a finite piece of these lattices, the first-order
flexible modes can reside on one side of the lattice; this phenomenon is called topological po-
larization (see e.g. [15, 19]). The paper [28] studied the concentration of first-order flexible
modes of the twisted Kagome lattice with different boundary conditions; the paper [25] har-
nessed mechanisms of the deformed Kagome lattice and discovered novel domain structures that
control the stiffness along edges and domain walls.

e The setting of linear elasticity has its own problems when studying the effective behavior of
hinged lattice systems. The paper [17] by R.S. Lakes found that hinged lattices with "nonlin-
ear Poisson’s ratio -1", i.e. lattices in which isotropic dilations or compressions are the only
macroscopic deformations, do not in general obey the theory of linear elasticity. The family of
Kagome-type lattices is also rich in examples whose effective behavior cannot be reproduced by
theory of linear elasticity. The paper by Nassar et.al. [23] proposed a new effective theory that is
capable of rendering polarization effects on a macroscopic scale in Kagome-type lattices. There
are other hinged lattices that do not obey the theory of linear elasticity (see e.g. [26]). However,
our main focus is not on problems caused by the setting of linear elasticity. Instead, we focus
primarily on studying the relationship between GH modes and periodic mechanisms.

e There are studies about mechanical metamaterials that achieve different types of macroscopic
deformations other than isotropic dilations or compressions. The papers [20, 21] by Milton dis-
cussed the possible macroscopic deformations of periodic nonlinear affine unimode (bimode)
metamaterials constructed by rigid bars and rotation-free pivots, i.e. materials for which macro-
scopic deformations can only follow along a one-dimensional (two-dimensional) trajectory in the
space of deformations. The paper [29] studied a family of planar kirigami with unit cells of four
convex quadrilateral panels and four parallelogram slits and discovered that this family of planar
kirigami can have elliptic or hyperbolic types of responses due to loads. But our focus is different
from these papers. We focus on the various mechanisms of the Kagome lattice.

The structure of the paper is as follows. Section 2 reviews the linear elastic mechanics of periodic
lattices; it includes a self-contained definition and discussion of GH modes. In section 3.2, we clarify
the relationship between infinitesimal versions of periodic mechanisms and GH modes. We also use
the one-periodic mechanism of the Kagome lattice as a vivid example. We present our construction of
a three-parameter two-periodic mechanism on the standard Kagome lattice in section 4. The existence
of such two-periodic mechanisms indicate that there are many ways to buckle (compress) the Kagome
lattice. Some "buckling patterns" even preserve the macroscopic deformation. In section 5, we answer
the question: which GH modes come from periodic mechanisms? We identify a necessary condition
and apply it to the two-periodic GH modes and the Fleck-Hutchinson modes of the standard Kagome

lattice. In section 6, we present our constructions of N-by-one periodic mechanisms and some non-

3The term "deformed Kagome lattice" has sometimes been used for a lattice whose unit cell consists of triangles and hexagons
but in which not all edge lengths are the same, see e.g. [25]. Our usage will be different: in our paper, a "deformed Kagome
lattice" is always an image of the standard Kagome lattice under a periodic mechanism.



periodic mechanisms. We close this paper by presenting a special case where every GH mode comes
from a periodic mechanism in section 7.

2 Preliminaries and notation

In this section, we review the existing matrix methods for lattice structures and we discuss the linear
elastic mechanics of lattice systems from a homogenization perspective. The section includes a self-
contained discussion about the existence of GH modes in statically stable Maxwell lattices (we call this
the Guest-Hutchinson Theorem). The static stability of a lattice is non-degeneracy in our language, so
this theorem specialized to 2D lattices says

Theorem 2.1 (Guest-Hutchinson Theorem). If a 2-dimensional Maxwell lattice has a non-degenerate

effective tensor A, then it must have a GH mode.

This theorem is proved in section 2.2.

2.1 GH modes and some facts about the standard Kagome lattice

First we review the definition of GH modes and the related matrix methods #. A 2-dimensional lattice
system consists of vertices and edges that form a periodic tiling. The unit cell of each lattice includes
vertices and edges that cover the whole plane when translated by primitive vectors. For example, the
standard Kagome lattice in Figure 1 has three vertices (A,B,C) and six edges in the unit cell and they
cover the whole plane when translated by the two primitive vectors vy, vo. Such a lattice system can
be considered as an elastic material if we view each edge as a Hookean spring. The nonlinear elastic

energy of a deformation u(z) € R? on the spring connecting vertices x;, z; is
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where k;; is the spring constant for the spring between z; and z; and [;; = |z; — x| is the original
spring length. If the deformation is very close to the identity, i.e. u(z) = x +v(x) and the displacement
v(x) is small, then the nonlinear elastic energy in (2.1) can be approximated by
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where h.o.t means higher order terms w.r.t. v(x). This leading order term is the linear elastic energy of
the small displacement v(x). The squared term is the change of length in the spring direction caused

“#The literature on this topic is vast, and we do not attempt a historical review. Our treatment is consistent, for example, with
[11, 14, 19].
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by the displacement v(x). We call it the first-order spring extension e;;

- - Ti— T
€ij = <bij,’l}($i) — v(xj)>, bij = m (2.2)
Notice that the first-order spring extension e;; is linear in the displacement v(x).

For a spring system with finite size, i.e. one where the number of vertices and edges is finite, a
small displacement v(z) that makes all the first-order spring extensions (2.2) vanish can be achieved
by solving a linear system (see e.g. [24]). For a lattice, we can get a similar linear system by assuming
the small displacement v () is periodic. The periodicity of v(x) might not be the same as the reference
lattice. If v(x) shares the same periodicity as that of the reference lattice, we call v(z) one-periodic;
if the periodicity of v(z) is N times larger in each lattice direction, we call v(z) N-periodic. With
periodicity, the displacement v(x) can be reduced to a vector v € R?" consisting of deformations
v(z;) € R? for every vertex x; in the unit cell (n is the number of vertices in the unit cell). The first-
order spring extension e;; defined in (2.2) is also periodic because the displacement v(z) and Eij are
periodic. We can assemble all the first-order spring extensions e;; for each spring in the unit cell as a
vector e € RY, where d is the number of edges in the unit cell. The linear relationship between v(x)

and e;; in (2.2) can be written in matrix-vector form as
e =Cuv, (2.3)

where C' € R(?")*4 is the so-called compatibility matrix; it is determined by the geometry of the lattice
system and the periodicity of v(z). For example, the standard Kagome lattice in Figure 1(b) has three
vertices A, B, C' and six edges in the unit cell. For any one-periodic displacement v(x), its vector form
v = (v(A)T v(B)T v(C)T)T is in R® and the vector form e of e;; is also in R®. Thus, the compatibility
matrix C' € R6%¢ is a square matrix.

(a) (b)

Figure 1: (a) The standard Kagome lattice: it has two primitive vectors v, v, and the dotted rhombus
is the smallest unit cell of the standard Kagome lattice; (b) a zoomed-in version of the unit cell: the
unit cell of the standard Kagome lattice contains six edges and three vertices, marked as 4, B, C.

The transpose of the compatibility matrix is used to transform tensions in the springs to the net

forces on vertices (the word "tension" does not restrict springs to be stretched only; tensions can also



be negative to depict the contractions of springs). To see the relationship between tensions and net
forces, we observe that if the tension in the spring between z; and z; is ¢;;, then the force given by this
spring at the end node z; is t;; l;ij, where l;ij indicates the spring direction from xz; to z;. Then the net

force f; € R? on vertex x; is the sum of forces over all springs connected to vertex x;

fi= Ztijbij7 (2.4)

gt
where j ~ i means there is a spring between z;,z;. In the periodic setting, tensions and net forces
are periodic; we can assemble tensions in the unit cell as a vector t € R?, and net forces as a vector

f € R?", The linear relationship in (2.4) in the vector form is in fact
f=0cTt, (2.5)

where C is the compatibility matrix. We call the null vectors of C7 self-stresses. Each self-stress
represents a way to have tensions in springs such that all vertices have zero net forces; hence the
lattice material remains in equilibrium.

We are interested in the null space of the compatibility matrix C, since the null vectors of C corre-
spond to periodic displacements that preserve the lengths of the springs to first order. The compatibility
matrix has two trivial null vectors, namely the 2-dimensional translations (rotations are ruled out by
the periodicity of v(x)). A null vector which is not a translation vector is known as a Guest-Hutchinson
(GH) mode [11]. We define the space of GH modes as the null space of C' modulo the translations, i.e.
two null vectors whose difference is a 2-dimensional translation are the same GH mode. If a lattice
material does not have GH modes, i.e. the compatibility matrix C' has a 2-dimensional null space, then
we call it kinematically stable.

To look for examples of lattices with GH modes, it is useful to consider the class of Maxwell lattices
[11, 14, 19]. Maxwell lattices sit on the boundary between flexible and rigid lattice systems. The
definition of a Maxwell lattice is a lattice system whose compatibility matrix C' is a square matrix. An
equivalent definition of a 2-dimensional Maxwell lattice (see e.g. [19]) is that the average number
of edges connecting each vertex is 4. It is easy to see using this definition that the standard Kagome
lattice in Figure 1 is a Maxwell lattice.

The standard Kagome lattice has GH modes for any periodicity. In fact, we shall show that the com-
patibility matrix in the N-periodic case Cy has a 3N-dimensional null space. By ignoring translations,
we achieve that the space of N-periodic GH modes is (3N — 2)-dimensional. To explain why Cy has
a 3N-dimensional null space, we start by analyzing the special structure of the compatibility matrix
Cy for any periodicity N. Let us first take a look at the one-periodic GH mode ¢;(x). There are 6

springs in the one-periodic unit cell, and they give six linear constraints on ¢, (z) (vertices used here



are marked in Figure 2(a))

where by, by, by are unit vectors in the horizontal, 60 degree and 120 degree direction. It can be
observed that the six constraints reduce to three linearly independent constraints (the three constraints
on the left). Therefore, the one-periodic compatibility matrix C; € R%*6 has a 3-dimensional null
space; and the space of one-periodic GH modes is 1-dimensional.

This calculation, in fact, gives two important geometric observations that can be generalized to
higher periodicity: (a) the periodicity condition on ¢ (z) kills one condition on each line in the lattice
direction; (b) the linear conditions on lines with different lattice directions are linearly independent.
To see them explicitly in the case with higher periodicity, let us consider the two-periodic GH mode
@2(r). There are in total 6 x 22 = 24 springs in the two-periodic unit cell. To see (a), we first focus
on the horizontal solid line across the four vertices C, By, Cs, By in Figure 2(d): it gives four linear

constraints on ()

[¢2(B1) = ¢a2(C1)] - b1 =0,
[02(C2) — a(B1)] - by = 0,
[p2(B2) — ¢2(C3)] by =0,
[02(C1) — @a(Bs)] - by = 0,

where the last condition is on 2 (C') due to periodicity. It can be observed that the last condition is the
sum of the first three conditions, and these three conditions are linearly independent. Therefore, the
four conditions on the horizontal solid line reduce to three conditions. Similarly, the four conditions
on the horizontal dotted line in Figure 2(d) reduce to three conditions. The three conditions on the
solid line and the three conditions on the dotted line are independent because the vertices are different
on the solid and dotted lines. Thus, we obtain (a). We also get six linearly independent conditions in
the 60 degree direction and another six linearly independent conditions in the 120 degree direction. It
can be checked that the conditions on different lattice directions are linearly independent. This gives
(b). Therefore, there are in total (4 — 1) 23 = 18 linearly independent conditions in the two-periodic
case (2 means two lines in each lattice direction; and 3 means three lattice directions). Consequently,
the compatibility matrix Cy € R?**24 has a 6-dimensional null space; and the space of two-periodic
GH modes is 4-dimensional.

The two geometric observations (a)-(b) also work in the N-periodic case. Let us first count the
reductions of the conditions. In the horizontal direction, there are N lines in the N-periodic unit cell,
and each line contains 2V springs. Using (a), we reduce the 2N? conditions in the horizontal direction
by amount N. We can reduce the same amount in the 60 and 120 degree directions. Therefore, we
reduce the conditions by a total amount 3N. Using (b), we know the remaining 6 N? — 3N conditions



are linearly independent. This indicates that the compatibility matrix in the N-periodic case C €
R(6N*)x(6N*) has a 3N-dimensional null space; and the space of N-periodic GH modes is (3N — 2)-
dimensional.

We can easily give a basis for the space of N-periodic self-stresses (ker(C%)). The standard Kagome
lattice has straight lines in the three lattice directions, i.e. horizontal, 60 and 120 degree directions. Let
us consider self-stresses that are constant on a line in one of the lattice directions, and zero elsewhere.
The one-periodic standard Kagome lattice has three linearly independent self-stresses, shown in Figure
2(a)-(c). The two-periodic standard Kagome lattice has six self-stresses, shown in Figure 2(d)-(f). We
have two linearly independent self-stresses in each lattice direction, since each lattice direction has two
straight lines (see the solid and dotted lines in Figure 2(d)-(f)). For the N-periodic standard Kagome
lattice, there are N straight lines in each lattice direction. Thus, we get 3N linearly independent
N-periodic self-stresses, and they form a basis of the space of N-periodic self-stresses.

XXX
X XX
KX X

(©

TS

®

Figure 2: Self-stresses on the standard Kagome lattice: (a)-(c) show the three one-periodic self-
stresses: each self-stress is constant on the solid line and zero elsewhere; (d)-(f) show the six two-
periodic self-stresses. Each plot contains two self-stresses: one is constant on the solid line and zero
elsewhere; another is constant on the dotted line and zero elsewhere.

2.2 The effective Hooke’s law

There is a huge literature on the effective behavior of spatially periodic mechanical systems. Some of
it studies "cellular materials" (see e.g. [5, 10]), and some of it studies lattices of springs connected
at nodes where rotations are free (see e.g. [11, 14, 19]). Our focus here is on the latter class of
structures. The effective Hooke’s law of a periodic linearly elastic structure can be understood in
various ways, including asymptotic expansions, energy minimizations and the relationship between
macroscopic stresses and strains (see e.g. [4, 13]). For our limited purposes — an understanding of GH
modes — we need to discuss the linearly elastic effective Hooke’s law of a lattice system of springs. To



make our paper self-contained, and since we are not aware of a convenient treatment elsewhere, we
review this topic here®.

Making a choice, we shall emphasize the role of elastic energy minimization. By analogy with what
is done for periodic elastic composites, for any symmetric strain £ € Rfyan, the effective linear elastic
energy of a 2D lattice of springs at strain £ is the minimum average energy obtained by a displacement
with average strain £. Since every such displacement can be expressed as v(x) = £z + ¢(z) with p(z)

periodic, our starting point is the definition

p(z) is
Q-periodic

2
Ee(§) = % min  F(§, @), F(& ) = Z %kij <lijl;g;'§l;ij + (o) — o(x;), 5@‘)) ; (2.6)

i~

where S is the area of the unit cell @ and k;;,l;;, l;ij are defined near (2.1) and (2.2). Here the Q-
periodic function o(z) shares the same period @ as the lattice. The squared term in F(&,¢) is the
first-order spring extension e;; for the displacement v(z) = £z + ¢(x) using (2.2), i.e.

eij = (E(xi — x7) + o(x:) — o(x5), big) = Lizblebi; + (o(xi) — (x5, bij). (2.7)

Therefore, the objective function F(§,¢) = >, . 2k;;e?, is the linear elastic energy for the displace-

i~g 2 J
ment v(z) = {x + p(x), summed over all springs associated with the unit cell Q. We observe that the
objective function is quadratic and convex for a given £ € Rfyff ; hence, an optimal solution ¢ (z) must
exist. However, the optimal solution is not unique because the objective function is not strictly convex.
We can, however, choose a special ¢ (z) such that it is an optimal solution, uniquely determined by
&, and linear in £ (the wg(x) is, in fact, the minimum norm solution; see Appendix (A.4) for the exact
formula for ¢f(x)). We stick to the notation that ¢ (x) is the optimal solution with minimum norm
and ¢ (x) is any optimal solution.

The effective linear elastic energy E.g(€) written as a minimization problem is essentially the same
as the definition in [14], where E.(€) is the average linear elastic energy for a displacement v¢(x) =
&x + @¢(x) such that the tension caused by vg(z) is a self-stress. To see why the two definitions match,

we observe that our optimal ¢{(z) in (2.6) yields a self-stress

This comes from the optimality of ¢ (z) (in fact, any optimal y¢(x) also yields a self-stress), and is
conveniently shown using linear algebra as we do in Appendix A. Therefore, by taking ¢¢(z) = ¢ (),
we achieve that our definition of E.x(£) as a minimization problem is the same as the traditional
definition. We also show in Appendix A that the effective linear elastic energy E.g(&) is quadratic in &
and independent of the size of the periodic unit cell (see Lemma A3 and Proposition A2). Hence, the

5We do not claim that the linear effective behavior gives a good description of the mechanical response of a system like the
Kagome lattice; but it is nevertheless needed for the study of GH modes
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effective linear elastic energy E.g(€) has the form

Fur(€) = 5(Aes €, (29)

where A is the effective tensor. This 4th order tensor A is called the effective Hooke’s law.

The physical meaning of the effective Hooke’s law is that when a lattice material achieves a strain
¢ on the macroscopic scale, it generates a macroscopic stress ¢ = AexE and the overall elastic energy
is Fe(€) = (7,€). In fact, on the microscopic scale, the macroscopic strain ¢ is achieved by the special
displacement v(z) = &z + ¢ (), where ¢f(z) is the optimal solution in (2.6); and the macroscopic

stress & is locally achieved by the self-stress ¢; ;. in (2.8) (see Lemma A3 in Appendix A), since

G = Aett = % D ttilishij ® bij. (2.10)

invj
It is easy to observe that & = A is symmetric and depends linearly in &, since ¢¢ ;; in (2.8) depends
linearly in £. The image space Im(Ae) = {Aes€|€ € RE} consists of the macroscopic stresses that
can be achieved by the lattice material. If a lattice material sustains all macroscopic stresses, i.e.
dim Im(Aeg) = 3, then we call it non-degenerate. Non-degeneracy is also known as the static stability.
With the effective energy in the form of (2.9) and (2.10), we can prove the Guest-Hutchinson Theorem

by a simple counting argument.

Proof of Theorem 2.1. If A is non-degenerate, then Im(Acg) is three-dimensional. The linear rela-
tionship between A.4{ and t¢ ;; in (2.10) indicates that there must exist three linearly independent
self-stresses associated to a basis of Im(A.f). Therefore, the space of self-stresses is at least three-
dimensional, i.e. dim(ker(CT)) > 3. Since a Maxwell lattice has a square compatibility matrix C, the
null space of C is at least three-dimensional because dim(ker(C')) = dim(ker(C7)) > 3. So besides the
two translations, there must exist a GH mode. O

3 Periodic mechanisms and GH modes

We explore the idea that a periodic mechanism reveals at least one of the following degeneracies: (1)
a macroscopic degeneracy, in the form of a non-trivial null vector of £ € ker(Aeg); (2) a microscopic
degeneracy, in the form of a GH mode. We also review the one-periodic mechanism of the Kagome
lattice and use it as a transparent example to illustrate how it reveals a null vector of A for the twisted
Kagome lattice and a GH mode for the standard Kagome lattice. The relationship between periodic
mechanisms and GH modes also raises an interesting question: are GH modes always linearizations of
some periodic mechanisms? For the one-periodic standard Kagome lattice, the answer is yes since the
only GH mode is the linearization of the one-periodic mechanism (see section 3.2). However, for the

two-periodic standard Kagome lattice, the answer is no, as we will discuss in section 5.3.
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3.1 GH modes and infinitesimal versions of periodic mechanisms

In section 2, we have studied the linear elastic mechanics of a lattice, involving small displacements
v(z). From now on, we switch gears to consider mechanisms, i.e. large deformations that have zero
nonlinear elastic energy. Our notation reflects this distinction by using v(z) for linear displacements
and u(x) for nonlinear deformations. We focus primarily on periodic mechanisms. A periodic mecha-
nism of a lattice material u(z,t) € R? is a smooth deformation parameterized by ¢ that preserves the
lengths of all the springs and transforms the reference lattice into a different periodic structure (a new
lattice) for all ¢ € [—tg, ty]. We emphasize that a periodic mechanism u(x, t) is typically not a periodic
function of z. It deforms the reference lattice to a different lattice that might have a different unit
cell. Therefore, a periodic mechanism u(z,t) has a macroscopic deformation gradient F(t) € R2?*2
that deforms the unit cell of the reference lattice to that of the deformed lattice at time ¢. In other
words, if v1,ve € R? are primitive vectors of the reference lattice, then F(¢)v; and F(t)vs are prim-
itive vectors of the deformed lattice at time ¢. We can write the periodic mechanism in the form
u(z,t) = F(t) -z + o(z,t), where ¢(z,t) € R? is periodic in x for all ¢. The periodicity of ¢(z,t)
depends on the periodic mechanism u(x,t). If u(z,t) is N-periodic, then ¢(z,t) is N-periodic in z. An
example of a one-periodic mechanism is shown in Figure 3(a). We observe that the periodic structure
on the left is deformed into a different periodic structure on the right; there is a macroscopic deforma-

tion gradient that transforms the two primitive vectors vy, v, to v,

v$¢f, Translations and rotations
are trivial periodic mechanisms, so we consider two periodic mechanisms the same if they differ only
by translation and rotation, i.e. u1(z,t) = F(t)z+p(z,t) and ua(x,t) = R(t)[F(t)z + ¢(x,t)] +d(t) are
equivalent in our notation, where R(t) € SO(2) and d(t) € R? is a translation. By polar decomposition,
we can always take F'(t) = R(t)S(t), where R(t) € SO(2) and S(t) is symmetric. Replacing u(z,t) by
R~Y(t)u(x,t), we can assume that the macroscopic deformation gradient F(¢) is always symmetric.
The infinitesimal version of a periodic mechanism around the reference lattice at ¢ = 0 contains

two parts: the infinitesimal macroscopic deformation % = F(0) and the infinitesimal periodic
t=0
oscillation %‘t = ¢(-,0). The following proposition explains when F'(0) is a non-trivial null

vector of Aqg and when &(z,0) is a GH mode.

Proposition 3.1. Consider a periodic mechanism u(x,t) = F(t) - * + ¢(x,t) with F(t) symmetric. If
F(0) = 0 and ¢(-,0) is not a translation, then (-,0) is a GH mode for the reference lattice; if F'(0) # 0,
then F(0) is a non-trivial null vector for the effective tensor Ay, i.e. AgzF(0) = 0.

Proof. A periodic mechanism preserves the lengths of all springs for any ¢t € [—tg, to], i.e. ]u(a:,», t) —
u(xj,t)|2 = |u(z;,0) — u(x;, 0)|2 for all connected z;,z; and ¢ € [—to,to] . Taking the time derivative

and evaluating at ¢t = 0 gives
<F(0) Az — x5) + ¢(23,0) — p(x5,0), u(w;,0) — u(x;,0)) =0, (3.1)

where u(z;,0) — u(z;,0) = #; — x; = l;;b;; is parallel to the spring direction b;;. This indicates that
when F(0) vanishes, the periodic ¢(-,0) corresponds to a null vector of the compatibility matrix of the
reference lattice at t = 0, i.e. (p(2;,0) — ¢(z;,0), ?)ij> = 0. By the assumption that ¢(x,0) is not a
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translation, it must be a GH mode.
When F(0) # 0, it is a non-trivial null vector of A To see why, we observe that <F(O) (my —

x;), bij) = 1;;1 F(0)b;;. Hence from (3.1), we get
lijég;F(O)Bij + (p(xi,0) — (x5, 0), 3¢j> =0.

This indicates that the first-order spring extension e;; in (2.7) for the infinitesimal deformation u(z) =
F(0)z + ¢(x,0) vanishes for all springs. Moreover, the effective linear elastic energy Eeq(¢) vanishes
at ¢ = F'(0) because we can choose ¢(z,0) as the displacement ¢ () in (2.6). Thus, the macroscopic

strain F'(0) is a non-trivial null vector for the effective tensor A.. O

Proposition 3.1 justifies our statement at the beginning of section 3 that when a lattice has a
periodic mechanism, either its linear elastic behavior is macroscopically degenerate (this occurs when
F(0) # 0) or else its linear elastic behavior is microscopically degenerate (in the sense that there is a
GH mode ¢(-,0) # 0)°.

However, Proposition 3.1 does not tell us whether a GH mode comes from a periodic mechanism.
The answer to this question is not trivial. In general, we shall show in section 5.3 that for the two-
periodic standard Kagome lattice, there are plenty of GH modes that do not come from mechanisms.
But as we review in the following subsection, the space of GH modes for the one-periodic standard

Kagome lattice is one-dimensional and its basis vector comes from a one-periodic mechanism.

3.2 The one-periodic mechanism and some consequences

We revisit the well-known one-periodic mechanism of the Kagome lattice, which is a transparent exam-
ple of Proposition 3.1. As we shall explain, the one-periodic mechanism reveals that (1) the standard
Kagome lattice has a GH mode ¢(x,0) because F'(0) vanishes; (2) every GH mode of the one-periodic
standard Kagome lattice is a multiple of ¢(z, 0), and therefore every GH mode comes from a scaled ver-
sion of the one-periodic mechanism; (3) the twisted Kagome lattices are macroscopically degenerate
W.L.t isotropic compressions and expansions, i.e. Al = 0.

Let us first review the one-periodic mechanism which deforms the standard Kagome lattice to
a twisted Kagome lattice. For simplicity, we refer to the twisted Kagome lattice in Figure 3(a) by
Ly, where 20 is the angle between the two triangles in its unit cell. The standard Kagome lattice
corresponds to 6 = %. We get a one-parameter one-periodic mechanism from the standard Kagome
lattice to a twisted Kagome lattice Ly by smoothly varying the angle between the two triangles in
the unit cell. Geometrically, this one-periodic mechanism rotates the two triangles in the unit cell,
which are shaded in Figure 3(a), by the same amount but in opposite directions. We denote this one-
periodic mechanism as uz .¢(z), where z are vertices of the standard Kagome lattice. This mechanism
can be written as u%ﬁg(x) = Fy - x + @g(x), where Fy is the macroscopic deformation gradient and
g(x) is the one-periodic oscillation (see Appendix B for the explicit formulas for this one-periodic

mechanism). Using the explicit representation of this one-periodic mechanism and the fact that the

5We do not exclude the case where a mechanism induces both macroscopic and microscopic degeneracy. This can happen,
for example, in a 2 x 2 periodic mechanism of a 2D square lattice.
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macroscopic deformation Fy maps the primitive vectors of the standard Kagome lattice v, v, to the

primitive vectors v$¢f, v3°f of the deformed lattice Ly shown in Figure 3(a), we get the formulas of vdef
and vdef
vy = (2,0)7 — vl = Fyo, = cos(g —0)(2,0)T,
vy = (1,V3)T — vl = Fyu, = cos(g —60)(1,v3)T,
Evidently, the macroscopic deformation Fj is an isotropic compression
m
Fy = cos(g —-0)I. (3.2)

To get the infinitesimal version of this mechanism around the standard Kagome lattice, we change

¢ = % 4t and write the one-periodic mechanism as
uz.zi(z) = F(t) -2+ oz, t), (33)

where x are vertices in the standard Kagome lattice. Using (3.2), the macroscopic deformation is
F(t) = cos(t)I. The infinitesimal macroscopic deformation vanishes at the standard Kagome lattice
when t = 0, i.e. F(0) = 0. Therefore, Proposition 3.1 tells us that ¢(z,0) is a GH mode, and its
character is shown in Figure 4(a) (¢(z,0) is not a translation; see Appendix B for its explicit formula).

For the one-periodic standard Kagome lattice, every GH mode is a linearization of a one-periodic
mechanism. In fact, we know that the space of one-periodic GH modes is one-dimensional from section
2.1. So, the infinitesimal ¢(x, 0) spans the one-dimensional GH mode space. Moreover, every GH mode

has the form k¢ (z, 0) for some k € R, and comes from the scaled one-periodic mechanism uz ., = ().

Remark 3.1. There is only a single one-periodic mechanism for the Kagome lattice. The unit cell of the
one-periodic standard Kagome lattice has only two triangles. If these triangles rotate with angles «, 3
as shown Figure 3(b), then there is a macroscopic rotation. To eliminate this rotation, we can choose

20 = a +  and o = B = 0 so that the bisector is in the horizontal direction.

Thus far, we have been discussing mechanisms of the standard Kagome lattice. But since our
mechanism takes the standard Kagome lattice to a twisted Kagome lattice, it also provides a mechanism
for the twisted Kagome lattice by considering wg.,(z) = Fy.,, - © + g, (x) taking a twisted Kagome
lattice Ly to a different twisted Kagome lattice L, in Figure 3(c), where Fy., is the macroscopic
deformation and ., (z) is the periodic oscillation. Notice that  now ranges over the vertices of the
twisted Kagome lattice Ly. The macroscopic deformation gradient Fy,, maps the primitive vectors

v1, vy of the twisted Kagome lattice Ly to the primitive vectors vd¢f, v3¢f of a different twisted Kagome

lattice L,
il T def ™ T
v = cos(g —0)(2,0) — v = Fy.yv1 = cos(g —-1)(2,0)",
vy = cos( — 0)(1,V3)" - w8 = Fpyvz = cos( —n)(1,V3)",
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(@) (b)

(@]

Figure 3: One-periodic mechanisms of the Kagome lattice: (a) the one-parameter mechanism uz ()
from the standard Kagome lattice to a twisted Kagome lattice Ly; (b) a rotated version of the twisted
Kagome lattice: if two triangles in the unit cell rotate with different angles « # 3, then there is a
macroscopic rotation; (c) the one-parameter mechanism wy ,(z) from the twisted Kagome lattice Lg
to a different twisted Kagome latticeL,) with 8 # .

Thus, the macroscopic deformation gradient Fjy.,,, is

I. (3-4)

For any twisted Kagome lattice Ly with § # Z, its effective tensor A%; vanishes at the identity
matrix, i.e. A% = 0 for any 6 # % To see why, we observe that similarly to the standard Kagome
lattice in (3.3), the one-periodic mechanism around a twisted Kagome lattice Ly is

u9»9+t(m> = F(t) ST+ (,0(11'5, t)’ (35)

by choosing the deformed state L,, as n = 6 +t. The macroscopic deformation in (3.5) and its infinites-

imal version become

F(t) = WL £(0) = m.r £0.
3 3

Using Proposition 3.1, we obtain that F'(0) = ¢,1 is a multiple of the identity matrix and a null vector
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for the effective tensor A%, with

sin(6—%)
cos(§—0)"

isotropic compression and expansion.

where ¢y = Thus, for any twisted Kagome lattice Ly, its effective tensor Agff vanishes at

A\ WANIN

AAAA
V

Figure 4: (a) The one-periodic GH mode on the standard Kagome lattice ¢(x,0) as the infinitesimal
version of the one-periodic mechanism; (b) the twisted Kagome lattice does not have any one-periodic
GH modes. Instead, it has a macroscopic degeneracy for isotropic compression and expansion, i.e.
Aegel = 0.

Remark 3.2. A geometric way to see that F(0) = 0 for the standard Kagome lattice but not for any
twisted Kagome lattice is to note that F(t) is always a multiple of identity, so E'(0) controls how the size of
the unit cell changes. The standard Kagome lattice has the largest unit cell since the mechanism can only
shrink the area of each hexagon. Thus F (0) = 0 for the standard Kagome lattice. For any twisted Kagome
lattice Ly with 6 < %, for example in Figure 4(b), the area of each hexagon increases when we increase
and decreases when we decrease . The case where ¢ > % is similar;, and the area of each hexagon increases

and decreases by changing 6 oppositely.

3.3 Discontinuity of the effective tensor A under the one-periodic mechanism

So far, we have explained that the effective tensor A% is non-degenerate for the standard Kagome
lattice (0 = 3) and degenerate in the isotropic direction for all twisted Kagome lattices (6 # 7). If we
view the effective tensor Agff as a tensor-valued function of 9, then Agff is discontinuous at the standard
Kagome lattice since Ae%ffl # 0 for the standard Kagome lattice but Agff[ = 0 in Equation (3.6) for all
the twisted Kagome lattices when 0 # 7. If we believe that the displacement ¢ (x) associated with the
effective linear elastic energy evaluated at the identity matrix E%¢(I) is continuous in ¢, then we cannot
have a discontinuity A% at = Z. In fact, it is wrong to believe that the optimal solution ¢f(z) is
continuous in 6. To explain this discontinuity, we shall calculate the optimal solution ¢%(z) in (2.6) at
the identity matrix I. The result shows that the optimal ¢ (z) grows unbounded as § approaches 3
To compute the optimal (9 (), we need to use the one-periodic mechanism around the twisted
Kagome lattice Ly in Figure 3(c). By Proposition 3.1, the optimal ¢9(z) for the minimization problem

can be chosen as () as the infinitesimal version of the one-periodic mechanism in (3.5). Notice that
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we are finding the optimal solution (x) for the identity matrix I, and the one-periodic mechanism
ug-9—¢(x) in (3.5) gives an optimal H(z) associated to & = ¢yl in (3.6) instead of I. To get the optimal
©Y%(x) associated to the identity matrix I, we need to scale the one-periodic mechanism ug.g—_ () to
UQ_,Q_ét(JU). We know this scaled one-periodic mechanism yields the optimal ¢9(x) for the identity

matrix. If we denote ¢(x) as the associated optimal solution for cyI in Equation (3.6), then ¢9(z) =
sin(0—%)

+@(x). The scalar ¢y = oS (=7

s 0 T o} 1
— 0asf — %, so ¢j(z) grows unbounded as § — % since _- — oo.

4 Two-periodic mechanisms and GH modes of the Kagome lat-

tices

In this section, we present the analytic form of a three-parameter two-periodic mechanism of the stan-
dard Kagome lattice, shown in Figure 5. We refer to this three-parameter mechanism from the standard
Kagome lattice to a deformed two-periodic Kagome lattice by g, g, ¢,(x), where = are vertices of the
standard Kagome lattice. The three-parameter two-periodic mechanism provides a three-dimensional
space of two-periodic GH modes. We will discuss the relation between two-periodic mechanisms and
GH modes in subsection 4.3.

Figure 5: The two-periodic mechanism wug, ¢,,0,(z) around the standard Kagome lattice with 6; =

51—; 0y = 51—’5 and 03 = §. The standard Kagome lattice on the left is the reference lattice and the two

arrows v, vy are its primitive vectors. The two-periodic Kagome lattice on the right is the deformed

lattice and the two red arrows v3°f, v$¢f are its primitive vectors. The macroscopic deformation gradient

of ug, g,.0,(r) Maps vy, vy to v, v§ef,

Before we present the detailed construction of the two-periodic mechanism wyg, g, 0, (), let us first
take a look at some geometric properties of ug, g, ,(x): (1) this two-periodic mechanism also achieves
an isotropic compression; and (2) all regular hexagons in the reference lattice are deformed to a
special type of hexagon with three pairs of parallel edges. To explain the origin of these properties, we
need to introduce some details about the two-periodic Kagome lattice deformed by the two-periodic
mechanism. For simplicity, we call the deformed states of this two-periodic mechanism Ly, ¢, ¢, and
fix the length of each equilateral triangle as 1. The unit cell of Ly, 4, ¢, has 8 triangles, classified into
4 shaded triangles and 4 unshaded triangles in Figure 6(a). The three degrees of freedom 6., 65, 03 are
the rotation angles for the three shaded triangles in Figure 6(c). To achieve a two-periodic mechanism,
the other five triangles in the unit cell have to rotate correspondingly as shown in Figure 6(c), where
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04 is a function of 61, 05, 65

™ . . ™ . ™ . ™
0y = 3 —arcsin (sm(@l - g) + sin(fy — §> + sin(f3 — g)) . (4.1)

We will discuss the angle relations (shown in Figure 6¢) in section 4.1, and explain the origin of (4.1)
shortly.

(a) () ©

Figure 6: (a) The deformed two-periodic Kagome lattice Ly, 4, o,: its unit cell has 8 triangles, 4 shaded
and 4 unshaded; (b) 12 vertices in the unit cell: each shaded triangle has one set of vertex A, B, C;
(c) the corresponding rotation angles for the 8 triangles in the unit cell to achieve the three-parameter
mechanism wug, g, 0, (2);.

In fact, once we know the rotation angles for all triangles in the unit cell, the structure of Ly, g, o,
is fixed, i.e. the locations of every vertex in the unit cell and the two primitive vectors v¢¢f, v$¢f can be
computed. For example, if we mark the vertices in the unit cell as shown in Figure 6(b) and fix A
as the origin, then the locations of all vertices in the unit cell can be represented by rotation angles,
e.g. Boo = (cosby,sinb;) and Cy 9 = By + (cos(f4 — %),sin(fs — %)) (see Appendix C for a detailed
expression of each vertex’s location). We can also add up the four vectors connecting B, C' vertices in

Figure 6(c) to get vdef

vl = (008(91 - g) + cos(6y — g) + cos(3 — g) + cos(64 — g),
sin(6; — g) + sin(fz — %) + sin(f3 — %) + sin(0y — g)) (4.2)

T T ™ ™
= (008(01 - 5) + cos(fy — 5) + cos(f3 — §) + cos(64 — 5),0).

The vertical part of 'ufef vanishes because we deliberately choose 0, in (4.1) to fix 'ufef in the horizontal

direction. Similarly, we can add up the four vectors connecting A, B vertices to get vgef

vgef = (cos 01 + cos by + cos O3 + cosf4,sin 01 + sin s + sinf3 + sin by) . (4.3)
Evidently, from (4.2) and (4.3), we observe that vdf = Rz vdef, where Ry is the rotation matrix that

rotates counterclockwise with angle 5. The macroscopic deformation gradient Fy, g, o, for the two-

periodic mechanism maps the primitive vectors vy, vy of the standard Kagome lattice in Figure 5 to the
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two primitive vectors v3¢f, v3¢f of the two-periodic Kagome lattice Ly, g, o,

v1 = (4,0) — v = Fy, 9,.0,01
Vo = (2, 2\/5) — v;lef = F91792,93’l]2.
This yields that
1 ™ s ™ T
Fo, 0,0, = Coy 05,05 L, COy 05,05 = 1 (cos(91 — g) + cos(62 — g) + cos(fs3 — §) + cos(64 — §)> ,

(4-4)

where 6, is a function of 61,605,603 by (4.1). As expected, the two-periodic mechanism wg, g,.9, ()
achieves a macroscopic isotropic compression for every 61, 6, 6.

We mentioned earlier the geometric property of the two-periodic mechanism wg, g, 0, () that the
deformed hexagon has its three pairs of opposite edges parallel. It can be seen from Figure 7(a)
that the two solid edges are parallel to each other since the angles between the two edges and the
horizontal direction are both #3. Similarly, the other two pairs of edges are parallel to each other. We
note that the deformed hexagon of the one-periodic mechanism wuz .4(x) does not have this property,
e.g. see Figure 7(b). We thus see that the one-periodic mechanism U%_,g(l‘) cannot be derived from
this two-periodic mechanism ug, ¢, ¢, () by writing 61, 62, 65 as functions of a single parameter 6.

(@ (b)

Figure 7: (a) One of the deformed hexagon under the two-periodic mechanism wg, g, ¢, (z): we can see
clearly that three edges are parallel to each other; (b) the deformed hexagon under the one-periodic
mechanism uz .¢(z).

4.1 Construction of the three-parameter two-periodic mechanism

Let us discuss the details of the two-periodic mechanism wy, ¢, ¢,(«) and why the rotation angles are
related in the way shown in Figure 6(c). A natural way to look for a two-periodic mechanism is to
assign the 8 triangles in the unit cell with 8 different angles. As shown in 8(a), we name the rotation
angles for the four shaded triangles as 61,605, 63,604 and the rotation angles for the four unshaded

triangles as 71, 12,73, 74. The direction of every edge is determined since we know how each triangle
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rotates. Take the pair of triangles in Figure 8(b) as an example. All six vectors are determined by the
two angles 67,1

t1 = (cosfq,sinb) ty = <cos(91 + 2%T),Sin(ﬁl + 2;)) ty = (cos(01 + 4%T),sin(ﬁl + 4;))
T, . 7r T, . 7r :
ty = (cos(m - §>751n(771 - g)) ts = (cos(m + §>751n(771 + g)) ts = (—cosmny,—sinmny).
(4-5)

(@) (d)

Figure 8: (a) The unit cell of a two-periodic Kagome lattice after the deformation wg, g, 4,(z); (b) a
pair of triangles whose edge directions are determined by their rotation angles; (c) four deformed
hexagons must close themselves to create a two-periodic unit cell; (d) a rotated version of the two-
periodic Kagome lattice when 6, does not follow (4.1).

The 8 angles 61,05, 65,6, and 1, 172, 13, 74 Must satisfy some constraints. In fact, the images of the
8 triangles in the unit cell under the two-periodic mechanism must form a lattice, i.e. there can be no
gaps between their images. This requires that the sum of the six vectors in Figure 8(a) must vanish.
Using the vector form of every edge in Equation (4.5), we get two constraints

2
0= —cos(m + g) — cos(b2 + ?ﬂ) + cosna + cos(fs + g) — cos(ng — g) — cos 03, (4.6)

2
0= —sin(n + g) —sin(fy + %) + sinny + sin(fs + g) —sin(ns — g) — sin 6. (4.7)

These constraints assure that the image of a particular hexagon in the reference lattice is again a
(deformed) hexagon. In other words, there is no gap when we connect the neighboring triangles
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around hexagon 1 in Figure 8(c). Similarly, the other three hexagons in Figure 8(c) give another six

constraints
0=—cos(nz + g) — cos(fy + 2?77) + cosny + cos(fs + g) — cos(ng — g) — cos 04, (4.8)
0= —sin(ne + g) —sin(0; + 2?77) + sinny + sin(fs5 + g) —sin(ny — g) —sin by, (4.9)
0= —cos(ns + g) —cos(fy + 2%) + cosny + cos(fz + %) — cos(n — g) — cos by, (4.10)
0= —sin(ns + %) — sin(f4 + 2%) + sinny + sin(fs + g) — sin(n — g) — sin 6y, (4.11)
0= —cos(ns + g) — cos(fs + 2%) + cosnz + cos(6y + g) — cos(n2 — g) — cos By, (4.12)
0= —sin(ng + g) — sin(f3 + 2%) + sinnz + sin(f; + g) — sin(ng — g) — sin 6. (4.13)

Once the 8 angles meet the above 8 constraints, all deformed hexagons are closed and we have no prob-
lem connecting all neighboring triangles. Thus, (4.6)-(4.13) are the only constraints on 6y, 05, 03, 4 and
T, 12,73, 74-

Finding all solutions to the 8 nonlinear constraints is hard. However, they are obviously satisfied if
we take

01 =m ba=mn3 O3=m2 04=m. (4.14)

This special solution gives a two-periodic mechanism with four free angles 6,65, 03,0,. When we
freely rotate these four angles, there is in fact an overall rotation, e.g. see Figure 8(d), where the
primitive vector v; is not in the horizontal direction. To get rid of the macroscopic rotation, we can
choose 6,4 to keep the primitive vector v; in the horizontal direction. This is indeed the constraint
given by 4.1. We have now fully explained the three-parameter mechanism ug, g, ¢, ().

4.2 Remarks on the preceding calculation

It might seem surprisingly that the 8 angles 6;,...,60, and 7, ..., 74 are subject to 8 constraints (4.6)-
(4.13), and yet we found a four-parameter family of solutions (4.14). Actually, this is not the only
surprise:

e The two-periodic extension of the one-periodic mechanism is another solution to (4.6)-(4.13). It
is not included in the four-parameter family of solutions (4.14); rather, it corresponds to

0h=0=05=0,=0, n="n2="n3="ns=1.

When 0 # % — 7, there is a macroscopic rotation. In fact, if we choose 6,7 freely, then this

mechanism has a macroscopic rotation and associates to Figure 3(b) with § = a and n = § — .

e Counting equations to estimate the number of free parameters is unreliable in this setting because
the family of energy-free configurations is not a smooth manifold, as we will discuss later (see
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Remark 5.2).

e The 8 equations (4.6)-(4.13) are redundant — they can be easily reduced to 6 nonlinear constraints
on the 8 angles 01, ...,604,m1,...,1n4.

This section dwells on the last bullet, offering an algebraic explanation first, then a geometric one.
This material is not needed in the rest of the paper, so an impatient reader can safely skip to section
4.3.

Let us start with the short algebraic explanation first. We observe that for any choice of the 8
angles 01,...,04,m,...,n4, the sum of all cos parts on the right hand side of (4.6), (4.8), (4.10) and
(4.12) always vanishes, as well as the the sum of all sin parts on the right hand side of (4.7), (4.9),
(4.11) and (4.13). This indicates that when hexagon 1,2 and 3 in Figure 8(d) are closed, hexagon 4 is
automatically closed. Therefore, we only need six constraints (4.6)-(4.10) and (4.7)-(4.11) to achieve
a compatible two-periodic unit cell.

A geometric explanation of this reduction of constraints comes from an observation: closing a pair
of hexagons is equivalent to make the average of every zigzag line in one direction the same. Let us
use the horizontal direction as an illustrative example. If we close hexagon 1 and 2 in Figure 9(a),
then the average of the two zigzag lines in the horizontal direction (marked as dashed lines in Figure
9(b)) must be the same. To see why, we translate the left two vectors in hexagon 1 to the right side
of hexagon 2 (see Figure 9(a)). The sum of the 12 vectors in hexagon 1 and 2 becomes the sum of 8
vectors in Figure 9(b), since the related triangles are closed. When hexagon 1 and 2 are both closed,
the sum of the 12 vectors in Figure 9(a) and the 8 vectors in Figure 9(b) are both zero. Therefore, the
two dashed vectors in Figure 9(b) are of the same magnitude but in opposite direction. This indicates
that the average of the two zigzag lines in the horizontal direction are the same.

The preceding argument is also reversible: when we make the average of the zigzag lines in the
horizontal direction the same, the sum of all vectors in hexagon 1 and 2 is zero. Similarly, making the

(@) b)

Figure 9: (a) Vectors in hexagon 1 and 2: we move the left two vectors in hexagon 1 to the right of
hexagon 2; (b) the sum of the 12 vectors in (a) becomes the sum of the 8 vectors here: it indicates
that the average of the two zigzag lines in the horizontal direction must be the same.

average of the zigzag lines in the 60 (120) degree direction is equivalent to making the sum of vectors
in hexagon 1 and 3 (2 and 3) zero. The average constraints on every pair of parallel lines in the three
lattice directions give 6 constraints. To see why they are equivalent to closing the 4 hexagons, we mark
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the sum of the 6 vectors in hexagon i as 3;,i € {1, 2, 3,4}. The average constraints now become

—

1+ 5 =0

_’1+§3=6 _’2+§3=6.
This yields that & = § = §3 = 0 (5, must also vanish since the average of the horizontal zigzag lines
can be represented by both 3, + 35 and 83 + §4). Thus, closing the four hexagons is equivalent to the

six constraints by taking average in the three lattice directions.

4.3 Relation between the two-periodic mechanisms and GH modes

We know from section 2 that for the standard Kagome lattice, the space of two-periodic GH modes is
four-dimensional. In fact, we can get four explicit GH modes as a basis of the space of two-periodic
GH modes from linearizing two-periodic mechanisms. We will show that the three degrees of freedom
in the two-periodic mechanism wg, g, ¢,(x) in Figure 5 yield three linearly independent two-periodic
GH modes. Moreover, any linear combination of these three GH modes comes from a scaled version of
this two-periodic mechanism ug, ¢, ¢, ().

Arguing as we did in section 3.2 for the one-periodic mechanism, we can get three two-periodic GH
modes from the two-periodic mechanism ug, ¢, ¢, (), namely the three GH modes ¢ (z), ¢3(z), p3 ()
defined by

d d ) d

pile)=—| wsgz, 9@ =o| wrsos @@= wszzo (415

These three two-periodic GH modes are shown in Figure 10 (see Appendix C for their explicit expres-

sions). Moreover, these three GH modes are linearly independent.

AALN X X KX X X X X
X XXX A A XN XX XX
A ALK X XK X X X X X
VNV VTN Y VY

(@ () ©

Figure 10: The three linearly independent two-periodic GH modes of the standard Kagome lattice: (a)
the first GH mode ¢?%(x); (b) the second GH mode 3(x); (c) the third GH mode % (z).

We note that the one-periodic mechanism uz .¢(z) can also be viewed as a two-periodic mechanism
on the standard Kagome lattice. So its infinitesimal version on the two-periodic unit cell is also a two-
periodic GH mode. Let us name this particular two-periodic GH mode ¢} (). We expect (and it is true)
that the one-periodic mechanism is not in the family of the two-periodic mechanism wg, o, ¢,(x); the
GH mode 1 () is not a linear combination of ©?(x), p3(x), 3(z). Thus, we have found a basis for the
four-dimensional space of two-periodic GH modes.

So far, we have shown that the four GH modes 1 (), 9%(z), ¢3(z), p3(x) form a basis for the space
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of two-periodic GH modes, and each comes from some mechanism. We also observe that any linear
combination of p?(z), p3(z), ¢3(z) comes from a two-periodic mechanism, i.e. for any si, s2, s3 € R,

d
5107 () + s203 () + s303(x) = PTARIPCE SOVE SRR SENE

A remaining question is whether any other linear combination of these four GH modes comes from a
two-periodic mechanism. The answer is no, as we will explain in section 5.3.

4.4 GH modes of the deformed two-periodic Kagome lattice Ly, 4, ¢,

In section 2, we mentioned the Guest-Hutchinson theorem that all non-degenerate Maxwell lattices
must have a GH mode. In section 3.2, we saw that the standard Kagome lattice (which is non-
degenerate) has a GH mode, and the twisted Kagome lattices (which are degenerate) do not have
GH modes. This leads to the question whether the "reverse" of the Guest-Hutchinson theorem is true;
that is: if a lattice has a degenerate linear elastic effective tensor A.g, must there be no GH modes? In
fact, such a result is not correct. The two-periodic degenerate Kagome lattice Ly, 4, 0, has GH modes.
In fact, we will show that the space of GH modes is two-dimensional for all the two-periodic Kagome
lattices Ly, o, 0, except for the standard Kagome lattice. An example is shown in Figure 11.

To get started, we observe that among the family of two-periodic Kagome lattices Ly, ¢,.0,, only the
standard Kagome lattice is non-degenerate. This is true because for other Ly, g, ¢,, the compression
ratio in (4.4) is less than 1. This means that we can change 61, 6-, 63 to further compress or expand it.
Therefore, there are mechanisms around Ly, 4, ¢, such that the infinitesimal version of its macroscopic
deformation gradient does not vanish. By Proposition 3.1, the two-periodic Kagome lattice Ly, g, g, is
degenerate.

However, there is a mechanism that does not change the macroscopic deformation gradient. Since
the associated F'(0) vanishes, there must exist a GH mode by Proposition 3.1. In fact, we shall prove
that the space of GH modes is two-dimensional for the deformed two-periodic Kagome lattice Ly, g, ¢,
by using the implicit function theorem as follows.
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(a) (b)

Figure 11: Two linearly independent GH modes of the deformed two-periodic Kagome lattice Ly, g, o,
with §; = Z,0, = § and 63 = 7. The arrows indicate the displacement vector of each GH mode at
every vertex.

Consider the function F'(6,, 605,03, 64), defined on the four angles 6., 02, 05, 04 that appeared in the
construction of the two-periodic Kagome lattice:

L 6, — = Oy — T 05 — % 0, — %
F(01a92793a94) = 4((.205( ' 773) +~COS( ’ 7-r3) +.COS( ’ 7r3) +.COS( ! s 3)) ’
sin(fy — §) +sin(fs — ) +sin(f3 — §) +sin(0s — ).

The first component is the macroscopic compression ratio ¢, g,,0,,0, in (4.4), and the second compo-
nent will permit us to avoid macroscopic rotation, using (4.1). It suffices to show that the level set of
F(01,02,05,0,) = (c,0)7 is a differentiable 2-manifold when the two-periodic Kagome lattice Ly, g, g,
is not the standard Kagome lattice. To use the implicit function theorem, we take the partial derivative
to F wr.t. 6; and 6,

Op. 0, F = <_zlxsm(91 - %) —isin(e2 — g))

cos(f1 — %) cos(fy — %)

Its determinant is isin(&z — 61). When 60; # 65, the Jacobian matrix 9y, ¢, F is invertible and the

implicit function theorem guarantees that the level set F(6;,6s,03,0,) = (c,0)T is a differentiable
two-dimensional manifold. Moving along any curve on this manifold, the macroscopic deformation
gradient does not change. Thus, the two-dimensional tangent space is a subspace of the space of GH
modes.

So far, we have seen that when a deformed two-periodic Kagome lattice Ly, g, g, has 61 # 65, its
space of GH modes is at least two-dimensional. In fact, using the same method, we can show that if
the four angles 61, 6>, 63, 6, are not the same, then the space of GH mode for this two-periodic Kagome
lattice is two-dimensional. It remains to show that when the four angles are the same, it must be
the standard Kagome lattice. This is true because when the four angles are the same and the second

s
3
Therefore, for all two-periodic degenerate Kagome lattices Ly, g, ¢,, their spaces of GH modes are at

component of F is zero, the four angles must be %, i.e. Ly, 9,4, is the standard Kagome lattice.
least two-dimensional. In fact, one can check that the space of GH modes of every degenerate Ly, ¢, g,
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is indeed two-dimensional by computing the null space of its compatibility matrix.

4.5 Special deformed two-periodic Kagome lattices

There are two special one-parameter two-periodic Kagome lattices in the family of deformed two-
periodic Kagome lattices Ly, g, ¢,, oObtained by choosing special angle relations between 64, 02, 3. The
first one is a two-by-one periodic Kagome lattice, i.e. the unit cell of this Kagome lattice only contains
four triangles instead of eight. We can achieve it from Ly, o, ¢, by choosing the three angles as a

function of one parameter ~:

91:7 02:7

2T 2
O3 = — — 0y = — — .
3 3 Y 4 3 Y

We name this two-by-one periodic Kagome lattice ng; it is shown in Figure 12(a). Its primitive vectors

v and vy are

s

7)(2,0),
vy = cos(g —7)(2,2V3),

vy = cos(

w

where |v;| = %|vs| since L, is two-by-one periodic. The standard Kagome lattice is achieved when

=3

s

Figure 12: (a) The two-by-one periodic Kagome lattice L2! with v = Z: the unit cell consists of
four lightly shaded triangles; (b) the special two-periodic Kagome lattice LZ’Q with 8 = 52: the two
hexagons with dotted edges are identical to each other, same for the two hexagons with solid dashed
lines .

Another special two-periodic Kagome lattice is obtained from the two-periodic mechanism Ly, ¢, ¢,

by choosing 6;.0-, 05 as functions of one parameter

2
o =8 b=
2
03 = = — 8 01=B.
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We name this two-periodic Kagome lattice L%’Q. One example is shown in Figure 12(b); as one sees in
the figure, the four hexagons are two pairs of identical hexagons. The two primitive vectors v, v, are

v = cos(g - 5)(4,0),

vy = cos(g - 6)(2,2V3);

here the two primitive vectors are of the same magnitude and the angle between them is 60 degrees.

Remark 4.1. These one-parameter two-periodic families of lattices come from two special two-periodic
mechanisms of the standard Kagome lattice obtained by smoothly changing v and 8 away from %. It
can be checked from the primitive vectors that the macroscopic deformation gradients for the two special
mechanisms are

™

5B

7 2,2
F3’1 = cos(g - I Fgy® = cos(

where F3’1 is associated with the two-by-one periodic mechanism and F§’2 is associated with the special
two-periodic mechanism. Evidently, the two macroscopic deformation gradients are the same as the macro-

scopic deformation gradient of the one-periodic mechanism uz ¢ in (3.2) when we choose v = 8 = 0.

5 Which GH modes are linearizations of periodic mechanisms?

In this section, we focus on the question which GH modes come from periodic mechanisms. This is
related to the question in finite structures which first-order flexes come from fully nonlinear flexes. It
is well-known that there is a necessary condition for a first-order flex to come from a nonlinear flex, i.e.
the second-order stress test (see e.g. [6]). We shall present a similar necessary condition for GH modes
to come from periodic mechanisms (see section 5.1). The rest of this section contains applications of
the necessary condition to two-periodic GH modes and Fleck-Hutchinson modes to see whether they
come from mechanisms.

Let us briefly explain why not every two-periodic GH mode from the standard Kagome lattice
comes from a mechanism. The necessary condition comes from a geometric observation about the
two-periodic mechanism in Figure 13. Though straight lines in the reference lattice are deformed into
zigzag lines, they still have to experience the same macroscopic contraction on each pair of parallel
lines to fit the macroscopic deformation gradient. This leads to, as we shall explain, a constraint on
a GH mode ¢4 () for it to come from a mechanism: roughly speaking, the "quadratic part" of the GH
mode ¢, (z) must average to the same amount on every parallel line in the three lattice directions. This
constraint, which we refer to as the consistency condition, is explained in sections 5.1 and 5.2. Then we
apply this consistency condition in sections 5.3 and 5.4 to understand (a) which linear combinations
of our explicit GH modes ¢}(z), p?(x), p3(z), 3(z) come from mechanisms; and (b) which Fleck-

Hutchinson modes come from mechanisms.
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(@ (b) ©

Figure 13: Zigzag lines in the two-periodic Kagome lattice: (a) two zigzag lines in the horizontal
direction; (b) two zigzag lines in the 60 degree direction; (c) two zigzag lines in the 120 degree
direction. The two zigzag lines in all three figures must average to the same amount.

5.1 A necessary condition

Before we discuss the consistency condition, we first derive a necessary condition for a GH mode to
come from a mechanism on a general lattice. We need this necessary condition because not every
lattice has straight lines of springs like the standard Kagome lattice. Our consistency condition is
obtained by specializing our necessary condition to the standard Kagome lattice.

The necessary condition comes from expanding the potential mechanism to second order. If a GH
mode ¢ (z) comes from a N-periodic smooth mechanism u(z,t), then u(z,t) = F(t)x + ¢(x,t) with
¢(x,0) = 1 (x) and F(0) = 0. The Taylor expansion of u(z,t) around ¢ = 0 to second order gives

u(x,t) =z + t(flx + gal(;v)) + 2 (fgx + apg(x)) +0(t%), (5.1)

where u(z,0) = z is the reference lattice and & = F(0) = 0. The symmetric & € Rexs is the
macroscopic strain at second order and 2 (x) is the second order periodic oscillation.

The existence of & and ¢,(z) gives a constraint on the quadratic part of the GH mode ¢, (z),
since the mechanism u(z, ¢t) must preserve the length of every spring to second order. On the spring
connecting x;, z;, the mechanism u(x, t) preserves the length of the spring for any ¢, so

|zi — xj|2 = |u(zi, t) — u(mj,t)|2 (5.2)

= |z — a;]" + 20(zs — x5, 01 (25) — p1(5))

+ 2| or(@i) — o1(2)|” + 2 — 25, €a(s — 7)) + 2wi — 25, 02(2) — 2(x))| + O(t?).

The first order term (z; — x, 1 (x;) — ¢1(z;)) automatically vanishes because ¢; () is a GH mode (see
(2.2)). At second order, we have

0= |p1(z;) — 901(33j)|2 + 2(ws — x5, E(ms — x5)) + 2(ws — x5, p2(3) — pa(zy)),

2 ~ ~ ~
= |1 (@) — @ula;)|” + 203,07, 6abij + 2055 (bj, pa2(wi) — pa(;)), (5.3)
where [;; = |:EZ — xj| and 131-]- = \i:ijl . The last term in vector form is 2LCy5, where L is the diagonal
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matrix with diagonal entries /;; and C is the N-periodic compatibility matrix. Writing the first two
terms in the vector form, we achieve our necessary condition from (5.3):

€y, +de, = LCpo, (5-4)

where each entry of e, is a quadratic term |1 (z;) — ¢1(z;)|? and each entry of d, is 21%133;.526”.

5.2 The necessary condition for the standard Kagome lattice

Now we use our understanding of the standard Kagome lattice — especially our understanding of its
self-stresses — to specialize the necessary condition (5.4) to this setting. While the details are specific
to the standard Kagome lattice, our calculation is similar in spirit to the second-order stress test for
bars in [6] — a condition that must be satisfied by a first-order flex of a bar framework if it comes from
a mechanism.

Without loss of generality, we assume that the length of each spring in the reference lattice is 1.
The necessary condition in (5.4) tells that if a GH mode ¢4 (z) comes from a N-periodic mechanism,
then there is a symmetric matrix &, such that e, +d¢, € Im(LC) = Im(C) (L = I because we assume
the lengths of all springs are equal to 1). By the Fredholm Alternative, it is equivalent to require that
e,, + dg¢, be orthogonal to all N-periodic self-stresses. Thus, the equivalent necessary condition is:
there exists a symmetric matrix &, such that for all s € ker(C7),

(e, +d¢,,s) =0. (5-5)

For simplicity, we discuss the case N = 2; it will be clear that the same method can be applied to in the
N-periodic case, for any N. We apply our equivalent necessary condition in (5.5) with the six explicit
two-periodic self-stresses in Figure 2(d)-(f). We first plug the two horizontal self-stresses in Figure
2(d) into (5.5) and get

> |1 (i) — g1 ()| + 2 — 5, Ea(w: — 7)) = 0, (5.6)
x 3,25 on the solid line
Z |@1($1)7¢1(IJ)’2+2<I17$],§2(I1713J)> =0. (57)

x;,z; on the dotted line

Notice that every vector z; — x; is a unit vector in the horizontal direction. Therefore, the sum of
2(x; — x;,&(x; — x;)) over the two lines in the horizontal direction are the same. This indicates that
the quadratic part of () must sum up to the same amount over the two lines in the horizontal
direction

Z |1 (i) — 991(%‘)’2 = Z o1 (2;) — <P1(«Tj)‘2- (5.8)

x;,z; on the solid line x;,z; on the dotted line

Similarly, we get two more conditions in the 60 and 120 degree directions by plugging the four self-
stresses in Figure 2(e) and (f) into (5.5). The three conditions say that the quadratic part of i (x)
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must sum up to the same amount on every parallel line in the three lattice directions. We call these
three conditions the consistency condition.

Remark 5.1. When N > 2, the consistency condition still requires that the quadratic part of a given
GH mode ¢1(x) must sum to the same amount on each of the parallel lines in one of the three lattice
directions. For example, on the horizontal direction, there are in total N parallel lines (each line consists
of 2N springs). The consistency condition requires that the quadratic part of ¢1(x) on each of the N
horizontal lines sum up to the same amount. The other two directions follow the same rule.

So far, the consistency condition seems weaker than the necessary condition in (5.4). However, the
consistency condition is indeed equivalent to the necessary condition on the standard Kagome lattice
for any periodicity. This is true because we can determine & by adding up the quadratic part of ¢, ()
in the three lattice directions, when a GH mode ¢ () satisfies the consistency condition. Let us again
take N = 2 as an example. If a two-periodic GH mode ¢, (x) satisfies the consistency condition, then
its quadratic part must satisfy (5.6)-(5.7). By summing up the two equations (5.6)-(5.7), we get

ST o) e’ = 3 |1 (x:) — g1 ()] + 3 |1 (1) — g1 (x)|

(zs—x;)| (1,0) x;,x; on the solid line x;,z; on the dotted line

—2%8 (1 0) & (;) : (5-9)

where 8 is the number of springs in the horizontal direction in the two-periodic unit cell. Similarly for

the 60 and 120 degree directions, we get

1
> o1 (z:) — ()| = —2%8 (% 7‘3) & (%) , (5.10)
(@i—z)ll ($.) 2
_1
> |901($i)—¢1($j)|2:—2*8<—% 23>€2 <\/§> (5.11)
2

@i—=p)l (-4, %)

Since &, is a symmetric matrix with three degrees of freedom, it is fully determined by the averaged
value of the quadratic part of ¢ (z) in the three lattice directions. For N # 2, equations (5.9)-(5.11)
still hold but the number 8 is replaced by 2/N? since there are 2N? springs in each lattice direction.
Thus, we have shown that the consistency condition is indeed equivalent to the necessary condition in

section 5.1 for the standard Kagome lattice for any periodicity.

5.3 A complete understanding of the two-periodic GH modes

We apply the consistency condition to a linear combination of the four explicit two-periodic GH modes
o (1), P2 (x), p3(x), ¢3(z). We already know that ¢} comes from a one-periodic mechanism and any
linear combination of ¢?, 3, ¢% comes from a two-periodic mechanism. So the remaining question is
whether any other linear combinations of these GH modes ever satisfy the consistency condition. The

answer is no.
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To see why the consistency condition fails, it is equivalent to check when a sum of two GH modes
that both satisfy the consistency condition still satisfies the consistency condition. Let us write any
two-periodic GH mode as ¢ = ¢! + 92, where 1! € span{p}} and ¥? € span{?, ©3, »3}. The two GH
modes 1!, 1)? both satisfy the consistency condition. If the sum v satisfies the consistency condition,
then its quadratic part should sum up to the same amount in every lattice directions. For example, in
the horizontal direction, we get

3 (@) — ()| = 3 () — ()|,

x;,2z; on the solid line x 3,25 on the dotted line

Expanding it in terms of ¢!, ¢?, we get

3 |08 () — 91 ()| + |02 (@) — 2 (a) |+ 200 (@) — 9 (), 93 (20) — 03 (a5))

xi,2; on the solid line
= > [0 @) = 0 @)]” + [0 @) — 2 (@)| + 28 @) — ¥ (), (@) — ¥ ().
xi,2; on the dotted line

Since the two GH modes ¢! and 1)? satisfy the consistency condition, the first two terms are already
matched. This leads to a constraint on the cross term

> (Mwi) — ' (25),9* (ws) — P (x5)) = > (WM (i) — M (@), * (w3) — P (x5)).

xi,2; on the solid line x;,x; on the dotted line

(5.12)

Similarly, we get two more constraints for the cross terms on the 60 and 120 degree directions. We
observe that these constraints are bilinear in ); and 5 (that is, linear in either 1, or 1)y if the other is
held fixed).

We would like to write down the consistency condition as a linear system for the coefficients of a
GH mode in terms of our explicit basis. WLOG, we can choose 1 = ¢ + a1¢? + asp3 + azp3. By
plugging ! = ¢} and ¥? = a1? + a2¢3 + az¢3 into (5.12), the constraint becomes a linear system in

terms of ay, as, a3, and it is

0=a > (pl(xs) — @1 (x5), 1 (i) — i (z))) — > (o1 (x:) — o1 (x5), o1 (i) — w?(mj)>]
- x,z; on the solid line xi,2; on the dotted line
+as > (p1(:) — 91(x5), P3(xs) — 3 (x5)) — > (1) — 91 (), 93 () — w%(%))]
- x,z; on the solid line x;,2; on the dotted line
+ a3 > (o1 (i) — o1 (z;), 03 (i) — 03(x5)) — > (@' (i) — @' (), p3(w:) — @3(3«”;‘»} :
- x4,x; on solid line x;,z; on the dotted line

We also get two more linear constraints on a4, as, az from the 60 and 120 degree direction. Using the
explicit forms of the four GH modes o1, 2, 03, 03 (see Appendix C), we find that the linear system for
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ai,az,as is

4 4 0 ay 0
4 0 4 az| = |0
0 —4 —4 as 0

Clearly, the system only has the zero solution. This indicates that among all GH modes in the form
of Y = o} + a1¢? + azp? + ¢, only 1 satisfies the consistency condition. Thus, a non-trivial linear
combination of the one-periodic GH mode and a two-periodic GH mode does not come from a two-
periodic mechanism. The set of two-periodic GH modes that come from two-periodic mechanisms is
shown in Figure 14. It is the union of a line generated by ¢1(z) and a three-dimensional subspace

generated by ¢?, 3, 3. A GH mode outside this set does not come from a two-periodic mechanism.

Figure 14: The set of two-periodic GH modes that come from two-periodic mechanisms, also known as
the tangent cone, is a union of two subspaces. One subspace is generated by the GH mode '} from the
one-periodic mechanism uz .y and another one is generated by the three GH modes 02,03, p3 from
the two-periodic mechanism ug, ¢, 0,(z). Any GH mode outside this tangent cone, for example ¢ in
the figure, does not come from a two-periodic mechanism.

Remark 5.2. The preceding discussion was geometric. A different, more abstract explanation why some
two-periodic GH modes do not come from mechanisms starts by considering the zero level set of the elastic
energy on the two-periodic unit cell. The image of every two-periodic mechanism lies in this zero level
set. The infinitesimal version of a two-periodic mechanism is thus a tangent vector of a curve on the level
set. The space of two-periodic GH modes is the tangent space. If this zero level set is a smooth manifold,
where the implicit function theorem applies, then any vector in the tangent space is a tangent vector of a
curve on the level set. However, the zero level set is not a smooth manifold at the two-periodic standard
Kagome lattice, since not every two-periodic GH mode comes from a mechanism. This means the two-
periodic standard Kagome lattice is a singular point (see e.g. Lecture 20 in [12]). The real set of all
two-periodic GH modes that come from mechanisms, defined as the tangent cone, is a union of a line and
a three-dimensional subspace, which is not a vector space. A GH mode outside the tangent cone does not

come from a two-periodic mechanism.
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Remark 5.3. In a lattice with a line of springs, a GH mode must take a straight line to a zigzag line. The
existence of such GH modes is very intuitive, since nodal displacements normal to the line do not stretch
the springs in the linear elastic approximation. But this observation does not help us see which GH modes
come from mechanisms.

Do all k-periodic GH modes come from k-periodic mechanisms? This question is related to asking
whether the set of k-periodic mechanisms is singular. For the standard Kagome lattice, all one-periodic GH
modes come from one-periodic mechanisms; but not all two-periodic GH modes come from two-periodic
mechanisms. As discussed in Remark 5.2, this shows that the set of two-periodic mechanisms is singular.

5.4 Applying the consistency condition to Fleck-Hutchinson modes

Fleck and Hutchinson [14] found a special class of GH modes by studying a linear elasticity problem in
the unit cell with a Bloch-type boundary condition. We call these special GH modes Fleck-Hutchinson
modes. The Fleck-Hutchinson modes provide a basis for the space of N-periodic GH modes. It is
natural to ask whether the special features of a Fleck-Hutchinson mode assure that it comes from a
mechanism. The answer is no: in fact, for the standard Kagome lattice, there are very few examples of
Fleck-Hutchinson modes that come from mechanisms. This section justifies the preceding statement,
as an application of our consistency condition in section 5.2. In particular, we shall show that the
N-by-one periodic Fleck-Hutchinson modes almost never come from a mechanism (see below for a
more complete and precise summary of this section’s results).

Evidently, considering individual Fleck-Hutchinson modes is not an efficient means of finding non-
linear mechanisms. This raises the question what other tool might be used to find mechanisms. For the
N-by-one mechanisms of the standard Kagome lattice, we shall offer an approach based on layering in
section 6.

We start by reviewing some properties of the Fleck-Hutchinson modes (see Appendix D.1 for a

detailed review).

e For any N > 2, these N-periodic GH modes of the standard Kagome lattice are obtained by
considering complex displacements d(x) with vanishing linear strain on the unit cell with a Bloch-
type boundary condition (see (D.1))

d(j +x) =d(j) exp(2miz - w), (5.13)

where j are vertices in the unit cell of the standard Kagome lattice, i.e. j = A, B,C in Figure
1(b). The vector w is the Bloch wave number. It is in the form of w = wy a1 +wsas, where a1, as
are primitive vectors in the Brillouin zone (see their explicit values around (D.2)).

e There are three types of w that give N-periodic GH modes: (1) w; = wy = +; (2) wy =

0,wy = and (3) we = 0,w; = 5. In all three cases, the integer s can be chosen in the

N
range 0 < s < |£']. We shall focus here only on the GH modes associated to the first case

wy = wy = %, since the other two cases are related to these by symmetry (see Remark D1).
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e We achieve a one-dimensional family of complex displacements d(x) by solving the relevant
linear system with the Bloch-type boundary condition in (5.13) and with Bloch wave number
w1 = wp = . Taking the real and imaginary parts of this unique d(x) gives two real-valued GH

modes v () and ui™ ().

e The special GH modes u‘;’N (z) and uS’N (z) are actually N-by-1 periodic for any s in the range
0 <s< L%j As explained in Appendix D.1, they have period 1 in the horizontal direction
and period N in the 60 degree direction (see Figure 15(a)-(b) for an example with N = 3).
Moreover, their values can be written down explicitly: there are a total of 3V vertices in the
N-by-one periodic unit cell, and we refer to them as A , Bo x, Cor Wwithk =0,1,..., N —1 (see
Figure 15(c) for the case N = 3); the exact values of u (z) and u$(z) on the 3N vertices are then

s s 2km r oo 2ksm T
ui (o) = 0,07t (Bow) = cos( ) (¥ -4) i (Con) = eos(ZGT) (4. 3)

2072 202
(5.14)
s s . 2km T . 2ksw T
us™ (o) = (0,07 uyN(Bos) =sin(5) (£, -5) wsV(Con) =sin(5) (£,1)
(5-15)

where 0 < s < | T ].

e By varying s, we get N linearly independent Fleck-Hutchinson modes of the form u‘;’N (z) or
uS’N (). In fact, these N Fleck-Hutchinson modes provide a basis for the space of N-by-one
periodic GH modes (see Proposition D1).

e The preceding arguments apply equally to the other two families of Fleck-Hutchinson modes
mentioned in the second bullet. All three families contain the 1-periodic GH mode, but aside
from this they are linearly independent. As a result, the three families taken together provide a
basis for the entire (3N — 2)-dimensional space of N-periodic GH modes (see Remark D2).

From the last two bullets, we know that there must be some linear combinations of Fleck-Hutchinson
modes that come from mechanisms, since there are N-periodic mechanisms (see e.g. [16] and sec-
tions 4 and 6 of this paper) and their infinitesimal versions are linear combinations of Fleck-Hutchinson
modes. But our focus here is different: we want to know whether these special basis elements them-

selves come from mechanisms. The answer is mostly negative. In fact, we shall show that:

(1) When s = 0, u)"" (z) is one-periodic and comes from the one-periodic mechanism, as shown in

Figure 3(a); uJ" (x) vanishes.

(2) When s > 1 and N is odd, neither u:"" () nor u5" () comes from a mechanism; when s > 1 and
N is even, the same conclusion applies except for ulg ’N(x), which does come from a mechanism.
This special Fleck-Hutchinson mode u% ’N(x) is two-by-one periodic, and it comes from the two-
by-one periodic mechanism shown in Figure 12(a).

(3) When s > 1, a linear combination of the two Fleck-Hutchinson modes with the same Bloch-

type boundary condition, i.e. t;u{"™ () 4 toul™ () with the same s, almost never comes from a
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mechanism: (1) when £ ¢ Z, a non-zero tiud™ () + toud™ () never comes from a mechanism;
(2) when % € Z, a non-zero t1ud™N (z) + toud™ () comes from a mechanism if and only if s = a
and |t1| = [|t2|. Moreover, these special linear combinations are four-by-one periodic, and they

come from four-by-one periodic mechanisms.

The rest of this section is devoted to proving these assertions. Assertion (1) is straightforward: it is
easy to check that when s = 0, u2"" () comes from the one-periodic mechanism and 5" (z) vanishes.
Turning to assertion (2): the proof uses the consistency condition associated with the horizontal lines
of the Kagome lattice. To apply the consistency condition to v (z) and v () with fixed s, we need

Vo U2

U1

(a)

(@]

Figure 15: The three-by-one Fleck-Hutchinson modes and the three-by-one periodic mechanism: (a)
the Fleck-Hucthinson mode u;(z); and (b) the Fleck-Hutchinson mode uy”(z). We can see clearly
that the two Fleck-Hutchinson modes are one-periodic in the horizontal direction; (c) the consistency

condition checks the sum of quadratic parts over the two springs marked by arrows in each horizontal
line.

to check whether their quadratic parts sum to the same amount on each horizontal line. Since " (z)
and uSN(x) are N-by-1 periodic, we only need to check the quadratic part on a sum over two springs
for each horizontal line. Let us take u " () when N = 3 as an illustrative example. The consistency
condition involves the sum of the quadratic part of ui"g(x) over 6 springs in each horizontal line (the
6 springs in each horizontal line are dotted in Figure 15(c)). But due to the periodicity of ui’?’(x) and
u;?’(a:) in the horizontal direction, the quadratic part over the six springs is a recurrence of the two

springs marked by arrows in Figure 15(c). So the consistency condition for v (z) requires us to check

35



whether the following three terms are the same (vertices used below are as marked in Figure 15(c))

|u3(Co0) — ui(Boo)|* + |45 (Boo) — ui™(Cho)
s S,c 2 S, S,c

[u$?(Co) — ui®(Boa)|” + |ui®(Boa) — up®(Cha)

i (Co,0) — u®(Bog)|” + |4 (Bo,s) — ui®(Cra)|”.

The two terms in each line are the same because () is three-by-one periodic, i.e. u5*(Cy ) =
u$?(Cy 1) for k = {0,1,2}. Therefore, we need only check whether the following three terms are the

same:
s, s 2 s, s 2 s s 2
2[ui®(Coo) —ui?(Boo)|”s  20ui(Con) —ui®(Bon)|”s  2[ui?(Coz) — ui®(Bos)| -
Similarly to the N = 3 case, for a general N and a fixed s, we need only check whether the following

N terms are the same

2

)

S S 2 S, S 2 S S
2lup™ (Coo) —up™ (Boo)|,  2[ui™ (Con) — ui™N (Bog)|, 2N (Con—1) —up N (Bov-1)

where £ =0,1,..., N — 1. From the explicit form (5.14) of ui’N(x), we see that

2ksm
N

)|U(1)’N(C'0,o) - ul(Bo,o)|2 # |U(1)’N(Co,o) - U1(30,0)|2,

S El 2
ul’N(C'O,k) - ul’N(Bovk)| = COSQ(

N
2
Thus, the consistency condition in the horizontal direction only holds for uf’N (z) if and only if N is

even and s = % By a similar calculation, the consistency condition in the horizontal direction for
uy™ () checks whether the following N terms are the same

unless cos?( 2557t

= 1forevery k = 0,1,...,N — 1. This is only true when s = 5 since 1 < s < %

2ksm
N

2, (5.16)

S, S 2 . S S
luy™ (Coe) — uy™ (Box)|” = sin®( ) ui™ (Co,0) — u™ (Bo,o)

for every k = 0,1,..., N — 1. However, the consistency condition never holds for non-trivial u‘;N (z).
To see why, we observe that the term in (5.16) vanishes when & = 0, but it does not vanish when

N
k = 1 unless s = &. However, when N is even, the special mode u;} ’N(x) = 0. Thus, among all

wi™N (z), us™N (), only the special Fleck-Hutchinson mode ulg N(x) satisfies the consistency condition
with even N. Moreover, the special mode u% ’N(x) is two-by-one periodic (for any even N) and it
comes from the two-by-one periodic mechanism, as shown in Figure 12(a) (see the end of Appendix C
for a detailed discussion).

We turn now to our assertion (3), which addresses whether a linear combination of the two non-

zero Fleck-Hutchinson modes with the same Bloch-type boundary condition, i.e. u"" () and u"™ ()

with the same s and N, comes from a mechanism. The answer is yes when % € Z, but no for
all other cases. We shall show that the consistency condition is satisfied in the case % € Z only

at two special linear combinations v () + u3™ () (or a scaled version of them). Let us consider

w(z) = tyud™ (z)+toud? () with the same s, N and constrain ¢,, # 0 to eliminate the case where one
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of ty,t, vanishes. The consistency condition requires that the quadratic part of t;uS"" () + toud™ ()
sums to the same amount on the two springs in every horizontal line, i.e.

N =2ty (uN (Co ) — N (Box)) + ta(us™ (Cox) — uy™ (Bow)) (5.17)

must be the same for k =0,1,..., N — 1. We observe from (5.14)-(5.15) that for any s and N,

T , T
N(Boo) = (*£.-1) N (Coo) = (*2.3)
2ksm s 2ksm .,
N (Boi) = cos( i yui™ (Bo,o) up™ (Co,i) = cos( N Jui™ (Coo)
. 2ksm, s . 2ksm,
N (Boi) = sin( N Jui™ (Boo) uy™ (Bo,i) = sin( i Jui™ (Co o).

Using this relationship, the quadratic part eZ’N in (5.17) becomes

2ksm st \ 2 2
eZ’N :2(t1 cos( ~ ) + to sin( N )) ui’N(Coﬂo)—u‘;’N(Bo’o)’ .

2
Therefore, the consistency condition requires that <t1 cos(2EST) 4 ¢, sin(2EeT )) be the same for all

k=0,1,..., N — 1. We shall show that this can hold only when s = Z or s = % To see why, we first
take k = 1 and k = N — 1, and observe that the equality ;¥ = 3", gives

2s(N — )m . 2s(N — 1)71'))2

2sm 2 2
(t1 cos( ]SV ) + to sin( ;;T)) = (tl cos( ) + to sin( I

2sm . 28w\ 2
= (tl COS(W) —ty sm(W)) .

We conclude that 4¢1t5 cos(EX)sin(22) = 2t1tosin(%7) = 0. Due to our constraint t1¢, # 0, we
must have sin(%%) = 0, i.e. % € Z. Since 1 < s < &, the consistency condition is only satisfied
when s = % or s = % When s = %, this becomes the special case we discussed earlier where

NN, o NN . . . .
u? " (z) is two-periodic and u; " (z) vanishes. When s = £, the consistency condition requires

2
<t1 cos(2) + ¢ sm(f)) to be the same for all k = 0,1,..., N — 1. This condition is satisfied if and

. . AN AN .
only if t? = t3. As a summary, for the two non-zero Fleck-Hutchinson modes u? """ (z),us " (x) with
the same s, N, a linear combination ¢;u"™ () + tou™ (2) satisfies the consistency condition if and

only if s = & € Z and t; = =+t,. Moreover, the two special linear combinations u;" (z) + uy™ (z)

when s = & come from four-by-one periodic mechanisms (see Appendix E).

6 N-by-one periodic and non-periodic mechanisms

In section 5.4, we have seen that while the Fleck-Hutchinson modes v () and u5™ (z) are N-by-
one periodic, they are usually not associated with N-by-one periodic mechanisms. Thus, the use of
Fleck-Hutchinson modes is not an efficient means of finding nonlinear mechanisms. This section offers

37



an entirely different approach to understanding the N-by-one periodic mechanisms of the standard
Kagome lattice. Our approach, which is based on layering, is relatively simple; moreover, besides pro-
viding a classification of all N-by-one periodic mechanisms, it also provides examples of non-periodic
mechanisms.

We start by considering the four-by-one periodic mechanism shown in Figure 16(a) (see Appendix
E for its details), which provides the building blocks we shall use to construct N-by-one periodic
mechanisms. There are four layers in this four-by-one periodic mechanisms, namely G1, Go, W1, Wo.
The two shaded layers G, G, are one-periodic layers achieving the same compression ratio % <c<1
(we choose 1 as the lower bound to avoid triangles intersecting each other). Note that they rotate
the triangles in their unit cells in opposite directions. The two unshaded layers Wi, W5 come from the
two-by-one periodic mechanism in Figure 12(a), and they must achieve the same compression ratio ¢
to fit the one-periodic layers. We observe from the four-by-one periodic mechanism that the four layers
fit each other perfectly in a corresponding relationship: a W; layer fits above a G, layer, a G, layer
fits above a W layer, etc (see Figure 16(a)). We also know from the one-periodic and the two-by-one
periodic mechanism that a G, layer fits above a GG; layer (same for GG3) and a W, layer fits above a
W5 layer (same for W5). Therefore, we summarize the layering relationship for the four basic layers

G17G27W17W2 as

G1<§/11, G2<VGV?2, W1<§/22, W2<§Vll, (6.1)

where the arrow in W; — W, means W, fits above ;.

(@ () ©

Figure 16: A layering scheme and all mechanisms achieve a macroscopic compression ratio
c = cos({5): (a) the four-by-one periodic mechanism; (b) a mechanism achieved by the se-
quence {Gy, W1, Ws,G1,Gq,W1,Gs,Wa,...}; (c) another mechanism achieved by the sequence
{Wl, GQ, G27 WQ, G17 Gl, W17 GQ, “ o }.

A geometric explanation of the layering relationship (6.1) is that the zigzag lines in the horizontal
direction can deform only in two ways (marked as dotted) in Figure 16(a). Each zigzag line must have
a symmetric wedge pointing either upwards or downwards. Take the zigzag line formed by G; and
W layers as an example. The dotted line as an edge of the gray triangle has a negative slope. Hence,

the layer above it must provide a deformed line with a positive slope. This is why G; and W, layers fit
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above a G layer. The other layering relationship holds for the same reason.

Using this relationship between layers, we can construct many N-by-one periodic mechanisms for
any N, and also many non-periodic mechanisms. In fact, we can choose a sequence {a,},cn With
an, € {G1,G2, W1, Ws}. This sequence must satisfy the layering relationship in (6.1) with a,, — ap41
for every n € N. We can construct a mechanism u,,, (z) based on the sequence {ay, },en by stacking the
corresponding a,, in the nth layer (see Figure 16(b)-(c) for examples). If {a,, },cn is N-periodic, then
the corresponding mechanism u,,, (z) is N-by-one periodic. If the sequence {a, },en is not periodic,
then the mechanism w,,, (x) is non-periodic.

Our argument actually finds all N-by-one periodic mechanisms with period 1 in the horizontal
direction. To explain why, we observe that for any N-by-one periodic mechanism with period 1 in
the horizontal direction, we can separate it into a sequence of layers as we move along the 60 degree
direction. Due to being period 1 in the horizontal direction, these mechanisms must deform the
horizontal lines into zigzags with symmetric wedges pointing upwards or downwards, as shown in
Figure 16(a). It is easy to check that such zigzag lines can only be achieved by the one-periodic
mechanisms and two-by-one periodic mechanisms that are our building blocks. Therefore, any N-by-
one periodic mechanism with period 1 in the horizontal direction arises from our layering procedure.

7 A special case: some Maxwell lattices must have mechanisms

We have used the GH modes of the standard Kagome lattice with different periodicities as examples
to show that not every GH mode in a Maxwell lattice comes from a periodic mechanism. We also
note that not every Maxwell lattice has a mechanism: Borcea and Streinu [2] found a 2D Maxwell
lattice with overlapping springs that has no mechanisms. These observations make us wonder whether
there is a sufficient condition on a Maxwell lattice such that every GH mode of it must come from a
mechanism.

This section offers a result of this type, for a rather special class of Maxwell lattices. Briefly, we
show that a non-degenerate 2D Maxwell lattice must have a mechanism if its space of GH modes is
one-dimensional (the one-periodic standard Kagome lattice satisfies this assumption). In fact, we shall

prove the following Proposition.

Proposition 7.1. For a non-degenerate 2D Maxwell lattice, if p1(x) is the only GH mode (up to scalar
multiplication), then we can find a mechanism parameterized by t in the form

u(z,t) =z + to1(x) + *[Lx + pa(2)] + ..., (7.1)

where &5, o () satisfies the necessary condition (5.3).

Proof. The proof proceeds in two steps: (1) We show that &, po(z) are determined uniquely by ¢ (z);
(2) We prove that there really is a u(x,t) with this leading order Taylor expansion using the implicit
function theorem.

We first show how &;, po(x) can be determined uniquely by ¢1(x). To determine o, po(x), we
know that wu(z,t) must keep the lengths of all springs at second order, i.e. (5.3) and (5.4) hold for
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every spring. Multiplying L~! to both sides of (5.4), we get
L le,, + L71de, = Copa, (7.2)

where each entry of L~'dy, is in the form lijz;z;gzéij. Notice that the vector form of lilj(;,g;ng;ij is
in fact be, (see (A.2)), i.e. L7'de, = be,. The symmetric matrix &, has three degrees of freedom
and can be found uniquely using self-stresses. We start by choosing three linearly independent self-
stresses s, 8g, 83, i.e. CTs; = 0 fori = 1,2,3. We can choose them because ker(C) = ker(CT) =
dim{GH modes} + 2 = 3. Left multiplying s, to both sides of (5.4), we achieve

siTlfleLp1 + sing2 =0, 1=1,2,3. (7.3)

This system for & has three equations and three degrees of freedom. We claim that it always has a
unique solution based on our non-degenerate assumption. Suppose the system does not have a unique
solution, then there must exist a non-trivial £9 # 0 such that s?bég = 0,7 = 1,2, 3. This indicates that

for any self-stress s such that C*'s = 0, we must have

sTbég =0. (7.4)

We shall show that Eegr(£3) = (Aerré3, &3) = 0. We start by choosing the self-stress t7, = K (beg +Cpfo)
2 2
that corresponds to the macroscopic stress A9 in (A.6). By plugging this self-stress tzg into (7.4),

we get
0=( gg)Tb§8 - b?gKbgg + (<pZS)TCTKbEg. (7.5)

We have another equality from the optimal condition for tpzo in (A.3). Left multiplying <p20 to both
sides of (A.3), we get

0= (gogg)TcTchpgg +CTKbg. (7.6)
Combining (7.5)- (7.6) and using the formula of F.¢(¢) in (A.1)-(A.2), we get
Eeii(&3) = (Aeiiés, €3) = (beg + Copfo) " K (beg + Cpfg) = 0.

This violates our assumption that A.g is non-degenerate. Thus, a unique & is determined by ¢4 ()
using (7.3). The periodic 2 (x) can be found correspondingly by solving (7.3). Notice that the solution
to (7.3) is not unique since the null space of C is 3-dimensional. We can ensure its uniqueness by
imposing an extra condition that s () is orthogonal to the null space of C. This extra condition is in

fact equivalent to three linear conditions:

pa(z) L di(), pa(x) L da(x), pa(r) L p1(z),
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where d; (), ds(x) are two linearly independent 2-dimensional translations and ¢, (z) L d;(x) means
the vector forms of po(x),d;(x) are orthogonal. With these three conditions, we can uniquely deter-
mine ¢y (z) in (7.3).

Thus far, we have shown how &, p2(x) can be uniquely determined by ¢4 (), so that the defor-
mation u(z,t) in the form (7.1) preserves the lengths of all springs to second order. We now show
that there exists u(z,t) preserving the lengths of springs at higher order using the implicit function

theorem. In other words, we seek a mechanism
u(z,t) = x + tpy (x) + 12 [gg(t)m + @o(x,t)], (7.7

where 22(0) =& and @o(x, 0) = po(x) are determined uniquely by the given ¢4 (z). To rigorously show
the existence of a mechanism with the form (7.7), we must show that &, (), 3(z, t) can be chosen such
that

(i, t) — Uz, t)|* — |o; — ;)

0= 2 = |‘P1<xi>_901(173‘)‘2+2<$i—l‘j,§~2(xi—xj)>
+2(zi — j, Ga (i) — Palzy)) + O(1), (7.8)
P2(x) L di(z), P2(x) L da(w), P2(z) L @1(x). (7.9)

For simplicity, we refer to the vector form of g5 () as 2 and the system in (7.8)-(7.9) as F(gg, Pa,t) =
0. This system has e + 3 equations and 2d + 3 degrees of freedom, where e, d are the number of springs
and vertices in the unit cell (2d = e in the case of Maxwell lattices). We notice that at ¢ = 0, these
constraints can be satisfied by taking @»(xz) = ¢o(z) and & = &, e F(&,92,0) = 0. It can also
be checked that 0, 5 F' evaluated at ¢y(z) = ©a(x),& = &,t = 0 is invertible, since &, po(z) are
uniquely determined by ¢ (z) in (7.8) at t = 0. Thus, the implicit function theorem indicates that there
exists & (t), P2 (t) around ¢ = 0 such that u(z,t) = z + t; (z) + 2 [E2(t)x + P2 (2, t)| is a mechanism.

Evidently, the infinitesimal version of this mechanism is the given GH mode ¢, (z). O

A similar argument seems unavailable when the space of GH modes has dimension greater than
one. To briefly explain the difficulty: in general, ©; must satisfy the necessary condition we obtained
in section 5. This assures the existence of &, o such that |u(x;) — u(x;))|* vanishes to second order
for every connected z;, z;. But when we continue to the next order, the existence of &3, p3 requires a
new necessary condition involving 1, &5, 2. Though - as a solution to (5.4) is not unique, we do not
see how to use the freedom in 5 to assure the required necessary condition at the next order.

In fact, finding a mechanism amounts to finding a one-parameter family of solutions to a system
of quadratic equations, while the existence of a GH mode solves a linearized version of that system.
In such a setting, the linearized system does not necessarily contain enough information to know the
dimension of the actual solution set. A simple example in 3D shows that a linearized system might not
count the nonlinear solutions correctly: if two spheres in 3D only meet at the origin, the intersection
of their tangent spaces at the origin is a plane.
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Appendix

A The effective Hooke’s law

The effective linear elastic energy in its variational form is

1 . 2
Eetr(€) = 5 J(rff}s F(& ), with F(£, ) ka (lwbz;fbij + (i) — 90($j)»bij>> . (AD
Q-periodic

’LNJ

We would like to write it as a quadratic minimization problem using linear algebra. Since we only
consider displacements v(x;) for vertices x; in the unit cell, the minimization problem in (A.1) is
indeed a finite-dimensional quadratic optimization. Using the notation in (2.3), we have (¢(z;) —
go(:rj),f)”> is an entry of Cyp, where ¢ is the vector form of periodic function o(z). We can also
gather [;;b usza as a vector bg in the same order of gathering (¢(z;) — cp(mj) ;). Then F (&, ¢) can be
expressed as

1 . 2 1
(P) = 5 Z kij (llj zgszj < (l'z) — @(xj), b”>> = é(bg + CL,O)TK(bE + Ccp), (A.2)

inj

where K is a diagonal matrix whose entries are the spring constants k;;. For a given strain £, minimiz-
ing F'(, ) over all periodic functions () amounts to minimizing a convex, quadratic function of the

vector ¢ (the Hessian w.r.t ¢ is CT KC = 0). Thus, the optimal ¢ must exist and satisfy the equation
F(&¢)=CTKb: + CTKCp = 0. (A.3)

We know that the compatibility matrix C is not full rank (its null space includes at least two trans-
lations), thus the matrix CT KC is not full rank as well. Solutions to (A.3) are therefore not unique,
but they share the same value of F'(¢, ), since the objective function F (¢, ) is convex on ¢. To avoid
future confusion on the non-uniqueness of optimal ¢, we stick to the notation ¢; for the optimal

solution in (A.3) with the smallest norm, i.e. cpg = arg min |¢]2. We recall that for the minimum
CTK(CcerbE):()

norm solution for an undetermined system Az = b (if A has full rank) is * = AT(4AT)"'b. In
our case, the linear constraint C7 K C is a square matrix but not full rank. Therefore, we take a QR

decomposition CT KC = QR to grab the full rank part, and the minimum norm problem for $; can
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be written as

p; = argmin  [p|y = —RY(RRT)'QTCT Kb (A4)
Ro=—QTCT Kb

This special ¢ is unique and linear in &, since by is linear in £. The following proposition tells that this
optimal ¢} yields a self-stress. In fact, any optimal solution in (A.3) can give a self-stress.

Proposition Al. For a given strain &, there is a self-stress t; that depends linearly on &. Its tension tf

in the spring between z;, z; is

te i = kij (lijl;ij;'gi)ij + (0§ (i) — E (), bij>>~ (A.5)
Proof. It is easy to check that the vector form of this special tension ¢ ,; is
t; = K(be + Cy;). (A.6)

We know that the optimal solution ¢} satisfies the optimality condition (A.3). Multiplying CT on the
left gives CTt; = CTK (be + Cpf) = 0. Thus, #; is a self-stress; moreover it is linear in ¢ since b; and
¢ are linear in &. O

In the following proposition and lemma, we prove that the effective linear elastic energy E.(¢) is
independent of the size of the unit cell, and quadratic in the symmetric strain £. We also provide an

exact formula for effective linear elastic energy Feg(€) = (Aeg€, &) in Lemma A3.
Proposition A2. The effective linear elastic energy E.x(£) does not depend on the size of the unit cell.

Proof. Let us denote EZL(€) as the effective linear elastic energy for a given strain ¢ on a NQ-periodic
unit cell, i.e. repeating the smallest unit cell N2 times,

Eg(§) = g— min  F(&en), (A.7)
SN en(z)is
N Q-periodic

where’ Sy is the area of the NQ-periodic unit cell (Sy = N2S;.). We prove that EZ(¢) = EL(€) for
any choice of N.

First, notice that a @-periodic function ¢, (z) is also a NQ-periodic function by repeating itself
on the NQ-periodic unit cell. The optimal ¢} , () satisfies (A.3) on the unit cell @ also satisfies the
optimality condition on the enlarged unit cell NQ. In fact, the linear system in (A.3) on the unit cell
NQ becomes N? copies of the linear system on the unit cell Q if we constrain ¢ () to be Q-periodic
instead of NQ-periodic. Since the optimization problem in (A.7) is convex, all optimal solutions reach

7Here Q is the smallest unit cell of our lattice. This has, of course, nothing to do with the orthogonal matrix Q earlier in the
QR decomposition of CT KC.
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the same optimum,

2

N
EX(¢) = SNF(& ot1) = Bg().

Using the same method, we can prove the effective linear elastic energy is the same on any M@ x NQ
unit cell with M # N. O

Remark Al. Since the effective linear elastic energy is independent of the size of the unit cell, we use the
notation Eyf(&) to denote the effective linear elastic energy on the smallest unit cell, i.e. Eq5(§) = Eelﬁ(g),
to avoid confusion.

Lemma A3. The effective linear elastic energy Eqf(§) is quadratic in &, so it has the form

Ef(§) = %(Aeﬁf &), (A.8)

where A is a constant symmetric 4-tensor, i.e. Aq g is symmetric and linear in . The exact formula for

Aeﬁtf is

I , &+
At = < > 15 ilishiy ® bij, (A.9)

i~
where t7 ;. is the self-stress on spring between x;, z; in (A.5).

Proof. First, we denote the macroscopic stress as 6 = & > 1;;bij ® bi;. We know & is symmetric

ini Teij
and linear in £ since the self-stress tg ;18 linear in £&. We can write ¢ = A&, where Aq is a constant
symmetric 4-tensor. We claim that Eeg(€) = (Aeg, £).

To prove this, we write both sides in the matrix-vector form

1 * 7 ? 1 * *
Eeff(g) g (pf S Z kl] <lL.7 Ué.sz + <§0§ (J),) ()05(.73]‘), bij>> 25 (bf + O‘P{)TK(bf + Cﬂ%)a
invg
1., 1
(et €) = 5 Z (te ilighis @ bij, €) = th i (Lighli€bi) = g(@Tb5 glbe+ Cez)' Kb
i~ ZN]
1 T "
eff(§) — E(bg +Cpf) KCg;.

The difference (b + Ccpz)TK Cp; = 0 because the optimal ¢ satisfies the optimal condition (A.3).
Therefore, Fe(€) = & (Aegit, &) O

B The one-periodic mechanism and the corresponding GH mode

We present the exact formula for the one-periodic mechanism uz .4(z) discussed in section 3.2. For this
appendix, we always fix the side length of each equilateral triangle to be 1. We classify vertices in the
reference lattice into three types: A, B and C and vertices in the deformed twisted Kagome lattice into
three types A, B and C. Once we know the deformation on the five vertices A, B, C, A’, C’ in Figure
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Figure 17: The one-periodic mechanism uz.¢(z) from the standard Kagome lattice to the twisted
Kagome lattice Ly (¢ = 7). The unit cell of the one-periodic Kagome lattice contains A, B, C' three
vertices (marked in red, green and blue), and the unit cell of the twisted Kagome lattice contains three
vertices A, B, C.
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17, we know everything about the one-periodic mechanism, including the macroscopic deformation

gradient. The exact formulas of uz .¢(x) on these vertices are

uz.g(A) = A =(0,0), uz.g(B) = B = (cos,sin#), uz.o(C) = C= (COS(H + g),sin(e + g)) ,
uz.g(A') = A’ = cos(0 — g)(l, V3), uz.o(C') = o = (2 cos(6 — g),sin(ﬁ + %)) .

The two primitive vectors v{¢f, v3¢f for the deformed lattice are the two dotted vector in Figure 17. A

brief calculation reveals that

==
vl = OC" = cos(g —6)(2,0),
==
vl = AA" = cos(g —6)(1,V3).
In section 3.2, we write the one-periodic mechanism uz .¢(7) as uz .z (x) = F(t) - + ¢(z,t) in

(3.3) by changing 6 = % + t. We have seen that F(0) = 0 and ¢(z,0) is a one-periodic GH mode. We
denote this one-periodic GH mode as ¢} (z); its explicit value at vertex x is

du%9%+t(x)
do

. dug_,g (Jj)

= 0

Sb(xvo) =
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By plugging the exact formulas for uz (), we get

d(0,0)
1 _ ’ _
L)01(14) - do o=z - (070)7
d(cos @, sin 0) V31
1oy _ ' S
901(3) do 0:%_ 2 72>
d (cos( + 3),sin(6 + 3))

C The two-periodic mechanism vy, ¢, o,(z) and its corresponding GH modes

We provide the explicit formula for the two-periodic mechanism wug, g, ¢, (z) in section 4. The parame-
ters 61, 05,03 are shown in Figure 6. We use the same notation as in section 4 and classify the vertices
in the reference lattice into three types: A, B and C. The unit cell for the two-periodic standard
Kagome lattice has four vertices of each type A, B,C. Therefore, we denote them as A; ;, B; ;,C; ;
with 4, j € {0, 1}; we denote vertices in the deformed lattice as /LJ-, Bm, Cs, ; with 7,5 € {0,1} (shown
in Figure 18). For simplicity, we denote ug, g, ¢,(x) = u(z). Then the explicit formula for each vertex

Figure 18: The three-parameter two-periodic mechanism ug, g, ¢, ().
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under the two-periodic mechanism u(z) is the following:

u(A() 0)

= (0,0), u(Bo,o) = BO,O (cosbq,sinb,), u(Co) = C’O’O (cos(@l + g), sin(0; + g)) ,

Ty : m . U
cos b — cos(f2 + 3) + cos(fy — §)7SIDH1 —sin(fy + §) + sin(fy — 5)) 7
g)asin& + Sin(eg — %) + Sin(94 _ %)) ,

(

(cos 01 + cos(fy — g) + cos(64 —
(cos 01 + cos(fy — g),smel + sin(6, — %)) ,

= (cos b1 + cosfy,sinb; +sinby),

= (cos 61 + cos O3 + cos Oy, sin 01 + sinf3 + sinby) ,

(cos 01 + cos(03 + 3) + cos Oy,sin 01 + sin(f5 + g) + sin94) ,

(cos 01 + cos(f — %) + cos 03 + cos(04 — %),sin 01 + sin(fy — %) + sin @5 + sin(6y — §)> )
=

cos 01 + cos(fz — §) + cos 03 + V3 cos(6, 6),sin91 + sin(fy — g) + sinf3 + V3sin(0y — I)) ,

6

u(Ci1) = Cl,l = (cos 01 + cos(f — g) + cos 03 + cos 04, sin 07 + sin(fy — g) + sin 3 + sin04) .

Using the same method as in Appendix B, we can compute the three GH modes (? (x

in section 4.3 in (4.15). The explicit formula for p?(x) is

@1 (Aop) =

PH(Arp) =

©1(Aoq) =

¢} (A1)

The explicit formula for ¢3(z) is

©3(Ao0) =

P3(A1p) =
©3(Agn) =

©3(A11) =

(070)> W%(BO,O) = <_\g§’ ;) ’ ‘p%(CO,O) = <_\é§a _;> y

<—\g§7—;> ) @%(31,0) = (‘é?‘i) ) @%(CI,O) = (‘?a—;> )

(070)7 ‘p%(BO,l) = (an)v ‘pl(CO,l) = (070),
=(0,0), @%(31,1) = (0,-1), 80%(01,1) = (0,0).

(0,0), ©3(Bo,0) = (0,0), 5(Co,0) = (0,0),

(-?ri) ; ©3(B1,0) = (0,0), 5(C10) = (0,-1),

(?75) ) WE(BOJ) = (?73) ) 902(00,1) - (éga ;) 3

(0,0) A(Bry) = (?—é) ,
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The explicit formula for 3 (z) is

ng(AO,O) = (07())7 993(30,0) = (070)7 303(00,0) = (0,0),
@%(Al-,o) = (07 *1)a 303(3170) = (Ov *1)3 @%(01,0) = (Oa *1)7
©3(A0,1) <\f7 —;> . ©3(Bo,1) = (0,0), ¢3(Con) = (0,-1),

903(31,1) =(0,-1), 803(01,1) = (0,0).

In section 4.5, we noted two special cases of ug, g,.0,(z) that have additional symmetries. One,
shown in Figure 12(a), is actually a two-by-one periodic mechanism. We now show that the associated
GH mode is the Fleck-Hutchinson mode w;(x) obtained by taking N = 2 in (D.5). We recall that the
two-by-one periodic mechanism is a special case of ug, g, ,(x) by choosing 61 = v,0, = v, 03 = %’“ —7.
The associated two-by-one periodic GH mode, which we shall refer to as ¢*!(z), is the infinitesimal
version of this mechanism. A brief calculation gives p*!(z) = —p?(x) — ¢2(z) + ©3(z) (shown in
Figure 19). The values of ©?!(z) on the vertices of the two-by-one periodic unit cell are

> (Ao,0) = (0,0), 0> (Bo) = (?, —;> ; ©*1(Co ) = (?7 ;) ;
#*(4o,1) = (0,0), ¢*1(Boa) = <_\2§’ ;> ’ > (Con) = <_\g§’ _;> '

N
It is easy to check that ¢*!(z) is exactly u? N(x) when N is even in (5.14) since

v|Z

N (Aor) = (0,0)  uF N (Bo) = cos(kr) (*f_;> W N (Co) = cos(kn) (‘f;)

withk =0,1,...,N — 1.

WANMVANIVANRVAN
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Figure 19: The two-by-one periodic GH mode ¢*1(x).




D More details on the Fleck-Hutchinson modes

D.1 Review of Fleck-Hutchinson modes

The Fleck-Hutchinson modes are obtained by considering complex-valued displacements with vanish-
ing linear elastic strains and Bloch-type boundary conditions. In section 2.1, we have seen that GH
modes are periodic displacements whose linear elastic strains vanish. Fleck-Hutchinson modes are sim-
ilar, but with two different assumptions: (1) the displacements d(z) are now complex, i.e. d(x) € C?;

and (2) the Bloch-type boundary condition requires the displacement d(z) to satisfy
d(j +x) = d(j) exp(2miz - w), (D.1)

where j are vertices in the unit cell and @ = njv; + nows is a translation vector with integer-valued
ny,ns and primitive vectors vy, v of the reference lattice. The vector w is the so-called Bloch wave
number; it is chosen as w = wya; + waas, where a1, ay are primitive vectors in the Brillouin zone and
wi,ws € (0,1].

From now on, we shall focus on the one-periodic standard Kagome lattice and find the corre-
sponding Fleck-Hutchinson modes. There are three vertices A, B,C in the unit cell of the one-
periodic standard Kagome lattice; vertex j are chosen from the three vertices. We choose a dif-
ferent pair of primitive vectors with v; = (1,4/3) in the 60 degree direction and v, = (—1,v/3)
in the 120 degree direction. The corresponding primitive vectors a;,as in the Brillouin zone are
a; = ﬁ (V3,1),a2 = % (—V/3,1) satisfying

a; - v; = (Sij, 1,] € {1, 2}, (D.2)

where §;; is the Kronecker delta.

There are three special choices of w1, w2 such that the displacement d(x) becomes N-periodic: (1)
wy = we = ¥; (2) wy = 0,ws = ; and (3) we = 0,w; = 5. In all three cases, s is an integer in the
range 0 < s < N — 1. Let us focus on the first case w; = w; = 3, and the other two cases are similar.
We shall show that the displacement d(x) is N-periodic when w, = wp = +, i.e. d(j +x) = d(j)
for any translation vector @ = nyv; + nave with ny, ny as multiples of N (n; = myN,ny = moN and
mi,mo € 7). The N-periodicity comes from a simple calculation: the factor exp(2mix - w) in (D.1)
using (D.2) becomes

exp(2miz - w) = exp(2mwi(niwi + naws)).

When w; = wy = & and n; = m1N,ny = maN, this factor becomes 1. Thus, we obtain the displace-
ment d(z) is N-periodic.

Actually, the displacement d(x) associated to w; = wy = 5 is not just N-periodic, it is indeed
N-by-one periodic. By this, we mean that d(z) is indeed one-periodic in the horizontal direction, i.e.
d(j +x) = d(j) and = vy — v2 = (2,0) is the smallest translation vector in the horizontal direction.

This is true because the factor exp(2mix - w) becomes exp(2mix - w) = exp(2mi(wy — ws)) = 1.
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Remark D1. For the other two cases, for example wy = 0,wy = %, we get N-by-one displacements d(x)
and their shorter period occurs in the 60 degree direction. For the wy = 0,w; = & case, we get N-by-one

periodic displacements d(x) with shorter period in the 120 degree direction.

So far, we have seen that the Bloch-type boundary condition becomes periodic boundary conditions
with special choices of bloch wave number w. Now we find the displacement d(x) with vanishing linear
elastic strain for a general bloch wave number w. For a chosen w, the first-order spring extension
e;;(w) on the spring between z;, x; is

eij(w) = (d(w:) — d(z;), bi), (D.3)

where b;; = =% indicates the spring direction. Notice that e,;(w) is complex-valued. Similarly to
J ‘M —Zj ‘ J

the real compatibility matrix in (2.3), we can write the linear relationship between the displacement

value d(z) on vertices in the unit cell and the first-order spring extension e;;(w) in terms of the complex
version of the compatibility matrix C'(w) w.r.t. the Bloch wave number w. The complex compatibility
matrix C(w) for the standard Kagome lattice with the smallest unit cell was found in [14]. Our C'(w)
looks a little different from the one in [14] because we choose a different set of springs and vertices in
the unit cell as shown in Figure 1(b); our C'(w) transforms the vector form of displacement d(x), i.e.
(d(A) d(B) d(O))T € CS, to the vector form of e;;(w), i.e. (61 ez ez e4 es eﬁ)T € C° and

its explicit form is

V3 V3
S T
0 0 1 0 -1 0
C(w): % 7@ 0 0 7% § ’
0 0 -1 0 Z1%2 0
_%22 ?22 0 0 % —@
A e B

where z; = exp(2miw;) and j = 1,2. This complex compatibility matrix has null vectors in three
cases: (1) wy = ws; (2) wy = 0; and (3) we = 0. In each case, the null space is one-dimensional. For

example, when w; = ws, the null vector d,, (z) has values on the three vertices in the smallest unit cell
T T T
duw(4) = (0,0) dw(B) = (4, -1) hwW(@)=(L.1) . ©4

The values of d,,(x) on the remaining vertices are determined by (D.1). Notice that the three cases
here contain the three cases where d(z) is N-periodic.

For the standard Kagome lattice, when the compatibility matrix C'(w) has a complex null vector
duw (), its real and imaginary parts will be GH modes, provided d,,(x) is periodic. Therefore, the real
and complex parts of the displacement d,,(x) are two N-by-one periodic GH modes when w; = ws =
~ (fixing s), and similar results hold for the other two cases. Let us focus on case w; = ws = 3
and compute the exact values of d,,(x) on vertices in the N-by-one periodic unit cell. Using (D.1) and
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(D.4), we have

T 2smi T 2smi
du(A01) = (0,0) du(Boy) = exp(=r) (£, 1) du(Co ) = exp(S500) (2

T 4s7i T 4smi
dw(402) = (0,0) du(Boz) = exp(=) (£, -4) dus(Co.2) = exp(S0) (2

dw(Ao.n-1) = <O’O)T duw(Bo.n-1) = eXp(M) (ﬁ _l)T dw(Co,N-1) = eXP(M) ( ;

N 2772

where Ay x, Box, Cok, k =0,1,..., N — 1 are the vertices in the N-by-one periodic unit cell (defined
in section 5.4). We refer to the real part as u;N(aj) and the complex part as ug’N(x). Their values on
the vertices are

s s 2ksm T s 2ksm T
N (Ao) = (0,007 wpN(Bos) = cos(50) (2. -4) N (Con) = cos(5) (£.)

s s, . 2ksm T s, . 2ksm T
u™ (o) = 0,07 ui™ (Bow) =sin(=) (§.—4) ™ (Bow) =sin(=g) (4.4)
(D.6)

Proposition D1. For a fixed N, there are in total N linearly independent u‘f’N (z) and ug’N (z) by varying
s in the range 0 < s < N — 1. Moreover, they form a basis for the space of N-by-one periodic GH modes.

Proof. As mentioned in [14], the range of s can be reduced to 0 < s < &, since wSN () = u) 7N (@)
and w3 () = —ul N (2). Therefore, we have ™ (), u""N (2), ..., ut "™ () and b ¥ (), . . ., ub
(9™ (z) = 0 is neglected). When N is even, it is easy to check that uzg ’N(x) vanishes. Thus, for any
N, we have N distinct N-by-one periodic Fleck-Hutchinson modes: u" (), ul"™ (z),. .. ,u%%J’N(ac)
andut™ (), ..., ub T N (@),

Now we show that these N Fleck-Hutchinson modes are linearly independent and non-trivial trans-
lations are not linear combinations of these modes. We first prove the linear independence: for a linear

combination

1,N L%J’N I.%LN

aou?*N(x) +ajuy (z) ey ug (2) +b1u§’N(x) +"'bL¥Ju2 (z) =0, (D.7)

we plug in x = By ;. Using (D.5)-(D.6), we get that forall k =0,1,...,N — 1,

2k 2k| 5 2k 2k| N1
ao—l—alcos(%)—&—...atgjcos( LAQTJW)+blsin(%)+...bL¥JSin( el

)=0. (D.8)

We get the same equality if we plug in Cy , and (D.7) holds automatically for all A ;. Therefore, the
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two equalities (D.7) and (D.8) are equivalent. By writing (D.8) in a matrix-vector form, we get

ag
ai
1 1 1 0 0
N-—1
1 COS(%) COS(2L%J‘”) Sln(QWﬂ-) sin( L ]2\[ JTr)
a N :0
: l%]
: : : ) :
1 cos(2NNT) cos(%) sin( 20Uy Sin(Q(Nﬂ)AL[NQIM)
bLNz—lJ

(D.9)

It can be checked that the matrix in (D.9) is invertible (briefly, the column space of this matrix is the
same as the column space of the discrete Fourier transform matrix). Given the invertibility, (D.9) only
holds when ag = a; = --- = ajx| = by = = bL%J = 0. Thus, the N Fleck-Hutchinson modes
are linearly independent. To show that a non-trivial translation is not a linear combination of these
Fleck-Hutchinson modes, we observe that ui’N (Aok) = u:}’N (Aox) =0 forall s, k and N. If a linear
combination (D.7) gives a translation, then it mush actually vanish. Therefore, the space spanned by
these N Fleck-Hutchinson modes does not include translations.

Lastly, we show that the N linearly independent Fleck-Hutchinson modes form a basis for the
space of N-by-one periodic GH modes. It is equivalent to show that the space of N-by-one periodic
GH modes is N-dimensional. The argument is parallel to the one used in section 2.1. First, we observe
that if C' is the compatibility matrix introduced in section 2.1 (for the N-by-one periodic case), then
ker(C) = ker(C7T) is at least (N + 2)-dimensional, since the self-stresses that are constant on a single
line (and its periodic images) span an (N + 2)-dimensional space (there are N of them associated
with horizontal lines, and two associated with lines in the 60 degree or 120 degree directions). Next,
we observe that it is at most (N + 2)-dimensional, by considering the linear equations Cd = 0 and
finding reductions similar to those used in section 2.1 (the details are left to the reader). So ker(C') has
dimension exactly NV + 2. Eliminating the two translations, we conclude that the space of GH modes
has dimension . O

Remark D2. By symmetry, when wy; = 0,ws = we get N linearly independent Fleck-Hutchinson

N’
modes with period 1 in the 60 degree direction; and when wy; = 0,w; = %;, we get another N linearly
independent Fleck-Hutchinson modes with period 1 in the 120 degree direction. Each of these families
includes the N-by-one periodic extension of the one-periodic GH mode. Aside from this, the three families
can be shown to be linearly independent (by a calculation similar to the one done above). Therefore, taken
together the three families of Fleck-Hutchinson modes span a (3N — 2)-dimensional subspace of the N-
periodic GH modes. We showed in section 2.1 that this space has dimension 3N — 2, so we have obtained

a basis for the entire space of N-period GH modes.
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E The four-by-one periodic mechanism

In section 6, we showed that there is in fact a way to layer the one-periodic and two-by-one periodic
mechanism as shown in Figure 16. Here we present the details of the four-by-one periodic mechanism
u(z) in Figure 20(a) that achieves a given compression ratio ¢ = cos(

as in section 5.2 to denote the 12 vertices in the four-by-one periodic unit cell; they are Ag 1, Bo.x, Co k

3

with & = 0,1, 2,3 as shown in Figure 15(c). The values of u(x) on these vertices are

u(Ao,0) = (0,0),

u(Bo,0) = (cosb,sind),

u(Co,0) = (cos(8 + g)7sin(0 + E))7

3

u(Ao,1) = u(Bo,o) + <Cos(2;T —0), sin(2§7T - 9)) ,

w(Bo.t) = u(Aos) + (608(2; _ 9),sin(

U(C()J)

u(Ao1) + (—cosb,sinb),

u(Ap2) = u(Bo,1) + (cosb,sinh) ,

u(Co,2) = u(Ao,2
u(Ao,3) = u(Bo,2
u(Bo,3) = u(Ao,s
u(Co3) = u(Aos

The four-by-one periodic GH mode ¢} (z) corresponding to the four-by-one periodic mechanism that
rotates the two shaded triangles in the bottom layer towards each other in Figure 20(c) (by taking

¢ = % —t) has values
#1(Ao0) = (0,0),
#1(4o.1) = (0,0),
#1(4o2) = (0,0),

@%(1%,3) = (0,0),

+ o+ o+ o+

(cos@,sind),
(cosd,sin®),

(cos(9 + g) ,sin(6

#1(Boo) = (
¢1(Boa) = —
¢1(Boz2) = —
¢1(Bos) = (

27
e

)

+g)).

S0) e (£2)
(23) (22
£2). e (22).
S0 ()
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U . - . AN anN
This is in fact the linear combination of the two Fleck-Hutchinson modes u;" " (z) — us =~ (z) that

satisfies the consistency condition when s = %. To see why, from (D.5) and (D.6), we get

[N

u M (Aog) —ug Y (Ao) = (0,0),

Uy ’N(Bo,k) —ug’N(Bo7k) = (cos(k;) - sin(k;)> (?, _;> 7

(o) = f V(€)= (cos ) —sin(g) ) (“f ;) ,

=)z

[NF

. NN NN . .. N N
fork=0,1,...,N —1. Itis easy to see that u;" " (z) —uy = () is four-by-one periodic and u;* " (z) —

uz%’N(x) = ¢}(z) because the factor cos(4F) — sin(£) is 1 when mod (k,4) = 0,3; itis —1 when
mod (k,4) = 1, 2. A similar calculation shows that the other linear combination —ul% ’N(ac) — uz% ’N(x)
that satisfy the consistency condition corresponds the four-by-one periodic mechanism in Figure 20(b).
The two four-by-one periodic mechanisms in Figure 20(a) and (b) are essentially the same, except that

the mechanism in Figure 20(b) starts with an unshaded layer.

(@) ()

() (d)

Figure 20: The four-by-one periodic GH modes that satisfy the consistency condition and their cor-
responding four-by-one periodic mechanisms: (a) the four-by-one periodic mechanism; (b) the same
four-by-one periodic mechanism but starting with a different layer; (c) the four-by-one periodic GH
mode as the infinitesimal version of (a); (d) the four-by-one periodic GH mode as the infinitesimal
version of (b).
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