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Abstract: This work aims mainly to study the controllability of pertussis infection in the presence of

waning and natural booster of pertussis immunity and to study their impact on the overall dynamics

and disease outcomes. Therefore, an SIVRWS (Susceptible-Infected-Vaccinated-Recovered-Waned-

Susceptible) model for pertussis infection spread in a demographically stationary, homogeneous, and

fully symmetric mixing population is introduced. The model has been mathematically analyzed,

where both equilibrium and stability analyses have been established, and uniform persistence of

the model has been shown. The conditions on model parameters that ensure effective control

of the infection have been derived. The effects of the interplay between waning and boosting

pertussis immunity by re-exposure to Bordetella pertussis and vaccination on the dynamics have

been investigated. The analytical results have been numerically confirmed and explained. The

analysis reveals that ignoring the natural booster of immunity overestimates the endemic prevalence

of the infection. Moreover, ignoring the differential susceptibility between secondary and primary

susceptible individuals overestimates the critical vaccination coverage required to eliminate the

infection. Moreover, the shorter the period of immunity acquired by either vaccination or experiencing

natural infection, the higher the reproduction number and the endemic prevalence of infection, and

therefore, the higher the effort needed to eliminate the infection.

Keywords: mathematical model; waning immunity; natural boosting; pertussis infection; equilibriums;

stability; controllability

1. Introduction

Mathematical modeling has gained much attention in the scientific community as it
helps describe real problems and enables a better understanding of the system in consid-
eration. It has been used to model problems in various fields including, but not limited
to, physics, biology, chemistry, and economy [1–3]. More specifically, mathematical mod-
els have been used to model infectious diseases and help public health decision-makers
obtain more insights into the dynamical spread and controllability of various infectious
diseases [4–11]. Among these diseases is pertussis, which is highly contagious, fatal, re-
emergent, and circulates worldwide. Its bacteria can easily spread directly from person to
person through droplets produced during coughing, sneezing, or even talking. Generally,
an infected individual can spread the disease when being in close contact with others
within up to approximately one meter. Pertussis is highly incidental during winter and
spring seasons among children below 5 years of age because children in this age group are
not yet fully vaccinated.
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Pertussis is endemic in the United States and most common among young children in
developing countries, while it is highly incident among unvaccinated babies and increases
again among teens in the developed world. Moreover, it is controllable with strategies
based on vaccination [12]. However, it is evident that pertussis vaccines do not confer
permanent immunity, yet the immunity acquired due to either vaccination or naturally
experiencing pertussis infection declines/wanes with time [13–15].

The literature shows differences in the period of immunity acquired by vaccination
and natural infection. More specifically, for a number of infectious diseases (e.g., measles,
influenza A, COVID-19, and pertussis), the duration of immunity acquired by vaccination
is shorter than that acquired by infection, as it is shown that naturally infected patients have
higher antibody titer than vaccine recipients [16,17]. For the case of pertussis, definitely,
these differences are evident, where in a study on the Senegal population for example,
Broutin et al. [18] showed that the gap between two pertussis episodes is 7.1 years in
unvaccinated children and 5.1 years in previously vaccinated children. However, Wendel-
boe et al. [15] showed that vaccine-acquired immunity lasts 4–12 years in children, while
infection-acquired immunity wanes after 7–20 years.

The waned immunity is believed to be subsequently boosted by asymptomatic en-
counters with the infection [19,20]. The interplay between waning and boosting pertussis
immunity by exposure to Bordetella pertussis and vaccination affects its transmission dy-
namics and needs a mathematical model for a true understanding. Various models that take
these considerations into account have been developed and analyzed. For example, Carls-
son et al. [21] introduced and studied a partial differential equation SIS model of waning
and boosting (by repeated vaccination) with discrete immunity classes, but continuous age
and time. However, Ehrhardt et al. [22] derived an SIR model to describe vaccination and
the waning of immunity. The authors derived some qualitative results and introduced a
finite difference scheme to solve the system. Moreover, Elbasha et al. [23] extended the basic
SIRS model by including a compartment for imperfect vaccination to study the waning of
immunity acquired either naturally or by immunization. In their model, the authors did not
differentiate between primary susceptible, secondary susceptible, and waned-immunity
individuals, but allowed for vaccinated individuals to either progress directly to the suscep-
tible state or acquire the infection due to successful contact with infected ones. However,
very recently, Opoku-Sarkodie et al. [24] extended the basic SIRS model to incorporate
the waning and boosting of immunity due to repeated exposure to the infection in the
absence of any vaccination scheme. The authors have mathematically analyzed how the
different partitioning of the immune period into recovered and waned and varying boost-
ing rates affect the dynamics of the model. In this paper, the last two-mentioned works
have been extended by including routine vaccination (whose immunity wanes and has a
shorter immunity period than that acquired by natural infection), including an independent
compartment of waned individuals, and considering differences in susceptibility between
primary and secondary susceptible individuals. Therefore, an SIVRWS (where W stands
for waning) model is introduced and thoroughly analyzed. We are especially interested
in investigating the effects of the interplay between waning and boosting immunity (by
repeated exposure to the infection) on the overall dynamics. Other works include those by
Barbarossa et al. [25] and Lavine et al. [20].

Our work is organized as follows. The model is formulated and proved to be well-
posed in Section 2. Its equilibrium and stability analyses are shown in Section 3. Uniform
persistence is shown in Section 4, while the controllability of pertussis infection is studied
in Section 5. Section 6 shows the impact of waning and natural boosting of immunity on
disease outcomes. Finally, the work is closed with a summary, conclusion, and future work
in Section 7.

2. Model Formulation

The population of interest is assumed to be closed and demographically stationary.
According to their epidemiological states, the individuals are categorized into six mutually
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independent groups. These are primary susceptible individuals (i.e., individuals who
have never experienced the infection and whose proportion in the total population at
time t is denoted by S1(t)), vaccinated individuals (i.e., newborns who got vaccinated
immediately after birth and whose proportion in the population at time t is denoted by
V(t)), infected individuals (i.e., individuals who are infected and capable of transmitting
the infection and whose proportion at time t is denoted by I(t)), recovered or boosted highly
immune individuals (i.e., individuals who recently recovered from the infection or whose
immunity have been naturally boosted due to re-exposure to the infection, and whose
time-dependent proportion in the total population is denoted by R(t)), waned immunity
individuals (i.e., individuals whose immunity acquired by vaccination or due to recovery
after experiencing the infection, declined but are still protected from acquiring the infection
and of proportion in the total population at time t is denoted by W(t)), and secondary
susceptible individuals (i.e., individuals who partially lost their acquired immunity and
whose proportion at time t is denoted by S2(t)). The individuals in these compartments are
asymmetric in their epidemiological status, but symmetric in their mixing behavior in the
sense that they mix homogeneously. A brief description of the model variables is shown in
Table 1.

It is worth mentioning that the compartment of vaccinated individuals is recruited by
newborns who got primarily immunized following the schedule of doses recommended by
the World Health Organization (WHO) and the Center for Disease Control and Prevention
(CDC). I.e., it is the routine pertussis vaccination recommended for infants. However,
waned immunity individuals are those who lost some of their protective antibodies but still
have at least a minimum level of antibodies that protects them against the causative antigen
or the disease. The progressive loss of the protective antibodies moves an individual from
the compartment of waned to that of secondary susceptible who are assumed to be partially
protected against the disease.

Table 1. Physical meaning for model states.

Symbol Description

S1(t) Time-dependent proportion of individuals who have never experienced the infection.
V(t) Time-dependent proportion of individuals who got vaccinated immediately after birth.

I(t)
Time-dependent proportion of individuals who are infected and capable of
transmitting the infection.

R(t)
Time-dependent proportion of individuals who recently recovered from the infection or
whose immunity has been naturally boosted due to re-exposure to the infection.

W(t)
Time-dependent proportion of individuals, whose immunity acquired by vaccination
or due to recovery after infection, declined but are still protected from acquiring
the infection.

S2(t) Time-dependent proportion of individuals who partially lost their acquired immunity.

It is assumed that individuals are born primarily susceptible and die naturally at
the same rate µ, where a proportion p of the newborns gets vaccinated at birth. Due to
successful contacts with infected individuals, primary susceptible ones acquire the infection
at an infection rate βI, where β is the successful contact rate between S1 and I individuals.
Infected individuals recover from the infection at rate γ, but their naturally-acquired
immunity declines, and they become waned at rate σ. The vaccine-acquired immunity for
vaccinated individuals is assumed to decline at a rate bσ and they become waned, where b
is a rescaling parameter accounting for the relative loss in the vaccine-acquired with respect
to the naturally-acquired immunity. The immunity of waned individuals either rises due to
their contacts with infected individuals (at the rate gβI) or it continues to decline (at rate
α), where they become secondary susceptible, who may acquire the infection at a force of
infection rβI, where r ∈ [0, 1] is the relative susceptibility of secondary susceptible with
respect to primary susceptible individuals. A schematic diagram for the transition between
the model states is shown in Figure 1 and a detailed description of the model parameters’
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physical meaning is presented in Table 2. The parameter values have been chosen to
represent (to a high extent) the case of pertussis, see Table 3. Therefore, the population
dynamics is described by the following differential equation system

dS1

dt
= (1 − p)µ − βS1 I − µS1,

dV

dt
= pµ − (bσ + µ)V,

dI

dt
= βS1 I + rβS2 I − (γ + µ)I,

dR

dt
= γI − (σ + µ)R + gβIW, (1)

dW

dt
= bσV + σR − gβIW − (µ + α)W

dS2

dt
= αW − rβS2 I − µS2,

1 = S1 + V + I + R + W + S2

with initial conditions

S1(0), V(0), I(0), W(0), R(0), S2(0) > 0 (2)

where all parameters are assumed to be positive, while the model states are defined on
the set

Ω = {(S1, V, I, R, W, S2) ∈ R
6
+ : S1 + V + I + W + R + S2 = 1}.

The mathematical analysis of the basic properties of model (1) shows that Ω is positively
invariant and model (1) has a unique time-dependent solution, see Appendix A for more
details. This result is briefly stated in the following proposition.

Proposition 1. Model (1) has a unique time-dependent solution and any solution starting with non-
negative initial conditions remains non-negative and ultimately bounded for all t > 0. Moreover,
the set Ω is positively invariant and attracts all solutions in R

6
+.

Table 2. Model parameters’ description.

Parameter Description Dimension

µ Birth and natural death rate. Time−1

β
Successful contact rate between primary susceptible and
infected individuals.

Time−1

γ Rate of recovery from the infection. Time−1

σ Recovered individuals’ rate of waning immunity Time−1

α
The progression rate of waned individuals to become
secondary susceptible

Time−1

p
Proportion of newborns who get vaccinated immediately
after birth.

Dimensionless

b
Relative loss in vaccine-acquired immunity with respect to
naturally acquired immunity.

Dimensionless

r
Relative susceptibility of secondary susceptible with respect to
primary susceptible individuals.

Dimensionless

g
A rescaling parameter that accounts for naturally boosting the
immunity due to re-exposure to the infection.

Dimensionless
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Figure 1. Flowchart for the transition between model states.

Table 3. Values of model parameters with references.

Parameter Value Range Unit Reference

µ 1/73 - per year [26]
<v 13 [12–15] Dimensionless [27]
β - - per year Assumed
γ 25 [8.67–52] per year [12,28,29]
σ 0.05 [0.04–0.25] per year [12,15,28,29]
α 0.16 - per year Assumed
p 0.83 [0.8–0.9] Dimensionless [30]
bσ 0.1 [0.083–0.25] Dimensionless [12,15,28,29]
b 2 - Dimensionless [12]
r 0.8 [0, 1] Dimensionless [12]
g 0.3 - Dimensionless Assumed

3. Equilibrium and Stability Analyses

3.1. Infection-Free Equilibrium and the Control Reproduction Number

The equilibrium analysis of model (1) reveals that it has an infection-free equilibrium,
given by E0 = (S10

, V0, I0, R0, W0, S20
)′ where

S10
= 1 − p, V0 =

pµ

(bσ + µ)
, I0 = 0, R0 = 0,

W0 =
pµbσ

(bσ + µ)(µ + α)
, S20

=
αpbσ

(bσ + µ)(µ + α)
. (3)

Linearizing model (1) around the trivial equilibrium E0 implies that the corresponding
Jacobian matrix is

















−µ 0 −(1 − p)β 0 0 0
0 −(bσ + µ) 0 0 0 0
0 0 (1 − p)β + rβS20

− (γ + µ) 0 0 0
0 0 γ + gβW0 −(σ + µ) 0 0
0 bσ −gβW0 σ −(µ + α) 0
0 0 −rβS20

0 α −µ

















. (4)
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It is easy to check that this matrix has five negative eigenvalues given by −µ,−µ,−(α +
µ),−(σ + µ),−(bσ + µ), in addition to a sixth eigenvalue given by

β(1 − p + rS20
)− (γ + µ) = β

(

1 − p +
αrpbσ

(bσ + µ)(µ + α)

)

− (γ + µ).

The last eigenvalue is negative if and only if

β

(γ + µ)

(

1 − p +
αrpbσ

(bσ + µ)(µ + α)

)

< 1. (5)

Following the general approach shown by van den Driessche and Watmough [31],
it is easy to check that the non-negative matrix F of the new infection terms, and the
non-singular matrix V of the remaining transfer terms are given, respectively, by

F = (βS10
+ rβS20

), V = (γ + µ).

Hence, the control reproduction number of model (1), denoted by <v, is given by
<v = ρ(FV−1), where ρ is the spectral radius (dominant eigenvalue) of the matrix FV−1.
Therefore,

<v =
β

γ + µ
(S10

+ rS20
)

=
β

(γ + µ)

(

1 − p + rp ×
α

α + µ
×

bσ

bσ + µ

)

. (6)

Hence, the inequality (5) could be written as <v < 1. Therefore, all eigenvalues of the
matrix in (4) are negative if and only if <v < 1, and we show the following proposition.

Proposition 2. The infection-free equilibrium E0 = (S10
, V0, I0, R0, W0, S20

) is locally asymptoti-
cally stable if and only if the control reproduction number <v < 1.

3.2. Endemic Equilibriums and the Bifurcation Direction

The equilibrium analysis shows further that model (1) has an endemic equilibrium,
denoted by E∗ = (S∗

1 , V∗, I∗, R∗, W∗, S∗
2)

′, where I∗ 6= 0. This equilibrium is obtained by
setting the derivatives in the left hand side of model (1) equal zero and solving the resulting
algebraic equation system, for I∗ 6= 0, to obtain the model state variables at equilibrium.
Definitely, we have

0 = (1 − p)µ − βS∗
1 I∗ − µS∗

1 ,

0 = pµ − (bσ + µ)V∗,

0 = βS∗
1 I∗ + rβS∗

2 I∗ − (γ + µ)I∗,

0 = γI∗ − (σ + µ)R∗ + gβI∗W∗, (7)

0 = bσV∗ + σR∗ − gβI∗W∗ − (µ + α)W∗,

0 = αW∗ − rβS∗
2 I∗ − µS∗

2 .

The first and second equations in (7) give

S∗
1 =

(1 − p)µ

µ + βI∗
and V∗ =

pµ

(bσ + µ)
, (8)

while the third equation in (7), for I∗ 6= 0, leads to

S∗
1 + rS∗

2 =
γ + µ

β
. (9)
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From the fourth and fifth equations in (7), we have

R∗ =
γI∗ + gβI∗W∗

σ + µ
and W∗ =

bσV∗ + σR∗

gβI∗ + µ + α
. (10)

From (10), we extract both R∗ and W∗ as

R∗ =
bσpµgβI∗ + γI∗(bσ + µ)(gβI∗ + µ + α)

(bσ + µ)[µgβI∗ + (σ + µ)(µ + α)]
, (11)

W∗ =
bσ(σ + µ)pµ + σ(bσ + µ)γI∗

(bσ + µ)[µgβI∗ + (σ + µ)(µ + α)]
. (12)

From the sixth equation in (7) and using (12), we obtain

S∗
2 =

α(bσ(σ + µ)pµ + σ(bσ + µ)γI∗)

(µ + rβI∗)[(bσ + µ)(µgβI∗ + (σ + µ)(µ + α))]
. (13)

Substituting from Equations (8) and (13) into Equation (9), we have

(1 − p)µ

µ + βI∗
+

rα(bσ(σ + µ)pµ + σ(bσ + µ)γI∗)

(µ + rβI∗)[(bσ + µ)(µgβI∗ + (σ + µ)(µ + α))]
=

γ + µ

β
. (14)

Now, we rewrite (14) in the form of a cubic polynomial equation of βI∗ as

F(β, I∗) = Q1(βI∗)3 + Q2(βI∗)2 + Q3(βI∗) + Q4 = 0 (15)

where

Q1 = −rgµ(γ + µ),

Q2 = rgµ2β(1 − p) + rαγσ − r(γ + µ)(σ + µ)(µ + α)− rgµ2(γ + µ)

−gµ2(γ + µ),

= rgµ2(γ + µ)

(

β(1 − p)

γ + µ
− 1

)

− rµ
(

(σ + µ)(α + µ) + γ(α + σ + µ)
)

−gµ2(γ + µ),

Q3 = gµ3β(1 − p) + rµαγσ + rµ(σ + µ)(µ + α)β(1 − p) +
βαrpµbσ(σ + µ)

(bσ + µ)

−µ(σ + µ)(µ + α)(γ + µ)− gµ3(γ + µ)− rµ(σ + µ)(µ + α)(γ + µ) (16)

= gµ3(γ + µ)

(

β(1 − p)

γ + µ
− 1

)

− rµ[(σ + µ)(α + µ) + γ(α + σ + µ)]

+µ(σ + µ)(µ + α)(γ + µ)

(

β

(γ + µ)

(

r(1 − p) +
αrpbσ

(bσ + µ)(µ + α)

)

− 1

)

,

Q4 = µ2(σ + µ)(µ + α)
(

β(1 − p) + β
αrpbσ

(bσ + µ)(µ + α)
− (γ + µ)

)

= µ2(σ + µ)(µ + α)(γ + µ)(<v − 1).

Equation (15) is a scalar equation in I∗. Each positive solution (i.e., I∗ > 0) gives rise to
an endemic equilibrium. Once I∗ is known, we obtain the other components (namely, S∗

1 ,
R∗, W∗ and S∗

2 ) of the endemic equilibrium E∗. The cubic Equation (15) could be seen as a
bifurcation equation in the plane (β, I∗), where β is the bifurcation parameter. It has the
bifurcation point (β0, 0), where

β0 =
(γ + µ)(bσ + µ)(µ + α)

(1 − p)(bσ + µ)(µ + α) + αrpbσ
. (17)
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In order to investigate the bifurcation direction at the point (β0, 0), we use the implicit
function theorem [7]. Definitely, we have (for a complete derivation see Appendix B)

dI∗

dβ
|(β0,0)= −

Fβ

FI∗
|(β0,0),

where

Fβ |(β0,0)=
∂F

∂β
|(β0,0)= µ2(σ + µ)(µ + α)[(1 − p) +

αrpbσ

(bσ + µ)(µ + α)
] > 0,

FI∗ |(β0,0) =
∂F

∂I∗
|(β0,0)= βQ3 |β=β0

,

= gµ3(γ + µ)(−αrpbσ)− Θrµ[(σ + µ)(α + µ) + γ(α + σ + µ)]

+µ(σ + µ)(µ + α)2(γ + µ)(1 − p)(bσ + µ)(r − 1) < 0

and Θ = (1 − p)(bσ + µ)(µ + α) + αrpbσ. Hence,

dI∗

dβ
|(β0,0)> 0.

Therefore, the bifurcation direction at the point (β0, 0) is forward (i.e., supercritical). This
result is briefly stated in the following proposition.

Proposition 3. Model (1) shows forward (supercritical) bifurcation at the bifurcation point (β0, 0).
The model does not exhibit backward bifurcation for <v < 1.

As equation (15) is cubic in I∗, it may have multiple supercritical endemic states (for
<v > 1) and multiple subcritical endemic states (for <v < 1). To check the existence/non-
existence of subcritical multiple equilibria, we apply Descartes’ rule of signs [32], on the
polynomial in (15). Clearly, from (16), the coefficient Q1, is always negative regardless of
the values of the parameters. Moreover, if the control reproduction number <v < 1, then

β(1 − p)

γ + µ
< 1 and

β

(γ + µ)

(

r(1 − p) +
αrpbσ

(bσ + µ)(µ + α)

)

< 1.

Consequently, the coefficients Q2, Q3, and Q4 are always negative, meaning that there are
no sign changes. Hence, using the Descartes’ rule of signs, Equation (15) has no positive
real root when <v < 1 and the endemic equilibrium exists only if <v > 1. The following
proposition summarizes the above-obtained results.

Proposition 4. Model (1) has no endemic equilibrium for <v < 1, and any endemic equilibrium
does exist only if <v > 1.

It is worth mentioning that <v = 1 is equivalent to saying that β = β0. Therefore,
the bifurcation point (β0, 0) in the plane (β, I∗) is the same as the bifurcation point (1, 0)
in the plane (<v, I∗). Figure 2 shows a bifurcation diagram for the endemic prevalence
of the infection I∗ as a function of the reproduction number <v, where all parameters
(except β) have been kept fixed and with values as in Table 3. The figure shows further
that I∗ increases initially with the increase in <v till reaching a peak and then decreases
monotonically. In other words, higher values of the control reproduction number <v reduce
the proportion of the infected population in the endemic situation.
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Figure 2. A bifurcation diagram showing the endemic prevalence of infection as a function of the

control reproduction number, with parameter values as shown in Table 3.

4. Uniform Persistence

Before going into detail on the persistence of the infection, we present a result on the
global stability of the infection-free equilibrium. The global stability of the infection-free equi-
librium E0 is discussed by following the approach presented in Castillo-Chavez et al. [33].
Accordingly, model (1) could be rewritten as

dX1

dt
= F(X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0, (18)

where X1 = (S1, V, R, W, S2) ∈ R
5 denotes the components of uninfected individuals and

X2 = I ∈ R denotes the components of infected individuals. Let U0 = (X0
1 , 0) denote the

IFE of the model (18), which is equivalent to the IFE of model (1). Thus, the global stability
of the infection-free equilibrium depends on the following two conditions.

(C1) For dX1
dt = F(X1, 0), X0

1 is globally asymptotically stable.

(C2) G(X1, X2) = AX2 − Ĝ(X1, X2), where Ĝ(X1, X2) > 0 for (X1, X2) ∈ Ω,

where the Jacobian matrix A = DX2
G(X0

1 , 0) has all non-negative off-diagonal elements,
and Ω is the region where the model makes biological sense. Then, we present the following
proposition, whose proof is deferred to Appendix C.

Proposition 5. Infection-free equilibrium of model (1) is globally asymptotically stable in Ω if
<v < 1 and above conditions are satisfied.

Based on the use of the Rung–Kutta method of order four, extensive simulations for
model (1) have been performed and some of them are shown in Figure 3. The simulations
show that all time-dependent solutions starting in the region Ω (with parameter values
such that <v < 1, while keeping the other parameters as in Table 3) are attracted by the
infection-free equilibrium E0.
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Figure 3. Time-dependent solutions, with various initial conditions, for the proportion of infected

individuals I(t). Each colored curve represents a solution. Simulations have been done with pa-

rameter values as shown in Table 3, except β that has been chosen to keep the reproduction number

<v = 0.8 < 1.

Now, we study the uniform persistence of the model (1). This model is said to be
uniformly persistent [34,35] if there exists some ε > 0 such that its time-dependent solution,
with positive initial conditions, satisfies

lim inf
t→∞

S1(t) ≥ ε, lim inf
t→∞

V(t) ≥ ε, lim inf
t→∞

I(t) ≥ ε,

lim inf
t→∞

R(t) ≥ ε, lim inf
t→∞

W(t) ≥ ε, lim inf
t→∞

S2(t)) ≥ ε. (19)

We first show that the compartments of non-negative sub-populations S1(t), V(t), W(t) and
S2(t) are always uniformly persistent, regardless of the value of the control reproduction
number <v. Then, we prove the uniform persistence of the disease’s compartment I(t)
(when <v > 1), by using persistence results from Smith and Thieme [36].

Our proof is based on the use of the fluctuation lemma (see Appendix A of [36]).
To this end, we let f : [0, ∞) → R be a real-valued function, and the limit superior and the
limit inferior of f as t → ∞ be defined as

f∞ = lim inf
t→∞

f (t), f ∞ = lim sup
t→∞

f (t).

To prove the persistence of the primary susceptible sub-population S1(t), we let
S1∞

= lim inf
t→∞

S1(t). On applying the fluctuation lemma, there exists a sequence tn → ∞

such that S1(tn) → S1∞
and Ṡ1(tn) → 0 as n → ∞, where the over-dot indicates the

derivative with respect to time t. If we apply this to the S1-equation in model (1), we obtain

Ṡ1(tn) + βI(tn)S1(tn) + µS1(tn) = (1 − p)µ.

From Proposition 1, we have limt→∞(S1(t) + V(t) + I(t) + R(t) + W(t) + S2(t)) = 1.
Hence, 0 ≤ I(t) ≤ 1. Using this and letting n → ∞, we obtain

S1∞
≥

(1 − p)µ

β + µ
> 0.

Hence, S1(t) is always uniformly persistent.
Similarly, we apply the fluctuation lemma to the V, W and S2 equations in (1) and
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use the fact that 0 ≤ I(t) ≤ 1. There exists a sequence tn → ∞ such that V(tn) → V∞ and
V̇(tn) → 0 as n → ∞. Hence,

V∞ =
pµ

bσ + µ
> 0.

Moreover, there can exist a different sequence tn → ∞ such that W(tn) → W∞ and
Ẇ(tn) → 0 as n → ∞. Hence,

W∞ ≥
bσV∞

gβ + α + µ
≥

pbσµ

(gβ + α + µ)(bσ + µ)
> 0.

Finally, there can also exist another sequence tn → ∞ such that S2(tn) → S2∞
and Ṡ2(tn) →

0 as n → ∞. Hence,

S2∞
≥

αW∞

rβ + µ
≥

αpbσµ

(rβ + µ)(gβ + α + µ)(bσ + µ)
> 0.

Thus, the non-infected compartments V(t), W(t) and S2(t) are also uniformly persistent.
Therefore, we state the following proposition.

Proposition 6. The time-dependent solutions of the non-infected sub-population compartments
S1(t), V(t), W(t) and S2(t) are always uniformly persistent.

Figure 4 shows the time-dependent solution for the non-infected components S1(t),
V(t), W(t) and S2(t) with various positive initial conditions and with values of parameters
as in Table 3 except β that has been chosen to restrict the reproduction number <v = 0.8 < 1.
The simulations show that S1∞ = 8.2347 × 10−5, V∞ = 1.0 × 10−1, W∞ = 1.2 × 10−3 and
S2∞ = 8.1715 × 10−6

> 0. Similar results have been obtained by solving with the same
parameter values except for β which is chosen such that <v = 13 > 1, see Figure 5.
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Figure 4. Time-dependent solutions, with various initial conditions, for the proportion of non-infected

sub-populations. Each colored curve represents a solution. The subfigures (A–D) show solutions of

the proportion of primary susceptible S1(t), vaccinated V(t), waned W(t), and secondary susceptible

S2(t) individuals, respectively. Simulations have been done with parameter values as shown in

Table 3, except β that has been chosen to keep the reproduction number <v = 0.8 < 1. The dotted

horizontal line in each subfigure represents the infimum.
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Figure 5. Time-dependent solutions, with various initial conditions, for the proportion

of non-infected sub-populations. Each colored curve represents a solution. The subfig-

ures (A–D) show solutions of the proportion of primary susceptible S1(t), vaccinated V(t),

waned W(t), and secondary susceptible S2(t) individuals, respectively. Simulations have

been done with parameter values as shown in Table 3, where the reproduction number

<v = 13 > 1. The dotted horizontal line in each subfigure represents the infimum.

Now, we examine the uniform persistence of the disease when <v > 1 using the
theory of uniform persistence [36]. To this end, we let Φ : R+ × Ω −→ Ω be a continuous
semiflow corresponding system (1) defined on the feasible state space Ω. We define the
persistence function

ρ : Ω −→ R+.

Now, we choose ρ(x) = I(t) and define the sets

Ω+ = {x ∈ Ω : ρ(x) > 0},

Ω0 = Ω \ Ω+ = {x ∈ Ω : ρ(x) = 0}

where Ω0 is the invariant extinction space of I(t) corresponding to ρ (i.e., Ω0 is the collection
of states in the absence of the disease). From proposition 1, the set Ω is positively invariant
which implies that Ω+ and Ω0 are positively invariant and Ω0 is relatively closed under
the semiflow Φ. Now, we let ω(x) denote the ω-limit set of a point in Ω, where

ω(x) = {y ∈ Ω : ∃ tn such that tn → ∞ and Φ(tn, x) → y as n → ∞},

and use the results shown in [36] (Chapter 8) to examine the set ∪x∈Ω0
ω(x). Clearly, all

solutions starting in the extinction space Ω0 converge to the infection-free equilibrium.
Therefore, ∪x∈Ω0

ω(x) = {E0}.
In the following, we prove the weak ρ-persistence using Theorem 8.17 in [36]. Using

the terminology shown in [36], we let M1 = {E0}. Therefore, ∪x∈Ω0
ω(x) ⊂ M1 where M1

is isolated (due to unstability of E0 when <v > 1, Proposition 2), compact, invariant and
acyclic. We still have to prove that M1 is weakly ρ-repelling. Then, by results from Chapter
8 of [36], we obtain the weak persistence.

Assume, by contradiction, that M1 is not weakly ρ-repelling, i.e., there exists a solution
of model (1) which converges to E0 and ρ(x) = I(t) > 0. Therefore, for any ε > 0, and for
sufficiently large t, we obtain

0 < I(t) < ε, S10
− ε < S1(t) < S10

+ ε, S20
− ε < S2(t) < S20

+ ε.
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Thus, for sufficiently large t, we can estimate
dI

dt
as follows:

dI

dt
= β(S1 + rS2)I(t)− (γ + µ)I(t),

>

(

β(S10
+ rS20

)− (γ + µ)− β(1 + r)ε
)

I(t),

=

(

<v − 1 −
β

γ + µ
(1 + r)ε

)

(γ + µ)I(t) > 0

which is positive if ε is sufficiently small as follows from <v > 1. This contradicts I(t) → 0.
Hence, M1 is weakly ρ-repelling and from Theorem 8.17 in [36], our flow Φ is uniformly
weakly ρ-persistent.

Proposition 1 implies that the solutions of model (1) are ultimately bounded. Then,
Φ : R+ × Ω −→ Ω is point-dissipative and compact on Ω [37]. In view of Theorem 3.4.8
given by [38], Φ(t) has a compact global attractor in Ω.

To prove the uniform (strong) persistence, we apply Theorem 4.5 shown in [36].
Clearly, model (1) generates a continuous flow on Ω and the subspaces Ω, Ω+ and Ω0 are
invariant. Moreover, the existence of a compact attractor in Ω is proved. Therefore, all
conditions of Theorem 4.5 in [36] are satisfied from which we conclude that Φ is uniformly
ρ-persistent (i.e., the disease I(t) is uniformly persistent). Hence, we summarize the above
results in the following proposition.

Proposition 7. If <v > 1, then the semiflow Φ is uniformly ρ-persistent, i.e., the disease is
uniformly persistent in the population. More precisely, there exists an ε > 0 such that for any
positive solution of model (1), lim inf

t→∞
I(t) ≥ ε.

Time-series analysis for the proportion of infected individuals, with parameter values
as in Table 3, is shown in Figure 6. Figure 6A shows the solution with the Y-axis being in a
linear scale, while Figure 6B shows the same trajectories in the logarithmic scale to better
present the behavior of the solutions. It is clear that when t → ∞, the value of I(t) is bigger
than some ε > 0.

Figure 6. Time-dependent solutions, with various initial conditions, for the proportion of infected indi-

viduals I(t), with parameter values as shown in Table 3, where the reproduction number <v = 13 > 1.

Each colored curve represents a solution. Part (A) shows the results, with Y-axis being in a linear

scale, while part (B) shows it in a logarithmic scale.



Symmetry 2022, 14, 2288 14 of 23

5. Controllability of the Infection

The above analysis showed that model (1) exhibits only forward bifurcation and that
no endemic equilibrium exists for values of <v < 1. Therefore, the controllability of the
infection is guaranteed by applying control measures aiming to reduce the value of <v to
slightly below one. This is equivalent to having β < βv, where

βv =
(γ + µ)(bσ + µ)(µ + α)

(1 − p)(bσ + µ)(µ + α) + αrpbσ

= (γ + µ)

/

(

1 − p + r × p ×
α

α + µ
×

bσ

bσ + µ

)

= (γ + µ)

/

(

1 − p + r × p ×

(

1 −
µ

α + µ

)

×

(

1 −
µ

bσ + µ

))

=
γ + µ

1 − p + r × p × (1 − PW)× (1 − PV)
(20)

is the critical contact rate separating the regions of disappearance and persistence of
pertussis infection and the proportion

PW =
µ

α + µ
=

1

α + µ

/

1

µ

is the proportion of life spent in the waning immunity state, while the proportion

PV =
µ

bσ + µ
=

1

bσ + µ

/

1

µ

is the proportion of life spent in the vaccinated state.
Routine vaccination is considered one of the most important strategies applied to

protect populations from the negative impact of infectious diseases and is represented here
by the dimensionless parameter p ∈ [0, 1]. A value of p = 0 means that none of the new
births receive the vaccine, while p = 1 represents that all newborns get the shots. However,
the βv represents here the critical contact rate (in the presence of vaccination) that separates
between non-existence and existence of infection and is a function of p and some other
model parameters. Of great interest is the dependence of βv on p. If βv → ∞ as p → 1, then
the infection is always controllable with strategies based on routine vaccination only [8,12].
However, if βv approaches a finite asymptote (say, β�) as p → 1, then the infection is
controllable only if control strategies (other than vaccination) are applied to reduce β to
slightly below β�, in addition to vaccinating a proportion p > p?, where

p? =

(

1 −
γ + µ

β

)

/

(

1 − r ×
α

α + µ
×

bσ

bσ + µ

)

(21)

=

(

1 −
γ + µ

β

)

/

(1 − r(1 − PW)(1 − PV)) (22)

is the critical vaccination coverage required to eliminate pertussis infection. In fact, the value
of β� is

β� =
1

r
×

α + µ

α
×

bσ + µ

bσ
× (γ + µ) =

1

r
×

1

1 − PW
×

1

1 − Pr
× (γ + µ) (23)

and represents the reinfection contact rate [8,12]. It is noteworthy that the critical vaccina-
tion coverage p? decreases with the increase in either or both of PV and PW and increases
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with the increase in the rescaling parameter r. This means that ignoring the difference
between susceptibilities of primary and secondary susceptible individuals overestimates
the value of p?. However, the reinfection contact rate β� increases with the increase in
either of the proportions PW and PV and with the decline in r. The critical contact rate βv is
depicted as a function of the vaccination coverage p for different values of the proportions
PV , PW and the scaling parameter r in Figure 7A–C, respectively. The figure shows that the
region of infection’s controllability enlarges with the increase in the proportions PV and
PW and the decrease in the relative susceptibility parameter r. In summary, we state the
following proposition.
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Figure 7. The critical contact rate βv as a function of the vaccination coverage level p for various

values of PV , PW and r, while keeping other model parameters’ value as shown in Table 3. The curve

divides the (p, β) plane into the two regions of disappearance (below the curve) and persistence

(above the curve) of infection. The subfigures (A,B) show that the disappearance region extends

with the increase in the proportions PV and PW , respectively, while the subfigure (C) shows that it

increases with the decrease in the relative susceptibility r of secondary (with respect to primary)

susceptible individuals.

Proposition 8. If the successful contact rate β is less than the reinfection contact rate β�, then the
infection is eliminated by vaccinating a proportion p > p? of the newborns, while if β > β�, then
the infection cannot be eliminated with a strategy based on vaccination solely, but other control
strategies aiming at reducing β to slightly below β� should be applied, in addition to vaccinating a
proportion p > p?. Moreover, the possibility to control the infection enlarges with the increase in
the proportion of life spent in the immunization and waning states and the decrease in the relative
susceptibility of secondary (with respect to primary) susceptible individuals.

6. Impact of Waning and Natural Immune Boosting on Disease Outcomes

As explained in Section 2, the immunity acquired either due to vaccination or due
to experiencing the infection declines and the individual’s status becomes waned. In
model (1), the two parameters σ and α determine the duration of acquired immunity and
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progression to become secondary susceptible, respectively. However, the natural immunity
boosting is represented by the rescaling parameter g ∈ [0, 1] (times the force of infection λ),
where a value of g = 0 means that the natural boosting immunity is completely ignored.
The parameter g does not appear explicitly in the formula of the reproduction number <v.
However, it appears in the coefficients of the characteristic epidemiological Equation (15)
and, therefore, affects the endemic prevalence of the infection.

In the absence of natural booster immunity (i.e., g = 0), the Equation (15) reduces from
cubic to quadratic equation with simpler coefficients than in (16). In this case, the proportion
of the infected population in the endemic situation reads

Ī =
B1 +

√

B2
1 + 4A1C1

2βA1
(24)

where

A1 = r
(

(σ + µ)(α + µ) + γ(α + σ + µ)
)

,

B1 = rαγσ + (σ + µ)(µ + α)
(

rβ(1 − p)− (1 + r)(γ + µ)
)

+
rpbσα(σ + µ)β

(bσ + µ)
,

C1 = µ(σ + µ)(µ + α)(γ + µ)(<v − 1).

The endemic prevalence of the infection Ī is depicted as a function of the control
reproduction number <v for different values of the natural booster immunity parameter g
and is presented in Figure 8. The figure shows that the proportion Ī increases monotonically
with the increase in <v, in the absence of natural booster immunity (i.e., if g = 0). However,
in the presence of natural booster immunity (i.e., if g > 0), the endemic prevalence Ī
increases monotonically in <v till reaching a maximum at some value of <v and then starts
to decrease with the increase in <v. This result could be read in a reverse way as follows.
In the presence of natural booster immunity, reducing the control reproduction number <v

increases the endemic prevalence of infection Ī till reaching a maximum level, and a further
reduction in the value of <v to one (or slightly below one) forces a reduction in the endemic
prevalence of infection Ī to zero. The figure also shows that the endemic prevalence of
the infection Ī decreases with the increase in the natural booster immunity parameter g.
Therefore, ignoring the natural booster immunity overestimates the endemic prevalence of
infection and, in consequence, overestimates the effort needed to eliminate the infection.

The waning of immunity and progression of secondary susceptible parameters σ and
α appear in both disease outcomes (i.e., <v and I∗). It is worth noting that <v increases
with the increase in σ and/or α. Moreover, numerical simulations show that Ī increases
with the increase in either σ, α or both, see Figures 9 and 10. In other words, any decline in
the period of immunity acquired by either vaccination or naturally experiencing pertussis
infection increases the reproduction number and the endemic prevalence of infection,
and therefore, increases the effort needed to eliminate pertussis infection. Moreover,
the endemic prevalence of pertussis infection rises with the increase in the progression rate
of secondary susceptible individuals.

It is clear from (21) and (23) that increasing either or both of σ and α decreases the rein-
fection contact rate β� and increases the critical vaccination coverage required to eliminate
the infection p?, which in turn increases the effort needed to eliminate the infection.
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Figure 8. The endemic prevalence of infection as a function of the control reproduction number with

various values of the natural boosting immunity parameter g, where all other parameters have been

kept fixed and with values as shown in Table 3.
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Figure 9. The endemic prevalence of infection I∗ as a function of the control reproduction number <v

for several values of the rate σ while the remaining parameters’ values have been kept as in Table 3.
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Figure 10. The endemic prevalence of infection I∗ as a function of the control reproduction number

<v for various values of the rate α, while the other parameters’ value added are kept as shown in

Table 3.

7. Summary, Conclusions and Future Work

Mathematical models have gained the attention of the scientific community as they
help to understand the dynamic behavior of the phenomenon in concern [1,2]. The last
few decades showed much interest in modeling infectious diseases and, in particular,
the attempt to predict the most effective factors in containing an infectious disease [4,5,39].
Routine vaccination is one of the main strategies used to protect a population from infec-
tious diseases. However, the immunity acquired either due to receiving the vaccine shots
or due to naturally experiencing the infection wanes with time [14,15,40]. It is evident
that re-exposure to Bordetella pertussis (after waning immunity) may trigger an immune
response to protect against the infection while also boosting one’s immunity [20,41,42].
The effect of the interplay between waning and boosting of the infection on the overall
dynamics is less understood. Therefore, a mathematical model of type SIRS (susceptible-
infected-recovered-susceptible), with imperfect vaccination V and waning of immunity W,
for pertussis infection that is spread in a homogeneously and symmetrically fully mixed
population has been introduced and analyzed. The model differentiates between the sus-
ceptibility of individuals who acquire the infection for the first time and that of individuals
who experienced it at least once before. Moreover, it considers the booster of immunity
due to natural re-exposure to the infection after the waning of the acquired immunity.

The model has been mathematically analyzed, where the equilibrium and stability
analyses have been studied. The model has a pertussis-free equilibrium E0 that is shown to
be locally and globally asymptotically stable if and only if the control reproduction number
<v is less than one. Moreover, the model has an endemic equilibrium that is proved to be
unique and to exist if and only if <v > 1. Moreover, the uniform persistence of all solutions
has been proven.

The possibility to eliminate pertussis infection with a strategy based on vaccinating
a proportion p of the newborns has been studied. The analysis shows that a reinfection
contact rate level β� (above which pertussis cannot be eliminated with active vaccination)
does exist and control strategies other than vaccination should be applied to reduce the
successful contact rate β to slightly below β� so that vaccinating a proportion p > p∗ of
the newborns ensures effective control of pertussis infection. The analysis shows further
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that any decrease in the relative susceptibility r of secondary (with respect to primary) sus-
ceptible individuals and/or increase in either or both of the proportion of life spent in the
vaccination state PV and in the waned-immunity state PW enlarges the region of infection’s
controllability, which in turn increases the possibility to eliminate the infection and reduces
the effort required to eliminate it (through reducing the critical vaccination coverage level
p?). The results show that the reinfection contact rate β� increases with the decrease in r.
Thus, ignoring the differential susceptibility between primary and secondary susceptible
individuals underestimates the reinfection contact rate threshold and overestimates the
minimum vaccination coverage required to eliminate the infection.

The effect of waning immunity and natural immune boosting on disease outcomes
has been studied. The analysis shows that:

• The higher the natural boosting immunity is, the lower the endemic prevalence of
infection is. In other words, ignoring the natural boosting of immunity overestimates
the endemic prevalence of infection;

• The faster the progression of secondary susceptible individuals is, the higher the
endemic prevalence of infection is;

• The shorter the period of immunity acquired by either vaccination or experiencing
natural infection, the higher the reproduction number and the endemic prevalence of
infection, and therefore, the higher the effort needed to eliminate the infection is.

The dynamical behavior and the current results could be affected by taking further
extensions, that are considered in forthcoming work, to include the differential infectivity
and transmissibility of infected individuals who caught the infection for the first time and
those who experienced it at least once before and are capable of transmitting it, taking into
account real data.
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Appendix A. Positivity and Boundedness—Proof of Proposition 1

Proof. The right-hand-side of the system (1) is completely continuous and differentiable.
Therefore, it is locally Lipschitz. Hence, there exists a unique solution for model (1).
However, the first equation of the system (1) implies that

dS1(t)

dt
≥ −(βI(t) + µ)S1(t).
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Separating variables and integrating gives

S1(t) ≥ S1(0) exp (−

t
∫

0

(βI(ξ) + µ)dξ) ≥ 0, ∀ S1(0) ≥ 0.

Similarly, we may obtain

V(t) ≥ V(0) e−(bσ+µ)t ≥ 0, ∀ V(0) ≥ 0,

I(t) ≥ I(0) e−(γ+µ)t ≥ 0, ∀ I(0) ≥ 0,

R(t) ≥ R(0) e−(σ+µ)t ≥ 0, ∀ R(0) ≥ 0,

W(t) ≥ W(0) exp (−

t
∫

0

(gβI(ξ) + µ + α)dξ) ≥ 0, ∀ W(0) ≥ 0,

S2(t) ≥ S2(0) exp (−

t
∫

0

(rβI(ξ) + µ)dξ) ≥ 0, ∀ S2(0) ≥ 0.

Therefore, the solution set {S1(t), V(t), I(t), R(t), W(t), S2(t)} of the system (1) remains
non-negative for all t > 0 under non-negative initial conditions (2). Since S1(t) + V(t) +
I(t) + W(t) + R(t) + S2(t) = 1, then all solutions are bounded from above and, hence, are
ultimately bounded. Therefore, Ω is positively invariant.

Appendix B. Direction of Bifurcation by Using Implicit Function Theorem

In order to compute the direction of bifurcation at (β0, 0) by the implicit function
theorem, we have

dI∗

dβ
|(β0,0)= −

Fβ

FI∗
|(β0,0)

where

Fβ |(β0,0)=
∂F

∂β
|(β0,0)= µ2(σ + µ)(µ + α)[(1 − p) +

αrpbσ

(bσ + µ)(µ + α)
] > 0

and

FI∗ |(β0,0) =
∂F

∂I∗
|(β0,0)= βQ3 |β=β0

.

Hence,

FI∗ |(β0,0)

β0
= gµ3(γ + µ)

(

β0(1 − p)

γ + µ
− 1

)

− rµ[(σ + µ)(α + µ) + γ(α + σ + µ)]

+µ(σ + µ)(µ + α)(γ + µ)

(

β0

(γ + µ)

(

r(1 − p) +
αrpbσ

(bσ + µ)(µ + α)

)

− 1

)

= gµ3(γ + µ)

(

(1 − p)(bσ + µ)(µ + α)

Θ
− 1

)

− rµ[(σ + µ)(α + µ)

+γ(α + σ + µ)]

+µ(σ + µ)(µ + α)(γ + µ)

(

(bσ + µ)(µ + α)

Θ

(

r(1 − p) +
αrpbσ

(bσ + µ)(µ + α)

)

− 1

)

,
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ΘFI∗ |(β0,0)

β0
= gµ3(γ + µ)

(

(1 − p)(bσ + µ)(µ + α)− Θ

)

− Θrµ[(σ + µ)(α + µ)

+γ(α + σ + µ)]

+µ(σ + µ)(µ + α)(γ + µ)

(

(bσ + µ)(µ + α)

(

r(1 − p) +
αrpbσ

(bσ + µ)(µ + α)

)

− Θ

)

= gµ3(γ + µ)(−αrpbσ)− Θrµ[(σ + µ)(α + µ) + γ(α + σ + µ)]

+µ(σ + µ)(µ + α)2(γ + µ)(1 − p)(bσ + µ)(r − 1) < 0

where
Θ = (1 − p)(bσ + µ)(µ + α) + αrpbσ.

Since r ∈ [0, 1], then
dI∗

dβ
|(β0,0)> 0.

Therefore, the bifurcation at the point (β0, 0) is forward.

Appendix C. Proof of Proposition 5

Proof. Consider X1 = (S1, V, R, W, S2), X2 = I and X0
1 = (S10

, V0, R0, W0, S20
) where

dX1

dt
= F(X1, 0) =













(1 − p)µ − µS1

pµ − (bσ + µ)V
−(σ + µ)R

bσV + σR − (µ + α)W
αW − µS2













. (A1)

The above system has the analytic solution

S1(t) = 1 − p + (S1(0)− (1 − p))e−µt, V(t) =
pµ

bσ + µ
+

(

V(0)−
pµ

bσ + µ

)

e−(bσ+µ)t,

R(t) = R(0)e−(σ+µ)t, W(t) =
pµbσ

(bσ + µ)(α + µ)
+

(

W(0)−
pµbσ

(bσ + µ)(α + µ)

)

e−(α+µ)t,

S2(t) =
αpbσ

(bσ + µ)(α + µ)
+

(

S2(0)−
αpbσ

(bσ + µ)(α + µ)

)

e−µt.

Clearly, X1 → X0
1 as t → ∞. Thus, X0

1 is globally asymptotically stable for the system (A1)
and the first condition (C1) is satisfied. For the second condition (C2), we have

AX2 − Ĝ(X1, X1) = (βS10
+ rβS20

− (γ + µ))I − (β(S10
− S1)I + rβ(S20

− S2)I).

It is clear that Ĝ(X1, X2) = βI(S10
− S1 + r(S20

− S2)) ≥ 0 for all (X1, X2) ∈ Ω. When

<v < 1, we obtain A < 0, where A = β
γ+µ (S10

+ rS20
)− 1, then the IFE E0 of model (1) is

GAS (globally asymptotically stable) in region Ω for <v < 1.
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