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Abstract: This work aims mainly to study the controllability of pertussis infection in the presence of
waning and natural booster of pertussis immunity and to study their impact on the overall dynamics
and disease outcomes. Therefore, an SIVRWS (Susceptible-Infected-Vaccinated-Recovered-Waned-
Susceptible) model for pertussis infection spread in a demographically stationary, homogeneous, and
fully symmetric mixing population is introduced. The model has been mathematically analyzed,
where both equilibrium and stability analyses have been established, and uniform persistence of
the model has been shown. The conditions on model parameters that ensure effective control
of the infection have been derived. The effects of the interplay between waning and boosting
pertussis immunity by re-exposure to Bordetella pertussis and vaccination on the dynamics have
been investigated. The analytical results have been numerically confirmed and explained. The
analysis reveals that ignoring the natural booster of immunity overestimates the endemic prevalence
of the infection. Moreover, ignoring the differential susceptibility between secondary and primary
susceptible individuals overestimates the critical vaccination coverage required to eliminate the
infection. Moreover, the shorter the period of immunity acquired by either vaccination or experiencing
natural infection, the higher the reproduction number and the endemic prevalence of infection, and
therefore, the higher the effort needed to eliminate the infection.

Keywords: mathematical model; waning immunity; natural boosting; pertussis infection; equilibriums;
stability; controllability

1. Introduction

Mathematical modeling has gained much attention in the scientific community as it
helps describe real problems and enables a better understanding of the system in consid-
eration. It has been used to model problems in various fields including, but not limited
to, physics, biology, chemistry, and economy [1-3]. More specifically, mathematical mod-
els have been used to model infectious diseases and help public health decision-makers
obtain more insights into the dynamical spread and controllability of various infectious
diseases [4-11]. Among these diseases is pertussis, which is highly contagious, fatal, re-
emergent, and circulates worldwide. Its bacteria can easily spread directly from person to
person through droplets produced during coughing, sneezing, or even talking. Generally,
an infected individual can spread the disease when being in close contact with others
within up to approximately one meter. Pertussis is highly incidental during winter and
spring seasons among children below 5 years of age because children in this age group are
not yet fully vaccinated.
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Pertussis is endemic in the United States and most common among young children in
developing countries, while it is highly incident among unvaccinated babies and increases
again among teens in the developed world. Moreover, it is controllable with strategies
based on vaccination [12]. However, it is evident that pertussis vaccines do not confer
permanent immunity, yet the immunity acquired due to either vaccination or naturally
experiencing pertussis infection declines/wanes with time [13-15].

The literature shows differences in the period of immunity acquired by vaccination
and natural infection. More specifically, for a number of infectious diseases (e.g., measles,
influenza A, COVID-19, and pertussis), the duration of immunity acquired by vaccination
is shorter than that acquired by infection, as it is shown that naturally infected patients have
higher antibody titer than vaccine recipients [16,17]. For the case of pertussis, definitely,
these differences are evident, where in a study on the Senegal population for example,
Broutin et al. [18] showed that the gap between two pertussis episodes is 7.1 years in
unvaccinated children and 5.1 years in previously vaccinated children. However, Wendel-
boe et al. [15] showed that vaccine-acquired immunity lasts 4-12 years in children, while
infection-acquired immunity wanes after 7-20 years.

The waned immunity is believed to be subsequently boosted by asymptomatic en-
counters with the infection [19,20]. The interplay between waning and boosting pertussis
immunity by exposure to Bordetella pertussis and vaccination affects its transmission dy-
namics and needs a mathematical model for a true understanding. Various models that take
these considerations into account have been developed and analyzed. For example, Carls-
son et al. [21] introduced and studied a partial differential equation SIS model of waning
and boosting (by repeated vaccination) with discrete immunity classes, but continuous age
and time. However, Ehrhardt et al. [22] derived an SIR model to describe vaccination and
the waning of immunity. The authors derived some qualitative results and introduced a
finite difference scheme to solve the system. Moreover, Elbasha et al. [23] extended the basic
SIRS model by including a compartment for imperfect vaccination to study the waning of
immunity acquired either naturally or by immunization. In their model, the authors did not
differentiate between primary susceptible, secondary susceptible, and waned-immunity
individuals, but allowed for vaccinated individuals to either progress directly to the suscep-
tible state or acquire the infection due to successful contact with infected ones. However,
very recently, Opoku-Sarkodie et al. [24] extended the basic SIRS model to incorporate
the waning and boosting of immunity due to repeated exposure to the infection in the
absence of any vaccination scheme. The authors have mathematically analyzed how the
different partitioning of the immune period into recovered and waned and varying boost-
ing rates affect the dynamics of the model. In this paper, the last two-mentioned works
have been extended by including routine vaccination (whose immunity wanes and has a
shorter immunity period than that acquired by natural infection), including an independent
compartment of waned individuals, and considering differences in susceptibility between
primary and secondary susceptible individuals. Therefore, an SIVRWS (where W stands
for waning) model is introduced and thoroughly analyzed. We are especially interested
in investigating the effects of the interplay between waning and boosting immunity (by
repeated exposure to the infection) on the overall dynamics. Other works include those by
Barbarossa et al. [25] and Lavine et al. [20].

Our work is organized as follows. The model is formulated and proved to be well-
posed in Section 2. Its equilibrium and stability analyses are shown in Section 3. Uniform
persistence is shown in Section 4, while the controllability of pertussis infection is studied
in Section 5. Section 6 shows the impact of waning and natural boosting of immunity on
disease outcomes. Finally, the work is closed with a summary, conclusion, and future work
in Section 7.

2. Model Formulation

The population of interest is assumed to be closed and demographically stationary.
According to their epidemiological states, the individuals are categorized into six mutually
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independent groups. These are primary susceptible individuals (i.e., individuals who
have never experienced the infection and whose proportion in the total population at
time t is denoted by S1(t)), vaccinated individuals (i.e., newborns who got vaccinated
immediately after birth and whose proportion in the population at time t is denoted by
V(t)), infected individuals (i.e., individuals who are infected and capable of transmitting
the infection and whose proportion at time ¢ is denoted by I(t)), recovered or boosted highly
immune individuals (i.e., individuals who recently recovered from the infection or whose
immunity have been naturally boosted due to re-exposure to the infection, and whose
time-dependent proportion in the total population is denoted by R(t)), waned immunity
individuals (i.e., individuals whose immunity acquired by vaccination or due to recovery
after experiencing the infection, declined but are still protected from acquiring the infection
and of proportion in the total population at time ¢ is denoted by W(t)), and secondary
susceptible individuals (i.e., individuals who partially lost their acquired immunity and
whose proportion at time f is denoted by S (t)). The individuals in these compartments are
asymmetric in their epidemiological status, but symmetric in their mixing behavior in the
sense that they mix homogeneously. A brief description of the model variables is shown in
Table 1.

It is worth mentioning that the compartment of vaccinated individuals is recruited by
newborns who got primarily immunized following the schedule of doses recommended by
the World Health Organization (WHO) and the Center for Disease Control and Prevention
(CDCQ). Le,, it is the routine pertussis vaccination recommended for infants. However,
waned immunity individuals are those who lost some of their protective antibodies but still
have at least a minimum level of antibodies that protects them against the causative antigen
or the disease. The progressive loss of the protective antibodies moves an individual from
the compartment of waned to that of secondary susceptible who are assumed to be partially
protected against the disease.

Table 1. Physical meaning for model states.

Symbol Description

51(¢) Time-dependent proportion of individuals who have never experienced the infection.

V(t) Time-dependent proportion of individuals who got vaccinated immediately after birth.

1(t) Time-dependent proportion of individuals who are infected and capable of
transmitting the infection.

Time-dependent proportion of individuals who recently recovered from the infection or

whose immunity has been naturally boosted due to re-exposure to the infection.

Time-dependent proportion of individuals, whose immunity acquired by vaccination

Wi(t) or due to recovery after infection, declined but are still protected from acquiring
the infection.
Sa(t) Time-dependent proportion of individuals who partially lost their acquired immunity.

It is assumed that individuals are born primarily susceptible and die naturally at
the same rate y, where a proportion p of the newborns gets vaccinated at birth. Due to
successful contacts with infected individuals, primary susceptible ones acquire the infection
at an infection rate I, where B is the successful contact rate between S; and I individuals.
Infected individuals recover from the infection at rate 7, but their naturally-acquired
immunity declines, and they become waned at rate . The vaccine-acquired immunity for
vaccinated individuals is assumed to decline at a rate bo and they become waned, where b
is a rescaling parameter accounting for the relative loss in the vaccine-acquired with respect
to the naturally-acquired immunity. The immunity of waned individuals either rises due to
their contacts with infected individuals (at the rate gI) or it continues to decline (at rate
«), where they become secondary susceptible, who may acquire the infection at a force of
infection rBI, where r € [0, 1] is the relative susceptibility of secondary susceptible with
respect to primary susceptible individuals. A schematic diagram for the transition between
the model states is shown in Figure 1 and a detailed description of the model parameters’
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physical meaning is presented in Table 2. The parameter values have been chosen to
represent (to a high extent) the case of pertussis, see Table 3. Therefore, the population
dynamics is described by the following differential equation system

ds
7; = (I—=p)u—pS1I—puS,

A%

a5 = pu—(botp)v,

dl

5 = PSil+TBSI— (r+wl,

dR

il yI— (o +pu)R+ gBIW, (1)
c%/ = boV+0oR—gBIW — (u+a)W
% = aW —rBS2I — uS,,

1 = 5 4+V+I4+R+WH+S,
with initial conditions

where all parameters are assumed to be positive, while the model states are defined on
the set
Q= {(Sl’VIIIR/W/SZ) S Rg_ : Sl+V+I+W+R+52 — 1}

The mathematical analysis of the basic properties of model (1) shows that () is positively
invariant and model (1) has a unique time-dependent solution, see Appendix A for more
details. This result is briefly stated in the following proposition.

Proposition 1. Model (1) has a unique time-dependent solution and any solution starting with non-
negative initial conditions remains non-negative and ultimately bounded for all t > 0. Moreover,

the set Q) is positively invariant and attracts all solutions in RY,.

Table 2. Model parameters’ description.

Parameter Description Dimension

U Birth and natural death rate. Time 1
Successful contact rate between primary susceptible and .

B . . Time
infected individuals.

0% Rate of recovery from the infection. Time ™!

o Recovered individuals’ rate of waning immunity Time !

N The progression rate of waned individuals to become Time-1
secondary susceptible
Proportion of newborns who get vaccinated immediately . .

p . Dimensionless
after birth.
Relative loss in vaccine-acquired immunity with respect to . .

b Lo ; Dimensionless
naturally acquired immunity.

, Rglatlve suscept{blht'y of sgcondary susceptible with respect to Dimensionless
primary susceptible individuals.
A rescaling parameter that accounts for naturally boosting the . .

g Dimensionless

immunity due to re-exposure to the infection.
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Figure 1. Flowchart for the transition between model states.

Table 3. Values of model parameters with references.

Parameter Value Range Unit Reference

U 1/73 - per year [26]

Ry 13 [12-15] Dimensionless [27]

B - - per year Assumed

0% 25 [8.67-52] per year [12,28,29]

o 0.05 [0.04-0.25] per year [12,15,28,29]
% 0.16 - per year Assumed

p 0.83 [0.8-0.9] Dimensionless [30]

bo 0.1 [0.083-0.25] Dimensionless [12,15,28,29]
b 2 - Dimensionless [12]

r 0.8 [0, 1] Dimensionless [12]

g 0.3 - Dimensionless Assumed

3. Equilibrium and Stability Analyses
3.1. Infection-Free Equilibrium and the Control Reproduction Number

The equilibrium analysis of model (1) reveals that it has an infection-free equilibrium,
given by EO = (510, Vo, 10, Ro, W(], 520), where

PH
S = 1— , V = , I :O, R :0,
Lo P 0 (bo + ) 0 0
pubo apbo
Wo = — 0 G =t 3
0 (bo +u)(p+ ) 207 (o + p) (4 + ) ®)

Linearizing model (1) around the trivial equilibrium Ey implies that the corresponding
Jacobian matrix is

w0 —(1-p)B 0 o 0
0 —(bo+n) 0 0 0 0
0 0 (1-pB+rBSy—(y+n) O 00|y
0 0 v+ gBWo —(o+u) 0 0
0 bo —gBWo o —(p+a) 0
0 0 —1BSy, 0 « —u
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It is easy to check that this matrix has five negative eigenvalues given by —pu, —p, —(a +
#),— (o +u), —(bo + u), in addition to a sixth eigenvalue given by

arpbo
1—p+71Sy) — =B(1-p+—r ) - .
B1—p-+750) — (710 = B(1=p+ ob ) — (v )
The last eigenvalue is negative if and only if
B < arpbo )
1-— — 1. 5
AR R YA ©

Following the general approach shown by van den Driessche and Watmough [31],
it is easy to check that the non-negative matrix F of the new infection terms, and the
non-singular matrix V of the remaining transfer terms are given, respectively, by

F=(BS1, +7BSy), V=I(r+n).

Hence, the control reproduction number of model (1), denoted by R,, is given by
Ry = p(F V’l), where p is the spectral radius (dominant eigenvalue) of the matrix F V-1
Therefore,

p
§RU — m(Slo +7’520)
B < « bo >
= 1— _— . 6
(v+u) p+rpxuc+yxba+y ©)

Hence, the inequality (5) could be written as R, < 1. Therefore, all eigenvalues of the
matrix in (4) are negative if and only if *, < 1, and we show the following proposition.

Proposition 2. The infection-free equilibrium Eg = (S1,, Vo, Io, Ro, Wo, S2,) is locally asymptoti-
cally stable if and only if the control reproduction number R, < 1.

3.2. Endemic Equilibriums and the Bifurcation Direction

The equilibrium analysis shows further that model (1) has an endemic equilibrium,
denoted by E* = (S}, V*,I*,R*, W*, S3)’, where I* # 0. This equilibrium is obtained by
setting the derivatives in the left hand side of model (1) equal zero and solving the resulting
algebraic equation system, for I* # 0, to obtain the model state variables at equilibrium.
Definitely, we have

= (1=pu—pBSiI" — sy,

= pp—(bo+pu)V7,

= BSII" +rpSI — (v + )7,

yI* = (0 + p)R* + gpI"'W*, @)
= boV*+0R* — gBI"'W* — (u + a)W¥,

= aW* —rBS5I" — uS;.

o o o o o o
|

The first and second equations in (7) give

. (1=pu . pu
St=-~——CFC and Vi=_—E 8
VS e (bo+ 1) ®)

while the third equation in (7), for I* # 0, leads to

ST +1S; = 5
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From the fourth and fifth equations in (7), we have

_yI* + gBI'W* .« boV*+oR*

R* d = —\ 10
o+ u v SPI* +p+a 10

From (10), we extract both R* and W* as
R+ = bopugBl” + 1" (bo + ) (81" + i + &) 1)

(bo + ) [ugBl* + (o + p) (4 + a)]

*
W* — bo(o+ u)pu + o(bo+ u)yIl 12

(bo + u) [pgBI* + (o +p)(p +a)]’

From the sixth equation in (7) and using (12), we obtain

a(bo(o + p)pp + o(bo + p)yI*)
(1 +rBI*)[(bo + u) (ugBI* + (o +u)(p +a))]

Substituting from Equations (8) and (13) into Equation (9), we have

(13)

S; =

(1—pp ra(bo (o + p)pp +o(bo + p)yI") _YtH (14)
p Bl (A rBl)[(bo + p) (gl + (o +p)(p+ o))l p

Now, we rewrite (14) in the form of a cubic polynomial equation of BI* as

F(B,T*) = Q1(BI")® + Qa(BI*)* + Q3(BI*) + Qs =0 (15)
where
Q1 = -—rgu(r+n),

)
Q = rgu?P(l—p)+raye —r(y+p)(o+ p)(p+a) —rgp’(y + p)
—g12 (v +m),

= rgy%v—ky)(W —1> —ru((c+p)(a+u)+y(a+o+p))

—gp (v +u),

Qs = guB(1—p)+ruayo+ru(o+pu)(p+a)p(l—p)+ Barpubo(c + 1)

(bo + u)
—pu(o+p)(pta)(y+u) — g (v + 1) — rp(o+ 1) (u+ @) (v + p) (16)

= gﬁ(vﬂ)(W —1> —rul(e+p)(a+p) +y(a+o+p)]

+M(0+ﬂ)(ﬂ+“)(7+ﬂ)<(7ﬁ#) (r(l—p)+%) —1>,

_ wrpbo
Qs = po+mn +“)(ﬁ(1 -p) +'BW - (“H‘V))

= e+ p)p+a)(y+p)(Re—1).

Equation (15) is a scalar equation in I*. Each positive solution (i.e., I* > 0) gives rise to
an endemic equilibrium. Once I* is known, we obtain the other components (namely, S7,
R*, W* and 53 ) of the endemic equilibrium E*. The cubic Equation (15) could be seen as a
bifurcation equation in the plane (B, I*), where  is the bifurcation parameter. It has the
bifurcation point (B, 0), where

(o +p)(p+a)
Po = (1=p)(bo+pu)(u +a) +arpbo (17)
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In order to investigate the bifurcation direction at the point (B, 0), we use the implicit
function theorem [7]. Definitely, we have (for a complete derivation see Appendix B)

ar R
g 0=~ ooy
where
oF arpbo
F = — =u? 1- ] >0,
oF
Erlipon) = 37 lio0)= PQs lp=po-

= g3 (v +u)(—arpbo) — Oru[(o + p)(a + ) + y(a + o+ p)]
(o4 p) (e + ) (y + ) (1= p) (b + ) (r—1) <0

and © = (1 —p)(bo + u) (4 + ) + arpbo. Hence,

dr-
ap |(po0)> 0

Therefore, the bifurcation direction at the point (B, 0) is forward (i.e., supercritical). This
result is briefly stated in the following proposition.

Proposition 3. Model (1) shows forward (supercritical) bifurcation at the bifurcation point (B, 0).
The model does not exhibit backward bifurcation for R, < 1.

As equation (15) is cubic in I*, it may have multiple supercritical endemic states (for
Ry, > 1) and multiple subcritical endemic states (for R, < 1). To check the existence/non-
existence of subcritical multiple equilibria, we apply Descartes’ rule of signs [32], on the
polynomial in (15). Clearly, from (16), the coefficient Q1, is always negative regardless of
the values of the parameters. Moreover, if the control reproduction number R, < 1, then

P —p) an B (va_pyy o rpbe
v b e ww)(“ ””(baw)(mw))

Consequently, the coefficients Q,, Q3, and Q4 are always negative, meaning that there are
no sign changes. Hence, using the Descartes’ rule of signs, Equation (15) has no positive
real root when R, < 1 and the endemic equilibrium exists only if i, > 1. The following
proposition summarizes the above-obtained results.

Proposition 4. Model (1) has no endemic equilibrium for R, < 1, and any endemic equilibrium
does exist only if Ry > 1.

It is worth mentioning that R, = 1 is equivalent to saying that B = By. Therefore,
the bifurcation point (B, 0) in the plane (B, I*) is the same as the bifurcation point (1,0)
in the plane (R, I*). Figure 2 shows a bifurcation diagram for the endemic prevalence
of the infection I* as a function of the reproduction number R,, where all parameters
(except ) have been kept fixed and with values as in Table 3. The figure shows further
that I* increases initially with the increase in R till reaching a peak and then decreases
monotonically. In other words, higher values of the control reproduction number R, reduce
the proportion of the infected population in the endemic situation.
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Figure 2. A bifurcation diagram showing the endemic prevalence of infection as a function of the
control reproduction number, with parameter values as shown in Table 3.

4. Uniform Persistence

Before going into detail on the persistence of the infection, we present a result on the
global stability of the infection-free equilibrium. The global stability of the infection-free equi-
librium Ej is discussed by following the approach presented in Castillo-Chavez et al. [33].
Accordingly, model (1) could be rewritten as

ix,
e (L5
‘% — G(XuX), G(X,0)=0, (18)

where X; = (S1,V,R,W,S,) € R® denotes the components of uninfected individuals and
X, = I € R denotes the components of infected individuals. Let Uy = ( X(1)/ 0) denote the
IFE of the model (18), which is equivalent to the IFE of model (1). Thus, the global stability
of the infection-free equilibrium depends on the following two conditions.

(Cy) For d{% = F(X3,0), X! is globally asymptotically stable.
(C2) G(Xq,Xp) = AXs — G(Xy, X2), where G(X1, X3) = 0 for (X1, Xa) € Q,

where the Jacobian matrix A = Dy, G(X?,0) has all non-negative off-diagonal elements,
and Q) is the region where the model makes biological sense. Then, we present the following
proposition, whose proof is deferred to Appendix C.

Proposition 5. Infection-free equilibrium of model (1) is globally asymptotically stable in Q) if
Ry < 1and above conditions are satisfied.

Based on the use of the Rung-Kutta method of order four, extensive simulations for
model (1) have been performed and some of them are shown in Figure 3. The simulations
show that all time-dependent solutions starting in the region () (with parameter values
such that R, < 1, while keeping the other parameters as in Table 3) are attracted by the
infection-free equilibrium E.
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0.30

0.25

Zo0.15

0.05

0.00 : :

0.6 0.7 0.8 0.9 1 11 12
Figure 3. Time-dependent solutions, with various initial conditions, for the proportion of infected
individuals I(#). Each colored curve represents a solution. Simulations have been done with pa-
rameter values as shown in Table 3, except B that has been chosen to keep the reproduction number
§R'y = 08 < 1.

Now, we study the uniform persistence of the model (1). This model is said to be
uniformly persistent [34,35] if there exists some € > 0 such that its time-dependent solution,
with positive initial conditions, satisfies

liminfS;(t) > €, liminfV(t) >¢, liminfI(t) > ¢,
t—00 t—o0 t—ro0

liminfR(t) > €, LminfW(t) >e€, LminfS,(t)) >e. (19)
t—co t—o0 t—ro0

We first show that the compartments of non-negative sub-populations Sq (t), V(t), W(t) and
S»(t) are always uniformly persistent, regardless of the value of the control reproduction
number R,. Then, we prove the uniform persistence of the disease’s compartment I(t)
(when R, > 1), by using persistence results from Smith and Thieme [36].

Our proof is based on the use of the fluctuation lemma (see Appendix A of [36]).
To this end, we let f : [0,00) — R be a real-valued function, and the limit superior and the
limit inferior of f as t — oo be defined as

foo = li}l_l}iglff(t), £ = limsup f(t).

t—o0

To prove the persistence of the primary susceptible sub-population Si(t), we let
51, = litm inf S1(t). On applying the fluctuation lemma, there exists a sequence t, — oo
—00

such that S(t,) — Sy, and S1(t;,) — 0 as n — oo, where the over-dot indicates the
derivative with respect to time ¢. If we apply this to the S;-equation in model (1), we obtain

Sl (tn) + ,Bl(tn)sl(tn) + P‘Sl(tn) = (1 - p)]’l-

From Proposition 1, we have lim; (51 (t) + V() + I(t) + R(t) + W(t) + S2(t)) = 1.
Hence, 0 < I(t) < 1. Using this and letting n — oo, we obtain

S > —
lo = ﬁ )

Hence, 51 (t) is always uniformly persistent.
Similarly, we apply the fluctuation lemma to the V, W and S, equations in (1) and

> 0.
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use the fact that 0 < I(#) < 1. There exists a sequence t, — oo such that V(t,) — Ve and
V(t,) — 0asn — oo. Hence,

=PE ¢
bo+u =

[ee)

Moreover, there can exist a different sequence t, — oo such that W(t;) — We and
W(t,) — 0asn — co. Hence,

W > boVe S pbou

T gBtat+p — (gft+a+u)(bo+p) =0

Finally, there can also exist another sequence t, — oo such that Sy(t,) — S, and Sy (t,) —
0 as n — co. Hence,

&Woo . apboy

% 2 g T B rat ot

Thus, the non-infected compartments V(t), W(t) and S,(t) are also uniformly persistent.
Therefore, we state the following proposition.

Proposition 6. The time-dependent solutions of the non-infected sub-population compartments
S1(t), V(t), W(t) and S(t) are always uniformly persistent.

Figure 4 shows the time-dependent solution for the non-infected components S; (t),
V(t), W(t) and S (t) with various positive initial conditions and with values of parameters
as in Table 3 except B that has been chosen to restrict the reproduction number ¥, = 0.8 < 1.
The simulations show that Sje = 8.2347 x 1075, Voo = 1.0 x 1071, Weo = 1.2 x 1073 and
Szee = 8.1715 x 107% > 0. Similar results have been obtained by solving with the same
parameter values except for § which is chosen such that &, = 13 > 1, see Figure 5.

T (A) T

(B)

0.0 : : : : : : :
10% 10° 102 10" 10° 10" 10 10%® 10*

(D)

08F 08
_06f - 06]
s &
0.4 0.4
02F 02l
0.0 0.0
10% 10° 102 10" 10° 10" 10® 10° 10 10% 10° 102 10" 10° 10" 10 10%® 10*

t t

Figure 4. Time-dependent solutions, with various initial conditions, for the proportion of non-infected
sub-populations. Each colored curve represents a solution. The subfigures (A-D) show solutions of
the proportion of primary susceptible S; (t), vaccinated V' (t), waned W(t), and secondary susceptible
S,(t) individuals, respectively. Simulations have been done with parameter values as shown in
Table 3, except B that has been chosen to keep the reproduction number R, = 0.8 < 1. The dotted
horizontal line in each subfigure represents the infimum.
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t t

Figure 5. Time-dependent solutions, with various initial conditions, for the proportion
of non-infected sub-populations. Each colored curve represents a solution. The subfig-
ures (A-D) show solutions of the proportion of primary susceptible S(t), vaccinated V(t),
waned W(t), and secondary susceptible S,(t) individuals, respectively. Simulations have
been done with parameter values as shown in Table 3, where the reproduction number
Ry = 13 > 1. The dotted horizontal line in each subfigure represents the infimum.

Now, we examine the uniform persistence of the disease when R, > 1 using the
theory of uniform persistence [36]. To this end, we let ® : R, x () — ) be a continuous
semiflow corresponding system (1) defined on the feasible state space (2. We define the
persistence function

p: Q— R+.

Now, we choose p(x) = I(t) and define the sets

Qr = {xeQ:p(x) >0},
Oy = O\Q:={xeQ:p(x)=0}

where () is the invariant extinction space of I(t) corresponding to p (i.e., Qg is the collection
of states in the absence of the disease). From proposition 1, the set () is positively invariant
which implies that Q)4 and () are positively invariant and () is relatively closed under
the semiflow ®. Now, we let w(x) denote the w-limit set of a point in (2, where

w(x) ={y € O : I t, such that t, — oo and P(t,,x) — yasn — oo},

and use the results shown in [36] (Chapter 8) to examine the set Uy w(x). Clearly, all
solutions starting in the extinction space ()y converge to the infection-free equilibrium.
Therefore, Uycq,w(x) = {Eo}.

In the following, we prove the weak p-persistence using Theorem 8.17 in [36]. Using
the terminology shown in [36], we let M; = {Eg}. Therefore, Uycq,w(x) C M; where M;
is isolated (due to unstability of Ey when #, > 1, Proposition 2), compact, invariant and
acyclic. We still have to prove that M; is weakly p-repelling. Then, by results from Chapter
8 of [36], we obtain the weak persistence.

Assume, by contradiction, that M; is not weakly p-repelling, i.e., there exists a solution
of model (1) which converges to Eg and p(x) = I(t) > 0. Therefore, for any € > 0, and for
sufficiently large ¢, we obtain

0<I(t)<e, S;,—e<S51(t)<Sy,+€ Sy —e€<S(t) < Sy +e.
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dl
Thus, for sufficiently large t, we can estimate — as follows:

dt
dl
= = B +rS)I) = (v + (1),
> (B(S1y +1S2) = (v + 1) — B +1)e)I(t),
= (%0—1—75;(1“)6)(7%)1(0 >0

which is positive if € is sufficiently small as follows from R, > 1. This contradicts I(¢) — 0.
Hence, M; is weakly p-repelling and from Theorem 8.17 in [36], our flow & is uniformly
weakly p-persistent.

Proposition 1 implies that the solutions of model (1) are ultimately bounded. Then,
@ : Ry x O — Q) is point-dissipative and compact on ) [37]. In view of Theorem 3.4.8
given by [38], ®(t) has a compact global attractor in ).

To prove the uniform (strong) persistence, we apply Theorem 4.5 shown in [36].
Clearly, model (1) generates a continuous flow on () and the subspaces (), (2 and Q) are
invariant. Moreover, the existence of a compact attractor in (2 is proved. Therefore, all
conditions of Theorem 4.5 in [36] are satisfied from which we conclude that ® is uniformly
p-persistent (i.e., the disease I(t) is uniformly persistent). Hence, we summarize the above
results in the following proposition.

Proposition 7. If %, > 1, then the semiflow ® is uniformly p-persistent, i.e., the disease is
uniformly persistent in the population. More precisely, there exists an € > 0 such that for any
positive solution of model (1), litm infI(t) >e.

—00

Time-series analysis for the proportion of infected individuals, with parameter values
as in Table 3, is shown in Figure 6. Figure 6A shows the solution with the Y-axis being in a
linear scale, while Figure 6B shows the same trajectories in the logarithmic scale to better
present the behavior of the solutions. It is clear that when t — oo, the value of I(t) is bigger
than some € > 0.

w(A)www\w

102 103

10-10;

£ Lol | L | Lol Ll L L

1072 107! 10° 10’ 10? 10°
t

po2b
104 107

Figure 6. Time-dependent solutions, with various initial conditions, for the proportion of infected indi-
viduals I(t), with parameter values as shown in Table 3, where the reproduction number R, = 13 > 1.
Each colored curve represents a solution. Part (A) shows the results, with Y-axis being in a linear
scale, while part (B) shows it in a logarithmic scale.
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5. Controllability of the Infection

The above analysis showed that model (1) exhibits only forward bifurcation and that
no endemic equilibrium exists for values of #, < 1. Therefore, the controllability of the
infection is guaranteed by applying control measures aiming to reduce the value of i, to
slightly below one. This is equivalent to having 8 < ,, where

(v + ) (bo + ) (p + )
(1=p)(bo+ pu)(p+a) + arpbo

= (7+y)/(1p+r><p>< “ Xba)
a+pu  bo+pu

= e [ (e () < (1))

_ Y+
= T parxpx (A—Pw) x (1—Py) (20)

ﬁv:

is the critical contact rate separating the regions of disappearance and persistence of
pertussis infection and the proportion

n+u n+u U

is the proportion of life spent in the waning immunity state, while the proportion

u 1 / 1
Py = = -
bo+u bo+u/ p
is the proportion of life spent in the vaccinated state.

Routine vaccination is considered one of the most important strategies applied to
protect populations from the negative impact of infectious diseases and is represented here
by the dimensionless parameter p € [0,1]. A value of p = 0 means that none of the new
births receive the vaccine, while p = 1 represents that all newborns get the shots. However,
the 8, represents here the critical contact rate (in the presence of vaccination) that separates
between non-existence and existence of infection and is a function of p and some other
model parameters. Of great interest is the dependence of B, on p. If B, — ccas p — 1, then
the infection is always controllable with strategies based on routine vaccination only [8,12].
However, if B, approaches a finite asymptote (say, f°) as p — 1, then the infection is
controllable only if control strategies (other than vaccination) are applied to reduce j to
slightly below ¢, in addition to vaccinating a proportion p > p*, where

. oyt B o bo
s (1 B )/(1 rxa+ﬂxb0+#) @)

AT W
( ﬁ;)/u (1 Pw)(1— Py)) 22)

is the critical vaccination coverage required to eliminate pertussis infection. In fact, the value
of p°is

bo+pu _1 1 1
X bo_ X(7+y)_7X1_PWX1_PyX(,)/+‘u) (23)

B =

r 1

and represents the reinfection contact rate [8,12]. It is noteworthy that the critical vaccina-
tion coverage p* decreases with the increase in either or both of Py and Py and increases
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with the increase in the rescaling parameter r. This means that ignoring the difference
between susceptibilities of primary and secondary susceptible individuals overestimates
the value of p*. However, the reinfection contact rate B¢ increases with the increase in
either of the proportions Py and Py and with the decline in r. The critical contact rate 3, is
depicted as a function of the vaccination coverage p for different values of the proportions
Py, Py and the scaling parameter r in Figure 7A-C, respectively. The figure shows that the
region of infection’s controllability enlarges with the increase in the proportions Py and
Py and the decrease in the relative susceptibility parameter r. In summary, we state the
following proposition.

A B
41 I ) B - 43 ——®
39l |- = 07P, ‘Infectlon persistence ! 4L |- = 07P, Infection persistence
R
\ 39
871 |oman3P,
37t
YA — 16P,
35+
=~ 33 «
33+
3 31+
29+ 1 291
27y Infection disappearance ] 27¢ Infection disappearance
26 26
0.0 0.1 0.2 03 04 0.5 06 0.7 0.8 09 1.0 00 01 02 03 04 05 06 0.7 0.8 09 1.0
p p
©)
65 — ——————
60 ; J— Infection persistence . E
Eo|==08r
55} -------- 06r * I
50 e E
e - -- 1
sofF e - - |
3BE e
301 ____— ..... Infection disappearance
25: N eearr A R R S B R T R
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7. The critical contact rate 8, as a function of the vaccination coverage level p for various
values of Py, Pyy and r, while keeping other model parameters’ value as shown in Table 3. The curve
divides the (p, B) plane into the two regions of disappearance (below the curve) and persistence
(above the curve) of infection. The subfigures (A,B) show that the disappearance region extends
with the increase in the proportions Py and Py, respectively, while the subfigure (C) shows that it
increases with the decrease in the relative susceptibility r of secondary (with respect to primary)
susceptible individuals.

Proposition 8. If the successful contact rate B is less than the reinfection contact rate p°, then the
infection is eliminated by vaccinating a proportion p > p* of the newborns, while if B > B°, then
the infection cannot be eliminated with a strategy based on vaccination solely, but other control
strategies aiming at reducing P to slightly below B° should be applied, in addition to vaccinating a
proportion p > p*. Moreover, the possibility to control the infection enlarges with the increase in
the proportion of life spent in the immunization and waning states and the decrease in the relative
susceptibility of secondary (with respect to primary) susceptible individuals.

6. Impact of Waning and Natural Inmune Boosting on Disease Outcomes

As explained in Section 2, the immunity acquired either due to vaccination or due
to experiencing the infection declines and the individual’s status becomes waned. In
model (1), the two parameters ¢ and a determine the duration of acquired immunity and
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progression to become secondary susceptible, respectively. However, the natural immunity
boosting is represented by the rescaling parameter ¢ € [0, 1] (times the force of infection A),
where a value of ¢ = 0 means that the natural boosting immunity is completely ignored.
The parameter g does not appear explicitly in the formula of the reproduction number .
However, it appears in the coefficients of the characteristic epidemiological Equation (15)
and, therefore, affects the endemic prevalence of the infection.

In the absence of natural booster immunity (i.e., ¢ = 0), the Equation (15) reduces from
cubic to quadratic equation with simpler coefficients than in (16). In this case, the proportion
of the infected population in the endemic situation reads

. B+ B% +4A1C,
T V (24)

2841
where

ar = r(e+metp)+rato+n),

B = m’r<7+(0+ﬂ)(ﬂ+w)(fﬁ(1—r1)—(1+r)(7+;4))+W,

Ci = plo+p)(p+a)(y+u) (R —1).

The endemic prevalence of the infection I is depicted as a function of the control
reproduction number R for different values of the natural booster immunity parameter g
and is presented in Figure 8. The figure shows that the proportion I increases monotonically
with the increase in R, in the absence of natural booster immunity (i.e., if g = 0). However,
in the presence of natural booster immunity (i.e., if ¢ > 0), the endemic prevalence I
increases monotonically in $?; till reaching a maximum at some value of R, and then starts
to decrease with the increase in R,. This result could be read in a reverse way as follows.
In the presence of natural booster immunity, reducing the control reproduction number ¥,
increases the endemic prevalence of infection I till reaching a maximum level, and a further
reduction in the value of R, to one (or slightly below one) forces a reduction in the endemic
prevalence of infection I to zero. The figure also shows that the endemic prevalence of
the infection I decreases with the increase in the natural booster immunity parameter g.
Therefore, ignoring the natural booster immunity overestimates the endemic prevalence of
infection and, in consequence, overestimates the effort needed to eliminate the infection.

The waning of immunity and progression of secondary susceptible parameters ¢ and
« appear in both disease outcomes (i.e., Jt, and I*). It is worth noting that R, increases
with the increase in ¢ and /or . Moreover, numerical simulations show that I increases
with the increase in either ¢, a or both, see Figures 9 and 10. In other words, any decline in
the period of immunity acquired by either vaccination or naturally experiencing pertussis
infection increases the reproduction number and the endemic prevalence of infection,
and therefore, increases the effort needed to eliminate pertussis infection. Moreover,
the endemic prevalence of pertussis infection rises with the increase in the progression rate
of secondary susceptible individuals.

It is clear from (21) and (23) that increasing either or both of o and « decreases the rein-
fection contact rate B° and increases the critical vaccination coverage required to eliminate
the infection p*, which in turn increases the effort needed to eliminate the infection.
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Figure 8. The endemic prevalence of infection as a function of the control reproduction number with
various values of the natural boosting immunity parameter g, where all other parameters have been
kept fixed and with values as shown in Table 3.
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Figure 9. The endemic prevalence of infection I* as a function of the control reproduction number
for several values of the rate o while the remaining parameters’ values have been kept as in Table 3.
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Figure 10. The endemic prevalence of infection I* as a function of the control reproduction number
R, for various values of the rate «, while the other parameters’ value added are kept as shown in

Table 3.

7. Summary, Conclusions and Future Work

Mathematical models have gained the attention of the scientific community as they
help to understand the dynamic behavior of the phenomenon in concern [1,2]. The last
few decades showed much interest in modeling infectious diseases and, in particular,
the attempt to predict the most effective factors in containing an infectious disease [4,5,39].
Routine vaccination is one of the main strategies used to protect a population from infec-
tious diseases. However, the immunity acquired either due to receiving the vaccine shots
or due to naturally experiencing the infection wanes with time [14,15,40]. It is evident
that re-exposure to Bordetella pertussis (after waning immunity) may trigger an immune
response to protect against the infection while also boosting one’s immunity [20,41,42].
The effect of the interplay between waning and boosting of the infection on the overall
dynamics is less understood. Therefore, a mathematical model of type SIRS (susceptible-
infected-recovered-susceptible), with imperfect vaccination V and waning of immunity W,
for pertussis infection that is spread in a homogeneously and symmetrically fully mixed
population has been introduced and analyzed. The model differentiates between the sus-
ceptibility of individuals who acquire the infection for the first time and that of individuals
who experienced it at least once before. Moreover, it considers the booster of immunity
due to natural re-exposure to the infection after the waning of the acquired immunity.
The model has been mathematically analyzed, where the equilibrium and stability
analyses have been studied. The model has a pertussis-free equilibrium Ej that is shown to
be locally and globally asymptotically stable if and only if the control reproduction number
R, is less than one. Moreover, the model has an endemic equilibrium that is proved to be
unique and to exist if and only if i, > 1. Moreover, the uniform persistence of all solutions
has been proven.
The possibility to eliminate pertussis infection with a strategy based on vaccinating
a proportion p of the newborns has been studied. The analysis shows that a reinfection
contact rate level B° (above which pertussis cannot be eliminated with active vaccination)
does exist and control strategies other than vaccination should be applied to reduce the
successful contact rate § to slightly below B° so that vaccinating a proportion p > p* of
the newborns ensures effective control of pertussis infection. The analysis shows further
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that any decrease in the relative susceptibility r of secondary (with respect to primary) sus-
ceptible individuals and/or increase in either or both of the proportion of life spent in the
vaccination state Py and in the waned-immunity state Py enlarges the region of infection’s
controllability, which in turn increases the possibility to eliminate the infection and reduces
the effort required to eliminate it (through reducing the critical vaccination coverage level
p”). The results show that the reinfection contact rate 8 increases with the decrease in r.
Thus, ignoring the differential susceptibility between primary and secondary susceptible
individuals underestimates the reinfection contact rate threshold and overestimates the
minimum vaccination coverage required to eliminate the infection.

The effect of waning immunity and natural immune boosting on disease outcomes
has been studied. The analysis shows that:

*  The higher the natural boosting immunity is, the lower the endemic prevalence of
infection is. In other words, ignoring the natural boosting of immunity overestimates
the endemic prevalence of infection;

*  The faster the progression of secondary susceptible individuals is, the higher the
endemic prevalence of infection is;

®  The shorter the period of immunity acquired by either vaccination or experiencing
natural infection, the higher the reproduction number and the endemic prevalence of
infection, and therefore, the higher the effort needed to eliminate the infection is.

The dynamical behavior and the current results could be affected by taking further
extensions, that are considered in forthcoming work, to include the differential infectivity
and transmissibility of infected individuals who caught the infection for the first time and
those who experienced it at least once before and are capable of transmitting it, taking into
account real data.
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Appendix A. Positivity and Boundedness—Proof of Proposition 1

Proof. The right-hand-side of the system (1) is completely continuous and differentiable.
Therefore, it is locally Lipschitz. Hence, there exists a unique solution for model (1).
However, the first equation of the system (1) implies that

B (1w +wsie).
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Separating variables and integrating gives

t
Si(t) = $1(0) exp (— [(BI(@)+1)dE) =0, ¥ $1(0) > 0.
0

Similarly, we may obtain
V(0) ettt >0, v V(0) >0
0,

1(0) e~ (Mt > 0, vV 1(0) >
R(0) e~ (tMt >0, vV R(0) >0,

vV IV IV

=
v

W(0) exp (— [ (gBI(¢) +p+a)di) >0, V W(0) >0,

S2(t) = 52(0) exp (= [ (rBI(E) +p)dC) = 0, ¥ 52(0) = 0

O\H_ o

Therefore, the solution set {S1(t), V(t), I(t), R(t), W(t), Sa(t)} of the system (1) remains
non-negative for all t > 0 under non-negative initial conditions (2). Since S (t) + V(¢) +
I(t) + W(t) + R(t) + So(t) = 1, then all solutions are bounded from above and, hence, are
ultimately bounded. Therefore, () is positively invariant. [

Appendix B. Direction of Bifurcation by Using Implicit Function Theorem

In order to compute the direction of bifurcation at (Bo,0) by the implicit function
theorem, we have
ar Fﬁ
ap 1e00= ~ . leoo

where

ol = gg'fgoo Vz(ﬂﬂ)(uw)[(l—r’”w;lzzﬂc)]

and
oF
Frs |(ﬁo,0) -~ oIF |l300 BQs ‘ﬁ Bo -

Hence,

Fr« —
Ll gu3(7+ﬂ)<ﬁ°§1+yp)1)ru[(0+u)(w+u)+7(w+0+ﬂ)}

+;4(ff+u)(ﬂ+a)(7+;4)< Po (r(l—m " (%) —1)

(v +mn) bo + p) (4 + o)

gzﬁ(wm(“‘”)(b"g”’(““) 1) (o + ) (at p)

+y(a+ o+ u)]

+u<a+y><y+a><v+y>(WW(m —p)+ %)
_1>,
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Since r € [0,1], then
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Therefore, the bifurcation at the point (B, 0) is forward.

Appendix C. Proof of Proposition 5
Proof. Consider X; = (51,V,R, W, S,), X, = I and X? = (814, Vo, Ro, Wo, Sa,) where

(I=p)u—puSi
X ppu — (bo + )V
= F(X,0) = —(c+ )R . (A1)
boV+oR — (p+a)W
aW — uSy

The above system has the analytic solution

Si0) = 1=p (S0 = (A=ple Vi) = Pt (Vo) - e,
_ e Gaynl _ pubo _ pubo e~ ()t

RO) = RO Wi = P (W) - g e
o apbe __apbe

20 = Grrmern T (20 G )"

Clearly, X; — X9 as t — oo. Thus, X! is globally asymptotically stable for the system (A1)
and the first condition (Cy) is satisfied. For the second condition (C;), we have

AXy — G(Xy, Xq) = (BS1, +7BS2, — (v + #) I = (B(S1y — S1)I +B(S2, — S2)I).

It is clear that G(X1, X,) = BI(S1, — S1 +7(S2y — S2)) > 0 for all (X3,X;) € Q0. When

R, < 1, we obtain A < 0, where A = %(510 +1S,) — 1, then the IFE E; of model (1) is

GAS (globally asymptotically stable) in region () for 8, < 1. O
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