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the world. Although the community-wide implementation of basic non-pharmaceutical
intervention measures, such as social distancing, quarantine of suspected COVID-19
cases, isolation of confirmed cases, use of face masks in public, contact tracing and
testing, have been quite effective in curtailing and mitigating the burden of the pandemic,
it is universally believed that the use of a vaccine may be necessary to effectively curtail

Iég(,‘fgf; and eliminating COVID-19 in human populations. This study is based on the use of a
SARS-CoV-2 mathematical model for assessing the impact of a hypothetical imperfect anti-COVID-19
Vaccination vaccine on the control of COVID-19 in the United States. An analytical expression for the
Social distancing minimum percentage of unvaccinated susceptible individuals needed to be vaccinated in
Non-pharmaceutical intervention order to achieve vaccine-induced community herd immunity is derived. The epidemio-

logical consequence of the herd immunity threshold is that the disease can be effectively
controlled or eliminated if the minimum herd immunity threshold is achieved in the
community. Simulations of the model, using baseline parameter values obtained from
fitting the model with COVID-19 mortality data for the U.S., show that, for an anti-COVID-
19 vaccine with an assumed protective efficacy of 80%, at least 82% of the susceptible US
population need to be vaccinated to achieve the herd immunity threshold. The prospect of
COVID-19 elimination in the US, using the hypothetical vaccine, is greatly enhanced if the
vaccination program is combined with other interventions, such as face mask usage and/or
social distancing. Such combination of strategies significantly reduces the level of the
vaccine-induced herd immunity threshold needed to eliminate the pandemic in the US.
For instance, the herd immunity threshold decreases to 72% if half of the US population
regularly wears face masks in public (the threshold decreases to 46% if everyone wears a
face mask).
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1. Introduction

In December 2019, the Wuhan Municipal Health Commission, China, reported a cluster of a pneumonia-like illness,
caused by a coronavirus (SARS-CoV-2) in Wuhan, Hubei Province of China (Li et al., 2020; World Health Organization,
2020a; World Health Organization). The disease rapidly spread to many countries, resulting in the World Health
Organization declaring the novel coronavirus (COVID-19) as a pandemic on March 11, 2020 (Ngonghala et al., 2020;
World Health Organization, 2020a; World Health Organization). As of June 28, 2020, COVID-19 has caused over 10 million
confirmed cases and 500,000 fatalities globally. The United States, which is now the epicenter of COVID-19, recorded over
2.5 million confirmed cases and 125,000 deaths (“Center for Systems Scien, 2020). While some people infected with
COVID-19 experience mild symptoms of the disease (such as fever, coughing and shortness of breath), others develop
severe disease and complications (causing acute respiratory failure, which damages the lungs and often cause death)
(Knvul and Katie, 2020; Ngonghala et al., 2020; World Health Organization, 2020b). In addition to the devastating public
health burden it induced in the US, COVID-19 has also inflicted severe economic hardship, causing a decrease in both
human and economic productivity (translating to about 30% unemployment rate, and a projected 50% decline in GDP by the
summer of 2020 (Matthews, 2020; Rotman, 2020)).

There are currently no approved vaccines and effective therapies for use against COVID-19. Hence, control efforts
against COVID-19 are focused on using basic non-pharmaceutical interventions (NPIs), such as social distancing, quarantine
of people suspected of being exposed to COVID-19, isolation of confirmed cases, use of face masks in public and contact-
tracing (Ngonghala et al., 2020; Ferguson et al., 2020; Eikenberry et al., 2020). There is now a concerted global effort to
develop a safe and effective anti-COVID-19 vaccine to help combat the COVID-19 pandemic. Although the development of
new vaccines generally take years, a number of pharmaceutical companies, with support from numerous government
agencies and regulatory authorities, are doing everything possible to fast-track the availability of a safe and effective
vaccine against COVID-19. Over a dozen organizations have announced plans to start efficacy testing for their candidate
vaccines (Knvul and Katie, 2020; Callaway, 2020; Kirkpatrick, 2020). In fact, scientists at the Jenner Institute at the Oxford
University have developed a new coronavirus vaccine that is undergoing early-phase trials, and they expect the first few
million doses of their vaccine to be widely available as early as September 2020 (Callaway, 2020; Kirkpatrick, 2020). A
Maryland-based biotechnology company Novavax has begun human clinical trials for its candidate vaccine in Australia
(Knvul and Katie, 2020). Similarly, Mesoblast, a company supported by the National Institutes of Health (NIH), started a 240-
patient clinical trial aimed at testing whether cells derived from bone marrow could help patients who developed a deadly
immune reaction to the coronavirus (Knvul and Katie, 2020). Thus, there is an urgent need to develop and use mathe-
matical models to assess the population-level impact of a future hypothetical vaccine against COVID-19. This forms the
objective of the current study.

Numerous mathematical models have been developed and used to study the transmission dynamics and control of COVID-
19. For instance, an agent-based model was developed by Ferguson et al. (Ferguson et al., 2020) to investigate the impact of
NPIs on COVID-19-induced mortality, showing an alarming worst-case projection of number of cases for the US and Great
Britain (at the tune of 81%). Eikenberry et al. (Eikenberry et al., 2020) developed a multi-group model for assessing the
community-wide impact of mask use by the general, asymptomatic public, a portion of which may be asymptomatically-
infectious. The study shows that the use of face masks by members of the general public is potentially of high value in
curtailing community transmission and the burden of the pandemic, and that the community-wide benefits are likely to be
greatest when face masks are used in conjunction with other non-pharmaceutical practices (such as social distancing), and
when adoption is nearly universal (nation-wide) and compliance is high. Ngonghala et al. (Ngonghala et al., 2020) developed
a comprehensive model for assessing the impact of the major NPIs (quarantine, isolation, social distancing, face mask usage in
public, testing and contact-tracing) on the control of COVID-19. Their study estimated that, while the early relaxation or lifting
social distancing measures and mask usage is likely to lead to second wave, the extended adherence to the current social
distancing and mask usage can significantly reduce COVID-induced mortality in the US in general, and the state of New York
in particular.

Mizumoto and Chowell (Mizumoto & Chowell, 2020) modeled the potential for a COVID-19 outbreak in the Diamond
Princess cruise ship. Their study showed an estimate of a higher reproduction number, which substantially decreases
with increasing effectiveness of quarantine measures on the ship. A stochastic model was developed by Hellewell et al.
(Hellewell et al., 2020) to assess the impact of contact-tracing and isolation on disease control. Their study suggests that
(for most instances) the spread of COVID-19 can be effectively contained in 3 months if the two control measures
(contact-tracing and isolation) are highly effective. Kucharski et al. (Kucharski et al., 2020) also developed a stochastic
model to assess the COVID-19 trajectory in Wuhan from January to February 2020, showing a reduction in transmission
when travel restrictions were implemented. Li et al. developed a mathematical model to assess the effect of mass
influenza vaccination on the spread of COVID-19 and other influenza-like pathogens co-circulating during an influenza
season. Their study showed that increasing influenza vaccine uptake, or enhancing the public health interventions, would
facilitate the management of outbreaks of respiratory pathogens circulating during the peak flu season.
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The current study is based on the design of a mathematical model to assess the impact of an anti-COVID-19 vaccine on
the transmission dynamics of the COVID-19 pandemic in the United States. COVID-19 mortality data for the US will be
used to fit the model, and to estimate the unknown parameters of the model (notably the contact rate parameters).

2. Materials and methods
2.1. Model formulation

This study is based on the development of a relatively standard mathematical model for assessing the population-level
impact of a potential hypothetical anti-COVID-19 vaccine in a community. The model is developed by splitting the total
human population at time t, denoted by N(t), into the mutually-exclusive compartments of unvaccinated susceptible (S,(t)),
vaccinated susceptible (S,(t)), early-exposed (Eq(t); i.e., newly-exposed individuals), pre-symptomatic infectious (E,(t)),
symptomatically-infectious (I;(t), asymptomatically-infectious (I4(t)), hospitalized (I,(t)) and recovered (R(t)) individuals.
Thus,

N(t) =Su(t) + Sy(t) + E1(t) + Ex(t) + Ls(t) + Ia(t) + Iy (t) + R(¢).

It should be emphasized that individuals in the E;, compartment are those newly-infected individuals that are close to
surviving the incubation period, and are shedding the virus. Hence, they are infectious (i.e., they are able to transmit
COVID-19 infection to susceptible individuals). Furthermore, while individuals in the I; are those that show moderate to
severe symptoms of COVID-19 at the end of the incubation period, those in the I, compartment are assumed to show mild
or no clinical symptoms of the disease at the end of the incubation period. The compartment I, also contains individuals
with clinical symptoms of COVID-19 who are hospitalized or self-isolated at home.

The model is given by the following deterministic system of nonlinear differential equations, where a dot represents
differentiation with respect to time t (a flow diagram of the model is depicted in Fig. 1. The state variables and parameters of
the model are described in Tables 1 and 2, respectively):
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Fig. 1. Flow diagram of the model (2.1).
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Table 1
Description of state variables of the model (2.1).
State Description
variable
Su Population of unvaccinated susceptible individuals
M Population of vaccinated susceptible individuals
Eq Population of early-exposed individuals (i.e., newly-infected individuals who are not yet infectious)
E; Population of pre-symptomatic infectious individuals (i.e., exposed individuals who are close to surviving the incubation period and are
shedding virus)
Is Population of symptomatically-infectious individuals (who display moderate or severe symptoms of the disease at the end of the
incubation period)
Iq Population of asymptomatically-infectious individuals (who display mild or no clinical symptoms of the disease at the end of the
incubation period)
In Population of hospitalized individuals
R Population of recovered individuals
Table 2
Description of the parameters of the model (2.1).
Parameter Description
Be(Bs)(Ba) Effective community contact rate (a measure of social distancing effectiveness)
(9%} Proportion of members of public who wear masks in public (i.e., face masks compliance)
em Efficacy of face masks to prevent acquisition of infection by susceptible individuals
&, Vaccination rate
&y Vaccine efficacy against acquisition of infection (degree protection)
r Proportion of pre-symptomatic individuals who do not show clinical symptoms of COVID-19 at the end of the incubation period
1-r Proportion of pre-symptomatic infectious individuals who show clinical symptoms of COVID-19 at the end of the incubation period
a1 Rate of progression from early-exposed class (E;) to the pre-symptomatic class
ro; Rate of progression from pre-symptomatic class (E,) to asymptomatically-infectious class
(1 -rn)oy Rate of progression from pre-symptomatic class (E,) to symptomatically-infectious class
@5 Hospitalization rate for infectious individuals
Ys(Ya)(Yh) Recovery rate for individuals in the Is(Iq)(I) class
s (0p) Disease-induced mortality rate for infectious individuals in the Is(Ij,) class
Su = —(le+ A+ Ad)Su — &,Su,
S.u = §v5u - (1 - Su)(/‘{e + As + Aa)sw
E.1 = (Aet+As+A)[Su+ (1 —¢)S)] —a1Eq,
E; = 01E — 03B, (2.1)
Iy = (1-r)03E —(¢s+ 75+ 0s)ls,
la = r03E — v,
In = ks — (yn +0n)lh
R = s +v4la +vplp,

where the forces of infection 2., As and A, are defined below
Do = Bo(1 — enpcnn) 2. 2 = B(1 — engen) 5 70 = Bo(1 — emcnr) (2.2)
e=Pe(1—emcym N As=0Bs(1—em M)N» a=Pa(l —emCm) - .

In the model (2.1), unvaccinated susceptible individuals acquire COVID-19 infection, following effective contacts with
individuals in the E;, I; and Is classes, at the rates A, As and A4, respectively. Unvaccinated susceptible individuals are
vaccinated at a per capita rate £,. It is assumed that the hypothetical anti-COVID-19 vaccine is imperfect. Hence, the vaccine
allows for breakthrough infected in vaccinated susceptible individuals who became infected with COVID-1), with a protective
efficacy 0<e, < 1 (i.e., vaccinated susceptible individuals are assumed to acquire COVID-19 infection, following effective
contact with individuals in the E,, Is and I, classes at the reduced rates, (1 — &,)4e, (1 —&,)As and (1 — &,)4q, respectively).

The parameter ¢ represents the progression rate of individuals in the early-exposed class (i.e., individuals in the E; class)
to the pre-symptomatic infectious class (E,). Similarly, o, is the rate at which pre-symptomatic individuals progress, at the
end of the incubation period, to either the asymptomatically-infectious class, I, (at a rate ro,; where 0<r < 1 is the pro-
portion of pre-symptomatic infectious individuals who do not show clinical symptoms of COVID-19 at the end of the incu-
bation period) or to the symptomatically-infectious class, Is (at a rate (1 — r)o;). Thus, the intrinsic incubation period of
COVID-19 is given by 01—14— [}—2 The parameter v4(v,)(v) represents the recovery rate for individuals in the Is(Ig)(I) class.
Similarly, ¢, is the hospitalization (or self-isolation) rate of individuals with clinical symptoms of COVID-19. Finally, the
parameter 0s(d,,) represents the COVID-induced mortality rate for individuals in the Is(I;) class. It should be mentioned that,
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since not much data is available on the expected properties of a future anti-COVID-19 vaccine, we do not assume that the
vaccine offers any therapeutic benefits. Further, we do not assume that the vaccine wanes during the one-year time period we
would choose for the numerical simulations of our model.

In (2.2), the parameter (.(8s)(6,) represents the effective contact rate (i.e., contacts capable of leading to COVID-19
transmission) for pre-symptomatically-infectious (symptomatically-infectious) (asymptomatically-infectious) individuals,
0<cy < 1isthe proportion of members of the public who wear face masks (correctly and consistently) in publicand 0 < gy <
1 is the efficacy of the face masks. This formulation (i.e., 8, # 6 # () allows us to account for the possible heterogeneity in the
contact rates of infectious individuals in the pre-symptomatic (E,), symptomatic (I;) and asymptomatic (I,) classes. The basic
model (2.1) may be the first to explicitly incorporates a hypothetical imperfect vaccine in a deterministic modeling study on
COVID-19 dynamics.

It is convenient, for housekeeping purposes, to define the following equation for the rate of change of the population of
COVID-deceased individuals in the community (denoted by D(t)):

D =6bgls + 0l (2.3)

3. Theoretical analysis
3.1. Asymptotic stability of disease-free equilibria
The model (2.1) has a continuum (or line) of disease-free equilibria (DFE), given by
Zo: (Su. Sy Ey, B3, I, Iy, I, R) = (N(0) - (S, +R")., S;, 0, 0, 0, 0,0,R"),
where N(0) is the initial total population size, S; >0,R">0, and 0 < S, + R* < N(0) = N". The next generation operator
method (van den Driessche & Watmough, 2002; Diekmann et al., 1990) can be used to analyse the asymptotic stability
property of the continuum of disease-free equilibria, . In particular, using the notation in (van den Driessche & Watmough,

2002), it follows that the associated next generation matrices, F and V, for the new infection terms and the transition terms,
are given, respectively, by

0 A As Ag
Fo 0 0 0 O
{0 0 0 O
0 0 0 O
and,
71 0 0 0
V= —01 ay 0 0
10 (-1 es+ys+ds 0|
0 —Tay 0 Ya
where,

Ae = 601 —sMcM)[St‘“}Vi‘E“)S:},

3

As = Bul1— evicw) [M]

Ae = Ball—emcy) {M}

It is convenient to define the quantity .%. by (with p being the spectral radius):

Fe— p(Fv—l) =R, + R+ R, (3.1)

where,
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o Be(l—emcm) [Sy+(1-e)S,
‘/?EZ = * ’
02 N
gy = B=n0 = emcm) [s:+ g *—ev)S:} (32)
: s +¥s -+ Os N
7 - Ba r(1 — epcy) {s’;+(1 —gv)sj}
‘ Ya N*

The quantity .%. is the control reproduction number of the model (2.1). It measures the average number of new COVID-19
cases generated by a typical infectious individual introduced into a population where a certain fraction wears face masks in
public and/or are vaccinated using the hypothetical imperfect vaccine. It is the sum of the constituent reproduction numbers
associated with the number of new cases generated by pre-symptomatically-infectious humans (#g,), symptomatically-
infectious humans (%), ), and asymptomatically-infectious (.#,) individuals. The reproduction number % is epidemiologi-
cally interpreted below.

3.1.1. Interpretation of the control reproduction number

As stated above, the control reproduction number .% is the sum of the three constituent reproduction numbers, %, %,
and .%,. The constituent reproduction number %, is given by the product of the infection rate of unvaccinated and
vaccinated susceptible individuals by pre-symptomatically-infectious humans (near the continuum of disease-free equi-

libria), {ﬂe(l — emCym) (5”}\,7_”5” , the proportion of exposed individuals that survived the pre-exposed period and moved

to the pre-symptomatically-infectious class and the average duration in the pre-symptomatically-infectious class (%)

Similarly, the constituent reproduction number %, is given by the product of the infection rate of unvaccinated and vacci-

nated susceptible individuals by symptomatically-infectious humans (near the continuum of disease-free equilibria), {65(1 -
EMCM)<W>:|v the proportion of exposed individuals that survived the incubation period and moved to the
symptomatically-infectious class (%:14) and the average duration in the asymptomatically-infectious class
(m) Finally, the constituent reproduction number .|, is given by the product of the infection rate of unvaccinated and
vaccinated susceptible individuals (near the continuum of disease-free equilibria), {60(1 - sMcM)<w>}, the pro-

portion that survived the exposed class and moved to the asymptomatically-infectious class (%2: r) and the average

duration in the I; class yl The sum of #,, %, and %, gives. %.

The result below follows from the next generation matrix operator method of (van den Driessche & Watmough, 2002).

Theorem 3.1. The continuum of disease-free equilibria ( &) of the model (2.1) is locally-asymptotically stable if %< 1.If %>
1, the epidemic first grows, reaches a peak, and then decreases to zero as t — co.

The epidemiological implication of Theorem 3.1 is that a small influx of COVID-19 cases will not generate a COVID-19
outbreak if the control reproduction number (%) is less than unity (i.e., the epidemic dies out rapidly whenever .%. < 1).
It should be mentioned that, for epidemic models such as (2.1), the epidemiological requirement .%. < 1 is only sufficient, but
not necessary, for the elimination of the epidemic. This is owing to the fact that, for such models (i.e., Kermack-McKendrick
epidemic models with no vital/demographic dynamics), the disease always dies out with time (regardless of the value of the
reproduction number of the models). In other words, even if .%. exceeds unity, the disease will eventually die out. This is
because (if % > 1), the epidemic rises (exponentially, initially) and reach a peak. Subsequently, a combination of factors, such
as the implementation of control measures in the community and the natural infection-acquired immunity in the community,
will greatly curtail the epidemic to the extent that sustained community transmission is not feasible (and the disease dies out)
(Nishiura & Chowell, 2009). It is worth stressing that, in the formulation of the model (2.1), we assumed that individuals who
survived the COVID-19 infection develop permanent natural immunity against future COVID-19 infection (since there is no
transition from the recovered to the susceptible class in the model). This natural immunity builds up in the community and
contributes in protecting the rest of the susceptible population from acquiring COVID-19 infection. If recruitment of sus-
ceptible individuals is allowed (e.g., in the case where an endemic model is used), the disease will persist in the population
when #.>1 (this is because the pool of new completely-susceptible, or COVID-19-naive, individuals will continuously be
replenished, by birth or immigration, thereby allowing the disease to sustain itself in the community).
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It is convenient to define the following feasible (positively-invariant and attracting) region for the model (2.1)

Q:{@mSWE,QJ&MJmR)eRﬁ:&r%&+fl+E2+k+h44h+R§NaD}

We claim the following result:
Theorem 3.2. The continuum disease-free equilibria ( &) of the model (2.1) is globally-asymptotically stable in Q if 7. < 1.

The Proof to Theorem 3.2, based on using Lyapunov function theory, is given in Appendix A. Here, too, the requirement
¢ < 1is sufficient, and not necessary, for the elimination of the pandemic. The epidemiological implication of this result is
that COVID-19 elimination is independent of the initial sizes of the sub-populations of the model (i.e., the initial number of
infected individuals introduced into the community does not have to be within the basin of attraction of the continuum of the
disease-free equilibria, # of the model).

In the absence of control interventions (i.e., no face mask usage and vaccination) in the community vaccination, the control
reproduction number (%) (3.1) reduces to the basic reproduction number (denoted by .%,), given by:

_Be (=D 1ha (3.3)

Ro=R
¢ 02 @5+ Vst 0s Ya

Cu=em=¢,=S,=

The quantity .%( represents the average number of new infections generated by a typical COVID-19 infected individual
introduced into a completely susceptible population during the duration of his/her infectiousness. It is convenient to define
the following quantity

(3.4)

P S+ (1—¢)S

R { N

=ey=0 —

which represents the control reproduction number of the model in the absence of face masks usage in the community.
3.2. Model fitting and parameter estimation

Some of the parameters of the model (2.1) were obtained either from the literature, or assumed based on publicly-available
COVID-19 related information (Table 3(a)). For the six parameters whose numerical values are not known, namely the com-
munity contact rates (8,8, and (), the hospitalization rate of symptomatic individuals (¢,), mask compliance (cy;), and the
COVID-19-related mortality rate of hospitalized individuals (d, ), we estimated them using the COVID-19 mortality data for the
US from March 1, 2020 to June 23, 2020 (Centers for Disease Control and Prevention, 2019; Dong, Du, & Gardner, 20203, Dong,
Du, & Gardner, 2020; Dong et al., 2020a, Dong, Du, & Gardner, 2020; World Health Organization, 2019). Although the first
documented COVID-19 case in the US was reported January 20, 2020 (Holshue et al., 2020), there were less than 30 confirmed
cases in the US by March 1,2020 (Dong et al., 2020a, Dong, Du, & Gardner, 2020). Hence, we used data from March 1 onward in
estimating our parameters, and we also start all our simulations from March 1. Also, since the mortality data was collected when
no vaccination program is in place, we fitted these parameters to the special case of the model (2.1) without vaccination. To

Table 3
Parameters of the model (2.1).

(a) Parameter values from the literature (and those assumed)

Parameter Default values Reference

em 0.5 (dimensionless) Estimated from (Davies et al., 2013)

&y 0.8 (dimensionless) Assumed

£, 0.0203 day ! Assumed

[ 1/4 day! Adapted from (Center for Disease Control and Prevention, n.d.)
ay 1/2 day! Adapted from (Center for Disease Control and Prevention, n.d.)
R 0.35

Ya 1/7 day! (Tang et al., 2020; Zhou et al., 2020)

Ys 1/7 day ! (Tang et al., 2020; Zhou et al., 2020)

Yh 1/14 day™! (Tang et al., 2020; Zhou et al., 2020)

0s 0y/3 day ! Estimated

(b) Fitted parameters

Parameter Fitted value
Be 0.1004 day '
Ba 0.7701 day !
s 0.3214 day !
?s 0.0514 day !
M 0.1704 (dimensionless)

on 0.0001 day !
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Fig. 2. (a) Data fitting of the model (2.1) in the absence of vaccination using COVID-19 mortality data for the US (Centers for Disease Control and Prevention, 2019;
World Health Organization, 2019). (b) Simulations of the model (2.1) (using the estimated parameters) illustrating the daily mortality curve. The red dots
represent data points, while the solid blue line represent predictions of death from model (2.1) for the period between March 1, 2020 through June 23, 2020.

calibrate the six parameters, we used a nonlinear least squares method to determine the set of parameters that minimizes the
sum of the squares of the differences between the cumulative death predictions of the vaccination-free version of the model
(2.1) and the observed cumulative COVID-19 mortality. The result obtained is depicted in Fig. 2 (left panel). Furthermore, the
observed daily deaths are plotted alongside the predicted daily deaths generated using the vaccination-free version of the
model (2.1) with the parameter values obtained from the fitting of the cumulative cases (right panel of Fig. 2). The values of the
calibrated parameters obtained are tabulated in Table 3(b). Since no vaccine-related data for COVID-19 are currently available,
we assumed that the hypothetical vaccine considered in this study has a baseline protective efficacy of 80% (i.e., we sete, = 0.8).
Further, we assume the baseline value of the vaccination rate (£,) is 0.0203 per day.

It is noteworthy from the fitted parameters in Table 3 (b) that the sum of the fitted values of the community contact rates for
the pre-symptomatic (8.) and asymptomatically-infectious individuals (§,) overwhelmingly exceeds that for the
symptomatically-infectious individuals (). Thus, our fitting suggests that pre-symptomatic and asymptomatic infectious in-
dividuals are the overwhelming drivers of the pandemic in the US. In other words, the vast majority of the COVID-19 infections
in the US is caused by COVID-19-infected individuals who are unaware of their infection status (i.e., those in the E, and I,
classes). Tindale et al. (Tindale et al., 2020) also showed that pre-symptomatic transmission played a significant role in COVID-19
dynamics in Singapore (accounting for 40-50% of transmissions) and Tianjin, China (60-80% of transmissions).

3.3. Vaccine-induced herd immunity threshold

For vaccine-preventable diseases, not all susceptible individuals can be immunized for various reasons, such as they
are too young to be vaccinated (vaccinating infants or young children can, sometimes, harm the infants/children), they
have co-morbidities and weakened immune system (and vaccinating may make their prognosis worse), they are of
advanced age or they opt out for cultural, traditional or religious reasons. The question then is what is the minimum
proportion of those we can vaccinate that we need to vaccinate so that those that we cannot vaccinate can be protected
from developing severe disease or dying of the disease. The notion of herd immunity in the transmission dynamics is
associated with the indirect protection, against acquisition of a communicable disease, members of the community
receive when a large percentage of the population has become immune to the infectious disease due to natural recovery
from prior infection or vaccination (Anderson, 1992; Anderson & May 1985). The consequence of herd immunity is that
individuals who are not immune (e.g., those who cannot be vaccinated or those who have not been infected yet) receive
some protection against the acquisition of the disease. The safest and fastest way to achieve herd immunity is obviously
vaccination. It should, however, be mentioned that Sweden employed the other mechanism for achieving herd immunity
in the context of COVID-19 dynamics in Sweden (Friedman, 2020). In other words, the Swedish public health agencies
aimed to build herd immunity by not implementing the basic community transmission reduction strategies (e.g., social
distancing, community lockdowns, use of face masks in public, contact tracing etc.) implemented in almost every country
or community that is hard-hit with the COVID-19 pandemic, opting, instead, to allow individuals to acquire infection and,
hopefully, recover from it. Although some level of this natural herd immunity has been achieved in Sweden, the COVID-
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induced mortality recorded in Sweden far exceed those recorded for neighbouring Scandinavian countries that imple-
mented the aforementioned non-pharmaceutical interventions (Friedman, 2020).
In this section, a theoretical condition for achieving community-wide vaccine-induced herd immunity is derived. Let f, =

If,— be the fraction of unvaccinated susceptible individuals that have been vaccinated at the disease-free steady-state. It follows
that the control reproduction number (%) can then be re-written, in terms of f,, as follows:

S: +(1 - SV)S::| 7 (3.5)

re= o1~ ewen) [

which can be simplified as (for the special case with .%#* being infinitesimally small in comparison to the total initial
population N(0))

Fe = Ro(1 - emem)(1 - &fy). (36)

Setting % = 1 in (3.6), and solving for f,, gives the following vaccine-induced herd immunity threshold for the model
(2.1):

1 1 .
~-1-o— | —f¢ witheyey#1. 3.7
ﬁ} &y %0(1 78MC1\4) v MM ( )

It follows from (3.6) and (3.7) that % < ( >)1 whenever f, > ( <)ff. This implies that if f, > f£, then the epidemic dies out
(in line with Theorems 3.1 and 3.2). Furthermore, if f, <f£, then the epidemic rises, reaches a peak, and eventually declines to
zero (in line with Theorem 3.1).

In order to obtain the projected value of the vaccine-derived community herd immunity threshold for the US, we compute
the value of basic reproduction number (.%;), from Equation (3.3) and using the baseline values of the community contact
rates (8., 8, and f¢) and other parameters in Table 2. This gives .7, = 3.16. Substituting this value of .%, into (3.7), and noting
that the vaccine efficacy is assumed to be 80% (i.e., &, = 0.8) and the baseline values of face masks efficacy and compliance
given in Table 3 (i.e., eyy = 0.5 and c¢); = 0.1704, respectively), shows that the vaccine-derived community herd immunity
threshold for the US is approximately 82% (see Table 4). The epidemiological implication of this result is that the pandemic
can be effectively controlled (i.e., community transmission of COVID-19 can be significantly curtailed or the disease can be
eliminated) if at least 82% of the susceptible US population is vaccinated.

The aforementioned required vaccine coverage herd immunity percentage is certainly on the high side, and may not be
realistically attainable. In fact, Dr. Anthony Fauci, a member of the US Presidential Task Force on COVID-19, stated on June 29,
2020 that the hypothetical anti-COVID-19 vaccine may not reach the required high immunity in the US if many people refuse
to get it (Cable News Network, 2020). One way to get around this need for high vaccine coverage to achieve high immunity is
to combine the vaccination program with another anti-COVID-19 intervention, such as the use of face masks in public. Table 4
shows that the required herd immunity threshold decreased to (perhaps a more realistically-attainable) 72% if half the US
population wears face masks in public. Further, only 46% of the US population would need to be vaccinated if everyone wears
face mask in public. Thus, these simulations show that combining the vaccination program (using the hypothetical anti-
COVID-19 vaccine with assumed efficacy of 80%) with a public face mask use strategy significantly enhances the prospect
of COVID-19 elimination in the US.

Fig. 3 depicts the cumulative mortality as a function of time for various values of the steady-state vaccination coverage (f; ).
This figure shows an increase in the cumulative mortality when f, <ff and a decrease when f, > f¢ (it should be mentioned that
this figure was generated for the case where the vaccination program is implemented on March 1, 2020; this explains why the
cumulative mortality numbers generated from the model are much lower than the mortality numbers actually recorded in the
US over the same time period). It is worth mentioning that our results for the herd immunity threshold are subject to the
homogeneous mixing assumption made in the formulation of the model (2.1). It is quite possible that the required herd im-
munity threshold for the US may change (i.e., be lower than what we estimated) if the homogeneous mixing assumption is
relaxed (i.e., if heterogeneities in mixing, perhaps based on age or socio-economic status, is incorporated into the model).

4. Numerical simulations of vaccine impact
The model (2.1) is now simulated to assess the population-level impact of the hypothetical imperfect anti-COVID-19

vaccine in the US. The population-level impact of the vaccination rate (£,) on the burden of the pandemic is monitored
first of all. In these simulations, the public face mask use strategy is not implemented. The model (2.1) is then simulated using

Table 4
Community herd immunity threshold (f,) for the US for various levels of mask compliance (cy;). Parameter values used are as given in Table 3.
Mask compliance percentage (cy) 0% 10% 17.04% (baseline) 30% 50% 100%

Herd immunity threshold (f,) 85.4% 83.4% 81.8% 78.5% 72.3% 45.9%
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Fig. 3. Simulations of the model (2.1), showing the cumulative COVID-19 mortality as a function of time for various levels of herd immunity threshold (f,). (a) f, <
fE(r=0.2) (b) f, = f£ (r=0.35) (c) f,>fS (r = 0.7). Other parameter values used are as given in Table 3. For these simulations, the vaccination program is
assumed to be implemented at the onset of the pandemic (starting March 1, 2020).
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Fig. 4. Effect of vaccination coverage. Simulations of the model (2.1) showing the effect of the vaccination rate (§,) on COVID-19 burden measure in terms of (a)
cumulative deaths and (b) daily deaths. Parameter values used are as given in Table 3, with cy; = £y, = 0 and various values of £,.

the baseline parameter values in Table 3 (with ¢); = &)y = 0) and various values of £,. The results obtained, depicted in Fig. 4,
show that, for the worst-case scenario without vaccination and face masks usage in public (i.e., the model (2.1) with§, = S, =
em = ¢y = 0), the US could record up to 110,000 cumulative deaths at the pandemic peak Fig. 4(a). The corresponding
projected daily mortality is 2400 Fig. 4(b). These simulations show a dramatic reduction in the cumulative and the daily
COVID-induced mortality (in comparison to the worst-case scenario without vaccination and mask usage) with increasing
values of the vaccination rate £, (from its baseline value). In particular, a 10% increase in the baseline value of £, for the US
resulted in a decrease in the cumulative number of deaths at the pandemic peak from 120,000 to 46,000 (Fig. 4 (a)).
Furthermore, this corresponds to a decrease in the projected daily mortality from 2400 to 700, representing a 71% reduction
(Fig. 4 (b)). Similarly, a 30% increase in the baseline value of &, resulted in a marked reduction of the daily deaths at the
pandemic peak to 580 (corresponding to a decrease in the projected cumulative mortality from 120,000 to 25,000). Thus,
these simulations suggest that a significantly large increase in vaccination rate (from baseline) is necessarily needed to
eliminate COVID-19 in the US using the hypothetical vaccine.

The model (2.1) is simulated to allow for the assessment of the impact of social distancing measures (aimed at reducing
community transmission) with the implementation of vaccination and public mask usage in the community. We consider
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Fig. 5. Simulations of the model (2.1) for the impact various effectiveness of social distancing control measures in the presence of vaccination on (a) cumulative
deaths, (b) daily deaths. Mild, moderate, and strict (high) social distancing corresponds to 10%, 30%, and 50%, decrease in the values of the community contact
rates B, 84, and f; from their baseline values, respectively. Parameter values used are as given in Table 3.

three levels of social distancing effectiveness, namely mild, moderate and high (strict). We model these effectiveness levels in
terms of reduction in the community contact rate parameters (8., 8, and ;), in comparison to their baseline values. In
particular, we set mild, moderate, and strict (high) social distancing to correspond to a 10%, 30%, and 50% reduction,
respectively, in the values of the contact rate parameters, in relation to their baseline values in Table 3. The simulation results
obtained, depicted in Fig. 5, shows a marked decrease in disease burden (measured in terms of daily and cumulative COVID-
induced mortality) with increasing effectiveness of social distancing, as expected. For instance, while Fig. 5 shows that up to
51,000 cumulative mortality can be recorded if social distancing measures were not implemented, the cumulative mortality
dramatically decreases to about 5000 (representing about 90% reduction in cumulative mortality) if strict social distancing
measures were implemented (Fig. 5 (a)). Similarly, Fig. 5 shows that up to 810 daily mortality can be recorded in the US if
social distancing measures were not implemented, the daily mortality dramatically decreases to about 70 (representing about
91% reduction in daily mortality) if strict social distancing measures were implemented (Fig. 5 (b)). Thus, these simulations
suggest that the implementation of the vaccination program alongside mask use and social distancing is more effective than if
only the first two strategies are used.

Simulations were also carried out to assess the impact of vaccine efficacy and coverage on this disease dynamics. This
is done for the special case of the model in the absence of the use of masks in the public (i.e., the model (2.1) with ¢y =
em = 0). Specifically, a contour plot of the control reproduction number (%) of the model, as a function of coverage (f,)
and vaccine efficacy (e,), is depicted in Fig. 6. This figure shows a decrease in the value of the reproduction number with
increasing coverage and efficacy of the vaccine, as expected. For the assumed 80% efficacy of the hypothetical vaccine (i.e.,
&, = 0.8) in Table 3 (a), the simulations depicted in Fig. 6 show that nationwide elimination of COVID-19 can be achieved
(ie., %’8 can be brought to a value below unity) if at least 85.4% of the US populace is vaccinated.

The effect of the combined implementation of vaccination and social distancing strategies, on the control reproduction
number (.%.) of the model (2.1), is also monitored, by generating contour plots of .%, as a function of vaccination coverage (f,)
and efficacy (e,), for the aforementioned three levels (low, moderate and high) of social distancing effectiveness. The results
obtained, depicted in Fig. 7, show that COVID-19 elimination (measured in terms of bringing .% to a value less than unity) is
feasible even if social distancing is implemented at a low (mild) level of effectiveness (left panels of Fig. 7). In particular, Fig. 7
(a) shows that, with the assumed 80% efficacy of the vaccine, the implementation of social distancing at low effectiveness
level will lead to the elimination of COVID-19 if the vaccine coverage is at least 81%. This required coverage decreases with
increasing effectiveness of the social distancing measures (Fig. 7 (b) and (c)).

Additional numerical simulations were carried out to assess the community-wide impact of the combined impact of
vaccination with a public face mask use strategy (as measured in terms of reduction in the value of control reproduction
number, .%.). The results obtained, depicted in Fig. 8, show a decrease in .%#. with increasing vaccine efficacy and
compliance. For the fixed vaccine efficacy at 80%, our results show that if 10% of the US population wear face masks in
public, the minimum vaccine coverage needed to eliminate the disease is approximately 83%. The minimum coverage
needed to eliminate the pandemic decreases to 79% and 72%, respectively, if 30% and 50% of the US population wear face
masks in public (Fig. 8 (a), (b) and (c)). Thus, the simulations in Figs. 7 and 8 also emphasize the fact that the prospect of
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Fig. 6. Effects of vaccination as the only intervention strategy. Contour plots of the control reproduction number (%) of the model (2.1), as a function of vaccine
coverage (f,) and vaccine efficacy (e,), for the baseline scenarios in Table 3 and in the absence of mask usage in public for the US. Parameter values used are as
given in Table 3 with ey = ¢y = 0.
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Fig. 7. Effect of combined vaccination and social distancing strategies. Contour plots of the control reproduction number (%), as a function of vaccine coverage
(f,) and vaccine efficacy (e,) for the special case of the model (2.1) with no mask use in public. (a) mild social distancing (i.e., 10% decrease in f,, §s and ;). (b)
Moderate social distancing (i.e., 30% decrease in g, §; and §,). (c) Strict social distancing (i.e., 50% decrease in (,, 8 and ;). Parameter values used are as given in
Table 3.

COVID-19 elimination using a vaccine is greatly enhanced if the vaccination program is complemented with another anti-
COVID-19 intervention (such as face masks usage in public and social distancing), particularly if the complementary
intervention is implemented at moderate or high effectiveness level (i.e, implemented universally, and with high efficacy
and compliance).

5. Discussion and conclusions

A novel Coronavirus (COVID-19) emerged in China in December 2019. The virus, which is caused by SARS-CoV-2, rapidly
spread to over 210 countries causing over 10 million confirmed cases and 500,000 deaths globally (as of June 28, 2020).
Although there are currently no safe and effective vaccine for use in humans, numerous concerted global efforts are underway
aimed at developing such vaccine. In fact, a number of candidate vaccines are undergoing advanced stages of clinical trials.
One of the most promising of these efforts is the candidate vaccine being developed by a research group at Oxford University,
which is expected to be available as early as January 2021 (or, latest, by the spring of 2021). We developed a mathematical
model for assessing the potential community-wide impact of a hypothetical imperfect vaccine against the COVID-19
pandemic in the US. The model we developed, which takes the form of a deterministic system of nonlinear differential
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Fig. 8. Contour plots of the control reproduction number (%), as a function of vaccine coverage (f,) and vaccine efficacy (e,) for (a) 10% mask compliance, (b) 30%
mask compliance, and (c) 50% mask compliance. Parameter values used are as given in Table 3 with various values of cy;.

equations, was parametrized using COVID-19 data for the US. The hypothetical vaccine was assumed to offer imperfect
protective efficacy against the acquisition of COVID-19 infection.

The model was rigorously analysed to gain insight into its dynamical features. These analyses reveal that the continuum of
disease-free equilibria of the epidemic model is asymptotically-stable whenever a certain epidemiological threshold, known
as the control reproduction number (denoted by .%.), is less than unity. The epidemiological implication of this result is that
the community transmission of COVID-19 can be significantly curtailed if .%. < 1. In other words, the routine vaccination
against COVID-19 (using the hypothetical vaccine) can lead to the effective control or elimination of the pandemic if it can
bring (and maintain) .%. to a value less than unity. Furthermore, threshold quantities for the community vaccine-induced
herd immunity were calculated. Our computations show, using the baseline values of the parameters of the model, that at
least 82% of the US population needs to be vaccinated in order to achieve nationwide vaccine-derived herd immunity. This
required vaccine coverage is certainly on the high side, and may not be easily attained for so many reasons, ranging from the
expected insufficient stockpile of the vaccine during the early stages of their deployment, general apathy towards vaccination
and the sizable percentage of people that cannot be vaccinated for medical, personal and other reasons (in fact, Dr. Anthony
Fauci, a member of the US Presidential Task Force on COVID-19 warned on June 28, 2020 that the hypothetical vaccine may
not generate the required level of herd immunity if too many people in the US decide not to be vaccinated (Cable News
Network, 2020)). Our simulations showed that if the vaccination strategy is complemented with other public health in-
terventions, such as a public mask use strategy for instance, the minimum herd immunity threshold required to effectively
control the COVID-19 pandemic significantly reduces to a more realistically-attainable level. For example, if vaccination (using
a vaccine with the assumed efficacy of 80%) is combined with a public face mask strategy with 30% mask compliance
nationwide, the herd immunity threshold for the entire US decreases to 79%. In fact, this threshold decreases to only 46% if
everyone in the US (who can wear a face mask) wears face mask in public. Thus, this study shows that the prospect of the
effective control of COVID-19 using routine vaccination (with the hypothetical vaccine) is significantly enhanced if the
vaccination program is combined with a public face mass use strategy (especially if the effectiveness and coverage of the face
mask use strategy are high enough).

We also carried out numerical simulations to measure the population-level impact of the rate at which the hypothetical
vaccination is administered. The results obtained showed that the COVID-19 burden (as measured in terms of daily and
cumulative COVID-induced mortality) decreases with increasing vaccination rate, as expected. Our simulations showed that
high increases in the vaccination rate (from its baseline value) is necessarily needed to achieve significant reduction in disease
burden. We also simulated the combined effect of implementing the routine vaccination program with social distancing (in
the absence of face mask usage). We showed that COVID-19 can be effectively controlled using the two interventions even if
the effectiveness level of social distancing is low (as long as the vaccine coverage is high). In particular, our simulations
showed that the control reproduction number (.%.) can be reduced to a value less than unity (needed for the effective control
of the disease, in line with the local and global asymptotic stability property of the continuum of disease-free equilibria,
established in Section 3).

We assessed the population-level impact of combining the routine vaccination strategy with a public mask use strategy.
Our simulations show a decrease in the burden of the COVID-19 pandemic (again as measured in terms of reduction in the
value of the reproduction number .%.) with increasing efficacies and compliance of the vaccine and mask usage. It was shown
that if the vaccine efficacy is fixed at the assumed 80% and mask compliance is fixed at the low value of 10%, COVID-19 can be
eliminated if the vaccine coverage is at least 83%. The vaccine coverage decreases to 79%, 72%, and 46%, respectively, if mask
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use compliance is increased to 30%, 50%, and 100%. Again, these result confirmed that COVID-19 elimination is more feasible if
the vaccination program is combined with another intervention (face mask use in public, in this case).

In summary, this study shows that the prospect of eliminating COVID-19 in the US using the imperfect hypothetical
vaccine is promising. This prospect is greatly enhanced if the vaccination program is combined with other interventions that
limit community transmission, such as social distancing and face mask use in public. Certain factors may affect the results we
presented in this study. The first is that the absence of vaccine-related data forced us to make assumptions on the expected
efficacy of the hypothetical vaccine (e,), as well as the rate at which it will be administered in the US (&,). In particular, we
assumed a vaccine efficacy of 80%, which may be higher than the efficacy of the COVID-19 vaccine we end up having in the
future. Second, the model we developed in this study is based on assuming a well-mixed population. This simplifying
homogeneous-mixing assumption (needed for mathematical tractability) constitutes another limitation of the study (in
particular, the value for the vaccine-derived herd immunity threshold we estimated may be lowed if mixing heterogeneities
are incorporated into the model). The authors plan to address these heterogeneities in a future study.
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Appendix A. Proof of Theorem 3.2

Proof. Consider the model (2.1) with %, < 1. Furthermore, consider the following linear Lyapunov function:
2 =g1E1 + &E; + 83k + 84la,
where,
81="a(9s + Y5 +0s), 82=81, &3 ="YaPs(1 —emtm) and g4 = (¢ + vs + 05)Ba(1 — emCm)
It follows that the Lyapunov derivative is given by:
& =g1E1 + 8Es + g3ls + gala, = g1[(Ae + A5 + Aa)[Su+ (1 — £)S,] — 01 E1] + 82[01 1 — 023
E
+Eal(1 = 1I0aE> — (01, + 301] + lroaEs — Ylal. = 1 81 —ewewn) 32 S + (1~ ),
I I
20262+ 85(1- 102> +84r0oE + 81 a1 —ewcw)  Su-+ (1 -5, —Eavala + €1 [B(1 —emaw) 5 Su-+ (1 -5
—83(ps + Ys+ 65)157
which can be simplified to,

T = Yalts 415+ ) 81— eme) gy Su (1= )|~ YaB(1 — evew) 05+ 75+ )

+ Yalds +vs+ 65) {ﬁa(l - €MCM)ING(SU +(1- e,,)sv)} — (s +vs + 65)65(1 — eMCM)Yala
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so that (noting that since S;(0) + S,(0) < N(t) in Q and 0 < e < 1, then Sy(t) + (1 —&,)Sy(t) < N(t) for all t),
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Hence, 7 < 0if . %. < 1,and .7 = 0 if and only if E;(t) = 0. Therefore, .7 is a Lyapunov function for system (2.1). Substituting
E»(t) =0 in the model (2.1) shows that (Sy(t),S,(t),E;(t), Ex(t), Is(t), Ia(t), I5(t),R(t)) = (S}, S5, 0,0,0,0,0,R*) as t— co.
Furthermore, it can be shown that the largest compact invariant set in
{(Su(t), Sy (), E1 (£), E2 (£), Is(£), Ia(£), Iy (£), R(t)) €Q : & = 0} is the continuum of disease-free equilibria (). Hence, it follows,
by the LaSalle’s Invariance Principle, that the continuum of disease-free equilibria of the model (2.1) is a stable global attractor in
Q whenever .#. < 1.
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