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SUMMARY
Neural activity is often described in terms of population-level factors extracted from the responses of many
neurons. Factors provide a lower-dimensional description with the aim of shedding light on network compu-
tations. Yet, mechanistically, computations are performed not by continuously valued factors but by interac-
tions among neurons that spike discretely and variably. Models provide a means of bridging these levels of
description. We developed a general method for training model networks of spiking neurons by leveraging
factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-
building framework, this formalism illustrates how reliable and continuously valued factors can arise from
seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network
models with different levels of realism. The relationship between spikes and factors in such networks pro-
vides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.
INTRODUCTION

Individual neurons and their spikes are the fundamental units

from which a mechanistic understanding of neural computation

must be built. Yet, analysis frequently abstracts away from

individual spikes and focuses on a firing rate that governs the

propensity to spike. A growing trend is to treat firing rates as re-

flecting population-level ‘‘latent factors.’’ Experiments seek to

estimate firing rates and latent factors because hypotheses

employ these concepts. In sensory systems, firing rates are hy-

pothesized to be functions of stimulus properties, and decoding

operates upon rates or factors. Decisions are hypothesized to

employ latent variables reflected in firing rates.1,2 Increasingly,

hypotheses regarding computation are expressed in terms of

flow-fields shaping the multi-dimensional trajectory of latent fac-

tors.3–19 Such hypotheses aim to be mechanistic and thus

explanatory. For example, it is proposed that factor-level dy-

namics explain a causal chain in which pre-movement activity

culminates in movement.20,21
Spike-based interactions among neurons are patently mecha-

nistic, but do flow field arrows guiding abstracted state-space

trajectories constitute a ‘‘mechanism’’? The hope that they do

is bolstered by the ability to train recurrent neural networks to

perform brain-like computations and to understand their solu-

tions in terms of reduced-dimensional projections of activity.

Yet, the vast majority of such networks employ rate-based units

and thus assume what one might hope to establish: that firing

rates, and latent factors derived from them, are a valid abstrac-

tion. There is also ambiguity regarding whether rate-based units

are analogous to neurons or simply an effective basis for approx-

imating arbitrary functions and dynamics.22,23

If concepts such as latent-factor dynamics and firing rates are

to form the foundation not just of analysis but of mechanistic un-

derstanding, it must be possible to link them concretely to indi-

vidual neuron spikes. A challenge is that neither latent factor

nor even firing rate have accepted physiological definitions.

Except when spikes are unusually plentiful, there is no accepted

procedure (biophysical or analytical) for deriving a smooth rate
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from a neuron’s single-trial spike train. This has prompted the

concern that when spiking is intermittent (as is typical in cortex)

‘‘it does not make sense to talk about the firing rate.’’24 Firing-

rate-based analyses have been described as ad hoc ‘‘with virtu-

ally no empirical or theoretical support’’25 and lacking any clear

link to mechanism. The notion of firing rate is not solidified by

moving to a more detailed level; the membrane potential does

not correspond to a rate that yields probabilistic spiking via

cell-intrinsic mechanisms. Moving to a broader level is more

promising; a neuron’s rate might be defined as the average

spiking frequency of many self-similar neurons.26–28 Response

heterogeneity (e.g., Churchland and Shenoy29) suggests gener-

alizing this definition of firing rate to weighted averages of spiking

activity. That approach accords with common methods for sta-

tistically estimating latent factors but leaves open the question

of whether factors are a statistical convenience or a mechanisti-

cally meaningful concept.

The goal of this study is to determine whether latent-factor dy-

namics provide a principled way of understanding how spiking

networks—specifically networks with realistic spiking variability

and response heterogeneity—perform computations. We build

upon studies that have successfully trained recurrent spiking

networks to perform canonical computations23,30–42 or emulate

continuously valued dynamical systems.23,26,30–32 We introduce

an approach that focuses specifically on factors as training tar-

gets. Our method explicitly and concretely defines factors in

terms of the synaptic and physiological elements of a spiking

neural network. The focus on factors improves the flexibility

and power of training; it allows construction of spiking networks

that perform a wide variety of tasks, including emulating data-

derived dynamics, and that perform robustly even when spiking

is realistically variable.

Spiking networks trained via this approach displayed proper-

ties resembling those observed empirically, including mixed

selectivity and seemingly noisy spiking. Nevertheless, factors

were reliable and provided the best way to understand network

function: computation was performed by factor-level interac-

tions mediated by seemingly noisy spiking. This remained true

when network realism was increased to include excitatory and

inhibitory cell types and sparse connectivity. Spiking networks

shared a factor-level correspondence with traditional rate-based

networks, yielding a simple procedure for training spiking net-

works to perform computations normally instantiated within

rate networks. The correspondence validates rate-based net-

works as a powerful tool for modeling factor-level computations,

yet cautions against viewing rate units as idealized spiking neu-

rons. For our spiking-network neurons, firing rate was not a local

property but was definable only via population-level factors.

These results illustrate that, although the abstraction of factors

can seem uncomfortably removed from the cellular level, factors

are both well defined physiologically and can be essential for un-

derstanding computational mechanism.

RESULTS

Constructing factor-based spiking models
Extracting factors from neural recordings involves analysis, often

employing steps unlikely to be performed by real neurons in real
632 Neuron 111, 631–649, March 1, 2023
time (e.g., trial averaging or statistical inference). Nevertheless, it

is often proposed that computation can be modeled via factor-

level interactions, or that factors provide a basis for outputs.

Can the abstraction of factors be linked to physiological compo-

nents within neural circuits? There exist two, hopefully compat-

ible, perspectives regarding the relationship between spiking

neurons and continuously valued factors. In one perspective

(Figure 1A, left), neurons are primary, and factors summarize

important aspects of spiking-neuron connectivity and activity.

In the other perspective (Figure 1A, right), factors are viewed

as primary, and spiking neurons instantiate a function that cre-

ates factor-level dynamics. We construct spiking networks (Fig-

ure 1B) to ask whether both views can be simultaneously valid,

and whether the factor-level perspective can aid both network

training and understanding of network computation.

This strategy involves a technical goal and a conceptual goal.

The technical goal is to design networks that embody common

assumptions about factors, accord with basic properties of neu-

ral circuits, and display spiking patterns that are realistically var-

iable. The conceptual goal is to analyze and understand how

such networks compute and ask when and whether common

abstractions—such as factors and firing rates—are useful.

Networks employ leaky integrate-and-fire (LIF) neurons that

spike when the membrane potential reaches threshold. Spikes

impact post-synaptic membrane potentials after being filtered

with two characteristic synaptic time constants, 5 and 100 ms,

chosen to respect the diversity of synaptic timescales while

maintaining model simplicity. The collection of filtered spike

trains for all neurons and both timescales is denoted by a time-

dependent vector sðtÞ. Multiplication of sðtÞ by a synaptic weight

matrix, J, determines a vector of post-synaptic inputs, JsðtÞ (in
units of mV; synaptic currentmultiplied by unity input resistance).

Given two timescales and N neurons, sðtÞ contains 2N elements

and J is of dimension N32N (N neurons with 2N incoming

connections).

How should one identify values of J so that the network sup-

ports factors? This problem can be partitioned in two, with

each half aligning with a key assumption regarding factors. First,

if factors form the basis of computation (not just analysis), they

must be concretely definable in terms of network elements. We

make the simplest assumption: the factors the network con-

structs, yðtÞ, are linear sums of single-trial synaptically filtered

spiking activity:

yðtÞ = wsðtÞ: (Equation 1)

Thematrixw (Figure 1B, green) is of sizeP3 2N, whereP is the

number of factors (2N is twice the number of neurons due to two

synaptic timescales).

The second assumption is that if spiking reflects both factors

(e.g., in the average spike-rate) and signals unrelated to factors

(perhaps manifested as trial-to-trial variability), each neuron’s

input must contain both the factors and a ‘‘non-factor-related’’

component. We consider that these two input components arise

from two distinct connectivity components. We define Jfac as the

component of connectivity necessary to generate the factors.

Multiplying Jfac by the synaptically filtered spikes yields

JfacsðtÞ, the recurrent input each neuron receives via this
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Figure 1. Factors provide a way of under-

standing computation in spiking networks

(A) Our spiking networks can be viewed from two

complementary perspectives. Left: a neuron-centric

view. Causal interactions involve connections (black

synapses) among model spiking neurons (red cir-

cles). Causal interactions flow ‘‘through,’’ and

thereby construct, a modest number of factors (blue

circles). Outputs (magenta) derive directly from the

spiking neurons. Right: a factor-centric view. The

computationally relevant interactions (green) occur

among the factors (blue). Those interactions flow

through a large population of spiking neurons (red).

The population can instantiate a broad range of

nonlinear functions, allowing a broad range of

potential dynamics. Outputs are derived from the

factors.

(B) Schematic of network architecture. Spiking

neurons (red) interact through synapses that contain

both an untrained, random aspect, J0, (black) and a

trained aspect that is decomposed into two com-

ponents: w and u (green). w captures the linear

dependence of factors (blue circles) upon neural

activity and is trained. u captures the impact of the

factors back onto the neurons and is random and

untrained. Factors and their associated connections

are illustrated as explicit model elements but this is

not necessary; the influence of J0, w, and u can be

combined into a unified set of connections, J.

(C) Network dynamics can be understood based on

factor trajectories in state space. Gray trajectories

show the evolution of the first two factors for twenty trials of the cycling task.We showmany overlapping gray traces to convey the overall variability of the factors.

A single example trial is shown in black. The blue trace shows the mean trajectory across 100 trials. Although trajectories vary modestly across trials, factor-level

dynamics are stable as illustrated by the stability of the dynamical flow field (green arrows). The flow field was determined by perturbing the factors andmeasuring

their recovery.
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connectivity component. The assumption that Jfac conveys fac-

tor-related input implies

JfacsðtÞ = uyðtÞ; (Equation 2)

where u is an N3P matrix specifying how N neurons are

impacted by P factors (Figure 1B, green). Respecting the

assumption that each neuron reflects random combinations

of factors,43 we pick the entries of u randomly, resulting in

‘‘mixed selectivity’’ (e.g., Machens et al.44 and Rigotti et al.45).

Although other choices are possible, this choice is advanta-

geous because network construction becomes insensitive to

the factor basis; two networks trained using different linear

transformations of the same target factors will be functionally

equivalent.

We hypothesize that response variability arises due to connec-

tivity that is functionally irrelevant to the factors but supports per-

formance (or future learning) of other computations. We define

this component as J0 (Figure 1B, black). This additional connec-

tivity is unrelated to the current factor-mediated computation

and on its own should produce functionally irrelevant synaptic

input. To incorporate this possibility in a simple way, we choose

the entries of J0 randomly.

We define the full connectivity matrix as J = Jfac + J0. Note

that Jfac and J0 do not reflect anatomically separate synapses—

each synaptic weight in J reflects both components. Recalling
that yðtÞ = wsðtÞ, the relationship JfacsðtÞ = uyðtÞ = uwsðtÞ im-

pliesJfac is low rank23,32,46with rankequal to thenumberof factors.

Adding J0 means J is full rank, while containing a learned low-rank

component.47

Network training identifies w so that yðtÞzytargðtÞ, where

ytargðtÞ are a set of target factors (i.e., a set of factors we

are seeking to construct). We employ recursive least squares

(RLS) when learning w, to encourage stability of the resulting

dynamics. u remains fixed and random, reflecting the choice

above that individual neuron activity reflects random mixtures

of the factors. J0 also remains fixed and random, reflecting the

assumption that it is not tailored to the present computation.

Learning w with RLS is similar to FORCE learning in Sussillo

and Abbott48 and Nicola and Clopath,39 but with a key con-

ceptual and practical difference. In FORCE learning, the opti-

mization of network output creates internal signals that

perform the underlying computations. We found that standard

FORCE learning typically worked poorly when spiking vari-

ability was considerable and firing rate ranges were reason-

able. Additionally, because we wished to explore whether

and how computation can be described at the factor level,

we wished factors to be explicitly defined rather than to

implicitly emerge. We thus used internal training targets (i.e.,

factors) rather than target outputs. We chose target factors

by deriving them from data or from a firing rate model. This

choice ensured that target factors were sufficient to perform
Neuron 111, 631–649, March 1, 2023 633



ll
Viewpoint
the computation; ideally no additional factors would need to

emerge during training. This approach relates to the full-

FORCE approach49 but uses low-dimensional training targets.

We found that the above training procedure was effective

for any reasonably chosen set of target factors (i.e., factors

with low trajectory tangling; see STAR Methods). Intuitively,

for almost any momentary pattern of spiking, sðtÞ, one can

find a w such that wsðtÞ approximates the current values of

ytargðtÞ. Having done so, the factor-based connectivity Jfac en-

sures that each neuron receives a factor-related input. Spiking

reflects this input, improving the ability, at future moments, to

find a w that extracts the factors. Initially w must be

constantly updated, but with time RLS converges on a w

that works well consistently. Convergence was rapid, e.g.,

for the cycling task considered below, training typically

converged after a few hundred examples. One reason for

rapid convergence is that training only had to learn to correct

activity deviations that impacted the factors. It was not neces-

sary to achieve stable trajectories in the full-dimensional

space. Indeed, trained network activity followed highly vari-

able high-dimensional trajectories (resulting in considerable

spiking variability, documented below) despite adhering close

to the target factor-level trajectory.

Dynamics at the level of the factors
We trained a network to generate factors extracted from empir-

ical data, both to show the flexibility of the factor-based training

approach and to explore the relationship between factor-level

dynamics and the more obviously mechanistic level of spiking.

We obtained target factors from the extracellularly recorded

spiking activity of 109 well-isolated single neurons recorded

from primary motor cortex (M1) as monkeys cycled a hand-

held pedal.14 Empirical factors were estimated using dimension-

ality reduction after temporal filtering and trial averaging.14 We

used principal component analysis (PCA) to reduce the pop-

ulation response (a 1093T matrix) to twelve factors (a 123 T ma-

trix), with T being the number of time points during one cycle. The

reduced-dimensional data define a vector, ytargðtÞ, describing
the temporal evolution of twelve target factors. Each recorded

neuron’s trial-averaged firing rate was well approximated by a

weighted sumof these factors (99%of the variance for uni-direc-

tional cycling). Using PCAwas not critical; factor analysis yielded

12 factors spanning an almost identical space. Similar factors

were identified without trial averaging.50

Our network construction procedure succeeded in training a

network of 800 neurons to produce the empirical factors. Unlike

for empirical data, model factors do not need to be estimated but

are explicitly defined by the twelve-dimensional vector yðtÞ,
which is simply a weighted sum of spikes: yðtÞ = wsðtÞ. Plotting
the first two network factors (Figure 1C; one trial shown in black,

average of 100 trials in blue) yielded a circular trajectory like that

seen empirically.14 The match between network and target fac-

tors was excellent (Figure 2A, blue and dotted-black traces over-

lap). Spiking occurred at reasonable physiological rates (12

spikes/s on average). The functionally irrelevant connectivity

component, J0, produced variable spiking (quantified further

below) but did not significantly disrupt factor trajectories, which

were similar across trials (Figure 1C, gray traces).
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The operation of the spiking network clarifies that both the

‘‘neuron-centric’’ (Figure 1A, left) and ‘‘factor-centric’’ (Fig-

ure 1A, right) perspectives are valid. One can consider neurons

(Figure 1B, red) primary, with factors mediating how current

spiking influences future spiking. Alternatively, one can

consider factors (Figure 1B, blue) primary, influencing their

own future values via a population of spiking neurons. Factors

also provide a basis for network outputs: any linear readout of

the factors is a plausible network output because it is also

obtainable as a linear combination of spiking-neuron activity.

As we show below, the only reliable outputs are combinations

of the factors. The factor-centric view further assumes that

computationally relevant aspects of network dynamics are

describable at the factor level, without needing to know the ac-

tivity of individual spiking neurons. This was indeed true to a

first approximation. A flow field supporting a stable limit cycle

in factor space (Figure 1C, green arrows) is revealed by factor

trajectories during recovery from perturbations. Strictly

speaking, the flow field is fully defined only in the full N-dimen-

sional space; factor-space trajectories exhibit small variations

(gray traces) that cannot be explained by purely factor-level dy-

namics. Nevertheless, factor-based dynamics provide a good

way of understanding how the network performs its function:

a stable limit cycle produces repeating patterns (Figure 2A)

that provide a basis for outputs.

Establishing analytically when the factor-centric view provides

a good approximation, and when factor-level dynamics are sta-

ble, is difficult (e.g., Schuessler et al.47) and essentially impos-

sible as network realism increases. Nevertheless, two empirical

features indicate when the factor-centric view is likely appro-

priate. First, spiking should appear quasi-random,37 resembling

a point (e.g., Poisson) process with an underlying rate for every

neuron. Second, this rate should be a function of the factors

with no additional terms needed. Together, these features

dictate that future factor values are approximately a weighted

sum of rates, which are in turn functions of the present factor

values, yielding dynamics describable at the factor level. This

is an approximation because factors are actually weighted

sums of spikes, not rates. However, it can be a very good

approximation if the impact of spiking variability is reduced

when spikes are summed across many neurons.

In the following sections, we document these features and

their origins. We show that, as realism is added to the connectiv-

ity, training continues to produce dynamics that are well

described at the factor level. Finally, we show that our procedure

allows spiking networks to efficiently perform computations typi-

cally implemented in rate-based networks.

Reliable factors and outputs despite spiking variability
The network documented in Figures 1 and 2 was trained to pro-

duce the target factors after receiving an input pulse. Membrane

voltages were randomly initialized before the pulse. Neverthe-

less, the network produces similar factors on every trial (Fig-

ure 2A, blue and gray traces show two example trials; 2% me-

dian single-trial error). In contrast, individual neuron membrane

potentials evolve very differently across trials (Figure 2B,

compare red and gray traces). Consequently, spiking is variable.

On single trials, it is hard to discern a clear relationship between
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(A) The network model produces factors that are consistent from trial to trial. The first 3 factors (of 12) produced by the spiking network model on two different

trials (blue and gray). The first two factors are those plotted in state space in Figure 1C. The dotted black trace plots target factors. Calibration indicates 10

arbitrary units (a.u.).

(B) Subthreshold potentials and spiking activity vary across trials. Membrane voltage is plotted for two example neurons (bottom and top) and two trials (red and

gray). Dotted box highlights the second to last cycle of the task and illustrates that different numbers of spikes are emitted on different trials. The across-trial Fano

factor of these two neurons was 1.10 and 0.99.

(C) Histogram of Fano factor values across the population.

(D) Individual neuron spiking varies across trials but nevertheless reflects a reliable component, such that a periodic pattern is visible when considering many

trials. Raster plot of 100 randomly selected trials from one neuron (Fano factor of 0.99).

(E) The reliability of the factors allows the network to produce reliable outputs. Three network outputs are shown on two trials (magenta and gray). The target

network output (recorded muscle activity) is shown in dotted black. Calibrations are 0.2 a.u.

(F) Spiking is asynchronous across the network. Raster plot of 100 randomly selected neurons for one trial.
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single-neuron spiking and the factors. For example, in Figure 2B

(bottom), spiking is plentiful on some cycles/trials and scant on

others (compare within dotted box). For this neuron, the Fano

factor was 0.99 (based on across-trial spike-count variability in

100ms cycle-lockedwindows; see STARMethods). Across neu-

rons, the average Fano factor was 0.68 (range: 0.38–1.42; Fig-

ure 2C), in general agreement with values observed during

movement.51 Clear temporal modulation of spiking emerges

only when multiple trials are considered (Figure 2D), as is

commonly observed in empirical recordings.

Variable membrane-voltage trajectories are a consequence

of different initial network states interacting with very complex

(likely chaotic) dynamics.52,53 This yielded seemingly stochastic

spiking even though simulations were deterministic. Despite

spiking variability, factors supported reliable outputs: weighted

sums of model factors reliably decoded experimentally re-

corded muscle activity (Figure 2E; magenta and gray plot two

representative trials). Importantly, because factors are weig-

hted sums of spikes, each factor-based output is simply a

weighted sum of single-neuron spikes. Decoding is reliable

because the weighted sum, across neurons that spike largely
asynchronously (Figure 2F; Figure S1), reduces variability

through averaging.

Reliable aspects of neural activity reflect the factors
Empirical analyses often assume that each neuron’s response

reflects both reliable signals that are computationally meaningful

and additional noise-like components. Network construction

was inspired by this idealization, and networks did indeed exhibit

spiking that was task-modulated yet also variable (Figures 2B–

2D). Because model neurons were deterministic, if distinct reli-

able and noise-like signals impact spiking they must be present

within a neuron’s input.

Across neurons, 96% of the variance in the trial-averaged

input was accounted for by regressing against the twelve target

factors (Figure S2A). Thus, the reliable component of each neu-

ron’s response does indeed derive from the computationally

meaningful factors. Of course, to be computationally meaningful,

the reliable component must be present and sizable on single tri-

als. This was indeed the case: the top twelve principle compo-

nents (PCs) captured considerable variance (53%, Figure S2B)

that was reliably task-related (i.e., repeated at the cycling period,
Neuron 111, 631–649, March 1, 2023 635
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Figure S2C). If reliable signals are computationally meaningful,

removing them should impair computation. This was also true:

removing the neural inputs due to any of the largest PCs

rendered the network non-functional (muscle activity could not

be read out).

Single-trial inputs also contained a sizable unreliable compo-

nent: the remaining 47% of the variance was split across many

PCs (Figure S2B), displayed a broad frequency spectrum (Fig-

ure S2C), and was nearly uncorrelated across trials (average r =

0:007). The signals captured by these PCswere not computation-

allymeaningful: removing the contributionof higher-orderPCshad

almostno impactonnetworkoutputsor factors.Thiswas trueeven

if we removed the contribution of hundreds of higher-order PCs,

accounting for >15% of the total input variance (Figure S2D).

These findings thus support the common assumption that

each neuron’s response reflects both reliable and unreliable

signals. The finding that the computationally meaningful compo-

nent arose solely from the factors supports the validity of the fac-

tor-centric view. As a technical aside, the ability to determine

that the reliable input component depended on the factors (Fig-

ure S2A) was aided by intentionally choosing a ‘‘complete’’ set of

factors as training targets. Thus, all network factors were known;

no new ‘‘emergent’’ factors arose. This was typical in our simu-

lations, but exceptions are possible. Networks are nonlinear.

Thus, for any given factor (e.g., a 2 Hz sine-wave) nonlinear dis-

tortions (e.g., higher harmonics) can yield ‘‘new’’ factors. In this

case, this was irrelevant: all higher harmonics existed within

the target factors so no novel factors emerged. For more

complex tasks, assembling a complete set of factors may be

challenging. Below, we show how this can be accomplished

by employing trained rate-unit networks. We found that this pro-

cedure yields target factors sufficient to perform the computa-

tion and rich enough to contain any additional factor likely to

emerge. Not only is trainingmost likely to be successful when us-

ing a complete set of target factors,39,49 interpretation is also

simplest. For example, in the next section we leverage the

explicitly defined factors to determine the origin of the reliable

and unreliable synaptic-input components.

Reliable and variable synaptic-input components
Above we employed PCA, much as an experimenter might, and

observed that each neuron’s synaptic input displays a reliable,

factor-related component and an unreliable component. Ideally

one would define these components not by analysis but mecha-

nistically, in terms of model elements. Our model-construction

approach makes this easy because factors are concretely

defined. Every neuron’s synaptic input can be decomposed

into a factor-based component and a non-factor-based compo-

nent. We can write the factor-based input for neuron n as a

weighted sum of factors:

zFnðtÞ =
XP
p

u0
npypðtÞ; (Equation 3)

whereP is the number of factors. Theweightsu
0
reflect both the

impactofu (whichalongwithw definesJfac) and the fact that, once

training is complete, factor-based information also flows through

J0 (once neurons reflect factors they inevitably transmit factor-
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related signals through both connection components, see STAR

Methods). The non-factor-based input, which arises solely from

J0, is the total synaptic input minus the factor-based input.

Figure 3A shows factor-based and non-factor-based inputs

(on the same scale) for one neuron and two trials. The factor-

based component is similar on both trials (blue and gray traces

overlap). This is true across all neurons—plotting the factor-

based component on the second versus first trial reveals a

high correlation (Figure 3B, blue, one point per time/neuron).

This was true across all pairs of trials (average r = 0:95). This

reliability is a direct consequence of the factors being reliable.

In contrast, the non-factor-based component is variable across

trials (Figure 3A, red and gray traces). This was true across all

neurons (Figure 3B red) and pairs of trials (average r = 0:024).

A common assumption is that ‘‘meaningful’’ aspects of each

neuron’s response vary across nominally identical trials, just

much less than spiking might suggest.54 To assess whether fac-

tor- and non-factor-based inputs provide insight into this

assumption, we computed the across-trial variance of each

input component. Variance was computed separately for each

time, averaged across time, and normalized by within-trial mod-

ulation (assessed as the across-time variance, averaged across

trials). The factor-based component displayed variances above

zero but well below unity (Figure 3C, blue; mean: 0.07). In

contrast, values for the non-factor-based component clustered

near unity (Figure 3C, red; mean 0.99). Unity values indicate

that across-trial variance is as large as within-trial variance, as

would be expected for pure noise. Thus, each neuron’s spiking

is driven by a factor-based component that is reliable (but shows

modest variability; e.g., Figure 1C, gray traces) and a non-factor-

based component that effectively injects noise.

These properties are consistent with a view of spiking in which

computationally irrelevant variability is ‘‘layered’’ on top of compu-

tationally impactful variability. Yet, it is not the case that there exist

‘‘factor-based spikes’’ and non-factor-based spikes. Every spike

is a joint consequence of both inputs. Which raises the question:

why does the unreliable non-factor-based input not have a greater

impact on factor reliability? The answer relates to the non-factor-

based component being weakly correlated across neurons, even

those with similar ‘‘tuning.’’ Figure 3D shows factor-based and

non-factor-based components for two neurons on one trial. These

neurons had strongly correlated factor-based components (blue;

r = 0:97 across all trials), but there was almost no correlation be-

tween their non-factor-based components (r = � 0:003 for this

trial, r = 0:09 across all trials, Figure 3E).

Consistent with the example in Figures 3D and 3E, neurons

with correlated factor-based inputs did not have correlated

non-factor-based inputs. Across neuron pairs, the correlation

between factor-based components occasionally became large

(99th percentiles: �0.90 and +0.90) but the correlation between

non-factor-based components never did (99th percentiles:

�0.10 and +0.11). There was essentially no relationship between

these two correlations (R2 = 0:003, slope = 0.005). Consistent

with weak pairwise correlations, the non-factor-based compo-

nent was high dimensional across neurons (Figure 3F, red).

These observations explain why a component of spiking vari-

ability appears ‘‘private.’’ Even when two neurons share similar

factor-based responses, spiking is also driven by an uncorrelated
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Figure 3. Synaptic inputs have reliable and variable components

The input to each neuron is partitioned into a ‘‘factor-based synaptic input’’ and a ‘‘non-factor-based synaptic input.’’

(A) Example illustrating that only the factor-based input is reliable across trials. The factor-based input (bottom) and non-factor-based input (top) are shown for

one neuron and two trials (same neuron and trials for both). Both input components are plotted on the same scale.

(B) Scatterplot confirming that the finding illustrated in (A) held across all neurons. This analysis asks whether, across neurons and times, the value of the factor-

based input on trial 1 is predictive of the value on trial 2. Indeed, this correlation was strong (blue, r = 0:95). In contrast, the correlation was very weak for the non-

factor-based input (red, r = 0:024). Each point corresponds to one neuron and time for the same two trials as in (A).

(C) Distributions confirming that the finding in (A) and (B) held across all trials: the non-factor-based input (red) is essentially unrelated across trials while the factor-

based input (blue) displays onlymodest across-trial variability. For each neuron, we computed the across-trial variance of the relevant input across 100 trials, then

normalized by within-trial across-time variance.

(D) Example illustrating that only the factor-based input is reliable across neurons. The factor-based input (bottom) and non-factor-based input (top) are shown for

two neurons and one trial (same neurons and trial for both). These two neurons were chosen because they have strongly correlated factor-based inputs (r = 0:97

on this trial). Nevertheless, the non-factor-based input was essentially uncorrelated (r = � 0:003 on this trial). Both input components are plotted on the

same scale.

(E) Scatterplot confirming that the finding illustrated in (D) held across all (100) trials for these two neurons: the factor-based input was strongly correlated (blue,

r = 0:97), yet the non-factor-based input was not (red, r = 0:09). Analysis considers data from all trials for the same neurons as in (D). Each point corresponds to

one time during one trial.

(F) Dimensionality (across neurons) of the factor-based and non-factor-based inputs. Cumulative variance accounted for is plotted as a function of the number of

PC dimensions. PCs were computed from the neuron-neuron covariance matrix. Across the population, factor-based inputs were accounted for by a small

number of PCs, indicating low dimensionality and strong correlations across neurons. In contrast, non-factor-based inputs were very high dimensional and thus

weakly correlated among neurons.
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component. Precisely because it is uncorrelated, it minimally im-

pacts the factors. Networks thus display the remarkable property

of being unreliable at the spiking level while exhibiting robust fac-

tor-level dynamics. The fact that networks can compute in this

regime is relevant to many common analyses, including trial aver-

aging and methods that infer single-trial firing rates. These

methods assume spiking ‘‘noise’’ should be isolated from compu-

tationally important signals. This assumption is difficult to justify

from a single-neuron perspective but makes perfect sense for

spiking networks operating in the regime documented here.

A conceptually grounded firing rate
Analysis and interpretation often assume that a neuron’s spikes

probabilistically reflect an underlying firing rate, typically modeled
statistically as a Poisson process with rate rðtÞ. Historically, trial
averagingwas used to estimate rðtÞ. Recent approaches consider
rðtÞ to be defined on single trials, and seminal studies have linked

that rate to task-relevant inputs (e.g., Park et al.55) or internal vari-

ables (e.g., Churchland et al.56). Statistical analysis methods have

built on this framework andmodeled single-trial rates as functions

of underlying factors (e.g., Pandarinath et al.11 and Yu et al.57) or

the activity of other neurons (e.g., Yates et al.58).

These analysis approaches identify quantities that, in practice,

appear deeply relevant to behavior and computation. Yet, we

lack a mechanistic grounding of the term firing rate. If rðtÞ is a hid-

den variable that governs the probability of spiking, what and

where is that variable? Are the operations used to estimate rðtÞ
on single trials purely statistical, or do they have mechanistic
Neuron 111, 631–649, March 1, 2023 637
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Figure 4. A conceptually grounded firing

rate

(A) Spike trains from 100 trials for a single model

neuron during the cycling task. Spiking was vari-

able across trials (Fano factor of 1.37), but rhyth-

mically structured activity becomes visible when

multiple trials are observed.

(B) Our factor-based single-trial firing rate, rFn ðtÞ, for
three trials for the neuron shown in (A). Spike times

on each trial are shown as dots. rFn ðtÞ is reliable from
trial to trial, even in moments when the neuron does

not spike (e.g., 0–1,000 ms in example trial 3).

(C) Comparison of firing rates computed mecha-

nistically (factor-based), statistically by leveraging

the full population (LFADS), and traditionally via

filtering the neuron’s spike train (20 ms Gaussian).

Analysis is for the same neuron as in (A). All three

methods result in similar across-trial mean firing

rates (solid line) but with different degrees of trial-

to-trial variability (across-trial standard deviation

shown in the shaded region).

(D) Distribution (across the population) of the

temporally averaged across-trial standard deviation

of rFn ðtÞ (red), theLFADS-derivedsingle-trial firing rate
(green), and temporally filtered spike trains (gray).
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meaning? For example, when estimating rðtÞ for a given neuron,

manymethods leverage the spikes of other neurons (e.g., Pandar-

inath et al.11 and Yates et al.58). Is this simply effective inference

that leverages a tendency for rates to be correlated, or should

a mechanistic definition of rðtÞ incorporate population-level

spiking?

A mechanistic definition of rðtÞ can be derived from the factor-

based component of a neuron’s synaptic input. To do so, we

respect the central idea of a rate: its goal is not to indicate with

certainty whether a spike will occur (for that, one would look to

the membrane potential) but to describe the probability of

spiking based on computationally meaningful quantities. We

define the ‘‘factor-based’’ firing rate of neuron n as

rFn ðtÞ = F
�
zFn ðtÞ

�
; (Equation 4)

where FðÞ captures a monotonic, nonlinear relationship be-

tween the factor-based synaptic input zFn ðtÞ and the probability

of spiking.

In a spiking network with any degree of realism, identifying the

precise form of FðÞ is challenging. Yet, given that FðÞ must be

positive-valued and monotonically increasing, it can be approx-

imated. For simplicity, and to mesh with prior statistical ap-

proaches, we chose FðÞ to be an exponential with a neuron-spe-

cific gain and offset:

rFn ðtÞ = exp
�
b1
nz

F
nðtÞ + b0

n

�
: (Equation 5)
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One could employ a more sophisticated

function-class, but this would have mini-

mal quantitative impact. For neurons with

reasonable physiological rates, the expo-

nential provides an excellent approxima-

tion (Figure S3; STAR Methods).
Defined this way, rFn ðtÞ displays properties typically attributed

to single-trial firing rates. To illustrate, we consider one example

simulated neuron. Despite variable spiking (Figure 4A), rFn ðtÞ is
similar across trials (Figure 4B). This agrees with the common

assumption, noted above, that underlying rates are more reliable

than spiking would suggest. Indeed, there are moments where

the neuron exhibits zero spikes over an approximately 1-s inter-

val (Figure 4B, bottom, first two cycles). From a literalist’s

perspective, this would indicate a zero firing rate. Yet rFn ðtÞ on
that trial resembles itself on other trials, consistent with rFn ðtÞ
determining the probability of spikes thatmay ormay not actually

be produced. This relates to an important feature of rFn ðtÞ: it can
change on timescales faster than those of spiking. There is no

paradox in a firing rate that modulates at 10 Hz but peaks at 5

spikes/s.

We propose rFn ðtÞ as amechanistic ‘‘ground-truth’’ definition of

a single-trial firing rate—one that can be computed when all

network variables are known. Does this definition accord with

statistical approaches that infer firing rates from data? This

was indeed the case. We first considered the common practice

of filtering (20-ms Gaussian kernel) and trial averaging single-

neuron spike trains. This produced an estimated average firing

rate (Figure 4C, black) that resembled the trial-averaged rFn ðtÞ
(Figure 4C, red) but was somewhat over-smoothed. Over-

smoothing could have been combated with a narrower filter,

but at the cost of compromising already unreliable single-trial es-

timates (compare distributions in Figure 4D and envelopes in
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Figure 4C). This highlights a well-known trade-off when esti-

mating a neuron’s rate using only its own spikes: no single filter

choice can achieve undistorted trial averages without overesti-

mating single-trial variability. We next considered latent factor

analysis via dynamical systems (LFADS) (Pandarinath et al.11;

see STARMethods), which estimates single-trial rates using sta-

tistical assumptions that map well onto our network properties:

factor-level dynamics, factor-based rates, and roughly Poisson

spiking. LFADS-inferred rates (Figure 4C, green) closely

matched rFn ðtÞ on average and also on single trials ðr = 0:87Þ.
Furthermore, LFADS-inferred rates displayed across-trial vari-

ability of the same order as rFn ðtÞ andmuch less than filtered spike

trains (Figure 4D).

LFADS is a particularly appropriate analysis tool, but other sin-

gle-trial-focused methods would have similarly succeeded in

estimating single-trial rates.11,57,59–64 All these methods assume

the spikes of the full population are informative regarding the rate

of a particular neuron. Explicitly defining rFn ðtÞ clarifies that this

assumption is fundamental. Unlike other assumptions (e.g., tem-

poral smoothness), this is not a statistical regularity that tends to

be true but emerges from the definition of rFn ðtÞ. One cannot

isolate a neuron’s factor-based input component from local in-

formation; every synapse conveys both factor- and non-factor-

based components. Thus, although rFn ðtÞ describes a property

of a specific neuron (its probability of emitting a spike) it remains

a population-level quantity.

Both our definition of rFn ðtÞ and the operation of modern

methods such as LFADS suggest a conceptual reorientation.

Because it has long been possible to estimate firing rates via trial

averaging, the concept of firing rate is familiar and seems funda-

mental. This makes it tempting to view factors as an abstraction

defined in terms of rates. For example, it is common to consider

a high-dimensional firing rate space, with factors relating to a

subspace capturing most firing rate variance.65,66 This descrip-

tion holds for our model networks. Yet, thinking of factors as

‘‘low-dimensional summaries’’ of rates is not quite correct. Rates

are defined in terms of factors, which are in fact more

fundamental.

Extending to more realistic network models
The network analyzed above employs a single-model cell type

forming both excitatory and inhibitory synapses. To explore

whether key properties hold when additional realism is incorpo-

rated, we considered two important features of biological net-

works. First, because biological neurons are either excitatory

or inhibitory, the columns of J should be sign-constrained ( R

0 for excitation, % 0 for inhibition). Second, in biological net-

works, a given neuron does not connect to all other neurons. En-

forcing sparseness means Jfac can no longer be low rank; the

probability of finding a low-rank factorization such that its outer

product respects the desired sparsity pattern becomes vanish-

ingly small as sparsity increases. It is thus an open question

whether more realistic networks will continue to support a small

number of factors (but see Herbert and Ostojic67).

We used the cycling factors as training targets for a network

with sparsely connected excitatory and inhibitory neurons. J0

obeyed these constraints but was otherwise random. For tech-

nical reasons (see final paragraph of this section) a two-step pro-
cedure determined factor-related connectivity. First, we trained

an unconstrained Jfac matrix using RLS. We then used the activ-

ity of the resulting network to train a second network with con-

strained factor connections, JC
fac (STARMethods). As a technical

aside, our training approach did not allow enforcement of the

same non-zero elements in both J0 and JC
fac; although J0 and

JC
fac each have 40% non-zero elements (Figure 5C) J was

modestly less sparse (60% non-zero elements). This is accept-

able because it is still true that JC
fac, the trained component

responsible for producing the factors, no longer has the overly

idealized properties of being low rank, fully connected, and un-

constrained in sign.

Despite the added constraints, training was successful. The

constrained network produced the target factors (Figure 5A)

and outputs (Figure 5B) just as the unconstrained network did.

Output error increased modestly relative to the unconstrained

network (9% rather than 2%median normalized error), a conse-

quence of fewer learnable connections that could have been

counteracted by addingmore neurons. The constrained network

shared the previously discussed properties of the unconstrained

network. For example, the twelve factors account for 97% of the

variance of each neuron’s trial-averaged post-synaptic input.

Thus, the utility of factors as a training tool and as an abstraction

does not depend on overly idealized assumptions regarding

connectivity.

The two-step training method reflects the importance of

training recurrent networks—sparsely or densely connected—

with RLS. RLS aids stability by ensuring that, during training,

the network experiences a distribution of errors (differences be-

tween the target factors and the network-produced factors)

approximating what will be produced by the network post-

training. Direct use of RLS was not feasible for the constrained

weight matrix. Our two-step method overcomes this technical

limitation by exploring likely experienced error states during

initial RLS training and using samples of these states during

non-RLS learning, for which constraints are more easily

enforced. This approach can confer advantages over non-recur-

sive training approaches that do not ensure the range of likely-to-

be-produced errors is experienced during training. To illustrate,

we examined the stability-inducing errors produced during RLS

training. Errors were low dimensional (Figure 5D black), and their

average auto-correlation function (Figure 5E black) revealed

large temporally lagged correlations. Neither property was ex-

hibited if errors were shuffled and thus rendered Gaussian

(Figures 5D and 5E gray), the assumed distribution of errors dur-

ing non-RLS learning.23,68 As expected, when shuffled errors

were used during the second training step (leading to effectively

i.i.d. Gaussian perturbations off the desired network states), per-

formance dropped significantly (median test error of 76%).

Building spiking models with model-derived factors
Training recurrent networks of continuously valued firing rate

units has become a common approach for understanding

brain-like computations.48,49,69–72 Rate networks presuppose

that continuously valued firing rates are the building blocks of

computation, leaving unanswered the question of whether and

how solutions in these networks can be realized in spiking
Neuron 111, 631–649, March 1, 2023 639
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(A) Factors produced by a network model with

constrained connectivity, trained to produce the

cycling factors. The first three factors are shown for

two trials (blue and gray). Factors are similar to

those exhibited by an unconstrained model

(compare with Figure 2A). Target factors are shown

in dotted black. Calibrations are 10 a.u.

(B) Plot of three network outputs (same analysis as

for the unconstrained network in Figure 2E). Target

muscle activity is shown in dotted black. Calibra-

tions are 0.2 a.u.

(C) Sign of the entries of JC
fac for 20 excitatory

neurons (red) and 20 inhibitory neurons (blue). Gray

indicates no connection.

(D) Cumulative variance, captured by successive

dimensions, for the error between network-gener-

ated factors and target factors during RLS learning

(black) and when errors are shuffled (gray).

(E) Average temporal auto-correlation of the error

between the network-generated factors and target

factors during RLS learning (black) and when those

errors are shuffled (gray).
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networks. Rate-network computations can often be understood

by examining projections of rates onto modest numbers of di-

mensions, using PCA or related methods.9,15,21 These projec-

tions are weighted sums of rate-unit activity and thus are effec-

tively factors, introducing the prospect that rate models can

serve as sources of factors when training spiking models. A fac-

tor-level correspondence could provide an alternative to

creating rate-based and spike-based models that correspond

at the unit level.26,27,38 We illustrate an efficient and simple

means of constructing spike-based models to perform tasks us-

ing the same factor-based solution employed by a rate network.

This correspondence validates the widespread use of rate-

based models—although their individual elements may be unre-

alistic, their factor-level solutions are readily shared with spiking

networks—and opens the door to building spiking networks for a

wide variety of tasks. We use two tasks and two rate-network

training approaches to show that training success is not sensi-

tive to the task or rate-based training method.

Reaching task
We consider the task of generating muscle activity during reach-

ing, a standard task for evaluating how rate-based networks

transform static inputs into temporally structured outputs.21,26,73

We considered a version of this task where a two-dimensional

input (Figure 6A, blue) specified reach identity (Figure 6A insert),

and termination of a third input (Figure 6A, gray) indicated that

movement should begin. Accurate performance required

network outputs to match the activity of two muscles (lateral bi-

ceps and posterior deltoid; Figure 6B) recorded during a center-

out reaching task.74,75

We first used FORCE learning48,49 to train a rate-based

network (see STAR Methods for an alteration to FORCE that al-

lowed us to sidestep extensive rate-model optimization). We
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reduced rate-network activity to a handful of factors by projec-

ting onto the top PCs (computed using data from all C = 8 con-

ditions; see STAR Methods). The majority (99%) of firing rate

variance was accounted for by 37 factors, which were target fac-

tors for a 1,200-neuron spiking network. Jfac was optimized us-

ing RLS so that each spiking-network factor (Figure 6F, solid

lines) matched one target factor (Figure 6F, lighter underlying

traces). Training was successful; for each reach condition, the

external inputs prompted generation of the target factors, which

provided a basis for muscle activity (Figure 6C). Muscle activity

was generated with a median error of 8% (relative to the empir-

ical targets) similar to rate-network performance.21

Model spiking-neuron responses resembled those recorded

from motor and premotor cortex; they were directional,76 but

tuning differed between the preparatory epoch (before the go

cue) and the movement epoch (after the go cue).77,78 For

example, the neuron in Figure 6D (activity shown for 15 trials

per direction) produces preparatory-epoch spikes that are

most prevalent before leftward reaches (blue) and movement-

epoch spikes that are most prevalent during downward reaches

(yellow). The neuron’s trial-averaged firing rate (Figure 6E) re-

veals responses whose amplitude, phase, and time-course all

vary with reach direction. Such features are typical and agree

with well-documented features of real neurons20,29 and rate

networks trained on similar tasks.21,26,73 This validates the

rate-modeling approach while also allowing exploration of bio-

logically relevant features (e.g., spiking variability) absent in

rate networks.

As illustrated in Figure 6D, spiking is variable across trials

(average Fano factor of 0.69 across all network neurons). Factors

are more consistent but display modest variability that meaning-

fully impacts behavior. The largest 11 factors (contributing 95%

of all target-factor variance) are most responsible for network
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(A) Network inputs. A two-dimensional input (blue), conveying the sine and cosine of reach direction (‘‘up-left’’ in this example), is applied throughout each trial.

Another signal (gray) terminates at the end of the preparatory period, yielding the ‘‘go cue’’ thatmovement should begin. Inset indicates the color corresponding to

each reach direction, used to plot data elsewhere in this figure.

(B) Target outputs were based on the empirically recorded EMG from two arm muscles (lateral biceps and posterior deltoid).

(C) Network outputs for both muscles, for one trial for each reach direction.

(D) Raster plot showing spikes for one model neuron for 15 trials per direction. The Fano factor for this neuron was 0.56.

(E) Trial-averaged smoothed spikes for the same neuron. Smoothing used a 20-ms Gaussian kernel.

(F) Temporal evolution of factor five (bottom) and six (top) for all reach directions on one trial. Solid (slightly noisy) lines show the factors produced by the network.

Lighter underlying traces show the target factors, derived from a firing rate model.

(G) Trajectory tangling ðQÞ for different aspects of network activity. Top: tangling of spiking network factors versus tangling of spiking network outputs. Data were

minimally smoothed (5-ms Gaussian) to emulate prior studies. Bottom-left: tangling of the non-factor-based synaptic inputs versus tangling of the total synaptic

inputs. Bottom-right: tangling of the factor-based synaptic inputs versus tangling of the total synaptic inputs. All tangling analyses are applied to single-trial

trajectories.
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output. Their average across-trial variance (normalized by

average within-trial modulation as described above) was 0.11,

yielding modestly variable muscle commands (normalized

variance of 0.08). This observation relates to the common anal-

ysis assumption that spiking variability has two components—

rate/factor-based variability and private variability11,79—that

can be modeled as a doubly stochastic process.56,80 In this sta-

tistical framework, rate/factor-based variability impacts network

computation and output while private variability does not. We

stress that although this dichotomy is useful, it is not mechanis-

tically accurate for two reasons. First, as discussed above, the

source of across-trial spiking variability is not a private noise

source but a network-derived non-factor-based input. Second,

because every neuron receives both factor-based and non-fac-

tor-based inputs, non-factor-based variability will always create

some factor-based variability, thereby indirectly impacting out-
going commands (although this effect may be small for large

networks).

Even though the network generates outputs with non-negli-

gible variability, it still does so robustly; spiking variability does

not cause the network to become unstable. We recently argued

that recurrent networks can robustly generate outputs when fac-

tors display low trajectory tangling, defined as avoiding situa-

tions where similar states have different derivatives.14 Low

tangling is most clearly necessary when dynamics are autono-

mous but is beneficial whenever strong dynamics are needed.

Muscle trajectories are typically tangled, suggesting that trajec-

tory tangling should be much lower for factors than for outputs.

We computedQfactor, the trajectory tangling of the factors dur-

ing the reaching period14 and compared with Qoutput, the trajec-

tory tangling of the outputs. Both were computed for multiple

times within all reach conditions, resulting in a scatterplot of
Neuron 111, 631–649, March 1, 2023 641
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many comparisons (Figure 6G, top). Although Qoutput often

became high, Qfactor was consistently low. Low factor-trajectory

tangling explains why the spiking network was able to learn the

factors, and why spiking variability did not prevent it from

robustly producing outputs. Low tangling also highlights that

although factors are explicitly trained (much like outputs are

traditionally trained) factors are not arbitrary network outputs.

Factors should support the internal computation that produces

the output—here, they are derived from a rate network that per-

forms the task well. Prior work has hinted at this need. Nicola and

Clopath39 included additional outputs to aid training andKim and

Chow37 stressed the utility of heterogeneous firing rates as tar-

gets. Both approaches decrease the likelihood of very high

tangling. The approach of Alemi et al.,31 Boerlin et al.,32 and Elia-

smith23 ensured a low-tangled dynamical system by explicitly

defining that system. The use of a trained rate network provides

a more general solution that can work for any task for which a

rate network can be trained. If needed, steps can be taken to

ensure the rate-network solution is robust and has low tangling

(e.g., Sussillo et al.21 and DePasquale et al.49).

As documented above, networks exhibit reliable factors

despite variable membrane potentials and unreliable spiking.

Our modeling framework allowed us to examine the source of

this potential paradox using the tangling analysis. Tangling of

the full 1,200-dimensional state-trajectory (describing each neu-

ron’s synaptic input) often became high. This was not due to high

dimensionality per se, but to the variable trajectories caused by

non-factor-based inputs. In agreement, tangling of the non-fac-

tor-based input was high (Figure 6G, bottom-left) and correlated

with that of the total input ðr = 0:82Þ. Tangling of the factor-

based input was low relative to the tangling of the total input (Fig-

ure 6G, bottom-right). This disparity explains how networks can

simultaneously exhibit reliable factor-level dynamics and unreli-

able spiking-level dynamics.

Contextual integration task
Rate-based models trained to perform a contextual integration

task have illustrated how networks can make decisions flexibly,

and network solutions have been understood in reduced-dimen-

sional spaces.9,46 We considered a version of this task where

two sensory inputs are simultaneously presented and the

network must compute the cumulative sum of only one (i.e.,

must ‘‘pay attention’’ to and integrate only one stimulus). A

context-cue input, maintained throughout the trial, indicates

which sensory input should be integrated. Network performance

is assessed by evaluating the sign of the output at the trial’s end.

Sensory inputs are a series of Gaussian-distributed random

numbers with fixed variance and a different mean on each trial.

Because the goal is to report whether the mean is positive or

negative, the magnitude of the mean determines trial difficulty.

We refer to trials in which the mean was positive as ‘‘right-choice

trials’’ and where themeanwas negative as ‘‘left-choice trials’’ to

reflect the standard structure of the empirical task. We refer to

the two contexts (arbitrarily) as ‘‘red’’ and ‘‘blue.’’

We trained a spiking network using RLS, using target factors

obtained by training a rate network using backpropagation

through time.38,81 We could have used FORCE (as above), but

FORCE and backpropagation find noticeably different solutions.
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Wewished to examine whether factors produced by backpropa-

gation—a common and powerful technique—can be instanti-

ated in a spiking network. The fact that they could (see below)

does not prove this will always be feasible but opens the door

to constructing spiking networks to perform a great variety

of tasks.

Training was successful; a network of 800 spiking neurons

performed this task. An example ‘‘blue-context’’ trial is shown

in Figure 7A. Network output (black) correctly integrated the

cued sensory input (true integral in blue) but not the uncued input

(true integral in red). Performance approached 100% when the

cued sensory input strongly indicated the correct choice (Fig-

ure 7B, blue). As expected, network performance was near

chance (50%) when the cued sensory input had a zero mean

(i.e., the trial was ambiguous). The network successfully ignored

the uncued sensory input; performance was only weakly

impacted by its mean (Figure 7B, red).

Spiking network performance was reduced relative to the

rate model used to train it (Figure 7B, gray). This was expected

both because of the decreased fidelity of spiking neurons (out-

puts are binary rather than continuous) and because of spiking

variability. As discussed above, most spiking variability does

not impact the factors. Yet, some does, especially in modest-

sized networks. RLS can produce factor-level dynamics that

are stable and resist this impact. Yet, continuous integration

is particularly sensitive because small amounts of noise are in-

tegrated over time. Whether the impact of spiking variability on

factor-level computations is significant for biological networks

remains unclear; in large networks, other sources of variability

may be limiting.

Single spiking-model neurons showed a variety of response

features, including mixed stimulus and context selectivity,

consistent with empirical findings3,9 and rate models.9 To illus-

trate, we leverage the ability to define single-trial firing rates. Sin-

gle-trial rates were computed based on the factor-based input

(see above). As a minor technical point, the current network re-

ceives a time-varying input that is effectively an ‘‘inherited’’ fac-

tor and is thus included in the factor-based input (see STAR

Methods). We plot rFn ðtÞ of three neurons for the same four

example trials (Figure 7C). One neuron (top) primarily reflects

choice (responding during leftward choices). Another (middle)

primarily reflects context (responding during the red context).

The third neuron (bottom) shows mixed selectivity, which was

typical. Context selectivity and choice selectivity were present

to varying degrees in different neurons with negligible correlation

(Figure 7D).

By construction, the computation was subserved by nine fac-

tors, but considering the first two is sufficient to understand key

aspects of the computation. The first two factors can be repre-

sented in two-dimensional space (Figure 7E). Each point indi-

cates the average state across many trials/time points that

shared both context and similar values of factor two. Color indi-

cates context. Intensity reflects the true average integral of the

cued sensory input, and thus the evidence for the correct choice.

While mixed selectivity was typical at the single-neuron level, the

dominant factors (fortuitously) contain separable task-critical

signals: choice is available to be ‘‘read out’’ using factor 2, while

context has a strong impact on factor 1.
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Figure 7. A contextual integration task

(A) Network output (black) for a single example trial. The output correctly tracks

the true integral of the cued sensory input (blue) and ignores the uncued

sensory input, whose integral is shown in red.

(B) Probability of the spiking network making a rightward choice as a function

of themean input value of the cued (blue) and uncued (red) sensory inputs. The

network successfully renders its decision based on the cued input with only

modest influence of the uncued input. However, due to the sensitivity of

integration to small amounts of noise injected into the factors due to spiking

variability, the spiking network is less sensitive to the mean of the cued input

than the rate model upon which it is based (gray). Each point is computed

across many trials with similar mean input values. Best-fit curves computed by

logistic regression.

(C) The factor-based rate, rFn ðtÞ, for three example neurons and four trials. The

three examples include a choice-selective neuron (top), a context-selective

neuron (middle), and a mixed-selective neuron (bottom). The choice-selective

neuron responds strongly during left-choice trials (‘‘L’’) and weakly to right-

choice trials (‘‘R’’) in both contexts. The context-selective neuron responds

strongly in the red context for both choices. The mixed-selective neuron only

responds strongly during red-context left-choice trials.

(D) Scatterplot, with one point per neuron, illustrating that choice selectivity

(horizontal axis) and context selectivity (vertical axis) were typically mixed and

unrelated. Choice selectivity was defined as the trial-averaged difference in

firing rate between left-choice and right-choice trials. Context selectivity was

defined as the trial-averaged difference in firing rate between blue-context and

red-context trials.

(E) Two-dimensional state-space portrait for the first two factors generated by

the spiking network. Each point is the average value across many trials and

timepoints that were from the same context and shared similar values of factor
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Two-task network
For our spiking networks, P dimensions captured factor-related

activity, by design. The remaining N � P dimensions captured

signals that were effectively noise. Thus, only a minority of neural

dimensions contain task-relevant signals. This observation relates

to J having a low-rank task-relevant component and a high-rank

task-irrelevant component. For simplicity, we modeled the task-

irrelevant component as random. An intriguing possibility is that,

in biological spiking networks, components of connectivity that

do not contribute to the present task (and appear to generate

noise) do contribute to other tasks. This would be consistent

with the finding that different computations often use different di-

mensions, both within task44,74 and across effectors.50,82

To explore this possibility, we trained a spiking network to

perform both the cycling and reaching tasks (Figure 8A). We

encouraged the network to use task-specific factors (see STAR

Methods). Training was successful: neural dimensions that

werecomputationally essential in one task—i.e., reflected factors

whose dynamics produced deltoid activity—were unused in the

other task (Figure 8B). Network performance was comparable

to that of single-task networks (median error of 3%). When a fac-

tor was not used (i.e., the corresponding task was not being per-

formed), activity in that dimension was similar to activity in the

‘‘non-factor dimensions’’ that captured small ‘‘noisy’’ fluctua-

tions (Figure S4). Thus, while a given computation may be per-

formed by a low-dimensional set of factors, this does not neces-

sarily imply a fixed set of computationally relevant dimensions.

Separation of computations by dimensions did not create

anatomical separation; most neurons’ firing rates were modu-

lated during both tasks. Furthermore, as in all networks we

trained, each synapse conveyed both computationally relevant

signals and non-factor-based signals during both tasks. This

cautions against the hope that factor-based and non-factor-

based components might be inferred from anatomy alone. One

might have hoped to leverage the assumption that Jfac is low

rank, but this idealization no longer holds for realistic connectiv-

ity. Furthermore, aspects of Jfac connectivity critical to one task

may not producemeaningful factors in another task (and are thus

more appropriately considered part of J0). Although our

approach decomposes connectivity into two components, the

key separation is not anatomical but physiological: for a given

task, every neuron receives both a factor-based and a non-fac-

tor-based input, yielding spiking that appears to probabilistically

reflect a factor-based firing rate.
DISCUSSION

Our goal was to establish whether and how network function re-

lates to concepts employed by experimental neuroscientists
two. Color (red versus blue) indicates the cued context. Shade intensity in-

dicates the average value (for that set of trials and timepoints) of the true in-

tegral of the cued sensory input. Darker shades indicate more positive values

of the true integral (and thus a greater probability that right should be chosen in

the future) and lighter shades indicate more negative values. In this network,

factor 2 happened to align well with the ‘‘decision variable’’ used by the

network. Thus, positive values of factor 2 are associated with more positive

integrals/darker shading.
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Figure 8. A network that performs two tasks

(A) Network inputs (top) and network output (bot-

tom) of the trained model. Data for reaching trials

are colored as in Figure 6, and data for cycling

trials are colored in magenta. Inputs for the

reaching task were as in Figure 6: a two-dimen-

sional direction signal and a ‘‘go’’ cue. For the

cycling task, a pulse prompted cycling (as it did for

the network in Figure 2). We also included a ‘‘stop’’

pulse to instruct the network to stop cycling before

the start of the next trial. The spiking network was

only required to produce a single EMG (the pos-

terior deltoid) as an output because this was the

only common EMG recording across both tasks.

Neurons received inputs for the different tasks via

different input weights, but they are plotted on the

same axis for visualization.

(B) Factor trajectories for both tasks in a ‘‘cycling

subspace’’ (the first two cycling factors) and a

‘‘reaching subspace’’ (the third and fourth reaching

factors, which were more strongly direction-

dependent than the first two reaching factors).

Trajectories show 20 trials of cycling (magenta)

and 20 trials for each of four reach directions (blue,

orange, red, and cyan). For visual clarity, only three

trials are plotted for each reach direction in the

bottom left.
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when analyzing population responses. We found that the

concept of factor was helpful in understanding network compu-

tation and enabled a robust and flexible training method. Using

factors as targets allowed us to train spiking networks to perform

a wide variety of tasks, which would have been challenging or

impossible using other methods. Importantly, factors were cho-

sen to be appropriate ‘‘internal’’ signals for performing the target

computation. Such care was critical—in most cases we studied,

networks with realistic firing rates and spiking variability could

not robustly perform the task unless training included a ‘‘com-

plete’’ set of target factors. The utility of factors as training tar-

gets speaks to their centrality; for this network class, computa-

tion is best understood at the factor level. Tracing spiking-level

causality is extremely challenging, especially as spiking differs

greatly even when computation repeats. In contrast, causality

is readily summarized at the factor level. These findings support

the growing assumption that factors provide a useful way of

describing data and linking to models.

Our results demonstrate that spiking networks can compute in

a regime where factors provide a valid and useful abstraction

describing computational mechanism. Yet, there exist multiple

regimes in which spiking networks can operate; not all will

have properties adequately summarized at the factor level. The

utility of the factor-based abstraction seems most secure for

brain areas that exhibit the empirical properties that motivated

our modeling choices: mixed selectivity, firing rate covariation

among neurons, and asynchronous spiking. These properties
644 Neuron 111, 631–649, March 1, 2023
are common in cortex, especially anterior

to the central sulcus. We also stress that

there may be cases where factor-based

dynamics are influenced by phenomena
best described by other conceptual frameworks (e.g., spike syn-

chrony or oscillations). Further study is needed to ascertain when

factors provide a useful abstraction, and when that abstraction

must be supplemented by other levels of description. A related

point is that state-space trajectories do not, on their own, consti-

tute explanations. They provide explanatory power only when

they test ormotivatemechanistic hypotheses regarding how fac-

tor-level dynamics perform computations.

Mechanistic underpinnings of commonly used concepts
Spiking variability reflected high-dimensional, likely chaotic

dynamics,52,53 whereas factor-level dynamics were lower

dimensional and reliable. The presence of two synaptic-input

components—one computationally meaningful and one

essentially noise—meshes with the standard assumption

that neurons exhibit both shared rate variability and private

spiking noise56,80,83,84 and justifies the many analysis

methods that assume such a division, including latent-factor

models (e.g., Pandarinath et al.11) and coupled generalized

linear models (GLMs) (e.g., Yates et al.58). Although statisti-

cally appropriate, the private versus shared distinction is

mechanistically incorrect in our networks; both components

derive from the population. This does not imply abandoning

standard statistical assumptions such as modeling spikes as

Poisson samples following an underlying rate; such statistical

models remain useful and networks of such Poisson spiking

neurons could be trained using our approach. Another
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subtlety to be explored is that the distinction between dimen-

sions containing reliable versus unreliable signals may be

more gradual than considered here. This is true both because

reliable dimensions may be task-dependent (as in our two-

task network), and because there may exist weak factors

that are marginally reliable.

Firing rate is a widely accepted abstraction of spiking activity,

despite its unclearbiophysical basis. Incontrast, factors are some-

times viewed with suspicion as overly abstract. Our networks

argue that the definition of firing rate should be based on factors

and that factors should be considered ‘‘primary.’’ Althoughmech-

anistically defined factor-based rates behave similarly to statisti-

cally inferred rates, the mechanistic definition demands reconsi-

dering some intuitions. Consider the recent controversy

regarding whether, during decision-making, single-neuron rates

are ramp-like or step-like.85,86 From the traditional perspective, a

natural question is whether, on a single trial, all rates step together

or whether each neuron’s rate steps at a unique time. Given the

factor-based definition of rate, the latter possibility is unlikely or

even poorly defined. Because a neuron’s rate is based on shared

factors, it is unlikely to step at a unique time. One might propose

many factors, each stepping at different moments. Yet, because

a neuron’s rate is typically determined bymany factors, this would

result in either ramping (if all weights were positive) or multiphasic

responses, not steps at unique times. Thus, a possibility that

seemed likely from a traditional perspective is much less natural

given a factor-based definition of rate.

Our definition of the firing rate also clarifies that rates can

change rapidly (as rapidly as factors). Rate coding may appear

inextricably linked with longer timescales, as opposed to tem-

poral codes that use fine timescales.24,87 Yet, if a firing rate

describes a ‘‘functional group’’ of identically responsive but

asynchronously active neurons, rate can change quickly.28 Our

definition generalizes this view to situations that lack clusters

of similarly tuned neurons.9,14,29,45

Our proposed definition of firing rate speaks to emerging

methods that infer single-trial firing rates. The power of bespoke

methods like LFADS (and others cited above) originates from as-

sumptions they employ when data are limited. For example,

LFADS assumes consistent internal dynamics, providing a

reasonable constraint in data-limited cases. However, using com-

plex operations to infer rates does not imply that the definition of

firing rate, or factors, is complex. On the contrary, factors are sim-

ply weighted sums of spiking-neuron activity. Firing rates are

weighted sumsof factors passed through a rectifying nonlinearity.

Different approaches to constructing spiking networks
Seminal work established that spiking networks can emulate

continuous dynamical systems.23,30,33 Our approach achieves a

similar end, but the explicit focus on factors both establishes

themasmechanistically central and expands the space of emulat-

able dynamics by allowing target-factors to be derived from rate

models. Computation can be understood at the level of the fac-

tors, which influence their own future values via a population of

spiking neurons. Importantly, this occurs despite realistically var-

iable spiking, andwithout the need for specialmechanisms to cor-

rect spiking variations. The factor-level focus, and the use of RLS,

should make it possible to train spiking networks on nearly any
task that can presently be performed by rate-based networks,

greatly extending the set of available network training tools.

Using factors as training targets contrasts with typical training

approaches that focus on minimizing output error. In output-

focusedmethods, training aims to indirectly produce internal ac-

tivity patterns appropriate to perform the underlying computa-

tions. This approach is powerful in rate networks but much

less so in spiking networks, which often fail to learn the neces-

sary internal signals. Nicola and Clopath39 showed that simple

patterns and sequences could be learned via an output-focused

approach (FORCE) in a spiking network, although certain

revealing errors were common. They thus deployed a helpful

trick: training additional temporally structured outputs. Other ap-

proaches took this insight even further, by using internal training

targets for every network unit.37,49,88 Our factor-based approach

can be seen as a useful ‘‘middle ground’’ strategy. If computa-

tionally appropriate factors can be identified and used as training

targets, there is no need to hope that additional factors will

emerge (we show that theymostly do not) and no need to include

additional, redundant training targets. This approach increases

noise robustness49 in the face of realistic spiking variability and

thus expands the range of trainable tasks.

Backpropagation-based learning, which also seeks to exclu-

sively minimize output error, has been applied to spiking

models.36,41,42 Yet, how to achieve general success with this

approach remains unclear. We were unable to use one such

approach that has shown promise, surrogate-gradient

methods,41,42 to train spiking networks to perform the tasks in

the present study. We suspect these methods could be made

to work with a carefully designed objective function. If so, a likely

consequence is that they will identify similar solutions to those

that emerge in our procedure of instantiating rate-network-

derived factors.

An alternative approach, which has been quite successful in

spiking networks, is to engineer them to emulate dynamical

systems.23,30–32,34,35,40,89 For such approaches, state variables

are effectively factors, and the importance of embedding

key computations within low-rank connectivity has been

noted.23,32,46,48 Dynamics must typically be specified as a

closed-form dynamical system, although ad hoc approaches

have been successful when this is not possible.31 Our method

is related but can be readily used on any appropriate factors

and highlights the vast potential of trained rate models for

deriving factors.

Although achieving both stable dynamics and considerable

spiking variability was not a goal of early approaches,23 it was crit-

ical to our goal of building models that guide interpretation of

empirical data. Achieving this goal was greatly aided by the RLS

approach to stabilizing factor trajectories. An alternative

approach to achieving robust dynamics alongside considerable

spiking variability31,32,40 makes the strong assumption of fine

timescale ‘‘corrective’’ dynamics, which both gives rise to spiking

variability and manages its impact on network performance. Our

approach demonstrates that, even without such a mechanism,

stable factor-level dynamics can co-exist with realistic spiking

variability. Furthermore, our results suggest that spiking variability

may be a consequence not of corrective dynamics, but of capac-

ity constraints: high-rank connectivity, despite increasing spiking
Neuron 111, 631–649, March 1, 2023 645
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variability, may be necessary to realize multiple computations

within the same network (e.g., Logiaco et al.90).

Historically, firing rate models have often been considered ap-

proximations of spiking models, with individual rate units repre-

senting individual spiking neurons.91–94 It is possible to build rate

and spiking models with neuron-to-neuron correspondence,38

although whether this approach can yield noise robustness is

presently unclear. Our approach is related but achieves robust-

ness to spiking variability by using RLS to train factors, without

attempting to achieve a rate-to-spiking-neuron correspondence.

An alternative approach to linking rate and spiking models is to

model each rate unit as a pool of spiking neurons.26,27 This can

be convenient and effective, but there are reasons to prefer fac-

tor-level correspondence. Neurons in many areas show great

tuning heterogeneity, inconsistent with pools of similarly tuned

neurons. Furthermore, from a purely model-building perspec-

tive, a factor-level correspondence is more efficient. Because

rate-network units are correlated, a rate-to-spiking-pool corre-

spondence repeatedly constructs correlated signals. A factor-

level correspondence avoids this redundancy by identifying

correlated activity patterns (i.e., rate-network factors) and using

them as targets, greatly reducing the necessary number of

spiking neurons. This approach embraces the view that, even

when networks use very different types of units, they can still

perform the same computation using the same factors, making

the factor level a natural point of comparison.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed empirical data

used for network training.

Lab of Mark Churchland. Processed data available

at https://github.com/briandepasquale/factor-

based-spiking-nets/. Unprocessed data was

generated during experiments whose results were

reported in Lara et al.75 (https://doi.org/10.

1038/s41467-018-05146-z) and Russo et al.14

(https://doi.org/10.1016/j.neuron.2018.01.004)

Github: https://doi.org/10.

5281/zenodo.7302474

Computer simulated data and

original computer code for running

data-generating network simulations.

Code was written by the authors. Available at

https://github.com/briandepasquale/

factor-based-spiking-nets/

Github: https://doi.org/10.

5281/zenodo.7302474

Software and algorithms

Matlab 2016a Mathworks https://www.mathworks.

com/products/matlab.html

Python Python Software Foundation https://www.python.org/

Custom computer code for

data-generating network simulations,

network training, and analysis.

Code was written by the authors. Available at

https://github.com/briandepasquale/

factor-based-spiking-nets/

Github: https://doi.org/10.

5281/zenodo.7302474
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Brian DePasquale (bddepasq@

bu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Original data used in this study was computer simulated. Some simulations relied on processed empirical data. Processed

empirical data, computer simulated data, and original computer code for running data-generating network simulations has

been deposited at https://github.com/briandepasquale/factor-based-spiking-nets/ and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

d Custom code for network training and analysis has been deposited at https://github.com/briandepasquale/factor-based-

spiking-nets/ and is publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to regenerate or reanalyze the data reported in this paper is available from the lead contact

upon request.
METHOD DETAILS

Spiking network model
Leaky integrate-and-fire model neurons were used. N designates the number of spiking neurons. The membrane potential of all neu-

rons is denoted by the N-component vector vðtÞ. When vi reaches a threshold value of 0 mV neuron i fires an action potential and is

reset to -10 mV.

Each neuron’s spikes were filtered with two characteristic timescales, denoted by twoN-dimensional vectors sfðtÞ and ssðtÞ. When

neuron i spikes, sfiðtÞ and ssi ðtÞ increment by 1. At all other times the presynaptic inputs decay exponentially with a time constant of

tf = 5 ms and ts = 100 ms. For simplicity, we concatenate sfiðtÞ and ssi ðtÞ into a 2N-dimensional vector sðtÞ.
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We construct P factors from the filtered spikes. The P-component vector yðtÞ denotes the network generated factors. A P3 2N

matrix w that is learned (see next subsection) combines the filtered spikes to yield the network generated factors: yðtÞ = wsðtÞ.
Each neuron receives linear combinations of the factors through a N3Pmatrix u. Because of this, the N32Nmatrix of recurrent con-

nections that constructs the factors through learning, Jfac, is defined as Jfac = uw.

To account for synaptic inputs that do not arise from the factors we include a second N32N recurrent connectivity matrix, J0, of

unmodified connections. The elements of the first N columns of J0 correspond to the filtered spikes sfðtÞ and the elements of the

second N columns correspond to ssðtÞ.
vðtÞ obeys the following dynamical equation, which is standard for a LIF neuron,

tv
dvðtÞ
dt

= � �
vðtÞ � vm

�
+ J0sðtÞ+ JfacsðtÞ+uinf inðtÞ; (Equation 6)

where tv = 10 ms. For computations that require external input amin-dimensional input, f inðtÞ, is applied to each neuron through a

N3min matrix uin. vm is a constant equilibrium potential. It is computed prior to learning to control the average firing rate of each

neuron. (See section below.)

Learning w by RLS

The P-component vector ytargðtÞ denotes the target factors, i.e., the factors we want the network to construct. We identify the ele-

ments of w by solving the following equation with a recursive least squares (RLS) algorithm,

wsðtÞzytargðtÞ: (Equation 7)

We note that although we have specified the learning problem as requiring that we learn w and choose u randomly, this choice

simply corresponds to a particular factorization of Jfac that makes the factors’ location within the synaptic connectivity transparent.

Learning would be identical if Jfac was identified by solving JfacsðtÞzuytargðtÞ.
Assuming awisely chosen set of target factors (i.e., factors that can be learned), the network can perform computations that rely on

the factors as a basis. The results of these computations take the form of network outputs. Them-component vector f targðtÞ denotes
the desired (i.e., target) network outputs. Typical outputs are muscle EMGs (in the case where factors are derived frommotor cortex)

or the solution to an artificial computational problem. The network-generated output can be found by regression:

WyðtÞ+W0zf targðtÞ. W0 is a bias term that is learned.

Connections that are not learned

The entries of u, uin, and J0 are not modified by a learning procedure, and in most cases are selected randomly. (In cases where

factors are derived from a firing rate model, we use knowledge of the rate model’s connectivity to define u and uin. See section

below.) The entries of u and uin are selected randomly to reflect the fact that empirical neural responses often reflect random com-

binations of the empirical factors (which in turn presumably reflect both network dynamics and network inputs). The entries of J0 are

selected randomly to capture, as simply as possible, aspects of connectivity related to tasks other than the current task mediated by

Jfac. This choice also has the desired effect of encouraging the network to generate irregular spiking.52

The elements of u and uin are selected from a uniform distribution between -1.0 and 1.0, and then both are scaled by a scalar g

which sets the overall scale of the factor and external input into each neuron. The elements of the first N columns of J0 are sampled

from a Gaussian distribution with mean mf=Ntf and variance g2
f =Nt

2
f and the elements of the second N columns are sampled from a

Gaussian distribution with mean ms=Nts and variance g2
s=Nt

2
s .

Setting the average spiking rate

vm is N-dimensional vector of constants that sets the equilibrium potential for each spiking neuron (see Equation 6). It can be used to

control each neuron’s average rate of spiking. It is composed of three terms:

vm = vrest + vm � CuytargðtÞ+ ðJ0 � CJ0DÞsðtÞD T ; (Equation 8)

where CJ0D is the average synaptic strength due to J0.

The first term, vrest = � 10mV, determines the equilibrium potential of each neuron in the absence of input. The second term, vm =

10 mV, is a constant, global excitatory input that ensures the network generates activity in the absence of recurrent input.

The third term is computed prior to learning by applying the target factors as external inputs. Doing this mimics the effect they will

have after learning at which point they will be constructed internally. C ,D T indicates an average across a length of time T (typically

around 100 trials per condition) over which this mean is computed.

The third term is equal to the temporally-averaged recurrent input each neuron receives. There are two sources of this recurrent

input. The first is input due to the factors (which after learning will be constructed recurrently by the matrix Jfac). The second is recur-

rent input due to J0. (Note that we are not subtracting the average temporal input due to the mean weights of J0, CJ0D, because the

strength of this average recurrent input has been selected to ensure that inhibition dominates in the network.) Although including the

third term in vm aids network construction by adjusting the total synaptic input to each neuron so that they all have a firing rate of

roughly the same value, doing so is not strictly necessary.

For all examples, mf = � 0:3 and ms = 0 (the mean parameters of J0) so that inhibition dominates. Strong recurrent inhibition off-

sets the strong external input ðvmÞ that would otherwise cause high firing rates (given vrest). One might wonder why strong recurrent
Neuron 111, 631–649.e1–e10, March 1, 2023 e2



ll
Viewpoint
inhibition and strong external excitation were included, given they roughly cancel each other. Empirically, we observed that removing

both in an untrained network eventually lead to network quiescence. Our choice of vrest, vm and mf sets the average firing rate across

the network to approximately 15 spikes/second when averaged across time in a trial and across all task conditions.

Balancing task performance and spiking irregularity
The irregularity or regularity of spiking is set by the ratio of each neuron’s synaptic input variance to its synaptic input mean. For

example, consider multiple repeats of a cycle, as in Figure 2A. Spiking will be irregular across cycles if a neuron’s net input displays

large across-cycle variance despite a weakly modulated across-cycle mean. Spiking will be more regular if the mean input is strongly

modulated throughout each cycle, and across-cycle variance is small. A larger Jfac leads tomore regular spiking, because it creates a

stronger factor-based input, and factor-based inputs have low across-cycle variance (Figure 3). In contrast, a larger J0 creates

greater spiking irregularity because it increases the magnitude of the non-factor-based input, which is inconsistent across trials

(Figure 3).

gf and gs set the scale of J0, while g sets the scale of Jfac. In general, if the ratio of gf and gs to g is large, for a fixed population size,

the networkwill producemore variable spike trains and perform lesswell on the task (though this cost of variable spikingmay be small

for large networks and when the number of factors is small). gmust be sufficiently large to induce a sufficiently large mean fluctuation

across the population to produce enough spikes to construct the factors (i.e., if the mean for all neurons was zero, constructing

temporally fluctuating factors with Jfac would be impossible). Thus g, gf, and gs must be set to achieve two goals: 1) ensure that

the synaptic input mean is large enough for learning to succeed; 2) ensure that the synaptic input variance is large enough to create

realistic spiking variability. For all examples, gf = 0.13 and gs = 0.11 and g took values that ranged between 3 and 6, which we found

produced spiking irregularity consistent with empirical observations (see Figure 6 and Churchland et al.51), while still enabling the

network to construct the factors accurately.

Dividing the synaptic input into factor-based and non-factor-based components
Each neuron receives postsynaptic input due to the factors via Jfac. It might initially seem that this is the only factor-based input each

neuron receives. However, because J0 is a full-rank matrix it also contributes postsynaptic input to each neuron that is collinear with

the factors. To see this, consider the activity of one pre-synaptic neuron and one post-synaptic neuron before and after training.

Before training, the pre-synaptic neuron’s spiking activity is completely unrelated to the factors, and thus its connections to the

post-synaptic neuron through J0 convey no factor-based information. Post-training, the pre-synaptic neuron’s spiking (noisily) re-

flects the factors, and thus so does its influence on the post-synaptic neuron via J0. Indeed, the post-synaptic neuron now receives,

via J0, factor-related inputs from many pre-synaptic neurons and these do not necessarily sum to zero.

In principle one might wish to adjust J0 so that the total factor-based influence of J0 is zero. However, because of the nonlinear

dependence between the factors and the network spiking activity and because of our online learning procedure, doing so would

be challenging and would impose a structure on J0 that would cause it to no longer be random. Furthermore, conceptually there

is nothing wrong with unmodified synapses contributing to the learned computation. Thus, instead of attempting to combat the

contribution of J0 to the factor-based input, we simply compute it. After learning, we find the activity collinear with the factors

that arises due to J0 and add this with the input that arises due Jfac, yielding the total factor-based input into each neuron. The residual

activity due to J0 is the non-factor-based component.

To find the factor-based input due to J0 we regress the synaptic input due to J0 against the factors, to identify a N3P dimensional

matrix uJ0 :

uJ0yðtÞzJ0sðtÞ: (Equation 9)

We define the factor-based input as the sum of the synaptic input that produces the factors, due to u and due to J0,

zFðtÞ = �
u+uJ0

�
yðtÞ = u

0
yðtÞ: (Equation 10)

We define the non-factor-based component of the synaptic input as the residual:

J0sðtÞ � uJ0yðtÞ; (Equation 11)

which is equivalent to the total synaptic input minus the factor-based input.

In caseswhere external inputs are known, external inputs are effectively ‘inherited’ factors, and contribute to zFðtÞ, both due to their

external synapses and due to J0. In such cases, we concatenate factors and external inputs into a P+min dimension vector y
0 ðtÞ =

½yðtÞ; f inðtÞ �. y0 ðtÞ thus captures both the factors generated internally by the network, and factors it inherits from upstream networks

via its inputs. The factor-based input is then computed analogously to that above:

zFðtÞ = �½u;uin�+uJ0

�
y

0 ðtÞ = u
0
y

0 ðtÞ; (Equation 12)

where ½u;uin� is a N3P+min matrix and uJ0 is found by regressing the synaptic input due to J0 against y
0 ðtÞ. As above, the non-

factor-based input is simply the total synaptic input minus the factor-based input.
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Deriving target factors
Target factors can be derived from a number of sources, including neural recordings and mathematical models, using a variety of

methods. In this study, we consider target factors derived from real and artificial neural populations. We denote the activity of the

‘target-providing’ population by the ~N component vector xðtÞ, where ~N designates the number of neurons (real or artificial). xðtÞ de-
scribes the firing rate of every neuron in the population at time t. When deriving target factors from a rate-based network, firing rates

are known because they are explicitly modeled. When deriving target factors from an empirically recorded population, firing rates are

estimated (details below). In cases where there is only one behavioral condition (e.g., the cycling task), t indexes across times in that

condition. In cases where there are multiple behavioral conditions, t indexes both across time and condition. Many of our rate net-

works were trained on multiple variants of each condition and t then also indexes across these as well.

For all our examples, we use principal component analysis to obtain the target factors. We learn a P3 ~N matrix V so that ytargðtÞ
captures a specified fraction of the firing-rate variance of the target-providing population. To do so, we construct a ~N3 T data matrix,

where T is the number of times. We compute the ~N3 ~N covariance matrix, followed by the eigenvectors of this matrix to yield the

principal vectors, V . From this,

ytargðtÞ = VxðtÞ; (Equation 13)

yields the target factors.

In the case of neural recordings, we considered factors derived from single-unit electrophysiological recordings. However, target

factors could in principle be derived from other types of neural recordings, such asmultiunit recordings or calcium imaging data, pro-

vided that the data allow the factors to be accurately estimated. Other work has indicated that factors derived frommulti-unit activity

largely agreewith those derived from single-units.43 The same can be true of calcium imaging data, provided a sufficiently responsive

Ca2+ indicator or appropriate pre-processing.95

Although we learn factors by principal component analysis throughout, other methods, such as factor analysis or LFADS, can be

used and we found that factors derived using these other methods worked equally well as training targets. This is unsurprising; any

linear dimensionality reduction method that accurately captures firing rate variance will yield factors that are similar up to a rotation.

Ourmethod shouldwork similarly well for factors derived via any dimensionality reductionmethod, provided the factors do not exhibit

‘pathologies’ that would be challenging for any dynamical system to learn. For example, factors that exhibited high trajectory

tangling14 would be challenging to learn for any neural-network training method. In some situations, it may be more appropriate

to summarize empirical data using non-linear dimensionality reduction techniques. Our training approach is currently not tailored

to that situation (because network factors are linear combinations of spikes) but could potentially be modified to handle such situ-

ations. Lastly, although many dimensionality reduction methods ensure that the factors are orthogonal (i.e., uncorrelated across

times and conditions), and encouraging the factors away from colinearity may aid training, orthogonality of the target factors is

not strictly necessary.

Cycling task factors

Experimentally measured spike times from ~N = 109 neurons were collected from the motor cortex of primates performing a cycling

task described in Russo et al.14 The spike times were convolved with a Gaussian kernel (std. dev. = 25 ms) and trial-averaged. Trial

averaging involved an ‘adaptive alignment’ procedure to align periods of the cycling movement; details of this procedure can be

found in Russo et al.14 For simplicity, we considered data from one condition: when the monkey pedaled forward for seven consec-

utive cycles.

Trial-averaged firing rates were ‘soft normalized’ following a procedure we have commonly used in the past.14 This procedure is

motivated by the finding that when using PCA, a common problem is that neurons with large firing-rate ranges can dominate (a

neuron with a range of 100 spikes/s has 25 times as much variance as a neuron with a range of 20 spikes/s). For each neuron,

we compute its firing rate range: the maximum trial-averaged rate (across all times in all conditions) minus the minimum. The normal-

ization factor was this range plus a constant of 5 spikes/s. Adding the constant ensures that very low-rate neurons contribute less to

the computation of the PCs than do high-rate neurons. Neurons with firing-rate ranges well above 5 spikes/s contribute roughly

equally. Each neuron’s activity (at all times and for all conditions) was normalized by this normalization factor:

xnðc; tÞ) xnðc; tÞ
5+ rangec;tðxnðc; tÞÞ (Equation 14)

The trial-averaged firing rates repeated across the middle cycles of the 7 cycle movement but were not exactly periodic because

the activity of each neuron on each cycle did not end at exactly the same firing rate where it began. To simplify network training, we

wished to construct a ‘representative’ single cycle that was perfectly periodic.14 A simple solution is to set the representative cycle to

be the trial-averaged activity of the middle cycle (cycle 4). Activity of cycle 4 (like the other middle cycles) repeated close to perfectly.

Treating this activity as a periodic function created only a small discontinuity at the phase where activity ‘wrapped around’. A reason-

able solution would have been to simply smooth over this small discontinuity. However, the presence of multiple cycles allowed for a

more elegant solution. The last half of the 4th cycle had no discontinuity with the first half of the 5th cycle. Thus, we created a repre-

sentative cycle that began as the beginning of the 5th cycle and continuously became more similar to the 4th cycle (via a weighted

average that began with weights of 1 and 0 and ended with weights of 0 and 1) until it exactly matched the 4th cycle halfway through
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that cycle. The representative cycle was then identical to the 4th cycle for the second half. This produced a representative cycle that

was perfectly periodic with no discontinuity.

Once the above processing was performed for each neuron, principal component analysis was performed on the population of

firing rates and the projections of the firing rates onto the top 12 principal components were retained (See ‘Deriving factor targets’

subsection above for details on computing the PCs). Because the underlying activity of each neuron was periodic (see above) there

was no discontinuity in each projection but there could still be a small discontinuity in first derivative. To ensure this was not the case,

we concatenated 3 (perfectly repeating) cycles of the PC projections, smoothed each with a Gaussian kernel (std. dev. = 5 ms) and

retained the middle cycle. This ensured well-behaved training targets, each of which was periodic in both its values and its first de-

rivative. We concatenated four of these to create a 2 second ‘trial’.

EMG recordings from the cycling task were high-pass filtered at 40 Hz and rectified. Then, they were smoothed, trial-averaged,

soft-normalized, and processed, as described above, to obtain a closed, periodic loop.

Standard FORCE learning in rate models

FORCE learning considers a continuous-time recurrent neural network of firing rate units.48 As a reminder, we denote the activity of

the population by the ~N component vector xðtÞ. Units are connected through an ~N3 ~N randommatrix J
�
. The elements of J

�
are selected

independently from a Gaussian distribution of zero mean and variance ~g2= ~N. A m3 ~N matrix of output synapses W
�

is modified by

recursive least squares so that the network output matches a target output f targðtÞ:

W
�
xðtÞzf targðtÞ: (Equation 15)

A ~N3mmatrix of random synapses u
�
carries the network’s approximation of the target output back into the network, as though it

were an input, augmenting the network’s recurrent connectivity. The elements of u
�
are selected from a uniform distribution between

-1.0 and 1.0. When u
�
and J

�
are appropriately scaled, the network is able to produce a good approximation to the target output

because the approximation of the target is fed back into the network via u
�
and is mixed with the recurrent feedback due to J

�
.

This stabilizes the network dynamics, enabling learning.

After learning, the dynamics of xðtÞ are given by

t
dxðtÞ
dt

= � xðtÞ+4

�
J
�
xðtÞ+u

�
W
�
xðtÞ+u

�
inf inðtÞ

�
; (Equation 16)

where t = 10 ms, 4ð ,Þ = tanhð ,Þ is the nonlinear input/output function for each unit, and f inðtÞ is an external input applied to each

neuron by connections specified by a ~N3min matrix u
�
in. The elements of u

�
in are selected randomly from a uniform distribution be-

tween -1.0 and 1.0 and are not modified. Once trained, by definition, the network produces a set of factors sufficient for constructing

f targðtÞ because the activity xðtÞ can be linearly combined to produce f targðtÞ (i.e., Equation 15).

Modified FORCE learning & factors from the rate model

For the reaching task, we used a modified version of FORCE to train a rate network from which we could obtain target factors.49

Somewhat surprisingly, the factors a FORCE trained network produces are identical to the factors the same network would produce

if we simply apply f targðtÞ (normally a target output of the trained network) as an input through u
�
, without learning W

�
. To see this,

consider the dynamics of xðtÞ in such a scenario:

t
dxðtÞ
dt

= � xðtÞ+4

�
J
�
xðtÞ+u

�
f targðtÞ+u

�
inf inðtÞ

�
: (Equation 17)

The only difference between Equations 17 and 16 is the second term within 4ð ,Þ. Of course, when FORCE learning is successful,

W
�
xðtÞzf targðtÞ, so the second term will be almost identical in both cases. Thus, from the standpoint of the firing rates of rate-network

units (and therefore of the factors derived from them), it matters little whether f targðtÞ is generated by the network’s own recurrence

(i.e., an output that is fed back in, as in standard FORCE training) or is simply applied to the network. Of course, without FORCE

training the rate-based network cannot autonomously generate the factors. However, this is unnecessary for our purposes because

we simply wish to know the patterns the rate network produces when it generates f targðtÞ. Once those patterns are knownwe can use

them as target factors to train the spiking network.

Therefore, we apply f targðtÞ as an input to the rate model, and only learnW
�

to ensure that the factors are sufficient for reproducing

f targðtÞ, (i.e., we solve Equation 15 but do not feed back the output constructed by W
�
, as it is already being applied as an external

input). After network training is complete, the target factors ytargðtÞ are defined by Equation 13.

Backpropagation trained rate network & its factors

For the contextual integration task, we use a discrete time network, which we train with backpropagation through time. Network neu-

rons evolve according to the following dynamics:
e5 Neuron 111, 631–649.e1–e10, March 1, 2023



ll
Viewpoint
xðt +DtÞ = 4

�
J
�
xðtÞ+u

�
inf inðtÞ+b

� �
; (Equation 18)

whereDt = 10ms and b
�
is a time-independent bias input for each unit. Network output is defined as in Equation 15. 4ð ,Þ is defined

as in the FORCE trained rate model. J
�
, u
�
in, b

�
, and W

�
are modified via backpropagation through time so that W

�
xðtÞzf targðtÞ. After

training is complete, the target factors ytargðtÞ are defined by Equation 13.

We trained the firing rate model using the ADAM optimizer with standard decay rate parameters (b1 = 0:9, b2 = 0:999) and an

initial step size of a = 0:001. We performed 100 iterations of gradient descent and then reduced the step size by 2/3. The step

size was reduced 10 times. Input, recurrent, and output synapses were initialized with Gaussian random variables, with standard de-

viation of 1/
ffiffiffiffi
~N

p
, 0.9/

ffiffiffiffiffiffiffiffiffiffiffi
~N+ 1

p
, and 1/

ffiffiffiffiffiffiffiffiffiffiffi
~N+ 1

p
, respectively, where ~N is the number of neurons ð ~N = 100Þ. Our optimization objective

included a L2 penalty on the sum of the squared values of the input and recurrent synapses, scaled by a constant = 2e-6, to prevent

the connections from growing too large.

Defining u and uin when using rate-model derived factors

When training a spiking network using target factors derived from data, u (which determines how the factors are linearly combined

into each spiking neuron) and uin (which specifies how external inputs are weighted into each spiking neuron) are selected randomly.

Random selection creates neurons whose firing rate reflects combinations of factors and external inputs without preference for any

single factor or input. Because the analogous connections in trained rate models are likewise effectively random (despite being

learned), their firing rate units will also exhibit this property (unless learning is designed to specifically discourage it). To ensure robust

spiking-network training, when deriving target factors from a trained rate model we sought to preserve the precise structure present

in the trained rate model within the trained spiking model. While preserving properties between the two models was not critical (i.e.,

spiking network training could still succeed if this was not done), it likely made training robust especially for smaller networks.

We sought to preserve two key aspects from the trained rate model when training the spiking model: 1. the relative magnitudes of

recurrent and external synaptic inputs; 2. the relationships between firing rates and inputs that emerged during rate-network training.

As an example of aspect one, if rate-network training produces recurrent connectivity that is strong relative to incoming commands,

we wish that to be preserved in the spiking model. As an example of aspect two, consider the preparatory epoch during the reaching

task. A neuron’s ‘directional preference’ (and thus which factors it reflects) is likely to be related to which external inputs it receives. A

neuron that respondsmost before rightward reaches is likely to receive a contribution from the network-input that conveys the cosine

of the reach angle.

Achieving the above goals would be simple if rate networks and spiking networks had the same number of units. One could simply

pick u and uin so that each spiking neuron had a factor-based synaptic input and an ‘external’ synaptic input approximating that of a

corresponding rate unit. However, spiking networks typically had more neurons than the corresponding rate network had units. We

thus developed a procedure that yields u and uin that are each ‘internally’ random (i.e. each matrix is itself random) but have relative

magnitudes that mirror what occurred in the rate network, and are also ‘aligned’ in the sense that spiking neurons will reflect com-

binations of factors and external inputs in a manner similar to that for rate-model neurons. The outcome of this procedure is a spiking

network that can be larger than the rate network upon which it is based, but where neurons have overall similar response properties.

First, we defined a N3 ~Nmatrix U with orthonormal columns to specify a linear map between the dimension of the rate model ð ~NÞ
and the dimension of the spiking model ðNÞ. The elements of this matrix were chosen randomly and then its columns were orthonor-

malized. To ensure the scale of the recurrent factor feedback and external input into each spiking neuronmatches (overall) that of the

recurrent factor feedback and external input into each rate unit, we leveraged knowledge of the recurrent and external connectivity of

the rate network, J
�
and u

�
in respectively. Recalling that V is the ~N3Pmatrix that defines the factors from the activity of the rate units,

we define u = gUJ
�
VT. Recalling that u is multiplied by yðtÞ in the spiking network, we can consider the impact of each term: VT maps

the factors into the ~N-dimensional rate network space, J
�
then maps the factors to synaptic inputs in the ~N-dimensional rate-network

space (preserving the scale present within the trained rate network), and U maps those preserved values into the N-dimensional

space of the spiking network, preserving the norm. To accomplish something similar for external inputs, U is also used to define

uin: uin = gUu
�
in. Defining uin based on u

�
in has the same effect that defining u based on J

�
does. Note that both uin and u are scaled

by g, as when they were completely random, to set their overall scale. The above procedure ensures that both u and uin are

composed of random matrices (e.g. U, u
�
in, and J

�
) and thus are themselves random, despite being designed through an intentional

procedure.

Quantifying performance, factor-based input variability, and spiking irregularity in trained spiking models
To determine how accurately the factors matched their targets, we computed the normalizedmean-squared error. For the rth trial the

normalized error is

Er =
C
�
ws

�
t
� � ytarg

�
t
��2

DT;P
CytargðtÞ2DT ;P

; (Equation 19)
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where T is time spanned by the trial for tasks with a trial structure. P indexes the factors. We report the across-trial median of this

error to provide an aggregate performance measure for tasks where performance can vary between trials of different conditions.

To determine the across-trial variability of the factor-based synaptic input for neuron n, we computed a normalized across-trial

variance using the following equation: D
Var

�
zFr;n

�
t
��

R

E
TD

Var
�
zFr;n

�
t
��

T

E
R

; (Equation 20)

for R trials of duration T. The numerator captures across-trial variability, while the denominator captures the degree to which the

mean varies across time. For pure noise, this expression would be unity on average. Small values indicate that the systematic aspect

of synaptic input is large relative to across-trial variability. Variability of network outputs, the factors, and the non-factor based syn-

aptic inputs were computed using the same expression. For networks where there was more than one condition, values were aver-

aged across conditions.

To determine how variable spiking was from trial to trial, we calculate the ‘across trial’ Fano factor following themethod established

in Churchland et al.80 For a given neuron and condition, for each trial we counted the number of spikes in a window from time t to t +

Dt.We computed the across-trial mean and across-trial variance of the count. For all analyses,Dt = 100ms and twas incremented in

10 ms steps. This yielded one value of the spike-count mean and one value of the spike-count variance for every neuron, condition,

and time-window.

To summarize the Fano factor for a given neuron, we found the slope of the best fit line (constrained to pass through zero)

describing the relationship between the spike-count variance and the spike-count mean across all conditions and time-windows.

To summarize the Fano factor for a population of neurons, we did the same but with one point per neuron, condition and time-

window.

Computing the flow field of the factors
To compute the flow field in the factor basis (Figure 1C) we perturbed the first two factors at various points along a reference trajectory

and observed how the network state relaxed following the perturbation. We first computed the average factor trajectory (for all 12

factors) across multiple trials in order to compute the direction of the approximate derivative at each point along the average trajec-

tory. We selected perturbations of the first two factors that were orthogonal to the average trajectory and observed the network state

10 ms later to compute the flow field in the vicinity of the stable factor limit cycle.

Computing rFn ðtÞ
To define a firing rate for each neuron, we modeled the relationship between the factor-based synaptic input and the probability of

spiking. Intuitively, as the factor-based synaptic input increases, the probability of spiking also increases. The relationship is prob-

abilistic because the neuron also receives a sizeable non-factor-based input. If one knows only the current factor-based input, then

the best one can do is predict the probability of a spike occurring. For LIF neurons, in principle there is a monotonically-increasing

nonlinear function that describes this relationship.93 However, analytically deriving this function was beyond the scope of this work.

We took the alternative approach of approximating it. This approximation required identifying two parameters for each neuron, b1
n

and b0
n.

We define the factor-based firing rate for the nth neuron as

rFn ðtÞ = exp
�
b1
nz

F
nðtÞ + b0

n

�
: (Equation 21)

b1
n is a gain parameter that accounts for attenuation of the synaptic input by membrane properties (by tv for example). b0

n is a con-

stant offset parameter that accounts for the constant inputs each neuron receives (e.g., from vm) and also reflects the value of the

spike threshold. In principle, these parameters could be set based on first principles, but doing so does not guarantee an accurate

fit to the data because the approximate nonlinearity (i.e., the exponential function) is not identical to the true non-linearity. To circum-

vent this issue, we learned these parameters using standard optimization techniques.

Because the goal of a firing rate is to account for the probability of spiking in a given window, we model the spikes occurring be-

tween time t and Dt, NnðtÞ, with a Poisson distribution:

NnðtÞ � Pois
�
rFn ðtÞDt

�
: (Equation 22)

Spiking in our networks is only approximately Poisson, but this noise model was sufficient for the practical purpose of fitting an

exponential non-linearity that captured the relationship between the factor-based input and the probability of spiking. Furthermore,

choice of the Poisson distributions accords with the exponential function; the exponential is the canonical inverse link function for the

Poisson distribution when fitting a generalized linear model (GLM).55

To learn b0
n and b1

n we use gradient ascent to maximize the log-likelihood of NnðtÞ with respect to b0
n and b1

n for all times (up to T,

where T is the length of collected simulated data). The log-likelihood function for the Poisson distribution is
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L�b0
n;b

1
n

�
=

XT
t = 0

NnðtÞlog
�
rFn ðtÞDt

� � rFn ðtÞDt: (Equation 23)

Optimizing this function can be performed with standard optimization packages. For our analyses, we used simulated network-

generated factors and spikes from our cycling task, with Dt = 1 ms. Analyses were performed with built-in MATLAB functions.

LFADS analysis
Latent factor analysis via dynamical systems (LFADS) was performed as described in Pandarinath et al.11 using code provided by the

authors (https://github.com/google-research/computation-thru-dynamics). LFADS is a statistical model for inferring latent variables

that can account for neural activity patterns. A salient feature of neural responses is their spatial and temporal co-variation, and

LFADS accounts for this by assuming the data are generated by a recurrent neural network. Approximate inference is performed us-

ing a set of variational autoencoders. Spike trains were binned in non-overlapping 10 ms bins for this analysis.

LFADS offers the flexibility to infer exogenous inputs into the neural network to describe the spike train data if variations in the data

cannot be sufficiently explained by variations in the initial conditions of the dynamics of an autonomous network. The results pre-

sented here inferred these additional inputs, but doing so only quantitatively changed the findings; qualitatively our results were un-

changed. Because there actually were no exogenous inputs into the spiking network that generated the data for fitting LFADS, it

seems likely that these learned inputs were actually the trial-to-trial fluctuations caused by the non-factor-based input. Resolving

this requires further study.

Tangling analysis
Tangling analysis was performed as described in Russo et al.14 using code provided by the authors (https://github.com/aarusso/

trajectory-tangling). The method seeks to identify pairs of network states that have different derivatives yet are near one another.

The pair of states can be either at different times within a single trial or at different moments in different trials. Tangling is computed

as

QðtÞ = maxt0
k _X t � _X t

0 k2

kX t � X t
0 k2 + ε

; (Equation 24)

where X t is a state variable of interest (e.g. factors, synaptic input, etc.) at time t and _X t is the derivative of that variable at time t (t

indexes across all times in all conditions and/or trials being analyzed). If the value of this state variable is the same at two times but its

derivative is different, an autonomous dynamical system cannot account for the observed dynamics. In practice it would be rare for

the state of a spiking network (or data) to ever be truly identical at two times, but high tangling still implies that the observed state

trajectories would be difficult to instantiate in a noise-robust autonomous dynamical system.

We assessed trajectory tangling of the factors, the factor-based input, the non-factor-based input, and the total synaptic input on

single trials. Default options were applied based on previous analysis, including normalization of the signals (divide by their range,

then add an offset) before applying the analysis. Contrary to prior analyses, PCA was not applied to the full state before analysis

(e.g. for the factor-based input, the non-factor-based input, and the total synaptic input tangling was assessed in the full 1200 dimen-

sional space). When tangling was compared between the factors and the network outputs, signals were filtered with a Gaussian

kernel (5 ms s.d.) to conform to prior analyses14 where filtering was applied.

Learning sparsely connected and Dale’s Law obeying networks
To train networks while constraining J to be sparse and with columns of consistent sign, we developed a two-step method. Con-

straining J0 to abide by these constraints is straightforward, since its elements are chosen randomly and not modified; we sample

these elements from a truncated Gaussian distribution to obtain exclusively excitatory or inhibitory elements, respectively, and set

some connections equal to zero to achieve the desired sparsity.

In contrast, enforcing these constraints on Jfac is challenging from a training perspective.96 The recursive least-squares (RLS) al-

gorithm is an important part of the network construction; RLS ensures that the trained network is stable because the samples gener-

ated during the training not only characterize the desired activity, they also include typical fluctuations that arise during network oper-

ation.48 Unfortunately, the RLS algorithm is impractical for weights that are constrained in sign. Sign constraints can easily be

enforced in a batch least-squares (BLS) approach but using BLS for building recurrent network models does not guarantee that

the resulting network state is stable.

We develop a procedure that combines the sampling property of RLS with the constraint amenability of BLS. First, we train a fully

connected and sign-unconstrained spiking network (our standard training paradigm) using RLS to obtain the recurrent connectivity

matrix Jfac that constructs the network factors. Then, we sample the post-synaptic inputs JfacsðtÞ over an extended period of time

and use them to train post-synaptic inputs JC
facsðtÞ of a second networkwith constrainedweights (indicated by the superscriptC). The

least-squares problem for matching these two sets of inputs

JC
facsðtÞzJfacsðtÞ; (Equation 25)
Neuron 111, 631–649.e1–e10, March 1, 2023 e8

https://github.com/google-research/computation-thru-dynamics
https://github.com/aarusso/trajectory-tangling
https://github.com/aarusso/trajectory-tangling


ll
Viewpoint
is done in batch. This way, the data used to solve the least squares problem are assured to contain the fluctuations necessary for

learning a stable solution and constraints can be easily enforced.

To illustrate why this two-step training procedure was necessary we sampled the deviations between the target factors and the

actual factors for the fully connected and sign-unconstrained network trained with RLS, i.e.

hRLSðtÞ = wsðtÞ � ytargðtÞ; (Equation 26)

for some length of time T (Figures 5D and 5E). We shuffled the temporal and spatial indices of hRLSðtÞ, which we call hshuffðtÞ, and
used these shuffled errors to train the second network with constrained weights, as we did above, but instead according to the least-

squares problem

JC
facsðtÞzu

�
ytargðtÞ+hshuffðtÞ �: (Equation 27)

Here, s(t) is the spiking network activity when ytargðtÞ and hshuffðtÞ are applied as external input via u.

Although the above procedure was effective at learning JC
fac with the desired sparsity and sign constraints, it was not able to ensure

that the sparsity patterns of JC
fac and J0 matched. BLS assigns roughly half of the synaptic connections to zero, because it would

prefer to make those connections negative (or positive) but cannot. We cannot pre-identify which connections this will apply to

(and thereby apply the same sparsity pattern to J0). Instead, we must set the actual sparsity requirement of BLS to half the desired

sparsity, and cannot achieve control over which synapses will actually be non-zero. However, we stress that, as we have shown, only

JC
fac provides the critical substrate for the factors (no new factors arise due to J0), implying that thismismatch is not likely to impact our

results.

JC
fac cannot be factorized intow and u aswas the case for Jfac. Thus, this process replaces the low-rankmatrix Jfac

46 with a full-rank

matrix JC
fac (since it is now a sparse and sign-constrained matrix). Because of this,w (which serves, in this case, purely to read out the

network activity) must be learned separately from JC
fac to extract the factors yðtÞ themselves (not the synaptic inputs that arise from

them). This can readily be done with RLS or BLS after learning JC
fac.

Task details
Cycling task

We included a brief input pulse at the beginning of each period to initialize a trial and to compensate for phase drift than can accu-

mulate when learning periodic tasks; results on this task are qualitatively similar if the pulse was not included. min = 1. f inðtÞ was of

amplitude 2.0 and duration 50 ms. V was calculated to capture 99% of the variance of xðtÞ, yielding 12 factors ðP = 12Þ. 800 model

spiking neurons were used ðN = 800Þ. The spiking network gain was g = 4.

Sparsely connected, Dale’s Law cycling task

f inðtÞ, N, P and g defined as for the fully connected cycling network. The elements of J0 were drawn such that 50% of the population

was exclusively excitatory or inhibitory ðpEI = 0:5Þ and such that each neuron was only connected to 40% of the population

ðpsparse = 0:4Þ.
Reaching task

A two-dimensional input indicated the target direction and the termination of a step-input indicated the ‘go cue’. The go cue occurred

approximately 150 ms before reach onset and approximately 50 ms before the onset of changes in muscle activity (EMG). The di-

rection-specifying input was present for the duration of the trial. The amplitude of each component of the direction-specifying input

was 1
2 cosðqÞ and 1

2 sinðqÞ, where q specifies reach direction. These inputs were applied both to the spiking network and to the rate

model used to identify the target factors.

Both networks – spiking and rate – had to produce empirical patterns of muscle activity. The rate model was trained to generate

those output targets in order to identify target factors that could be used for spiking-network training. Assuming the rate network

successfully generated the output targets, it should supply target factors that will also allow the spiking network to do so. To produce

appropriate output targets for rate-network training, muscle activity was temporally filtered and windowed such that any (already

minimal) changes in activity before the go cue were zero. Small variance modes (accounting for less than 1% of the total variance)

of each muscle’s EMGwere removed and each muscle’s EMGwas normalized across all movement conditions so that its maximum

amplitude was 2.0. We used pre-processing to create idealized targets because we did not wish the network to attempt to fit small

idiosyncratic aspects of the empirical recordings. Details regarding the recording of EMG data can be found in Elsayed et al.74

During rate-network training, we included an additional target output with a constant value of -0.5 for all times. This aided rate-

network training because it helped suppress chaotic fluctuations due to strong internal recurrence. When in a highly chaotic regime,

rate models become less sensitive to inputs and therefore poorly reflect those inputs and input-derived signals necessary for suc-

cessful training. This additional input shifted the network away from a chaotic regime, while maintaining strong internal recurrence, a

regime better for learning. This output was not necessary when training the spiking network and was not used for that network. To

mimic standard paradigms in experimental neuroscience, the time between trials and the sequence of trial conditions were chosen

randomly when training both networks. The inter-trial interval duration was sampled from an exponential distribution with a mean of

two seconds to which a minimum interval of 0.4 seconds was added.
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Viewpoint
The rate model was trained with our modified FORCE procedure, as described above. V was calculated to capture 99% of the

variance of xðtÞ, yielding 37 factors ðP = 37Þ. 1200 spiking neurons were used ðN = 1200Þ and 800 rate units were used ð ~N =

800Þ. The spiking network gain was g = 3 and the rate network recurrent gain was ~g = 1:4.

Contextual integration task

We simulated each of the two ‘sensory’ inputs to both the firing rate network and the spiking network as a constant plus zero-mean

white noise. The mean of each sensory input for each trial was selected randomly from a uniform distribution from -0.1 to 0.1.

Gaussian noise with std = 0.4 in each time step of Dt = 1 ms was added to the mean input so that the behavior of the discrete-

time network roughly matched experimental subjects. Two additional ‘context’ inputs identified which of the two sensory inputs

should be integrated (the ‘cued’ input) on the current trial. For example, when the first context input had a value of one and the second

context input had a value of zero, the first sensory input was cued and the second sensory input should be ignored (‘uncued’). The

context input was present for the duration of a trial. In total, the network received four external inputs ðmin = 4Þ.
The rate model was trained with backpropagation through time, as described above. Performance of the spiking was judged by

comparing the sign of the output at the end of the trial to the sign of themean value of the cued input, with matching signs indicating a

correct response. We varied the trial difficulty by changing the absolute magnitude of the mean value of each input, holding the noise

constant. V was calculated to capture 95% of the variance of xðtÞ, yielding 9 factors ðP = 9Þ. 800 spiking neurons were used

ðN = 800Þ and 100 rate units were used ð ~N = 100Þ. The spiking network gain was g = 3.

Two-task network

To illustrate the potential of our approach to train networks on multiple tasks, and to provide insight into how factors from different

tasks could be arranged in state space, we trained a network of 1200 LIF neurons to perform the cycling task of Figure 2 and the

reaching task of Figure 6. The cycling factors were from data, as before, and the reaching factors were from a rate network, as before.

All network parameters are identical to the reaching network of Figure 6, except g (the scaling of the learned recurrent feedback); g= 6

so that the learned recurrent inputs in the spiking network are slightly stronger than in prior networks.

On each trial, the network had an equal probability of performing either task. Which task was to be performed was indicated by

which inputs were active. For the cycling task, a second ‘stop’ pulse was included so the network would stop cycling before the start

of the next trial (not necessary in the original task). Inputs for the reaching task were as in Figure 6: a two-dimensional direction signal

and a ‘go’ cue.

Only a single EMG output (the activity of the posterior deltoid) was used as an output target for the trained spiking network (i.e. after

the factors were learned by the spiking network), because this was the only common EMG recording across both tasks. All EMGs

were used in the initial rate model training for the reaching task (as in Figure 6) to derive the reaching-task factors, and the cycling

task factors did not require knowledge of the EMGs because they were directly available.

12 cycling factors and 37 reaching factors were used to train the network. To illustrate the potential to design networks that can

perform different tasks using factors that reside in different areas in the neural state space, the network was designed such that the

factors for each taskwere roughly orthogonal to each other. To do this, we enforced that the cycling factors were zero during reaching

tasks and the reaching factors were zero during the cycling task. To quantify this, we computed the angle between the subspace

defined by the reaching factor projection of the neural activity (the first 37 columns of w) and the subspace defined by the cycling

factor projection (the last 12 columns of w) using the MATLAB function subspace, and found that it was 85 degrees, i.e., roughly

orthogonal.
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