Neuron

The centrality of population-level factors to network
computation is demonstrated by a versatile
approach for training spiking networks

Highlights
e Latent factors enable robust, flexible training of artificial
spiking neural networks

e Model networks bridge the gap between spiking- and factor-
based levels of description

e Concepts such as “firing rate” become well defined in terms
of factors

e Results justify the use of factors and rates in empirical
hypotheses and explanations

DePasquale et al., 2023, Neuron 171, 631-649
March 1, 2023 © 2022 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2022.12.007

uuuuuuu

Authors

Brian DePasquale, David Sussillo,
L.F. Abbott, Mark M. Churchland

Correspondence
bddepasq@bu.edu

In brief

DePasquale et al. introduce a method for
building artificial spiking neural networks
using latent factors, a powerful conceptin
data analysis not yet grounded in
neurophysiological terms. Factors are
computationally central, enabling robust,
flexible learning. Networks clarify that
“factor” and firing rate are concretely
defined and crucial to understanding
computation.

¢? CellP’ress

mailto:bddepasq@bu.�edu
https://doi.org/10.1016/j.neuron.2022.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.12.007&domain=pdf

Neuron

¢? CellPress

The centrality of population-level factors to
network computation is demonstrated by a
versatile approach for training spiking networks

Brian DePasquale,-2-3:10.11.* David Sussillo,*° L.F. Abbott,22¢.7.¢ and Mark M. Churchland?6:8.9
1Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA

2Department of Neuroscience, Columbia University, New York, NY, USA

3Center for Theoretical Neuroscience, Columbia University, New York, NY, USA

“Department of Electrical Engineering, Stanford University, Stanford, CA, USA

5Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA

6Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA

“Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA

8Kavli Institute for Brain Science, Columbia University, New York, NY, USA

9Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA

10 ead contact

Present address: Department of Biomedical Engineering, Boston University, Boston MA, USA

*Correspondence: bddepasq@bu.edu
https://doi.org/10.1016/j.neuron.2022.12.007

SUMMARY

Neural activity is often described in terms of population-level factors extracted from the responses of many
neurons. Factors provide a lower-dimensional description with the aim of shedding light on network compu-
tations. Yet, mechanistically, computations are performed not by continuously valued factors but by interac-
tions among neurons that spike discretely and variably. Models provide a means of bridging these levels of
description. We developed a general method for training model networks of spiking neurons by leveraging
factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-
building framework, this formalism illustrates how reliable and continuously valued factors can arise from
seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network
models with different levels of realism. The relationship between spikes and factors in such networks pro-

vides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.

INTRODUCTION

Individual neurons and their spikes are the fundamental units
from which a mechanistic understanding of neural computation
must be built. Yet, analysis frequently abstracts away from
individual spikes and focuses on a firing rate that governs the
propensity to spike. A growing trend is to treat firing rates as re-
flecting population-level “latent factors.” Experiments seek to
estimate firing rates and latent factors because hypotheses
employ these concepts. In sensory systems, firing rates are hy-
pothesized to be functions of stimulus properties, and decoding
operates upon rates or factors. Decisions are hypothesized to
employ latent variables reflected in firing rates.' Increasingly,
hypotheses regarding computation are expressed in terms of
flow-fields shaping the multi-dimensional trajectory of latent fac-
tors.> ' Such hypotheses aim to be mechanistic and thus
explanatory. For example, it is proposed that factor-level dy-
namics explain a causal chain in which pre-movement activity
culminates in movement.?®

Spike-based interactions among neurons are patently mecha-
nistic, but do flow field arrows guiding abstracted state-space
trajectories constitute a “mechanism”? The hope that they do
is bolstered by the ability to train recurrent neural networks to
perform brain-like computations and to understand their solu-
tions in terms of reduced-dimensional projections of activity.
Yet, the vast majority of such networks employ rate-based units
and thus assume what one might hope to establish: that firing
rates, and latent factors derived from them, are a valid abstrac-
tion. There is also ambiguity regarding whether rate-based units
are analogous to neurons or simply an effective basis for approx-
imating arbitrary functions and dynamics.??*

If concepts such as latent-factor dynamics and firing rates are
to form the foundation not just of analysis but of mechanistic un-
derstanding, it must be possible to link them concretely to indi-
vidual neuron spikes. A challenge is that neither latent factor
nor even firing rate have accepted physiological definitions.
Except when spikes are unusually plentiful, there is no accepted
procedure (biophysical or analytical) for deriving a smooth rate

Neuron 777, 631-649, March 1, 2023 © 2022 Elsevier Inc. 631

mailto:bddepasq@bu.edu
https://doi.org/10.1016/j.neuron.2022.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.12.007&domain=pdf

¢ CellP’ress

from a neuron’s single-trial spike train. This has prompted the
concern that when spiking is intermittent (as is typical in cortex)
“it does not make sense to talk about the firing rate.”** Firing-
rate-based analyses have been described as ad hoc “with virtu-
ally no empirical or theoretical support”2° and lacking any clear
link to mechanism. The notion of firing rate is not solidified by
moving to a more detailed level; the membrane potential does
not correspond to a rate that yields probabilistic spiking via
cell-intrinsic mechanisms. Moving to a broader level is more
promising; a neuron’s rate might be defined as the average
spiking frequency of many self-similar neurons.”®>® Response
heterogeneity (e.g., Churchland and Shenoy®°) suggests gener-
alizing this definition of firing rate to weighted averages of spiking
activity. That approach accords with common methods for sta-
tistically estimating latent factors but leaves open the question
of whether factors are a statistical convenience or a mechanisti-
cally meaningful concept.

The goal of this study is to determine whether latent-factor dy-
namics provide a principled way of understanding how spiking
networks —specifically networks with realistic spiking variability
and response heterogeneity —perform computations. We build
upon studies that have successfully trained recurrent spiking
networks to perform canonical computations®>*°~*? or emulate
continuously valued dynamical systems.?*?%39=32 We introduce
an approach that focuses specifically on factors as training tar-
gets. Our method explicitly and concretely defines factors in
terms of the synaptic and physiological elements of a spiking
neural network. The focus on factors improves the flexibility
and power of training; it allows construction of spiking networks
that perform a wide variety of tasks, including emulating data-
derived dynamics, and that perform robustly even when spiking
is realistically variable.

Spiking networks trained via this approach displayed proper-
ties resembling those observed empirically, including mixed
selectivity and seemingly noisy spiking. Nevertheless, factors
were reliable and provided the best way to understand network
function: computation was performed by factor-level interac-
tions mediated by seemingly noisy spiking. This remained true
when network realism was increased to include excitatory and
inhibitory cell types and sparse connectivity. Spiking networks
shared a factor-level correspondence with traditional rate-based
networks, yielding a simple procedure for training spiking net-
works to perform computations normally instantiated within
rate networks. The correspondence validates rate-based net-
works as a powerful tool for modeling factor-level computations,
yet cautions against viewing rate units as idealized spiking neu-
rons. For our spiking-network neurons, firing rate was not a local
property but was definable only via population-level factors.
These results illustrate that, although the abstraction of factors
can seem uncomfortably removed from the cellular level, factors
are both well defined physiologically and can be essential for un-
derstanding computational mechanism.

RESULTS
Constructing factor-based spiking models

Extracting factors from neural recordings involves analysis, often
employing steps unlikely to be performed by real neurons in real

632 Neuron 71717, 631-649, March 1, 2023

Neuron

time (e.g., trial averaging or statistical inference). Nevertheless, it
is often proposed that computation can be modeled via factor-
level interactions, or that factors provide a basis for outputs.
Can the abstraction of factors be linked to physiological compo-
nents within neural circuits? There exist two, hopefully compat-
ible, perspectives regarding the relationship between spiking
neurons and continuously valued factors. In one perspective
(Figure 1A, left), neurons are primary, and factors summarize
important aspects of spiking-neuron connectivity and activity.
In the other perspective (Figure 1A, right), factors are viewed
as primary, and spiking neurons instantiate a function that cre-
ates factor-level dynamics. We construct spiking networks (Fig-
ure 1B) to ask whether both views can be simultaneously valid,
and whether the factor-level perspective can aid both network
training and understanding of network computation.

This strategy involves a technical goal and a conceptual goal.
The technical goal is to design networks that embody common
assumptions about factors, accord with basic properties of neu-
ral circuits, and display spiking patterns that are realistically var-
iable. The conceptual goal is to analyze and understand how
such networks compute and ask when and whether common
abstractions—such as factors and firing rates—are useful.

Networks employ leaky integrate-and-fire (LIF) neurons that
spike when the membrane potential reaches threshold. Spikes
impact post-synaptic membrane potentials after being filtered
with two characteristic synaptic time constants, 5 and 100 ms,
chosen to respect the diversity of synaptic timescales while
maintaining model simplicity. The collection of filtered spike
trains for all neurons and both timescales is denoted by a time-
dependent vector s(t). Multiplication of s(t) by a synaptic weight
matrix, J, determines a vector of post-synaptic inputs, Js(t) (in
units of mV; synaptic current multiplied by unity input resistance).
Given two timescales and N neurons, s(t) contains 2N elements
and J is of dimension Nx2N (N neurons with 2N incoming
connections).

How should one identify values of J so that the network sup-
ports factors? This problem can be partitioned in two, with
each half aligning with a key assumption regarding factors. First,
if factors form the basis of computation (not just analysis), they
must be concretely definable in terms of network elements. We
make the simplest assumption: the factors the network con-
structs, y(t), are linear sums of single-trial synaptically filtered
spiking activity:

y(t) = ws(t). (Equation 1)

The matrix w (Figure 1B, green) is of size P x 2N, where P is the
number of factors (2N is twice the number of neurons due to two
synaptic timescales).

The second assumption is that if spiking reflects both factors
(e.g., in the average spike-rate) and signals unrelated to factors
(perhaps manifested as trial-to-trial variability), each neuron’s
input must contain both the factors and a “non-factor-related”
component. We consider that these two input components arise
from two distinct connectivity components. We define J¢,c as the
component of connectivity necessary to generate the factors.
Multiplying Jie by the synaptically filtered spikes yields
JrcS(t), the recurrent input each neuron receives via this

factor
dynamics

network factors
C EN A
A
10+ R
A 7 ¥ X
Ny
>
Ny
a > 5
5 Nig
[%)
8 : <
*V/ ~
/f/ ,'4
e
10 “:—”f =
AN * A3 A
-2'0 factor 1 2'0

¢? CellPress

Figure 1. Factors provide a way of under-
standing computation in spiking networks
(A) Our spiking networks can be viewed from two
complementary perspectives. Left: a neuron-centric
view. Causal interactions involve connections (black
synapses) among model spiking neurons (red cir-
cles). Causal interactions flow “through,” and
thereby construct, a modest number of factors (blue
circles). Outputs (magenta) derive directly from the
spiking neurons. Right: a factor-centric view. The
computationally relevant interactions (green) occur
among the factors (blue). Those interactions flow
through a large population of spiking neurons (red).
The population can instantiate a broad range of
nonlinear functions, allowing a broad range of
potential dynamics. Outputs are derived from the
factors.

(B) Schematic of network architecture. Spiking
neurons (red) interact through synapses that contain
both an untrained, random aspect, Jo, (black) and a
trained aspect that is decomposed into two com-
ponents: w and u (green). w captures the linear
dependence of factors (blue circles) upon neural
activity and is trained. u captures the impact of the
factors back onto the neurons and is random and
untrained. Factors and their associated connections
are illustrated as explicit model elements but this is
not necessary; the influence of Jo, w, and u can be

combined into a unified set of connections, J.
(C) Network dynamics can be understood based on
factor trajectories in state space. Gray trajectories

show the evolution of the first two factors for twenty trials of the cycling task. We show many overlapping gray traces to convey the overall variability of the factors.
A single example trial is shown in black. The blue trace shows the mean trajectory across 100 trials. Although trajectories vary modestly across trials, factor-level
dynamics are stable as illustrated by the stability of the dynamical flow field (green arrows). The flow field was determined by perturbing the factors and measuring

their recovery.

connectivity component. The assumption that Js,c conveys fac-
tor-related input implies

JreS(t) = uy(t), (Equation 2)

where u is an NxP matrix specifying how N neurons are
impacted by P factors (Figure 1B, green). Respecting the
assumption that each neuron reflects random combinations
of factors,*® we pick the entries of u randomly, resulting in
“mixed selectivity” (e.g., Machens et al.** and Rigotti et al.*%).
Although other choices are possible, this choice is advanta-
geous because network construction becomes insensitive to
the factor basis; two networks trained using different linear
transformations of the same target factors will be functionally
equivalent.

We hypothesize that response variability arises due to connec-
tivity that is functionally irrelevant to the factors but supports per-
formance (or future learning) of other computations. We define
this component as Jy (Figure 1B, black). This additional connec-
tivity is unrelated to the current factor-mediated computation
and on its own should produce functionally irrelevant synaptic
input. To incorporate this possibility in a simple way, we choose
the entries of Jo randomly.

We define the full connectivity matrix as J = Jiac +Jp. Note
that Ji,c and Jg do not reflect anatomically separate synapses—
each synaptic weight in J reflects both components. Recalling

thaty(t) = ws(t), the relationship Jscs(t) = uy(t) = uws(t) im-
plies Jsc is low rank?*3%4€ with rank equal to the number of factors.
Adding Jo means J is full rank, while containing a learned low-rank
component.*’

Network training identifies w so that y(t)=yi,4(t), where
Yiarg(t) are a set of target factors (i.e., a set of factors we
are seeking to construct). We employ recursive least squares
(RLS) when learning w, to encourage stability of the resulting
dynamics. u remains fixed and random, reflecting the choice
above that individual neuron activity reflects random mixtures
of the factors. Jy also remains fixed and random, reflecting the
assumption that it is not tailored to the present computation.
Learning w with RLS is similar to FORCE learning in Sussillo
and Abbott*® and Nicola and Clopath,®® but with a key con-
ceptual and practical difference. In FORCE learning, the opti-
mization of network output creates internal signals that
perform the underlying computations. We found that standard
FORCE learning typically worked poorly when spiking vari-
ability was considerable and firing rate ranges were reason-
able. Additionally, because we wished to explore whether
and how computation can be described at the factor level,
we wished factors to be explicitly defined rather than to
implicitly emerge. We thus used internal training targets (i.e.,
factors) rather than target outputs. We chose target factors
by deriving them from data or from a firing rate model. This
choice ensured that target factors were sufficient to perform

Neuron 7711, 631-649, March 1, 2023 633

¢ CellP’ress

the computation; ideally no additional factors would need to
emerge during training. This approach relates to the full-
FORCE approach™® but uses low-dimensional training targets.

We found that the above training procedure was effective
for any reasonably chosen set of target factors (i.e., factors
with low trajectory tangling; see STAR Methods). Intuitively,
for almost any momentary pattern of spiking, s(t), one can
find a w such that ws(t) approximates the current values of
Yiarg(t)- Having done so, the factor-based connectivity Jr,c en-
sures that each neuron receives a factor-related input. Spiking
reflects this input, improving the ability, at future moments, to
find a w that extracts the factors. Initially w must be
constantly updated, but with time RLS converges on a w
that works well consistently. Convergence was rapid, e.g.,
for the cycling task considered below, training typically
converged after a few hundred examples. One reason for
rapid convergence is that training only had to learn to correct
activity deviations that impacted the factors. It was not neces-
sary to achieve stable trajectories in the full-dimensional
space. Indeed, trained network activity followed highly vari-
able high-dimensional trajectories (resulting in considerable
spiking variability, documented below) despite adhering close
to the target factor-level trajectory.

Dynamics at the level of the factors

We trained a network to generate factors extracted from empir-
ical data, both to show the flexibility of the factor-based training
approach and to explore the relationship between factor-level
dynamics and the more obviously mechanistic level of spiking.
We obtained target factors from the extracellularly recorded
spiking activity of 109 well-isolated single neurons recorded
from primary motor cortex (M1) as monkeys cycled a hand-
held pedal.14 Empirical factors were estimated using dimension-
ality reduction after temporal filtering and trial averaging.’ We
used principal component analysis (PCA) to reduce the pop-
ulation response (a 109 X T matrix) to twelve factors (a 12x T ma-
trix), with T being the number of time points during one cycle. The
reduced-dimensional data define a vector, yi,4(t), describing
the temporal evolution of twelve target factors. Each recorded
neuron’s trial-averaged firing rate was well approximated by a
weighted sum of these factors (99% of the variance for uni-direc-
tional cycling). Using PCA was not critical; factor analysis yielded
12 factors spanning an almost identical space. Similar factors
were identified without trial averaging.®”

Our network construction procedure succeeded in training a
network of 800 neurons to produce the empirical factors. Unlike
for empirical data, model factors do not need to be estimated but
are explicitly defined by the twelve-dimensional vector y(t),
which is simply a weighted sum of spikes: y(t) = ws(t). Plotting
the first two network factors (Figure 1C; one trial shown in black,
average of 100 trials in blue) yielded a circular trajectory like that
seen empirically.’® The match between network and target fac-
tors was excellent (Figure 2A, blue and dotted-black traces over-
lap). Spiking occurred at reasonable physiological rates (12
spikes/s on average). The functionally irrelevant connectivity
component, Jp, produced variable spiking (quantified further
below) but did not significantly disrupt factor trajectories, which
were similar across trials (Figure 1C, gray traces).

634 Neuron 71717, 631-649, March 1, 2023

Neuron

The operation of the spiking network clarifies that both the
“neuron-centric” (Figure 1A, left) and “factor-centric” (Fig-
ure 1A, right) perspectives are valid. One can consider neurons
(Figure 1B, red) primary, with factors mediating how current
spiking influences future spiking. Alternatively, one can
consider factors (Figure 1B, blue) primary, influencing their
own future values via a population of spiking neurons. Factors
also provide a basis for network outputs: any linear readout of
the factors is a plausible network output because it is also
obtainable as a linear combination of spiking-neuron activity.
As we show below, the only reliable outputs are combinations
of the factors. The factor-centric view further assumes that
computationally relevant aspects of network dynamics are
describable at the factor level, without needing to know the ac-
tivity of individual spiking neurons. This was indeed true to a
first approximation. A flow field supporting a stable limit cycle
in factor space (Figure 1C, green arrows) is revealed by factor
trajectories during recovery from perturbations. Strictly
speaking, the flow field is fully defined only in the full N-dimen-
sional space; factor-space trajectories exhibit small variations
(gray traces) that cannot be explained by purely factor-level dy-
namics. Nevertheless, factor-based dynamics provide a good
way of understanding how the network performs its function:
a stable limit cycle produces repeating patterns (Figure 2A)
that provide a basis for outputs.

Establishing analytically when the factor-centric view provides
a good approximation, and when factor-level dynamics are sta-
ble, is difficult (e.g., Schuessler et al.*”) and essentially impos-
sible as network realism increases. Nevertheless, two empirical
features indicate when the factor-centric view is likely appro-
priate. First, spiking should appear quasi-random,®’ resembling
a point (e.g., Poisson) process with an underlying rate for every
neuron. Second, this rate should be a function of the factors
with no additional terms needed. Together, these features
dictate that future factor values are approximately a weighted
sum of rates, which are in turn functions of the present factor
values, yielding dynamics describable at the factor level. This
is an approximation because factors are actually weighted
sums of spikes, not rates. However, it can be a very good
approximation if the impact of spiking variability is reduced
when spikes are summed across many neurons.

In the following sections, we document these features and
their origins. We show that, as realism is added to the connectiv-
ity, training continues to produce dynamics that are well
described at the factor level. Finally, we show that our procedure
allows spiking networks to efficiently perform computations typi-
cally implemented in rate-based networks.

Reliable factors and outputs despite spiking variability

The network documented in Figures 1 and 2 was trained to pro-
duce the target factors after receiving an input pulse. Membrane
voltages were randomly initialized before the pulse. Neverthe-
less, the network produces similar factors on every trial (Fig-
ure 2A, blue and gray traces show two example trials; 2% me-
dian single-trial error). In contrast, individual neuron membrane
potentials evolve very differently across trials (Figure 2B,
compare red and gray traces). Consequently, spiking is variable.
On single trials, it is hard to discern a clear relationship between

A factors B

trial 1

neuron 149
trial 2

factor 2

trial 1

factor 3

¢? CellPress

membrane potential Cc
Fano factor across

the population

number of cells &

o

o

0.5 1.0 1.5
Fano factor

time (ms) 2000 0

D neuron 149, response across trials E
1007 - BT

trial

post. deltoid

| |
i i
e
neuron 186 i i
|
3 2
0
network outputs F

trial 1
target trial 2
med. triceps

e biCEI;\’_MA/\’J

timel (ms)

population activity on one trial
100 s L T - -

s

.

neuron

0 time (ms) 2000 0

timé (ms)

Figure 2. Spiking network model produces the empirical factors recorded during cycling

(A) The network model produces factors that are consistent from trial to trial. The first 3 factors (of 12) produced by the spiking network model on two different
trials (blue and gray). The first two factors are those plotted in state space in Figure 1C. The dotted black trace plots target factors. Calibration indicates 10
arbitrary units (a.u.).

(B) Subthreshold potentials and spiking activity vary across trials. Membrane voltage is plotted for two example neurons (bottom and top) and two trials (red and
gray). Dotted box highlights the second to last cycle of the task and illustrates that different numbers of spikes are emitted on different trials. The across-trial Fano

factor of these two neurons was 1.10 and 0.99.
(C) Histogram of Fano factor values across the population.

(D) Individual neuron spiking varies across trials but nevertheless reflects a reliable component, such that a periodic pattern is visible when considering many
trials. Raster plot of 100 randomly selected trials from one neuron (Fano factor of 0.99).

(E) The reliability of the factors allows the network to produce reliable outputs. Three network outputs are shown on two trials (magenta and gray). The target
network output (recorded muscle activity) is shown in dotted black. Calibrations are 0.2 a.u.

(F) Spiking is asynchronous across the network. Raster plot of 100 randomly selected neurons for one trial.

single-neuron spiking and the factors. For example, in Figure 2B
(bottom), spiking is plentiful on some cycles/trials and scant on
others (compare within dotted box). For this neuron, the Fano
factor was 0.99 (based on across-trial spike-count variability in
100 ms cycle-locked windows; see STAR Methods). Across neu-
rons, the average Fano factor was 0.68 (range: 0.38-1.42; Fig-
ure 2C), in general agreement with values observed during
movement.®! Clear temporal modulation of spiking emerges
only when multiple trials are considered (Figure 2D), as is
commonly observed in empirical recordings.

Variable membrane-voltage trajectories are a consequence
of different initial network states interacting with very complex
(likely chaotic) dynamics.®>° This yielded seemingly stochastic
spiking even though simulations were deterministic. Despite
spiking variability, factors supported reliable outputs: weighted
sums of model factors reliably decoded experimentally re-
corded muscle activity (Figure 2E; magenta and gray plot two
representative trials). Importantly, because factors are weig-
hted sums of spikes, each factor-based output is simply a
weighted sum of single-neuron spikes. Decoding is reliable
because the weighted sum, across neurons that spike largely

asynchronously (Figure 2F; Figure S1), reduces variability
through averaging.

Reliable aspects of neural activity reflect the factors
Empirical analyses often assume that each neuron’s response
reflects both reliable signals that are computationally meaningful
and additional noise-like components. Network construction
was inspired by this idealization, and networks did indeed exhibit
spiking that was task-modulated yet also variable (Figures 2B—-
2D). Because model neurons were deterministic, if distinct reli-
able and noise-like signals impact spiking they must be present
within a neuron’s input.

Across neurons, 96% of the variance in the trial-averaged
input was accounted for by regressing against the twelve target
factors (Figure S2A). Thus, the reliable component of each neu-
ron’s response does indeed derive from the computationally
meaningful factors. Of course, to be computationally meaningful,
the reliable component must be present and sizable on single tri-
als. This was indeed the case: the top twelve principle compo-
nents (PCs) captured considerable variance (563%, Figure S2B)
that was reliably task-related (i.e., repeated at the cycling period,

Neuron 7711, 631-649, March 1, 2023 635

¢ CellP’ress

Figure S2C). If reliable signals are computationally meaningful,
removing them should impair computation. This was also true:
removing the neural inputs due to any of the largest PCs
rendered the network non-functional (muscle activity could not
be read out).

Single-trial inputs also contained a sizable unreliable compo-
nent: the remaining 47% of the variance was split across many
PCs (Figure S2B), displayed a broad frequency spectrum (Fig-
ure S2C), and was nearly uncorrelated across trials (average r =
0.007). The signals captured by these PCs were not computation-
ally meaningful: removing the contribution of higher-order PCs had
almost noimpact on network outputs or factors. This was true even
if we removed the contribution of hundreds of higher-order PCs,
accounting for >15% of the total input variance (Figure S2D).

These findings thus support the common assumption that
each neuron’s response reflects both reliable and unreliable
signals. The finding that the computationally meaningful compo-
nent arose solely from the factors supports the validity of the fac-
tor-centric view. As a technical aside, the ability to determine
that the reliable input component depended on the factors (Fig-
ure S2A) was aided by intentionally choosing a “complete” set of
factors as training targets. Thus, all network factors were known;
no new “emergent” factors arose. This was typical in our simu-
lations, but exceptions are possible. Networks are nonlinear.
Thus, for any given factor (e.g., a 2 Hz sine-wave) nonlinear dis-
tortions (e.g., higher harmonics) can yield “new” factors. In this
case, this was irrelevant: all higher harmonics existed within
the target factors so no novel factors emerged. For more
complex tasks, assembling a complete set of factors may be
challenging. Below, we show how this can be accomplished
by employing trained rate-unit networks. We found that this pro-
cedure yields target factors sufficient to perform the computa-
tion and rich enough to contain any additional factor likely to
emerge. Not only is training most likely to be successful when us-
ing a complete set of target factors,***° interpretation is also
simplest. For example, in the next section we leverage the
explicitly defined factors to determine the origin of the reliable
and unreliable synaptic-input components.

Reliable and variable synaptic-input components

Above we employed PCA, much as an experimenter might, and
observed that each neuron’s synaptic input displays a reliable,
factor-related component and an unreliable component. Ideally
one would define these components not by analysis but mecha-
nistically, in terms of model elements. Our model-construction
approach makes this easy because factors are concretely
defined. Every neuron’s synaptic input can be decomposed
into a factor-based component and a non-factor-based compo-
nent. We can write the factor-based input for neuron n as a
weighted sum of factors:

P
Zh(t) = > unye(d), (Equation 3)
P

where P is the number of factors. The weights u' reflect both the
impact of u (which along with w defines Js,c) and the fact that, once
training is complete, factor-based information also flows through
Jo (once neurons reflect factors they inevitably transmit factor-

636 Neuron 771, 631-649, March 1, 2023

Neuron

related signals through both connection components, see STAR
Methods). The non-factor-based input, which arises solely from
Jo, is the total synaptic input minus the factor-based input.

Figure 3A shows factor-based and non-factor-based inputs
(on the same scale) for one neuron and two trials. The factor-
based component is similar on both trials (blue and gray traces
overlap). This is true across all neurons—plotting the factor-
based component on the second versus first trial reveals a
high correlation (Figure 3B, blue, one point per time/neuron).
This was true across all pairs of trials (average r = 0.95). This
reliability is a direct consequence of the factors being reliable.
In contrast, the non-factor-based component is variable across
trials (Figure 3A, red and gray traces). This was true across all
neurons (Figure 3B red) and pairs of trials (average r = 0.024).

A common assumption is that “meaningful” aspects of each
neuron’s response vary across nominally identical trials, just
much less than spiking might suggest.>* To assess whether fac-
tor- and non-factor-based inputs provide insight into this
assumption, we computed the across-trial variance of each
input component. Variance was computed separately for each
time, averaged across time, and normalized by within-trial mod-
ulation (assessed as the across-time variance, averaged across
trials). The factor-based component displayed variances above
zero but well below unity (Figure 3C, blue; mean: 0.07). In
contrast, values for the non-factor-based component clustered
near unity (Figure 3C, red; mean 0.99). Unity values indicate
that across-trial variance is as large as within-trial variance, as
would be expected for pure noise. Thus, each neuron’s spiking
is driven by a factor-based component that is reliable (but shows
modest variability; e.g., Figure 1C, gray traces) and a non-factor-
based component that effectively injects noise.

These properties are consistent with a view of spiking in which
computationally irrelevant variability is “layered” on top of compu-
tationally impactful variability. Yet, it is not the case that there exist
“factor-based spikes” and non-factor-based spikes. Every spike
is a joint consequence of both inputs. Which raises the question:
why does the unreliable non-factor-based input not have a greater
impact on factor reliability? The answer relates to the non-factor-
based component being weakly correlated across neurons, even
those with similar “tuning.” Figure 3D shows factor-based and
non-factor-based components for two neurons on one trial. These
neurons had strongly correlated factor-based components (blue;
r = 0.97 across all trials), but there was almost no correlation be-
tween their non-factor-based components (r = — 0.003 for this
trial, r = 0.09 across all trials, Figure 3E).

Consistent with the example in Figures 3D and 3E, neurons
with correlated factor-based inputs did not have correlated
non-factor-based inputs. Across neuron pairs, the correlation
between factor-based components occasionally became large
(99t percentiles: —0.90 and +0.90) but the correlation between
non-factor-based components never did (99" percentiles:
—0.10 and +0.11). There was essentially no relationship between
these two correlations (R? = 0.003, slope = 0.005). Consistent
with weak pairwise correlations, the non-factor-based compo-
nent was high dimensional across neurons (Figure 3F, red).

These observations explain why a component of spiking vari-
ability appears “private.” Even when two neurons share similar
factor-based responses, spiking is also driven by an uncorrelated

Neuron ¢? CellPress

A B C
15
150
g S
5 " o £ kS
o8 = o0
sg sy %
5o =3 €83
So <= =]
ez =
5
0 across-trial 1
T - 1 -15 Avoltage 15 variance
0 time (ms) 2000 trial 1(mV) (normalized)
D E F
15 1
[0}
<= 2
> [}
C_ T =
°os %é o]
£s T Se
So = = ©
Se g9 S =
o] <3 o
cn g c 3>
oQ €
= -
-15 0
r T 1 N 1 200
0 time (ms) 2000 P eotage) mensions

neuron 1 (mV) dimensions

Figure 3. Synaptic inputs have reliable and variable components

The input to each neuron is partitioned into a “factor-based synaptic input” and a “non-factor-based synaptic input.”

(A) Example illustrating that only the factor-based input is reliable across trials. The factor-based input (bottom) and non-factor-based input (top) are shown for
one neuron and two trials (same neuron and trials for both). Both input components are plotted on the same scale.

(B) Scatterplot confirming that the finding illustrated in (A) held across all neurons. This analysis asks whether, across neurons and times, the value of the factor-
based input on trial 1 is predictive of the value on trial 2. Indeed, this correlation was strong (blue, r = 0.95). In contrast, the correlation was very weak for the non-
factor-based input (red, r = 0.024). Each point corresponds to one neuron and time for the same two trials as in (A).

(C) Distributions confirming that the finding in (A) and (B) held across all trials: the non-factor-based input (red) is essentially unrelated across trials while the factor-
based input (blue) displays only modest across-trial variability. For each neuron, we computed the across-trial variance of the relevant input across 100 trials, then
normalized by within-trial across-time variance.

(D) Example illustrating that only the factor-based input is reliable across neurons. The factor-based input (bottom) and non-factor-based input (top) are shown for
two neurons and one trial (same neurons and trial for both). These two neurons were chosen because they have strongly correlated factor-based inputs (r = 0.97
on this trial). Nevertheless, the non-factor-based input was essentially uncorrelated (- = — 0.003 on this trial). Both input components are plotted on the
same scale.

(E) Scatterplot confirming that the finding illustrated in (D) held across all (100) trials for these two neurons: the factor-based input was strongly correlated (blue,
r = 0.97), yet the non-factor-based input was not (red, r = 0.09). Analysis considers data from all trials for the same neurons as in (D). Each point corresponds to
one time during one trial.

(F) Dimensionality (across neurons) of the factor-based and non-factor-based inputs. Cumulative variance accounted for is plotted as a function of the number of
PC dimensions. PCs were computed from the neuron-neuron covariance matrix. Across the population, factor-based inputs were accounted for by a small
number of PCs, indicating low dimensionality and strong correlations across neurons. In contrast, non-factor-based inputs were very high dimensional and thus
weakly correlated among neurons.

statistically as a Poisson process with rate r(t). Historically, trial
averaging was used to estimate r(t). Recent approaches consider
r(t) to be defined on single trials, and seminal studies have linked
that rate to task-relevant inputs (e.g., Park et al.>®) or internal vari-
ables (e.g., Churchland et al.*®). Statistical analysis methods have
built on this framework and modeled single-trial rates as functions
of underlying factors (e.g., Pandarinath et al."* and Yu et al.°") or
the activity of other neurons (e.g., Yates et al.>®).

These analysis approaches identify quantities that, in practice,
appear deeply relevant to behavior and computation. Yet, we
lack a mechanistic grounding of the term firing rate. If r(t) is a hid-

component. Precisely because it is uncorrelated, it minimally im-
pacts the factors. Networks thus display the remarkable property
of being unreliable at the spiking level while exhibiting robust fac-
tor-level dynamics. The fact that networks can compute in this
regime is relevant to many common analyses, including trial aver-
aging and methods that infer single-trial firing rates. These
methods assume spiking “noise” should be isolated from compu-
tationally important signals. This assumption is difficult to justify
from a single-neuron perspective but makes perfect sense for
spiking networks operating in the regime documented here.

A conceptually grounded firing rate
Analysis and interpretation often assume that a neuron’s spikes
probabilistically reflect an underlying firing rate, typically modeled

den variable that governs the probability of spiking, what and
where is that variable? Are the operations used to estimate r(t)
on single trials purely statistical, or do they have mechanistic

Neuron 7711, 631-649, March 1, 2023 637

¢? CellPress

spikes: neuron 633

‘ LFADS inferred rates

Neuron

Figure 4. A conceptually grounded firing

rate

(A) Spike trains from 100 trials for a single model

neuron during the cycling task. Spiking was vari-

able across trials (Fano factor of 1.37), but rhyth-
. mically structured activity becomes visible when
multiple trials are observed.
(B) Our factor-based single-trial firing rate, rf (t), for
three trials for the neuron shown in (A). Spike times
on each trial are shown as dots. rf (t) is reliable from
trial to trial, even in moments when the neuron does
not spike (e.g., 0-1,000 ms in example trial 3).
(C) Comparison of firing rates computed mecha-
nistically (factor-based), statistically by leveraging
the full population (LFADS), and traditionally via
filtering the neuron’s spike train (20 ms Gaussian).
Analysis is for the same neuron as in (A). All three
methods result in similar across-trial mean firing
rates (solid line) but with different degrees of trial-
to-trial variability (across-trial standard deviation
shown in the shaded region).
(D) Distribution (across the population) of the
temporally averaged across-trial standard deviation
ofrf; (t) (red), the LFADS-derived single-trial firing rate
(green), and temporally filtered spike trains (gray).

épike-s

-e omemes oo 00 o

500 ms

filtered spikes

One could employ a more sophisticated
function-class, but this would have mini-
mal quantitative impact. For neurons with

1001 -, = s example
?:.'.',' . .{-:"t S trial 1
{0 B e
[G

: e - ome
Futee
el example
Lo, trial 2
B i
e 3 .
et e
ayed s ¢
B example
Selee » trial 3
s g
X o
el <
1 e
rates: neuron 633
C D
1001 } ‘
LFADS
inferred rate
L]
©
o
6 -
g
filtered
g_ spikes §
2] C
N /\/_/\LM\,
<
— O.
500 ms 0

meaning? For example, when estimating r(t) for a given neuron,
many methods leverage the spikes of other neurons (e.g., Pandar-
inath et al."" and Yates et al.®®). Is this simply effective inference
that leverages a tendency for rates to be correlated, or should
a mechanistic definition of r(t) incorporate population-level
spiking?

A mechanistic definition of r(t) can be derived from the factor-
based component of a neuron’s synaptic input. To do so, we
respect the central idea of a rate: its goal is not to indicate with
certainty whether a spike will occur (for that, one would look to
the membrane potential) but to describe the probability of
spiking based on computationally meaningful quantities. We
define the “factor-based” firing rate of neuron n as

() = F(Z (1)),

n

(Equation 4)

where F() captures a monotonic, nonlinear relationship be-
tween the factor-based synaptic input z/ (t) and the probability
of spiking.

In a spiking network with any degree of realism, identifying the
precise form of F() is challenging. Yet, given that F() must be
positive-valued and monotonically increasing, it can be approx-
imated. For simplicity, and to mesh with prior statistical ap-
proaches, we chose F() to be an exponential with a neuron-spe-
cific gain and offset:

i (t) = exp(byzh(t) + bY).

n

(Equation 5)

638 Neuron 771, 631-649, March 1, 2023

standard deviation (Hz) 15

reasonable physiological rates, the expo-
nential provides an excellent approxima-
tion (Figure S3; STAR Methods).

Defined this way, rf (t) displays properties typically attributed
to single-trial firing rates. To illustrate, we consider one example
simulated neuron. Despite variable spiking (Figure 4A), rf(t) is
similar across trials (Figure 4B). This agrees with the common
assumption, noted above, that underlying rates are more reliable
than spiking would suggest. Indeed, there are moments where
the neuron exhibits zero spikes over an approximately 1-s inter-
val (Figure 4B, bottom, first two cycles). From a literalist’s
perspective, this would indicate a zero firing rate. Yet rf (t) on
that trial resembles itself on other trials, consistent with rf (t)
determining the probability of spikes that may or may not actually
be produced. This relates to an important feature of rf (t): it can
change on timescales faster than those of spiking. There is no
paradox in a firing rate that modulates at 10 Hz but peaks at 5
spikes/s.

We propose rf (t) as a mechanistic “ground-truth” definition of
a single-trial firing rate—one that can be computed when all
network variables are known. Does this definition accord with
statistical approaches that infer firing rates from data? This
was indeed the case. We first considered the common practice
of filtering (20-ms Gaussian kernel) and trial averaging single-
neuron spike trains. This produced an estimated average firing
rate (Figure 4C, black) that resembled the trial-averaged r (1)
(Figure 4C, red) but was somewhat over-smoothed. Over-
smoothing could have been combated with a narrower filter,
but at the cost of compromising already unreliable single-trial es-
timates (compare distributions in Figure 4D and envelopes in

Neuron

Figure 4C). This highlights a well-known trade-off when esti-
mating a neuron’s rate using only its own spikes: no single filter
choice can achieve undistorted trial averages without overesti-
mating single-trial variability. We next considered latent factor
analysis via dynamical systems (LFADS) (Pandarinath et al.'”;
see STAR Methods), which estimates single-trial rates using sta-
tistical assumptions that map well onto our network properties:
factor-level dynamics, factor-based rates, and roughly Poisson
spiking. LFADS-inferred rates (Figure 4C, green) closely
matched rf (t) on average and also on single trials (r = 0.87).
Furthermore, LFADS-inferred rates displayed across-trial vari-
ability of the same order as rf (t) and much less than filtered spike
trains (Figure 4D).

LFADS is a particularly appropriate analysis tool, but other sin-
gle-trial-focused methods would have similarly succeeded in
estimating single-trial rates."">"*°"%* All these methods assume
the spikes of the full population are informative regarding the rate
of a particular neuron. Explicitly defining rf (t) clarifies that this
assumption is fundamental. Unlike other assumptions (e.g., tem-
poral smoothness), this is not a statistical regularity that tends to
be true but emerges from the definition of rf(t). One cannot
isolate a neuron’s factor-based input component from local in-
formation; every synapse conveys both factor- and non-factor-
based components. Thus, although rf (t) describes a property
of a specific neuron (its probability of emitting a spike) it remains
a population-level quantity.

Both our definition of rf(t) and the operation of modern
methods such as LFADS suggest a conceptual reorientation.
Because it has long been possible to estimate firing rates via trial
averaging, the concept of firing rate is familiar and seems funda-
mental. This makes it tempting to view factors as an abstraction
defined in terms of rates. For example, it is common to consider
a high-dimensional firing rate space, with factors relating to a
subspace capturing most firing rate variance.®>® This descrip-
tion holds for our model networks. Yet, thinking of factors as
“low-dimensional summaries” of rates is not quite correct. Rates
are defined in terms of factors, which are in fact more
fundamental.

Extending to more realistic network models

The network analyzed above employs a single-model cell type
forming both excitatory and inhibitory synapses. To explore
whether key properties hold when additional realism is incorpo-
rated, we considered two important features of biological net-
works. First, because biological neurons are either excitatory
or inhibitory, the columns of J should be sign-constrained (>
0 for excitation, < 0 for inhibition). Second, in biological net-
works, a given neuron does not connect to all other neurons. En-
forcing sparseness means Jy,c can no longer be low rank; the
probability of finding a low-rank factorization such that its outer
product respects the desired sparsity pattern becomes vanish-
ingly small as sparsity increases. It is thus an open question
whether more realistic networks will continue to support a small
number of factors (but see Herbert and Ostojic®).

We used the cycling factors as training targets for a network
with sparsely connected excitatory and inhibitory neurons. Jg
obeyed these constraints but was otherwise random. For tech-
nical reasons (see final paragraph of this section) a two-step pro-

¢ CellP’ress

cedure determined factor-related connectivity. First, we trained
an unconstrained Jg,c matrix using RLS. We then used the activ-
ity of the resulting network to train a second network with con-

strained factor connections, JS, (STAR Methods). As a technical
aside, our training approach did not allow enforcement of the

same non-zero elements in both Jo and JS.; although Jo and

J?ac each have 40% non-zero elements (Figure 5C) J was
modestly less sparse (60% non-zero elements). This is accept-
able because it is still true that JS;, the trained component
responsible for producing the factors, no longer has the overly
idealized properties of being low rank, fully connected, and un-
constrained in sign.

Despite the added constraints, training was successful. The
constrained network produced the target factors (Figure 5A)
and outputs (Figure 5B) just as the unconstrained network did.
Output error increased modestly relative to the unconstrained
network (9% rather than 2% median normalized error), a conse-
quence of fewer learnable connections that could have been
counteracted by adding more neurons. The constrained network
shared the previously discussed properties of the unconstrained
network. For example, the twelve factors account for 97% of the
variance of each neuron’s trial-averaged post-synaptic input.
Thus, the utility of factors as a training tool and as an abstraction
does not depend on overly idealized assumptions regarding
connectivity.

The two-step training method reflects the importance of
training recurrent networks—sparsely or densely connected—
with RLS. RLS aids stability by ensuring that, during training,
the network experiences a distribution of errors (differences be-
tween the target factors and the network-produced factors)
approximating what will be produced by the network post-
training. Direct use of RLS was not feasible for the constrained
weight matrix. Our two-step method overcomes this technical
limitation by exploring likely experienced error states during
initial RLS training and using samples of these states during
non-RLS learning, for which constraints are more easily
enforced. This approach can confer advantages over non-recur-
sive training approaches that do not ensure the range of likely-to-
be-produced errors is experienced during training. To illustrate,
we examined the stability-inducing errors produced during RLS
training. Errors were low dimensional (Figure 5D black), and their
average auto-correlation function (Figure 5E black) revealed
large temporally lagged correlations. Neither property was ex-
hibited if errors were shuffled and thus rendered Gaussian
(Figures 5D and 5E gray), the assumed distribution of errors dur-
ing non-RLS learning.?*>°® As expected, when shuffled errors
were used during the second training step (leading to effectively
i.i.d. Gaussian perturbations off the desired network states), per-
formance dropped significantly (median test error of 76%).

Building spiking models with model-derived factors

Training recurrent networks of continuously valued firing rate
units has become a common approach for understanding
brain-like computations.’®*°%°~"? Rate networks presuppose
that continuously valued firing rates are the building blocks of
computation, leaving unanswered the question of whether and
how solutions in these networks can be realized in spiking

Neuron 7711, 631-649, March 1, 2023 639

¢? CellPress

A factors

postsynaptic

excitatory

Neuron

Figure 5. Extending training to more realistic
network models

(A) Factors produced by a network model with
constrained connectivity, trained to produce the
cycling factors. The first three factors are shown for
two trials (blue and gray). Factors are similar to
those exhibited by an unconstrained model
(compare with Figure 2A). Target factors are shown
in dotted black. Calibrations are 10 a.u.

(B) Plot of three network outputs (same analysis as
for the unconstrained network in Figure 2E). Target

inhibitory

AVAVAVAVAVAVAVAVAN

B network outputs

trial 1 target .
W

normalized
cumulative
o variance -

muscle activity is shown in dotted black. Calibra-

presynaptic
tions are 0.2 a.u.
(C) Sign of the entries of Jg, for 20 excitatory
RL.SO.'..:'. neurons (red) and 20 inhibitory neurons (blue). Gray
o. .o' indicates no connection.
° °

(D) Cumulative variance, captured by successive
dimensions, for the error between network-gener-
ated factors and target factors during RLS learning
(black) and when errors are shuffled (gray).

[]
® ‘shuffled
..

-

number of 12

dimensions -
(E) Average temporal auto-correlation of the error
between the network-generated factors and target
RLS factors during RLS learning (black) and when those

Ve

errors are shuffled (gray).

\/shufﬂea\/

E
] 1
. 28 N\

. =©

j £g

I 88
r T 1 -1
0 time (ms) 2000 0

networks. Rate-network computations can often be understood
by examining projections of rates onto modest numbers of di-
mensions, using PCA or related methods.”'>?" These projec-
tions are weighted sums of rate-unit activity and thus are effec-
tively factors, introducing the prospect that rate models can
serve as sources of factors when training spiking models. A fac-
tor-level correspondence could provide an alternative to
creating rate-based and spike-based models that correspond
at the unit level.?®?"*® We illustrate an efficient and simple
means of constructing spike-based models to perform tasks us-
ing the same factor-based solution employed by a rate network.
This correspondence validates the widespread use of rate-
based models—although their individual elements may be unre-
alistic, their factor-level solutions are readily shared with spiking
networks —and opens the door to building spiking networks for a
wide variety of tasks. We use two tasks and two rate-network
training approaches to show that training success is not sensi-
tive to the task or rate-based training method.

Reaching task
We consider the task of generating muscle activity during reach-
ing, a standard task for evaluating how rate-based networks
transform static inputs into temporally structured outputs.®'2%"%
We considered a version of this task where a two-dimensional
input (Figure 6A, blue) specified reach identity (Figure 6A insert),
and termination of a third input (Figure 6A, gray) indicated that
movement should begin. Accurate performance required
network outputs to match the activity of two muscles (lateral bi-
ceps and posterior deltoid; Figure 6B) recorded during a center-
out reaching task.”*"®

We first used FORCE learning*®“® to train a rate-based
network (see STAR Methods for an alteration to FORCE that al-
lowed us to sidestep extensive rate-model optimization). We

640 Neuron 7711, 631-649, March 1, 2023

time (ms) 1000

reduced rate-network activity to a handful of factors by projec-
ting onto the top PCs (computed using data from all C = 8 con-
ditions; see STAR Methods). The majority (99%) of firing rate
variance was accounted for by 37 factors, which were target fac-
tors for a 1,200-neuron spiking network. Js,c was optimized us-
ing RLS so that each spiking-network factor (Figure 6F, solid
lines) matched one target factor (Figure 6F, lighter underlying
traces). Training was successful; for each reach condition, the
external inputs prompted generation of the target factors, which
provided a basis for muscle activity (Figure 6C). Muscle activity
was generated with a median error of 8% (relative to the empir-
ical targets) similar to rate-network performance.?’

Model spiking-neuron responses resembled those recorded
from motor and premotor cortex; they were directional,”® but
tuning differed between the preparatory epoch (before the go
cue) and the movement epoch (after the go cue).””"® For
example, the neuron in Figure 6D (activity shown for 15 trials
per direction) produces preparatory-epoch spikes that are
most prevalent before leftward reaches (blue) and movement-
epoch spikes that are most prevalent during downward reaches
(yellow). The neuron’s trial-averaged firing rate (Figure 6E) re-
veals responses whose amplitude, phase, and time-course all
vary with reach direction. Such features are typical and agree
with well-documented features of real neurons®’*° and rate
networks trained on similar tasks.?’*>’® This validates the
rate-modeling approach while also allowing exploration of bio-
logically relevant features (e.g., spiking variability) absent in
rate networks.

As illustrated in Figure 6D, spiking is variable across trials
(average Fano factor of 0.69 across all network neurons). Factors
are more consistent but display modest variability that meaning-
fully impacts behavior. The largest 11 factors (contributing 95%
of all target-factor variance) are most responsible for network

Neuron ¢ CellPress

Example neuron (spikes) F

ﬁ go cue input L4 o

direction-specifying input

N:biceps left "
‘ p

up-
left -.

Network target output

up r r
preparatory movement
post. deltoid .
up- o
\S right °%
i RN 6 Tangling:
right G
. . < factor vs. output
preparatory movement r r 1 o)
preparatory movement w:
S
c E . L
xample neuron
N . lat. biceps 100 (trial-averaged 0 il
?;‘i’:’]‘;:e_(t’r‘i‘;f)“t smoothed spikes) 0 Qouput (s2x10% &
Non-factor-based input Factor-based input
1007 vs. total synaptic input vs. total synaptic input
% cantt
9]
£ . I
o .
post. deltoid @ %
£
3
[¢)
o o idlilies: -
) preparatow" movement preparatory movement 0 Qinput 100 0 Qinpul 100

Figure 6. A reaching task

(A) Network inputs. A two-dimensional input (blue), conveying the sine and cosine of reach direction (“up-left” in this example), is applied throughout each trial.
Another signal (gray) terminates at the end of the preparatory period, yielding the “go cue” that movement should begin. Inset indicates the color corresponding to
each reach direction, used to plot data elsewhere in this figure.

B) Target outputs were based on the empirically recorded EMG from two arm muscles (lateral biceps and posterior deltoid).

C) Network outputs for both muscles, for one trial for each reach direction.

D) Raster plot showing spikes for one model neuron for 15 trials per direction. The Fano factor for this neuron was 0.56.

E) Trial-averaged smoothed spikes for the same neuron. Smoothing used a 20-ms Gaussian kernel.

(F) Temporal evolution of factor five (bottom) and six (top) for all reach directions on one trial. Solid (slightly noisy) lines show the factors produced by the network.
Lighter underlying traces show the target factors, derived from a firing rate model.

(G) Trajectory tangling (Q) for different aspects of network activity. Top: tangling of spiking network factors versus tangling of spiking network outputs. Data were
minimally smoothed (5-ms Gaussian) to emulate prior studies. Bottom-left: tangling of the non-factor-based synaptic inputs versus tangling of the total synaptic
inputs. Bottom-right: tangling of the factor-based synaptic inputs versus tangling of the total synaptic inputs. All tangling analyses are applied to single-trial

(
(
(
(

trajectories.

output. Their average across-trial variance (normalized by
average within-trial modulation as described above) was 0.11,
yielding modestly variable muscle commands (normalized
variance of 0.08). This observation relates to the common anal-
ysis assumption that spiking variability has two components—
rate/factor-based variability and private variability’"”® —that
can be modeled as a doubly stochastic process.’®%° In this sta-
tistical framework, rate/factor-based variability impacts network
computation and output while private variability does not. We
stress that although this dichotomy is useful, it is not mechanis-
tically accurate for two reasons. First, as discussed above, the
source of across-trial spiking variability is not a private noise
source but a network-derived non-factor-based input. Second,
because every neuron receives both factor-based and non-fac-
tor-based inputs, non-factor-based variability will always create
some factor-based variability, thereby indirectly impacting out-

going commands (although this effect may be small for large
networks).

Even though the network generates outputs with non-negli-
gible variability, it still does so robustly; spiking variability does
not cause the network to become unstable. We recently argued
that recurrent networks can robustly generate outputs when fac-
tors display low trajectory tangling, defined as avoiding situa-
tions where similar states have different derivatives.' Low
tangling is most clearly necessary when dynamics are autono-
mous but is beneficial whenever strong dynamics are needed.
Muscle trajectories are typically tangled, suggesting that trajec-
tory tangling should be much lower for factors than for outputs.

We computed Qtactor, the trajectory tangling of the factors dur-
ing the reaching period14 and compared with Qoutput, the trajec-
tory tangling of the outputs. Both were computed for multiple
times within all reach conditions, resulting in a scatterplot of

Neuron 7711, 631-649, March 1, 2023 641

¢ CellP’ress

many comparisons (Figure 6G, top). Although Qouiput Often
became high, Qs,ctor Was consistently low. Low factor-trajectory
tangling explains why the spiking network was able to learn the
factors, and why spiking variability did not prevent it from
robustly producing outputs. Low tangling also highlights that
although factors are explicitly trained (much like outputs are
traditionally trained) factors are not arbitrary network outputs.
Factors should support the internal computation that produces
the output—here, they are derived from a rate network that per-
forms the task well. Prior work has hinted at this need. Nicola and
Clopath®® included additional outputs to aid training and Kim and
Chow®” stressed the utility of heterogeneous firing rates as tar-
gets. Both approaches decrease the likelihood of very high
tangling. The approach of Alemi et al.,®' Boerlin et al.,*? and Elia-
smith?® ensured a low-tangled dynamical system by explicitly
defining that system. The use of a trained rate network provides
a more general solution that can work for any task for which a
rate network can be trained. If needed, steps can be taken to
ensure the rate-network solution is robust and has low tangling
(e.g., Sussillo et al.>" and DePasquale et al.*°).

As documented above, networks exhibit reliable factors
despite variable membrane potentials and unreliable spiking.
Our modeling framework allowed us to examine the source of
this potential paradox using the tangling analysis. Tangling of
the full 1,200-dimensional state-trajectory (describing each neu-
ron’s synaptic input) often became high. This was not due to high
dimensionality per se, but to the variable trajectories caused by
non-factor-based inputs. In agreement, tangling of the non-fac-
tor-based input was high (Figure 6G, bottom-left) and correlated
with that of the total input (r = 0.82). Tangling of the factor-
based input was low relative to the tangling of the total input (Fig-
ure 6G, bottom-right). This disparity explains how networks can
simultaneously exhibit reliable factor-level dynamics and unreli-
able spiking-level dynamics.

Contextual integration task

Rate-based models trained to perform a contextual integration
task have illustrated how networks can make decisions flexibly,
and network solutions have been understood in reduced-dimen-
sional spaces.”*® We considered a version of this task where
two sensory inputs are simultaneously presented and the
network must compute the cumulative sum of only one (i.e.,
must “pay attention” to and integrate only one stimulus). A
context-cue input, maintained throughout the trial, indicates
which sensory input should be integrated. Network performance
is assessed by evaluating the sign of the output at the trial’s end.
Sensory inputs are a series of Gaussian-distributed random
numbers with fixed variance and a different mean on each trial.
Because the goal is to report whether the mean is positive or
negative, the magnitude of the mean determines trial difficulty.
We refer to trials in which the mean was positive as “right-choice
trials” and where the mean was negative as “left-choice trials” to
reflect the standard structure of the empirical task. We refer to
the two contexts (arbitrarily) as “red” and “blue.”

We trained a spiking network using RLS, using target factors
obtained by training a rate network using backpropagation
through time.**#" We could have used FORCE (as above), but
FORCE and backpropagation find noticeably different solutions.

642 Neuron 111, 631-649, March 1, 2023

Neuron

We wished to examine whether factors produced by backpropa-
gation—a common and powerful technique—can be instanti-
ated in a spiking network. The fact that they could (see below)
does not prove this will always be feasible but opens the door
to constructing spiking networks to perform a great variety
of tasks.

Training was successful; a network of 800 spiking neurons
performed this task. An example “blue-context” trial is shown
in Figure 7A. Network output (black) correctly integrated the
cued sensory input (true integral in blue) but not the uncued input
(true integral in red). Performance approached 100% when the
cued sensory input strongly indicated the correct choice (Fig-
ure 7B, blue). As expected, network performance was near
chance (50%) when the cued sensory input had a zero mean
(i.e., the trial was ambiguous). The network successfully ignored
the uncued sensory input; performance was only weakly
impacted by its mean (Figure 7B, red).

Spiking network performance was reduced relative to the
rate model used to train it (Figure 7B, gray). This was expected
both because of the decreased fidelity of spiking neurons (out-
puts are binary rather than continuous) and because of spiking
variability. As discussed above, most spiking variability does
not impact the factors. Yet, some does, especially in modest-
sized networks. RLS can produce factor-level dynamics that
are stable and resist this impact. Yet, continuous integration
is particularly sensitive because small amounts of noise are in-
tegrated over time. Whether the impact of spiking variability on
factor-level computations is significant for biological networks
remains unclear; in large networks, other sources of variability
may be limiting.

Single spiking-model neurons showed a variety of response
features, including mixed stimulus and context selectivity,
consistent with empirical findings®® and rate models.® To illus-
trate, we leverage the ability to define single-trial firing rates. Sin-
gle-trial rates were computed based on the factor-based input
(see above). As a minor technical point, the current network re-
ceives a time-varying input that is effectively an “inherited” fac-
tor and is thus included in the factor-based input (see STAR
Methods). We plot rf(t) of three neurons for the same four
example trials (Figure 7C). One neuron (top) primarily reflects
choice (responding during leftward choices). Another (middle)
primarily reflects context (responding during the red context).
The third neuron (bottom) shows mixed selectivity, which was
typical. Context selectivity and choice selectivity were present
to varying degrees in different neurons with negligible correlation
(Figure 7D).

By construction, the computation was subserved by nine fac-
tors, but considering the first two is sufficient to understand key
aspects of the computation. The first two factors can be repre-
sented in two-dimensional space (Figure 7E). Each point indi-
cates the average state across many trials/time points that
shared both context and similar values of factor two. Color indi-
cates context. Intensity reflects the true average integral of the
cued sensory input, and thus the evidence for the correct choice.
While mixed selectivity was typical at the single-neuron level, the
dominant factors (fortuitously) contain separable task-critical
signals: choice is available to be “read out” using factor 2, while
context has a strong impact on factor 1.

Neuron

A network output B
integral of cued input

rate model

,, 3
[
123
o
— Q
250 ms integral of uncued input S uncued
ry input
[
C o
trial 3: red context, chose R 0
trial 4: blue context, chose R -0.4 mean input 0.4
o sphd choice-selective
g ¥ m::g neuron D
o
w
40
context-selective
neuron @
K
S
ﬂ‘\w A.h bl \ MV, ’JM z2
1 o>
*k . “ W hf' ££ ‘
o=
oQ
k) .
[}
7]
.
A -40 . : .
1 ,“W mixed-selective R
neuron -100 choice 100
selectivity (sp/s)
250 ms
E o o
& 2 ¢
51 25523 k-
blue L2 ¢
context T g_
- = - . 8
5 . : 7 o
g s o
8 Rd
4 &
re
, context ¢
.
> 3 »
5 0NN
A ¢
L |
5 factor 2 5

Figure 7. A contextual integration task

(A) Network output (black) for a single example trial. The output correctly tracks
the true integral of the cued sensory input (blue) and ignores the uncued
sensory input, whose integral is shown in red.

(B) Probability of the spiking network making a rightward choice as a function
of the mean input value of the cued (blue) and uncued (red) sensory inputs. The
network successfully renders its decision based on the cued input with only
modest influence of the uncued input. However, due to the sensitivity of
integration to small amounts of noise injected into the factors due to spiking
variability, the spiking network is less sensitive to the mean of the cued input
than the rate model upon which it is based (gray). Each point is computed
across many trials with similar mean input values. Best-fit curves computed by
logistic regression.

(C) The factor-based rate, r,f(t), for three example neurons and four trials. The
three examples include a choice-selective neuron (top), a context-selective
neuron (middle), and a mixed-selective neuron (bottom). The choice-selective
neuron responds strongly during left-choice trials (“L”) and weakly to right-
choice trials (“R”) in both contexts. The context-selective neuron responds
strongly in the red context for both choices. The mixed-selective neuron only
responds strongly during red-context left-choice trials.

(D) Scatterplot, with one point per neuron, illustrating that choice selectivity
(horizontal axis) and context selectivity (vertical axis) were typically mixed and
unrelated. Choice selectivity was defined as the trial-averaged difference in
firing rate between left-choice and right-choice trials. Context selectivity was
defined as the trial-averaged difference in firing rate between blue-context and
red-context trials.

(E) Two-dimensional state-space portrait for the first two factors generated by
the spiking network. Each point is the average value across many trials and
timepoints that were from the same context and shared similar values of factor

¢? CellPress

Two-task network

For our spiking networks, P dimensions captured factor-related
activity, by design. The remaining N — P dimensions captured
signals that were effectively noise. Thus, only a minority of neural
dimensions contain task-relevant signals. This observation relates
to J having a low-rank task-relevant component and a high-rank
task-irrelevant component. For simplicity, we modeled the task-
irrelevant component as random. An intriguing possibility is that,
in biological spiking networks, components of connectivity that
do not contribute to the present task (and appear to generate
noise) do contribute to other tasks. This would be consistent
with the finding that different computations often use different di-
mensions, both within task**”* and across effectors.>%?

To explore this possibility, we trained a spiking network to
perform both the cycling and reaching tasks (Figure 8A). We
encouraged the network to use task-specific factors (see STAR
Methods). Training was successful: neural dimensions that
were computationally essential in one task—i.e., reflected factors
whose dynamics produced deltoid activity —were unused in the
other task (Figure 8B). Network performance was comparable
to that of single-task networks (median error of 3%). When a fac-
tor was not used (i.e., the corresponding task was not being per-
formed), activity in that dimension was similar to activity in the
“non-factor dimensions” that captured small “noisy” fluctua-
tions (Figure S4). Thus, while a given computation may be per-
formed by a low-dimensional set of factors, this does not neces-
sarily imply a fixed set of computationally relevant dimensions.

Separation of computations by dimensions did not create
anatomical separation; most neurons’ firing rates were modu-
lated during both tasks. Furthermore, as in all networks we
trained, each synapse conveyed both computationally relevant
signals and non-factor-based signals during both tasks. This
cautions against the hope that factor-based and non-factor-
based components might be inferred from anatomy alone. One
might have hoped to leverage the assumption that Js,; is low
rank, but this idealization no longer holds for realistic connectiv-
ity. Furthermore, aspects of Ji,c connectivity critical to one task
may not produce meaningful factors in another task (and are thus
more appropriately considered part of Jp). Although our
approach decomposes connectivity into two components, the
key separation is not anatomical but physiological: for a given
task, every neuron receives both a factor-based and a non-fac-
tor-based input, yielding spiking that appears to probabilistically
reflect a factor-based firing rate.

DISCUSSION

Our goal was to establish whether and how network function re-
lates to concepts employed by experimental neuroscientists

two. Color (red versus blue) indicates the cued context. Shade intensity in-
dicates the average value (for that set of trials and timepoints) of the true in-
tegral of the cued sensory input. Darker shades indicate more positive values
of the true integral (and thus a greater probability that right should be chosen in
the future) and lighter shades indicate more negative values. In this network,
factor 2 happened to align well with the “decision variable” used by the
network. Thus, positive values of factor 2 are associated with more positive
integrals/darker shading.

Neuron 7711, 631-649, March 1, 2023 643

¢? CellPress

A cycling cycling

E Ei|n|auts

output (post. deltoid)
1

Neuron

cycling Figure 8. A network that performs two tasks
(A) Network inputs (top) and network output (bot-
tom) of the trained model. Data for reaching trials
are colored as in Figure 6, and data for cycling

trials are colored in magenta. Inputs for the
reaching task were as in Figure 6: a two-dimen-
sional direction signal and a “go” cue. For the
cycling task, a pulse prompted cycling (as it did for
the network in Figure 2). We also included a “stop”

» [y

o

projection of
population activity
during cycling

. cycling factor 2
o

=
) reaching factor 4
o

-20 0 20 -20
cycling factor 1

o
5

projection of
population activity
during reaching

cycling factor 2
o

reaching factor 4
o

o
5}

-20

-20 20

0
cycling factor 1

when analyzing population responses. We found that the
concept of factor was helpful in understanding network compu-
tation and enabled a robust and flexible training method. Using
factors as targets allowed us to train spiking networks to perform
a wide variety of tasks, which would have been challenging or
impossible using other methods. Importantly, factors were cho-
sen to be appropriate “internal” signals for performing the target
computation. Such care was critical—in most cases we studied,
networks with realistic firing rates and spiking variability could
not robustly perform the task unless training included a “com-
plete” set of target factors. The utility of factors as training tar-
gets speaks to their centrality; for this network class, computa-
tion is best understood at the factor level. Tracing spiking-level
causality is extremely challenging, especially as spiking differs
greatly even when computation repeats. In contrast, causality
is readily summarized at the factor level. These findings support
the growing assumption that factors provide a useful way of
describing data and linking to models.

Our results demonstrate that spiking networks can compute in
a regime where factors provide a valid and useful abstraction
describing computational mechanism. Yet, there exist multiple
regimes in which spiking networks can operate; not all will
have properties adequately summarized at the factor level. The
utility of the factor-based abstraction seems most secure for
brain areas that exhibit the empirical properties that motivated
our modeling choices: mixed selectivity, firing rate covariation
among neurons, and asynchronous spiking. These properties

644 Neuron 7111, 631-649, March 1, 2023

Reaching subspace

reaching factor 3
m‘ ; a
T,
v\

reaching factor 3

. pulse to instruct the network to stop cycling before
the start of the next trial. The spiking network was
only required to produce a single EMG (the pos-
terior deltoid) as an output because this was the
only common EMG recording across both tasks.
Neurons received inputs for the different tasks via
different input weights, but they are plotted on the
same axis for visualization.
1 (B) Factor trajectories for both tasks in a “cycling
subspace” (the first two cycling factors) and a
“reaching subspace” (the third and fourth reaching
factors, which were more strongly direction-
dependent than the first two reaching factors).
Trajectories show 20 trials of cycling (magenta)
and 20 trials for each of four reach directions (blue,
orange, red, and cyan). For visual clarity, only three
trials are plotted for each reach direction in the
bottom left.

0 20

X

0 20

are common in cortex, especially anterior
to the central sulcus. We also stress that
there may be cases where factor-based
dynamics are influenced by phenomena
best described by other conceptual frameworks (e.g., spike syn-
chrony or oscillations). Further study is needed to ascertain when
factors provide a useful abstraction, and when that abstraction
must be supplemented by other levels of description. A related
point is that state-space trajectories do not, on their own, consti-
tute explanations. They provide explanatory power only when
they test or motivate mechanistic hypotheses regarding how fac-
tor-level dynamics perform computations.

Mechanistic underpinnings of commonly used concepts

Spiking variability reflected high-dimensional, likely chaotic
dynamics,®**® whereas factor-level dynamics were lower
dimensional and reliable. The presence of two synaptic-input
components—one computationally meaningful and one
essentially noise—meshes with the standard assumption
that neurons exhibit both shared rate variability and private
spiking noise®®8%8384 and justifies the many analysis
methods that assume such a division, including latent-factor
models (e.g., Pandarinath et al."’) and coupled generalized
linear models (GLMs) (e.g., Yates et al.®®). Although statisti-
cally appropriate, the private versus shared distinction is
mechanistically incorrect in our networks; both components
derive from the population. This does not imply abandoning
standard statistical assumptions such as modeling spikes as
Poisson samples following an underlying rate; such statistical
models remain useful and networks of such Poisson spiking
neurons could be trained using our approach. Another

Neuron

subtlety to be explored is that the distinction between dimen-
sions containing reliable versus unreliable signals may be
more gradual than considered here. This is true both because
reliable dimensions may be task-dependent (as in our two-
task network), and because there may exist weak factors
that are marginally reliable.

Firing rate is a widely accepted abstraction of spiking activity,
despite its unclear biophysical basis. In contrast, factors are some-
times viewed with suspicion as overly abstract. Our networks
argue that the definition of firing rate should be based on factors
and that factors should be considered “primary.” Although mech-
anistically defined factor-based rates behave similarly to statisti-
cally inferred rates, the mechanistic definition demands reconsi-
dering some intuitions. Consider the recent controversy
regarding whether, during decision-making, single-neuron rates
are ramp-like or step-like.®>®® From the traditional perspective, a
natural question is whether, on a single trial, all rates step together
or whether each neuron’s rate steps at a unique time. Given the
factor-based definition of rate, the latter possibility is unlikely or
even poorly defined. Because a neuron’s rate is based on shared
factors, it is unlikely to step at a unique time. One might propose
many factors, each stepping at different moments. Yet, because
aneuron’s rate is typically determined by many factors, this would
result in either ramping (if all weights were positive) or multiphasic
responses, not steps at unique times. Thus, a possibility that
seemed likely from a traditional perspective is much less natural
given a factor-based definition of rate.

Our definition of the firing rate also clarifies that rates can
change rapidly (as rapidly as factors). Rate coding may appear
inextricably linked with longer timescales, as opposed to tem-
poral codes that use fine timescales.?*®” Yet, if a firing rate
describes a “functional group” of identically responsive but
asynchronously active neurons, rate can change quickly.”® Our
definition generalizes this view to situations that lack clusters
of similarly tuned neurons.® 4294

Our proposed definition of firing rate speaks to emerging
methods that infer single-trial firing rates. The power of bespoke
methods like LFADS (and others cited above) originates from as-
sumptions they employ when data are limited. For example,
LFADS assumes consistent internal dynamics, providing a
reasonable constraint in data-limited cases. However, using com-
plex operations to infer rates does not imply that the definition of
firing rate, or factors, is complex. On the contrary, factors are sim-
ply weighted sums of spiking-neuron activity. Firing rates are
weighted sums of factors passed through a rectifying nonlinearity.

Different approaches to constructing spiking networks

Seminal work established that spiking networks can emulate
continuous dynamical systems.?>*%3 Our approach achieves a
similar end, but the explicit focus on factors both establishes
them as mechanistically central and expands the space of emulat-
able dynamics by allowing target-factors to be derived from rate
models. Computation can be understood at the level of the fac-
tors, which influence their own future values via a population of
spiking neurons. Importantly, this occurs despite realistically var-
iable spiking, and without the need for special mechanisms to cor-
rect spiking variations. The factor-level focus, and the use of RLS,
should make it possible to train spiking networks on nearly any

¢ CellP’ress

task that can presently be performed by rate-based networks,
greatly extending the set of available network training tools.

Using factors as training targets contrasts with typical training
approaches that focus on minimizing output error. In output-
focused methods, training aims to indirectly produce internal ac-
tivity patterns appropriate to perform the underlying computa-
tions. This approach is powerful in rate networks but much
less so in spiking networks, which often fail to learn the neces-
sary internal signals. Nicola and Clopath®® showed that simple
patterns and sequences could be learned via an output-focused
approach (FORCE) in a spiking network, although certain
revealing errors were common. They thus deployed a helpful
trick: training additional temporally structured outputs. Other ap-
proaches took this insight even further, by using internal training
targets for every network unit.>”**%#¢ Our factor-based approach
can be seen as a useful “middle ground” strategy. If computa-
tionally appropriate factors can be identified and used as training
targets, there is no need to hope that additional factors will
emerge (we show that they mostly do not) and no need to include
additional, redundant training targets. This approach increases
noise robustness”® in the face of realistic spiking variability and
thus expands the range of trainable tasks.

Backpropagation-based learning, which also seeks to exclu-
sively minimize output error, has been applied to spiking
models.*®*"**? Yet, how to achieve general success with this
approach remains unclear. We were unable to use one such
approach that has shown promise, surrogate-gradient
methods,”"*? to train spiking networks to perform the tasks in
the present study. We suspect these methods could be made
to work with a carefully designed objective function. If so, a likely
consequence is that they will identify similar solutions to those
that emerge in our procedure of instantiating rate-network-
derived factors.

An alternative approach, which has been quite successful in
spiking networks, is to engineer them to emulate dynamical
systems.?%30-32:34.35.40.89 Eqr gych approaches, state variables
are effectively factors, and the importance of embedding
key computations within low-rank connectivity has been
noted.”®%%54® Dynamics must typically be specified as a
closed-form dynamical system, although ad hoc approaches
have been successful when this is not possible.> Our method
is related but can be readily used on any appropriate factors
and highlights the vast potential of trained rate models for
deriving factors.

Although achieving both stable dynamics and considerable
spiking variability was not a goal of early approaches,*® it was crit-
ical to our goal of building models that guide interpretation of
empirical data. Achieving this goal was greatly aided by the RLS
approach to stabilizing factor trajectories. An alternative
approach to achieving robust dynamics alongside considerable
spiking variability®'*>° makes the strong assumption of fine
timescale “corrective” dynamics, which both gives rise to spiking
variability and manages its impact on network performance. Our
approach demonstrates that, even without such a mechanism,
stable factor-level dynamics can co-exist with realistic spiking
variability. Furthermore, our results suggest that spiking variability
may be a consequence not of corrective dynamics, but of capac-
ity constraints: high-rank connectivity, despite increasing spiking

Neuron 7711, 631-649, March 1, 2023 645

¢? CellPress

variability, may be necessary to realize multiple computations
within the same network (e.g., Logiaco et al.*%).

Historically, firing rate models have often been considered ap-
proximations of spiking models, with individual rate units repre-
senting individual spiking neurons.”'"** It is possible to build rate
and spiking models with neuron-to-neuron correspondence,®®
although whether this approach can yield noise robustness is
presently unclear. Our approach is related but achieves robust-
ness to spiking variability by using RLS to train factors, without
attempting to achieve a rate-to-spiking-neuron correspondence.
An alternative approach to linking rate and spiking models is to
model each rate unit as a pool of spiking neurons.?®” This can
be convenient and effective, but there are reasons to prefer fac-
tor-level correspondence. Neurons in many areas show great
tuning heterogeneity, inconsistent with pools of similarly tuned
neurons. Furthermore, from a purely model-building perspec-
tive, a factor-level correspondence is more efficient. Because
rate-network units are correlated, a rate-to-spiking-pool corre-
spondence repeatedly constructs correlated signals. A factor-
level correspondence avoids this redundancy by identifying
correlated activity patterns (i.e., rate-network factors) and using
them as targets, greatly reducing the necessary number of
spiking neurons. This approach embraces the view that, even
when networks use very different types of units, they can still
perform the same computation using the same factors, making
the factor level a natural point of comparison.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
® RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
e METHOD DETAILS
O Spiking network model

O Balancing task performance and spiking irregularity

O Dividing the synaptic input into factor-based and non-
factor-based components

O Deriving target factors

O Quantifying performance, factor-based input vari-
ability, and spiking irregularity in trained spiking
models

O Computing the flow field of the factors

O Computing rf (1)

O LFADS analysis

O Tangling analysis

O Learning sparsely connected and Dale’s Law obeying
networks

O Task details

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
neuron.2022.12.007.

646 Neuron 7711, 631-649, March 1, 2023

Neuron

ACKNOWLEDGMENTS

We thank Antonio Lara and Abigail Russo of the Churchland lab for providing
the reaching EMG data and the cycling EMG and factor data. We thank mem-
bers of the Churchland lab, Jonathan Pillow and his lab, and Carlos Brody and
his lab for comments and feedback on this manuscript. We thank Stefano Fusi
and Misha Tsodyks for feedback on the work as it developed. Research sup-
ported by NIH grant MH093338, the Simons Collaboration for the Global Brain,
the Grossman Charitable Trust, the Gatsby Charitable Foundation, the Swartz
Foundation, the McKnight Foundation, NIH 1U19NS104649, and NSF
NeuroNex award DBI-1707398. B.D. was supported by a National Science
Foundation Graduate Research Fellowship while performing this study.

AUTHOR CONTRIBUTIONS

B.D., L.F.A., and M.M.C. conceived and designed the conceptual and tech-
nical aspects of the study. B.D. constructed the primary network models,
analyzed the simulated data, and generated visualizations of the simulated
data. D.S. constructed supporting network models, provided software, and
provided conceptual expertise during development of the study. B.D.,
L.F.A., and M.M.C. wrote the text. All authors edited and reviewed the text.
L.F.A. and M.M.C. supervised and funded the study.

DECLARATION OF INTERESTS

L.F.A. serves on the advisory board of Neuron. D.S. is employed as a research
scientist by Meta (Meta Reality Labs); his work there is unrelated to this study.

Received: December 21, 2020
Revised: June 17, 2022
Accepted: December 5, 2022
Published: January 10, 2023

REFERENCES

1. Gold, J.I., and Shadlen, M.N. (July 2007). The neural basis of decision
making. Annu. Rev. Neurosci. 30, 535-574. https://doi.org/10.1146/an-
nurev.neuro.29.051605.113038.

2. Hanks, T.D., Kopec, C.D., Brunton, B.W., Duan, C.A., Erlich, J.C., and
Brody, C.D. (January 2015). Distinct relationships of parietal and prefrontal
cortices to evidence accumulation. Nature 520, 220-223. https://doi.org/
10.1038/nature14066.

3. Aoi, M.C., Mante, V., and Pillow, J.W. (October 2020). Prefrontal cortex ex-
hibits multidimensional dynamic encoding during decision-making. Nat.
Neurosci. 23, 1410-1420. https://doi.org/10.1038/s41593-020-0696-5.

4. Barack, D.L., and Krakauer, J.W. (April 2021). Two views on the cognitive
brain. Nat. Rev. Neurosci. 22, 359-371. https://doi.org/10.1038/s41583-
021-00448-6.

5. Briggman, K.L., Abarbanel, H.D.l., and Kristan, W.B. (February 2005).
Optical imaging of neuronal populations during decision-making.
Science 307, 896-901. https://doi.org/10.1126/science.1103736.

6. Bruno, A.M., Frost, W.N., and Humphries, M.D. (2017). A spiral attractor
network drives rhythmic locomotion. eLife 6, e27342. https://doi.org/10.
7554/elife.27342.

7. Duncker, L., and Sahani, M. (October 2021). Dynamics on the manifold:
identifying computational dynamical activity from neural population re-
cordings. Curr. Opin. Neurobiol. 70, 163-170. https://doi.org/10.1016/j.
conb.2021.10.014.

8. Huang, C., Ruff, D.A., Pyle, R., Rosenbaum, R., Cohen, M.R., and Doiron,
B. (January 2019). Circuit models of low-dimensional shared variability in
cortical networks. Neuron 707, 337-348.e4. https://doi.org/10.1016/j.
neuron.2018.11.034.

9. Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (November
2013). Context-dependent computation by recurrent dynamics in prefron-
tal cortex. Nature 503, 78-84. https://doi.org/10.1038/nature12742.

https://doi.org/10.1016/j.neuron.2022.12.007
https://doi.org/10.1016/j.neuron.2022.12.007
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1038/nature14066
https://doi.org/10.1038/nature14066
https://doi.org/10.1038/s41593-020-0696-5
https://doi.org/10.1038/s41583-021-00448-6
https://doi.org/10.1038/s41583-021-00448-6
https://doi.org/10.1126/science.1103736
https://doi.org/10.7554/eLife.27342
https://doi.org/10.7554/eLife.27342
https://doi.org/10.1016/j.conb.2021.10.014
https://doi.org/10.1016/j.conb.2021.10.014
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1038/nature12742

Neuron

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Mazzucato, L., Fontanini, A., and La Camera, G. (2016). Stimuli reduce the
dimensionality of cortical activity. Front. Syst. Neurosci. 10, 11. https://doi.
org/10.3389/fnsys.2016.00011.

Pandarinath, C., O’Shea, D.J., Collins, J., Jozefowicz, R., Stavisky, S.D.,
Kao, J.C., Trautmann, E.M., Kaufman, M.T., Ryu, S.I., Hochberg, L.R.,
et al. (September 2018). Inferring single-trial neural population dynamics
using sequential auto-encoders. Nat. Methods 75, 805-815. https://doi.
org/10.1038/s41592-018-0109-9.

Recanatesi, S., Ocker, G.K., Buice, M.A., and Shea-Brown, E. (July 2019).
Dimensionality in recurrent spiking networks: global trends in activity and
local origins in connectivity. PLOS Comp. Biol. 75, e1006446. https://doi.
org/10.1371/journal.pcbi.1006446.

Remington, E.D., Egger, S.W., Narain, D., Wang, J., and Jazayeri, M.
(October 2018). A dynamical systems perspective on flexible motor timing.
Trends Cogn. Sci. 22, 938-952. https://doi.org/10.1016/j.tics.2018.
07.010.

Russo, A.A., Bittner, S.R., Perkins, S.M., Seely, J.S., London, B.M., Lara,
A.H., Miri, A., Marshall, N.J., Kohn, A., Jessell, T.M., et al. (February 2018).
Motor cortex embeds muscle-like commands in an untangled population
response. Neuron 97, 953-966.e8. https://doi.org/10.1016/j.neuron.2018.
01.004.

Sohn, H., Narain, D., Meirhaeghe, N., and Jazayeri, M. (September 2019).
Bayesian computation through cortical latent dynamics. Neuron 703, 934—
947.e5. https://doi.org/10.1016/j.neuron.2019.06.012.

Stopfer, M., Jayaraman, V., and Laurent, G. (September 2003). Intensity
versus identity coding in an olfactory system. Neuron 39, 991-1004.
https://doi.org/10.1016/j.neuron.2003.08.011.

Wei, Z., Inagaki, H., Li, N., Svoboda, K., and Druckmann, Shaul (January
2019). An orderly single-trial organization of population dynamics in pre-
motor cortex predicts behavioral variability. Nat. Commun. 70, 216.
https://doi.org/10.1038/s41467-018-08141-6.

Williamson, R.C., Cowley, B.R., Litwin-Kumar, A., Doiron, B., Kohn, A.,
Smith, M.A., and Yu, B.M. (December 2016). Scaling properties of dimen-
sionality reduction for neural populations and network models. PLoS
Comp. Biol. 12, €1005141. https://doi.org/10.1371/journal.pcbi.1005141.

Williamson, R.C., Doiron, B., Smith, M.A., and Yu, B.M. (April 2019).
Bridging large-scale neuronal recordings and large-scale network models
using dimensionality reduction. Curr. Opin. Neurobiol. 55, 40-47. https://
doi.org/10.1016/j.conb.2018.12.009.

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D.,
Nuyujukian, P., Ryu, S.I., and Shenoy, K.V. (June 2012). Neural population
dynamics during reaching. Nature 487, 51-56. https://doi.org/10.1038/
nature11129.

Sussillo, D., Churchland, M.M., Kaufman, M.T., and Shenoy, K.V. (June
2015). A neural network that finds a naturalistic solution for the production
of muscle activity. Nat. Neurosci. 18, 1025-1033. https://doi.org/10.1038/
nn.4042.

Barak, O., and Romani, S. (March 2021). Mapping low-dimensional dy-
namics to high-dimensional neural activity: A derivation of the ring model
from the neural engineering framework. Neural Comput. 33, 827-852.
https://doi.org/10.1162/neco_a_01361.

Eliasmith, C. (June 2005). A unified approach to building and controlling
spiking attractor networks. Neural Comput. 17, 1276-1314. https://doi.
org/10.1162/0899766053630332.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., and Warland, D.
(June 1991). Reading a neural code. Science 252, 1854-1857. https://
doi.org/10.1126/science.2063199.

Brette, R. (November 2015). Philosophy of the spike: rate-based vs. spike-
based theories of the brain. Front. Syst. Neurosci. 9, 151. https://doi.org/
10.3389/fnsys.2015.00151.

Hennequin, G., Vogels, T.P., and Gerstner, W. (June 2014). Optimal con-
trol of transient dynamics in balanced networks supports generation of

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

¢? CellPress

complex movements. Neuron 82, 1394-1406. https://doi.org/10.1016/j.
neuron.2014.04.045.

Litwin-Kumar, A., and Doiron, B. (September 2012). Slow dynamics and
high variability in balanced cortical networks with clustered connections.
Nat. Neurosci. 15, 1498-1505. https://doi.org/10.1038/nn.3220.

Shadlen, M.N., and Newsome, W.T. (May 1998). The variable discharge of
cortical neurons: implications for connectivity, computation, and informa-
tion coding. J. Neurosci. 18, 3870-3896. https://doi.org/10.1523/JNEU
ROSCI.18-10-03870.1998.

Churchland, M.M., and Shenoy, K.V. (June 2007). Temporal complexity
and heterogeneity of single-neuron activity in premotor and motor cortex.
J. Neurophysiol. 97, 4235-4257. https://doi.org/10.1152/jn.00095.2007.

Abbott, L.F., DePasquale, B., and Memmesheimer, R.-M. (February 2016).
Building functional networks of spiking model neurons. Nat. Neurosci. 19,
350-355. https://doi.org/10.1038/nn.4241.

Alemi, A., Machens, C., Deneve, S., and Slotine, J.-J. (April 2018). Learning
nonlinear dynamics in efficient, balanced spiking networks using local
plasticity rules. AAAI 32. https://doi.org/10.1609/aaai.v32i1.11320.

Boerlin, M., Machens, C.K., and Denéve, S. (November 2013). Predictive
coding of dynamical variables in balanced spiking networks. PLoS
Comp. Biol. 9, €1003258. https://doi.org/10.1371/journal.pcbi.1003258.

Denéve, S., and Machens, C.K. (February 2016). Efficient codes and
balanced networks. Nat. Neurosci. 79, 375-382. https://doi.org/10.1038/
nn.4243.

DePasquale, B., Churchland, M.M., and Abbott, L.F. (2016). Using firing-
rate dynamics to train recurrent networks of spiking model neurons.
https://doi.org/10.48550/ARXIV.1601.07620.

Gilra, A., and Gerstner, W. (November 2017). Predicting non-linear dy-
namics by stable local learning in a recurrent spiking neural network.
eLife 6, 28295. https://doi.org/10.7554/eLife.28295.

Huh, D., and Sejnowski, T.J. (2018). Gradient descent for spiking neural
networks. In Advances in Neural Information Processing Systems, 37, S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, eds. (Curran Associates, Inc.). https://proceedings.neurips.cc/
paper/2018/file/185e65bc40581880c4f2c82958de8cfe-Paper.pdf.

Kim, C.M., and Chow, C.C. (2018). Learning recurrent dynamics in spiking
networks. eLife 7, €37124. https://doi.org/10.7554/eLife.37124.

Kim, R., Li, Y., and Sejnowski, T.J. (October 2019). Simple framework for
constructing functional spiking recurrent neural networks. Proc. Natl.
Acad. Sci. USA 116, 22811-22820. https://doi.org/10.1073/pnas.1905
926116.

Nicola, W., and Clopath, C. (December 2017). Supervised learning in
spiking neural networks with FORCE training. Nat. Commun. 8, 2208.
https://doi.org/10.1038/s41467-017-01827-3.

Thalmeier, D., Uhimann, M., Kappen, H.J., and Memmesheimer, R.-M.
(June 2016). Learning universal computations with spikes. PLoS Comp.
Biol. 12, €1004895. https://doi.org/10.1371/journal.pcbi.1004895.

Zenke, F., and Ganguli, S. (June 2018). SuperSpike: supervised learning in
multilayer spiking neural networks. Neural Comput. 30, 1514-1541.
https://doi.org/10.1162/neco_a_01086.

Zenke, F., and Vogels, T.P. (2021). The remarkable robustness of surro-
gate gradient learning for instilling complex function in spiking neural
networks. Neural Comput. 33, 899-925. https://doi.org/10.1162/neco_
a_01367.

Trautmann, E.M., Stavisky, S.D., Lahiri, S., Ames, K.C., Kaufman, M.T.,
O’Shea, D.J., Vyas, S., Sun, Xulu, Ryu, S.l., Ganguli, S., et al. (July
2019). Accurate estimation of neural population dynamics without spike
sorting. Neuron 703, 292-308.e4. https://doi.org/10.1016/j.neuron.2019.
05.0083.

Machens, C.K., Romo, R., and Brody, C.D. (January 2010). Functional, but
not anatomical, separation of "what” and “when” in prefrontal cortex.
J. Neurosci. 30, 350-360. https://doi.org/10.1523/JNEUROSCI.3276-
09.2010.

Neuron 7711, 631-649, March 1, 2023 647

https://doi.org/10.3389/fnsys.2016.00011
https://doi.org/10.3389/fnsys.2016.00011
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1371/journal.pcbi.1006446
https://doi.org/10.1371/journal.pcbi.1006446
https://doi.org/10.1016/j.tics.2018.07.010
https://doi.org/10.1016/j.tics.2018.07.010
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1016/j.neuron.2019.06.012
https://doi.org/10.1016/j.neuron.2003.08.011
https://doi.org/10.1038/s41467-018-08141-6
https://doi.org/10.1371/journal.pcbi.1005141
https://doi.org/10.1016/j.conb.2018.12.009
https://doi.org/10.1016/j.conb.2018.12.009
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nn.4042
https://doi.org/10.1038/nn.4042
https://doi.org/10.1162/neco_a_01361
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1126/science.2063199
https://doi.org/10.1126/science.2063199
https://doi.org/10.3389/fnsys.2015.00151
https://doi.org/10.3389/fnsys.2015.00151
https://doi.org/10.1016/j.neuron.2014.04.045
https://doi.org/10.1016/j.neuron.2014.04.045
https://doi.org/10.1038/nn.3220
https://doi.org/10.1523/JNEU<?show [?tjl=20mm]&tjlpc;[?tjl]?>ROSCI.18-10-03870.1998
https://doi.org/10.1523/JNEU<?show [?tjl=20mm]&tjlpc;[?tjl]?>ROSCI.18-10-03870.1998
https://doi.org/10.1152/jn.00095.2007
https://doi.org/10.1038/nn.4241
https://doi.org/10.1609/aaai.v32i1.11320
https://doi.org/10.1371/journal.pcbi.1003258
https://doi.org/10.1038/nn.4243
https://doi.org/10.1038/nn.4243
https://doi.org/10.48550/ARXIV.1601.07620
https://doi.org/10.7554/eLife.28295
https://proceedings.neurips.cc/paper/2018/file/185e65bc40581880c4f2c82958de8cfe-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/185e65bc40581880c4f2c82958de8cfe-Paper.pdf
https://doi.org/10.7554/eLife.37124
https://doi.org/10.1073/pnas.1905<?show [?tjl=20mm]&tjlpc;[?tjl]?>926116
https://doi.org/10.1073/pnas.1905<?show [?tjl=20mm]&tjlpc;[?tjl]?>926116
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1371/journal.pcbi.1004895
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_<?show [?tjl=20mm]&tjlpc;[?tjl]?>a_01367
https://doi.org/10.1162/neco_<?show [?tjl=20mm]&tjlpc;[?tjl]?>a_01367
https://doi.org/10.1016/j.neuron.2019.05.003
https://doi.org/10.1016/j.neuron.2019.05.003
https://doi.org/10.1523/JNEUROSCI.3276-09.2010
https://doi.org/10.1523/JNEUROSCI.3276-09.2010

¢? CellPress

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.-J., Daw, N.D., Miller, E.K.,
and Fusi, S. (May 2013). The importance of mixed selectivity in complex
cognitive tasks. Nature 497, 585-590. https://doi.org/10.1038/nature
12160.

Mastrogiuseppe, F., and Ostojic, S. (August 2018). Linking connectivity,
dynamics, and computations in low-rank recurrent neural networks.
Neuron 99, 609-623.e29. https://doi.org/10.1016/j.neuron.2018.07.003.

Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Ostojic, S., and Barak, O.
(2020). The interplay between randomness and structure during learning in
RNNs. Adv. Neural Inf. Process. Syst. 33, 13352-13362. https://proceedings.
neurips.cc/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf.

Sussillo, D., and Abbott, L.F. (August 2009). Generating coherent patterns
of activity from chaotic neural networks. Neuron 63, 544-557. https://doi.
org/10.1016/j.neuron.2009.07.018.

DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., and Abbott, L.F.
(February 2018). full-FORCE: A target-based method for training recurrent
networks. PLoS One 13, e0191527. https://doi.org/10.1371/journal.pone.
0191527.

Ames, K.C., and Churchland, M.M. (2019). Motor cortex signals for each
arm are mixed across hemispheres and neurons yet partitioned within
the population response. eLife 8, e46159. https://doi.org/10.7554/
eLife.46159.

Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., and Shenoy, K.V.
(2006). Neural variability in premotor cortex provides a signature of motor
preparation. J. Neurosci. 26, 3697-3712. https://doi.org/10.1523/
JNEUROSCI.3762-05.2006.

van Vreeswijk, C., and Sompolinsky, H. (August 1998). Chaotic balanced
state in a model of cortical circuits. Neural Comput. 70, 1321-1371.
https://doi.org/10.1162/089976698300017214.

Zillmer, R., Brunel, N., and Hansel, D. (March 2009). Very long transients,
irregular firing, and chaotic dynamics in networks of randomly connected
inhibitory integrate-and-fire neurons. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 79, 031909. https://doi.org/10.1103/PhysRevE.79.031909.

Churchland, M.M., and Abbott, L.F. (October 2012). Two layers of neural
variability. Nat. Neurosci. 15, 1472-1474. https://doi.org/10.1038/
nn.3247.

Park, I.M., Meister, M.L.R., Huk, A.C., and Pillow, J.W. (August 2014).
Encoding and decoding in parietal cortex during sensorimotor decision-
making. Nat. Neurosci. 77, 1395-1403. https://doi.org/10.1038/nn.3800.

Churchland, A.K., Kiani, R., Chaudhuri, R., Wang, X.J., Pouget, A., and
Shadlen, M.N. (February 2011). Variance as a signature of neural compu-
tations during decision making. Neuron 69, 818-831. https://doi.org/10.
1016/j.neuron.2010.12.037.

Yu, B.M., Cunningham, J.P., Santhanam, G., Ryu, S.I., Shenoy, K.V., and
Sahani, M. (July 2009). Gaussian-process factor analysis for low-dimen-
sional single-trial analysis of neural population activity. J. Neurophysiol.
102, 614-635. https://doi.org/10.1152/jn.90941.2008.

Yates, J.L., Park, |.M., Katz, L.N., Pillow, J.W., and Huk, A.C. (July 2017).
Functional dissection of signal and noise in MT and LIP during decision-
making. Nat. Neurosci. 20, 1285-1292. https://doi.org/10.1038/nn.4611.

Gao, Y., Archer, E., Paninski, L., and Cunningham, J.P. (2016). Linear
dynamical neural population models through nonlinear embeddings. In
Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS, pp. 163-171. http://www.stat.columbia.edu/
~cunningham/pdf/GaoNIPS2016.pdf.

Hernandez, D., Moretti, A.K., Wei, Z., Saxena, S., Cunningham, J., and
Paninski, L. (2020). Nonlinear evolution via spatially-dependent linear dy-
namics for electrophysiology and calcium data. https://doi.org/10.
48550/ARXIV.1811.02459.

Macke, J.H., Buesing, L., Cunningham, J.P., Byron, M.Y., Shenoy, K.V.,
and Sahani, M. (2011). Empirical models of spiking in neural populations.
In Advances in Neural Information Processing Systems, 24, J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, eds.

648 Neuron 711, 631-649, March 1, 2023

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Neuron

(Curran Associates, Inc.). https://proceedings.neurips.cc/paper/2011/
file/7143d7fbadfa4693b9eec507d9d37443-Paper.pdf.

Saxena, S., and Cunningham, J.P. (April 2019). Towards the neural popu-
lation doctrine. Curr. Opin. Neurobiol. 55, 103-111. https://doi.org/10.
1016/j.conb.2019.02.002.

Wu, A., Roy, N.A,, Keeley, S., and Pillow, J.W. (2017). Gaussian process
based nonlinear latent structure discovery in multivariate spike train
data. In Advances in Neural Information Processing Systems, 30, I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, eds. (Curran Associates, Inc.). https://
proceedings.neurips.cc/paper/2017/file/b3b4d2dbedc99fe843fd3dedb0
2f086f-Paper.pdf.

Zhao, Y., and Park, I.M. (May 2017). Variational latent gaussian process for
recovering single-trial dynamics from population spike trains. Neural
Comput. 29, 1293-1316. https://doi.org/10.1162/NECO_a_00953.

Cunningham, J.P., and Yu, B.M. (August 2014). Dimensionality reduction
for large-scale neural recordings. Nat. Neurosci. 77, 1500-1509. https://
doi.org/10.1038/nn.3776.

Shenoy, K.V., Sahani, M., and Churchland, M.M. (July 2013). Cortical con-
trol of arm movements: A dynamical systems perspective. Annu. Rev.
Neurosci. 36, 337-359. https://doi.org/10.1146/annurev-neuro-062111-
150509.

Herbert, E., and Ostojic, S. (August 2022). The impact of sparsity in low-
rank recurrent neural networks. PLoS Comp. Biol. 18, e1010426. https://
doi.org/10.1371/journal.pcbi.1010426.

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless communication. Science
304, 78-80. https://doi.org/10.1126/science.1091277.

Barak, O. (2017). Recurrent neural networks as versatile tools of neurosci-
ence research. Curr. Opin. Neurobiol. 46, 1-6. https://doi.org/10.1016/j.
conb.2017.06.003.

Pollock, E., and Jazayeri, M. (August 2020). Engineering recurrent neural
networks from task-relevant manifolds and dynamics. PLoS Comp. Biol.
16, €1008128. https://doi.org/10.1371/journal.pcbi.1008128.

Sussillo, D. (April 2014). Neural circuits as computational dynamical sys-
tems. Curr. Opin. Neurobiol. 25, 156-163. https://doi.org/10.1016/j.
conb.2014.01.008.

Yang, G.R., Joglekar, M.R., Song, H.F., Newsome, W.T., and Wang, X.-J.
(January 2019). Task representations in neural networks trained to perform
many cognitive tasks. Nat. Neurosci. 22, 297-306. https://doi.org/10.
1038/s41593-018-0310-2.

Michaels, J.A., Dann, B., and Scherberger, H. (November 2016). Neural
population dynamics during reaching are better explained by a dynamical
system than representational tuning. PLOS Comp. Biol. 12, e1005175.
https://doi.org/10.1371/journal.pcbi.1005175.

Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and
Cunningham, J.P. (October 2016). Reorganization between preparatory
and movement population responses in motor cortex. Nat. Commun. 7,
18239. https://doi.org/10.1038/ncomms13239.

Lara, A.H., Cunningham, J.P., and Churchland, M.M. (July 2018). Different
population dynamics in the supplementary motor area and motor cortex
during reaching. Nat. Commun. 9, 2754. https://doi.org/10.1038/
s41467-018-05146-z.

Georgopoulos, A.P., Kalaska, J.F., Caminiti R., and Massey, J.T.
(November 1982). On the relations between the direction of two-dimen-
sional arm movements and cell discharge in primate motor cortex.
J. Neurosci. 2, 1527-1537. https://doi.org/10.1523/JNEUROSCI.02-11-
01527.1982.

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.l., and
Shenoy, K.V. (November 2010). Cortical preparatory activity: representa-
tion of movement or first cog in a dynamical machine? Neuron 68,
387-400. https://doi.org/10.1016/j.neuron.2010.09.015.

https://doi.org/10.1038/nature<?show [?tjl=20mm]&tjlpc;[?tjl]?>12160
https://doi.org/10.1038/nature<?show [?tjl=20mm]&tjlpc;[?tjl]?>12160
https://doi.org/10.1016/j.neuron.2018.07.003
https://proceedings.neurips.cc/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.7554/eLife.46159
https://doi.org/10.7554/eLife.46159
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1103/PhysRevE.79.031909
https://doi.org/10.1038/nn.3247
https://doi.org/10.1038/nn.3247
https://doi.org/10.1038/nn.3800
https://doi.org/10.1016/j.neuron.2010.12.037
https://doi.org/10.1016/j.neuron.2010.12.037
https://doi.org/10.1152/jn.90941.2008
https://doi.org/10.1038/nn.4611
http://www.stat.columbia.edu/~cunningham/pdf/GaoNIPS2016.pdf
http://www.stat.columbia.edu/~cunningham/pdf/GaoNIPS2016.pdf
https://doi.org/10.48550/ARXIV.1811.02459
https://doi.org/10.48550/ARXIV.1811.02459
https://proceedings.neurips.cc/paper/2011/file/7143d7fbadfa4693b9eec507d9d37443-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7143d7fbadfa4693b9eec507d9d37443-Paper.pdf
https://doi.org/10.1016/j.conb.2019.02.002
https://doi.org/10.1016/j.conb.2019.02.002
https://proceedings.neurips.cc/paper/2017/file/b3b4d2dbedc99fe843fd3dedb02f086f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b3b4d2dbedc99fe843fd3dedb02f086f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b3b4d2dbedc99fe843fd3dedb02f086f-Paper.pdf
https://doi.org/10.1162/NECO_a_00953
https://doi.org/10.1038/nn.3776
https://doi.org/10.1038/nn.3776
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1371/journal.pcbi.1010426
https://doi.org/10.1371/journal.pcbi.1010426
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.conb.2017.06.003
https://doi.org/10.1016/j.conb.2017.06.003
https://doi.org/10.1371/journal.pcbi.1008128
https://doi.org/10.1016/j.conb.2014.01.008
https://doi.org/10.1016/j.conb.2014.01.008
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1371/journal.pcbi.1005175
https://doi.org/10.1038/ncomms13239
https://doi.org/10.1038/s41467-018-05146-z
https://doi.org/10.1038/s41467-018-05146-z
https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982
https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982
https://doi.org/10.1016/j.neuron.2010.09.015

Neuron

78.

79.

80.

81.

82,

83.

84.

85.

86.

Kaufman, M.T., Churchland, M.M., Santhanam, G., Yu, B.M., Afshar, A.,
Ryu, S.I., and Shenoy, K.V. (August 2010). Roles of monkey premotor neuron
classes in movement preparation and execution. J. Neurophysiol. 104,
799-810. https://doi.org/10.1152/jn.00231.2009.

Churchland, M.M., Afshar, A., and Shenoy, K.V. (December 2006). A cen-
tral source of movement variability. Neuron 52, 1085-1096. https://doi.
org/10.1016/j.neuron.2006.10.034.

Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen,
M.R., Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott,
B.B., et al. (February 2010). Stimulus onset quenches neural variability: a
widespread cortical phenomenon. Nat. Neurosci. 13, 369-378. https://
doi.org/10.1038/nn.2501.

Werbos, P.J. (1990). Backpropagation through time: what it does and how
to do it. Proc. IEEE 78, 1550-1560. https://doi.org/10.1109/5.58337.
Heming, E.A., Cross, K.P., Takei, T., Cook, D.J., and Scott, S.H. (2019).
Independent representations of ipsilateral and contralateral limbs in pri-
mary motor cortex. eLife 8, e48190. https://doi.org/10.7554/eLife.48190.
Golub, M.D., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.1., Tyler-Kabara,
E.C., Batista, A.P., Chase, S.M., Yu, B.M., and Byron, M. (March 2018). Yu.
Learning by neural reassociation. Nat. Neurosci. 27, 607-616. https://doi.
org/10.1038/s41593-018-0095-3.

Sadtler, P.T., Quick, K.M., Golub, M.D., Chase, S.M., Ryu, S.I., Tyler-
Kabara, E.C., Yu, B.M., and Batista, A.P. (August 2014). Neural constraints
on learning. Nature 512, 423-426. https://doi.org/10.1038/nature13665.
Latimer, KW., Yates, J.L., Meister, M.L.R., Huk, A.C., and Pillow, J.W.
(July 2015). NEURONAL MODELING. Single-trial spike trains in parietal
cortex reveal discrete steps during decision-making. Science 349,
184-187. https://doi.org/10.1126/science.aaa4056.

Shadlen, M.N., Kiani, R., Newsome, W.T., Gold, J.l., Wolpert, D.M.,
Zylberberg, A., Ditterich, J., de Lafuente, V., Yang, T., and Roitman, J.
(March 2016). Comment on “single-trial spike trains in parietal cortex
reveal discrete steps during decision-making”. Science 357, 1406.
https://doi.org/10.1126/science.aad3242.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

¢? CellPress

Theunissen, F., and Miller, J.P. (June 1995). Temporal encoding in nervous
systems: A rigorous definition. J. Comp. Neurosci. 2, 149-162. https://doi.
org/10.1007/BF00961885.

Rajan, K., Harvey, C.D., and Tank, D.W. (April 2016). Recurrent network
models of sequence generation and memory. Neuron 90, 128-142.
https://doi.org/10.1016/j.neuron.2016.02.009.

Boerlin, M., and Denéve, S. (February 2011). Spike-based population cod-
ing and working memory. PLoS Comp. Biol. 7, e1001080. https://doi.org/
10.1371/journal.pcbi.1001080.

Logiaco, L., Abbott, L.F., and Escola, S. (June 2021). Thalamic control of
cortical dynamics in a model of flexible motor sequencing. Cell Rep. 35,
109090. https://doi.org/10.1016/j.celrep.2021.109090.

Ermentrout, B. (July 1994). Reduction of conductance-based models with
slow synapses to neural nets. Neural Comput. 6, 679-695. https://doi.org/
10.1162/neco.1994.6.4.679.

Gerstner, W. (January 1995). Time structure of the activity in neural
network models. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 57, 738-758. https://doi.org/10.1103/physreve.
51.738.

Ostojic, S., and Brunel, N. (January 2011). From spiking neuron models to
linear-nonlinear models. PLoS Comp. Biol. 7, €1001056. https://doi.org/
10.1371/journal.pcbi.1001056.

Shriki, O., Hansel, D., and Sompolinsky, H. (August 2003). Rate models for
conductance-based cortical neuronal networks. Neural Comput. 75,
1809-1841. https://doi.org/10.1162/08997660360675053.

Wei, Z., Lin, B.-J., Chen, T.-W., Daie, K., Svoboda, K., and Druckmann,
Shaul (September 2020). A comparison of neuronal population dynamics
measured with calcium imaging and electrophysiology. PLoS Comp.
Biol. 16, €1008198. https://doi.org/10.1371/journal.pcbi.1008198.

Ingrosso, A., and Abbott, L.F. (August 2019). Training dynamically
balanced excitatory-inhibitory networks. PLoS One 74, e0220547.
https://doi.org/10.1371/journal.pone.0220547.

Neuron 7711, 631-649, March 1, 2023 649

https://doi.org/10.1152/jn.00231.2009
https://doi.org/10.1016/j.neuron.2006.10.034
https://doi.org/10.1016/j.neuron.2006.10.034
https://doi.org/10.1038/nn.2501
https://doi.org/10.1038/nn.2501
https://doi.org/10.1109/5.58337
https://doi.org/10.7554/eLife.48190
https://doi.org/10.1038/s41593-018-0095-3
https://doi.org/10.1038/s41593-018-0095-3
https://doi.org/10.1038/nature13665
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1126/science.aad3242
https://doi.org/10.1007/BF00961885
https://doi.org/10.1007/BF00961885
https://doi.org/10.1016/j.neuron.2016.02.009
https://doi.org/10.1371/journal.pcbi.1001080
https://doi.org/10.1371/journal.pcbi.1001080
https://doi.org/10.1016/j.celrep.2021.109090
https://doi.org/10.1162/neco.1994.6.4.679
https://doi.org/10.1162/neco.1994.6.4.679
https://doi.org/10.1103/physreve.51.738
https://doi.org/10.1103/physreve.51.738
https://doi.org/10.1371/journal.pcbi.1001056
https://doi.org/10.1371/journal.pcbi.1001056
https://doi.org/10.1162/08997660360675053
https://doi.org/10.1371/journal.pcbi.1008198
https://doi.org/10.1371/journal.pone.0220547

¢ CellPress Neuron

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed empirical data Lab of Mark Churchland. Processed data available Github: https://doi.org/10.
used for network training. at https://github.com/briandepasquale/factor- 5281/zenodo.7302474

based-spiking-nets/. Unprocessed data was
generated during experiments whose results were
reported in Lara et al.”® (https://doi.org/10.
1038/s41467-018-05146-z) and Russo et al.™*
(https://doi.org/10.1016/j.neuron.2018.01.004)

Computer simulated data and Code was written by the authors. Available at Github: https://doi.org/10.
original computer code for running https://github.com/briandepasquale/ 5281/zenodo.7302474
data-generating network simulations. factor-based-spiking-nets/

Software and algorithms

Matlab 2016a Mathworks https://www.mathworks.
com/products/matlab.html

Python Python Software Foundation https://www.python.org/
Custom computer code for Code was written by the authors. Available at Github: https://doi.org/10.
data-generating network simulations, https://github.com/briandepasquale/ 5281/zenodo.7302474
network training, and analysis. factor-based-spiking-nets/

RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Brian DePasquale (bddepasq@
bu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o Original data used in this study was computer simulated. Some simulations relied on processed empirical data. Processed
empirical data, computer simulated data, and original computer code for running data-generating network simulations has
been deposited at https://github.com/briandepasquale/factor-based-spiking-nets/ and is publicly available as of the date of
publication. DOlIs are listed in the key resources table.

o Custom code for network training and analysis has been deposited at https://github.com/briandepasquale/factor-based-
spiking-nets/ and is publicly available as of the date of publication. DOIs are listed in the key resources table.

® Any additional information required to regenerate or reanalyze the data reported in this paper is available from the lead contact
upon request.

METHOD DETAILS

Spiking network model
Leaky integrate-and-fire model neurons were used. N designates the number of spiking neurons. The membrane potential of all neu-
rons is denoted by the N-component vector v(t). When v; reaches a threshold value of 0 mV neuron i fires an action potential and is
reset to -10 mV.

Each neuron’s spikes were filtered with two characteristic timescales, denoted by two N-dimensional vectors sf(t) and s%(t). When
neuron i spikes, sf(t) and s} (t) increment by 1. At all other times the presynaptic inputs decay exponentially with a time constant of
¢ = 5 ms and 75 = 100 ms. For simplicity, we concatenate sf(t) and s$(t) into a 2N-dimensional vector s(t).

el Neuron 7171, 631-649.e1-e10, March 1, 2023

mailto:bddepasq@bu.edu
mailto:bddepasq@bu.edu
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://doi.org/10.1038/s41467-018-05146-z
https://doi.org/10.1038/s41467-018-05146-z
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.5281/zenodo.7302474
https://doi.org/10.5281/zenodo.7302474
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://doi.org/10.5281/zenodo.7302474
https://doi.org/10.5281/zenodo.7302474
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.python.org/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://github.com/briandepasquale/factor-based-spiking-nets/
https://doi.org/10.5281/zenodo.7302474
https://doi.org/10.5281/zenodo.7302474

Neuron ¢ CellP’ress

We construct P factors from the filtered spikes. The P-component vector y(t) denotes the network generated factors. A Px 2N
matrix w that is learned (see next subsection) combines the filtered spikes to yield the network generated factors: y(t) = ws(t).
Each neuron receives linear combinations of the factors through a Nx P matrix u. Because of this, the Nx2N matrix of recurrent con-
nections that constructs the factors through learning, Js.c, is defined as Ji,c = uw.

To account for synaptic inputs that do not arise from the factors we include a second Nx2N recurrent connectivity matrix, Jo, of
unmodified connections. The elements of the first N columns of Jy correspond to the filtered spikes sf(t) and the elements of the
second N columns correspond to s3(t).

v(t) obeys the following dynamical equation, which is standard for a LIF neuron,

dv(t)
ot

where 7, = 10 ms. For computations that require external input a mip-dimensional input, fi,(t), is applied to each neuron through a
Nxmi, matrix ui,. v, is a constant equilibrium potential. It is computed prior to learning to control the average firing rate of each
neuron. (See section below.)

Learning w by RLS
The P-component vector yi,4(t) denotes the target factors, i.e., the factors we want the network to construct. We identify the ele-
ments of w by solving the following equation with a recursive least squares (RLS) algorithm,

= — (v(t) — v,) +Jos(t) + JracS(t) + UinFin(t), (Equation 6)

WS(t) =¥ iarg (1) (Equation 7)

We note that although we have specified the learning problem as requiring that we learn w and choose u randomly, this choice
simply corresponds to a particular factorization of Js,c that makes the factors’ location within the synaptic connectivity transparent.
Learning would be identical if Jr,c was identified by solving JracS(t) = Uy targ (1)

Assuming a wisely chosen set of target factors (i.e., factors that can be learned), the network can perform computations that rely on
the factors as a basis. The results of these computations take the form of network outputs. The m-component vector fi,4(t) denotes
the desired (i.e., target) network outputs. Typical outputs are muscle EMGs (in the case where factors are derived from motor cortex)
or the solution to an artificial computational problem. The network-generated output can be found by regression:
Wy (t) + Wo=fiag(t). Wo is a bias term that is learned.

Connections that are not learned

The entries of u, uj,, and Jy are not modified by a learning procedure, and in most cases are selected randomly. (In cases where
factors are derived from a firing rate model, we use knowledge of the rate model’s connectivity to define u and u;,. See section
below.) The entries of u and u;, are selected randomly to reflect the fact that empirical neural responses often reflect random com-
binations of the empirical factors (which in turn presumably reflect both network dynamics and network inputs). The entries of Jy are
selected randomly to capture, as simply as possible, aspects of connectivity related to tasks other than the current task mediated by
Jiac. This choice also has the desired effect of encouraging the network to generate irregular spiking.*”

The elements of u and uj, are selected from a uniform distribution between -1.0 and 1.0, and then both are scaled by a scalar g
which sets the overall scale of the factor and external input into each neuron. The elements of the first N columns of Jy are sampled
from a Gaussian distribution with mean y;/Ns and variance g? /Nt? and the elements of the second N columns are sampled from a
Gaussian distribution with mean us/N7s and variance g2 /N2,

Setting the average spiking rate
v, is N-dimensional vector of constants that sets the equilibrium potential for each spiking neuron (see Equation 6). It can be used to
control each neuron’s average rate of spiking. It is composed of three terms:

Vi = Viest + Vi — (UWWiarg (1) + (Jo — (Jo))s (1)) 7, (Equation 8)

where (Jo) is the average synaptic strength due to Jo.

Thefirstterm, viest = — 10 MV, determines the equilibrium potential of each neuron in the absence of input. The second term, v; =
10 mV, is a constant, global excitatory input that ensures the network generates activity in the absence of recurrent input.

The third term is computed prior to learning by applying the target factors as external inputs. Doing this mimics the effect they will
have after learning at which point they will be constructed internally. { +) 7 indicates an average across a length of time T (typically
around 100 trials per condition) over which this mean is computed.

The third term is equal to the temporally-averaged recurrent input each neuron receives. There are two sources of this recurrent
input. The first is input due to the factors (which after learning will be constructed recurrently by the matrix Js,c). The second is recur-
rent input due to Jo. (Note that we are not subtracting the average temporal input due to the mean weights of Jy, (Jo), because the
strength of this average recurrent input has been selected to ensure that inhibition dominates in the network.) Although including the
third term in v, aids network construction by adjusting the total synaptic input to each neuron so that they all have a firing rate of
roughly the same value, doing so is not strictly necessary.

For all examples, u; = — 0.3 and ug = 0 (the mean parameters of Jy) so that inhibition dominates. Strong recurrent inhibition off-
sets the strong external input (v;) that would otherwise cause high firing rates (given viest). One might wonder why strong recurrent

Neuron 111, 631-649.e1-e10, March 1, 2023 e2

¢? CellPress Neuron

inhibition and strong external excitation were included, given they roughly cancel each other. Empirically, we observed that removing
both in an untrained network eventually lead to network quiescence. Our choice of viest, Vz and u sets the average firing rate across
the network to approximately 15 spikes/second when averaged across time in a trial and across all task conditions.

Balancing task performance and spiking irregularity
The irregularity or regularity of spiking is set by the ratio of each neuron’s synaptic input variance to its synaptic input mean. For
example, consider multiple repeats of a cycle, as in Figure 2A. Spiking will be irregular across cycles if a neuron’s net input displays
large across-cycle variance despite a weakly modulated across-cycle mean. Spiking will be more regular if the mean input is strongly
modulated throughout each cycle, and across-cycle variance is small. A larger Js,c leads to more regular spiking, because it creates a
stronger factor-based input, and factor-based inputs have low across-cycle variance (Figure 3). In contrast, a larger Jy creates
greater spiking irregularity because it increases the magnitude of the non-factor-based input, which is inconsistent across trials
(Figure 3).

gr and gs set the scale of Jy, while g sets the scale of J,c. In general, if the ratio of gs and gs to g is large, for a fixed population size,
the network will produce more variable spike trains and perform less well on the task (though this cost of variable spiking may be small
for large networks and when the number of factors is small). g must be sufficiently large to induce a sufficiently large mean fluctuation
across the population to produce enough spikes to construct the factors (i.e., if the mean for all neurons was zero, constructing
temporally fluctuating factors with Js,c would be impossible). Thus g, gs, and gs must be set to achieve two goals: 1) ensure that
the synaptic input mean is large enough for learning to succeed; 2) ensure that the synaptic input variance is large enough to create
realistic spiking variability. For all examples, g; = 0.13 and g5 = 0.11 and g took values that ranged between 3 and 6, which we found
produced spiking irregularity consistent with empirical observations (see Figure 6 and Churchland et al.®"), while still enabling the
network to construct the factors accurately.

Dividing the synaptic input into factor-based and non-factor-based components

Each neuron receives postsynaptic input due to the factors via J,c. It might initially seem that this is the only factor-based input each
neuron receives. However, because Jj is a full-rank matrix it also contributes postsynaptic input to each neuron that is collinear with
the factors. To see this, consider the activity of one pre-synaptic neuron and one post-synaptic neuron before and after training.
Before training, the pre-synaptic neuron’s spiking activity is completely unrelated to the factors, and thus its connections to the
post-synaptic neuron through Jg convey no factor-based information. Post-training, the pre-synaptic neuron’s spiking (noisily) re-
flects the factors, and thus so does its influence on the post-synaptic neuron via Jp. Indeed, the post-synaptic neuron now receives,
via Jy, factor-related inputs from many pre-synaptic neurons and these do not necessarily sum to zero.

In principle one might wish to adjust Jy so that the total factor-based influence of Jy is zero. However, because of the nonlinear
dependence between the factors and the network spiking activity and because of our online learning procedure, doing so would
be challenging and would impose a structure on Jp that would cause it to no longer be random. Furthermore, conceptually there
is nothing wrong with unmodified synapses contributing to the learned computation. Thus, instead of attempting to combat the
contribution of Jy to the factor-based input, we simply compute it. After learning, we find the activity collinear with the factors
that arises due to Jp and add this with the input that arises due Js,¢, yielding the total factor-based input into each neuron. The residual
activity due to Jy is the non-factor-based component.

To find the factor-based input due to Jy we regress the synaptic input due to Jg against the factors, to identify a NxP dimensional
matrix uy,:

u,y(t)=dJos(t). (Equation 9)
We define the factor-based input as the sum of the synaptic input that produces the factors, due to u and due to Jj,
Z(t) = (u+uy,)y(t) =uy(t). (Equation 10)
We define the non-factor-based component of the synaptic input as the residual:
Jos(t) — uyy(t), (Equation 11)

which is equivalent to the total synaptic input minus the factor-based input.

In cases where external inputs are known, external inputs are effectively ‘inherited’ factors, and contribute to 2° (t), both due to their
external synapses and due to Jy. In such cases, we concatenate factors and external inputs into a P + mj, dimension vector y/ t) =
v(t),fin(t)]. ¥ (t) thus captures both the factors generated internally by the network, and factors it inherits from upstream networks
via its inputs. The factor-based input is then computed analogously to that above:

Z(t) = (uupn]+uy,)y (t) =uy (1), (Equation 12)

where [u, up)] is a NxP +m;, matrix and uy, is found by regressing the synaptic input due to Jo against y'(t). As above, the non-
factor-based input is simply the total synaptic input minus the factor-based input.

e3 Neuron 771, 631-649.e1-e10, March 1, 2023

Neuron ¢ CellP’ress

Deriving target factors

Target factors can be derived from a number of sources, including neural recordings and mathematical models, using a variety of
methods. In this study, we consider target factors derived from real and artificial neural populations. We denote the activity of the
‘target-providing’ population by the N component vector x(t), where N designates the number of neurons (real or artificial). x(t) de-
scribes the firing rate of every neuron in the population at time t. When deriving target factors from a rate-based network, firing rates
are known because they are explicitly modeled. When deriving target factors from an empirically recorded population, firing rates are
estimated (details below). In cases where there is only one behavioral condition (e.g., the cycling task), t indexes across times in that
condition. In cases where there are multiple behavioral conditions, t indexes both across time and condition. Many of our rate net-
works were trained on multiple variants of each condition and t then also indexes across these as well.

For all our examples, we use principal component analysis to obtain the target factors. We learn a PxN matrix V so that Yiarg ()
captures a specified fraction of the firing-rate variance of the target-providing population. To do so, we construct a Nx T data matrix,

where T is the number of times. We compute the NxN covariance matrix, followed by the eigenvectors of this matrix to yield the
principal vectors, V. From this,

Yiarg(t) = VX(1), (Equation 13)

yields the target factors.

In the case of neural recordings, we considered factors derived from single-unit electrophysiological recordings. However, target
factors could in principle be derived from other types of neural recordings, such as multiunit recordings or calcium imaging data, pro-
vided that the data allow the factors to be accurately estimated. Other work has indicated that factors derived from multi-unit activity
largely agree with those derived from single-units.*® The same can be true of calcium imaging data, provided a sufficiently responsive
Ca2+ indicator or appropriate pre-processing.”®

Although we learn factors by principal component analysis throughout, other methods, such as factor analysis or LFADS, can be
used and we found that factors derived using these other methods worked equally well as training targets. This is unsurprising; any
linear dimensionality reduction method that accurately captures firing rate variance will yield factors that are similar up to a rotation.
Our method should work similarly well for factors derived via any dimensionality reduction method, provided the factors do not exhibit
‘pathologies’ that would be challenging for any dynamical system to learn. For example, factors that exhibited high trajectory
tangling’* would be challenging to learn for any neural-network training method. In some situations, it may be more appropriate
to summarize empirical data using non-linear dimensionality reduction techniques. Our training approach is currently not tailored
to that situation (because network factors are linear combinations of spikes) but could potentially be modified to handle such situ-
ations. Lastly, although many dimensionality reduction methods ensure that the factors are orthogonal (i.e., uncorrelated across
times and conditions), and encouraging the factors away from colinearity may aid training, orthogonality of the target factors is
not strictly necessary.

Cycling task factors

Experimentally measured spike times from N = 109 neurons were collected from the motor cortex of primates performing a cycling
task described in Russo et al.'* The spike times were convolved with a Gaussian kernel (std. dev. = 25 ms) and trial-averaged. Trial
averaging involved an ‘adaptive alignment’ procedure to align periods of the cycling movement; details of this procedure can be
found in Russo et al.'* For simplicity, we considered data from one condition: when the monkey pedaled forward for seven consec-
utive cycles.

Trial-averaged firing rates were ‘soft normalized’ following a procedure we have commonly used in the past.'* This procedure is
motivated by the finding that when using PCA, a common problem is that neurons with large firing-rate ranges can dominate (a
neuron with a range of 100 spikes/s has 25 times as much variance as a neuron with a range of 20 spikes/s). For each neuron,
we compute its firing rate range: the maximum trial-averaged rate (across all times in all conditions) minus the minimum. The normal-
ization factor was this range plus a constant of 5 spikes/s. Adding the constant ensures that very low-rate neurons contribute less to
the computation of the PCs than do high-rate neurons. Neurons with firing-rate ranges well above 5 spikes/s contribute roughly
equally. Each neuron’s activity (at all times and for all conditions) was normalized by this normalization factor:

Xn(c,t)
5 +rangec;:(xn(c,t))

Xn(C,t)— (Equation 14)

The trial-averaged firing rates repeated across the middle cycles of the 7 cycle movement but were not exactly periodic because
the activity of each neuron on each cycle did not end at exactly the same firing rate where it began. To simplify network training, we
wished to construct a ‘representative’ single cycle that was perfectly periodic.’* A simple solution is to set the representative cycle to
be the trial-averaged activity of the middle cycle (cycle 4). Activity of cycle 4 (like the other middle cycles) repeated close to perfectly.
Treating this activity as a periodic function created only a small discontinuity at the phase where activity ‘wrapped around’. A reason-
able solution would have been to simply smooth over this small discontinuity. However, the presence of multiple cycles allowed for a
more elegant solution. The last half of the 4% cycle had no discontinuity with the first half of the 5 cycle. Thus, we created a repre-
sentative cycle that began as the beginning of the 5% cycle and continuously became more similar to the 47 cycle (via a weighted
average that began with weights of 1 and 0 and ended with weights of 0 and 1) until it exactly matched the 4% cycle halfway through

Neuron 7177, 631-649.e1-e10, March 1, 2023 e4

¢? CellPress Neuron

that cycle. The representative cycle was then identical to the 4 cycle for the second half. This produced a representative cycle that
was perfectly periodic with no discontinuity.

Once the above processing was performed for each neuron, principal component analysis was performed on the population of
firing rates and the projections of the firing rates onto the top 12 principal components were retained (See ‘Deriving factor targets’
subsection above for details on computing the PCs). Because the underlying activity of each neuron was periodic (see above) there
was no discontinuity in each projection but there could still be a small discontinuity in first derivative. To ensure this was not the case,
we concatenated 3 (perfectly repeating) cycles of the PC projections, smoothed each with a Gaussian kernel (std. dev. =5 ms) and
retained the middle cycle. This ensured well-behaved training targets, each of which was periodic in both its values and its first de-
rivative. We concatenated four of these to create a 2 second ‘trial’.

EMG recordings from the cycling task were high-pass filtered at 40 Hz and rectified. Then, they were smoothed, trial-averaged,
soft-normalized, and processed, as described above, to obtain a closed, periodic loop.

Standard FORCE learning in rate models
FORCE learning considers a continuous-time recurrent neural network of firing rate units.*® As a reminder, we denote the activity of

the population by the N component vector x(t). Units are connected through an NxN random matrix J. The elements of J are selected

independently from a Gaussian distribution of zero mean and variance g2 /I\7. A mxN matrix of output synapses w is modified by
recursive least squares so that the network output matches a target output fiag(t):

WX (1) = Frarg (). (Equation 15)

A Nxm matrix of random synapses u carries the network’s approximation of the target output back into the network, as though it
were an input, augmenting the network’s recurrent connectivity. The elements of u are selected from a uniform distribution between

-1.0 and 1.0. When u and .7 are appropriately scaled, the network is able to produce a good approximation to the target output

because the approximation of the target is fed back into the network via u and is mixed with the recurrent feedback due to 3
This stabilizes the network dynamics, enabling learning.
After learning, the dynamics of x(t) are given by

ax(t)

T = X+ (Jx(t) +UWX(E) + UnFin(t)) , (Equation 16)

where 7 =10 ms, ¢(+) = tanh(+) is the nonlinear input/output function for each unit, and fi,(t) is an external input applied to each

neuron by connections specified by a Nxmin matrix ain. The elements of ﬂin are selected randomly from a uniform distribution be-
tween -1.0 and 1.0 and are not modified. Once trained, by definition, the network produces a set of factors sufficient for constructing
fiarg (t) because the activity x(t) can be linearly combined to produce fiag(t) (i.e., Equation 15).

Modified FORCE learning & factors from the rate model

For the reaching task, we used a modified version of FORCE to train a rate network from which we could obtain target factors.*®
Somewhat surprisingly, the factors a FORCE trained network produces are identical to the factors the same network would produce

if we simply apply fiarg(f) (normally a target output of the trained network) as an input through u, without learning W. To see this,
consider the dynamics of x(t) in such a scenario:
ax(t)

U <3x(t) + UFrarg (1) + Uinfin (t)) : (Equation 17)

The only difference between Equations 17 and 16 is the second term within ¢(+). Of course, when FORCE learning is successful,

Wx(t) =frag(t), s0 the second term will be almost identical in both cases. Thus, from the standpoint of the firing rates of rate-network
units (and therefore of the factors derived from them), it matters little whether fia4(t) is generated by the network’s own recurrence
(i.e., an output that is fed back in, as in standard FORCE training) or is simply applied to the network. Of course, without FORCE
training the rate-based network cannot autonomously generate the factors. However, this is unnecessary for our purposes because
we simply wish to know the patterns the rate network produces when it generates fia4(t). Once those patterns are known we can use
them as target factors to train the spiking network.

Therefore, we apply fiarg (t) as an input to the rate model, and only learn W to ensure that the factors are sufficient for reproducing

frarg (1), (i.e., we solve Equation 15 but do not feed back the output constructed by W, as it is already being applied as an external
input). After network training is complete, the target factors yi,4(t) are defined by Equation 13.

Backpropagation trained rate network & its factors

For the contextual integration task, we use a discrete time network, which we train with backpropagation through time. Network neu-
rons evolve according to the following dynamics:

e5 Neuron 771, 631-649.e1-e10, March 1, 2023

Neuron ¢? CellPress

X(t+At) = ¢ <3x(t) +Unfin(t) +b) (Equation 18)

where At = 10 ms and E is a time-independent bias input for each unit. Network output is defined as in Equation 15. ¢(+) is defined

as in the FORCE trained rate model. J, Tlin, l; and VNV are modified via backpropagation through time so that Wx(t) = fiarg(t). After
training is complete, the target factors yi,4(t) are defined by Equation 13.

We trained the firing rate model using the ADAM optimizer with standard decay rate parameters (3; = 0.9, 8, = 0.999) and an
initial step size of « = 0.001. We performed 100 iterations of gradient descent and then reduced the step size by 2/3. The step
size was reduced 10 times. Input, recurrent, and output synapses were initialized with Gaussian random variables, with standard de-

viation of 1/v/N, 0.9/v/N + 1, and 1/v/N + 1, respectively, where N is the number of neurons (N = 100). Our optimization objective
included a L2 penalty on the sum of the squared values of the input and recurrent synapses, scaled by a constant = 2e-6, to prevent
the connections from growing too large.

Defining u and u;, when using rate-model derived factors

When training a spiking network using target factors derived from data, u (which determines how the factors are linearly combined
into each spiking neuron) and u;, (which specifies how external inputs are weighted into each spiking neuron) are selected randomly.
Random selection creates neurons whose firing rate reflects combinations of factors and external inputs without preference for any
single factor or input. Because the analogous connections in trained rate models are likewise effectively random (despite being
learned), their firing rate units will also exhibit this property (unless learning is designed to specifically discourage it). To ensure robust
spiking-network training, when deriving target factors from a trained rate model we sought to preserve the precise structure present
in the trained rate model within the trained spiking model. While preserving properties between the two models was not critical (i.e.,
spiking network training could still succeed if this was not done), it likely made training robust especially for smaller networks.

We sought to preserve two key aspects from the trained rate model when training the spiking model: 1. the relative magnitudes of
recurrent and external synaptic inputs; 2. the relationships between firing rates and inputs that emerged during rate-network training.
As an example of aspect one, if rate-network training produces recurrent connectivity that is strong relative to incoming commands,
we wish that to be preserved in the spiking model. As an example of aspect two, consider the preparatory epoch during the reaching
task. A neuron’s ‘directional preference’ (and thus which factors it reflects) is likely to be related to which external inputs it receives. A
neuron that responds most before rightward reaches is likely to receive a contribution from the network-input that conveys the cosine
of the reach angle.

Achieving the above goals would be simple if rate networks and spiking networks had the same number of units. One could simply
pick u and uj, so that each spiking neuron had a factor-based synaptic input and an ‘external’ synaptic input approximating that of a
corresponding rate unit. However, spiking networks typically had more neurons than the corresponding rate network had units. We
thus developed a procedure that yields u and uj, that are each ‘internally’ random (i.e. each matrix is itself random) but have relative
magnitudes that mirror what occurred in the rate network, and are also ‘aligned’ in the sense that spiking neurons will reflect com-
binations of factors and external inputs in a manner similar to that for rate-model neurons. The outcome of this procedure is a spiking
network that can be larger than the rate network upon which it is based, but where neurons have overall similar response properties.

First, we defined a NxN matrix U with orthonormal columns to specify a linear map between the dimension of the rate model (N)
and the dimension of the spiking model (N). The elements of this matrix were chosen randomly and then its columns were orthonor-
malized. To ensure the scale of the recurrent factor feedback and external input into each spiking neuron matches (overall) that of the
recurrent factor feedback and external input into each rate unit, we leveraged knowledge of the recurrent and external connectivity of

the rate network, .7 and ﬁin respectively. Recalling that V is the Nx P matrix that defines the factors from the activity of the rate units,
we defineu = gU.NIVT. Recalling that u is multiplied by y (t) in the spiking network, we can consider the impact of each term: V" maps

the factors into the N-dimensional rate network space, .7 then maps the factors to synaptic inputs in the N-dimensional rate-network
space (preserving the scale present within the trained rate network), and U maps those preserved values into the N-dimensional
space of the spiking network, preserving the norm. To accomplish something similar for external inputs, U is also used to define

Uin: Ui = gUﬁin. Defining ui, based on Ui, has the same effect that defining u based on .7 does. Note that both u;, and u are scaled
by g, as when they were completely random, to set their overall scale. The above procedure ensures that both u and uj, are

composed of random matrices (e.g. U, tn, and .7) and thus are themselves random, despite being designed through an intentional
procedure.

Quantifying performance, factor-based input variability, and spiking irregularity in trained spiking models
To determine how accurately the factors matched their targets, we computed the normalized mean-squared error. For the r'f trial the
normalized error is

(Ws(t) — Viag (t)>2>T~F’

Er= <Ytarg (t)2 >T‘P ’

(Equation 19)

Neuron 7177, 631-649.e1-e10, March 1, 2023 e6

¢ CellP’ress Neuron

where T is time spanned by the trial for tasks with a trial structure. P indexes the factors. We report the across-trial median of this
error to provide an aggregate performance measure for tasks where performance can vary between trials of different conditions.

To determine the across-trial variability of the factor-based synaptic input for neuron n, we computed a normalized across-trial
variance using the following equation:

m (Equation 20)

(Var(era(t)))

for R trials of duration T. The numerator captures across-trial variability, while the denominator captures the degree to which the
mean varies across time. For pure noise, this expression would be unity on average. Small values indicate that the systematic aspect
of synaptic input is large relative to across-trial variability. Variability of network outputs, the factors, and the non-factor based syn-
aptic inputs were computed using the same expression. For networks where there was more than one condition, values were aver-
aged across conditions.

To determine how variable spiking was from trial to trial, we calculate the ‘across trial’ Fano factor following the method established
in Churchland et al.?° For a given neuron and condition, for each trial we counted the number of spikes in a window from time t to ¢ +
At. We computed the across-trial mean and across-trial variance of the count. For all analyses, 4t = 100 ms and t was incremented in
10 ms steps. This yielded one value of the spike-count mean and one value of the spike-count variance for every neuron, condition,
and time-window.

To summarize the Fano factor for a given neuron, we found the slope of the best fit line (constrained to pass through zero)
describing the relationship between the spike-count variance and the spike-count mean across all conditions and time-windows.
To summarize the Fano factor for a population of neurons, we did the same but with one point per neuron, condition and time-
window.

Computing the flow field of the factors

To compute the flow field in the factor basis (Figure 1C) we perturbed the first two factors at various points along a reference trajectory
and observed how the network state relaxed following the perturbation. We first computed the average factor trajectory (for all 12
factors) across multiple trials in order to compute the direction of the approximate derivative at each point along the average trajec-
tory. We selected perturbations of the first two factors that were orthogonal to the average trajectory and observed the network state
10 ms later to compute the flow field in the vicinity of the stable factor limit cycle.

Computing rf (1)

To define a firing rate for each neuron, we modeled the relationship between the factor-based synaptic input and the probability of
spiking. Intuitively, as the factor-based synaptic input increases, the probability of spiking also increases. The relationship is prob-
abilistic because the neuron also receives a sizeable non-factor-based input. If one knows only the current factor-based input, then
the best one can do is predict the probability of a spike occurring. For LIF neurons, in principle there is a monotonically-increasing
nonlinear function that describes this relationship.?® However, analytically deriving this function was beyond the scope of this work.
We took the alternative approach of approximating it. This approximation required identifying two parameters for each neuron, b}
and bQ.

We define the factor-based firing rate for the n neuron as

ri(t) = exp(bazh(t) + bY). (Equation 21)

n

b is a gain parameter that accounts for attenuation of the synaptic input by membrane properties (by 7, for example). b0 is a con-
stant offset parameter that accounts for the constant inputs each neuron receives (e.g., from v,) and also reflects the value of the
spike threshold. In principle, these parameters could be set based on first principles, but doing so does not guarantee an accurate
fit to the data because the approximate nonlinearity (i.e., the exponential function) is not identical to the true non-linearity. To circum-
vent this issue, we learned these parameters using standard optimization techniques.

Because the goal of a firing rate is to account for the probability of spiking in a given window, we model the spikes occurring be-
tween time t and At, N, (t), with a Poisson distribution:

Ni(t) ~ Pois(rf (t)At). (Equation 22)

Spiking in our networks is only approximately Poisson, but this noise model was sufficient for the practical purpose of fitting an
exponential non-linearity that captured the relationship between the factor-based input and the probability of spiking. Furthermore,
choice of the Poisson distributions accords with the exponential function; the exponential is the canonical inverse link function for the
Poisson distribution when fitting a generalized linear model (GLM).°®

To learn b2 and b} we use gradient ascent to maximize the log-likelihood of N, (t) with respect to b and b} for all times (up to T,
where T is the length of collected simulated data). The log-likelihood function for the Poisson distribution is

e7 Neuron 711, 631-649.e1-e10, March 1, 2023

Neuron ¢? CellPress

.
L£(b2,b}) = ZN,,)log(rf (t)At) — rF(t)At. (Equation 23)
t=
Optimizing this function can be performed with standard optimization packages. For our analyses, we used simulated network-
generated factors and spikes from our cycling task, with At = 1 ms. Analyses were performed with built-in MATLAB functions.

LFADS analysis

Latent factor analysis via dynamical systems (LFADS) was performed as described in Pandarinath et al." using code provided by the
authors (https://github.com/google-research/computation-thru-dynamics). LFADS is a statistical model for inferring latent variables
that can account for neural activity patterns. A salient feature of neural responses is their spatial and temporal co-variation, and
LFADS accounts for this by assuming the data are generated by a recurrent neural network. Approximate inference is performed us-
ing a set of variational autoencoders. Spike trains were binned in non-overlapping 10 ms bins for this analysis.

LFADS offers the flexibility to infer exogenous inputs into the neural network to describe the spike train data if variations in the data
cannot be sufficiently explained by variations in the initial conditions of the dynamics of an autonomous network. The results pre-
sented here inferred these additional inputs, but doing so only quantitatively changed the findings; qualitatively our results were un-
changed. Because there actually were no exogenous inputs into the spiking network that generated the data for fitting LFADS, it
seems likely that these learned inputs were actually the trial-to-trial fluctuations caused by the non-factor-based input. Resolving
this requires further study.

Tangling analysis

Tangling analysis was performed as described in Russo et al.'* using code provided by the authors (https:/github.com/aarusso/
trajectory-tangling). The method seeks to identify pairs of network states that have different derivatives yet are near one another.
The pair of states can be either at different times within a single trial or at different moments in different trials. Tangling is computed
as

. . 2
Q(t) = max Xe X (Equation 24)
T X e °

where X; is a state variable of interest (e.g. factors, synaptic input, etc.) at time t and X; is the derivative of that variable at time ¢ (¢
indexes across all times in all conditions and/or trials being analyzed). If the value of this state variable is the same at two times but its
derivative is different, an autonomous dynamical system cannot account for the observed dynamics. In practice it would be rare for
the state of a spiking network (or data) to ever be truly identical at two times, but high tangling still implies that the observed state
trajectories would be difficult to instantiate in a noise-robust autonomous dynamical system.

We assessed trajectory tangling of the factors, the factor-based input, the non-factor-based input, and the total synaptic input on
single trials. Default options were applied based on previous analysis, including normalization of the signals (divide by their range,
then add an offset) before applying the analysis. Contrary to prior analyses, PCA was not applied to the full state before analysis
(e.g. for the factor-based input, the non-factor-based input, and the total synaptic input tangling was assessed in the full 1200 dimen-
sional space). When tangling was compared between the factors and the network outputs, signals were filtered with a Gaussian
kernel (5 ms s.d.) to conform to prior analyses'* where filtering was applied.

Learning sparsely connected and Dale’s Law obeying networks

To train networks while constraining J to be sparse and with columns of consistent sign, we developed a two-step method. Con-
straining Jy to abide by these constraints is straightforward, since its elements are chosen randomly and not modified; we sample
these elements from a truncated Gaussian distribution to obtain exclusively excitatory or inhibitory elements, respectively, and set
some connections equal to zero to achieve the desired sparsity.

In contrast, enforcing these constraints on Ji,c is challenging from a training perspective.’® The recursive least-squares (RLS) al-
gorithm is an important part of the network construction; RLS ensures that the trained network is stable because the samples gener-
ated during the training not only characterize the desired activity, they also include typical fluctuations that arise during network oper-
ation.”® Unfortunately, the RLS algorithm is impractical for weights that are constrained in sign. Sign constraints can easily be
enforced in a batch least-squares (BLS) approach but using BLS for building recurrent network models does not guarantee that
the resulting network state is stable.

We develop a procedure that combines the sampling property of RLS with the constraint amenability of BLS. First, we train a fully
connected and sign-unconstrained spiking network (our standard training paradigm) using RLS to obtain the recurrent connectivity
matrix Jic that constructs the network factors. Then, we sample the post-synaptic inputs J.cS(t) over an extended period of time
and use them to train post-synaptic inputs Jfac (t) of a second network with constrained weights (indicated by the superscript C). The
least-squares problem for matching these two sets of inputs

C s(t) =JsoS(t), (Equation 25)

fac

Neuron 7177, 631-649.e1-e10, March 1, 2023 e8

https://github.com/google-research/computation-thru-dynamics
https://github.com/aarusso/trajectory-tangling
https://github.com/aarusso/trajectory-tangling

¢ CellP’ress Neuron

is done in batch. This way, the data used to solve the least squares problem are assured to contain the fluctuations necessary for
learning a stable solution and constraints can be easily enforced.

To illustrate why this two-step training procedure was necessary we sampled the deviations between the target factors and the
actual factors for the fully connected and sign-unconstrained network trained with RLS, i.e.

NS (t) = WS(t) — Yian (1), (Equation 26)

for some length of time T (Figures 5D and 5E). We shuffled the temporal and spatial indices of n-5(t), which we call n*"ff(t), and
used these shuffled errors to train the second network with constrained weights, as we did above, but instead according to the least-
squares problem

JoS () =U (Viarg (1) + (1)). (Equation 27)

fac

Here, s(t) is the spiking network activity when y,4(t) and n°"ff(t) are applied as external input via u.

Although the above procedure was effective at learning ch with the desired sparsity and sign constraints, it was not able to ensure

that the sparsity patterns of JS

e and Jo matched. BLS assigns roughly half of the synaptic connections to zero, because it would
prefer to make those connections negative (or positive) but cannot. We cannot pre-identify which connections this will apply to
(and thereby apply the same sparsity pattern to Jy). Instead, we must set the actual sparsity requirement of BLS to half the desired
sparsity, and cannot achieve control over which synapses will actually be non-zero. However, we stress that, as we have shown, only
ch provides the critical substrate for the factors (no new factors arise due to Jy), implying that this mismatch is not likely to impact our
results.

ch cannot be factorized into w and u as was the case for Ji,c. Thus, this process replaces the low-rank matrix Jiac*® with a full-rank
matrix chac (since it is now a sparse and sign-constrained matrix). Because of this, w (which serves, in this case, purely to read out the
network activity) must be learned separately from Jf(;o to extract the factors y(t) themselves (not the synaptic inputs that arise from

them). This can readily be done with RLS or BLS after learning ch.

Task details

Cycling task

We included a brief input pulse at the beginning of each period to initialize a trial and to compensate for phase drift than can accu-
mulate when learning periodic tasks; results on this task are qualitatively similar if the pulse was not included. mi, = 1. fi,(t) was of
amplitude 2.0 and duration 50 ms. V was calculated to capture 99% of the variance of x(t), yielding 12 factors (P = 12). 800 model
spiking neurons were used (N = 800). The spiking network gain was g = 4.

Sparsely connected, Dale’s Law cycling task

fin(t), N, P and g defined as for the fully connected cycling network. The elements of Jo were drawn such that 50% of the population
was exclusively excitatory or inhibitory (pg = 0.5) and such that each neuron was only connected to 40% of the population
(psparse = 0~4)-

Reaching task

Atwo-dimensional input indicated the target direction and the termination of a step-input indicated the ‘go cue’. The go cue occurred
approximately 150 ms before reach onset and approximately 50 ms before the onset of changes in muscle activity (EMG). The di-
rection-specifying input was present for the duration of the trial. The amplitude of each component of the direction-specifying input
was }cos(f) and Jsin(d), where 6 specifies reach direction. These inputs were applied both to the spiking network and to the rate
model used to identify the target factors.

Both networks — spiking and rate — had to produce empirical patterns of muscle activity. The rate model was trained to generate
those output targets in order to identify target factors that could be used for spiking-network training. Assuming the rate network
successfully generated the output targets, it should supply target factors that will also allow the spiking network to do so. To produce
appropriate output targets for rate-network training, muscle activity was temporally filtered and windowed such that any (already
minimal) changes in activity before the go cue were zero. Small variance modes (accounting for less than 1% of the total variance)
of each muscle’s EMG were removed and each muscle’s EMG was normalized across all movement conditions so that its maximum
amplitude was 2.0. We used pre-processing to create idealized targets because we did not wish the network to attempt to fit small
idiosyncratic aspects of the empirical recordings. Details regarding the recording of EMG data can be found in Elsayed et al.”

During rate-network training, we included an additional target output with a constant value of -0.5 for all times. This aided rate-
network training because it helped suppress chaotic fluctuations due to strong internal recurrence. When in a highly chaotic regime,
rate models become less sensitive to inputs and therefore poorly reflect those inputs and input-derived signals necessary for suc-
cessful training. This additional input shifted the network away from a chaotic regime, while maintaining strong internal recurrence, a
regime better for learning. This output was not necessary when training the spiking network and was not used for that network. To
mimic standard paradigms in experimental neuroscience, the time between trials and the sequence of trial conditions were chosen
randomly when training both networks. The inter-trial interval duration was sampled from an exponential distribution with a mean of
two seconds to which a minimum interval of 0.4 seconds was added.

e9 Neuron 771, 631-649.e1-e10, March 1, 2023

Neuron ¢? CellPress

The rate model was trained with our modified FORCE procedure, as described above. V was calculated to capture 99% of the
variance of x(t), yielding 37 factors (P = 37). 1200 spiking neurons were used (N = 1200) and 800 rate units were used (N =
800). The spiking network gain was g = 3 and the rate network recurrent gainwas g = 1.4.

Contextual integration task

We simulated each of the two ‘sensory’ inputs to both the firing rate network and the spiking network as a constant plus zero-mean
white noise. The mean of each sensory input for each trial was selected randomly from a uniform distribution from -0.1 to 0.1.
Gaussian noise with std = 0.4 in each time step of At = 1 ms was added to the mean input so that the behavior of the discrete-
time network roughly matched experimental subjects. Two additional ‘context’ inputs identified which of the two sensory inputs
should be integrated (the ‘cued’ input) on the current trial. For example, when the first context input had a value of one and the second
context input had a value of zero, the first sensory input was cued and the second sensory input should be ignored (‘uncued’). The
context input was present for the duration of a trial. In total, the network received four external inputs (min, = 4).

The rate model was trained with backpropagation through time, as described above. Performance of the spiking was judged by
comparing the sign of the output at the end of the trial to the sign of the mean value of the cued input, with matching signs indicating a
correct response. We varied the trial difficulty by changing the absolute magnitude of the mean value of each input, holding the noise
constant. V was calculated to capture 95% of the variance of x(t), yielding 9 factors (P = 9). 800 spiking neurons were used
(N = 800) and 100 rate units were used (N = 100). The spiking network gain was g = 3.

Two-task network

To illustrate the potential of our approach to train networks on multiple tasks, and to provide insight into how factors from different
tasks could be arranged in state space, we trained a network of 1200 LIF neurons to perform the cycling task of Figure 2 and the
reaching task of Figure 6. The cycling factors were from data, as before, and the reaching factors were from a rate network, as before.
All network parameters are identical to the reaching network of Figure 6, except g (the scaling of the learned recurrent feedback); g =6
so that the learned recurrent inputs in the spiking network are slightly stronger than in prior networks.

On each trial, the network had an equal probability of performing either task. Which task was to be performed was indicated by
which inputs were active. For the cycling task, a second ‘stop’ pulse was included so the network would stop cycling before the start
of the next trial (not necessary in the original task). Inputs for the reaching task were as in Figure 6: a two-dimensional direction signal
and a ‘go’ cue.

Only a single EMG output (the activity of the posterior deltoid) was used as an output target for the trained spiking network (i.e. after
the factors were learned by the spiking network), because this was the only common EMG recording across both tasks. All EMGs
were used in the initial rate model training for the reaching task (as in Figure 6) to derive the reaching-task factors, and the cycling
task factors did not require knowledge of the EMGs because they were directly available.

12 cycling factors and 37 reaching factors were used to train the network. To illustrate the potential to design networks that can
perform different tasks using factors that reside in different areas in the neural state space, the network was designed such that the
factors for each task were roughly orthogonal to each other. To do this, we enforced that the cycling factors were zero during reaching
tasks and the reaching factors were zero during the cycling task. To quantify this, we computed the angle between the subspace
defined by the reaching factor projection of the neural activity (the first 37 columns of w) and the subspace defined by the cycling
factor projection (the last 12 columns of w) using the MATLAB function subspace, and found that it was 85 degrees, i.e., roughly
orthogonal.

Neuron 7111, 631-649.e1-e10, March 1, 2023 e10

	The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spik ...
	Introduction
	Results
	Constructing factor-based spiking models
	Dynamics at the level of the factors
	Reliable factors and outputs despite spiking variability
	Reliable aspects of neural activity reflect the factors
	Reliable and variable synaptic-input components
	A conceptually grounded firing rate
	Extending to more realistic network models
	Building spiking models with model-derived factors
	Reaching task
	Contextual integration task
	Two-task network

	Discussion
	Mechanistic underpinnings of commonly used concepts
	Different approaches to constructing spiking networks

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource Availability
	Lead contact
	Materials availability
	Data and code availability

	Method Details
	Spiking network model
	Learning w by RLS
	Connections that are not learned
	Setting the average spiking rate

	Balancing task performance and spiking irregularity
	Dividing the synaptic input into factor-based and non-factor-based components
	Deriving target factors
	Cycling task factors
	Standard FORCE learning in rate models
	Modified FORCE learning & factors from the rate model
	Backpropagation trained rate network & its factors
	Defining u and uin when using rate-model derived factors

	Quantifying performance, factor-based input variability, and spiking irregularity in trained spiking models
	Computing the flow field of the factors
	Computing rnF(t)
	LFADS analysis
	Tangling analysis
	Learning sparsely connected and Dale’s Law obeying networks
	Task details
	Cycling task
	Sparsely connected, Dale’s Law cycling task
	Reaching task
	Contextual integration task
	Two-task network

