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Abstract— In this paper, we define a notion of controllability
that is suitable for digital systems, i.e., with sampling, quanti-
zation, and operating with a finite data-rate. In particular, we
study that notion for linear time-varying systems by proving a
necessary condition and a sufficient condition for such systems
to be controllable with quantized controls and finite data-rate.

I. INTRODUCTION

Digital controllers for continuous-time systems control are
ubiquitous. Hence, it is natural to ask what constraints the
connection between the digital and analog worlds imposes on
capabilities of such controllers. For example, there are well-
known constraints imposed on the controllability of periodic
sampling of linear time-invariant (LTI) systems [1]. However,
sampling is not the only characteristic of digital control that
imposes constraints on the controller.

Another aspect of digital controllers is that they have a
finite number of output and input values. Furthermore, these
controllers can only receive and transmit information with a
finite data-rate. This latter fact is a consequence of a digital
clock and the circuit timing of the controller components [2].
These facts imply that, in digital control, we need to work
not only with sampled data, but also with quantized controls
and with a finite data-rate.

There exists an extensive literature on quantized control
[3], [4], [5], [6]. Many of these works concern the control
over communication channels with minimal data-rates [6],
stabilization [4], [5], or containability [3]. However, control-
lability did not play a central role in those works. One of
the goals of this paper is to propose a suitable notion of
controllability for systems with quantized controls and finite
data-rate. It is also worth mentioning that the literature on
conditions for stabilization with quantized control of linear
time-invariant systems is vast [5], [4], [7]. Also, there is
some literature on linear time-varying (LTV) systems, mainly
for switched linear systems [8], [9], [10]. Nonetheless, most
of the results found in the literature only provide sufficient
conditions for stabilizability of switched linear systems but
not for general LTV systems. Furthermore, even for switched
systems, necessary conditions for stabilization of linear time-
varying systems with quantized controls are missing in the
literature. In view of this, another goal of this paper is to
present a necessary condition and a sufficient condition for
controllability with quantized controls and finite data-rate for
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LTV systems. In this way, we hope to reduce the previously
mentioned gap in the literature.

To address our goals, we borrow concepts from the paper
[7]. In that article, the author defined a notion of stabilization
with finite data-rate, which we strengthen to define what we
mean by controllability for quantized LTV systems. We also
note that [7] addressed the stabilization problem for LTI and
autonomous nonlinear systems but not time-varying systems.

The structure of the paper is as follows: first, in section I,
we introduce the motivation and notations. Next, in section
II, we describe the problem and needed concepts. Further, we
introduce the concept of controllability with finite data-rate
and discuss why this concept is natural. Then, in section
III, we state some necessary results, recall the concept
of complete controllability, and define persistent complete
controllability. After that, in subsection III-A, we prove that
persistent complete controllability and another condition, the
exponential energy-growth condition, are sufficient for an
LTV system to be controllable in the sense we defined.
Furthermore, in subsection III-B, we prove that complete
controllability is a necessary condition for an LTV system
to be controllable with finite data-rate. Finally, in section
IV, we conclude the paper and present some future research
directions.
Notations: We denote by Z>0 (Z≥0) the set of the positive
(nonnegative) integers. We denote by R (R>a) the set of
real numbers (larger than a ∈ R). Given n ∈ Z>0, we
denote [n] := {1, . . . , n}. Given a set S, we denote by #S
its cardinality. Let Md be the set of d× d real matrices. We
denote the transpose of an element A ∈ Md by A′. For every
x = (x1, · · · , xd) ∈ Rd, we denote by |x| :=

(∑d
i=1 x

2
i

)1/2
the Euclidean norm. Also, if A is a d × d real matrix we
denote by ∥A∥ := max{|Ax| : |x| = 1, x ∈ Rd} the
induced norm. For a matrix A ∈ Md, we denote by N (A)
its null space. We denote by L∞

loc([t0,∞),Rm) the set of all
integrable locally essentially bounded functions from [t0,∞)
to Rm where t0 ∈ R≥0 and m ∈ Z>0, i.e., the set of
integrable functions u(·) such that for every compact set
L ⊂ [t0,∞), we have that u(L) ⊂ Rm is bounded. Also,
we denote by L2([a, b],Rm) the set of square-integrable
functions on the interval [a, b] ⊂ R with image on Rm. Let
u : A → B and let C ⊂ A, then we denote by u|C : C → B
the restriction of the function u to the subset C of the domain
A. Finally, we denote by B(x, r) ⊂ Rd the open ball of
radius r ∈ R>0 and center x ∈ Rd.
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II. PRELIMINARIES

In this section, we motivate the study of controllability
of linear time-varying systems with quantized controls and
finite data-rate. To do that, we first provide some necessary
definitions. Next, we give an example that shows that the
usual notion of controllability for linear time-varying systems
is not enough to ensure controllability when we consider
quantization and finite data-rate. Then, we provide a defini-
tion of controllability that makes sense when we consider
the finite data-rate case. Finally, we motivate the study of
our controllability notion through an example.

Our primary goal is to study the controllability with
quantized controls and finite data-rate of systems described
by equation:

ẋ(t) = A(t)x(t) +B(t)u(t) (1)

where the initial state is given by x(t0) = x0 ∈ K ⊂ Rd with
K compact with nonempty interior, the initial time is given
by t0 ∈ R≥0, time is such that t ∈ R≥t0 , A(t) is a d×d real
matrix, B(t) is a d×m real matrix, and u(t) ∈ Rm. Also, we
assume that the functions A(·) and B(·) are bounded1 and
piecewise-continuous on R≥t0 . Further, we define by Φ(t, τ)
for t ∈ R and τ ∈ R the state-transition matrix associated
with the unforced response of system (1). Furthermore, we
assume that u(·) ∈ L∞

loc([t0,∞),Rm).
Now, we must define what we mean by controllability with

finite data-rate. To do that, we need the following Definition
2.1, which is an adaptation from the definitions given in [7].
Also, we name some sets and properties that were not named
in [7] to improve readability in later discussions.

Definition 2.1: We say that system (1) satisfies the expo-
nential decay condition with rate µ ∈ R>0, with M ∈ R>0,
and ϵ ∈ R>0 if for each x0 ∈ K ⊂ Rd there exists
u(·) ∈ L∞

loc([t0,∞),Rm) such that

|x(t)| ≤
(
M |x0|+ ϵ

)
e−µ(t−t0) (2)

for all t ∈ R≥t0 . For given µ ∈ R>0, M ∈ R>0,
ϵ ∈ R>0, and K ⊂ Rd as above, we call the set
R(ϵ,M,K, µ) ⊂ L∞

loc([t0,∞),Rm) a stabilizing control
set of system (1) if for every x0 ∈ K, there exists a
control function u(·) ∈ R(ϵ,M,K, µ) such that (2) holds.
Furthermore, we denote by RT (ϵ,M,K, µ) := {u|[t0,T ](·) ∈
L∞

loc([t0, T ],Rm) : u(·) ∈ R(ϵ,M,K, µ)} a set of
restrictions of stabilizing controls, where T > t0 is arbitrary.
Moreover, we define the data-rate associated with system (1)
in the following manner. First, given a stabilizing control set
R(ϵ,M,K, µ), we define the quantity2b(R(ϵ,M,K, µ)) :=
lim supT→∞

1
T log(#RT (ϵ,M,K, µ)). Next, we define the

data-rate as3 b(M,µ) := limϵ→0 inf{b(R(ϵ,M,K, µ)) :
R(ϵ,M,K, µ) is a stabilizing control set of (1)}. Finally,

1That means that A(R≥t0 ) and B(R≥t0 ) are bounded subsets of Rd

and Rm, respectively.
2The corresponding quantity in [7] uses the limit inferior instead of limit

superior. Because of that, if the quantity given in [7] is also infinite, ours
is also infinite.

3Note that b(M,µ) also depends on the set of initial conditions K. We
drop that dependence to make the notation simpler.

we say that system (1) can be stabilized with finite data-rate
with M ∈ R≥0 and µ ∈ R≥0 if b(M,µ) < ∞.

Note that the limit ϵ → 0 could be substituted by4 supϵ>0.
This latter fact implies that if we can stabilize system (1) with
finite data-rate, then we can achieve (2) with an arbitrary
ϵ ∈ R>0. The reader might wonder if we can remove the ϵ
term from inside equation (2) and still get a reasonable notion
of stabilizability with finite data-rate. The answer is negative,
and is proved in Proposition 2.2 of [7] where the author
showed that LTI systems with poles with a nonnegative real
part cannot satisfy (2) with ϵ = 0 and have b(M,µ) < ∞
for any choices of M and µ.

To continue our discussion, we recall the usual definition
of controllability for LTV systems. See, e.g., Chapter 9 of
[11].

Definition 2.2: We say that system (1) is controllable in
the usual sense on [t0, T ], where T ≥ t0, if for every
initial condition x(t0) = x0 ∈ Rd there exists a function
u : [t0, T ] → Rm such that x(T ) = 0.

Now, we are ready to define controllability with finite data-
rate.

Definition 2.3: We say that system (1) is controllable with
finite data-rate if for every µ ∈ R>0, there exists M ∈
R≥0 such that system (1) is stabilizable with finite data-rate
b(M,µ) < ∞.

It is important to remark that the previous definition is new
and it differs from the definition of stabilization with finite
data-rate, originally given in [7], in the sense that µ ∈ R>0 is
arbitrary. Now, the reader might wonder why we need a new
definition of controllability when quantization is present. To
answer that, consider the following example.

Example 1: Let ẋ(t) = u(t) where t ∈ R, x0 ∈ K ⊂ R
with K compact with a nonempty interior, and u(t) ∈ Ct

with Ct ⊂ R being a set of finite cardinality that may vary
with t. We can easily solve this equation to get that x(T ) =
x0 +

∫ T

t0
u(τ)dτ . Note that, if u(t) ∈ Rm, this system is

controllable in the usual sense on the interval [t0, T ]. If we
impose that the data-rate is finite, we have that the set of
possible controls u[t0,T ](·) in any interval of time t ∈ [t0, T ]

has a finite cardinality. Therefore, the integral
∫ T

t0
u(τ)dτ

attains at most finitely many values, but x0 belongs to the
set K, which has infinitely many points. Hence, it is not
possible to make x(T ) = 0 for an arbitrary initial condition
in K. However, we prove in section III that this system is
controllable with finite data-rate.

The previous example showed that we cannot have x(T ) =
0 for an arbitrary initial condition in K, which proves that
the usual controllability notion is unfit for the case where
we have quantized controls. Thus, we relax that condition
by saying that the norm of the state must converge to zero
with an arbitrary exponential rate of decay. The idea behind
this definition came from the fact that we can solve the pole
placement problem for a linear time-invariant system if, and
only if, it is controllable. Moreover, we can only make the
norm of the state of an LTI system decay arbitrarily fast to

4See [7] for a discussion.
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zero if the system is controllable. Therefore, since definition
2.3 captures that property, we believe that it is a natural
candidate for extending the concept of controllability to LTV
systems with finite data-rate.

Before we continue our discussion, we recall the definition
of controllability Gramian.

Definition 2.4: (Chapter 6 of [12]) Consider the sys-
tem given by equation (1). We define the controllabil-
ity Gramian from t0 to t of system (1) as W (t, t0) :=∫ t

t0
Φ(t, τ)B(τ)B′(τ)Φ′(t, τ)dτ.

At this point, we note that the system of Example 1 is
controllable in the usual sense and we will see in section III-
A that it is controllable with finite data-rate. Indeed, Theorem
3.1 ensures that this is true for LTI systems. Hence, a natural
question is if the usual controllability condition for LTV sys-
tems based on the invertibility of the controllability Gramian
is also enough to ensure that system (1) is controllable with
finite data-rate. The next Example 2 shows that that is not
the case.

Example 2: Consider system (1) with A(t) = Id and
B(t) = (1, 0) for 0 < t < 1, and A(t) = Id and
B(t) = (0, 1) for t ≥ 1. Also, let the initial time be t0 = 0. It
is easy to see that W (2, 0) is invertible, which implies that
system (1) is controllable in the usual sense. Nonetheless,
we show in section III that it is not controllable with finite
data-rate.

This example motivates us to provide necessary and suffi-
cient conditions for system (1) to be controllable with finite
data-rate. We do that in the next section.

III. CONTROLLABILITY WITH FINITE DATA-RATE

In this section, we present the main contribution of the
paper. We give and prove a sufficient and a necessary
condition for LTV systems to be controllable with finite data-
rate. But first, we introduce needed definitions and state some
technical lemmas.

The following definition 3.1 describes a controllability
condition that is related to the concept of controllability of
LTV systems with finite data-rate defined in the previous
section. That connection will become clear in the statements
of Theorems 3.1 and 3.2.

Definition 3.1: We say that system (1) is completely con-
trollable if there exists an increasing sequence (sn)n∈Z≥0

with s0 = t0 and sn → ∞ such that W (sn+1, sn) is
invertible for every n ∈ Z≥0. If the sequence (sn)n∈Z≥0

also
satisfies5 lim supn→∞

sn+1

sn
< ∞, then we say that system

(1) is persistently completely controllable.
Remark 3.1: A few remarks are in order. First, the no-

tion of complete controllability was first stated in [13] in
a different manner than in definition 3.1; we provide a
proof that both statements are equivalent in the technical
report [14]. Note, however, that the Definition of persistent
complete controllability with finite data-rate is new. Second,
we notice that there exist necessary conditions and sufficient

5This is equivalent to the statement: there exists M ∈ R>0 such that
sn+1

sn
≤ M for all n ∈ Z≥0.

conditions for the complete controllability of LTV systems.
For example, [15] gives several conditions6 for complete
controllability in the differentiable case7. Third, note that
sn+1 − sn does not need to be bounded in neither statement
from Definition 3.1.

Now, we state some technical results. One can find the
proofs of all of the lemmas in this section in the technical
report [14]. First, we need the following technical Lemma
3.1 which will be useful in the proof of Theorem 3.1.

Lemma 3.1: Let system (1) be persistently completely
controllable. Then, there exists a sequence (sn)n∈Z≥0

such
that W (sn+1, sn) is invertible for every n ∈ Z≥0, that
lim supn→∞

sn+1

sn
< ∞, and that lim supn→∞

n
sn

< ∞.
Next, let λt := sup{ 1

s log(∥Φ(s, t0)∥) : t ≥ s ≥ t0}, ξ :=
sup{∥A(t)∥ : t ≥ t0}, and λ̄ := lim supt→∞ λt. Further,
consider Lemma 3.2, which collects some known facts about
the state transition matrix. See, e.g., Chapter 4 of [11].

Lemma 3.2: Consider equation (1) and let ξ < ∞. Then,
e−ξ(t−t0) ≤ |Φ(t, t0)v| ≤ eξ(t−t0) for all t ≥ t0 and all v ∈
Rd with |v| = 1. In particular, it is also true that ∥Φ(t, t0)∥ ≤
eξ(t−t0).

Note that because ξ < ∞, we have that λ̄ and λt are
finite by Lemma 3.2. The next definition gives a bound for
∥W−1(sn, sn+1)∥ as n goes to infinity, as fact that will be
useful in the proof of Theorem 3.1.

Definition 3.2: Let (sn)n∈Z≥0
be an increasing sequence

such that lim supn→∞ sn = ∞. Then, we say that system
(1) satisfies the exponential energy-growth condition if there
exists θ ∈ R≥0 and N ∈ R>0 such that ∥W−1(sn+1, sn)∥ ≤
Neθsn+1 .

The intuition behind this definition is related to the mini-
mum energy control on intervals of the form [sn, sn+1]. Note
that the minimum-energy control, in the L2([sn, sn+1],Rm)
sense, that drives a state x(sn) at time sn to the origin at
time sn+1 is given by x′(sn)W

−1(sn, sn+1)x(sn). See, e.g.,
Theorem 1 in Chapter 22 from [16]. Thus, only if a system
satisfies the exponential energy-growth condition, the energy
needed to drive a given state to zero cannot grow faster than
an exponential as n grows to infinity. Now, we are ready to
prove necessary and sufficient conditions for system (1) to
be controllable with finite data-rate.

A. Sufficient Condition

In this subsection, we prove Theorem 3.1, which gives a
sufficient condition for system (1) to be controllable with
finite data-rate.

Theorem 3.1: System (1) is controllable with finite data-
rate if it is persistently completely controllable and satisfies
the exponential energy-growth condition.

Remark 3.2: Note that, for a controllable LTI system, if
we choose sn+1 − sn = T , the inverse of the Gramian
exists and is constant. Thus, the exponential energy-growth
condition is satisfied. Using the same argument, we see
that such a system is persistently completely controllable.

6Note that complete controllability is different from complete controlla-
bility on an interval.

7When matrices A(t) and B(t) are differentiable functions of time.
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Thus, Theorem 3.1 shows that controllable LTI systems are
controllable with finite data-rate.

Proof: Let {e1, · · · , ed} ⊂ Rd be the canonical basis
of Rd. Pick an arbitrary ϵ̃ ∈ R>0 and an arbitrary µ ∈
R>0. Also, let (sn)n∈Z≥0

be a sequence that satisfies the
conditions given in Definition 3.1 for system (1) to be
persistently completely controllable. By Lemma 3.1, without
loss of generality, we assume that lim supn→∞

n
sn

= Q <
∞. Further, denote by α := 4ξ+θ+µ for simplicity. Finally,
let C = eα(s1−t0), ϵ =

√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ ϵ̃, and

M =
√
dCN sup{∥B(t)∥2:t≥t0}

ξ .
Our proof can be divided into four parts: first, we construct
a set of controls U (ϵ,M,K, µ), where each control cor-
responds to an initial condition in K. Second, we prove
by induction that for every initial condition x ∈ K, there
exists a control in U (ϵ,M,K, µ) such that |x(sn)| ≤
C
(
|x(t0)| + ϵ̃)e−α(sn+1−t0) for all n ∈ Z≥0. Third, we

prove for any n ∈ Z≥0 and any t ∈ [sn, sn+1) we have a
bound |x(t)| ≤

(
M |x(t0)|+ ϵ

)
e−µ(t−t0), i.e., we show that

U (ϵ,M,K, µ) is a stabilizing control set. Finally, we show
that the data-rate b(M,µ) is finite for every possible µ ∈ R>0

and our choice of M ∈ R>0 by proving an upper bound for
b(U (ϵ,M,K, µ)) = lim supT→∞

1
T log(#UT (ϵ,M,K, µ))

that is constant for every ϵ ∈ R>0.
Part 1: Consider the following recursive definitions:

For n ≥ 0 and for each x ∈ K, we define.
- For n = 0, define the constant function κ0

i (x) :=
min{⟨x, ei⟩ : x ∈ K} and κ0

i (x) := max{⟨x, ei⟩ : x ∈ K}
for every i ∈ [d]. For n ≥ 1, define the piecewise-constant
functions κn

i (x) := κn−1
i (x) + Γn−1

i (qn−1
i (x) − 1) and

κn
i (x) := κn−1

i (x) + Γn−1
i qn−1

i (x) for every i ∈ [d];
- Define the constant Γn

i := ϵ̃
de

−(λsn+1+α)sn+1 and the
positive integer Cn

i :=
{
1, . . . ,

⌈
κn
i (x)−κn

i (x)
Γn
i

⌉}
for each i ∈{

1, . . . , d
}

and each n ∈ Z>0. Note that, by the defining
equations of κn

i (x) and κn
i (x), κ

n
i (x)−κn

i (x) = Γn−1
i . Thus,

κn
i (x)−κn

i (x)
Γn
i

= e(λ
sn+1+α)sn+1−(λsn+α)sn for every i ∈ [d],

every x ∈ K, and every n ∈ Z≥0.
- We define the quantized value of the i−th projection

of the initial state into the vector space span{ei} at time
sn by qni (x) := {l ∈ Cn

i : κn
i (x) + Γn

i (l − 1) ≤
⟨x, ei⟩ < κn

i (x) + Γn
i l} for each i ∈ [d]; - We define the

quantized value of the i−th projection of the initial state
into the vector space span{ei} at time sn by β̂n

i (x) :=
κn
i (x) + Γn

i (q
n
i (x) − 1/2) for each i ∈ [d]; - We define

the i-th projection of the initial state into the vector space
span{ei} at time sn by βn

i (x) := ⟨x, ei⟩; - With the notation∑b
i=1 ci = 0 for any b ∈ Z such that b < 1. Then, we

define the quantity8 x̂(sn) :=
∑d

i=1 β̂
n
i (x)Φ(sn, s0)ei +∑n−1

k=0

∫ sk+1

sk
Φ(sn, s)B(s)u(q0(x), · · · , qk(x), s)ds ;

- We define the control law in the interval [sn, sn+1) corre-
sponding to the initial state x by u(q0(x), · · · , qn(x), t) :=
−B′(t)Φ′(sn+1, t)W

−1(sn+1, sn)Φ(sn+1, sn)x̂(sn) for
t ∈ [sn, sn+1) where qn(x) := (qn1 (x), · · · , qnd (x)). Further
define v(x, t) := u(q0(x), · · · , qn−1(x), t), where n is

8This can be seen as an state estimate at time sn.

the smallest integer such that t < sn. Finally, define by
U (ϵ,M,K, µ) the set of all such v(x, ·). Also, denote
by UT (ϵ,M,K, µ) the set of restrictions of controls
in U (ϵ,M,K, µ) from time t0 to T . More explicitly
UT (ϵ,M,K, µ) := {v|[t0,T )(x, ·) ∈ L∞

loc([t0,∞),Rm) :
v(x, ·) ∈ U (ϵ,M,K, µ)}.
Part 2: Step 0: Trivially, we have that |x(t0)| ≤ |x(t0)|+ ϵ̃ =
C(|x(t0)|+ ϵ̃)e−α(s1−t0) and we proved the base case, i.e.,
|x(sn)| ≤ C(|x(t0)|+ ϵ̃)e−α(sn+1−t0) for C ∈ R>1 and for
n = 0.
Step n + 1: Recall that for each x ∈ K and
for t ∈ [sn, sn+1) the control law we defined in
the first part is given by u(q0(x), · · · , qn(x), t) =
−B′(t)Φ′(sn+1, t)W

−1(sn+1, sn)Φ(sn+1, sn)x̂(sn) where
x̂(sn) =

∑d
i=1 β̂

sn+1

i (x)Φ(sn, s0)ei +∑n−1
k=0

∫ sk+1

sk
Φ(sn, s)B(s)u(q0(x), · · · , qk−1(x), s)ds.

Now, writing down the variation of parameters formula
at time sn+1 we get that x(sn+1) = Φ(sn+1, sn)x(sn) −∫ sn+1

sn
Φ(sn+1, τ)B(τ)B′(τ)Φ′(sn+1, τ)dτ ×

× W−1(sn+1, sn)Φ(sn+1, sn)x̂(sn) from which we
conclude that x(sn+1) = Φ(sn+1, sn)

(
x(sn) − x̂(sn)

)
=∑d

i=1(β
n
i (x) − β̂n

i (x))Φ(sn+1, s0)ei. Then, by
taking the norm on both sides and applying the
triangle inequality, we conclude that |x(sn+1)| ≤∑d

i=1 |βn
i (x) − β̂n

i (x)||Φ(sn+1, s0)ei|. Now, by the
definition of λt,9 we get that |Φ(sn+1, s0)ei| ≤ eλ

sn+1sn+1

for all i ∈ [d]. Further, by recalling the expression of Γn
i

and by the definitions of β̂n
i , βn

i and qni (x), we conclude
that |βn

i (x) − β̂n
i (x)| ≤ ϵ̃

de
−(λsn+1+α)sn+1 . Hence, we get

that |x(sn+1)| ≤
∑d

i=1
ϵ̃
de

−αsn+1 = ϵ̃e−αsn+1 . Therefore,
|x(sn+1)| ≤ ϵ̃e−αsn+1 ≤ C

(
|x(t0)| + ϵ̃

)
e−α(sn+1−t0) and

we proved the case for step n+ 1.
Part 3: Now, pick any n ∈ Z≥0 and any

t ∈ [sn, sn+1). It can be shown10 that we can write
|x(t)| ≤

√
dN sup{∥B(t)∥2:t≥t0}

2ξ e(4ξ+θ)(sn+1−t0)
(
2|x(sn)| +

ϵ̃e−α(sn+1−t0)
)
. Thus, by the conclusion

of the proof of part 2, we get |x(t)| ≤√
dN sup{∥B(t)∥2:t≥t0}

2ξ e(4ξ+θ)(sn+1−t0)
(
2C(|x(t0)| + ϵ̃) +

ϵ̃
)
e−α(sn+1−t0) ≤

√
dN sup{∥B(t)∥2:t≥t0}

2ξ

(
2C|x(t0)| +

(2C + 1)ϵ̃
)
e−µ(sn+1−t0). Since α = (4ξ + θ + µ).

Finally, recall that ϵ =
√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ ϵ̃

and M =
√
dCN sup{∥B(t)∥2:t≥t0}

ξ . Hence, we
conclude that |x(t)| ≤ (M |x(t0)| + ϵ)e−µ(sn+1−t0) ≤
(M |x(t0)| + ϵ)e−µ(t−t0) for all t ≥ t0. Therefore, we
proved that UT (ϵ,M,K, µ) is a stabilizing control set,
concluding the proof of part 3.

Part 4: Note that there is a bijection between the
elements of

∏n
j=0

∏d
i=1 C

j
i and those of UT (ϵ,M,K, µ)

by the definition of v(x, t). So, #UT (ϵ,M,K, µ) =∏n
j=0

∏d
i=1 #Cj

i . Also, by the same equations, we have
that #UT (ϵ,M,K, µ) is constant for T ∈ [sn, sn+1)
for each n ∈ Z≥0. Thus, 1

T log
(
#UT (ϵ,M,K, µ)

)
≤

9Recall that λsn+1 = sup{ 1
t
log(∥Φ(t, t0)∥) : sn+1 ≥ t ≥ t0}.

10See the complete derivation in the technical report [14].
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1
sn

log
(
#UT (ϵ,M,K, µ)

)
for T ∈ [sn, sn+1). Also,

note that #Cn
i =

⌈
e(λ

sn+1+α)sn+1−(λsn+α)sn
⌉

for every
i ∈ [d] and n ∈ Z≥1. Therefore, log

(∏n
j=1

∏d
i=1 C

j
i

)
≤

d
(
(λsn+1 +α)sn+1−(λs1 +α)s1+n

)
, where the inequality

comes from the facts that log(⌈ey⌉) ≤ y + 1 for y ∈ R≥1

and from the property of telescoping series. Combining our
previous results, we arrive at 1

T log(#UT (ϵ,M,K, µ)) ≤
d
sn

(
(λsn+1 + α)sn+1 − (λs1 + α)s1 + n

)
+

∑d
i=1 log(#C0

i )
sn

.

Taking the limit superior on the left hand side with T
going to infinity implies that we are taking the limit
superior on the right hand sided with n going to infinity
because n = inf{l ∈ Z≥0 : sl ≤ T and sl+1 > T}.
Hence, we get lim supT→∞

1
T log(#UT (ϵ,M,K, µ)) ≤

lim supn→∞
d(λsn+1+α)sn+1

sn
+ n

sn
≤ d(λ̄ + α)R + Q. The

first inequality follows from the fact that
∑d

i=1 log
(
#C0

i

)
and (λs1 + α)s1 are finite. The last inequality follows
because lim supn→∞

n
sn

= Q and because given two
sequences of positive numbers (an)n∈Z≥0

and (bn)Z≥0
, then

lim supn→∞ anbn ≤ lim supn→∞ an lim supn→∞ bn
and we have that lim supn→∞ λsn+1 = λ̄ and
lim supn→∞

sn+1

sn
= R by complete controllability

with finite data-rate. Since our bound does not depend
on ϵ, we have that the previous inequality gives an
upper bound for b(M,µ). In this way, we proved that
b(M,µ) < limϵ→0 b(U (ϵ,M,K, µ)) < d(λ̄+α)R+Q < ∞
for every µ ∈ R>0 and our chosen M . Thus, we conclude
the proof of the theorem.

As mentioned in Remark 3.2, controllable LTI systems
are controllable with finite data-rate. Thus, the system from
Example 1 is controllable with finite data-rate as mentioned
earlier. In the next subsection, we finally show why Example
2 cannot by controllable with finite data-rate.

B. Necessary Condition

In this subsection, we show a necessary condition for
system (1) to be controllable with finite data-rate.

Theorem 3.2: System (1) is controllable with finite data-
rate only if it is completely controllable.

Remark 3.3: It is important to notice the gap between
the hypothesis of the necessary condition and the sufficient
condition, i.e., the exponential energy-growth rate and the
persistency of complete controllability. The former condition
is only used in the part 3 of the proof of Theorem 3.1 to
bound the growth of the state between times sn and sn+1

for n ∈ Z≥0. Informally, this condition ensures that the state
does not grow too much on the interval [sn, sn+1). At the
moment, it is not clear if this condition is necessary or if
it is a consequence of our choice of stabilizing control set
U (ϵ,M,K, µ) in the proof of Theorem 3.1. Note, however,
that the exponential energy-growth rate is a reasonable
assumption since requiring the boundedness of the control
energy, a stronger assumption, is normally desirable in prac-
tice. The latter fact, if the sequence (sn)n∈Z≥0

that appears
in Definition 3.1 satisfies lim supn→∞

sn+1

sn
< ∞, appears

in the last part of the proof of Theorem 3.1 to bound the

data-rate. Nonetheless, at the moment, it is not clear if we
can remove it from the statement of Theorem 3.1.

Proof: We prove this theorem by contradiction. Assume
that there exists s ≥ t0 such that for all t ≥ s we have that
the Gramian of system (1) W (t, s) is not invertible11, but
system (1) can be stabilized with finite data-rate for arbitrary
α ∈ R≥0 and arbitrary ϵ ∈ R>0. Thus, there exists w(t) ∈
Rd for every t ≥ t0 such that w(t) ∈ N (W (t, s)) for all
t ≥ s and that |w(t)| = 1 for all t ≥ s.
First, note that w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0 for

all u(·) ∈ L∞
loc([t0,∞),Rm). To see that, recall

that since w(t) ∈ N (W (t, s)) for all t ≥ s,
we have that w′(t)W (t, s)w(t) = 0. That implies
that w′(t)

∫ t

s
Φ(t, τ)B(τ)B′(τ)Φ(t, τ)dτw(t) =∫ t

s
|w′(t)Φ(t, τ)B(τ)|2dτ = 0, which implies that

w′(t)Φ(t, τ)B(τ) = 0 for almost all τ ∈ [s, t]. By its turn,
this implies the claim w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0.

Second, we pick α > ξ and pick some arbitrary ϵ ∈ R>0.
Since the data rate is finite, we know that there exists
a stabilizing control set R(ϵ,M,K, α) such that the
cardinality of a set of restrictions of stabilizing controls
Ns = #Rs(ϵ,M,K, α) is finite. Thus, if we choose Ns +1
distinct initial conditions x(t0) we have that at least two of
them have the same associated control restriction u|[t0,s](t)
for all t ∈ [t0, s]. Now, let x̄ ∈ K be some interior point
to K. Pick an open ball B(x̄, r) that is contained in the
interior of K. Thus, for each i ∈ [d], we can pick Ns + 1
colinear points that lie on a line that is parallel to ei. More
precisely, define yj,i = x̄ + r

(
j−1
Ns+1 − 1

2

)
ei for every

j ∈ [Ns + 1] and every i ∈ [d]. Note that all of such points
belong to B(x̄, r). Denote by uj,i(t) ∈ Rm the control
function from the stabilizing control-set corresponding to
the initial condition yj,i at time t ≥ t0 for each i ∈ [d] and
j ∈ [Ns + 1], and denote by xj,i(t) the corresponding state
trajectory at time t ≥ t0 for each i ∈ [d] and j ∈ [Ns + 1].
Then, we can use the variation of constants formula to get
xj,i(t) = Φ(t, t0)yj,i +

∫ t

t0
Φ(t, τ)B(τ)uj,i(τ)dτ for all

t ≥ t0. Now, by the pigeonhole principle, for each i ∈ [d],
there exists at least two distinct indices j∗i ∈ [Ns + 1] and
k∗i ∈ [Ns+1] such that the restriction of their corresponding
controls (uj,i)[t0,s](t) is the same for t ∈ [t0, s]. Let
zi = yj∗i ,i − yk∗

i ,i
= ei

r(j∗i −k∗
i )

Ns+1 for each i ∈ [d] and notice
that {z1, · · · , zd} form an orthogonal basis12 for Rd. Further
note that |zi| ≥ r

Ns+1 since j∗i −k∗i is a nonzero integer. Also,
let ϕi(t) := xj∗i ,i

(t)−xk∗
i ,i

(t) for every i ∈ [d] and all t ≥ t0.
Therefore, again by the variation of parameters formula, we
get that ϕi(t) = Φ(t, t0)zi for t ∈ [t0, s] and for i ∈ [d] and
ϕi(t) = Φ(t, t0)zi +

∫ t

t0
Φ(t, τ)B(τ)(uj∗i ,i

(τ)− uk∗
i ,i

(τ))dτ
for t ≥ s and for i ∈ [d]. Now, for each i ∈ [d]
multiply ϕi(t) on the left by w′(t) and note that
w′(t)ϕi(t) = w′(t)Φ(t, t0)zi for all t ≥ t0 by the
fact that w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0 for all t ≥ s

and all integrable u(·). Next, for every fixed time t ≥ t0,

11By the remark following Definition 3.1, we know that this implies that
system (1) is not completely controllable.

12We have that zi is parallel to ei for each i ∈ [d].
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define coefficients ai(t) ∈ R for all i ∈ [d] such that∑d
i=1 |ai(t)| = 1 and Φ(t, t0)z(t) ∈ span{w(t)}, where

z(t) :=
∑d

i=1 ai(t)zi. First, note that such coefficients
always exist since {z1, · · · , zd} forms a basis for Rd

and Φ(t, t0) is invertible for every t ≥ t0. Hence,
we can define ai(t) as c⟨Φ−1(t, t0)w(t), zi⟩/|zi|2 for
c = 1

|
∑d

i ⟨Φ−1(t,t0)w(t),zi⟩/|zi|2|
. This follows from the fact

that
∑d

i=1 |ai(t)| = |c||
∑d

i ⟨Φ−1(t, t0)w(t), zi⟩/|zi|2| = 1

and that z(t) = c
∑d

i=1⟨Φ−1(t, t0)w(t),
zi
|zi| ⟩

zi
|zi| =

c
∑d

i=1⟨Φ−1(t, t0)w(t), ei⟩ei = cΦ−1(t, t0)w(t). Further,
note that |z(t)| =

∑d
i=1 |ai(t)||zi| ≥ r

Ns+1 , where
the equality follows from the fact that {z1, . . . , zd} is
an orthogonal basis and the inequality follows since∑d

i=1 |ai(t)| = 1 and the fact that |zi| ≥ r
Ns+1

for each i ∈ [d]. Let ϕ(t) :=
∑d

i=1 ai(t)ϕi(t) for
every t ≥ t0. Thus, for every t ≥ t0 we have
w′(t)ϕ(t) = w′(t)Φ(t, t0)z(t) for every t ≥ t0. Taking
the norm on both sides and using the Cauchy-Schwarz
inequality, we see that |w′(t)ϕ(t)| = |Φ(t, t0)z(t)|
because |w′(t)Φ(t, t0)z(t)| = |Φ(t, t0)z(t)| since
Φ(t, t0)z(t) ∈ span{w(t)} and |w(t)| = 1. Now, recall
that, by definition of controllability with finite data-rate,
for every α ≥ 0 and every initial condition x(t0), we
have that |x(t)| ≤

(
M |x(t0)| + ϵ

)
e−α(t−t0) for some

M ∈ R>0, some ϵ > 0, and all t ≥ t0. In particular,
this must hold for our choice of α > ξ and our arbitrary
choice of ϵ. This implies that |ϕ(t)| = |

∑d
i=1 ai(t)ϕi(t)| ≤∑d

i=1 ai(t)(|xj∗i ,i
(t)| + |xk∗

i ,i
(t)|) ≤ 2

(
MR0 + ϵ

)
e−α(t−t0)

where the first inequality comes from the triangle
inequality. The second inequality follows from the
facts that

∑d
i=1 |ai(t)| = 1, by construction, that

max{|xj∗i ,i
(t)|, |xk∗

i ,i
(t)|} ≤

(
M |x(t0)| + ϵ

)
e−α(t−t0), by

controllability with finite data-rate, and that |x(t0)| ≤ R0.
Now, by the Cauchy-Schwarz inequality, we have that
|Φ(t, t0)z(t)| = |w′(t)ϕ(t)| ≤ |ϕ(t)| since |w(t)| = 1.
Hence, we arrive at 2

(
MR0 + ϵ

)
e−α(t−t0) ≥ |Φ(t, t0)z(t)|.

Finally, note that |Φ(t, t0)z(t)| ≥ r
Ns+1e

−ξ(t−t0). To see
this latter fact note that |Φ(t, t0)v| ≥ e−ξ(t−t0) for all
v ∈ Rd with |v| = 1 by the lower bound in Lemma
3.2. That implies that |Φ(t, t0) z(t)

|z(t)| | ≥ e−ξ(t−t0). Thus,
|Φ(t, t0)z(t)| ≥ e−ξ(t−t0)|z(t)| ≥ r

Ns+1e
−ξ(t−t0), where

the last equality comes from the construction of z(t). Since
this must hold for each t ≥ t0 and we picked α > ξ, we
arrived at a contradiction. Therefore, system (1) must be
completely controllable.

Now, we can see why Example 2 cannot be controllable
with finite data-rate. Note that every increasing sequence
(sn) with limn→∞ sn = ∞ will have an n0 ∈ Z≥0 such
that for all n ≥ n0, we have that sn > 1. So, for all n ≥ n0,
we have that W (sn+1, sn) is not invertible. Thus, this proves
that such a system is not controllable with finite data-rate.

IV. CONCLUSION

In this paper, we discussed the problem of controlling
LTV systems using quantized controls and finite data-rate.

We motivated the study of this concept by showing that the
usual controllability notion is not suitable for systems under
finite data-rate constraints, such as systems that use digital
controllers. Then, we presented a definition for controllability
with finite data-rate for LTV systems that is consistent with
properties of controllable LTV systems when no data-rate
constraints are present. Next, we introduced a controllability
notion, namely persistent complete controllability, which is
related to the concept of controllability with finite data-rate
that we defined. Finally, we presented a necessary condition
and a sufficient condition relating the controllability notion
to controllability with finite data-rate.

In future work, we want to study the concept of controlla-
bility with finite data-rate for switched linear systems. Also,
we will propose a related notion of stabilizability with finite
data-rate which is consistent with the controllability notion
of this paper and with the usual concept used in the literature
of systems without data-rate constraints.
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