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ESTIMATION ENTROPY, LYAPUNOV EXPONENTS, AND
QUANTIZER DESIGN FOR SWITCHED LINEAR SYSTEMS\ast 

GUILHERME S. VICINANSA\dagger AND DANIEL LIBERZON\dagger 

Abstract. In this paper, we study connections between the estimation entropy of a switched
linear system and its Lyapunov exponents. We prove lower and upper bounds for the estimation
entropy in terms of the Lyapunov exponents and show that, under the so-called regularity assumption,
those bounds coincide. To do that, we use a geometric object called Oseledets' filtration of the system.
Further, we show how to use the exponents and the Oseledets' filtration to design a quantization
scheme for state estimation of switched linear systems. Then, we prove that we can make this
algorithm work at an average data-rate arbitrarily close to the upper bound we provided for the
estimation entropy of the given system. Furthermore, we can choose the average data-rate to be
arbitrarily close to the estimation entropy whenever the switched linear system is regular. We show
that, under the regularity assumption, the quantization scheme is completely causal in the sense
that it depends only on information that is available up to the current time instant. We show that
regularity is a natural property of many practical systems, such as Markov jump linear systems, and
give sufficient conditions for it.

Key words. estimation entropy, minimum data-rate, switched systems
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1. Introduction. Nowadays, most dynamic systems found in engineering appli-
cations have distributed components, such as sensors, controllers, and actuators. For
these components to transmit information among one another, we need to use com-
munication channels. Those communication channels, in turn, impose constraints on
the data-rate that can be transmitted. Therefore, it is natural to ask what is the min-
imum data-rate needed for us to satisfy the application requirements, such as being
able to reconstruct the system's state or to stabilize the system.

The answers to the above questions are invariably related to some definition
of entropy. We can understand entropy as the rate at which a system generates
information related to the studied problem. Because of that, many authors have
proposed several entropy definitions for each different task; see, e.g., [8, 12, 17, 18,
21, 23]. In the present paper, we are interested in estimating the state of a switched
linear system with a prescribed exponential decay rate of \alpha \geq 0 for the estimation
error. The entropy concept we use is called estimation entropy, and its description first
appeared in [15] for generic autonomous nonlinear systems. We can, therefore, think
of the estimation entropy as a rate at which the system generates uncertainty about
the state. However, obtaining the value of the estimation entropy is only half of the
story, because it does not tell us how to design the coding-estimator scheme to solve
the original problem. One of the goals of the present paper is to address this issue. We
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show how to construct a coding-estimator scheme that operates with an average data-
rate arbitrarily close to the estimation entropy for switched linear systems. Plus, we
present some of its properties related to its data-rate and robustness. Another goal of
this work is to show a relationship between the estimation entropy of a switched linear
system and its Lyapunov exponents. This result has been proved by the authors in
[29]. However, the present proof is different, and it makes it easier to see an interesting
relationship between the Lyapunov exponents, which are geometric objects called
filtrations (that play a role similar to eigenspaces in the linear time-invariant case),
and the quantizer design.

The research in entropy notions for switched systems has drawn the attention
of several authors in recent years. Thus, a brief literature review might be helpful
to explain the contributions of the present work and its context. The first works to
explicitly present an entropy notion for switched systems, related to the estimation
entropy defined in [15], were [31, 24, 25, 32, 10]. We remark that the authors of [24]
studied switched nonlinear systems with unknown switching signals---but that satisfy
a minimum dwell-time restriction---using a nonstandard modification of the entropy
notion defined in [15]. The same authors extended their previous work on their version
of entropy by considering systems with inputs in [25]. The authors of [32] presented
upper and lower bounds, under some structural assumptions on the modes, for the
topological entropy of switched linear systems, which can be seen as a particular case
of the estimation entropy of [15] when \alpha = 0. The bounds from [32] were improved in
[10]; see also [33]. However, all of these bounds relied on individual modes and their
active rates, and no other features of the switching signal were assumed. The authors
of [10] concluded that no better bounds could be achieved without further knowledge
of the switching signal structure. This issue was addressed in [29], where the authors
presented bounds that were tight for a large class of systems, called regular switched
systems, and those bounds improved because they rely on the knowledge of the entire
switching signal. Furthermore, [29] presented an upper bound for the estimation
entropy of switched linear systems that is related to the Lyapunov exponents. It
is worth mentioning that in [20], the authors obtained the same minimum average
data-rate as in [29], with \alpha = 0, but for the mean square stabilization problem
of scalar Markov jump linear systems. Also, a very similar relationship between
the Lyapunov exponents and the entropy appears in several places in the dynamical
systems literature, often under the name Pesin entropy formula [19, 22, 28], as well as
in the formula for the invariance entropy of partially hyperbolic control systems [26],
and in a lower bound for the estimation entropy of a class of differential dynamics on
compact manifolds [13]. It is important to note that most of those proofs rely on the
differentiability of the flow and on the compactness of the space, which is different
from what is done in [29] and the present work.

More recently, in [4] the authors provided a way of computing the maximum
topological entropy, over all possible switching signals, that a switched linear sys-
tem can have. Also, those authors proved in [3] that the topological entropy of a
linear time-varying system equals the minimum average data-rate for the state ob-
servation with bounded estimation error. Finally, in [5] the authors provide an algo-
rithm that stabilizes a switched linear system with an average data-rate arbitrarily
close to the minimum. An important remark is that, although seemingly different,
the minimum data-rate for stabilization obtained in [5], in terms of the Lyapunov
exponent of exterior products, has the same value as the estimation entropy lower
bound obtained in [29] utilizing the usual Lyapunov exponents of linear systems,
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200 GUILHERME S. VICINANSA AND DANIEL LIBERZON

with1 \alpha = 0. Nonetheless, the algorithm presented in [5] requires us to know an a
priori upper bound for the entropy, which might not be realistic if we want a causal
algorithm, as discussed in the present paper.

In the context above, the current paper can be considered as extending the work
in [29], providing a connection between the Lyapunov exponents and the estimation
entropy, and giving a constructive and causal algorithm that builds a state estimate
for a switched linear system with a prescribed exponential decay rate \alpha \geq 0 for
the estimation error with an average data-rate as close as desired to the estimation
entropy. Moreover, we advocate in favor of the role of regularity because it allows us to
build a quantizer using only what is known up to a given time instant. We show that
the regularity assumption is fulfilled by several systems of practical interest, such as
those modeled as Markov jump linear systems. Furthermore, we address the role that
the regularity property plays regarding the causality of our algorithm. For instance,
we can ensure the exponential decay of the error without knowledge of the switching
signal at all times, as required in [5].

This paper has the following structure: In section 2, we explain the problem and
its formulation. Also, we motivate this study through an example where the current
quantization methods perform worse than the method presented here regarding the
use of a data-rate. Then, in section 3 we study the concepts of Lyapunov exponents,
Oseledets' filtration, and estimation entropy. In our analysis of the estimation en-
tropy, we give it an upper bound and show that this upper bound is the exact value
under the Lyapunov regularity assumption. In section 4, we present our quantization
algorithm in its most general framework. Then, by utilizing the Oseledets' filtration
and Lyapunov exponents we show that we can operate at an average data-rate close
to the estimation entropy when we make specific choices in the algorithm's param-
eters. Furthermore, we present how to make the algorithm operate at an average
data-rate arbitrarily close to the entropy in a causal way. Next, in section 5, we
advocate in favor of regularity, showing that sufficient conditions for it are natural
for many systems. Finally, in section 6 we draw our conclusions and propose future
works.

Notation. We denote by | | \cdot | | P the norm in Rd induced by the inner product
\langle x, y\rangle P = x\top Py, with P positive definite. We denote by | | \cdot | | the infinity-norm
in a finite dimensional vector space. Let R = ( - \infty ,\infty ), let Z\geq 0 = \{ 0, 1, . . . \} be
the nonnegative integers, and let N = \{ 1, 2, . . . \} be the set of natural numbers.
For a real number x, we denote by \lceil x\rceil the smallest integer number y such that
x \leq y. For any set E, we denote by \#E its cardinality. For subsets of Rd we de-
note by vol(E) the volume of the set (its Lebesgue measure). Further, we denote
diam(E), where E \subset Rd is the set's diameter according to the metric induced by
the norm | | \cdot | | . We also denote by dim(V ) the dimension of a linear vector space V .
Also, for any x > 0, log x is the logarithm with base e. Furthermore, we define by
B(x, r) with x \in Rd and r > 0 the infinity-norm ball (hypercube) with center x and
radius r.

We denote by \scrM (d,R) the set of all d\times d matrices over the reals, and we denote
by GL(R, d) the set of all d\times d invertible matrices over the reals. We denote det(A)
and tr(A) as the determinant and the trace of the matrix A, respectively. Further,
Id \in \scrM (d,R) is the identity matrix.

Additionally, consider the parallelepiped defined by \{ \kappa ivi : \kappa i \in [0, 1]\} , where
\{ vi\} ki=1 \subset Rd is a linearly independent set of vectors. We denote the kth volume of the

1See, e.g., Chapter 6 of [2].
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 201

parallelepiped by vol(\{ v1, . . . , vk\} ), and its numerical value is given by
\sqrt{} 

det(V \top V ),
where V is the d\times k matrix with columns vi.

2

2. Preliminaries. Consider the switched linear system model

\.x(t) = \scrA \sigma (t)x(t),(2.1)

where x(t) \in Rd, \sigma : R\geq 0 \rightarrow \Sigma is a switching signal, \Sigma is a finite cardinality set, and
\scrA \sigma (t) \in \scrM (d,R). We denote by \Phi (t, t0) the state-transition matrix of (2.1), i.e., the
solution of the ODE d

dt\Phi (t, t0) = \scrA \sigma (t)\Phi (t, t0), with \Phi (t0, t0) = Id and t0 being the
initial time. Furthermore, we will make the assumption that \sigma is constant on intervals
of the type [ti, ti+1) for i \in Z\geq 0, where (ti)i\in Z\geq 0

is a strictly increasing sequence of
positive times such that limi\rightarrow \infty ti = \infty . The elements of the sequence (ti)i\in N are
called switching times . We also need to define an increasing sequence of sampling
times (\tau k)k\in Z\geq 0

, with \tau k = kTp for all k \in Z\geq 0 and some Tp > 0.
Then, we can rewrite the model described in (2.1) using its exact discrete-time

model , defined by

xk+1 = \~Akxk,(2.2)

where (xk)k\in Z\geq 0
is the state at the sampling times \tau k, i.e., xk = x(\tau k) for k \in Z\geq 0,

and \~Ak := \Phi (\tau k+1, \tau k) for k \in Z\geq 0.
Consider the following definitions of coder-estimator scheme; see, for instance,

[18, 21]. Let \{ \tau k\} k\in Z\geq 0
be the above-mentioned sequence of sampling times. Also, let

\{ \scrC n\} n\in Z\geq 0
be a sequence of alphabets with uniformly bounded cardinality, i.e., \exists M >

0, \#\scrC i < M, for all i \in Z\geq 0. We call the elements q of a finite alphabet symbols .
Furthermore, let \{ \gamma n\} n\in Z\geq 0

be a sequence of functions such that \gamma n :
\prod n - 1

i=0 \scrC i \times 
Rd(n+1) \rightarrow \scrC n, where \gamma n is called the coder mapping at time n. We can write the
coder mapping in the more explicit way3

\gamma 0 : x(\tau 0) \mapsto \rightarrow q0,

\gamma n : (q0, . . . , qn - 1, x(\tau 0), . . . , x(\tau n)) \mapsto \rightarrow qn,

where qn \in \scrC n for all n \in Z\geq 0.
The average data-rate of a coder-estimator scheme is defined as

b := lim sup
j\rightarrow \infty 

1

tj

j\sum 
i=0

log
\bigl( 
\#\scrC i

\bigr) 
.(2.3)

2.1. Example. In this subsection, we motivate our work through a randomly
switched system example. In this example, we show that the average data-rate for
state estimation taking the switched system dynamics into account is lower than the
one obtained by using the optimal quantizer for each mode separately whenever that
mode is active.

Example 2.1. Let B1 = [ 0.9 0.03
0 1 ] and B2 = [ 1.1 0.02

0 1 ] be the modes of our discrete-
time switched system, i.e., \~Ak \in \{ B1, B2\} for k \in Z\geq 0. Notice that the mode B2

2Notice that interchanging the order of the columns does not change the kth volume.
3Notice that, since q0 = \gamma 0(x(\tau 0)), one could make an alternative definition of the coder mapping

at time 1 as \~\gamma 1(x(\tau 0), x(\tau 1)) = \gamma 1(\gamma 0(x(\tau 0)), x(\tau 0), x(\tau 1)). Then, one could alternatively define the
coder mapping at time n as \~\gamma n(x(\tau 0), . . . , x(\tau n)) recursively in a similar way. Defining the coder
mappings with the explicit dependence of the quantized value on the previous symbols is a matter
of keeping the argumentation clear.
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202 GUILHERME S. VICINANSA AND DANIEL LIBERZON

is unstable. Therefore, if we apply the conventional quantization scheme [11], this
guarantees that our estimation error is uniformly bounded by some arbitrary constant
\epsilon > 0 and utilizes the minimum average data-rate; for each mode separately, the
average data-rate used will be positive. Nonetheless, we will show that if our switching
signal comes from the Markov chain defined by the matrix of transition probabilities
P = [ 0.1 0.9

0.9 0.1 ], where Pij is the transition probability from mode i to mode j, then
there exists an algorithm that reconstructs the state with error uniformly bounded
by some arbitrary \epsilon > 0 using an average data-rate as close to zero as desired with
probability 1 in the previous situation. We will see that this latter fact follows since
the estimation entropy with \alpha = 0 of our switched system is 0 almost surely.

In this paper, we present a quantization scheme that operates at an average data-
rate arbitrarily close to the estimation entropy for a large class of switching signals
called regular switchings. It so happens that, with probability 1, the switching signals
generated by Markov jump linear systems, like the one in this example, are in this
class.

3. Estimation entropy. In this section, we introduce Lyapunov exponents,
Lyapunov regularity, estimation entropy, and related concepts. We derive an upper
bound for the estimation entropy of discrete-time switched systems in terms of the
Lyapunov exponents. Moreover, we show that under the assumption of regularity, this
upper bound is the actual value of the estimation entropy. The definitions presented
here were adapted from the [16], Chapter 2 of [2], and Chapter 3 of [1].

Throughout this article, given a sequence of invertible matrices (An)n\in N \subset 
\scrM (d,R), we denote the discrete-time state-transition matrix of the system (2.2) by

\Phi n := An \cdot \cdot \cdot A1.(3.1)

Here and in the rest of the paper, we denote An := \~Ak for n = k + 1 with4

k \in Z\geq 0. We assume that K \subset Rd, the set of possible initial conditions, is a compact
set with nonempty interior. Further, the solution of (2.2) at time step n with initial
condition x \in Rd is given by \xi (x, n) = \Phi nx, where the matrix sequence is given by
the matrices on the right-hand side of (2.2).

For the next two definitions, pick an \alpha \geq 0, and let T \in N be the time horizon.

Definition 3.1. For every \epsilon > 0, we call a finite set of functions \^X =
\{ \^x1(\cdot ), . . . , \^xN (\cdot )\} , from \{ 0, . . . , T  - 1\} to Rd, a (T, \epsilon , \alpha ,K)-approximating set if for
every initial condition x \in K, there exists \^xi \in \^X such that | | \xi (x, n)  - \^xi(n)| | <
\epsilon e - \alpha n for all n \in \{ 0, . . . , T  - 1\} . Let sest(T, \epsilon , \alpha ,K) be the minimum cardinality of a
(T, \epsilon , \alpha ,K)-approximating set. We define the estimation entropy as

hest(\alpha ,K) := lim
\epsilon \rightarrow 0

lim sup
T\rightarrow \infty 

1

T
log sest(T, \epsilon , \alpha ,K).

Definition 3.2. For every \epsilon > 0, we call a finite set of points S = \{ x1, . . . , xN\} \subset 
K a (T, \epsilon , \alpha ,K)-spanning set if for every initial state x \in K, there exists xi \in S such
that | | \xi (x, n) - \xi (xi, n)| | < \epsilon e - \alpha n for all n \in \{ 0, . . . , T  - 1\} . Let s\ast est(T, \epsilon , \alpha ,K) be the
minimum cardinality of a (T, \epsilon , \alpha ,K)-spanning set.

It is important to note that, by Theorem 1 from [16], we know that hest(\alpha ,K) =
lim\epsilon \rightarrow 0 lim supT\rightarrow \infty 

1
T log s\ast est(T, \epsilon , \alpha ,K). This equivalent characterization of the esti-

mation entropy will be needed for proving Theorem 3.14.

4Notice that A1 = \~A0. Thus, An = \Phi (Tpn, Tp(n  - 1)) for n \in N. This relabeling is done for
consistency with the majority of the literature.
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 203

Definition 3.3. A Lyapunov index is a function \lambda : Rd \rightarrow R \cup \{  - \infty \} with the
following properties:

\bullet \lambda (\kappa v) = \lambda (v) for every real \kappa \not = 0,
\bullet \lambda (v + w) \leq max\{ \lambda (v), \lambda (w)\} ,
\bullet \lambda (0) =  - \infty .

A Lyapunov index \lambda (\cdot ) can take at most d distinct real values see, e.g., [2]. (Note
that  - \infty , which is the value of \lambda (0), is not a real value.)

Definition 3.4. The Lyapunov exponent associated with a sequence of matrices
(An)n\in N is the following Lyapunov index:5

\lambda (v) := lim sup
n\rightarrow \infty 

1

n
log (| | \Phi nv| | )

for v \in Rd \setminus \{ 0\} . Also, we define \lambda (0) :=  - \infty .

Note that the Lyapunov exponent, \lambda (\cdot ), is a particular Lyapunov index see, e.g.,
[2]. Therefore, it can attain at most d distinct values. We denote these values by \chi i,
for i = 1, . . . , q, where q \leq d, and we index them according to the increasing order
for real numbers, i.e., \chi 1 < \cdot \cdot \cdot < \chi q. We call \chi i, i = 1, . . . , q the Lyapunov exponent
values .

Definition 3.5. A filtration (or flag) on Rd is a family of vector subspaces
V = (Ei)

q
i=0, with q \leq d, such that \{ 0\} = E0 ( E1 ( \cdot \cdot \cdot ( Eq = Rd. Further, we call

\scrV = \{ vi\} di=1 a normal basis of the filtration V if it is a basis for Rd, and for every

j \geq 1, the subset of V given by \{ vi\} 
dim(Ej)
i=1 is a basis for Ej .

A special type of filtration that will be used in the text, and in our quantization
algorithm in section 4, is the Oseledets' filtration, which we define next.

Definition 3.6. A filtration \scrV \lambda associated with the sequence of invertible ma-
trices (An)n\in N such that Ei = \{ v \in Rd : \lambda (v) \leq \chi i\} , where \lambda (\cdot ) is the Lyapunov
exponent for the sequence, and \chi i are the Lyapunov exponent values of the sequence
previously defined, is called an Oseledets' filtration. Also, the subspaces Ei \in \scrV \lambda are
called Oseledets' subspaces. In addition, dim(Ei) - dim(Ei - 1) in the following is called
the multiplicity of the Lyapunov exponent value \chi i: If

6 dim(Ei) - dim(Ei - 1) = 1 for
every i \in \{ 1, . . . , q\} , we say that the Lyapunov exponents are simple. Finally, define
\Lambda = \{ \lambda j\} dj=1 as an ordered list with repetition where for every j = 1, . . . , d, there
exists some i \in \{ 1, . . . , q\} such that \lambda j = \chi i, and for every i = 1, . . . , q, \chi i appears
dim(Ei)  - dim(Ei - 1) times in \Lambda . The order in \Lambda can be any total order relation in
the set \Lambda chosen among those for which \lambda 1 \leq \cdot \cdot \cdot \leq \lambda d. We call the elements \lambda i \in \Lambda 
the Lyapunov exponents with multiplicity of (An)n\in N.

It is important to note that the Oseledets' filtration depends on the entire sequence
(An)n\in N. To see this, consider the following example.

Example 3.7. Let A = [ 2 0
0 4 ] and B = [ 0 1

1 0 ] and note that the sequence A\prime 
n = A

for all n \in N and the sequence An = A for n \in N \setminus \{ N\} and AN = B for some
N \in N have the same Lyapunov exponents but different Oseledets' filtrations. Since
the Oseledets' filtration of the first sequence is E1 = span\{ [ 1 0 ]\top \} ( E2 = R2

and the filtration of the second is E1 = span\{ [ 0 1 ]\top \} ( E2 = R2.

5Note that the function does not change if we change the norm.
6Equivalently, we could say that d = q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

3/
23

 to
 1

30
.1

26
.2

55
.1

55
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



204 GUILHERME S. VICINANSA AND DANIEL LIBERZON

Definition 3.8. A sequence (An)n\in N is called tempered if

lim
n\rightarrow \infty 

1

n
log | | An| | = 0.

Notice that if a sequence (An)n\in N belongs to a compact set, then it is tempered.
A particular case is the one in which (An)n\in N has finitely many values. It is worth
mentioning that temperedness does not imply that the growth rate of \Phi n is subexpo-
nential. To see why, take An = n, which is tempered because limn\rightarrow \infty 

log(n)
n = 0, and

note that \Phi n = n!, which grows faster than any exponential.

Example 3.9 (Example 2.1 revisited). This is a good moment for us to revisit
our Example 2.1. Denote by aij(n) the element in the ith row and jth column of
the matrix An, and denote, analogously, by \phi ij(n) the elements of \Phi n. Further,
denote mi(n) =

\sum n
k=1 I\{ (An)n\in N:Ak=Bi\} ((An)n\in N), where IA(x) = 1 if x \in A and

IA(x) = 0 otherwise. We should think of mi(n) as the number of time instants
at which mode i was active until time n. Note that \phi 11(n) = 0.9m1(n)1.1m2(n),
\phi 22(n) = 1, and \phi 12(n) = a11(n)\phi 12(n  - 1) + a12(n) for n \geq 1 with initial
conditions \phi ii = 1 and \phi ij = 0 if i \not = j. Now, let \{ e1, e2\} be the canoni-
cal basis for R2. Then, the Lyapunov exponents of the sequence (An)n\in N are
given by \lambda (e1) = lim supn\rightarrow \infty 

1
n log(\| \Phi ne1\| ) = lim supn\rightarrow \infty 

1
n log(0.9m1(n)1.1m2(n)) =

lim supn\rightarrow \infty 
m1(n)

n log(0.9) + m2(n)
n log(1.1). Recall that the fraction of time that a

Markov chain stays on mode i is given, with probability 1, by the probabilities \pi i

obtained by solving \pi = \pi P and
\sum 2

i=1 \pi i = 1, where (\pi 1, \pi 2) = \pi . For this exam-
ple, we get that \pi 1 = \pi 2 = 1/2. Thus, with probability 1, a specific realization will

have the fractions mi(n)
n converging to the probabilities \pi i, where i \in \{ 1, 2\} . Hence,

\lambda (e1) =
1
2 log(0.99) < 0. Finally, we notice that \phi 12(n) = a11(n)\phi 12(n - 1)+a12(n) is a

scalar linear time-varying system with an input a12(n). Therefore, if
\prod n

j=1 a11(j) < 1
and a12(n) are bounded, we prove that \phi 12(n) is bounded. Indeed, a12(n) is always
bounded, and the product

\prod n
j=1 a11(j) = 0.9m1(n)1.1m2(n) can be upper bounded

1. To see this, take the logarithm of the product and divide it by n so that we get
1
n log

\bigl( \prod n
j=1 a11(j)

\bigr) 
= m1(n)

n log(0.9)+ m2(n)
n log(1.1) < 0. From this we conclude that\prod n

j=1 a11(j) < 1 and that \phi 12 is bounded with probability 1. Now, we can calculate
\lambda (e2) by noting that \| \Phi ne2\| = max\{ \phi 12(n), 1\} is bounded; hence \lambda (e2) = 0 with
probability 1.

Furthermore, we notice that the filtration E1 = span\{ e1\} ( E2 = R2 is the
Oseledets' filtration. Moreover, we see that \{ e1, e2\} form a normal basis for this
filtration.

We remark that, although the sequence (An)n\in N comes from a stochastic process,
we calculated the values of the Lyapunov exponents for a generic realization. Thus, we
always choose a specific realization, as in the deterministic case. Nonetheless, we use
the Markov chain's properties to show that our result holds for almost all realizations
of the random process.

Definition 3.10. A sequence (An)n\in N is called (Lyapunov) regular if

lim
n\rightarrow \infty 

1

n
log (| det (\Phi n)| ) =

d\sum 
i=1

\lambda i.

We call a system given by (2.2) regular if its associated matrix sequence is regular.

The following Examples 3.11 and 3.12 should help illustrate the concept of regu-
larity.
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 205

Example 3.11. Let \rho > 1. Also, let B1 = [
\rho 0

0 \rho  - 1 ] and B2 = [ \rho 
 - 1 0
0 \rho 

]. Consider

the sequence An = B1 if n \in \{ 2i, . . . , 2i+1  - 1\} , for i odd, and An = B2 otherwise.
Note that det(| \Phi n| ) = 1 for all possible sequences (An)n\in N. Denote by \{ e1, e2\} the
canonical basis. Further, consider the subsequence with indices nk = 2k for k \in N.
Then, one can show by induction that \| \Phi nk

(e1)\| = \rho  - 
\sum k

i=1( - 2)i - 1+( - 1)k . Thus,
log(\| \Phi nk

(e1)\| )
2k

=
\sum k

\ell =1

\bigl( 
( - 1)\ell +1(2) - \ell +( - 1)k2 - k

\bigr) 
log(\rho ) after the change of variables

\ell =  - i+k+1. Now, looking at the subsequence with indices nk = 2k with k even, we
show that this subsequence has a positive limit because limk\rightarrow \infty 

\sum k
\ell =1( - 1)\ell +1(2) - \ell 

log(\rho ) + ( - 1)k2 - k log(\rho ) = 1
3 log(\rho ) > 0. Hence, by the fact that the limit superior is

larger than all sublimits, we conclude that \lambda (e1) > 0, because it is the limit superior.
We can show the analogous result \lambda (e2) > 0 by considering the odd values of k.
Therefore, the original sequence cannot be regular.

Example 3.12. Let B1 and B2 be as in Example 3.11. Consider the sequence
An = B1 whenever n is divisible by 4, and An = B2 otherwise. Also let \{ e1, e2\} be
the canonical basis for R2. Then one can check that \lambda (e1) =  - 1

2 log \rho and \lambda (e2) =
1
2 log \rho . Therefore, the sequence is regular, and \{ e1, e2\} is a basis for the Oseledets'
filtration.

In Example 3.11, the limit superior in Definition 3.4 of the Lyapunov exponent
cannot be replaced by a limit, but in Example 3.12, where the matrix sequence is
regular, it can. This fact is not a coincidence, as shown by the second bullet of
Lemma 3.13 for \scrI being a singleton, which implies that the limit exists when the
sequence is regular.

The following lemma was extracted from Chapters 3 and 7 of [2] and presents
equivalent characterizations for regularity that will be used in this article.

Lemma 3.13. Given a tempered sequence (An)n\in N of invertible matrices, let
\{ v1, . . . , vd\} be any normal basis for the Oseledets' filtration of the sequence (An)n\in N,
and let \scrI \subset \{ 1, . . . , d\} be any set of indices. Further, let \lambda i be the Lyapunov expo-
nents with multiplicity of the sequence (An)n\in N. Then, the following conditions are
equivalent:

\bullet limn\rightarrow \infty 
1
n log (| det (\Phi n)| ) =

\sum d
i=1 \lambda i.

\bullet limn\rightarrow \infty 
1
n log (vol (\{ \Phi nvi : i \in \scrI \} )) =

\sum 
i\in \scrI \lambda i.

\bullet The matrix limn\rightarrow \infty 
\bigl( 
\Phi \top 

n\Phi n

\bigr) 1
2n exists.

Now, we state the main theorem of this section.

Theorem 3.14. Let \alpha \geq 0. Let (An)n\in N be a tempered sequence of invertible
matrices. Let K \subset Rd be a compact set of possible initial conditions with a nonempty
interior. Denote by \lambda i, with i = 1, . . . , d, the Lyapunov exponents with multiplicity of
(An)n\in N. Then, the estimation entropy of the discrete switched system (2.2) satisfies

hest(\alpha ,K) \leq 
d\sum 

i=1

max \{ 0, \lambda i + \alpha \} ,(3.2)

with equality if the system is regular.

Proof. For the proof of the upper bound, we build a (T, \epsilon , \alpha ,K)-approximating
set \scrF T and calculate its cardinality. First, denote by \{ v1, . . . , vd\} a normal basis for
the Oseledets' filtration associated with the sequence (An)n\in N. Then, pick an \epsilon > 0.
Further, choose an arbitrary block length \ell \in N and a time horizon T \in N such that
T > \ell . Also, for a fixed but arbitrary \delta > 0, we define
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206 GUILHERME S. VICINANSA AND DANIEL LIBERZON

\Gamma j
i := max

\biggl\{ 
max

k\in \{ 0,...,\ell  - 1\} 
\| \Phi j\ell  - kvi\| , e(\lambda i+\delta )j\ell , e(\lambda i+\delta )((j - 1)\ell +1)

\biggr\} 
(3.3)

for i \in \{ 1, . . . , d\} and j \in \{ 1, . . . , \lceil (T  - 1)/\ell \rceil \} , and \Gamma 0
i := 1 for i \in \{ 1, . . . , d\} .

Consider the box B0 := \{ 
\sum d

i=1 \gamma ivi : \kappa 0
i \leq \gamma i < \kappa 0

i \} , where \kappa 0
i and \kappa 0

i are
such that K \subset B0 and diam(B0) < \infty . Further, consider the following sets:

\scrC 0
i :=

\Bigl\{ 
1, . . . , \lceil d\kappa 0

i - \kappa 0
i

\epsilon \rceil 
\Bigr\} 

for i \in \{ 1, . . . , d\} , and \scrC j+1
i :=

\Bigl\{ 
1, . . . , \lceil \Gamma j+1

i

\Gamma j
i

e\alpha \ell \rceil 
\Bigr\} 

for

i \in \{ 1, . . . , d\} and j \in \{ 0, . . . , \lceil (T  - 1)/\ell \rceil \} . Now, define the set \scrQ of all or-
dered tuples (q0, . . . , q\lceil (T - 1)/\ell \rceil ) with qj = (qj1, . . . , q

j
d) and qji \in \scrC j

i . For a given
q = (q0, . . . , q\lceil (T - 1)/\ell \rceil ) \in \scrQ , we build a function \^xq(\cdot ) such that the value of the
function at time t \in \{ 0, . . . , T  - 1\} , i.e., \^xq(t), depends only on (q0, . . . , q\lceil t/\ell \rceil ). Before
presenting the function's construction, we consider the recursive definitions

\kappa j+1
i (q) := \kappa j

i (q) +
\epsilon 

d

\Bigl( 
\Gamma j
ie

\alpha j\ell 
\Bigr) 

 - 1
\Bigl( 
qji  - 1

\Bigr) 
,(3.4)

\kappa j+1
i (q) := \kappa j

i (q) +
\epsilon 

d

\Bigl( 
\Gamma j
ie

\alpha j\ell 
\Bigr) 

 - 1qji ,(3.5)

where i \in \{ 1, . . . , d\} , j \in \{ 0, . . . , \lceil (T  - 1)/\ell \rceil \} , and q \in \scrQ .
Now, define for j \in \{ 0, . . . , \lceil (T  - 1)/\ell \rceil \} , i \in \{ 1, . . . , d\} , and q \in \scrQ the quantity

\^\beta j
i (q) := \kappa j

i (q) +
\epsilon 

d

\Bigl( 
\Gamma j
ie

\alpha j\ell 
\Bigr) 

 - 1(qji  - 1/2).(3.6)

Finally, for t \in \{ 0, . . . , T  - 1\} and a given q \in \scrQ , define the function \^xq(t) :=\sum d
i=1

\^\beta j
i\Phi tvi, where j = \lceil t/\ell \rceil  - 1, i.e., j is such that j\ell + 1 \leq t \leq (j + 1)\ell . In words,

we are using the same \beta i estimate \^\beta j
i for all t such that j = \lceil t/\ell \rceil  - 1 holds true.

Further note that any such t satisfies t = (j + 1)\ell  - k for some k \in \{ 0, . . . , \ell  - 1\} .
Notice that, for given q \in \scrQ , i \in \{ 1, . . . , d\} , and j \in \{ 1, . . . , \lceil (T  - 1)/\ell \rceil \} the

estimate \^\beta j
i (q) is the midpoint of [\kappa j+1

i (q), \kappa j+1
i (q)) by (3.6), (3.4), and (3.5). Also,

note that for any given \beta \in [\kappa j+1
i (q), \kappa j+1

i (q)), we have that | \^\beta j
i (q) - \beta | < \epsilon 

2d (\Gamma 
j
ie

\alpha j\ell ) - 1

again by (3.6), (3.4), and (3.5). Now, let \scrF T be the set of functions \^xq(\cdot ) for q \in \scrQ .
We claim that \scrF T is a (T, \epsilon , \alpha ,K)-approximating set. To see this, let x \in K,

and write it as x =
\sum d

i=1 \beta ivi. We proceed by induction over j \in \{ 0, . . . , \lceil (T  - 
1)/\ell \rceil \} to show that there exists a q \in \scrQ such that the corresponding \^\beta j

i (q) satisfies
7\bigm| \bigm| \bigm| \^\beta j

i (q) - \beta i

\bigm| \bigm| \bigm| < \epsilon 
2d

\Bigl( 
\Gamma j
ie

\alpha j\ell 
\Bigr) 

 - 1. Consequently, we conclude that the corresponding

\^xq(\cdot ) satisfies \| \^xq(t) - \xi (x, t)\| < \epsilon e - \alpha t for t \in \{ 0, . . . , T  - 1\} .
Step 0: We have that \beta i \in [\kappa 0

i , \kappa 
0
i ) for i \in \{ 1, . . . , d\} by definition of B0. Let

q0 = (q01 , . . . , q
0
d), with q0i \in \scrC 0

i , be such that \beta i \in [\kappa 1
i (q), \kappa 

1
i (q)) for every i \in \{ 1, . . . , d\} .

Note that \kappa 1
i (q) and \kappa 1

i (q) depend only on \kappa 0
i , \kappa 

0
i , and q0i . By equations (3.6), (3.4),

and (3.5), we have that
\bigm| \bigm| \bigm| \beta i  - \^\beta 0

i (q)
\bigm| \bigm| \bigm| \leq \epsilon 

2d . Thus, for any \^xq(\cdot ) \in \scrF T , with q \in \scrQ and

with q0 as described at the beginning of this step, we have that \| \^xq(0) - \xi (x, 0)\| =\bigm\| \bigm\| \bigm\| \sum d
i=1

\Bigl( 
\beta i  - \^\beta 0

i (q)
\Bigr) 
vi

\bigm\| \bigm\| \bigm\| \leq \epsilon 
2d

\bigm\| \bigm\| \bigm\| \sum d
i=1 vi

\bigm\| \bigm\| \bigm\| \leq \epsilon 
2 , where the last inequality comes from

the fact that \| vi\| = 1.
Step j+ 1: From our induction hypothesis, \beta i \in [\kappa j

i (q), \kappa 
j
i (q)) for i \in \{ 1, . . . , d\} .

Now, let qj = (qj1, . . . , q
j
d) with qji \in \scrC j

i , be such that \beta i \in [\kappa j+1
i (q), \kappa j+1

i (q)) for ev-
ery i \in \{ 1, . . . , d\} . Notice that \kappa j+1

i (q) and \kappa j+1
i (q) depend only on \kappa j

i (q), \kappa j
i (q),

and qji . By (3.6), (3.4), and (3.5), we have that
\bigm| \bigm| \bigm| \beta i  - \^\beta j

i (q)
\bigm| \bigm| \bigm| \leq \epsilon 

2d

\Bigl( 
\Gamma j
ie

\alpha j\ell 
\Bigr) 

 - 1.

7Notice that this is equivalent to \beta i \in [\kappa j+1
i (q), \kappa j+1

i (q)).
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Thus, for (j  - 1)\ell + 1 \leq t \leq j\ell and for any \^xq(\cdot ) \in \scrF T , with q \in \scrQ and with
(q0, . . . , qj) as the tuple inductively described here, we have that | | \^xq(t) - \xi (x, t)| | =\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d

i=1

\Bigl( 
\^\beta j
i (q) - \beta i

\Bigr) 
\Phi tvi

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
2de

 - \alpha j\ell 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d

i=1
\Phi tvi

\Gamma j
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
2e

 - \alpha t, where the last inequal-

ity comes from the fact that8 \| \Phi tvi\| \leq \Gamma j
i and the fact that e - \alpha j\ell \leq e - \alpha t for

t \in \{ (j  - 1)\ell + 1, . . . , j\ell \} . With this, we conclude the induction.9

Since there exists a one-to-one correspondence between elements of \scrQ and \scrF T , the
cardinality of \scrF T is given by

\prod \lceil (T - 1)/\ell \rceil 
j=0 (

\prod d
i=1 \#\scrC j

i ). Also, because \scrF T is a (T, \epsilon , \alpha ,K)-
approximating set, its cardinality is an upper bound for sest(T, \epsilon , \alpha ,K), the mini-
mum cardinality of any (T, \epsilon , \alpha ,K)-approximating set. Therefore, we conclude that
1
T log sest (T, \epsilon , \alpha ,K) \leq 1

T

\sum \lceil (T - 1)/\ell \rceil 
j=0

\sum d
i=1 log

\Bigl( 
\#\scrC j

i

\Bigr) 
.

Recall that, by Definition 3.4 of the Lyapunov exponent, for any given \delta > 0,
\exists Ni \in N such that for all t \geq Ni we have that 1

t log (\| \Phi tvi\| ) \leq \lambda i + \delta for a given
i \in \{ 1, . . . , d\} , from which we get that \| \Phi tvi\| \leq e(\lambda i+\delta )t for all t \geq Ni. We re-
strict our choice of \delta to be such that \lambda i + \delta < 0 for all \lambda i < 0 with i \in \{ 1, . . . , d\} .
However, we can choose \delta > 0 arbitrarily small. Now, from (3.3), we have that
\Gamma j
i = e(\lambda i+\delta )j\ell if \lambda i \geq 0, and \Gamma j

i = e(\lambda i+\delta )((j - 1)\ell +1) if \lambda i < 0, with both equal-
ities being valid for all j such that (j  - 1)\ell + 1 \geq Ni. For simplicity denote

M := max
\bigl\{ 
\lceil Ni - 1

\ell + 1\rceil , i = 1, . . . , d
\bigr\} 
. Therefore, it is true that

\Gamma j+1
i

\Gamma j
i

= e(\lambda i+\delta )\ell for

j \geq M and i \in \{ 1, . . . , d\} . From our previous discussion, with our previously fixed

\delta , we have the inequality hest(\alpha ,K) \leq lim\epsilon \rightarrow 0 lim supT\rightarrow \infty 
1
T

\sum M
j=0

\sum d
i=1 log

\Bigl( 
\#\scrC j

i

\Bigr) 
 - 

(M+1)
T

\sum d
i=1 log

\bigl( 
\lceil e(\lambda i+\alpha +\delta )\ell \rceil 

\bigr) 
+ 1

\ell 

\sum d
i=1 log

\bigl( 
\lceil e(\lambda i+\alpha +\delta )\ell \rceil 

\bigr) 
, where we note that the

first two terms on the right-hand side vanish when T goes to infinity. Thus, we
have that hest(\alpha ,K) \leq 1

\ell 

\sum d
i=1 log

\bigl( 
\lceil e(\lambda i+\alpha +\delta )\ell \rceil 

\bigr) 
. Since \delta > 0 can be arbitrar-

ily small, this shows that hest(\alpha ,K) \leq 1
\ell 

\sum d
i=1 log

\bigl( 
\lceil e(\lambda i+\alpha )\ell \rceil 

\bigr) 
. Finally, because \ell 

can be made arbitrarily large, we get inequality (3.2). Here, we used the fact that
lim\ell \rightarrow \infty 

1
\ell log(\lceil e

y\ell \rceil ) = max \{ y, 0\} for y \in R. To see this, note that we have \lceil ey\ell \rceil = 1
for y \leq 0, so log(\lceil ey\ell \rceil ) = 0, and we have that y \leq 1

\ell log(\lceil e
y\ell \rceil ) \leq 1

\ell log(e
y\ell (1+e - y\ell )) =

y + 1
\ell log(1 + e - y\ell ) for y > 0, from which we conclude that the limit equals

max\{ y, 0\} .
For the lower bound, assume that (An)n\in N is regular. Let \{ v1, . . . , vd\} be a normal

basis for the Oseledets' filtration associated with (An)n\in N. Further, fix an arbitrary
\delta > 0 and pick an \epsilon > 0. Define \scrI := \{ i \in \{ 1, . . . , d\} : \lambda i + \alpha + \delta > 0\} , a set of
indices, and U := \{ 

\sum 
i\in \scrI \gamma ivi : \kappa i \leq \gamma i \leq \kappa i\} , with \kappa i and \kappa i such that U \subset K, which

is always possible because K has a nonempty interior. For simplicity, assume that
\kappa i = 0 and \kappa i = \kappa for all i \in \scrI . If this is not the case, translate the set K so that the
origin will be in its interior, a transformation that does not change the \#\scrI th volume.
Therefore, U is the parallelepiped \{ \kappa ivi : \kappa i \in [0, \kappa ]\} with the \#\scrI th volume given by
vol(U) = (\kappa )\#\scrI vol(\{ vi : i \in \scrI \} ).

Now, from the regularity hypothesis and the second bullet in Lemma
3.13, for our \delta > 0, \exists N \in N such that for all j > N we have that\bigm| \bigm| \bigm| 1j log vol (\{ \Phi jvi : i \in \scrI \} ) - 

\sum 
i\in \scrI \lambda i

\bigm| \bigm| \bigm| \leq \delta \#\scrI , which implies that vol(\{ \Phi jvi : i \in \scrI \} ) \geq 
e
\sum 

i\in \scrI (\lambda i - \delta )j .

8This is an immediate consequence of equation (3.3).
9We need a minor change for the final step, i.e., j = \lceil (T - 1)/\ell \rceil , in the induction process. Because

of the domain of \^xq(\cdot ), we have to consider (\lceil (T  - 1)/\ell \rceil  - 1)\ell \leq t \leq T instead of (\lceil (T  - 1)/\ell \rceil  - 1)\ell \leq 
t \leq \lceil (T  - 1)/\ell \rceil \ell . This is the only change needed to prove the induction.
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208 GUILHERME S. VICINANSA AND DANIEL LIBERZON

Notice that the parallelepiped \Phi jU = \{ 
\sum 

i\in \scrI \gamma i\Phi jvi : 0 \leq \gamma i \leq \kappa \} has the \#\scrI th
volume equal to vol(\Phi jU) = (\kappa )\#\scrI vol(\{ \Phi jvi : i \in \scrI \} ). Now, let C = \{ x1, . . . , xN\} 
be a (T, \epsilon , \alpha , U)-spanning set. We show how the cardinality of C compares with the
minimum cardinality, s\ast est, of a (T, \epsilon , \alpha , U)-spanning set.

First, recall that B(x, r) is the infinity-norm ball (hypercube) centered at x with
radius r. Define B(j,\scrI )(x, r) := B(x, r) \cap \{ 

\sum 
i\in \scrI \gamma i\Phi jvi : \gamma i \in R\} , i.e., the intersection

of the ball with the subspace spanned by the vectors \Phi jvi for i \in \scrI . Now, since C
is (T, \epsilon , \alpha , U)-spanning, we cover \Phi TU with balls of radius \epsilon e - \alpha T centered at \Phi Txi

for xi \in C. Because the balls B(j,\scrI )(\Phi Txi, \epsilon e
 - \alpha T ) cover \Phi TU , the sum of their

\#\scrI th volumes, i.e., the cardinality of C times the \#\scrI th volume of a single ball, is
greater than or equal to the \#\scrI th volume of \Phi TU . From this, we conclude that \#C \geq 

vol(\Phi TU)
vol(B(\Phi T xi,\epsilon e - T\alpha ))

. Lastly, because s\ast est(T, \epsilon , \alpha , U) is the lowest value for the cardinality

of any (T, \epsilon , \alpha , U)-spanning set, we conclude that s\ast est(T, \epsilon , \alpha , U) \geq vol(\Phi TU)
vol(B(\Phi T xi,\epsilon e - T\alpha ))

=\bigl( 
\kappa 

2\epsilon e - T\alpha 

\bigr) 
\#\scrI vol (\{ \Phi T vi : i \in \scrI \} ).

It is straightforward to see that s\ast est(T, \epsilon , \alpha ,K) \geq s\ast est(T, \epsilon , \alpha , U) by the fact
that any (T, \epsilon , \alpha ,K)-spanning set is also a (T, \epsilon , \alpha , U )-spanning set. Thus, we ar-
rive at s\ast est(T, \epsilon , \alpha ,K) \geq 

\bigl( 
\kappa 

2\epsilon e - T\alpha 

\bigr) 
\#\scrI vol (\{ \Phi T vi : i \in \scrI \} ). Furthermore, we have that

hest(K,\alpha ) \geq lim\epsilon \rightarrow 0 lim supT\rightarrow \infty 
1
T

\Bigl( 
log

\bigl( 
\kappa 
2\epsilon 

\bigr) 
\#\scrI + log vol (\{ \Phi T vi : i \in \scrI \} )

\Bigr) 
+ \alpha \#\scrI ,

and, since T can be taken to be larger than N , we derive that hest(K,\alpha ) \geq lim\epsilon \rightarrow 0

lim supT\rightarrow \infty 
1
T

\Bigl( 
log

\bigl( 
\kappa 
2\epsilon 

\bigr) 
\#\scrI 

\Bigr) 
+

\sum 
i\in \scrI (\lambda i + \alpha  - \delta ), and we conclude that hest(\alpha ,K) \geq \sum 

i\in \scrI (\lambda i + \alpha  - \delta ) =
\sum d

i=1 max\{ \lambda i + \alpha  - \delta , 0\} , where the last equality comes from
the definition of \scrI . Finally, by the fact that \delta > 0 was arbitrary, we have that
hest(\alpha ,K) \geq 

\sum 
i\in \scrI max\{ \lambda i + \alpha , 0\} .

Example 3.15 (Example 2.1 revisited). Now, we can analyze Example 2.1
again. From our calculations in section 2, we saw that the Lyapunov exponents
of our system are \lambda (e1) = 1

2 log(0.99) < 0 and \lambda (e2) = 0 with probability 1.
From this, we conclude that the system's estimation entropy satisfies the inequal-
ity hest(\alpha ,K) \leq max

\bigl\{ 
1
2 log(0.99) + \alpha , 0

\bigr\} 
+max \{ \alpha , 0\} with probability 1.

3.1. Connection with previous results. Some important remarks about the
connections between this work and [33] must be made. The bounds obtained in that
paper rely on the individual modes and their active rates. We will discuss why the
above result is not a direct consequence of that work and why the geometry of the
Oseledets' filtration is essential to get equality for the regular case. It is important to
mention that those results concern the continuous-time model, i.e., described by (2.1).
Thus, for consistency, all the examples in this remark will be in continuous-time as
well.

First, we need to state some definitions to discuss those results. Denote by \mu (A) =

limt\downarrow 0
\| I+tA\|  - 1

t the matrix measure of the matrix A, and by 1p(\sigma ) the indicator
function of mode p, i.e., 1p(q) = 1 if p = q and 1p(q) = 0, otherwise. Finally,

define the active rate of mode p as \rho p(t) =
1
t

\int t

0
1p(\sigma (\tau ))d\tau . Next, for the sake of the

discussion, we transcribe here the upper bound for the topological entropy from [33],
i.e., hest(0,K) \leq max\{ lim supt\rightarrow \infty 

\sum 
p\in \Sigma \mu (\scrA \sigma (t))\rho p(t)d, 0\} . Second, to obtain that

upper bound, the authors utilized a consequence of Coppel's inequality (see, e.g.,
[27]) to say that \xi (x, t) is upper bounded by an exponential term that depends on
the averaged sum of matrix measures. Nonetheless, it is easy to see why that bound
is conservative. Take, for instance, a system with one mode, whose matrix has only
one unstable eigenvalue and all others are stable, e.g., A =

\bigl( 
2 0
0  - 2

\bigr) 
. It is easy to see
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 209

that \mu (A) \geq 2, the unstable eigenvalue, but the entropy is 2 and the upper bound is
greater than or equal to 4. With this example, we show that if we do not take into
consideration the stable subspaces, we are going to overestimate the entropy value.
For linear time-varying systems, the Oseledets' filtration plays a role similar to that
of the eigenspaces. When we remove the vectors of the normal basis of the Oseledets'
filtration that correspond to negative Lyapunov exponents, we are only looking at the
directions where the system expands. In this way, we avoid the above conservative
bound.

Now, for the lower bound, the authors of [33] obtain the inequality hest(0,K) \geq 
\{ lim supt\rightarrow 0

\sum 
p\in \Sigma tr(\scrA p)\rho p(t)\} . For its proof, the authors used a volume counting

argument just as in our Theorem 3.14. However, similar geometric reasons, as in the
case of the upper bound, prevent that bound from being tight. First, notice that there
are continuous-time-invariant linear systems with negative trace and positive entropy,
such as

\bigl( 
2 0
0  - 3

\bigr) 
. Second, the volume form those authors take is d-dimensional. In that

way, if there is a direction in the state space such that the state is contracting, the
volume will shrink. In the above Theorem 3.14, we deal with that issue by removing
those shrinking directions and only looking at the expansive ones. Once again, the
restrictive setting of only knowing the active rate prevents the bound from being tight.

We need to stress that the knowledge of such directions, originating from the
Oseledets' filtration, requires the knowledge of the entire switching signal. Therefore,
the result of Theorem 3.14 requires more information about the switching signal than
just the active rates used in [33]. Also, the switching signals are not restricted to
being regular for the equality presented in Theorem 2 from [33], where the modes are
assumed to be commuting.

Finally, regularity should be understood as the compatibility between the geo-
metric notion of expanding directions and the notion of an expanding volume form.
This is what allows us to get the identity in Theorem 3.14.

4. Quantization algorithm. In this section, we describe the quantization al-
gorithm. This algorithm's goal is to estimate the state of system (2.2), with a desired
exponential decay rate for the estimation error, using quantized measurements. The
algorithm works by giving an overapproximation to the reachable set that depends on
a few parameters, such as the set of possible initial conditions, the switching signal,
and the desired exponential decay for the estimation error. Also, we need to provide
a family of bases \scrV j = \{ vj1, . . . , v

j
d\} , j \in Z\geq 0, for Rd. Using this family, the proposed

algorithm generates an overapproximation for the reachable set. Then, we show that
by using a proper choice of family (\scrV j)j\in Z\geq 0

the algorithm's average data-rate can
be made as close to the estimation entropy of our system as desired. Finally, we
present a way of generating a family (\scrV j)j\in Z\geq 0

that makes the algorithm achieve an
average data-rate arbitrarily close to the estimation entropy online, assuming that
the switching signal is known. Also, as in section 3, we will let Tp > 0 be a sampling
time, and the sequence (An)n\in N corresponds to10 the exact discrete-time model of
some continuous-time model described by (2.1), i.e., An = \Phi (Tpn, Tp(n - 1)).

4.1. The algorithm. In this subsection, we describe a quantization scheme for
switched linear systems under the assumption that we know \sigma (t) for all values of t \in 
R\geq 0. Under the hypothesis that model (2.2) holds, the previous assumption becomes
the hypothesis of knowing the sequence (An)n\in N. We also assume that we are given

10As described after (3.1), i.e., An = \~Ak for n = k + 1 and k \in Z\geq 0.
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210 GUILHERME S. VICINANSA AND DANIEL LIBERZON

an arbitrary family of orthonormal11 bases \scrV j for Rd. After our scheme's description,
we show that, under a particular choice of the family \scrV j , our algorithm can operate at
an average data-rate arbitrarily close to the upper bound for the estimation entropy
obtained in Theorem 3.14, i.e.,

\sum d
i=1\{ \lambda i + \alpha , 0\} . Moreover, for the case where our

system is known to be regular---again because of Theorem 3.14---the algorithm can
operate at an average data-rate arbitrarily close to the estimation entropy.

Before we provide an informal description of the algorithm, we need to define some
concepts. First, we define \ell to be a positive integer that we call block length. Second,
let j be a positive integer that indexes our algorithm's iteration. Also, we need to
mention that our informal description is only valid for time t greater than zero since the
initial case is slightly different because of how we initialize the algorithm. Nonetheless,
the logic is essentially the same. In words, the algorithm does the following: Let
the initial state x be inside the region \=Bj - 1, a parallelepiped in Rd. Given a basis
\{ vji \} di=1 from the family \scrV j , build a new parallelepiped \~Bj with sides parallel to the
vji 's that contain \=Bj - 1. Now, we flow \~Bj forward using \Phi j\ell +1 and denote it by Bj .
More precisely, we define Bj = \Phi j\ell +1( \~B

j). Note that, since x belongs to \=Bj - 1 and
\=Bj - 1 \subset \~Bj , we have that the state at the current time j\ell +1, i.e., \xi (x, j\ell +1), belongs
to Bj . Inside the set Bj , we have quantization subregions, each corresponding to a
distinct quantization symbol. We denote by qj the quantization symbol corresponding
to the quantization subregion that contains \xi (x, j\ell + 1). Next, we flow the previous
quantization subregion, which corresponds to the symbol qj , backward by \Phi j\ell +1 and
define the result to be \=Bj . Finally, we repeat the procedure.

We emphasize that the bases \{ vji \} di=1 with j \in Z\geq 0 are, in principle, arbitrary. By
that, we mean that our quantization algorithm works for any choice of the family of
bases at the possible cost of working at a higher average data-rate. However, we show
in Corollary 4.2 and Theorem 4.4 how to choose those bases so that the average data-
rate will approach the estimation entropy. Further, it is worth emphasizing that we
build our estimates using measurements that happen only at time instants t = j\ell +1
with j \in Z\geq 0 and at the initial time t = 0. The idea of using the block length was
borrowed from the block coding approach,12 and it allows the average data-rate to
approach the estimation entropy arbitrarily close in some specific cases.

In what follows, we assume that Rd is endowed with the canonical inner product
\langle \cdot , \cdot \rangle .

Quantizer algorithm.
Initialization: Let K be the set of possible initial conditions, x \in K be the

true initial condition, \epsilon > 0 be a prescribed precision, Tp > 0 be the sampling time,
and \ell \in N be the block length. Also, consider the sequence (An)n\in N, where

13 An =
\Phi (Tpn, Tp(n  - 1)) and \Phi n = An . . . A1. Further, let \scrV j = \{ vj1, . . . , v

j
d\} , j \in Z\geq 0, be a

family of orthonormal bases for Rd. We define \Gamma 0
i = 1 for all i \in \{ 1, . . . , d\} . If the

system is known to be regular, we set

\Gamma j
i := max

k\in \{ 0,...,\ell  - 1\} 

\bigm\| \bigm\| \bigm\| \Phi j\ell  - kv
j
i

\bigm\| \bigm\| \bigm\| ;(4.1)

otherwise, we set

\Gamma j
i := max

\biggl\{ 
max

k\in \{ 0,...,\ell  - 1\} 

\bigm\| \bigm\| \bigm\| \Phi j\ell  - kv
j
i

\bigm\| \bigm\| \bigm\| , eTp(\lambda i+\delta )j\ell , eTp(\lambda i+\delta )((j - 1)\ell +1)

\biggr\} 
(4.2)

11We omit the word ``orthonormal"" from this point onward, as the orthonormality is implied.
12See, e.g., Chapter 5 of [9].
13Note that (An)n\in N \subset \scrM (d,R) might be an infinite set in general.
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 211

for a prescribed \delta > 0 and14 \lambda i := lim supj\rightarrow \infty 
1
j log

\Bigl( 
| | \Phi jv

j
i | | 

\Bigr) 
. Also, let \alpha \geq 0 be the

prescribed exponential decay rate for the estimation error.
Step 0:

In this step, we define an estimate \^x(0) for \xi (x, 0) = x.
\bullet Define

B0 :=

\Biggl\{ 
d\sum 

i=1

\gamma iv
0
i : \kappa 0

i \leq \gamma i < \kappa 0
i

\Biggr\} 
,(4.3)

where \kappa 0
i and \kappa 0

i are such that B0 is the smallest set of such type that contains
the initial set K.

\bullet Write \xi (x, 0) =
\sum d

i=1 \beta 
0
i v

0
i . Then, the symbol related to the quantized value

of \xi (x, 0) is given by q0 = (q01 , . . . , q
0
d), constructed as follows: Define \scrC 0

i :=\Bigl\{ 
1, . . . , \lceil d\kappa 0

i - \kappa 0
i

\epsilon \rceil 
\Bigr\} 
. We define q0i , for every i \in \{ 1, . . . , d\} , as the k \in \scrC 0

i such

that

\beta 0
i \in 

\Bigl[ 
\kappa 0
i +

\epsilon 

d
(k  - 1), \kappa 0

i +
\epsilon 

d
k
\Bigr) 

(4.4)

holds true.
\bullet Denote

\^\beta 0
i := \kappa 0

i +
\epsilon 

d

\bigl( 
q0i  - 1/2

\bigr) 
.(4.5)

Our estimate for the state at the moment t = 0 is

\^x(0) :=

d\sum 
i=1

\Bigl( 
\kappa 0
i +

\epsilon 

d

\bigl( 
q0i  - 1/2

\bigr) \Bigr) 
v0i .

We could describe this step 0 in words as follows: B0 is divided into cubic boxes
with sides of length \epsilon /d, q0i encodes the position of the box in the ith dimension that
contains x, and \^x(0) is the center of this box.

Step 1:
In this step, we define an estimate \^x(t) for \xi (x, t) with 1 \leq t \leq \ell . Notice that
we generated a box

\=B0 :=

\Biggl\{ 
d\sum 

k=1

\mu kv
0
k : \kappa 0

k +
\epsilon 

d
(q0k  - 1) \leq \mu k < \kappa 0

k +
\epsilon 

d
q0k

\Biggr\} 
(4.6)

at the end of Step 0 and that x \in \=B0. Now, in this step, we generate the
smallest box aligned with the new basis \{ v1i \} di=1 that contains \=B0. This box
takes the form

\~B1 :=

\Biggl\{ 
d\sum 

i=1

\gamma iv
1
i : \kappa 1

i \leq \gamma i < \kappa 1
i

\Biggr\} 
.

To compute the bounds \kappa 1
i and \kappa 1

i , let y =
\sum d

k=1 \mu kv
0
k be an arbitrary point

in \=B0. Thus, its coordinate relative to each v1i is \gamma i = \langle 
\sum d

k=1 \mu kv
0
k, v

1
i \rangle =\sum d

k=1 \mu k\langle v0k, v1i \rangle .

14Notice that these \lambda i's are not the same as the Lyapunov exponents with multiplicity since the
vji 's are not a normal basis for the Oseledets' filtration in principle.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

3/
23

 to
 1

30
.1

26
.2

55
.1

55
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



212 GUILHERME S. VICINANSA AND DANIEL LIBERZON

Hence, to find the smallest such box, we need to take

\kappa 1
i :=min

\bigl\{ d\sum 
k=1

\mu k\langle v0k, v1i \rangle :(4.7)

\kappa 0
k +

\epsilon 

d

\bigl( 
q0k  - 1

\bigr) 
\leq \mu k \leq \kappa 0

k +
\epsilon 

d
q0k, k = 1, . . . , d

\bigr\} 
,

for every i \in \{ 1, . . . , d\} . Notice that this is a linear programming problem.
Therefore, the solution will occur at the boundary. Moreover, this set of
inequalities forms a box, and we only need to check its vertices to find the
optimal value. The upper bounds \kappa 1

i are defined similarly but with max
instead of min. Finally, we define the box

B1 :=

\Biggl\{ 
d\sum 

i=1

\gamma i\Phi 1v
1
i : \kappa 1

i \leq \gamma i < \kappa 1
i

\Biggr\} 
(4.8)

by flowing the box \~B1 forward by \Phi 1. We can write the procedure of this
step in the following itemized way.

\bullet Define B1 := \{ 
\sum d

i=1 \gamma i\Phi 1v
1
i : \kappa 1

i \leq \gamma i < \kappa 1
i \} , where \kappa 1

i is obtained as de-
scribed above, and \kappa 1

i is obtained in an analogous fashion by changing min
by max.

\bullet Write \xi (x, 1) =
\sum d

i=1 \beta 
1
i \Phi 1v

1
i . Then, the symbol related to the quan-

tized value of \xi (x, 1) is given by q1 = (q11 , . . . , q
1
d). Define \scrC 1

i :=\Bigl\{ 
1, . . . , \lceil d\Gamma 1

i e
Tp\alpha \ell \kappa 

1
i - \kappa 1

i

\epsilon \rceil 
\Bigr\} 
. We define q1i , for every i \in \{ 1, . . . , d\} , as the

k \in \scrC 1
i such that

\beta 1
i \in 

\biggl[ 
\kappa 1
i +

\epsilon 

d

e - Tp\alpha \ell 

\Gamma 1
i

(k  - 1), \kappa 1
i +

\epsilon 

d

e - Tp\alpha \ell 

\Gamma 1
i

k

\biggr) 
(4.9)

holds true.
\bullet Denote by

\^\beta 1
i := \kappa 1

i +
\epsilon 

d

e - Tp\alpha \ell 

\Gamma 1
i

(q1i  - 1/2).(4.10)

Our estimate for the state at the moments 1 \leq t \leq \ell is

\^x(t) :=
d\sum 

i=1

\^\beta 1
i \Phi tv

1
i .

Step j +1:

In this step, we define an estimate \^x(t) for \xi (x, t) with j\ell + 1 \leq t \leq (j + 1)\ell .
Notice that we generated a box

\=Bj :=
\Bigl\{ d\sum 

k=1

\mu kv
j
k :\kappa j

k +
\epsilon 

d

e - Tp\alpha j\ell 

\Gamma j
k

(qjk  - 1) \leq \mu k < \kappa j
k +

\epsilon 

d

e - Tp\alpha j\ell 

\Gamma j
k

qjk

\Bigr\} 
(4.11)

at the end of the previous step, Step j, and that x \in \=Bj . Now, in this step we
generate the smallest box aligned with the new basis \{ vj+1

i \} di=1 that contains
\=Bj . We define this smallest box as

\~Bj+1 :=

\Biggl\{ 
d\sum 

i=1

\gamma iv
j+1
i : \kappa j+1

i \leq \gamma i < \kappa j+1
i

\Biggr\} 
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 213

and obtain \kappa j+1
i and \kappa j+1

i in a manner analogous to how we obtained \kappa iq
and \kappa 1

i in Step 1. Finally, we define the box Bj+1 as the box obtained after
flowing \~Bj+1 forward by \Phi j\ell +1. We describe the procedure in the following
itemized way:

\bullet Define

Bj+1 :=

\Biggl\{ 
d\sum 

i=1

\gamma i\Phi j\ell +1v
j+1
i : \kappa j+1

i \leq \gamma i < \kappa j+1
i

\Biggr\} 
,(4.12)

where

\kappa j+1
i := min

\Biggl\{ 
d\sum 

k=1

\mu k\langle vjk, v
j+1
i \rangle : \kappa j

k +
\epsilon 

d

e - Tp\alpha j\ell 

\Gamma j
k

\Bigl( 
qjk  - 1

\Bigr) 
(4.13)

\leq \mu k \leq \kappa j
k +

\epsilon 

d

e - Tp\alpha j\ell 

\Gamma j
k

qjk, k = 1, . . . , d

\Biggr\} 
,

and \kappa j+1
i is obtained in an analogous fashion by changing min to max.

\bullet Write \xi (x, j\ell + 1) =
\sum d

i=1 \beta 
j+1
i \Phi j\ell +1v

j+1
i . Then, the symbol related to the

quantized value of \xi (x, j\ell + 1) is given by qj+1 = (qj+1
1 , . . . , qj+1

d ). Let

\scrC j+1
i :=

\Biggl\{ 
1, . . . ,

\Bigl\lceil 
deTp\alpha (j+1)\ell \Gamma j+1

i

\kappa j+1
i  - \kappa j+1

i

\epsilon 

\Bigr\rceil \Biggr\} 
.

We define qj+1
i as the k \in \scrC j+1

i such that

\beta j+1
i \in 

\Biggl[ 
\kappa j+1
i +

\epsilon 

d

e - Tp\alpha (j+1)\ell 

\Gamma j+1
i

(k  - 1), \kappa j+1
i +

\epsilon 

d

e - Tp\alpha (j+1)\ell 

\Gamma j+1
i

k

\Biggr) 
(4.14)

holds true.
\bullet Denote

\^\beta j+1
i := \kappa j+1

i +
\epsilon 

d

e - Tp\alpha (j+1)\ell 

\Gamma j+1
i

(qj+1
i  - 1/2).(4.15)

Then, our state estimate for the time instants j\ell + 1 \leq t \leq (j + 1)\ell is

\^x(t) :=
d\sum 

i=1

\^\beta j+1
i \Phi tv

j+1
i .

Theorem 4.1 shows that our previous algorithm generates a coding scheme that
allows us to reconstruct a state estimate with an exponentially decaying error and
gives an upper bound on the average data-rate that the algorithm uses.

Theorem 4.1. Let (An)n\in N be a sequence of matrices that comes from the exact
discretization of the system (2.1) with sampling time Tp > 0. Then, the algorithm
from section 4.1 gives a sequence of estimates (\^x(t))t\in Z\geq 0

such that | | \^x(t) - \xi (x, t)| | \leq 
\epsilon 
2e

 - Tp\alpha t. Further, the average data-rate of the algorithm from section 4.1 is given

by b = lim supj\rightarrow \infty 
1

Tpt\ell 

\sum t
j=0 log

\bigl( 
\#\scrC j

\bigr) 
, with \scrC j :=

\prod d
i=1 \scrC 

j
i and \#\scrC j :=

\prod d
i=1 \#\scrC j

i ,

where \#\scrC j+1
i \leq \lceil eTp\alpha \ell \Gamma 

j+1
i

\Gamma j
i

\sum d
k=1

\bigm| \bigm| \bigm| \langle vjk, vj+1
i \rangle 

\bigm| \bigm| \bigm| \rceil for j \in Z\geq 0 and \#\scrC 0
i \leq \lceil ddiam(B0)

\epsilon \rceil .
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214 GUILHERME S. VICINANSA AND DANIEL LIBERZON

Proof.
Step 0: Recall that | \^\beta 0

i  - \beta 0
i | \leq \epsilon /2d by (4.4) and (4.5). Then, | | \^x(0) - \xi (x, 0)| | 

=
\bigm\| \bigm\| \bigm\| \sum d

i=1

\Bigl( 
\^\beta 0
i  - \beta 0

i

\Bigr) 
v0i

\bigm\| \bigm\| \bigm\| \leq \epsilon 
2 and \#\scrC 0

i = \lceil d\kappa 0
i - \kappa 0

i

\epsilon \rceil \leq \lceil ddiam(B0)
\epsilon \rceil . Finally, notice

that x \in \=B0 by (4.6) and (4.5).

Step 1: We need to show that \Phi 1

\bigl( 
\=B0

\bigr) 
=

\Bigl\{ \sum d
i=1 \gamma i\Phi 1v

0
i : \kappa 0

i +
\epsilon 
d (q

0
i  - 1) \leq \gamma i <

\kappa 0
i + \epsilon 

dq
0
i

\Bigr\} 
\subset B1. Take y \in \=B0 and write it as y =

\sum d
k=1 ykv

0
k and recall that

\kappa 0
k + \epsilon 

d (q
0
k  - 1) \leq yk \leq \kappa 0

k + \epsilon 
dq

0
k for k \in \{ 1, . . . , d\} by (4.6). Now, rewriting y =\sum d

i=1(
\sum d

k=1 yk\langle v0k, v1i \rangle )v1i , we can check that \kappa 1
i \leq (

\sum d
k=1 yk\langle v0k, v1i \rangle ) \leq \kappa 1

i by the
definitions of \kappa 1

i and \kappa 1
i . Thus, \Phi 1y \in B1 by (4.8). Since y \in \=B0 was arbitrary, we

have that \Phi 1( \=B
0) \subset B1.

Now, we need to find an estimate for \#\scrC 1
i . First, let (\gamma 1

1
, . . . , \gamma 1

d
) be any ar-

gument of the minimum corresponding to the minimization used to define \kappa 1
i , and

let (\gamma 1
1, . . . , \gamma 

1
d) be any argument of the maximum corresponding to the maximiza-

tion used to define \kappa 1
i . Next, notice that

\bigm| \bigm| \kappa 1
i  - \kappa 1

i

\bigm| \bigm| =
\bigm| \bigm| \bigm| \sum d

k=1

\Bigl( 
\gamma 1
k  - \gamma 1

k

\Bigr) 
\langle v0k, v1i \rangle 

\bigm| \bigm| \bigm| \leq 
\epsilon 
d

\sum d
k=1

\bigm| \bigm| \langle v0k, v1i \rangle \bigm| \bigm| because | \gamma 1
k  - \gamma 1

k
| \leq \epsilon /d by the fact that15 \kappa 0

i + \epsilon 
d (q

0
i  - 1) \leq 

\gamma i < \kappa 0
i + \epsilon 

d for every i \in \{ 1, . . . , d\} . Thus, we get the upper bound \#\scrC 1
i \leq 

\lceil \Gamma 1
i e

Tp\alpha \ell 
\sum d

k=1 | \langle v0k, v1i \rangle | \rceil .
Further, by (4.9) and (4.10), we have that

\bigm| \bigm| \bigm| \^\beta 1
i  - \beta 1

i

\bigm| \bigm| \bigm| \leq \epsilon 
2d

e - Tp\alpha \ell 

\Gamma 1
i

. Then,

for 1 \leq t \leq \ell we have that | | \^x(t) - \xi (x, t)| | =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d

i=1

\Bigl( 
\^\beta 1
i  - \beta 1

i

\Bigr) 
\Phi tv

1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\epsilon 
2de

 - Tp\alpha \ell 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d

i=1
\Phi tv

1
i

\Gamma 1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
2e

 - Tp\alpha t, where the last inequality comes from the facts

that
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Phi tv

1
i

\Gamma 1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1 and 1 \leq t \leq \ell . Finally, notice that x \in \=B1 because
\sum d

i=1 \beta 
1
i v

1
i \in \=B1

by the fact that16 \Phi 1
\=B1 \subset B1 and by (4.8).

Step j+1: By our induction hypothesis, we have that x \in \=Bj . We need

to show that \Phi j\ell +1

\bigl( 
\=Bj
\bigr) 

=
\Bigl\{ \sum d

i=1 \gamma i\Phi j\ell +1v
j
i : \kappa j

i + \epsilon 
d
e - Tp\alpha j\ell 

\Gamma j
i

(qji  - 1) \leq \gamma i <

\kappa j
i + \epsilon 

d
e - Tp\alpha j\ell 

\Gamma j
i

qji

\Bigr\} 
\subset Bj+1. Take y \in \=Bj and write it as y =

\sum d
k=1 ykv

j
k and re-

call that \kappa j
k + \epsilon 

d
e - Tp\alpha j\ell 

\Gamma j
i

(qjk  - 1) \leq yk \leq \kappa j
k + \epsilon 

d
e - Tp\alpha j\ell 

\Gamma j
i

qjk for k \in \{ 1, . . . , d\} by equa-

tion (4.11). Now, rewriting y =
\sum d

i=1(
\sum d

k=1 yk\langle v
j
k, v

j+1
i \rangle )vj+1

i , we can check that

\kappa j+1
i \leq (

\sum d
k=1 yk\langle v

j
k, v

j+1
i \rangle ) \leq \kappa j+1

i by the definitions of \kappa j+1
i and \kappa j+1

i . Thus,
\Phi j\ell +1y \in Bj+1 by equation (4.12). Since y \in \=Bj was arbitrary, we have that
\Phi j\ell +1( \=B

j) \subset Bj+1.
Now, we need to find an estimate for \#\scrC j+1

i . First, let (\gamma j+1
1

, . . . , \gamma j+1
d

) be any

argument of the minimum corresponding to the minimization used to define \kappa j+1
i ,

and let (\gamma j+1
1 , . . . , \gamma j+1

d ) be any argument of the maximum corresponding to the max-

imization used to define \kappa j+1
i . Next, notice that

\bigm| \bigm| \bigm| \kappa j+1
i  - \kappa j+1

i

\bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \sum d

k=1

\Bigl( 
\gamma j+1
k  - 

\gamma j+1
k

\Bigr) 
\langle vjk, v

j+1
i \rangle 

\bigm| \bigm| \bigm| \leq \epsilon 
d
e - Tp\alpha \ell 

\Gamma j
i

\sum d
k=1

\bigm| \bigm| \bigm| \langle vjk, vj+1
i \rangle 

\bigm| \bigm| \bigm| because
\bigm| \bigm| \bigm| \gamma j+1

k  - \gamma j+1
k

\bigm| \bigm| \bigm| \leq \epsilon 
d
e - Tp\alpha j\ell 

\Gamma j
i

by

the fact that17 \kappa j
i +

\epsilon 
d
e - Tp\alpha j\ell 

\Gamma j
i

(qji  - 1) \leq \gamma i < \kappa j
i +

\epsilon 
d
e - Tp\alpha j\ell 

\Gamma j
i

qji . Thus, we arrive at the

bound \#\scrC j+1
i \leq \lceil eTp\alpha \ell \Gamma 

j+1
i

\Gamma j
i

\sum d
k=1

\bigm| \bigm| \bigm| \langle vjk, vj+1
i \rangle 

\bigm| \bigm| \bigm| \rceil .
15See (4.7) and the discussion below.
16To see this, look at compare (4.8) to (4.11) with j = 1.
17See (4.13) and the discussion below.
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 215

Further, by (4.14) and (4.15), we have the inequality
\bigm| \bigm| \bigm| \^\beta j+1

i  - \beta j+1
i

\bigm| \bigm| \bigm| \leq 
\epsilon 
2d

e - Tp\alpha (j+1)\ell 

\Gamma j+1
i

. Then, for j\ell + 1 \leq t \leq (j + 1)\ell we have that | | \^x(t) - \xi (x, t)| | =\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d
i=1

\Bigl( 
\^\beta j+1
i  - \beta j+1

i

\Bigr) 
\Phi tv

j+1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
2de

 - Tp\alpha (j+1)\ell 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum d

i=1
\Phi tv

j+1
i

\Gamma j+1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
2e

 - Tp\alpha t, where

the last inequality comes from the facts that18
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Phi tv

j+1
i

\Gamma j+1
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1 and j\ell +1 \leq t \leq (j+1)\ell .

Finally, notice that x \in \=Bj+1 because
\sum d

i=1 \beta 
j+1
i vj+1

i \in \=Bj+1 by the fact that
\Phi j\ell +1

\=Bj+1 \subset Bj+1 and by (4.12).

It is important to note that if \scrV = \{ v1, . . . , vd\} is a normal basis for the
Oseledets' filtration of a tempered matrix sequence (Aj)j\in N and \scrV j = \scrV , i.e.

vji = vi for j \in Z\geq 0 and every i \in \{ 1, . . . , d\} , then
\sum d

k=1 | \langle v
j
k, v

j+1
i \rangle | = 1 and

\lambda i = lim supj\rightarrow \infty 
1
j log

\Bigl( \bigm\| \bigm\| \bigm\| \Phi jv
j
i

\bigm\| \bigm\| \bigm\| \Bigr) = lim supj\rightarrow \infty 
1
j log (\| \Phi jvi\| ), i.e., the \lambda i's will be

the Lyapunov exponents with multiplicity. We know that for every \eta > 0, there
exists N \in N such that for all j \geq \lceil N - 1

\ell + 1\rceil and all i \in \{ 1, . . . , d\} , we have
that \| \Phi tvi\| \leq eTp(\lambda i+\eta )t \leq eTp(\lambda i+\delta +\eta )t for all t \geq N, and this \delta is the same as
the one used in the definition of \Gamma j

i in the algorithm from section 4.1. Further, we
know that for \eta > 0 sufficiently small, \lambda i + \delta + \eta < 0 for all \lambda i + \delta < 0 with
i \in \{ 1, . . . , d\} . Therefore, for j \geq \lceil N - 1

\ell + 1\rceil we have that max\{ 0,...,\ell  - 1\} \{ \| \Phi j\ell  - kvi\| \} \leq 
max\{ eTp(\lambda i+\delta +\eta )j\ell , eTp(\lambda i+\delta +\eta )((j - 1)\ell +1)\} .

Hence, as a consequence of our previous discussion and (4.2), if \lambda i + \delta < 0, then
we have that \Gamma j

i = eTp(\lambda i+\delta )((j - 1)\ell +1) for all j \geq \lceil N - 1
\ell + 1\rceil and all i \in \{ 1, . . . , d\} ;

otherwise, we have that \Gamma j
i = eTp(\lambda i+\delta )j\ell for all j \geq \lceil N - 1

\ell + 1\rceil and all i \in \{ 1, . . . , d\} .
Note that for \lambda i + \delta \geq 0, we have that eTp(\lambda i+\delta  - \eta )j\ell \leq \Gamma j

i \leq eTp(\lambda i+\delta +\eta )j\ell and
that eTp(\lambda i+\delta  - \eta )((j - 1)\ell +1) \leq \Gamma j

i \leq eTp(\lambda i+\delta +\eta )((j - 1)\ell +1) if \lambda i + \delta < 0. Therefore,

we have that
\Gamma j+1
i

\Gamma j
i

\leq eTp(\lambda i+\delta +2\eta )\ell independently of the sign of \lambda i + \delta . Thus, by

Theorem 4.1, we have that \#\scrC j+1
i \leq \lceil eTp(\lambda i+\alpha +\delta +2\eta )\ell \rceil for all j \geq \lceil N - 1

\ell + 1\rceil and
every i \in \{ 1, . . . , d\} . We conclude, by showing that the first \lceil N - 1

\ell + 1\rceil + 1 terms

of the sum in the definition of b go to zero, that \#\scrC j \leq 
\prod d

i=1 \lceil eTp(\lambda i+\alpha +\delta +2\eta )\ell \rceil for

all j \geq \lceil N - 1
\ell + 1\rceil , and that19 b \leq 1

Tp\ell 

\sum d
i=1 log \lceil eTp(\lambda i+\alpha +\delta +2\eta )\ell \rceil . Also, because \eta 

can be arbitrarily small, we have that b \leq 1
Tp\ell 

\sum d
i=1 log \lceil eTp(\lambda i+\alpha +\delta )\ell \rceil . Finally, by

choosing \ell large enough, b can get as close to
\sum d

i=1 max\{ \lambda i + \alpha + \delta , 0\} as desired.
Following analogous steps, we can prove a similar result for the case when the

system is known to be regular. To see this, note that under the regularity assumption,
for every \eta > 0 there exists N \in N such that eTp(\lambda i - \eta )t \leq \| \Phi tvi\| \leq eTp(\lambda i+\eta )t for
all t \geq N . Then, we notice that for \lambda i \geq 0, we have eTp(\lambda i - \eta )j\ell \leq \Gamma j

i \leq eTp(\lambda i+\eta )j\ell 

and that eTp(\lambda i - \eta )((j - 1)\ell +1) \leq \Gamma j
i \leq eTp(\lambda i+\eta )((j - 1)\ell +1) if \lambda i < 0. Next, we get the

inequality
\Gamma j+1
i

\Gamma j
i

\leq eTp(\lambda i+2\eta )\ell independently of the sign of \lambda i. Now, we replace this

inequality in our previous argument to get that b \leq 1
Tp\ell 

\sum d
i=1 log \lceil eTp(\lambda i+\alpha )\ell \rceil , and by

choosing \ell large enough, b can get as close to
\sum d

i=1 max\{ \lambda i + \alpha , 0\} as desired. These
results are summarized in Corollary 4.2.

Corollary 4.2. Let \delta > 0, \alpha \geq 0, and \ell \in N. If \scrV j = \scrV for all j \in Z\geq 0, where

\scrV is a normal basis for the Oseledets' filtration, then b \leq 1
Tp\ell 

\sum d
i=1 log \lceil eTp(\lambda i+\alpha )\ell \rceil 

18This is implied by the defining equations (4.1) and (4.2).
19These steps are similar to those used in the proof of the entropy's upper bound in Theorem

3.14.
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216 GUILHERME S. VICINANSA AND DANIEL LIBERZON

if the system is known to be regular and b \leq 1
Tp\ell 

\sum d
i=1 log \lceil eTp(\lambda i+\alpha +\delta )\ell \rceil otherwise.

Furthermore, b can be placed as close as desired to hest(\alpha ,K) by choosing \ell large
enough in the case when the system is known to be regular; otherwise, b can be placed
as close as desired to

\sum d
i=1 max\{ \lambda i + \alpha + \delta , 0\} .

Remark 4.3. The algorithm in section 4.1 reconstructs the state at the end of the
interval j\ell + 1 \leq t \leq (j + 1)\ell for j \in Z\geq 0, i.e., we need to wait until time (j + 1)\ell to
build our estimate for a time inside this interval. If we want to build an estimate at the
beginning of the interval, all we have to do is choose an arbitrary \=\delta > 0 and redefine,

for all i \in \{ 1, . . . , d\} and all j \in Z\geq 0, \Gamma 
j
i as \Gamma 

\prime 
j
i := \| \Phi j\ell v

j
i \| eTp

\=\delta (j+1)\ell , if the system is

known to be regular, or \Gamma 
\prime 
j
i := max\{ \| \Phi j\ell v

j
i \| , eTp(\lambda i+\delta )j\ell , eTp(\lambda i+\delta )((j - 1)\ell +1)eTp

\=\delta (j+1)\ell \} ,
otherwise. The reason why this works is because, by temperedness, we have that there
exists some N \in N such that we have \| \Phi tv

t
i\| \leq eTp

\=\delta (t - j\ell )\| \Phi j\ell v
j
i \| \leq eTp

\=\delta (j+1)\ell \| \Phi j\ell v
j
i \| 

for all t \geq N . This latter fact implies that
\| \Phi tv

t
i\| 

\Gamma 
\prime 
j

i

\leq 1, which is all that is needed for

the proof of Theorem 4.1 to hold. Further, notice that the only other place where \Gamma j
i

appears is in the fraction
\Gamma j+1
i

\Gamma j
i

that gives our data-rate estimate. Note, however, that

the data-rate analysis presented in the proof of Corollary 4.2 holds with the minor

change of
\Gamma 
\prime 
j+1

i

\Gamma 
\prime 
j

i

\leq eTp(\lambda i+2\eta +\=\delta )\ell for all i \in \{ 1, . . . , d\} and for all j \geq N , where N \in N.

Since \=\delta > 0 is arbitrary, our claim in Corollary 4.2 remains unchanged.

4.2. Finding (\bfscrV \bfitj )\bfitj \in Z\geq \bfzero 
online. In many practical cases, a priori knowledge of

a family (\scrV j)j\in Z\geq 0
that gives us an average data-rate close to the estimation entropy,

such as normal bases for the Oseledets' filtration as in Corollary 4.2, is unrealistic.
Recall that, because of the limit superior in Definition 3.4 of the Lyapunov exponent,
we need to know the entire sequence (An)n\in N beforehand to calculate its exponents.
Also, notice that a similar thing happens to the Oseledets' filtration. Further, both
Examples 3.7 and 3.11 should help to make these claims clearer.

Fortunately, one can estimate (\scrV j)j\in Z\geq 0
by using the switching signal. However,

knowledge of the entire switching signal is also unrealistic. In this subsection, we
assume that only the switching signal's restriction, from the beginning of time to the
current moment, is known and that the system is known to be regular. Based on this
new assumption, we show how to estimate the basis \scrV i. This will give us a causal
algorithm to estimate this family and will allow us to work under a more realistic set
of hypotheses.

Theorem 4.4. Assume that (An)n\in N is regular. Let Qj :=
\bigl( 
\Phi \top 

j \Phi j

\bigr) 1
2j for

j \in Z\geq 0, and let its eigenvalues be e\rho i(j), where i \in \{ 1, . . . , d\} and e\rho 1(j) \leq \cdot \cdot \cdot \leq e\rho d(j).
Also, let \scrV j = \{ vj1, . . . , v

j
d\} be an orthonormal basis that diagonalizes Qj , with an

order on the elements of the basis induced by the order on their corresponding eigen-
values e\rho i(j). Then the average data-rate of the algorithm from section 4.1 is upper

bounded by
\sum d

i=1 max
\Bigl\{ 
\alpha + \lambda i +

1
Tp\ell 

, 0
\Bigr\} 

if the Lyapunov exponents are simple, or\sum d
i=1 max

\Bigl\{ 
\alpha + \lambda i +

log(
\surd 
d)+1

Tp\ell 
, 0
\Bigr\} 
otherwise.

Proof. Our goal is to find an upper bound for \#\scrC j
i for j large enough. For that

purpose, we will use the upper bound obtained in Theorem 4.1. So, we need to find

upper bounds or expressions for
\sum d

k=1 | \langle v
j
kv

j+1
i \rangle | and \Gamma j+1

i

\Gamma j
i

.

First, we show that \lambda i = lim supj\rightarrow \infty 
1
j log

\bigm\| \bigm\| \bigm\| \Phi jv
j
i

\bigm\| \bigm\| \bigm\| , which appear in the def-

inition of the algorithm from section 4.1 for i \in \{ 1, . . . , d\} , are the Lyapunov

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 217

exponents with multiplicity and that they are given by \lambda i = limj\rightarrow \infty \rho i(j).

To see that, notice that \| Qjv
j
i \| = e\rho i(j) and that \lambda i = lim supj\rightarrow \infty 

1
j log

\bigm\| \bigm\| \bigm\| \Phi jv
j
i

\bigm\| \bigm\| \bigm\| =

lim supj\rightarrow \infty 
1
j log ((v

j
i )

\top \Phi \top 
j \Phi jv

j
i )

1/2 = lim supj\rightarrow \infty 
1
j log((v

j
i )

\top Q2j
j vji )

1/2 = lim supj\rightarrow \infty 
\rho i(j), where the second equality comes from the fact that the Euclidean norm and
the infinity norm are equivalent. Also, the last equality comes from the fact that any
basis that diagonalizes Qj also diagonalizes Q2j

j .
As a consequence of regularity, by the third bullet of Lemma 3.13, Qj has a

limit. Therefore, its eigenvalues e\rho i(j) have a limit as well. Hence, we conclude that
\lambda i = limj\rightarrow \infty \rho i(j) because the limit on the right exists.

Second, denote the limit of Qj by Q := limj\rightarrow \infty Qj . Because Lyapunov exponents
are simple, there exists N0 \in N such that for all j \geq N0 the eigenvalues of Qj are
simple as well. Now, a symmetric matrix with simple eigenvalues has a unique, up
to a change of signs and subject to the order indicated in the theorem statement,
orthonormal basis that diagonalizes it. This implies that for any \eta 1 > 0, there exists
N1 \in N such that

\sum d
k=1 | \langle v

j
k, v

j+1
i \rangle | \leq 1+ \eta 1 for all j \geq N1 and i \in \{ 1, . . . , d\} . To see

this, denote by \{ v1, . . . , vd\} a basis that diagonalizes Q. Now, we can change the signs
of \{ vj1, . . . , v

j
d\} if necessary, so that v

j
i converges to vi, and notice that changing the sign

does not change the absolute value of the inner products mentioned above. Because
these are orthonormal bases, there exists N1 \in N such that, for every i \in \{ 1, . . . , d\} ,
we have | \langle vjk, v

j+1
i \rangle | \leq \eta 1/d if k \not = i and | \langle vjk, v

j+1
i \rangle | \leq 1+\eta 1/d if k = i, and we proved

this claim. Notice, however, that the inequalities
\sum d

k=1 | \langle v
j
k, v

j+1
i \rangle | \leq 

\surd 
d for every

i \in \{ 1, . . . , d\} always hold, even without simplicity.
Third, again because of regularity, for an arbitrary choice of \eta 2 > 0 such that

\lambda i + \eta 2 < 0 for all \lambda i < 020 there exists N2 \in N such that for all j \geq N2

and all i \in \{ 1, . . . , d\} we have that \lambda i  - \eta 2 \leq \rho i(j) \leq \lambda i + \eta 2. Thus, \Gamma j
i :=

maxk\in \{ 0,...,\ell  - 1\} \| \Phi j\ell  - kv
j
i \| = maxk\in \{ 0,...,\ell  - 1\} \| e\rho i(j\ell  - k)\| . Then, we arrive at the in-

equalities eTp(\lambda i - \eta 2)j\ell \leq \Gamma j
i \leq eTp(\lambda i+\eta 2)j\ell if \lambda i \geq 0, and eTp(\lambda i - \eta 2)((j - 1)\ell +1) \leq \Gamma j

i \leq 
eTp(\lambda i+\eta 2)((j - 1)\ell +1) if \lambda i < 0. Then,

\Gamma j+1
i

\Gamma j
i

\leq eTp(\lambda i+2\eta 2)\ell for j \geq N2 and i \in \{ 1, . . . , d\} .
Now, recall the definition of average data-rate b =

lim supt\rightarrow \infty 
1

Tpt\ell 

\sum t
j=0

\sum d
i=1 log(\#\scrC j

i ). Denote N := max\{ N1, N2\} . So, for

j \geq N we have that \#\scrC j
i \leq \lceil eTp(\alpha +\lambda i+2\eta 2)\ell (1 + \eta 1)\rceil . Further, define

M =
\sum N - 1

j=0

\sum d
i=1 log(\#\scrC i

j). We can upper-bound the average data-rate by

b \leq lim supt\rightarrow \infty 
1

Tpt\ell 

\Bigl( 
M +

\sum t
k=N

\sum d
i=1 log(gi)

\Bigr) 
, where gi = \lceil eTp(\alpha +\lambda i+2\eta 2)\ell (1 + \eta 1)\rceil .

Notice that log(\lceil x\rceil ) \leq max\{ log(x) + 1, 0\} . To see this, we study two cases. If
x \geq 1, then 2x \geq x + 1 and log(2x) = log(2) + log(x) = 1 + log(x) \geq log(x +
1) \geq log(\lceil x\rceil ). If x < 1, then log(\lceil x\rceil ) = 0. Therefore, we can derive the upper
bound log(\lceil eTp(\alpha +\lambda i+2\eta 2)\ell (1 + \eta 1)\rceil ) \leq max\{ Tp(\alpha + \lambda i + 2\eta 2)\ell (1 + \eta 1) + 1, 0\} . Thus,

b \leq lim supt\rightarrow \infty 
1

Tpt\ell 

\bigl( 
M + (t - N)

\sum d
i=1 max \{ Tp(\alpha + \lambda i + 2\eta 2)\ell +log(1 + \eta 1) + 1, 0

\bigr\} \bigr) 
and since M and N are constants, we conclude that b \leq 

\sum d
i=1 max

\Bigl\{ 
\alpha + \lambda i + 2\eta 2 +

log(1+\eta 1)
Tp\ell 

+ 1
Tp\ell 

, 0
\Bigr\} 
. Since \eta 1 > 0 and \eta 2 > 0 can be chosen to be arbitrarily small, we

have that b \leq 
\sum d

i=1 max
\Bigl\{ 
\alpha + \lambda i +

1
Tp\ell 

, 0
\Bigr\} 
.

Finally, if we drop the simplicity assumption, we can replace log(1+\eta 1) by log(
\surd 
d)

and obtain b \leq 
\sum d

i=1 max
\Bigl\{ 
\alpha + \lambda i +

log(
\surd 
d)+1

Tp\ell 
, 0
\Bigr\} 
, and therefore in both cases, by

20Notice that \eta 2 can be chosen as small as desired.
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218 GUILHERME S. VICINANSA AND DANIEL LIBERZON

choosing \ell sufficiently large, the upper bound on b can be placed arbitrarily close to
the estimation entropy hest(\alpha ,K) as given by the last statement of Theorem 3.14.

Remark 4.5. It is important to mention what still holds without regularity and
simplicity. First, it is always true that

\sum d
k=1 | \langle v

j
k, v

j+1
i \rangle | \leq 

\surd 
d for every i \in \{ 1, . . . , d\} .

Second, without regularity, we have that for every \eta 2 > 0, there exists N \in N such

that
\Gamma j+1
i

\Gamma j
i

\leq eTp(\lambda i+\delta +2\eta 2)\ell for all j \geq N , where \delta > 0 is the same that appears

in the definition of \Gamma j
i in algorithm 12. Furthermore, from these inequalities, we

conclude that \#\scrC j
i \leq \lceil eTp(\alpha +\lambda i+\delta +2\eta 2)\ell 

\surd 
d\rceil for j \geq N and i \in \{ 1, . . . , d\} . Using

this upper bound for \#\scrC j
i and following the steps of the proof above, we conclude

that b \leq 
\sum d

i=1 max
\Bigl\{ 
(\alpha + \lambda i + \delta ) + log(

\surd 
d)+1

Tp\ell 
, 0
\Bigr\} 
. Observe that these \lambda i's aren't the

Lyapunov exponents with multiplicity. These \lambda i's are the upper growth rates of the
singular values of Qj as j goes to infinity; see, e.g., Chapter 6 of [2]. Also, it is
wellknown that these \lambda i's are less than or equal to the Lyapunov exponents when
we don't have regularity. For that reason, this algorithm might work at an average
data-rate smaller than the entropy's upper bound obtained in Theorem 3.14.

Furthermore, note that, without the regularity assumption, we need to have a
priori knowledge of either the \lambda i's or an upper bound to them. Both hypotheses are
unreasonable if we want to have a completely causal algorithm, since the \lambda i's depend
on the entire sequence (An)n\in N.

Another important observation is that the simplicity of the Lyapunov exponents
is a generic property, and we expect that most systems will have it. See, e.g., Chapter
8 of [28].

5. Sufficient conditions for regularity. In this section, we show that regu-
larity is a condition that arises naturally in many practical examples. We start by
claiming that continuous-time regular systems give rise to discrete-time regular sys-
tems after sampling. Afterward, we conclude with a class of systems that preserve
a given probability measure, such as ergodic Markov jump linear systems (MJLS).
Some of the results in this section were stated without proof in [29]. Also, we refer
the reeader to that work for results concerning the regularity and entropy of upper-
triangular systems.

5.1. Sampled continuous-time regular systems. For continuous-time sys-
tems, i.e., described by (2.1), regularity is defined in the following analogous way.
Let \lambda c(v) := lim supt\rightarrow \infty 

1
t log | | \Phi (t, 0)v| | , where \Phi (t, 0) is the state transition ma-

trix of system (2.1), be the Lyapunov exponent of system (2.1); see, e.g., Chap-
ter 3 of [2]. Furthermore, let the Oseledets' filtration and Lyapunov exponents
with multiplicities, \lambda c

i with i \in \{ 1, . . . , d\} , be defined analogously to Definition 3.6
by changing the definition of the Lyapunov exponent used. Then system (2.1) is
regular if limt\rightarrow \infty 

1
t

\int t

0
tr(\scrA \sigma (\tau ))d\tau =

\sum d
i=1 \lambda 

c
i . Finally, we define temperedness as

limt\rightarrow \infty 
1
t

\int t+1

t

\bigm\| \bigm\| \scrA \sigma (\tau )

\bigm\| \bigm\| d\tau = 0. Further, an analogue of Lemma 3.13 holds for the
continuous-time case; see, e.g., Chapter 4 of [2]. More specifically, in this subsection
we use a consequence of the analogue of the second bullet in Lemma 3.13, i.e., for tem-
pered and regular systems it holds that \lambda c

i = limt\rightarrow \infty 
log(\| \Phi (t,0)vi\| )

t , where \{ v1, . . . , vd\} 
is a normal basis for the Oseledets' filtration.

Proposition 5.1 shows that the discrete-time system that originates from sampling
a regular and tempered continuous-time system is regular and tempered. Therefore,
regularity and temperedness are preserved after sampling.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

3/
23

 to
 1

30
.1

26
.2

55
.1

55
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 219

Proposition 5.1. Consider a continuous-time switched linear system as in
(2.1). Define xn := x(Tpn) and An := \Phi (nTp, (n  - 1)Tp) for n \in N, where \Phi (t, 0) is
the fundamental matrix of (2.1), and Tp is the sampling time. If the continuous-time
system is tempered and regular, then the sequence (An)n\in N is tempered and regular.

Proof. First, note that since \lambda c(v) = limt\rightarrow \infty 
1
t log (\| \Phi (t, 0)v\| ), we can take a sub-

sequence tj = Tpj and conclude that \lambda c(v) = limj\rightarrow \infty 
1

Tpj
log (\| \Phi jv\| ) = \lambda (v)

Tp
. Thus,

\lambda c
i = \lambda i

Tp
. Notice that, by Liouville's formula, we have that log(| det(\Phi (t, 0))| ) =\int t

0
tr(\scrA \sigma (\tau ))d\tau . Finally, we conclude that

\sum d
i=1 \lambda i = Tp

\sum d
i=1 \lambda 

c
i = Tp limt\rightarrow \infty 

log
\bigl( 
| det(\Phi (t,0))| 

\bigr) 
t = limj\rightarrow \infty 

log
\bigl( 
| det(\Phi (Tpj,0))| 

\bigr) 
j . Therefore, the sampled system is regu-

lar. Now, for temperedness, notice that \| An\| \leq e
\int nTp
(n - 1)Tp

\| \scrA \sigma (\tau )\| d\tau by the Bellman--

Gr\"onwall lemma.21 Taking the logarithm on both sides, we get that log(\| An\| )
nTp

\leq 
1

nTp

\int nTp

(n - 1)Tp

\bigm\| \bigm\| \scrA \sigma (\tau )

\bigm\| \bigm\| d\tau , and after a change of variables and using the fact that tem-

peredness implies limn\rightarrow \infty 
1
n

\int n

n - 1

\bigm\| \bigm\| \scrA \sigma (\tau )

\bigm\| \bigm\| d\tau = 0, we get that lim supn\rightarrow \infty 
log(\| An\| )

n \leq 
0. For the lower bound, note that we can apply the Bellman--Gr\"onwall lemma to

conclude that \| An\| \leq e
\int (n - 1)Tp
nTp

\| \scrA \sigma (\tau )\| d\tau and get that lim supn\rightarrow \infty 
log(\| A - 1

n \| )
n \leq 0. Fi-

nally, we recall that \| A - 1
n \| \geq \| An\|  - 1, which implies that lim infn\rightarrow \infty 

log(\| An\| )
n \geq 0,

and conclude that limn\rightarrow \infty 
log(\| An\| )

n = 0.

5.2. Randomly switched systems. In this subsection, we study conditions
under which a system with random switches will give rise to a regular sequence
(An)n\in N. It might be helpful to keep the following example in mind. Consider the
modes \{ B1, . . . , Bm\} with Bi an invertible d \times d matrix for i \in \{ 1, . . . ,m\} . Assume
that the probability of choosing mode Bi is given by pi, i.e., p = (p1, . . . , pm) is a
probability mass function on the modes \{ B1, . . . , Bm\} . Repeat this process indefi-
nitely to get a sequence (Bin)n\in N. The following natural question arises: What is the
probability that this sequence is regular? To answer this question, we first need some
definitions.

Definition 5.2 (linear cocycle [28]). Let (M,B, \mu ) be a probability space, and
let f : M \rightarrow M be a measure-preserving map. Let22 L : M \rightarrow GL(R, d). The
linear cocycle defined by L over f is the transformation F : M \times Rd \rightarrow M \times Rd with
F (x, v) = (f(x), L(x)v). It follows that Fn(x, v) = (fn(x), L(fn(x)) \cdot \cdot \cdot L(x)v) for
every n \geq 1. Moreover, if f is invertible, then so is F , with inverse F - 1(x, v) =
(f - 1(x), (L(f - 1(x))) - 1v).

In this subsection, all the linear cocycles will have the following structure. Let
B := \{ B1, . . . , Bm\} \subset GL(d,R) be the set of modes. Further, let M := BN be the
set of sequences over the modes in B. Define f : M \rightarrow M to be the shift, i.e.,
f((An)n\in N) = (An+1)n\in N, and let L : M \rightarrow GL(d,R) be the projection to the first
coordinate, i.e., L((An)n\in N) = A1. We define a cylinder of rank k as a set of the form
[(An)n\in N : A1 = Bi1 , . . . , Ak = Bik ], where ij \in \{ 1, . . . ,m\} and j \in \{ 1, . . . , k\} . We
define B as the smallest \sigma -algebra that contains the cylinder sets of all ranks; see,
e.g., section 2 of [6].

Theorem 5.3 (Oseledets [1, 2, 28]). Let (M,B, \mu ) be a probability space, and
let f : M \rightarrow M be a measure-preserving map. Let L : M \rightarrow GL(R, d) be such that23

21See, e.g., Chapter 2 of [7].
22Recall that GL(R, d) is the set of d\times d invertible matrices.
23Here we use the notation log+(x) = max\{ log(x), 0\} .
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220 GUILHERME S. VICINANSA AND DANIEL LIBERZON

log+ | | L| | \in L1(\mu ). Also consider the linear cocycle defined by L over f . Further,
denote \Phi n(x) = L(fn(x)) \cdot \cdot \cdot L(x).

Then, for \mu -almost every x \in M , there are k(x) positive integers, \lambda k(x) > \cdot \cdot \cdot >
\lambda 1(x), and a filtration \{ 0\} = E1

x ( \cdot \cdot \cdot ( Ek
x = Rd such that for all i = 1, . . . , k(x),

\bullet k(f(x)) = k(x) and \lambda i(f(x)) = \lambda i(x) and L(x)(Ei
x) = Ei

f(x);

\bullet limn\rightarrow \infty 
1
n log | | \Phi n(x)v| | = \lambda i(x) for all v \in Ei+1

x \setminus Ei
x, with E1

x = \{ 0\} ;
\bullet the limn\rightarrow \infty 

\bigl( 
\Phi \top 

n (x)\Phi n(x)
\bigr) 1

2n exists.
Furthermore, if f is ergodic, the multiplicities k(x) of the Lyapunov exponents

\lambda i(x) are constant and, consequently, so are the dimensions of the subspaces Ei
x. Also,

in the ergodic case, \lambda i(x) = \lambda i is constant almost everywhere.

We denote by C the measurable set with \mu (C) = 1, on which this theorem is true,
and call it the set of regular realizations with respect to \mu .

Note that by the third bullet of Theorem 5.3 and the third equivalent condition
in the characterization of regularity given by Lemma 3.13, the elements of the set of
regular realizations are regular sequences in the previously defined sense. Therefore,
the set of regular sequences has full measure for any shift-invariant probability measure
over B.

Corollary 5.4 (Periodically Switched Systems). Let (An)n\in N \subset BN be such
that An+T = An for some T \in N and every n \in N. Then, this sequence is regular.

Proof. Let \scrN \in B, x = (An)n\in N, and f(x) = (An+1)n\in N. Define the measure
\mu (\scrN ) = 1

T

\sum T - 1
i=0 \delta fi(x)(\scrN ), where \delta x is a Dirac measure, i.e., \delta x(\scrN ) = 1 if x \in \scrN 

and \delta x(\scrN ) = 0 otherwise. This measure is trivially forward invariant under the shift,
and, because \| An\| < \infty , we have that log+ \| L\| \in L1(\mu ). Therefore, we can apply
Oseledets' theorem and conclude that there exists C \in B with \mu (C) = 1 such that all
of its realizations are regular. Notice that K := y \cup i\geq 0 f

i(x) = \cup T - 1
i=0 f i(x) \in B and

that \mu (K) = 1 by construction. Finally, notice that C\cap K = K. To see this, note that
K is a finite set, and \mu gives the same measure for each point of K; more specifically,
\mu (f i(x)) = 1

n for i \in \{ 0, . . . , T  - 1\} . Hence, if \#C \cap K < \#K, we would have that
1 = \mu (C \cap K) \leq \mu (K) - 1

n , which is a contradiction. Therefore, the sequence (An)n\in N
is regular. Also, notice that the Lyapunov exponents with multiplicity are constant
on K.

Some definitions about Markov chains are necessary for stating Corollary 5.2
next. Let P = (pij) be the m \times m transition probability matrix of a Markov chain.
Then, a stationary distribution of the chain \pi \ast = (\pi 1, . . . , \pi m) is defined as a solution
of \pi \ast \top = P\pi \ast \top , where

\sum m
i=1 \pi 

\ast 
i = 1 and \pi \ast 

i \geq 0 for all i \in \{ 1, . . . ,m\} . It is a
well-known result that if the chain is irreducible and aperiodic, then the stationary
distribution is unique. Further, we can use any \pi 0 = (\pi 0

1 , . . . , \pi 
0
m) with \pi 0

i \geq 0
for i \in \{ 1, . . . ,m\} and

\sum m
i=1 \pi 

0
i = 1 and P to define a measure on the cylinder

sets. So, we define the value of the measure \mu on a cylinder of rank k, namely
\scrN k = [(An)n\in N \in BN : A1 = Bi1 , . . . , Ak = Bik ], as

\mu (\scrN k) = \pi 0
i1pi1i2pi2i3 \cdot \cdot \cdot pik - 1ik

for every cylinder of rank k and for every k \in N. As proved by Kolmogorov, defining
a measure in the cylinders is equivalent to defining a measure; see, e.g., section 24 of
[6] or section 4 of chapter III of [14]. We call such a measure \mu the probability measure
induced by \pi 0 and P . Notice that the measure evaluated on the cylinder \scrN k is the
same as the probability of the event (Bi1 , . . . , Bik) given an initial distribution \pi 0 on
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ENTROPY, LYAPUNOV EXPONENTS, AND QUANTIZER DESIGN 221

the modes. Thus, we can think of the measure on a cylinder as being the same as the
probability of seeing a sequence given an initial distribution. Finally, note that we
can choose \pi 0 to be the stationary distribution of the chain, i.e., \pi \ast .

Corollary 5.5 (Markov jump linear systems). Let P = (pij) be the m \times m
transition matrix of an irreducible and aperiodic discrete-time, discrete-state Markov
chain that represents the switching of the modes Bi \in B. Let \pi \ast \top \in Rd be the
Markov chain's stationary distribution. Let \mu \ast : B \rightarrow [0, 1] be the probability measure
induced by \pi \ast and P . Then, the set of regular realizations with respect to \mu \ast has full
probability.

Proof. Let \scrN k = \{ (An+1)n\in N \in BN : A1 = Bi1 , . . . , Ak = Bik\} be a cylinder of
rank k, and let f((An)n\in N) = (An+1)n\in N be the shift. Notice that the probability
measure induced by \pi \ast is ergodic under the shift f ; see, e.g., Chapter 1 of [30] or
section 24 of [6]. Because \#\{ B1, . . . , Bm\} = m, we have that log+ \| L\| \in L1(\mu \ast ).
Therefore, we can apply Oseledets' theorem and get that the set of regular realizations
C of a Markov jump linear system with an irreducible and aperiodic probability
transition matrix has probability 1 under \mu . Furthermore, because of the ergodicity,
the Lyapunov exponents with multiplicity are constant, i.e., have the same value for
any realization, in the set C.

Remark 5.6. One may wonder if, given a Markov chain with an arbitrary initial
distribution \pi 0 on the modes, the result still holds. Indeed, the result does not change.
Intuitively, that is true because the distribution \pi 0Pn converges to \pi \ast . First, notice
that the Lyapunov exponents and the determinant det(\Phi n) only depend on the tail
of the sequence; i.e., if (An)n\in N is regular, then (An+T )n\in N for any T \in N is also
regular. Second, we want to prove that the measure \mu n induced by \pi n = \pi 0Pn and P
converges to the measure \mu \ast induced by \pi \ast and P on the set of regular realizations C.
To prove this, we show that \mu n converges to \mu \ast in the total variation distance, i.e., in
the distance defined by \| \mu n  - \mu \ast \| = sup\scrB \in B \| \mu n(\scrB )  - \mu \ast (\scrB )\| . Now, notice that for
a given cylinder \scrN k = [(An)n\in N \in BN : A1 = Bi1 , . . . , Ak = Bik ] of rank k, we have
that \| \mu n(\scrN k)  - \mu \ast (\scrN k)\| = \| \pi n

i1
 - \pi \ast 

i1
\| pi1i2 \cdot \cdot \cdot pik - 1ik \leq \| \pi n

i1
 - \pi \ast 

i1
\| . Therefore, the

measure \mu n converges to \mu \ast on the cylinders and, consequently, for any measurable
set. Hence, we have that limn\rightarrow \infty \| \mu n  - \mu \ast \| = 0. In particular, \mu n(C) \rightarrow 1 from
which we conclude that, with probability 1, our realizations will be regular.

Notice that Corollary 5.2 answers the question we posed at the beginning of this
subsection by saying that the sequence (Bin)n\in N is regular with probability 1. In
addition, now we can revisit Example 2.1 and determine the average data-rate needed
for the algorithm in section 4.1 to work.

Example 5.7 (Example 2.1 revisited). Notice that by the Corollary 5.2, the real-
izations of the system presented in Example 2.1 are regular with probability 1. There-
fore, the upper bound found in Example 3.15 was actually the real value of the estima-
tion entropy for our system, i.e., hest(\alpha ,K) = max

\bigl\{ 
1
2 log(0.99) + \alpha , 0

\bigr\} 
+max \{ \alpha , 0\} 

nats/sample or, equivalently, hest(\alpha ,K) = log2(e)
\bigl( 
max

\bigl\{ 
1
2 log(0.99) + \alpha , 0

\bigr\} 
+

max \{ \alpha , 0\} 
\bigr) 
bits/sample with probability 1. We can now apply the previous algo-

rithm to a randomly chosen realization of our example system. The parameters cho-
sen were \alpha = 0.05, \epsilon = 0.01, and the time horizon for our simulation was 140 time
units. Further, K = [0.5, 1.5]\times [1.5, 2.5], x(0) = (1.102, 2.104)\top . Notice that, for this
\alpha , we get hest(0.05,K) \approx 0.137 bits/sample.

One can see the simulation results of the estimation error in Figure 1 for block
lengths \ell = 1 in blue, \ell = 3 in red, and \ell = 5 in yellow. We can see that the error is
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222 GUILHERME S. VICINANSA AND DANIEL LIBERZON

Fig. 1. Evolution of error for several block lengths.

Fig. 2. Evolution of the empirical average data-rate for several block lengths.

upper bounded by the purple curve \epsilon e - \alpha t/2 for all values of \ell . Further, the empirical
average data-rate, i.e., 1

t\ell 

\sum t
j=1 log

\bigl( 
\scrC j
i

\bigr) 
, is portrayed in Figure 2, where we can see

that the data-rate decreases as the block length increases, as expected. Nonetheless,
the average data-rate is far from the upper bound derived in Theorem 4.4. That
happens because the result in Theorem 4.4 is only asymptotic.

6. Conclusion and future work. In this paper, we studied how the concepts
of Lyapunov exponents relate to the estimation entropy of a switched linear system.
Also, we discussed how the geometric concept of Oseledets' filtration is associated
with those notions. Further, we addressed the problem of finding a quantization
scheme that operates close to the minimum average data-rate for regular switched
linear systems. Furthermore, we showed how to adapt our algorithm to work close
to the optimal data-rate, even if the underlying system is not regular. Additionally,
we showed that regular switches occur in several practical conditions, including peri-
odic switching and almost all switches that come from Markov jump linear systems.
Finally, we presented simulation results.

As a future research direction, we propose to use a modified version of the present
algorithm to perform state estimation for nonlinear systems with minimum average
data-rate. Also, we plan on addressing the control of switched linear systems with
the optimal data-rate.
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