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Extensive studies in rodents show that place cells in the hippocampus have

firing patterns that are highly correlated with the animal’s location in the

environment and are organized in layers of increasing field sizes or scales along

its dorsoventral axis. In this study, we use a spatial cognitionmodel to show that

different field sizes could be exploited to adapt the place cell representation to

different environments according to their size and complexity. Specifically, we

provide an in-depth analysis of how to distribute place cell fields according

to the obstacles in cluttered environments to optimize learning time and

path optimality during goal-oriented spatial navigation tasks. The analysis

uses a reinforcement learning (RL) model that assumes that place cells

allow encoding the state. While previous studies have suggested exploiting

different field sizes to represent areas requiring different spatial resolutions,

our work analyzes specific distributions that adapt the representation to the

environment, activating larger fields in open areas and smaller fields near goals

and subgoals (e.g., obstacle corners). In addition to assessing how the multi-

scale representation may be exploited in spatial navigation tasks, our analysis

and results suggest place cell representations that can impact the robotics field

by reducing the total number of cells for path planning without compromising

the quality of the paths learned.

KEYWORDS

hippocampus, spatial navigation, multi-scale, place cells, spatial learning, spatial

cognition, reinforcement learning

1. Introduction

The study of spatial cognition requires understanding how space is represented in

the brain and how these representations are formed, used, and maintained. Although

early behavioral studies suggested the existence of a “cognitive map” in the brain

(Tolman, 1948), it was not until 1971 that any light was shed regarding possible

neural implementations.
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Since 1971, electrophysiological studies have reported

multiple types of neurons that encode spatial information

in the brain, providing possible substrates for implementing

the cognitive map. Initial studies reported the existence of

“place cells” from recordings of individual pyramidal cells in

the hippocampal substructures CA1 and CA3 (O’Keefe and

Dostrovsky, 1971). Place cells are neurons whose activation is

highly associated with the animal’s position in space, forming

compact firing fields dependent on local and distal cues but

independent of the animal’s bearings (O’Keefe and Nadel,

1978; McNaughton et al., 1996). Later on, Ranck discovered

the existence of head direction cells that encoded allocentric

orientation in the azimuthal plane resembling an internal

compass (Ranck, 1984; Taube et al., 1990; Chen et al., 1994;

Taube, 1998; Guzowski et al., 2004). As with place cells, the

activity of head direction cells is driven both by visual cues

and egocentric motion signals, the latter enabling orientation

even when moving in darkness (Cho and Sharp, 2001; Rolls,

2005). More recently, Moser and Moser identified the existence

of grid cells located in the entorhinal cortex as part of a “neural

odometry” system for rat navigation (Fyhn et al., 2004; Hafting

et al., 2005; Moser et al., 2008). Additionally, neurons have

also been reported to encode environmental boundaries (border

cells and boundary vector cells) (Savelli et al., 2008; Solstad

et al., 2008; Lever et al., 2009), objects (object cells, object-trace

cells, and obstacle-vector cells) (Deshmukh and Knierim, 2011;

Deshmukh et al., 2012; Tsao et al., 2013; Hoydal et al., 2018;

Andersson et al., 2021), and target goals and landmarks in the

environment (Deshmukh and Knierim, 2013; Sarel et al., 2017).

Previous research shows that place cells have a multi-scale

organization along the dorsoventral axis of the hippocampus,

with dorsal place cells having smaller compact fields and ventral

cells having larger, less stable fields (Jung and Wiener, 1994;

Maurer et al., 2005; Kjelstrup et al., 2008; Keinath et al.,

2014; Long et al., 2015). Initially, this difference was explained

by assigning different roles to each region, with dorsal cells

associated with spatial navigation and memory and ventral cells

with planning, learning, and emotion (Fanselow and Dong,

2010; Poppenk et al., 2013; Strange et al., 2014). In contrast,

newer studies suggest that ventral place cells are also involved

in spatial navigation (de Hoz et al., 2003; Harland et al., 2017;

Contreras et al., 2018).

In previous work, we developed a multi-scale spatial

cognition model based on the differences between the dorsal

and ventral hippocampus and the basal ganglia (Scleidorovich

et al., 2020). The model implemented a reinforcement learning

algorithm that learned a goal-oriented spatial navigation task

based on theories suggesting that dopamine implements a

reinforcement learning signal and that place cells may provide

a basis set for computing value functions (Montague et al.,

1996; Suri, 2002; Gustafson and Daw, 2011; Sutton and Barto,

2018). Experiments with the model assessed the benefits of using

different scales for navigating open-field mazes with up to two

obstacles by distributing place cell fields uniformly over space.

In this article, we update the multi-scale spatial cognition

model and use it to study its behavior in complex, obstacle-

rich environments. Particularly, we assess how the number

of obstacles affects the learning for different fields sizes, we

introduce metrics for evaluating the “relevance” of each scale

for encoding value functions in multi-scale models, and we

assess how to adapt the place cell field representation to the

environment to enable more robust and efficient navigation. We

hypothesize that areas near navigation goals and subgoals (i.e.,

obstacle corners) require high resolution and benefit from using

an increased number of smaller fields to represent space. On

the other hand, we hypothesize that areas further away require

less resolution and benefit from using fewer, larger fields that

can generalize experience quickly. As a result, we hypothesize

that distributing place cells according to the environment can

reduce the total number of cells used and the time required to

learn a navigation task without decreasing navigation efficiency

(i.e., without increasing the number of actions required to reach

the goal).

This article presents the updated spatial navigation model

and analyzes results from different experiments varying the

place cell spatial distribution methods. The experiments

were designed to investigate and assess the impact of place

cell distributions on navigation and learning depending

on environment configuration. Specifically, the experiments

were designed to study: 1) the relationship between the

number and size of uniform single-scale place fields and the

number and configuration of obstacles in the environment,

2) the contribution of different scales in uniform multi-

scale distributions based on the number and configuration of

obstacles in the environment, 3) the impact of smaller place

fields around goals and subgoals in the environment, and 4)

the distribution of non-uniform multi-scale place cell fields to

optimize all metrics simultaneously (number of cells, learning

time, and navigation efficiency).

The main contributions of this article are:

1. A study for distributing multi-scale place cell fields for

optimizing spatial navigation founded on empirical and

theoretical computational background.

2. An analysis of how different field sizes interact with obstacles.

3. A proposal of how hierarchical reinforcement learning

algorithms could leverage the proposed spatial

representation.

This work suggests a possible methodology for distributing

place cell fields in specific environments in order to exploit

their multi-scale nature in reinforcement learning algorithms.

This research is based on experimental studies in rats and

computational models developed by our group, impacting

both our understanding on place cell activiations and
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spatial navigation and learning in other domains, including

autonomous robot systems.

In the rest of this article, Section 2 presents related work,

Section 3 presents the research methods, Section 4 presents the

experimental results, and Section 5 presents the discussion.

2. Related work

This section reviews related works in spatial cognition

modeling. Our work assesses different place cell distribution

methods for navigating cluttered environments using a

reinforcement learning spatial cognition model based on

the hippocampus. Due to the diverse topics, we divide

the related works into three categories according to their

aim, including using models to explain how the multi-

scale place cell representation is formed, developing

multi-scale models for navigation, and developing models

for navigating complex and cluttered environments. In

addition the following subsections, we note that related

work by Tessereau et al. (2021) provides a survey on

spatial cognition models inspired by the hippocampus

(HC), while Madl et al. (2015) reviews cognitive models

of spatial memory, categorizing them according to the

environment’s complexity and the possibility of mapping them

to neural substrates.

2.1. Field size explanatory models

In general, multi-scale computational models have been

developed to explain the differences between dorsal and ventral

HC. In Neher et al. (2017), the authors argue that realistic

place field sizes cannot be explained by feedforward models

using grid cells as the only input. Instead, the authors propose

adding nonspatial information and using recurrent connections

between place cells to account for realistic field sizes. Similarly,

Lyttle et al. (2013) extend the work by de Almeida et al.

(2009) to assess whether nonspatial inputs can explain the

field size differences observed between dorsal and ventral

HC. As a result, their model suggests a shift in the type

of information encoded by each region. In Navratilova et al.

(2012), a model of grid cells is described based on attractor

dynamics. The model can account for phase precession and

the difference between grid cell field sizes in the medial

entorhinal cortex (MEC). Although this is not a model of the

hippocampus, the multi-scale representation in HC is believed

to depend on the MEC’s multi-scale representation. In Burgess

et al. (2000) and Barry et al. (2006), the authors present a

computationalmodel of place cells that use boundary vector cells

as input. The model can explain how place cells react to some

environmental manipulations such as environment rescalings

or obstacle additions and removals. The model attributes larger

field sizes to greater uncertainties when coding long distances

to boundaries.

2.2. Multi-scale navigation models

In another group of articles, bioinspired multi-scale models

have been developed to improve different navigation aspects. In

Chen et al. (2013, 2014, 2015), Fan et al. (2017), andHausler et al.

(2020), authors developed a multi-scale model for localization

based on the medial entorhinal cortex (MEC), using visual input

to drive layers of grid cell-like objects. The model was compared

against state-of-the-art localization algorithms from traditional

robotics showing it could outperform them by recognizing

more locations without losing precision. Additionally, the

model was used to provide insights into the number of

place field scales and sizes the brain should use. In Erdem

and Hasselmo (2012, 2014), the authors describe a spatial

cognition model mimicking preplay during sharp-wave ripples

(Ólafsdóttir et al., 2018). The model was based on the MEC

and HC and used multi-scale place cells to extend the distance

covered by preplay sequences, thus allowing the model to

plan paths farther away from goals. In Chalmers et al.

(2016), the authors describe a multi-scale spatial cognition

model inspired by the hippocampus combining model-based

reinforcement learning, preplay-like processes, and context-

driven remapping of place cells. Experiments with the model

illustrate how the multi-scale representation allowed faster

learning by reducing the computational requirements for

adapting the agent to new or changing environments. In

Llofriu et al. (2015) and Scleidorovich et al. (2020), the authors

describe reinforcement learning multi-scale models for spatial

cognition based on the difference between the dorsal and

ventral hippocampus. The models use uniform distributions of

place fields to assess the benefits of a multi-scale architecture

regarding learning time, path optimality, and the number of

cells. Experiments were performed in open mazes with few or

no obstacles.

Although our article assesses methods to improve navigation

using a multi-scale place field model, unlike the previous related

works, this paper analyzes the effect of obstacles on place field

distributions. In particular, we analyze how place fields should

be distributed to support navigation in complex and obstacle-

rich environments.

2.3. Navigation models in complex
environments

Other articles assess how the brain may support navigation

in complex and cluttered environments. In these studies, articles

follow two main (complementary) approaches. One approach

implements neurons that encode obstacle information, as
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observed in electrophysiological experiments (Savelli et al.,

2008; Solstad et al., 2008; Lever et al., 2009; Deshmukh

and Knierim, 2011; Deshmukh et al., 2012; Tsao et al.,

2013; Hoydal et al., 2018; Andersson et al., 2021), while the

other implements hierarchical reinforcement learning methods

that add subgoals to tasks (Parr and Russell, 1997; Sutton

et al., 1999; Dietterich, 2000; Barto and Mahadevan, 2003).

In Llofriu et al. (2019), the authors use a multi-scale spatial

cognition model in semi-dynamic environments. The model

incorporates “object-interactive” place fields that enable learning

different policies when obstacles are present by activating

or deactivating fields when introducing intersecting obstacles.

The model was used to reproduce rat experiments where

inactivating dorsal or ventral hippocampus impaired open-

field navigation only in cluttered environments. In Edvardsen

et al. (2020), the authors describe a spatial cognition model

capable of navigating toward goals in cluttered environments,

exploiting unexplored novel shortcuts. The model implements

grid cells to support vector navigation, border cells to allow

obstacle avoidance, and place cells to use as a topological

map along a preplay model to set subgoals when the

agent gets stuck during vector navigation. In Botvinick

et al. (2009), Botvinick (2012), and Botvinick and Weinstein

(2014), the authors analyze hierarchical reinforcement learning

methods and assess neural mechanisms that might allow

their implementation in the brain by reviewing empirical

findings. Similarly, Brunec and Momennejad (2022) analyze

human fMRI recordings to assess whether the hippocampus

and the prefrontal cortex may encode multi-scale predictive

representations, as suggested by computational models using

reinforcement learning’s successor representation. In Chalmers

et al. (2016), place cell preplay-like events are used to choose

subgoals in a hierarchical reinforcement learning model. The

resulting algorithm was used in semi-dynamic environments

and allowed reducing learning times by generalizing knowledge

across environments.

In our work, instead of neurons encoding obstacle

information or hierarchical learning, we associate obstacle

corners with subgoals and consider the benefits of adapting the

number of place fields, their position, and their size according to

the distance to the closest subgoal. This place field distribution

method may complement hierarchical reinforcement learning

models by providing a space representation that encodes

subgoals naturally.

3. Research methods

To assess our hypotheses, we performed multiple

experiments in simulated environments where a robot

had to do the same goal-oriented task, using different place

field distributions and obstacle configurations. The details are

provided in the following sections.

3.1. Task

The task consisted in having an agent (simulated rat) learn to

navigate a maze toward a single goal from multiple predefined

starting locations. Note that both the goal and the set of

starting locations varied according to the maze (see Section 3.2

for details).

Agents were given N trials to learn the shortest paths, where

each trial corresponds to navigating the maze once from each

starting location. The order of starting locations varied every

trial and was chosen by sampling a random permutation from

a uniform distribution. Each navigation began after placing the

agent at the respective starting location and ended by reaching

either the goal or a timeout. Rewards were given only at the goal,

and timeouts were defined as performing 4,000 actions without

reaching the goal. Note that the shortest paths measured 23 steps

on average, leaving ample room for the agent to find the goal.

The agents were considered to reach the goal when arriving at

any position within 8 cm from the goal (the body of a rat is about

20 cm long). Figure 1A illustrates the task.

3.2. Mazes

In total, we used 63 mazes of identical dimensions

(2.2 m by 3 m), each with its own goal, starting locations,

and obstacles. Of the 63 mazes, 60 were generated

automatically and were used to assess the effect of

obstacles over different place field sizes. Automatically

generated mazes had either 10, 20, ..., or 60 25 cm long

obstacles (10 mazes per obstacle number). The other 3

mazes were generated manually to assess non-uniform

distributions. Figure 1B shows the 3 handmade mazes (top

row) and 3 of the 60 automatically generated mazes. See

Supplementary Section 1 for a full description of the mazes

and a discussion of how adding starting locations increases

task difficulty.

3.3. Spatial navigation model

The paper describes a modified multi-scale spatial cognition

model based on Scleidorovich et al. (2020). The following

sections describe the model, highlighting the key differences

between the original and latest model. Note that, throughout the

document, indices i, j, t, and T represent place field i, action j,

time t, and trial T, respectively.

3.3.1. Overview

The model uses an Actor-Critic RL algorithm with

linear function approximation, using Gaussians as the radial

basis functions and eligibility traces (Konda and Tsitsiklis,
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FIGURE 1

Task and mazes. (A) Rats have N trials to learn the path to the goal (red dots) from multiple starting locations (green dots). On each trial, the

agent traverses the maze once per starting location in random order (path numbers). Traversals end by reaching the goal or a timeout. (B)

Sample mazes used in the experiments.

1999; Sutton and Barto, 2018). The model’s objective is

to allow an agent (real or simulated robot) to learn to

reach a goal from multiple starting locations on a maze.

At each time step, the model uses the position of the

robot Ext ∈ R
2 as input and chooses to perform one

of eight possible allocentric actions at ∈ {0, ..., 7} as

output. Action j represents moving one step (8 cm) in the

cardinal direction θj = π
4 j. The computational model is

illustrated in Figures 2A–C, and its pseudocode is shown

in Supplementary Algorithm 1. Figure 2A illustrates the non-

uniform place cell representation along with the robot and

the possible actions, Figure 2B illustrates an overview of the
actor-critic model (described in the following subsections),
and Figure 2C illustrates the place cell model (described in
Section 3.3.2).

The biological counterpart of our model’s architecture
is presented in Figure 2D. The model assumes that the
basal ganglia enable the brain to perform reinforcement

learning-like processes, using dopamine as a reinforcement
signal (Montague et al., 1996; Suri, 2002; Sutton and Barto,

2018). Additionally, we assume that place cells encode the

reinforcement learning state providing a basis for computing

value functions (Gustafson and Daw, 2011). Using these

hypotheses, the model provides the information from the

hippocampus (HC) as input to a learning module comprised of

the dopaminergic neurons of the ventral tegmental area (VTA),

the dorsomedial striatum, and the ventral striatum (nucleus

accumbens - NA). In particular, the different hippocampus

place cells project their output to a value estimating network,
with input relayed to the nucleus accumbens, VTA, and
action selection structures in the dorsomedial striatum.
Dopaminergic error signals are projected to the dorsomedial
striatum, where they are used to learn the associations
between situations (stimulus) and actions (response). All action

selection information converges on a common structure for

final action selection (Globus Pallidus), corresponding to

navigation direction.

3.3.2. Place cells

Our model represents place fields with normalized

Gaussians that serve as the basis for the linear function

approximators in the RL algorithm (Bugmann, 1998; Sutton

and Barto, 2018). To compute the activity of a place cell, each

place cell is assigned a circular field with center Exi and radius

ri. Outside the radius, the activity is set to 0. Inside the radius,

the activity is calculated by using the Gaussian kernel and then

normalizing the results by the sum of all cells, as described

in Equations (1) and (2). The place cell model is illustrated

in Figure 2C.

P′it =











0 dit < ri

e
−

d2it
r2i

ln(α)
otherwise

(1)

Pit =
P′it

∑

i P
′
it

(2)

Where

• P′it and Pit represent the activity of place cell i at time t

before and after normalization.

• dit = ||Ext−Exi|| is the Euclidean distance from Exi (the center

of place field i) to Ext (the position of the agent at time t).

• ri is the radius of place cell i.

• α is a constant (set to 0.001) that represents the value of the

Gaussian when dit = ri.

• e and ln are the exponential and natural logarithm

functions, respectively.
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FIGURE 2

Model illustration. (A) The robot in a rectangular maze with 4 differently sized place cells (P1 to P4). Color illustrates the activity of each place

cell. Arrows illustrate the 8 possible directions that the robot can take (actions). (B) The actor-critic network. Circles illustrate neurons and black

arrows illustrate information flow between layers. Blue arrows indicate the action associated to each cell. Place cells are fully connected to the

actor critic layers. The softmax and bias layers convert the actor’s output into a set of probabilities for each action. (C) Variables involved in

computing the gaussian place cell model (see Section 3.3.2). (D) Our model’s biological counterpart. Red arrows show information flow while

cells highlighted in red indicate active cells. D, NA, and VTA stand for dopamine, nucleus accumbens, and ventral tegmental area. This diagram is

an adaption of our previous model described in "A Computational Model for a Multi-Goal Spatial Navigation Task inspired by Rodent Studies" by

Llofriu et al., IJCNN, 2019, pp. 1–8.

3.3.3. Function approximation

As we use a continuous state space Ext ∈ R
2, our model uses

linear function approximators for both the actor and the critic to

generalize the information gathered from discrete observations

(Sutton and Barto, 2018). The approximators associate each

place cell i with a set of parameters Vi and Qij. Although

not precisely the same, these parameters can be, respectively,

thought of as representing the value at state Exi (i.e., the

expectancy of future reward if starting from Exi) and the actor’s

preference for performing action aj at state Exi. Using the place

cells as kernels and the parameters, we compute the current state

value and the preference for each action according to Equations

(3) and (4).

Vt =
∑

i

PitVit (3)

Qjt =
∑

i

PitQijt (4)

Where

• Vt is the state value at time t.

• Vit is the state value associated with place cell i at time t.

• Qjt is the preference for action j at time t.

• Qijt is the preference for action j associated with place cell i

at time t.

3.3.4. Action selection

After computing the preference for each action, action

selection is performed by converting the preferences into a set

of probabilities according to Equations (5) and (6) and then

sampling a random action from the resulting distribution.
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FIGURE 3

Place cell distribution type samples. (A) Uniform single-scale, 20 cm cells, 14 x 10 grid. (B) Uniform single-scale, 32 cm cells, 14 x 10 grid. (C)

Uniform single-scale, 32 cm cells, 9 x 6 grid. (D) Uniform multi-scale. (E) Locally uniform multi-scale. (F) Non-uniform multi-scale. In all

samples, the red dots indicate the feeders.

Equation (5) computes an initial probability set πjt from

the action preferences by applying the softmax function but

setting to 0 the probability of actions impeded by obstacles

(see example in Supplementary Figure S2). Although we could

allow the model to choose impeded actions, removing them

prevents the robot from performing unnecessary actions and

hitting obstacles.

πjt =
bjte

Qjt

∑

k bkte
Qkt

(5)

Where

• πjt is the probability of performing action j at time t

according to the actor’s policy.

• bjt is a Boolean variable indicating whether action j can be

performed at time t or not. In other words, bjt = 1 if the

robot can move one step in the respective direction without

hitting any walls or obstacles. Otherwise, bjt = 0.

After computing (Equation 5), we use Equation (6) to

bias the initial distribution and compute the probabilities for

sampling the next action to be performed. The bias, which we

call motion bias, increases the probability of actions that are

similar to the last action performed and decreases the probability

of dissimilar actions, as exemplified in Supplementary Figure S2.

The objective is to reduce initial runtimes by increasing the

likelihood of repeatedly choosing similar actions, thus avoiding

trajectories such as constantly moving back and forth.

π ′
jt =

b′jtπjt
∑

k b
′
kt

πkt
(6)

Where
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• π ′
jt is the probability of performing action j at time t after

adding the motion bias.

• b′jt is themotion bias for action j at time t calculated as b′jt =

BT[j − at−1], where BT is a circular array of predefined

weights for trial T given by Equation (7), and at−1 is the

action performed during the previous cycle.

As the number of trials increases, we reduce the magnitude

of the bias incorporated in the action selection process to exploit

the solutions found by the reinforcement learning algorithm. If

the bias is not reduced, the model takes longer to start choosing

the policy learned by the reinforcement learning algorithm, and

the policy may converge prematurely. To reduce the bias, we

interpolated an array of predefined weights with a uniform

distribution at the start of each trial. The interpolation is done

so that, as trials go by, the initial array exponentially decays

to a uniform distribution according to Equation (7). Note

that as the weights become uniform, the biased distribution

π ′
jt resulting from Equation (6) becomes more similar to the

unbiased distribution πjt . The predefined weights and the

exponential decay rate were constant across all simulations and

were empirically chosen to decrease initial runtimes and to

prevent the policy from converging prematurely (leading to

longer final trial paths).

BT[j] = u+ νT(B0[j]− u) (7)

Where

• BT is the circular array of biases for trial T. The array

exponentially decays to a uniform distribution.

• u is a constant (set to 8−1) representing the uniform

distribution.

• B0 is the circular array of biases used in the first trial. The

array is set so that B0[0] = 0.83, B0[1] = B0[−1] = 0.06,

and B0[j] = 0.01 for all other j.

• ν is a parameter (set to 2−1/50) that controls the array’s

decay rate.

3.3.5. Eligibility traces

We use eligibility traces to improve the algorithm’s efficiency

(Sutton and Barto, 2018). As opposed to updating one state at a

time, eligibility traces keep track of previously visited states and

assign rewards to all of them based on how long ago they were

active. Our model’s eligibility traces for the critic and the actor

are computed according to Equations (8) and (9).

As in Scleidorovich et al. (2020), the equation for the

critic (Equation 8) is an adaptation from Llofriu et al. (2019)

to normalized radial basis functions, but here, we update the

mechanism that deals with very small traces. This mechanism

reduces the number of computations per cycle by setting very

small traces to 0. The original model sets to 0 all traces that are

smaller than constant. Instead, this model introduces a counter

for each cell that keeps track of the last time it was active. Then,

using the counters, traces are set to 0 when their respective cell

has not been active for a given number of cycles.

As opposed to the critic, we replaced the actor’s traces from

Scleidorovich et al. (2020) with Equation (9). The new equation

is an adaptation of the traces for actor-critic algorithms (as

defined in Sutton and Barto, 2018) to our implementation of the

actor. As for the critic, we used the counters to set very small

traces to 0.

zit =







0 cit > CV

max{λVzi,t−1, Pit} otherwise
(8)

zijt =







0 cit > CQ

λQzij,t−1 + (δ
j
at − πjt)Pit otherwise

(9)

Where

• zijt and zit are the traces associated with place cell i, action

j, at time t for the actor and critic, respectively.

• λQ and λV are the decay rates for the actor and critic,

respectively. For our experiments, we set λQ = λV , and

all experiments were performed with and without traces

(decay rates were set to 0.7 and 0, respectively).

• δ
j
at is the Kronecker delta function that takes the value of 1

if at = j and 0 otherwise.

• cit is a counter that keeps track of the number of cycles

passed since the last time cell i was active. The counter is

set to 0 if Pit > 0, or else it is set to ci,t−1 + 1.

• CV and CQ are constant parameters (set to ln 0.0001
ln λV

and
ln 0.0001
ln λQ

, respectively) that regulate how many cycles can a

trace be active before resetting it to 0. Note that when traces

are 0, the constants also become 0.

3.3.6. RL error and learning rule

To update the learning weights associated with each place

cell for both the actor and the critic, we use the actor-critic

learning rule using semi-gradient descent and the 1-step return

bootstrap error (Sutton and Barto, 2018). The formulas for the

update are shown in Equations (10)–(13). Equation (10) shows

how to compute the bootstrap (i.e., the new approximation

of the state value computed from the old approximation and

the new data), Equation (11) shows the reinforcement learning

error, and Equations (12) and (13) show the update rules for the

critic and actor, respectively.

V ′
t =







rt if terminal state

rt + γ
∑

i PitVi,t−1 otherwise
(10)
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δt = V ′
t − Vt−1 (11)

Vit = Vi,t−1 + αVδtzi,t−1 (12)

Qijt = Vij,t−1 + αQδtzij,t−1 (13)

Where

• V ′
t is the 1-step return bootstrap.

• rt is the reward received at time t.

• γ is the discount factor (set to 0.95).

• Vi,t−1 is the value associated with place cell i computed at

time t − 1.

• δt is the reinforcement learning error computed at time t.

• Vt−1 is the state value computed at time t − 1.

• zi,t−1 and zij,t−1 are the eligibility traces computed at time

t − 1 for both the critic and actor, respectively.

• αV and αQ are the learning rates (both set to 0.4) for the

critic and actor, respectively.

3.4. Place field distributions

Throughout the experiments, we used 4 types of place field

distributions. Each type is illustrated in Figure 3 and described

in the rest of this section.

Uniform single-scale distributions (Figures 3A–C) cover

the entire maze by arranging place fields of identical size over a

single rectangular grid with identical distances between columns

and rows. To cover the maze, the corners of the grids coincide

with the corners of the mazes. Uniform layers were used to

assess how obstacles affect different field sizes and to assess

optimal cell numbers based on the number of obstacles and place

field size.

Uniform multi-scale distributions (Figure 3D) cover the

maze by combining multiple uniform layers, each covering

the entire maze. This distribution type was used to assess

whether a reinforcement learning algorithm would give

preference to small or large fields based on the distance

to obstacles.

Locally uniform multi-scale distributions (Figure 3E)

cover the maze by combining uniform layers whose

corners do not necessarily coincide with those of the

maze. Contrary to uniform multi-scale distributions,

each sublayer in a locally uniform distribution may

cover a small portion of the maze. This distribution

type was used to assess whether the results from uniform

distributions could be improved by adding additional place

cells at specific locations, namely around the goal and

near obstacles.

Non-uniform multi-scale distributions (Figure 3F) cover

the maze by placing place fields of different sizes anywhere

on the maze, i.e., they are neither restricted in size nor to

a grid in space. Non-uniform layers were created manually

based on the hypothesis that small scales are helpful in

areas where the policy changes rapidly over space (i.e., near

obstacle corners and goals) and vice versa. This distribution

type was used to show the advantages of adapting the

place field representation (field sizes and positions) to the

specific environment.

3.5. Evaluation metrics

To evaluate the model, we define the following

metrics: “extra steps ratio,” “learning time,” and “scale

contribution.” The first two metrics analyze how well

and how fast the agents learn the task, while the latter

measures how relevant a scale is for solving a task. They are

described next.

3.5.1. Extra steps ratio-path optimality

In Equation (14), we define the metric “extra steps ratio”

to assess the optimality of the paths learned by the agents.

The metric measures the number of extra steps taken to

complete a trial beyond the shortest path’s length. The concept is

illustrated in Supplementary Figure S3. To calculate the metric,

Equation (14) first subtracts the minimum number of actions

required to complete a trial from the number of actions

performed by the rat. Results are then normalized to make them

independent from the shortest path’s length. As a result, the

metric can be thought of as the number of extra steps taken per

required step.

eT =
AT −M

M
(14)

Where

• eT is the optimality ratio in trial T for a given rat

• AT is the number of actions performed by the agent during

trial T

• M is the minimum number of actions required to reach the

goal in the respective maze

Note that although, in theory, extra step ratios should

always be greater or equal to 0, results may be negative

as M in Equation (14) is only an approximation of the

shortest path, calculated using the A-star algorithm (Hart

et al., 1968) by discretizing space into a 1 mm square

grid. As a result, ratios may be smaller than 0 if the

reinforcement learning algorithm finds a better solution than the

A-star algorithm.
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3.5.2. Learning time

We define the metric “learning time” in Equation (15)

to measure how fast each agent learns. The metric measures

the number of trials that an agent requires to reach a given

extra steps ratio for the first time. The concept is illustrated

in Supplementary Figure S3. Note that with this definition,

learning times may vary greatly depending on the chosen

threshold, and there is no guarantee that the extra steps ratio

will not increase at a later trial. Nonetheless, the objective of

defining the learning time in this way is to assess the initial

behavior of the curve “extra steps ratio vs. trial” while ignoring

its asymptotic behavior.

l = argminT({eT < E}) (15)

Where

• l is the learning time of a given rat, which we define as

the first trial in which the extra steps ratio is below a given

threshold

• eT is the rat’s extra steps ratio on trial T

• E is the chosen constant threshold (set to 1)

3.5.3. Scale contributions

Scale contributions assess the involvement of each scale

in solving the task. We propose two metrics which we term

“action contribution” and “value contribution.” Both metrics

are measured after the final trial of each simulated rat.

The value contribution of a scale is defined in Equation

(16). The metric measures the magnitude of the state value

contributed by the cells of the respective scale (the numerator

in the equation). The magnitude is measured as a percentage

of the total state value function (the denominator). Since the

quotient depends on the position where it is measured, results

average multiple locations (the set X). An alternative way of

thinking about the metric is that it measures howmuch the state

value function would change by deactivating (i.e., not using) the

given scale.

CVsX =
1

|X|

∑

Ex∈X

|
∑

i : ri=s ViPi(Ex))|

|
∑

i ViPi(Ex))|
(16)

Where

• cVsX is the value contribution of scale s for a given agent

measured on the set of positions X

• | · | denotes either set cardinality or absolute values

• ri is the radius of place cell i

• Pi(Ex) is the activation of place cell i as defined by Equation

(2) but for position Ex rather than Ext

• Vi is the resulting state value associated with place cell i

after the final trial of the given rat.

The action contribution of a scale is defined by Equation

(17) and is very similar to the value contribution. As opposed to

the state value function that defines a single value per state, the

action value function defines a vector of values per state (one for

each action). Thus, the only difference between both equations

is the use of the vector norms (rather than the absolute values)

to measure the contribution.

CAsX =
1

|X|

∑

Ex∈X

||
∑

i : ri=s
EQiPi(Ex))||

||
∑

i
EQiPi(Ex))||

(17)

Where

• cAsX is the action contribution of scale s for a given agent

measured on the set of positions X

• | · | denotes set cardinality

• || · || denotes the Euclidean norm

• ri is the radius of place cell i

• Pi(Ex) is the activation of place cell i as defined by Equation

(2) but for position Ex rather than Ext

• EQi is the resulting vector of action values associated with

place cell i after the final trial of the given rat.

Note that in the definitions above, both equations depend

on the set X where the metrics are evaluated. Our experiments

consider different sets, but the details are left to the

respective sections.

4. Experiments and results

In total, we performed 4 experiments with the model using

the SCS simulator1. The code for this project can be found on our

lab’s GitHub repository2. Parallel simulations were performed

using CIRCE, which is one of University of South Florida’s

computer clusters3.

The experiments described in this section present variations

in place cell representations adapted to different environments.

Results are analyzed in terms of the previously described

evaluation metrics. We start by analyzing single-scale uniform

layers and then non-uniform multi-scale distributions. Note

that although all experiments were performed with and without

eligibility traces (with decay rates set to 0.7 and 0, respectively),

results were similar for both settings, and thus we only report

results without traces unless otherwise stated.

1 SCS-https://github.com/biorobaw/scs.

2 Multiscale project-https://github.com/biorobaw/Multiscale-V2.

3 CIRCE-https://wiki.rc.usf.edu/index.php/CIRCE_Hardware.

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2022.1039822
https://github.com/biorobaw/scs
https://github.com/biorobaw/Multiscale-V2
https://wiki.rc.usf.edu/index.php/CIRCE_Hardware
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Scleidorovich et al. 10.3389/fncom.2022.1039822

4.1. Experiment 1-field size vs. obstacles

4.1.1. Objective

The goal of experiment 1 is to analyze the effects of

single-scale place field representations, i.e., place field sizes, on

different obstacle configurations. We evaluate learning times,

path optimalities, and the optimal numbers of cells, for single-

scale uniform distributions on variations in the number of

obstacles. We hypothesize that, 1) as the number of obstacles

increases, both learning times and extra step ratios will also

increase, 2) higher cell numbers will result in slower learning

but will reach better results (lower extra step ratios during final

trials), 3) optimal distributions will require more cells at higher

obstacle densities, and 4) compared to larger place fields, the

results obtained with smaller fields will be more robust against

changes in the number of obstacles.

4.1.2. Parameter configuration

Experiment 1 evaluates the model using 97 uniform single-

scale place cell distributions in 61 mazes with 7 different

numbers of obstacles.

The number of obstacles used in the mazes for this

experiment varied from 0 to 60 in increments of 10. For each

non-zero obstacle number, 10 mazes were randomly generated

by placing obstacles in different configurations as described in

Section 1. Sample mazes are illustrated in Figure 1B.

Single-scale uniform distributions involved variations in

the number of cells and the field sizes. Field radii ranged

from 4 to 56 cm in increments of 4 cm. The total number

of cells was controlled by modifying the number of columns

in the uniform grid. Columns varied between 5 and 40 in

increments of 5, generating distributions between 35 and 2,200

cells. Additionally, we tested the minimal coverage distribution

(MCD) of each scale corresponding to the least number of

cells necessary to cover the maze. Figures 3A–C illustrate 3

sample distributions. See Supplementary Section 2.1 for a full

description of all uniform distributions used.

To generate statistical data, we simulated 135,800 agents in

total with 100 agents per group, i.e., 100 agents per distribution,

per number of obstacles, per trace. For each condition with

non-zero number of obstacles, 10 agents were simulated for

each obstacle configuration to avoid biases introduced by any

specific configuration.

4.1.3. Results-learning time

Figures 4 (top row) and 5 show sample learning times

achieved by the agents using the single-scale uniform

distributions. Figure 4 illustrates the effects of varying the

number of cells and the scale, while Figure 5 focuses on the

effects of changing the number of obstacles. Only a subset

of the results are shown as the experiment compared 1,358

parameter configurations. More detailed results are shown in

Supplementary Figures S5, S6.

As observed in Figure 4, results show that increasing either

cell numbers or field sizes increased learning times. This was

true in all cases except when using 35 cells or less in obstacle-

rich environments. In such circumstances, increasing either the

scale or the number of cells reduced learning times. Based on the

results discussed in Section 4.1.4, we attribute these exceptions to

difficulties in learning when using very sparse representations.

In other words, it is not that very sparse representations yield

slower learning but that they are unable to learn efficient paths

in cluttered environments.

When comparing factors, one key observation is that the

number of cells was more relevant than the field size in

determining learning times. This is best observed in Figure 4,

where the lowest learning times were obtained by reducing

the number of cells to 140. Although reducing field sizes

also led to shorter learning times, the reduction due to the

number of cells was a larger order of magnitude. Importantly,

this observation provides motivation to reduce the number of

cells when constructing non-uniform layers and thus reduce

learning time.

Considering obstacles, our first observation is that adding

obstacles made more evident learning time differences between

different scales and cell numbers. For example, when using

2,200 cells in Figure 5, the difference in learning time between

scales 8 and 56 was about 250 trials in empty mazes but about

2,000 in mazes with 60 obstacles. This observation highlights the

importance of testing the model in cluttered environments and

suggests that differences in dorsal and ventral place cells should

be assessed in complex rather than simple environments.

Our second observation regarding obstacles is that the

learning times of larger scales were more affected by the

number of obstacles than smaller scales. Figure 5 shows that

learning times consistently increased when switching from 0

to 10 obstacles, but results varied for higher obstacle numbers.

For smaller scales, such as scale 8, learning times remained

unchanged. For larger scales, such as scale 56, learning times

increased at a rate proportional to the field size. Although

the number of cells also modulated the rate, differences

between scales were observed regardless of the number of cells.

Consequently, results suggest that smaller fields are better suited

for cluttered environments than larger fields.

See Supplementary Section 2.2 for a discussion of whether

longer learning times due to obstacles could be explained by

longer exploration times during initial trials.

4.1.4. Results-extra steps ratio

The bottom row of Figure 4 shows sample extra step ratios

achieved by the agents during the final trial of the experiment.

The figure illustrates the effects of varying the number of cells

and the scale. As for the learning times, the figure only show

a subset of the results due to the large number of parameter
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FIGURE 4

First experiment results as a function of the field size. The figure compares the learning time (top row) and extra step ratio (bottom row) box

plots of seven field sizes for different cell numbers (columns) when using 60 obstacles. For 24 and 140 cells, some field sizes are missing as the

resulting layers would not cover the entire maze.

FIGURE 5

Learning time as a function of the number of obstacles in the first experiment. The figure compares the learning time box plots of seven

obstacle numbers for different field sizes (columns) and cell numbers (rows).

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.1039822
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Scleidorovich et al. 10.3389/fncom.2022.1039822

configurations tested. Additionally, although we plotted the

extra step ratios vs. the number of obstacles, results are very

similar to its learning time counterpart. Thus, we will assess the

results but omit the extra figure. More detailed results are shown

in Supplementary Figures S8, S9.

Although we hypothesized that higher place cell numbers

would lead to better extra step ratios during final trials, Figure 4

shows this was not the case. Instead, optimal cell numbers

varied according to the scale and the number of obstacles (see

Supplementary Section 2.3 for details). With few exceptions, the

best results were achieved using 560 cells or less. Increasing the

number of cells above the optimum gradually increased the extra

step ratios. On the other hand, reducing the number led to sharp

deterioration. This is best exemplified by scale 40 in Figure 4. In

mazes with 60 obstacles, scale 40 reached a peak performance

of about 0.1 extra steps ratio at 140 cells. Although adding cells

slowly increased the ratio, removing cells increased it quickly to

its worst value reached at 35 cells.

We attribute the existence of a ‘sweet spot’ in the number

of cells to the following two factors. 1) The fast deterioration

of extra step ratios when using very few cells suggests that very

sparse distributions have difficulties learning the optimal paths.

This is further evidenced by noting that sparse distributions were

more sensitive to the number of obstacles than distributions with

more cells (see Supplementary Figure S8). 2) Longer learning

times can explain the increased extra step ratios when using

more cells. Taking scale 40 from Figure 4 as an example, if

we assume that all distributions with more than 140 cells can

learn the optimal paths, the only difference would be the time

it takes to learn them. Results from Section 4.1.3 showed that

increasing the number of cells led to longer learning times.

Thus, if a layer has not yet finished learning, adding cells

would lead to larger final extra step ratios. Combined, these

observations imply that larger place cell numbers allow for

better representation and learning of the paths (i.e., shorter

learning times and extra step ratios), but adding more cells

than required slows learning and increases final extra step

ratios. These observations are important because they suggest

that optimal distributions should use the least number of cells

required to solve a maze.

As observed in Figure 4, increasing field sizes led to

results that varied according to the number of cells. When

using 560 cells or more, final extra step ratios increased

proportionally to the field size, with the best results achieved

by the smallest scales. When using 35 cells or less, results

were inverted, with larger scales outperforming smaller scales.

For intermediate cell numbers, results varied between the two

extremes, typically achieving the best results within the 3

smallest scales. Similar to the learning times, adding obstacles

also increased the difference between scales. Also, note that

distributions using very few cells were the most affected by

adding obstacles, abruptly increasing their extra step ratios (see

Supplementary Figure S8).

Lastly, when assessing the effect of the number of obstacles,

results were very similar to those obtained with the learning

times. The extra step ratios increased for large scales but

remained unchanged for small scales. The only difference with

the results shown for the learning times is that there is no jump

in extra step ratios between the 0 and 10 obstacle conditions.

Due to the similarity between plots, we believe that the larger

extra step ratios were caused by the longer learning times and

not by higher difficulty representing the optimal paths.

4.2. Experiment 2-scale contribution

4.2.1. Objective

For the second experiment, we want to assess the

“importance” of each scale for encoding the final policy in a

uniform multi-scale model. By “importance,” we mean “how

much does the final policy and value functions depend on a

given scale?.” To answer the question, we definedmetrics “action

contribution” and “value contribution” in Section 3.5.3. Each

metric quantifies how much the state and action value functions

would change when deactivating (not using) a given scale. The

objective of the experiment is to show that smaller scales are

more relevant for encoding areas near decision points, while

larger scales are more relevant for encoding open spaces far from

decision points.

Given the contribution metrics, we hypothesize that: 1) the

contribution of smaller scales will increase near subgoals (i.e.,

places where the agent must change directions) and decrease

farther away, 2) the contribution of larger scales will decrease

near subgoals and increase farther away, and 3) as the number

of obstacles increases, the number of decision points will also

increase, leading to the same prediction as in 1. These hypotheses

are based on the idea that larger fields are useful to reduce

the number of cells required, while smaller scales are useful to

encode details.

4.2.2. Parameter configuration

For experiment 2, we assessed the contributions of all scales

in a single uniform multi-scale distribution. The distribution

is illustrated in Figure 3D and combines the minimal coverage

distributions of scales 4, 16, and 52 from experiment 1.

Experiment 2 was performed in all mazes from experiment

1 except for the empty maze. As a result, we simulated 10 agents

per maze in 60 obstacle-rich environments or, alternatively, 100

agents per obstacle number.

For each rat, contribution metrics were evaluated over two

sets of positions: “All positions” from a rat’s final trial, and

“Turns only,” final trial positions where the agent made a turn

(i.e., where it changed directions). The objectives for choosing

these sets were two-fold. First, we want to avoid measuring the

contribution in areas that are irrelevant to the final trial. Such
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FIGURE 6

Scale contributions of the multi-scale uniform distribution used in experiment 2. The plots show each scale’s action and value contributions

(first and second rows, respectively) for three obstacle numbers. The first and second columns show the contributions measured in the set of all

positions and in the set of turns, respectively. The third column shows the difference (subtraction) between the results of the second and first

columns. The red dotted line highlights the 0 y-coordinate.

areas may not be optimized by the algorithm and thus may

contain irrelevant information. Second, the set of turns should

closely reflect the policy’s decision points as agents explore little

after convergence. As a result, we expect that contributions in

the set of turns will increase for smaller scales and decrease for

larger scales when compared to the set of all positions.

4.2.3. Results

The results of the experiment are shown in Figure 6. The

figure shows the action and value contributions for each scale

for sample obstacle numbers. The plots in the first two columns

show the results in the set of all positions and the set of turns,

respectively. The third column shows the subtraction between

the contributions of both sets, highlighting their difference.

Positive numbers indicate that the contribution was higher in

the set of turns than in the set of all positions and vice versa.

Results show that the contribution differences between both

position sets varied across scales. As hypothesized, contributions

increased for smaller scales (4 and 16) and decreased for

larger scales (52), suggesting that smaller scales become more

relevant near decision points and vice versa. This pattern

was consistent for both metrics for all obstacle numbers.

Additionally, although we expected that the contributions of

scale 4 would increase more than scale 16, this was only true for

the value contribution metric.

When assessing the effect of increasing the number of

obstacles, there were no consistent increases or decreases in the

contribution of smaller and larger scales. Since this contradicted

our hypothesis, we decided to investigate further.

First, we performed Kruskal Wallis tests for each scale

and position set to assess statistical differences between the

number of obstacles. After confirming statistical differences (p

<0.05), we followed the results with Dunn tests using Bonferroni

corrections. Results from the Dunn tests showed that most

distributions were not significantly different. When significant

differences were present, we did not find any patterns except

for the following. Value contributions for scales 4 and 16 could

be partitioned into one group with 40 or fewer obstacles and

another with 50 or more. For that partition, differences were

significant across groups but not within groups.

Since most differences between obstacle numbers were not

significant, we plotted the optimal path lengths, the extra

step ratios during the final trial, and the number of turns

performed by the agents. Our hypothesis assumed that adding

more obstacles would increase the number of turns made by

the agents, but the results indicated this was not the case.

Supplementary Figure S11 shows that the length of the optimal

paths is the same for 58 out of the 60 mazes. Also, for mazes

with 50 and 60 obstacles that have significantly higher numbers

of turns (p <0.05 in Dunn test), the extra step ratios were also

significantly higher. Taking all into account, rather than the

optimal policies requiring more turns, our results suggest that

the increase in turns is due to the multi-scale model having

higher difficulties learning optimal policies in these obstacle-

rich environments.
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4.3. Experiment 3-locally uniform layers

4.3.1. Objective

In the third experiment, we wanted to assess whether

learning times and extra step ratios could be jointly optimized

using locally uniform layers. The idea is to cover the maze using

large uniform layers to reduce learning times and to add smaller

place cells at strategic regions to reduce the extra steps.

Here we hypothesize that adding additional place fields

around subgoals can reduce extra step ratios without

significantly increasing learning times. The underlying

idea is that high place cell densities are not required throughout

the whole maze but only in specific regions.

4.3.2. Parameter configuration

Experiment 3 was performed in mazes 0 and 1 (both

illustrated in Figure 1B). Maze 0 is an empty maze chosen for

its simplicity. In contrast, maze 1 includes two walls that divide

the maze in halves and connect them through a small gap, thus

generating an extra non-rewarded subgoal. Maze 1 was designed

to maximize the difficulty for large scales by creating an area

where high precision is required to solve the maze.

To assess our hypothesis, experiment 3 compares single-

scale uniform distributions before and after adding two extra

layers of place cells. We use the term base layers to refer

to the uniform distributions before adding subgoal cells. Base

layers include the 10 minimal coverage distributions used

in experiment 1 with field sizes between 20 and 56 cm.

Distributions using smaller or fewer place cells were excluded

as the idea of the base layers is to cover the maze with few

larger cells.

For each base layer, two locally uniform distributions were

generated. The first locally uniform distribution added a 3 x 3

grid of 16 cm place cells centered around the goal. The second

layer added an extra 4 x 4 grid of 16 cm place cells centered

around the gap in maze 1. We use the terms “goal distributions”

and “goal and gap distributions” to refer to the respective

locally uniform distributions. In contrast to base layers and goal

distributions that were tested in mazes 0 and 1, goal and gap

distributions were only tested in maze 1 as they were designed

explicitly for this maze. In total, 30 distributions were assessed

in this experiment. Sample distributions of each type are shown

in Figure 7.

In total, 100 agents were simulated for each distribution

and maze.

4.3.3. Results

Figures 8, 9 show the experiment results, comparing the

extra step ratios and learning times before and after adding

the additional layers of place cells. For this experiment, results

are shown with and without eligibility traces as qualitative

differences were observed.

For maze 0, results show that adding 9 place cells around the

goal effectively reduced the extra step ratios during the final trial

without increasing the learning times. Exceptions were found for

scales 20, 36, 48, 52, and 56 only when using traces. For scale 20,

adding cells did not improve the extra step ratios as they were

already optimal. On the other hand, for scales 36, 48, 52, and

56, extra step ratios were significantly decreased at the expense

of longer learning times which took about 10–15 more trials to

reach an extra steps ratio of 1.

For maze 1, results were similar, but the main difference was

that the agent had trouble learning optimal solutions with most

of the original layers, as seen in Figure 8. This was expected

as the maze was explicitly designed to be more challenging for

larger scales. Note that if we only looked at the results without

traces, we could think that mid and large scales were incapable

of learning optimal solutions to the maze, but this was not the

case, as illustrated by the results using traces. Also, contrary

to intuition, the largest scales reached smaller optimality ratios

than medium scales. Upon investigation, this is likely due to the

automatic placement of cells in uniform layers.

As for maze 0, adding cells around the goal in maze

1 significantly reduced extra step ratios without leading to

increased learning times. When not using traces, exceptions

were found for scales between 28 and 44 that correspond with

the scales that had trouble learning the maze, as seen in Figure 8.

Adding more cells around the gap in maze 1 also decreased

final extra step ratios but at the expense of slower learning

times (see Figures 8, 9); nevertheless, the increased learning time

was still shorter than uniform layers with higher numbers of

cells. Exceptions were found only for scales 20 and 24. For

scale 24, after adding cells, there was no statistical difference

in extra step ratios during the final trial, but the ratio was

already near-optimal. On the other hand, although the ratio

increased for scale 20, we would argue that this is likely due to

the extended learning time as the difference almost disappears

when using traces.

Supplementary Section 3 assesses qualitative effects of

adding cells around the goal and gap.

4.4. Experiment 4-non-uniform
distributions

4.4.1. Objective

In the last experiment, we wanted to assess the ability of the

model to jointly optimize the number of cells, learning times,

and extra step ratios using non-uniform place cell distributions.

In particular, we hypothesized that non-uniform distributions

could achieve simultaneous optimizations using field sizes

proportional to the distance to subgoals (decision points).
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FIGURE 7

Sample distributions used for in experiment 3. (A) Base layer distribution. (B) Goal distribution. (C) Goal and gap distribution.

FIGURE 8

Extra step ratios comparing uniform with their respective locally uniform layers after adding cells at the goal and the gap. Rows show results for

mazes 0 and 1, respectively. Columns show results with and without traces, respectively. Note that the y axis uses a logarithmic scale.

Our hypothesis is based on the idea that larger scales

are more relevant for encoding areas where the policy

changes slowly over space, while smaller scales are more

relevant for encoding areas where the policy changes fast.

Within information theory (Reza, 1994), this can be intuitively

thought of in terms of compression rates and amounts of

information. Places where the policy changes slowly have little

information and can be encoded using a few larger cells.

On the other hand, places where the policy changes fast

encode more information and require more cells. Previous

experiments suggest that in such regions, place cells should

be smaller to reduce learning times and prevent incorrect

policy generalizations.

Furthermore, we also suggest that field sizes in

optimal distributions should be modulated by the distance

to subgoals. Evidence can be found by observing that

the rate of change of the optimal policy is indirectly

proportional to these distances. The idea is illustrated in

Supplementary Figure S13, where the further away from

the next subgoal, the less the policy changes within a
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FIGURE 9

Learning times comparing uniform layers with their respective locally uniform layers after adding cells at the goal and the gap. Rows show

results for mazes 0 and 1, respectively. Columns show results with and without traces, respectively.

given region. This can be explained considering that the

optimal policy in a circle centered at the next subgoal

would move the agent in a straight line (radially) toward

the subgoal. Thus, the rate of change would be equivalent

to the circle’s curvature, which is inversely proportional

to the radius (Pressley, 2001) (i.e., to the distance to

the subgoal).

4.4.2. Parameter configuration

To assess our hypothesis, we compared the learning time,

extra step ratios, and the number of cells of the model using

uniform and non-uniform distributions. Uniform distributions

included the 14 minimal coverage distributions used in

experiment 1.

Non-uniform distributions were manually designed for each

maze assuming field sizes should be proportional to the distance

to possible subgoals. Possible subgoals include the goal itself

and non-convex vertexes in the maze (vertexes whose interior

angle is greater than 180 degrees). The presence of non-convex

vertexes indicates that not all pairs of points can be connected

through a straight line. In such cases, the shortest path between

points consists of a polyline passing through any number of non-

convex vertexes, thus the reason for considering them possible

subgoals. In our mazes, the non-convex vertexes correspond to

the corners of the obstacles. As an example, the gap in maze 1

is considered a subgoal since it is close to the corners of the

walls. As such, an agent must pass through the gap to move from

one half of the maze to the next. Based on these ideas, non-

uniform distributions were generated by placing smaller place

fields around the goal and obstacle corners and then recursively

surrounding them with larger fields.

Since non-uniform distributions were manually generated,

we only assessed 3 non-uniform layers for 3 specific mazes.

Figure 10 illustrates the distributions in their respective mazes.

In total, 100 agents were simulated for each distribution

and maze.

4.4.3. Results

Figures 11, 12 show the extra step ratios and

learning times, comparing the results of uniform

and non-uniform distributions for each maze. As in

experiment 3, qualitative differences were observed when

using traces. Thus, we included the results with and

without traces.

As observed in Figure 11, non-uniform distributions

reached the lowest extra step ratios using fewer cells than

the best uniform layers of each case. This was true for all

mazes and traces. For uniform layers, the best results use

at least 117 cells on maze 0 and 165 on mazes 1 and 2. In

contrast, non-uniform layers used 38 cells on maze 0, 79

on maze 1, and 128 on maze 2. Note that as the number

of obstacles increases, the difference in the number of cells

becomes smaller. This is expected as more obstacles imply

more areas where higher place cell densities are required.
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FIGURE 10

Handmade non-uniform distributions used in experiment 4 for each maze. (A) Maze 0, (B) Maze 1, and (C) Maze 2.

FIGURE 11

Extra step ratios comparing uniform distributions with non-uniform distributions. Column shows the results for mazes 0, 1, and 2. Rows show

the results with and without traces. Layers are sorted according to the number of cells (shown in parenthesis in each layer’s name). Prefixes “u”

and “nu” indicate uniform and non-uniform distributions; also, non-uniform distributions are highlighted in red. For uniform distributions, the

two digits following the prefix indicate the scale.

Also, even though by maze 8, the difference in the number

of cells is approaching 0, it must be noted that multi-scale

distributions were designed following the ideas from Section

4.4.2, and it is likely that optimized distributions would use

fewer cells.

When assessing learning times, we again found that the total

number of cells is the main factor contributing to the results.

This can be observed in Figure 12, where the learning time

decreases monotonically with the total number of cells with

few exceptions.

Since the resulting learning times can be sorted by the

number of cells, not only did non-uniform layers reach the

lowest extra step ratios, but also, they did it faster than

all uniform layers that achieved similar extra step ratios.

To show this, we plotted the extra step ratios vs. trial in

Supplementary Figure S14. Although layers with fewer cells had

lower learning times, the solutions found by them had higher

extra step ratios, and in some cases, they even had issues

learning, as previously exemplified by agents getting stuck

in maze 1.
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FIGURE 12

Learning times comparing uniform distributions with non-uniform distributions. Column shows the results for mazes 0, 1, and 2. Rows show the

results with and without traces. Layers are sorted according to the number of cells (shown in parenthesis in each layer’s name). Prefixes “u” and

“nu” indicate uniform and non-uniform distributions; also, non-uniform distributions are highlighted in red. For uniform distributions, the two

digits following the prefix indicate the scale.

5. Discussion

In this article, we investigated how to distribute place

fields in cluttered environments to simultaneously optimize the

learning time and path distance metrics while also reducing

the total number of activated place cells. The experiments

presented in the paper assessed uniform, non-uniform, single-

scale, and multi-scale place field distributions. Results suggest

that non-uniform multi-scale place field representations can

simultaneously optimize the different metrics by assigning field

sizes proportional to their distance to the closest subgoal. As

part of the study, we made the following observations when

assessing the effects of different numbers of obstacles: 1) When

using single-scale distributions, all scales could solve the mazes

provided sufficient cells were used. 2) Increasing the number

of obstacles led to longer learning times and required higher

numbers of cells on average. 3) The results of small fields were

more robust against changes in the number of obstacles than

the results of large fields. 4) Increasing the number of obstacles,

the number of cells, or the field sizes led to longer learning

times, but the number of cells was the most significant factor

between them. 5) Optimal cell numbers for single-scale uniform

models varied according to the maze and field size and were

generally achieved using nearly the minimum number of cells

to cover the maze for all scales. Using fewer cells destabilized

learning and led to longer final paths while using more cells

increased learning times also leading to less optimal solutions.

A more in-depth discussion of the results is described in the

following subsections.

5.1. Experiment 1

When assessing optimal numbers of cells, each scale had

a “sweet spot” that minimized final extra step ratios. The

sweet spot was generally achieved using just enough cells

to learn the task. Using fewer cells sharply disrupted the

layers’ ability to represent paths accurately and destabilized

learning. On the other hand, using more cells increased

learning times and, as a result, final extra step ratios. For

most scales, the best results were achieved using between

140 and 300 cells. Exceptions included very small fields that

could, otherwise, not cover the maze. Also, adding obstacles

slightly increased the optimal number of cells when averaging

all scales.

When comparing the different field sizes, results suggest that

smaller scales are better than larger scales at encoding cluttered

environments and optimizing extra step ratios. Evidence comes

from the following. First, smaller scales generally reached lower

extra step ratios than larger scales when using the same number

of cells. Second, results for smaller scales were more robust

than larger scales when adding obstacles. That is, although

adding obstacles increased the learning time and final extra

step ratios of all scales, the increase was higher for larger
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scales than for smaller ones. Increasing the number of cells

only made the differences more visible. Additionally, results

after adding obstacles remained nearly unchanged for the

smallest scales.

As opposed to the extra steps, larger scales were more

useful than smaller scales for reducing learning times by

encoding large obstacle-free regions. Results showed that the

number of cells was the most critical factor in minimizing

learning times. As a result, although smaller scales allow

for faster learning than larger scales when using the same

number of cells, larger scales can reduce the number of cells

required to cover an environment and can thus reach shorter

learning times.

When combined, results suggest the use of smaller cells

to encode obstacle cluttered areas and few larger cells to

encode open fields. These predictions go in hand with other

computational models that suggest place fields should account

for the environment’s layout (Gustafson andDaw, 2011; Harland

et al., 2021). This is further supported by biological experiments

that found some place fields activate or deactivate when obstacles

are introduced (Muller and Kubie, 1987; Rivard et al., 2004) and

by the discovery of boundary and object vector cells in the brain

(Lever et al., 2009; Hoydal et al., 2018) that are thought to drive

place cell activity (O’ Keefe and Burgess, 1996; Burgess et al.,

2000; Hartley et al., 2000).

5.2. Experiment 2

Experiment 2 assessed the contributions of different scales in

a uniform multi-scale model. As hypothesized, results showed

that both the action and value contributions increased near

decision points for smaller scales and decreased for larger scales.

As a result, the experiment motivates the idea that non-uniform

distributions should use smaller scales near decision points and

larger scales when far.

When adding obstacles, we did not observe significant

differences. Although this contradicts our original predictions,

our premise was that more obstacles meant more turns (decision

points). To our surprise, this was not the case, as there were

no statistical differences in the number of turns made by the

robot in the different mazes. As a result, we found that randomly

placing 10 to 60 small obstacles in a maze did not significantly

increase the difficulty of representing the final policy and

value functions.

5.3. Experiments 3 and 4

Experiments 3 and 4 assessed two types of non-uniform

place field distributions. The objective was to assess whether

the distributions could jointly optimize the number of cells, the

learning time, and the final extra steps ratio.

Experiment 3 used locally uniform layers and acted as

a proof of concept. The experiment assessed whether the

final extra step ratios of uniform layers could be reduced by

adding a few fields at key decision points without extending

the learning times. Despite its success in improving the

extra step ratios, this method did not result in optimal

solutions. Furthermore, consistent with experiment 1, adding

cells significantly increased learning times only when the

resulting distribution had substantially more cells (percentually)

than the original distribution.

Experiment 4 proposed that field sizes in optimal

distributions should be proportional to the distance to the

closest subgoal. Subgoals include the goal itself and places

where the robot is forced to change directions, such as near

obstacle corners. Results showed that non-uniform multi-scale

distributions used fewer cells, learned faster, and reached better

final extra step ratios. Notably, although the advantages over

the uniform distributions decreased when adding obstacles,

distributions were manually designed, and automatic methods

will likely find better solutions using fewer cells.

While all experiments were performed with and without

eligibility traces, traces did not affect the overall results for

experiments 1 and 2. In contrast, when not using traces in

experiments 3 and 4, agents using single-scale distributions

with field sizes between 20 and 42 cm had trouble learning

mazes that required precision, resulting in final trial trajectories

between 30 and 60 times longer than the optimal paths. Adding

eligibility traces solved this issue, reducing their lengths to at

most twice the optimal paths. Therefore, these results suggest

that the difficulties in learning the mazes were not the result of

limited representational abilities of sparse distributions.

5.4. Main takeaways and observations

The main takeaways of our experiments are how the

different field sizes along the dorsoventral axis interact with

obstacles and how they can be arranged in non-uniform multi-

scale distributions to optimize all metrics simultaneously. As

an added benefit, non-uniform distributions can potentially

increase the number of memories recalled by a robot as fewer

cells are required to solve a task. In turn, this may allow the robot

to learn more tasks or details.

Although our experiments suggest that the best results are

achieved using very little redundancy (overlap between place

fields), this is not necessarily the case as we did not use any

noise. Omitting noise allowed us to simplify the analysis of the

model’s theoretical capabilities, but more redundancy could help

filter noisy cell activity or prevent memory loss by cell decay in

real scenarios.

Although our work did not use hierarchical reinforcement

learning (HRL), the proposed space representation shares

ideas similar to HRL and could be used to complement
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such algorithms. HRL speeds up learning by breaking tasks

into smaller subtasks (each with a subgoal) that are learned

independently along with a method for switching between them

(Sutton et al., 1999; Barto and Mahadevan, 2003). Similarly,

our model also speeds up learning although by adapting the

space representation to the particular environment. As the

multi-scale model distributes place cells concentrically around

subgoals using higher densities near subgoals, the proposed

space representation could naturally lend itself to further speed

up HRL algorithms. Additionally, the representation could also

be used to enhance automatic subgoal discovery. Finding useful

subgoals is a difficult task in HRL (McGovern and Barto, 2001;

Goel and Huber, 2003; Botvinick, 2012). With the multi-scale

model, subgoal discovery could be performed by finding areas

with high concentrations of smaller fields. In our algorithm,

place fields concentrate around obstacle corners as we assumed

obstacle corners to be subgoals (which conforms with rat

experiments Shamash and Branco, 2021; Shamash et al., 2021).

Nonetheless, an HRL algorithm may want to use only a subset

of these locations. Thus, the suggested space representation may

hint useful subgoals, but another mechanism could further filter

them out.

5.5. Biological context

Our model was inspired by differences in the dorsoventral

axis of the hippocampus. In building the model, as several

other models, we used reinforcement learning to simulate

the brain’s learning process based on observations where

dopaminergic neurons predict error signals as temporal

differences (James et al., 1994; Schultz et al., 1997; Doya,

2008). Additionally, we assumed that place cells provide

the state in a locale learning system and that both the

dorsal and ventral hippocampus are involved in spatial

navigation (de Hoz et al., 2003; Harland et al., 2017; Contreras

et al., 2018).

Based on experimentation, our model predicts the possible

effects of inactivating dorsal or ventral place cells. Inactivating

ventral place cells should increase learning times and reduce

the ability to generalize actions. Furthermore, it may also

reduce the number of tasks or the amount of detail that

an animal can learn as inactivating ventral cells will require

substantially more dorsal cells to encode a task. On the other

hand, inactivating dorsal place cells should increase learning

time in obstacle-rich environments as the representation will

rely on larger fields. Either way, our experiments showed that

any scale could be used to learn a task, provided enough

cells are used. Thus, deactivating either dorsal or ventral

place cells should not prevent an animal from learning,

but it should affect how they react to different obstacle

numbers as they rely more heavily on one representation.

Note how obstacles had a more significant effect on larger

fields than smaller fields in experiment 1. In Llofriu et al.

(2019), the authors analyzed how dorsal or ventral hippocampus

deactivation affected the time to complete a spatial navigation

task using a computational model in cluttered environments.

Similar to our predictions, all agents were able to learn the

task, although deactivating either region resulted in longer

completion times.

Our model also predicts that place field representations

should be denser around subgoals and sparser when further

away. Similarly, smaller fields should concentrate around

subgoals, and field sizes should increase when further away.

In the available literature, several rat electrophysiological

studies have observed varied spatial distribution of place cell

fields according to the environment, e.g., higher place cell field

concentrations near goals in the dorsal hippocampus (Hollup

et al., 2001; Fyhn et al., 2002; Hok et al., 2007; Dupret et al.,

2010; Tryon et al., 2017). Additionally, dorsal and ventral

hippocampus experiments found that smaller fields aggregate

around walls while fewer larger fields are more prevalent in

the middle of the maze, with both types seen throughout

the complete environment (Harland et al., 2021; Tanni et al.,

2022). Importantly, these experiments were performed in mazes

without obstacles and fixed goals and, therefore, cannot assess

field distribution in relation to them. Although our non-uniform

distributions did not have small fields near walls or throughout

themaze, the distributions weremanually generated to assess the

benefits of distributing field sizes based on goals and subgoals,

ignoring other factors that might be used to instantiate fields,

such as the specific location of visual cues or landmarks. In

Harland et al. (2021), there is an extensive number of visual cues,

including distal on the room walls and proximal on the maze

walls and on the floor itself. This cue-richness may explain the

activation of small place fields across the entire environment,

including the observation by Harland et al. (2021) of small

place fields in the center of the maze, likely because of the

floor cues.

5.6. Alternative models

We discuss in this section other models that have been used

to assess how the different place field sizes might be used for

navigation and tomake predictions about the spatial distribution

of place fields.

In the boundary vector cell model (Burgess et al., 2000;

Barry et al., 2006), place cell firing is the result of combining

the output of multiple boundary vector cells, which are neurons

that activate when a boundary is detected at a given distance

and allocentric direction from the rat. This model predicts that

smaller place fields should be more numerous than larger place

fields and that the concentration of each type should increase

when close and far from boundaries, respectively. On the other

hand, this model does not explain how place cells are affected
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by goals nor how they are used for learning. Interestingly, if

the boundary vector cell model also incorporated object vector

cells (Hoydal et al., 2018) as input for place cells, the resulting

distributions might resemble the non-uniform distributions

proposed in this paper.

Although our article used place cells to represent the

state (current position) in reinforcement learning algorithms,

the successor representation model assumes that place cells

encode “a predictive representation of future states given the

current state” (Stachenfeld et al., 2017). Under this theory,

the dorsoventral multi-scale representation is the result of

encoding the successor representation using multiple discount

factors, which enables using different temporal abstraction levels

for decision-making.

5.7. Future work

As part of future work, we plan to evaluate the model

with autonomous robots in physical environments to assess the

effects of noise in optimal distributions. In order to achieve

this goal, some optimizations would be required. First, we need

to activate place cells driven by sensory-motor cues rather

than global positioning. Second, place field representations

should not be manually generated. Instead, place fields should

automatically adapt to the environment according to the

distance to subgoals. This could be done either by generating

a single multi-scale layer for each specific environment (as in

this paper) or by generating multiple single-scale layers, each

covering the entire maze (such as in the uniform multi-scale

distributions) and then choosing which layers to activate based

on environmental cues. In either case, our work suggests that

place fields should get smaller near the goal, but it may be argued

that its location is a priori unknown. While this may be true

during the initial trials, the position of the goal should be known

later on, as suggested by electrophysiological studies that found

neurons that encode the distance and egocentric angle to the

goal even when not seen (Deshmukh and Knierim, 2013).

Our current model assigns a single place field to each place

cell, but recent experiments in large environments show this is

not the case (Fenton et al., 2008; Rich et al., 2014; Lee et al., 2020;

Eliav et al., 2021; Harland et al., 2021). Instead, experiments

show that both dorsal and ventral place cells can have multiple

fields of different sizes, forming a multi-field multi-scale space

representation. Additional future work should update the model

to reflect the corresponding findings.
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