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Flow through pore-size graded membrane pore network
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Pore-size gradients are often used in the design of membrane filters to increase filter
lifetime and ensure fuller use of the initial membrane pore volume. In this work, we
impose pore-size gradients in the setting of a membrane filter with an internal network of
interconnected tubelike pores. We model the flow and foulant transport through the filter
using the Hagen-Poiseuille framework coupled with advection equations via conservation
of fluid and particle flux, with adsorption as the sole fouling mechanism. We study the
influence of pore-size gradient on performance measures such as total filtrate throughput
and accumulated contaminant concentration at the membrane downstream pore outlets.
Within the limitations of our modeling assumptions we find that there is an optimal
pore-radius gradient that maximizes filter efficiency independent of maximum pore length
(an input parameter that influences the structure of the pore network), and that filters with
longer characteristic pore length perform better.
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I. INTRODUCTION

Membrane filtration is an industrial process that uses porous material to separate contaminants
from a feed solution. It is crucial to commercial processes such as waste water treatment [1],
radioactive sludge removal [2], beer clarification [3] and membrane bioreactors [4], among many
others. Filtration also underpins many daily household appliances including water purifiers [5], air
filters [6–9], and grease filters [10]. To design an ideal filter, one aims to tailor the geometric features
of the filter (specifically, the pores’ size, shape and connectivity) so that impurities are removed
efficiently, while producing a required amount of filtrate up to a certain standard of purity.

Membrane filtration employs a wide variety of pressure-driven separation methods, distinguished
by the scales of pore sizes at which they operate. For example, microfiltration is effective in sieving
solids and bacteria; ultrafiltration is often employed in virus and toxin removal; nanofiltration is a
popular step for water hardness treatment that removes major divalent ions such as magnesium and
calcium [11]; and reverse osmosis separates all ions by applying mechanical pressure to overcome
osmotic pressure [12]. A wide range of materials may be used in membrane manufacture, but mem-
brane materials in common use are roughly divided into two categories: polymeric and ceramic [13].
Most polymeric membranes are made with low-cost organic materials and are popular in industrial
applications; however, they tolerate large thermal fluctuations or harsh chemical environments
poorly. The more expensive ceramic membranes overcome these drawbacks via their chemical
composition (e.g., metal oxides), while producing higher fluxes due to their greater hydrophilicity.
Designing layered or composite filters that incorporate the merits and disadvantages of both
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materials has become an active area of research [14]. Furthermore, membrane filters are
manufactured with many different spatial configurations of membrane materials (leading to
differently-structured pores) such as node-fibril [15], flat-sheet [16], and multitube [17], either
mimicking natural filters found in plants and animal organs, or resulting from careful design
considerations.

It is clear from the studies cited above (and many others too numerous to cite) that membrane
filter design, using a combination of materials and pore layouts, has profound implications for filter
performance. A well-designed membrane filter not only maintains particle retention capability but
also provides sufficient output (filtrate) to serve the immediate needs of the application. Common
membrane designs incorporate structural variations at the microscale (connectivity of interior pores,
pore branching, etc.) as well as the macroscale; e.g., pleated filters [18] and multilayered membrane
filters [19]. This last class of membranes has garnered particular attention from industrialists and
practitioners for their versatility in applications. In multilayered membrane filters, single-layer
membrane filters, each with a different characteristic pore size, may be laminated to form a
composite membrane with a distribution of pore sizes in its depth (in addition to any intralayer
pore-size variations, which are assumed to be less important; but see Gu et al. [20] for more
discussion of this feature). Common practice is to place the layers with larger pores upstream,
allowing more fluid to pass through and providing more surface area to capture particles; and layers
with smaller pores downstream to capture any particles that may escape from upstream layers.

We emphasize that the notions of porosity gradient and pore-size gradient are inherently different,
though they are sometimes related; and the terms are often used interchangeably in various contexts
within current literature. To illustrate, consider first a simple membrane structure where the mem-
brane upstream and downstream surfaces are connected by single continuous pores (a “track-etched”
type structure [21]). Suppose such pores have circular cross-section (but with depth-varying radius)
and a straight axis perpendicular to the membrane, then if one identifies local pore radius with pore
size, a direct relation may be made between pore-size gradient and porosity gradient: a pore-size
(radius) gradient does induce a porosity gradient of the same sign (or viceversa). However, for a
more general network of pores, one can easily design a network that has decreasing pore size in
the depth but no porosity gradient (or even a porosity gradient of opposite sign), by appropriately
increasing the number density of pores with depth. The schematic in Fig. 1 illustrates the difference
between porosity graded and pore-size graded filters. With this distinction in mind, we briefly review
current relevant literature that considers either type of gradient (often both are present), noting the
key findings and motivating the work of the current paper.

Many experimental studies have shown that improved performance can be achieved with porosity
graded multilayered membrane filters. For example, in terms of membrane performance, the ability
of porosity graded ceramic filters to delay internal fouling when compared to common homogeneous
ceramic filters has been discussed [22]; and the improved throughput production and foulant
removal capability of a photocatalytic membrane with hierarchical porosity was investigated [23].
Progress has also been made on the manufacturing side. Improved tunability of the physical
membrane characteristics in porosity graded membrane filter assembly has been demonstrated by
Amin et al. [24]; a novel fabrication strategy of porosity graded porous foams via 3D printing has
been discussed by Cappaso et al. [25]; and recent advances in additive manufacturing techniques for
porous materials with controllable structure have been reviewed by Guddati et al. [26]. However,
much attention has also been given to manufacturing pore-size graded filters with desired character-
istics, such as the work of Dong et al. [27] on fabricating air filters represented as pore-size graded
networks (mimicking bryophyte leafs), and of Harley et al., who present a novel strategy to build
porous tubular scaffolds with prescribed pore-size gradient [28]. Kosiol et al. use gold nanoparticles
as a probe to estimate the pore-size gradient in commercial and noncommercial parvovirus retentive
membranes, as these gradient values were found to correlate strongly with virus retention [29]. The
advantages of pore-size graded filters in applications such as tissue engineering [30–32] and fuel
cells [33] have also been discussed.
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(a) Porosity gradient but no radius gradient (b) Radius gradient but no porosity gradient

FIG. 1. Two-dimensional illustration of membrane filters with (a) zero radius gradient (radius preservation
between layers) but nonzero porosity gradient and (b) zero porosity gradient (area preservation between layers;
volume in 3D) but nonzero radius gradient.

Several theoretical groups have also contributed to the breadth of the study on multilayered
membrane filters with porosity and/or pore size gradients via mathematical modeling and numerical
studies; for example studying filter performance optimization as a function of pore-size gradient
within a simply structured membrane [34–37]; carrying out numerical simulation and analysis
of performance of simple multilayered filter structures [38,39], and investigating geometric and
topological properties of membrane networks [40–42]. There is also significant work on techniques
to probe the microstructure of membrane filters, including imaging techniques used to recover
network representations of membranes structures in 3D [43,44] that motivate and inform our
modeling work using pore networks.

To further motivate the current work, we summarize our previous efforts on the modeling of
membrane filtration, all of which assumed that membrane pores are circularly cylindrical connected
tubes. Reference [45] studied layered membrane filters with three different (very simple) internal
pore structures, having varying degrees of connectivity. A pore-size gradient was introduced using
a geometric parameter that prescribes the initial pore radius in each layer. In subsequent work [40],
the authors generalized those simple pore configurations to membranes with a random network of
pores and formulated the mathematical equations for flow, transport and fouling on such networks,
on which the current work is based. Last, pore-size (radius) variations were imposed on these mem-
brane pore networks, and their effect studied [20]. Initial pore radii follow a uniform distribution,
centered about a fixed average, independent of the pore’s depth in the membrane. However, pore-size
gradient was not considered in the last two works since the focus was to draw out basic geometric
factors of the network structure that influence membrane filter performance.

Building on this previous work, the current paper focuses on network models of pore-size graded
filters with constant porosity across the filter [see Fig. 1(b) for a simple example of pore-size graded
filter]. We specifically exclude porosity variations so that the impact of pore-size gradient alone
can be elucidated; and also because, even in homogeneous membranes, porosity has been shown to
influence filtration performance rather strongly, to the extent that no benefit would be anticipated by
having porosity decrease in the membrane depth (see Refs. [20,40], for example). We note that fixing
porosities inevitably gives rise to surface area variations, whose influence is left for future work. Our
goals are to model a membrane filter with a pore-size gradient and then to probe and explain the
influence of this gradient on membrane performance metrics such as total filtrate throughput and
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particle retention (only adsorptive particle fouling is considered in this work). For the first goal, we
model the membrane filter as a network of circularly cylindrical pores. We introduce the pore-size
gradient by dividing the membrane into bands of equal thickness (within each of which initial pore
radius is constant), and designating a linearly decreasing sequence of radius values for pores from
upstream to downstream bands. We generate membrane pore networks with such a banded structure
following a random network generation procedure, adapted from that proposed by Gu et al. [40].
We further impose that the porosity of each band, an influential geometric feature of membrane
pore networks, is approximately equal across all bands, so that we reveal the sole influence of pore
size (radius) gradient on membrane filter performance. In addition to studying pore-size gradient
variations, we also consider variations in maximum pore length, another model input parameter that
controls the geometric structure of the pore network.

The paper is outlined as follows: in Sec. II, we describe the details of the mathematical model,
first introducing how the banded pore networks are constructed with specified pore-size gradient in
Sec. II A and then presenting the governing equations for fluid flow and foulant particle transport
in Sec. II B; in Sec. III we define the performance metrics we use to compare our membrane pore
networks; in Sec. IV, we streamline the pore-size graded network generation procedures into an
algorithm; in Sec. V, we provide the appropriate physical scales of the problem and then summarize
the model in nondimensional form; in Sec. VI, we present and explain our observations; and in
Sec. VII, we conclude our findings.

II. MATHEMATICAL MODELING

In this section, we introduce a mathematical model that captures the multilayered membrane
structure using a pore network representation. We first describe the general network generation
protocol and how this creates pore junctions and cylindrical pores, and define our computational
domain. After introducing our notions of pore-size gradient, band radius, and band porosity,
we provide details of the methodology by which we generate radius graded banded networks
under specific physical constraints. Last, we briefly present the governing equations for flow of
a feed solution through the membrane filter driven by a constant transmembrane pressure (constant
pressure filtration), for transport of the foulant particles carried by the feed, and for the pore-radius
evolution under fouling, as well as the solution techniques for these equations when they are posed
on a network of interconnected pores.

A. Pore-size graded networks

We model a representative unit of a membrane filter as a block of porous material that occupies
a cube with side length W (see Ref. [40] for a similar setup) and contains a network of pores. Each
pore is assumed to be circularly cylindrical and thus fully characterized by its length and radius.
We use the terms “pore size” and “pore radius” interchangeably from hereon. The unit consists of a
membrane top surface with pore inlets, interior pore junctions (vertices of the network), pores (edges
of the network), and a bottom membrane surface with pore outlets. The membrane unit is generated
as follows: interior junctions are points represented by Euclidean coordinates in R3, uniformly
randomly placed in a rectangular box with height 2W and square cross section of side length
W . Pores are constructed as slender circular cylinders, with axes along straight lines that connect
the junctions according to a periodic connection metric (see Appendix A). More specifically, we
connect junctions (possibly through the side boundaries) when they lie within a distance of Lmax

and at least Lmin away from each other. These two parameters are referred to as the maximum and
minimum pore lengths, respectively. Inlets and outlets are the intersection points between the pores
thus generated and two horizontal planes at heights Z = 0.5W and Z = 1.5W , respectively (thus Z
is the coordinate perpendicular to the membrane surfaces). The space created between these planes
forms our computational domain—a cube with side length W (referred to as the domain in the
following), while the parts exterior to this cube are discarded.
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FIG. 2. Schematic of a 3D banded network represented in 2D. Colored junctions and pores correspond to
each band as follows: red, first band; green, second band; magenta, third band, and indigo, fourth band. Blue
dots are inlets. White dots are outlets. Dashed lines are pores created by the periodic boundary conditions [see
Eq. (A3) in Appendix A].

In the following sections, we first introduce the notion of pore-size (radius) gradients, as studied
in this paper, and define band porosity. In addition, to tune membrane porosity, we devise a rule
to determine the number of pore junctions to be placed (randomly) in the domain to complete the
banded network generation protocol.

1. Bands and radius gradient

We introduce a pore-radius gradient by first dividing the domain in the Z direction (the coordinate
direction perpendicular to the membrane upstream and downstream surfaces) into m bands, each of
thickness W/m. Figure 2 shows a 2D representation of a 3D schematic. Let Vk and Ek be the set of
junctions and pores in the kth band [numbered from the upstream surface; see the detailed definitions
in Eqs. (A4) and (A6) in Appendix A]. Each pore in Ek is assigned an initial radius

Rk = Rm + (m − k)sW, 1 � k � m, (1)

where s � 0 is the radius gradient and Rm is the radius of pores in the bottom band (k = m). This
consideration assumes that the initial pore radius in each band is a constant, and that pore size
always decreases in the depth of the membrane. We say that a pore belongs to the kth band when
the largest proportion of its total length lies inside the kth band, and we then assign Rk as its initial
radius (see the different thicknesses and color coding of pores across the bands in the schematic of
Fig. 2). We refer to Rk as the kth band radius from hereon. We also call networks with s = 0 uniform
networks and those with nonzero s values graded networks.

In this work, to reduce the number of degrees of freedom and to make our comparisons of
different composite membranes as “fair” as possible, we impose the constraint that the average
pore radius across all bands is equal to some value R0, for any Rm and s values. More precisely, for
each graded network, we find a range of (Rm, s) pairs corresponding to an average pore radius R0

across the bands, and compare the performance of these networks versus their uniform counterparts
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with radius R0 (s = 0). The average radius R0 across the m bands satisfies [using Eq. (1)]

(Constraint 1a) R0 = 1

m

m∑
k=1

Rk = Rm + sW

2
(m − 1). (2)

Thus, once R0 is prescribed, we can choose s and then uniquely determine Rm.
We here point out that to generate a banded network, in addition to declaring band radii using

Eq. (1), we must also specify an initial number of randomly placed junctions in each band. This
in general leads to different band porosities (void volume in the band divided by volume of the
containing slab, discussed in detail later). As the goal of our work is to isolate the influence of
pore-size (radius) gradients, we choose to enforce that each band has the same porosity. To achieve
this, we devise a guess-and-correct procedure detailed in the following sections.

2. Band and membrane porosity

Before we introduce the banded network generation procedures, we clarify the crucial definition
of band porosity. The band porosity of the kth band of a graded network with m bands is given by

�k =
π
2

∑
ei j∈E R

2
i jLk,i j

W 3/m
, (3)

where ei j is the pore connecting junctions i and j with radius Ri j , and Lk,i j measures the length of
ei j that lies within the kth band (by which definition Lk,i j = 0 if ei j has no component within layer
k; see Appendix A for a rigorous definition of Lk,i j), and E is the set of all edges [per Eq. (A2)].
The sum in Eq. (3) is over all pores since Lk,i j includes the contributions from pores that cross
multiple bands. The numerator is the void volume of the kth band (volume of empty space), while
the denominator is the volume of the rectangular slab with a square cross section of side length W
and height W/m.

The membrane porosity is given by

� = 1

m

m∑
k=1

�k, (4)

that is, the average band porosity across the bands. This definition is equivalent to the sum of total
void volume divided by the volume of the cube with side length W .

In general, the band porosities and overall membrane porosity are functions of time, since pore
radii evolve due to foulant particle deposition and adsorption; Eqs. (3) and (4) hold pointwise in
time. In the following Sec. II A 3, however, we are concerned only with describing the initial
membrane structure, hence we adopt a simpler notation by dropping the time dependence as we
work only with initial porosities.

3. Constant radius in each band

Here we present the methodology of generating radius graded membrane networks. In this
section only, for notational simplicity, �k and � denote the initial porosity in the kth band and
initial membrane porosity, respectively. We assign an initial porosity value � for the membrane pore
structure, which, in all simulations presented here, is set as � = 0.6, a value typical for commercial
filters. The principal aim of this section is to estimate the number of points (pore junctions) needed
in each band to generate networks that satisfy prescribed constraints, including Eq. (2) and more to
be detailed below.

To isolate the effect of pore-radius gradients on membrane performance, we enforce that every
band has approximately the same initial porosity (we cannot insist that band porosities be exactly
equal due to the random nature of the network generation protocol). This (soft) constraint is given
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by

(Constraint 2a) �n ≈ �k, n, k = 1, . . . ,m, (5)

where the “≈” is to be made precise in the algorithm introduced below. Since the initial pore radius
is constant within each band, Eq. (3) simplifies to

�k :=
π
2 R

2
k

∑
ei j∈E Lk,i j

W 3/m
. (6)

Using Eqs. (5) and (6), for arbitrary bands n and k, we have

W 3

m
�n = π

2
R2
n

∑
ei j∈E

Ln,i j ≈ π

2
R2
k

∑
ei j∈E

Lk,i j = W 3

m
�k, ⇒ R2

n

∑
ei j∈E

Ln,i j ≈ R2
k

∑
ei j∈E

Lk,i j . (7)

We now relate Nk , the number of pore junctions randomly placed in the kth band, to the sum in
Eq. (7) and use the result to provide an estimate for Nk , to generate pore networks that satisfy
the constraints given in Eqs. (2) and (5). We use basic probabilistic arguments to deduce that∑

ei j∈E Lk,i j , total edge length in the kth band, scales with Nk (Nk − 1) and other terms common
to all other bands [so that they cancel from each side of Eq. (7)]. Details of this derivation are in
Appendix B. Equation (7) then reduces to

R2
nNn(Nn − 1) ≈ R2

kNk (Nk − 1), ∀n, k = 1, . . . ,m, n �= k. (8)

Since we consider only situations where pore size decreases in the membrane depth, a nonzero pore-
size gradient s > 0 implies that Rm, the radius in the mth band, is the smallest [per Eq. (1)]. Thus,
the mth band requires more points than other bands to satisfy Eq. (8), and motivates our initializing
our algorithm with this band (it is more computationally efficient, since this choice minimizes the
errors incurred in the sequential process outlined next). To estimate the Nk sequentially, we first
prescribe s, the radius gradient. This fixes each band radius Rk via Constraint 1, Eq. (2). We then
make several guesses for Nm and stop when we find a value such that �m ≈ �. With Nm determined,
we employ Eqs. (1) and (8) to obtain the relationship

R2
mNm(Nm − 1) ≈ [Rm + (m − k)s]2Nk (Nk − 1), (9)

which we solve to estimate the number of junctions, Nk , for all other bands.1

The relationship Eq. (9) is by no means exact, and can fail by some margin to guarantee equal
porosity for each band when the gradient s becomes too large, but it provides a useful starting point.
After estimating the Nk values as described, we compute the corresponding �k and check their
proximity to the prescribed value �. We correct �k to � by adding or removing nodes randomly.
This correction procedure starts with the mth band and proceeds upstream. We iterate this procedure
until the network achieves band porosities close to � within a prescribed relative tolerance ε =
0.005. Variations in porosity as such are sufficiently small that they have a negligible effect on our
results for performance metrics (see Ref. [20] for details on the effect of porosity variations).

B. Governing equations

In this section, we briefly describe the dimensional governing equations for flow of the foulant-
laden feed solution and transport and deposition of foulant in a single pore, then extend the
description to a network of such pores using conservation laws at pore junctions. For more details
of the derivation, we refer the reader to Gu et al. [40].

1We recall that the initial domain is a rectangular prism of height 2W with square cross-sections of side length
W . The regions, 0 � Z < 0.5W and 1.5W < Z � 2W , outside the central cube (see Fig. 2) before cutting, have
the same point density as the first band and the mth band, respectively.
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1. Fluid flow

The feed is assumed to be a Newtonian fluid with viscosity μ, driven through a cylindrical
pore with small aspect ratio via a pressure difference P0. The flux Qi j between junctions i and j
is characterized by the Hagen-Poiseuille equation [46],

Qi j = Ki j (Pi − Pj ), ei j ∈ E, (10)

where Ki j is the conductance of the pore ei j , given by

Ki j =
{

πR4
i j

8μLi j
, ei j ∈ E,

0, otherwise,
(11)

where Ri j and Li j are the radius and length of ei j . Enforcing conservation of flux at pore junctions
leads to a system of equations for the pressure at each interior junction, subject to the boundary
conditions

Pi =
{
P0, i ∈ Vin,

0, i ∈ Vout,
(12)

where Vin and Vout are the set of membrane pore inlets and outlets, respectively [see Eq. (A1) for
their precise definitions]. Once the pressures are known, we use Eq. (10) to find the flux in each
individual pore. The scales for these equations are defined in Sec. V.

2. Foulant transport

In this work only adsorptive fouling is considered, in which foulant particles much smaller than
the pore radius are transported by the flow and adhere to the pore wall due to a variety of chemical
or physical effects that depend on the affinity between the particles and the membrane material.Ci j ,
the concentration of foulant particles in pore ei j , satisfies the steady state advection equation,

Qi j
∂Ci j

∂Y
= −�Ri jCi j, 0 � Y � Li j, (13)

where � is an affinity parameter that describes the interaction between foulant particles and
the membrane material; and Y is a local coordinate along the pore in the direction of flux Qi j .
Equation (13) is paired with a boundary condition

Ci j (0,T ) =
{
C0, i ∈ Vin,

Ci(T ), otherwise,
(14)

where Ci(T ) is the (unknown) concentration at junction i, determined by enforcing conservation of
foulant particle flux, Qi jCi j , at each junction i (for all adjacent j).

3. Pore radius evolution

Once we obtain the foulant concentration at each junction, we model pore-size evolution with
a decay rate directly proportional to the concentration at the upstream inlet, i.e., the pore junction
with higher pressure. More precisely, we assume that Ri j , the radius of pore ei j , satisfies

dRi j

dT
= −�αCi, α = Vp

2π
, ei j ∈ E, (15)

where Vp is the effective volume of each foulant particle. This ODE is solved subject to the initial
condition

Ri j (0) = Rk, ei j ∈ Ek, k = 1, . . . ,m, (16)

that is, we assign an initial pore radius Rk to each pore that lies in the kth band.
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Note that Eq. (15) will yield spatially uniform radius evolution, so that pores remain cylindrical
throughout their evolution. Though not strictly consistent with the model (13) for the foulant con-
centration, which varies along the pore length, this cylindrical pore approximation is acceptable, and
is motivated by the resulting significant computational savings. We refer the reader to Appendix A
in Ref. [40] for a detailed justification, and for a sufficient condition (based on pore radius and pore
length) that ensures the validity of the approximation.

III. PERFORMANCE METRICS

We now define the performance metrics used in this work.
(1) Membrane lifetime, Tfinal. Two possible criteria defining membrane filter lifetime are consid-

ered:
(a) (Flux extinction) Tfinal is the earliest time at which there exists no path from the top surface to

the bottom. This corresponds to the time when flux is zero.
(b) (Flux threshold) Tfinal is the time at which flux level reaches a prescribed lower threshold.
(2) Filtrate throughput H (T ),

H (T ) =
∫ T

0
Qout (T

′)dT ′, (17)

Qout (T ) =
∑

v j∈Vout

∑
i:ei j∈E

Qi j (T ), (18)

where Qout (T ) is the total flux exiting the filter and Vout is the set of pore outlets at the membrane
bottom surface [see its detailed definition in Eq. (A1)]. In particular, we are interested in Hfinal :=
H (Tfinal ), the total volume of filtrate processed by the filter over its lifetime.

(3) Initial flux Qout (T = 0).
(4) Accumulated concentration of foulant at membrane outlet Caco(T ),

Caco(T ) =
∫ T

0 Cout (T ′)Qout (T ′)dT ′∫ T
0 Qout (T ′)dT ′ =

∫ T
0 Cout (T ′)Qout (T ′)dT ′

H (T )
, (19)

where

Cout (T ) =
∑

v j∈Vout

∑
i:ei j∈ECj (T )Qi j (T )

Qout (T )
(20)

is the instantaneous foulant concentration at the membrane outlet. Of particular interest is Cfinal :=
Caco(Tfinal ), which provides a measure of the purity of the total volume of filtrate collected over the
filter lifetime (assuming a batch process).

(5) Band porosity �k and membrane porosity � as functions of time per Eqs. (3) and (4),
respectively, and their changes over the filter lifetime, referred to as band and membrane porosity
usage, respectively,

��k = �k (0) − �k (Tfinal ), k = 1, . . . ,m, (21a)

�� = �(0) − �(Tfinal ). (21b)

Per Eq. (5), �k (0) ≈ �(0) ≈ 0.6 where ≈ is up to some tolerance ε.

IV. ALGORITHM

We summarize the procedures described in Sec. II A 3 in Algorithm 1.
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Algorithm 1. Filtration on pore-sized graded networks.

1. Choose maximum and minimum pore lengths Lmax, Lmin, average pore radius R0 and porosity �.
2. Initialise radius gradient s � 0. Find Rk as constrained by R0 via Eq. (2).
3. Generate NG banded networks parametrized by Lmax and Rk :

(a) Guess Nm such that �m ≈ �.
(b) Determine Nk for k = 1, . . . ,m − 1 via Eq. (9).
(c) Generate networks using Nk random junctions in the kth band, connected according to the

metric defined in Eq. (A3).
(d) Correct membrane porosity by adding or deleting junctions until it is within relative tolerance

ε = 0.005 of �. More precisely, we perform this procedure until |1 − �corr
�

| < ε where �corr

is the porosity during this iterative procedure.
4. Compute the performance metrics (defined in Sec. III).
5. Go back to Step 2 by varying s.
6. Go back to Step 1 by varying Lmax.

V. SCALES

We nondimensionalize the model and key quantities introduced in Sec. II, and the performance
metrics defined in Sec. III, with the following scales:

P = P0p, (Li j,Lk,i j ) = W (li j, lk,i j ), (Lmin,Amax) = W (lmin, amax),

(Ri j,R0) = W (ri j, r0), Qi j = πW 3P0

8μ
qi j, Ki j = πW 3

8μ
ki j, ki j = r4

i j

li j
,

(Ci j,Caco) = C0(ci j, caco), Z = Wz, � = πWP0

8μ
λ, T = W

�αC0
t . (22)

These scales yield a set of dimensionless equations for each pore,

qi j = ki j (pi − pj ), (23a)

qi j
∂ci j
∂y

= −λri jci j, 0 � y � li j, (23b)

dri j
dt

= −ci, (23c)

with boundary conditions for pressure and concentration, respectively,

pi =
{

1, i ∈ Vin,

0, i ∈ Vout,
(24a)

ci j (0, t ) =
{

1, i ∈ Vin,

ci(t ), otherwise, (24b)

and initial condition for pore radius

ri j (0) = rk, ei j ∈ Ek, k = 1, . . . ,m, (25)

where rk , the initial pore radius in layer k, now reads

rk = rm + (m − k)s, (26)

per Eq. (1). Equations (23a) and (23b) are solved with the conservation of fluid and particle flux at
each pore junction (see Ref. [40] for details on a systematic approach that captures the conservation
laws using the graph Laplacian of a network).
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TABLE I. Key nondimensional parameters.

Parameter Symbol Values/Range

Maximum pore length lmax 0.1, 0.15, 0.2
Minimum pore length lmin 0.06
Radius in kth band rk [2.5 × 10−3, 0.016]
Uniform radius (also average initial radius across the bands) r0 0.01
Radius (pore size) gradient s [0, 4 × 10−3]
Total number of bands m 4
Deposition coefficient λ 5 × 10−7

Initial membrane porosity �(0) 0.6
Initial band porosity �k (0) 0.6
Relative error for porosity correction (see Algorithm 1) ε 0.005

The porosity in the kth band expressed in terms of these scalings becomes

�k (t ) :=
π
2

∑
ei j∈E r

2
i j (t )lk,i j

1/m
, (27)

while the performance metrics in dimensionless form become (with upper-case dimensional quan-
tities replaced by their lower-case dimensionless equivalents)

h(t ) = 1

λ

∫ t

0
qout (t

′)dt ′, qout (t ) =
∑

v j∈Vout

∑
vi :(vi,v j )∈E

qi j (t ), (28a)

caco(t ) =
∫ t

0 cout (t ′)qout (t ′)dt ′∫ t
0 qout (t ′)dt ′

, cout (t ) =
∑

v j∈Vout

∑
vi :(vi,v j )∈Ec j (t )qi j (t )

qout (t )
. (28b)

Tables I and II summarize the key nondimensional parameters and quantities, their symbols/
definitions, and their range of values.

VI. RESULTS AND DISCUSSIONS

In this section, we present results on the performance metrics of banded networks as the pore-
radius gradient s and maximum pore length lmax are varied. For each chosen value of s, we generate
1000 networks independently using the banded network generation protocol described in Sec. II A
and collect the mean and standard deviation of each performance metric defined in Sec. III. In the
following subsections we investigate the trends of these mean performance metrics against s and

TABLE II. Key nondimensional quantities.

Quantity Symbol Formula/Range of Values

Pore length li j [lmin, lmax]

Pore radius ri j (t ) [2.5 × 10−3, 0.016]

Pore length in the kth band lk,i j see Appendix A

Porosity of the kth band �k (t ) mπ

2

∑
ei j∈E r2

i j (t )lk,i j

Membrane porosity �(t ) 1
m

∑m
k=1 �k (t )

Total throughput h(t ) 1
λ

∫ t
0 qout (t ′)dt ′

ACO [see Eq. (19) for nomenclature] caco(t )
∫ t

0 cout (t ′ )qout (t ′ )dt ′
λh(t )
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(a) Total throughput (b) Initial flux

(c) Final accumulated foulant concentration

FIG. 3. Performance metrics against radius gradient.

lmax. The system of ODEs Eq. (15) is solved using a simple forward Euler method with a time step
size of 2.5 × 10−4. In all simulations, we fix λ = 5 × 10−7. This represents an intermediate value,
chosen such that we observe sufficient foulant penetration into the membrane network, while still
removing most of the impurities (if λ is chosen too small insufficient foulant will be removed; if it
is too large then fouling takes place predominantly in the top layer and there is inefficient usage of
lower layers).

A. Filter performance until flux extinction

Figure 3 presents how performance metrics vary with s in banded networks with m = 4 bands,
within each of which the initial pore radius is constant [specified by Eq. (26)]. Results are shown
for three different values of lmax. Figure 3(a) shows total filtrate throughput against s. We observe
that for each lmax value considered, we have a nonmonotone trend with a clear maximum in total
throughput at s = 2 × 10−3 (independent of lmax, though the total filtrate throughput achieved in all
cases is monotone increasing in lmax). Figure 3(b) plots results for initial flux through the membrane,
showing it to be a monotone decreasing function in s, and monotone increasing in lmax. Figure 3(c)
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plots final accumulated foulant concentration at the membrane outlet against pore-size gradient s.
The trend is monotone decreasing in s for all lmax values considered (that is, more strongly graded
networks provide better foulant control); and monotone increasing in lmax.

Before presenting further results, we first discuss the trends observed in Fig. 3. We rationalize the
existence of a throughput-maximizing value for s by comparing networks with extreme values of
s. Banded networks with a large pore-size gradient tend to have low flux due to the high-resistance
small outlets in the bottom band [evident in Fig. 3(b) for all lmax values considered]. At the same
time, uniform networks (s = 0) have the shortest lifetime due to their small pore inlets upstream (we
hypothesize that pores always close first at the upstream side of the membrane, a claim supported by
an analytical result presented in Appendix C). Therefore, pore-size graded networks admit a trade-
off between initial flux and filter lifetime as the gradient value varies, suggesting that an intermediate
value should exist that maximizes total throughput. This maximizing value is found at s = 2 ×
10−3 for the present choice of parameters, a value that yields throughput about 15% larger than the
throughput of the corresponding uniform networks for all cases of lmax shown here.

The trend of particle concentration in the filtrate with s observed in Fig. 3(c) is monotone
decreasing, however. This is not unexpected; the smaller pores in the bottom band of strongly graded
networks are much more effective at removing foulant particles. A key reason for this improved
foulant control in strongly graded filters is that they have larger downstream pore surface area (thus
larger pore surface available for particle deposition). This larger pore surface area may be inferred
from the increasing node/edge density through the bands that results from the requirement that
porosity is fixed across layers, while pore radius decreases. From another perspective, this result
may also be anticipated from the fact that higher node density in a band increases its tortuosity,2

which is known to improve foulant control (a primary result of our prior work [40]).
We also comment briefly on the trend of the performance metrics as lmax varies in Fig. 3. First,

each metric (total throughput, initial flux and concentration) is monotonically increasing with lmax.
With the prescribed membrane porosity level � = 0.6, these observed trends are consistent with
the findings of Gu et al. [40], work that focused exclusively on networks with uniform pore radius
(gradient s = 0). Second, the reason for the higher foulant concentration resulting from networks
with larger lmax is that networks with longer pores tend to be less tortuous1 than those with shorter
pores (smaller lmax).

1. Total porosity evolution

Porosity inevitably decreases over time as fouling occurs. In this subsection, we present how
overall membrane porosity evolves in time as lmax and s are varied. Our discussion focuses on the
changes in membrane porosity and the final values achieved when filtration ceases, in particular the
difference �� between the initial �(0) = 0.6 and the final porosity, which we refer to as porosity
usage [see Eq. (21b)]. This quantity provides some insight into how efficiently the filter is used over
its lifetime, since porosity changes are due entirely to foulant deposits in the membrane.

In each of Figs. 4(a)–4(c) we show, for each lmax, the evolution of membrane porosity in time, for
all s values considered. Filter lifetime may be inferred from the various curves by noting the time
at which they stop (due to flux reaching zero). To showcase the porosity usages �� of networks
with different values of s, we condense them into Fig. 4(d), which clearly shows that �� is a
nonmonotone function of s. In particular, for each lmax, we find an optimal value of s that incurs
the largest porosity change. We defer the explanation of this optimal value to a later discussion on
the porosity usages in each band. Last, the figure also shows that networks with longer pores [the
largest lmax value, Fig. 4(c)] incur the largest porosity changes over the filter lifetime.

2The membrane tortuosity is defined as the average (normalized) distance traveled by a fluid element from
membrane top surface to bottom. See Ref. [40] for its detailed definition and discussion of the negative
exponential relationship between concentration and tortuosity.
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(a) lmax = 0.1 (b) lmax = 0.15

(c) lmax = 0.2 (d) Porosity usage

FIG. 4. (a)–(c) Total porosity evolution for different values of lmax. In panel (d), membrane porosity usage,
Eq. (21b), is plotted against radius gradient s for each lmax. �(0) = 0.6 is the initial porosity.

2. Band porosity evolution

While overall membrane porosity evolution shines light on the behavior of pore-radius graded
networks, individual band porosity evolution helps us identify the depth of foulant penetration in
the membrane, for each pore-radius gradient value s considered. In this subsection, we explore how
band porosities change as s varies and aim to draw further insight from this evolution into indicators
of good pore-size graded filters. The following discussion again focuses on the quantitative changes
of band porosities, and the final porosity values when filtration stops.

Figure 5 shows the evolution of band porosities �k for the smallest lmax-value considered
(shortest pores, lmax = 0.1), and for all radius gradient values s; the inset subfigure plots band
porosity usage [the total change in band porosity, ��k , see Eq. (21a)] as a function of s. In Fig. 5(a),
the evolution of the first band porosity (the upstream band) shows that, the larger the value of
s, the larger the porosity decline over the filter lifetime (see inset). This is because the largest s
value yields the largest first band pore radius and thereby the longest filter lifetime, allowing more
particles to adsorb and thus using more empty space in the interior. We note in passing that, though
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FIG. 5. Band porosity evolution with lmax = 0.1. Inset subfigures plot band porosity usage (the total change
in band porosity over the filter lifetime) as a function of radius gradient s.

the lifetimes of the networks (evidenced by the times at which each porosity curve stops) are quite
different for different s values, the final values of first band porosity are quite similar (exemplified
by the small range of vertical axis in the inset), which implies that the first band processes foulants
similarly regardless of the pore-size gradient s. Figure 5(b) plots the evolution of the second band
porosity against time for each s. Here, the final porosity values are clearly separated according to
their s values, in contrast to Fig. 5(a). In particular, the uniform networks (in red) clearly undergo
the smallest band 2 porosity change over the filter lifetime, and thus retain the smallest mass of
particles within this second layer. The porosity usage of this band increases with s until some
value in the range s ∈ [3 × 10−3, 3.5 × 10−3], for which the largest total change in band porosity
is observed [see inset of Fig. 5(b)]. In Fig. 5(c) where we show third band porosity evolution,
the largest porosity change occurs in networks with s = 3 × 10−3, implying that foulant particles
penetrate deeper into membrane pore networks with this gradient value. Last, we see in Fig. 5(d)
that networks with radius gradient s = 2.5 × 10−3 (solid black) experience the largest change in
fourth-band porosity (corresponding to the maximum in the inset), indicating that such networks
allow the deepest penetration of foulants, at least for the present choice of parameters.
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FIG. 6. Same setup as Fig. 5, with lmax = 0.15.

Meanwhile, membrane networks with s = 0 (uniform pore size) and s = 4 × 10−3 (the steepest
pore-size gradient) each perform relatively poorly in terms of porosity usage in the fourth band
(their fourth-band porosity does not change as appreciably as that of networks with other s values).
To explain this, note that in the case of uniform networks, their upstream pores close earlier than
those of the graded counterparts [which have larger inlets due to the radius constraint via Eqs. (1)
and (2)], thus prohibiting flow at an early stage by fouling upstream pores too quickly; while in the
case of s = 4 × 10−3 (the largest pore-size gradient used), the smaller downstream pores with their
high resistance slow down the overall flow, causing the majority of fouling to take place upstream.
Therefore, by considering the performance of the extreme gradient values, we expect that porosity
usage in the fourth band (and, by similar arguments, that in the third band) achieves an optimum
at an intermediate gradient value. Noting that membrane porosity is merely an average of band
porosities [see Eq. (4)], we return to explain the existence of an optimal gradient in Fig. 4(d) by
combining the embedded figures from Fig. 5 as an average—the optima in porosity usage from the
downstream bands contribute to the existence of an optimum in the overall porosity usage.

In Figs. 6 and 7, following Fig. 5, we plot the band porosity evolution, for lmax = 0.15 and lmax =
0.2, respectively. We discover very similar correlations, between porosity usage and the fouling of
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FIG. 7. Same setup as Fig. 5, with lmax = 0.2.

downstream bands, to those just discussed for Fig. 5 (lmax = 0.1). The first-band porosity change,
��1, is always monotone increasing in pore-radius gradient s, and uniform networks incur the least
porosity usage in their fourth band, indicating less deep penetration of foulants into the membrane
and inefficient membrane usage (those with s values that are too large also exhibit poor foulant
penetration). Altogether, when taking total throughput, accumulated concentration of foulants and
porosity usage all into account, we emphasize that an optimal value of radius gradient, largely
independent of maximal pore length lmax, exists. With the parameter values of Table I, we find that
membrane pore networks with s = 2.5 × 10−3 make the most favourable filters under the filtration
strategy of flux exhaustion.

B. Filter performance with a flux threshold

The results discussed so far are based on performance metrics evaluated at the end of the filter’s
lifetime, when there is no feasible flow path and flux falls to zero. In practice, when users observe a
low flux level in the filtration process, they tend to discard the fouled filters and replace with fresh
ones. In this section we mimic this procedure by imposing a minimal threshold for the flux level at
which we halt the process and collect statistics of the performance metrics up to this critical time.

044502-17



GU, KONDIC, AND CUMMINGS

(a) Total throughput (b) Final accumulated foulant concentration

(c) Porosity usage

FIG. 8. Performance metrics under flux threshold versus radius gradient. Flux threshold is set at 2 × 10−6.

The symbols for each performance metric F evaluated with an imposed flux threshold are labeled
with a subscript, Fths.

Figure 8 shows the performance metrics of radius graded membrane networks where filtration
is halted after the flux level drops below 2 × 10−6. This threshold level is approximately 30% of
the initial flux for uniform networks, and roughly 80% of that for the steepest graded network
with gradient value s = 4 × 10−3 [see the vertical scale of Fig. 3(b)]. From this observation
on the flux threshold level alone, we anticipate that filters with smaller initial fluxes, namely,
networks with large pore-size gradients, are more prone to halt filtration prematurely and are thereby
disadvantageous under this filtration mode.

Figure 8(a) shows total filtrate throughput against radius gradient s for pore-size graded networks
that operate until they reach the imposed flux level. With the chosen parameters and stopping
criterion, we again observe a maximizing gradient value at s = 1.5 × 10−3, a value smaller than
that in Fig. 3(a) (s = 2 × 10−3), where networks operate until flux extinction. Thus, under the new
threshold-based stopping criterion, filters with smaller gradient (and hence larger initial flux) are
more favored in terms of throughput production, yielding around 10–12% more than the equivalent
ungraded filters (s = 0). In fact, networks with s � 3 × 10−3 underperform quite significantly,
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TABLE III. Optimal radius gradient value for each performance metric.

Performance Metric (Sec. III) Metric symbol Optimal radius gradient

Until flux extinction
Total throughput hfinal 2 × 10−3

Initial flux qout (0) 0
Accumulated concentration of foulant at membrane outlet cfinal 0
Membrane porosity usage �� 3 × 10−3

Until flux threshold
Total throughput hths 1.5 × 10−3

Accumulated concentration of foulant at membrane outlet cths 0
Membrane porosity usage ��ths 1.5 × 10−3

even relative to uniform networks, because their total filtering time is greatly shortened under the
imposed flux threshold. Figure 8(b) shows final accumulated concentration of foulant (measured
at the membrane outlet) against s. Here, we observe a monotone trend in both s and in lmax.
These trends maintain qualitatively the same features as in Fig. 3(c), though we observe that
here the concentration is pointwise (for every s) larger than that in Fig. 3(c). This is expected
because filtration is stopped prematurely (in our simple model the particle capture capability of
the membrane improves continuously as fouling occurs and pores shrink). In Fig. 8(c), we show the
relationship between the membrane porosity usage ��ths and radius gradient s under the imposed
flux threshold. We observe a clear maximum in ��ths at s = 1.5 × 10−3.

The results in Fig. 8 imply that with the imposed lower threshold on fluid flux, membrane
networks with a radius gradient of s = 1.5 × 10−3 should be preferred over others due to their
combined score of filtrate production, particle retention capabilities, and porosity usage. Once again,
we note that this optimal value is almost independent of the value of lmax considered. We would,
however, anticipate that the optimal radius gradient will decrease if the imposed lower flux threshold
is increased (and it would, of course, change if model parameters were changed).

VII. CONCLUSION

In conclusion, we have devised a general procedure to generate pore-size graded banded mem-
brane pore networks, representing multilayered membrane filters. We have studied the influence of
the pore-size (radius) gradient s, and maximum pore length lmax, on selected performance metrics
of these networks, under two setups of relevance to applications—filtration until flux extinction, or
until a flux lower threshold is reached. All filters considered in our study have uniform porosity
across all layers. For the chosen model parameters, we have also determined optimizing pore-size
gradient values for some of the performance metrics considered (compiled in Table III).

When filters run to extinction, we find that total filtrate throughput exhibits a nonmonotone trend
against pore-radius gradient, exhibiting a clear maximum. More precisely, for the parameters we
considered, membrane networks with a pore-radius gradient value of s = 2 × 10−3 achieve maximal
total filtrate throughput. However, accumulated foulant concentration at the membrane outlet is
monotonically decreasing in s, suggesting that, for foulant control purposes only, one should prefer
membrane networks with a pore-radius gradient as large as possible. To examine the extent of
membrane fouling, we also study the porosity change of the entire membrane over its lifetime [per
Eq. (21b); this provides a measure of the overall capacity of the filter]. This quantity is found to
be nonmonotone in s, with a pronounced maximum achieved at a pore-radius gradient value of
s = 3 × 10−3 (for the chosen parameter values). To determine the extent of foulant penetration,
we also investigate the change in porosity of each band [per Eq. (21a)]. We find that the porosity
change in the first band is monotone increasing in s, while that in other bands has a clear (but
different) maximizing pore-size gradient value. In particular, the gradient values that maximize
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porosity changes for downstream (third and fourth) bands are very close to the gradient value that
maximizes total throughput, suggesting a strong correlation between these performance measures.

However, when we stop the filtration at a prescribed minimum flux level, we observe that the
optimal pore-radius gradient for each performance metric is smaller than when filters are run
until flux extinction. For the chosen model parameters, total filtrate throughput and porosity usage
are all maximized at a gradient value of s = 1.5 × 10−3 under the flux threshold criterion (final
accumulated foulant concentration at the membrane pore outlets remains a monotone decreasing
function in gradient s). The fact that we observe a smaller optimal gradient here than with the
flux-exhaustion stopping criterion is mainly because of the advantage given by the flux threshold
to filters with large initial flux. Uniform networks “benefit” from this practice and rise up the ranks
into the better performing filters. At the same time, graded networks with large pore-radius gradients
perform poorly because filtration tends to halt at an early stage due to the small initial fluxes inflicted
by the high-resistance downstream pores. We also anticipate that the optimal gradient value(s) for
performance metrics considered in this work will depend on the flux threshold we impose [indeed,
on the basis of Fig. 3(b) we expect that s = 0 may become the optimal value when the imposed flux
threshold is high enough].

We also found that the observed trends in pore-radius gradient persist for all values of maximal
pore length lmax considered. This suggests that our findings of how performance metrics depend on
pore-radius gradient are largely independent of variations in membrane interior microstructure as
characterized by lmax.

We did not study the dependence of our results on the model parameter λ (a band-independent
parameter that captures particle-membrane affinity). Mathematically, varying λ changes the time
scale of the problem [Eq. (22)]. In fact, the larger the λ value, the faster the filtration ends, deeming
pores in downstream bands (and thus the pore-size gradient) largely ineffectual. We will include
a detailed study of variations in λ in future work. Another relevant future avenue to investigate
would be to introduce band-specific λk’s, which represent multilayered membrane filters consisting
of different materials.

Though the porosity is fixed and uniform in our study, our network generation protocol inevitably
incurs gradients in pore surface area and pore connectivity (measured via the average number of
neighbors for each node), which are opposite in sign to the radius gradient. The influence of these
two important geometric features on performance should be studied in future, in this context of
pore-size graded membrane networks (there are existing results for uniform pore networks [40]).

Future work should also include a study of intralayer pore-size variations in pore-radius graded
banded networks. A preliminary analytical result (per Appendix C) based on the model of this
paper suggests that membrane pore networks with constant band radius always close first upstream;
that is, the membrane will never stop functioning due to critical pore closures in the interior of
the network, but only when the radii of all inlets on the top surface are zero. With intralayer
pore-size variations, adsorptive behaviors at the global scale may become more complicated and
more interesting than the constant band radius case. Additionally, other fouling mechanisms such as
sieving and erosion (detachment of foulant particles) could be modeled to provide a more complete
picture of the membrane filtration process.
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APPENDIX A: JUNCTIONS AND PORES IN A BAND

In this Appendix, we define the set of junctions (vertices) and pores (edges), and their respective
band-specific counterparts. We work exclusively with the dimensionless variables defined in Sec. V.
Our work treats junctions and pores as points and straight lines, respectively, which lie in our
dimensionless domain—the unit cube (though the notions of vertices and edges are generally more
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abstract in classical graph theory). Each junction v of the junction set V has a Euclidean coordinate
v = (vx, vy, vz ) ∈ [0, 1]3, with z measured from the membrane top (z = 0) to bottom surface
(z = 1), with z = (Z − 0.5)/W . The junction coordinates are generated randomly as described in
Sec. II A 2. We further define the set of membrane pore inlets and outlets,

Vin = {v ∈ V : vz = 0}, (A1a)

Vout = {v ∈ V : vz = 1}. (A1b)

The set of edges E is formed by connecting the junctions via

E = {evw ∈ V × V : lmin < χ (v,w) < lmax}, lmax � 1

m
, (A2)

where lmin and lmax are the dimensionless minimum and maximum distance allowed between two
junctions, respectively; and χ (·, ·) is a periodic metric, defined by

χ (v,w) = min
(wx,wy )

‖v − (wx,wy, 0) | wx,wy ∈ {±1, 0}‖2, (A3)

that is, junctions close to the four sides parallel to the z direction may be connected through the
boundary. We constrain lmax so that it does not exceed the thickness of a band, otherwise edges may
cross more than two bands and reduce or defeat the purpose of having a gradient of pore radii.

Next, we define precisely junctions and edges within a given band. Denoting the kth band as the
set of coordinates

Vk =
{
v ∈ [0, 1]3

∣∣∣∣k − 1

m
� vz <

k

m

}
, (A4)

we say a junction w lies in the kth band if w ∈ Vk . We treat each edge as a straight line in the unit
cube,

evw = {
u ∈ [0, 1]3 | u = ζv + (1 − ζ )w, 0 � ζ � 1

}
.

Let L(evw ) be the one-dimensional Lebesgue measure of evw such that L(evw ) = χ (v,w). Define a
band-specific length measure Lk such that

Lk (evw ) = L(evw ∩ Vk ), (A5)

which computes the length of the edge strictly inside the kth band (known in general as an
intersection measure). We say that a pore belongs to the kth band when the largest proportion of
its length lies strictly inside the kth band. More precisely, we define the set of the pores in the kth
band as

Ek = {
evw ∈ E | Lk (evw ) = max

n
Ln(evw )

}
. (A6)

In this definition, we see that if v,w ∈ Vk , then evw ∩ Vk = evw while evw ∩ Vn = ∅ for all n �= k,
that is, the edge evw lies strictly in the kth band.

The formula Eq. (A5) also facilitates the computation of �k , the band porosity of the kth band
[Eq. (3)], in the sense that we consider the lengths of edges that strictly lie in Vk; edges reaching
two bands will contribute to the band porosities of each band separately. We simplify the notation
as

Lk,vw := Lk (evw ).

APPENDIX B: NUMBER OF RANDOM POINTS IN EACH BAND

With prescribed � and m, we provide an estimate of how many random points, Nk , should be
used in the kth band. We write total pore length as χi j := χ (i, j) per Eq. (A3). More precisely, we
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use basic arguments to deduce, via the sequence of approximations and equalities below, that total
edge length in the kth band scales with N2

k ,

∑
ei j∈E

lk,i j
(A)≈

∑
ei j∈Ek

χi j
(B)= χ |Ek| (C)= χ

dkNk

2
(D)= χ

2
[(Nk − 1)p]Nk, (B1)

where χ , Dk and p are the average edge length, average number of neighbors in the kth band and
the probability of two random points being connected, respectively.

The first approximation (A) relies on the estimate that lk,i j ≈ χi j , given ei j ∈ Ek . The first
equality (B) is trivial. The second equality (C) expresses the number of edges in the kth band,
|Ek|, as the average number of neighbors, dk , times the number of junctions, Nk , divided by 2 (to
account for double counting). The third equality (D) expresses dk , as the total number of neighbors
a junction could have, Nk − 1, times the probability of obtaining a neighbor, p.

We now briefly discuss the terms to the right of the last equality (D) in Eq. (B1) and the
dependence of these quantities on band number k. First, since χ is a sample mean of edge length with
|Ek| as the sample size, it can be approximated by the expected edge length (based on hypercube
line-picking [47]), which is a constant independent of k (but dependent on amin and amax). The
probability of connecting two uniformly random points in the cube, p, depends on amin and amax but
not on band number k. These simple estimates provide the basis that justifies the step from Eq. (7)
to eq. (8), that is, one can cancel χ and p from both sides of Eq. (7) after re-expressing

∑
ei j∈E lk,i j

using Eq. (B1).
We note that χ does depend on k since each band is expected to have different node density.

Nonetheless, using the expected value of average edge length as an approximation is a reasonable
starting point to help estimate the number of nodes needed in each band. The procedure of edge
addition/removal performed in Step 3d of Algorithm 1 is considerably sped up with the guided
initial guesses.

APPENDIX C: ANALYTICAL RESULTS ON PORE CLOSURE TIME

In this section, we show that the lifetime of a simple subclass of pore networks is governed by
the radius of the inlets (pores in the upstream surface). More precisely, for such simple networks,
the radii of the inlets will always go to zero earlier than those of downstream pores, independent of
the initial upstream and downstream pore radii and model parameters. This result forms the basis
for the conjecture that the more general networks considered in this work will also only clog at the
membrane inlet. It also serves as an instructive worked example for the general network solver (see
Gu et al. [40] for another such example).

A membrane pore network ceases to function as a filter when there no longer exists a feasible
path connecting any inlet on the top surface to any outlet on the bottom surface. The critical event
leading to filtration arrest is when the radius of a pore vanishes as the “last straw,” breaking the
main network into at least two disconnected subnetworks, such that each subnetwork contains only
a subset of the inlets or outlets, but not both. We here consider the subclass of networks (depicted
in Fig. 9) consisting of a single arbitrary pore junction connecting nup upstream inlets and ndown

downstream outlets.
The upstream and downstream pores are assumed all to have unit length (though they appear

to have different lengths in Fig. 9; the choice of a common length simplifies the presentation but
does not affect our result). We solve the dimensionless governing equations (per scales presented in
Sec. V) for the unknown pressure pjunc(t ) and concentration cjunc(t ) at the interior junction. Since
the pore lengths are assumed the same, and the upstream (respectively, downstream) pores obey the
same boundary conditions for pressure and concentration, the radius and concentration evolution in
these pores are therefore also the same. As a result, we simply monitor the evolution of quantities
for one upstream and one downstream pore. Let r1(t ) and r2(t ) be the radius of each upstream and
downstream pore respectively.
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FIG. 9. Schematic of a simplified setup for Theorem 1. Colored junctions and pores correspond to each
band as follows: red upstream pores and indigo downstream pores. Blue dots are inlets. The red dot is an
interior junction. White dots are outlets. Here nup = 4 and ndown = 5.

Fluxes through each upstream and downstream pore, labeled q1(t ) and q2(t ) respectively, satisfy
the dimensionless Hagen-Poiseuille equations according to the pressure drop across them,

q1(t ) = [1 − pjunc(t )]r4
1 (t ),

q2(t ) = pjunc(t )r4
2 (t ),

where pjunc(t ) is the (unknown) pressure at the interior junction. Conservation of flux yields

nupq1(t ) = ndownq2(t ), (C1)

and therefore

pjunc(t ) = nupr4
1 (t )

nupr4
1 (t ) + ndownr4

2 (t )
⇒ q1(t ) = ndownr4

1 (t )r4
2 (t )

nupr4
1 (t ) + ndownr4

2 (t )
. (C2)

Foulant concentration in the upstream pore, c1(y, t ), satisfies the dimensionless advection equa-
tion Eq. (13),

q1
∂c1

∂y
= −λr1c1, c1(0, t ) = 1,

which has an analytical solution

c1(y, t ) = c1(0, t ) exp

(
−λyr1(t )

q1(t )

)
Eq. (C2)= exp

{
−λy

[
nupr1(t )

ndownr4
2 (t )

+ 1

r3
1 (t )

]}
.

The evolution of the pore radii satisfies Eq. (15),

dr1

dt
= −1, r1(0) = ε1 ⇒ r1(t ) = ε1 − t,

dr2

dt
= −cjunc(t ), r2(0) = ε2.
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By conservation of particle flux at the junction, we have ndownq2(t )cjunc(t ) = nupq1(t )c1(1, t ).
Conservation of flux [per Eq. (C1)] reduces this to cjunc(t ) = c1(1, t ). Hence,

dr2

dt
= −c1(1, t ) = − exp

{
−λ

[
nup(ε1 − t )

ndownr4
2 (t )

+ 1

(ε1 − t )3

]}
, r2(0) = ε2. (C3)

Theorem 1. The solution r2(t ) to Eq. (C3) satisfies r2(t ) > 0 for all t ∈ T := [0, ε1], for all
ε1, ε2, λ > 0 and arbitrary positive integers nup and ndown.

Proof. We note first that r2(t ) � 0 for all t ∈ T since the initial condition is positive (ε2 > 0),
and the right hand side of Eq. (C3) is a nonpositive function, which goes to zero as r2 → 0, i.e.,
dr2
dt → 0− as r2 → 0+. Thus, the radius of the downstream pore will decrease to zero until it reaches

zero and will never attain a negative value. To prove the claim that r2(t ) > 0 for all t ∈ T , we
suppose that there exists t∗ ∈ T such that r2(t∗) = 0 and arrive at a contradiction as follows.

The above shows that r2(t ) is a monotone decreasing function, and in fact, is equal to 0 for all
t � t∗. While r2(t ) > 0, for 0 � t < t∗, we divide both sides of Eq. (C3) by r2(t ) and integrate to
obtain

log [r2(t )] = log (ε2) − I (t ), (C4)

where

I (t ) =
∫ t

0

1

r2(τ )
exp

{
−λ

[
nup(ε1 − τ )

ndownr4
2 (τ )

+ 1

(ε1 − τ )3

]}
dτ. (C5)

Note that under the assumption that r2(t∗) = 0, Eq. (C4) requires I (t ) → +∞ as t ↗ t∗. It therefore
suffices to check that the integrand defining I (t ) in Eq. (C5) is a bounded function for all t ∈ T to
obtain our contradiction.

The term 1
(ε1−τ )3 is unimportant in the exponential of Eq. (C5) since the integral without it bounds

I (t ) from above. We focus on checking the boundedness of the following part:

f (τ ) := 1

r2(τ )
exp

[
−κ

(ε1 − τ )

r4
2 (τ )

]
,

where κ = λnup

ndown
.

Away from r2 = 0, the integrand is clearly bounded. As r2 → 0 (or as τ → t∗), by L’Hôpital’s
rule, f (τ ) → 0. The integrand is thus void of singularities and does not blow up on [0, t]. This
implies that the right-hand side of Eq. (C4) is bounded for all t ∈ T , while the left-hand side gives
−∞ as t → t∗. This contradiction shows that there is no t∗ ∈ T such that r2(t∗) = 0.

Theorem 1 shows that when initial upstream (respectively, downstream) pore sizes are the same,
pore closure always occurs upstream. This result is useful for the majority of the pore junctions
considered in this work, i.e., those that connect upstream and downstream pores with the same
initial radius, respectively.

However, Theorem 1 did not consider the possibility for a junction to have downstream pores
with different initial radii, as may occur when a junction connects to downstream pores that belong
to different bands. In this case, we show via a numerical example that the radius of a downstream
pore can go to zero before the upstream ones. Consider an inverted-Y shaped network with one
upstream pore and two downstream pores (corresponding to ntop = 1 and nbot = 2 in Fig. 9), with
initial radii ε1, ε2, and ε3, respectively. Without loss of generality, we assume ε2 > ε3. Note that this
situation is not included in the premise of Theorem 1.

Using calculations similar to those used for Theorem 1 above, we find that the outlet radii r2(t )
and r3(t ) satisfy the set of coupled ODEs,

dr2

dt
= dr3

dt
= − exp

{
−λ

[
ε1 − t

r4
2 (t ) + r4

3 (t )
+ 1

(ε1 − t )3

]}
, r2(0) = ε2, r3(0) = ε3. (C6)
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Note that r2 and r3 simply differ by a constant, ε2 − ε3. Thus, we can further deduce that

dr3

dt
= − exp

{
−λ

[
ε1 − t

(r3(t ) + ε2 − ε3)4 + r4
3 (t )

+ 1

(ε1 − t )3

]}
. (C7)

From this, we observe that one can make ε2 − ε3 sufficiently large so that regardless of how small
r3 becomes, r3 decreases at a nontrivial rate. This is a scenario different than that in Eq. (C3). An
explicit condition involving ε1, ε2, ε3, and λ for this to happen may be derived. We have confirmed
this conclusion numerically with ε1 = ε2 = 0.01, ε3 = 3 × 10−3, λ = 5 × 10−7 (the same value
used in Sec. VI), finding that r3(t ) goes to zero earlier than r1(t ).

We conclude that the difference in initial conditions for pore radii does play a role in driving the
dynamics of each pore. Downstream pore closure can be earlier than the upstream one. However,
we stress that even if one downstream pore closes earlier, the local structure at the junction always
reduces to the case where we have multiple upstream pores and one single downstream one, which
is the setup used in Theorem 1 with nup arbitrary and ndown = 1. In other words, the moment any
junction has one downstream pore, its upstream pores will always close first. With this heuristic
argument (that can be argued inductively upstream), we believe that a general membrane network
with varied initial conditions on the pore radii will only close on the top surface under adsorptive
fouling.
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