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We introduce a generalisation LHn of the ordinary Hecke algebras informed
by the loop braid group LBn and the extension of the Burau representation
thereto. The ordinary Hecke algebra has many remarkable arithmetic
and representation theoretic properties, and many applications. We show
that LHn has analogues of several of these properties. In particular we
consider a class of local (tensor space/functor) representations of the braid
group derived from a meld of the (nonfunctor) Burau representation (1935)
and the (functor) Deguchi et al., Kauffman and Saleur, and Martin and
Rittenberg representations here called Burau–Rittenberg representations. In
its most supersymmetric case somewhat mystical cancellations of anomalies
occur so that the Burau–Rittenberg representation extends to a loop Burau–
Rittenberg representation. And this factors through LHn. Let SPn denote
the corresponding (not necessarily proper) quotient algebra, k the ground
ring, and t ∈ k the loop-Hecke parameter. We prove the following:
(1) LHn is finite dimensional over a field.
(2) The natural inclusion LBn ↪→LBn+1 passes to an inclusion SPn ↪→SPn+1.
(3) Over k = C, SPn / rad is generically the sum of simple matrix algebras of

dimension (and Bratteli diagram) given by Pascal’s triangle. (Specifically
SPn / rad ∼= CSn/e1

(2,2) where Sn is the symmetric group and e1
(2,2) is a

λ = (2, 2) primitive idempotent.)
(4) We determine the other fundamental invariants of SPn representation

theory: the Cartan decomposition matrix; and the quiver, which is of
type-A.

(5) The structure of SPn is independent of the parameter t , except for t = 1.
(6) For t2 ̸= 1 then LHn ∼= SPn at least up to rank n = 7 (for t = −1 they are

not isomorphic for n > 2; for t = 1 they are not isomorphic for n > 1).
Finally we discuss a number of other intriguing points arising from this
construction in topology, representation theory and combinatorics.
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1. Introduction

Until the 1980s, methods to construct linear representations of the braid group Bn

were relatively scarce. We have those factoring through the symmetric group and
the Burau representation [1935], and those factoring through the Hecke algebra
[Hoefsmit 1974] and the Temperley–Lieb algebra [Temperley and Lieb 1971];
and, as for every group, the closure in the monoidal category Rep(Bn). These
proceed essentially through “combinatorial” devices such as Artin’s presentation.
Then there are some more intrinsically “topological” constructions such as Artin’s
representation [1947] (and Burau can be recast in this light [Long and Paton 1993]).

In the 80s there were notable steps forward. Algebraic formulations of the
Yang–Baxter equation began to yield representations; see e.g., [Baxter 1982]. Jones’
discovery [1986] of link invariants from finite dimensional quotients of the group
algebra K[Bn] inspired a revolution in braid group representations and topological
invariants [Kauffman 1990; Birman and Wenzl 1989; Murakami 1987; Freyd et al.
1985; Wenzl 1988]. Work of Drinfeld [1987], Reshetikhin and Turaev [1991], Jimbo
[1986] and others on quantum groups yielded yet further representations. Enriched
through modern category theory [Turaev 1994; Kassel and Turaev 2008; Bakalov
and Kirillov 2001; Damiani et al. 2021], constructions are now relatively abundant.

The connections among Bn representations, (2+1)-dimensional topological
quantum field theory (see e.g., [Witten 1989]) and statistical mechanics (see e.g.,
[Baxter 1982; Akutsu and Wadati 1987; Martin 1988; Deguchi 1989; Deguchi and
Akutsu 1990]) were already well established in the 1980s. Even more recently,
the importance of such representations in topological phases of matter [Freedman
et al. 2003; Rowell and Wang 2018] in two spacial dimensions has led to an
invigoration of interest, typically focused on unitary representations associated
with the 2-dimensional part of a (2+1)-TQFT. In this context the braid group is
envisioned as the group of motions of point-like quasiparticles in a disk, with the
trajectories of these anyons forming the braids in 3-dimensions. Here the braid
group generators σi correspond to exchanging the positions of the i and (i+1)-st
anyons. The density of such braid group representations in the group of (special)
unitary matrices is intimately related to the universality of quantum computational
models built on these topological phases of matter [Freedman et al. 2002a; 2002b],
as well as the (classical) computational complexity of the associated link invariants
[Rowell 2009]. Indeed, there is a circle of conjectures relating finite braid group
images [Naidu and Rowell 2011; Rowell et al. 2009], classical link invariants,
nonuniversal topological quantum computers and localisable unitary braid group
representations [Rowell and Wang 2012; Galindo et al. 2013]. The other side of this
conjectured coin relates the holy grail of universal topological quantum computation
with powerful 3-manifold invariants through surgery on links in the three sphere.
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What is a nontrivial generalisation of the braid group to 3-dimensions? Nat-
ural candidates are groups of motions: heuristically, the elements are classes of
trajectories of a compact submanifold N inside an ambient manifold M for which
the initial and final positions of N are set-wise the same. The group of motions
of points in a 3-manifold in effect simply permutes the points, but the motion of
circles or more general links in a 3-manifold is highly nontrivial. This motivates
the study of these 3-dimensional motion groups, as defined in the mid-20th century
by Dahm [1962] and expounded upon by Goldsmith [1981; 1982].

More formally, a motion of N inside M is an ambient isotopy ft(x) of N in M
so that

f0 = idM and f1(N ) = N .

Such a motion is stationary if ft(N ) = N for all t ; and given any motion f , we
have the usual notion of the reverse f̄ . We say two motions f, g are equivalent
if the composition of f with ḡ (via concatenation) gives a motion endpoint-fixed
homotopic to a stationary motion as isotopies

M × [0, 1] → M.

The motion group Mo(M, N ) is the group of motions modulo this equivalence.
When M and N are both oriented we will consider only motions f so that f1(N )= N
as an oriented submanifold, although one may consider the larger groups allowing
for orientation reversing motions.

The motion groups of links inside R3, S3 or D3 and their representations are
very rich, and only recently explored in the literature [Bellingeri and Bodin 2016;
Damiani and Kamada 2019; Kádár et al. 2017; Bullivant et al. 2020; Baez et al.
2007; Bullivant et al. 2019]. Further enticement is provided by the prospect of
applications to 3-dimensional topological phases of matter with loop-like excitations
(i.e., vortices) [Wang and Levin 2014]. The fruitful symbiosis between braid
group representations and 2-dimensional condensed matter systems give us hope
that 3-dimensional systems could enjoy a similar relationship with motion group
representations, (3+1)-TQFTs, and invariants of surfaces embedded in 4-manifolds;
see e.g., [Kamada 2007; Carter et al. 2004].

There are a few hints in the literature that the (3+1)-dimensional story has some
key differences from the (2+1)-dimensional situation. Reutter [2020] has shown that
semisimple (3+1)-TQFTs cannot detect smooth structures on 4-manifolds. Wang
and Qiu [2021] provided evidence that the mapping class group and motion group
representations associated with (3+1)-dimensional Dijkgraaf–Witten TQFTs are
determined via dimension reduction by the corresponding (2+1)-dimensional DW
theory. As the representation theory of motion groups has been largely neglected
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until very recently, it is hard to speculate on precise statements analogous to the
2-dimensional conjectures and theorems.

In this article we take hints from the classical works [Burau 1935; Hoefsmit 1974],
from the braid group revolution [Jones 1987], and more directly from statistical
mechanics [Deguchi and Akutsu 1990; Kauffman and Saleur 1991; Martin and
Rittenberg 1992; Deguchi and Martin 1992], to study representations of the motion
group of free unlinked circles in 3-dimensional space, the loop braid group LBn .
Presentations of LBn are known; see [Fenn et al. 1997; Damiani 2017]. As LBn

contains the braid group Bn as an abstract subgroup, a natural approach to finding
linear representations is to extend known Bn representations to LBn . This has been
considered by various authors; see e.g., [Bruillard et al. 2015; Bardakov 2005;
Kádár et al. 2017]. Another idea is to look for finite dimensional quotients of the
group algebra, mimicking the techniques of [Jones 1987; Birman and Wenzl 1989].
As nontrivial finite-dimensional quotients of the braid group are not so easy to find,
we take a hybrid approach: we combine the extension of the Burau representation
to LBn [Burau 1935; Bardakov 2005] with the Hecke algebras Hn obtained from
Q(t)[Bn] as the quotient by the ideal generated by

(σi + 1)(σi − t).

While the naive quotient of Q(t)[LBn] by this ideal does not provide a finite
dimensional algebra, certain additional quadratic relations (satisfied by the extended
Burau representation) are sufficient for finite dimensionality, with quotient denoted
LHn . We find a local representation of LHn that aids in the analysis of its structure —
the loop Burau–Rittenberg representation. One important feature of the algebras
LHn is that they are not semisimple; in fact, the image of the loop Burau–Rittenberg
representation has a 1-dimensional center, but is far from simple. Its semisimple
quotient by the Jacobson radical gives an interesting tower of algebras with Bratteli
diagram exactly Pascal’s triangle.

Our results suggest new lines of investigation into motion group representations.
What other finite dimensional quotients of motion group algebras can we find (see
e.g., [Banjo 2013])? What is the role of (non)semisimplicity in such quotients?
Can useful topological invariants be derived from these quotients? What do these
results say about (3+1)-dimensional TQFTs?

Outline of the paper. In Section 2 we recall the Burau representation and corre-
sponding knot invariants. In Section 3 we introduce loop Hecke algebras and prove
they are finite dimensional. In Section 4 we develop arithmetic tools (calculus) that
we will need. In Section 5 we construct our local representations and hence prove
our main structure Theorems. In Section 6 we apply the results from Section 5 to
LHn , and make several conjectures on the open cases with t2

= 1. We conclude
with a discussion of new directions opened up by this work.
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2. Burau representation, Hecke algebra and invariants of knots

Let n := {1, 2, . . . , n}. Then the braid group Bn may be identified with the motion
group Mo(R2, n ×{0}). Artin showed that, for n ≥ 1, Bn admits the presentation

(2-1)

〈
σ1, . . . , σn−1

∣∣∣∣ σiσ j = σ jσi for |i − j | > 1

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2

〉
We will write An(σ) for the set of relations here.

We will also need the symmetric group Sn . In a “motion group spirit” this can be
identified with Mo(R3, n × {0} × {0}). It can be presented as a quotient of Bn by
the relation σ1

2
= 1 (however since we will often want to have both groups together

we will soon rename the Sn generators).

2A. Burau representation. We define Burau representation ϱ:Bn→GLn(Z[t, t−1
])

as follows:

(2-2) σi 7→ Ii−1 ⊕

(
1 − t t

1 0

)
⊕ In−i−1.

The Burau representation has Jordan–Holder decomposition into a 1-dimensional
representation (the vector (1, . . . , 1)T remains fixed) and an (n − 1)-dimensional
irreducible representation known as reduced Burau representation ϱ : Bn →

GLn−1(Z[t, t−1
]). The decomposition is not split over Z[t, t−1

] — an inverse
of t + 1 is needed (see later).

Remark 2.1. One can also use the transpose matrix of (2-2) (depending on ori-
entation choices while building the “carpark cover” of the punctured disc in the
homological definition of Burau). The transpose fixes (1, . . . , 1, t, t2, 1, . . . , 1)T .

2B. Facts about the Burau representation.

(1) Burau is unfaithful for n ≥ 5 (Moody [1991] proved unfaithfulness for n ≥ 9,
Long and Paton [1993] for n ≥ 6, Bigelow [1999] for n = 5).

(2) The case n = 4 is open, Beridze and Traczyk [2018] recently published some
advances toward closing the problem.

(3) It is faithful for n = 2, 3 [Magnus and Peluso 1969].

(4) If we consider the braid group in its mapping class group formulation, it has
a homological meaning (attached a posteriori to it, since Burau [1935] used only
combinatorial aspects of matrices). The Burau representation describes the action
of braids on the first homology group of the (covering of) the punctured disk. On
the other hand the Alexander polynomial is extracted from the presentation matrix
of the first homology group of the knot complement (the Alexander matrix). When
we close up a braid, each element of homology of the punctured disk on the bottom
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becomes identified with its image in the punctured disk at the top. At this point
the Alexander matrix of the closed braid is (roughly) the Burau matrix of the braid
with the modification of identifying the endpoints.

More specifically, let K be a knot, and b a braid such that b̂ is equivalent to K .
Then the Alexander polynomial 1K (t) can be obtained by computing:

1K (t) =
det(ϱ(b) − In−1)

1 + t + · · · + tn−1 .

So one can think of the Alexander polynomial of K ∼ b̂ as a rescaling of the
characteristic polynomial of the image of b in the reduced representation.

Representations of Bn are partially characterised by the eigenvalue spectrum of
the image of σi . Observe that

(2-3) ϱ(σi
2) = (1 − t)ϱ(σi ) + t In,

i.e., the eigenvalue spectrum is Spec(ϱ(σi )) = {1, −t}. Recall also that Kronecker
products obey Spec(A ⊗ B) = Spec(A). Spec(B), so Spec(ϱ(σi ) ⊗ ϱ(σi ) = ϱ ⊗

ϱ(σi )) = {1, −t, t2
}. From this we see that the spectrum is fixed under tensor

product only if t = ±1; see for example [Kauffman and Saleur 1991].

2C. Hecke algebras. Let R be an integral domain and q1, q2 elements of R with
q2 invertible. We define the Hecke algebra H R

n (q1, q2) to be the algebra with
generators {1, T1, . . . , Tn−1} and the following defining relations:

Ti T j = T j Ti for |i − j | > 1,(2-4)

Ti Ti+1Ti = Ti+1Ti Ti+1 for i = 1, . . . , n − 2,(2-5)

T 2
i = (q1 + q2)Ti − q1q2 for i = 1, . . . , n − 1.(2-6)

Remark 2.2. (1) Relation (2-6) coincides with the characteristic equation of the
images of the generators under the Burau representation 2A when (q1, q2)= (1, −t).
We denote the resulting 1-parameter Iwahori–Hecke algebra by H R

n (t).

(2) If t = 1 then H R
n (t) is the group algebra R[Sn] (the free R-module RSn made

an R-algebra in the usual way).

(3) There is a map from Bn to H R
n (t) sending σi to Ti . Thus representations of

H R
n (t) are equivalent to representations of Bn for which the generators satisfy

relation (2-6). This is described in [Bigelow 2006, Section 3; Jones 1987, Section 4;
Martin 1991, Section 5.7] and many other places.

(4) Fixing R = C, point (3) allows us to think of H R
n (t) as being isomorphic to the

quotient Hn(t) := C[Bn]σ
2
i = (1 − t)σi + t .
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(5) Using the map in (3) we can represent any element of Hn(t) as a linear combi-
nation of braid diagrams. The quadratic relation can be seen as a skein relation on
elementary crossings. Knowing a basis for Hn(t) makes this fact usable.

Question 2.3. Why these parameters and this quadratic relation?
As noted, Hecke algebras can be defined with two units of R as parameters.

We chose to fix these parameters to (1, −t) because from this quotient one should
recover the Alexander polynomial. Choosing (−1, t) one should get the quotient
on which Ocneanu traces are defined; see [Kassel and Turaev 2008, Chapter 4.2].
With the Ocneanu trace being a 1-parameter family over a 1-parameter algebra,
we end up with polynomials in two variables. These polynomials are attached to
the braid diagrams that we can see representing elements of Hn(t). Moreover they
are defined in such a way to respect Markov moves, so they are invariants for the
closures of said braids. Hence, they are knot invariants. The quadratic relation
from Remark 2.2(3) translates the trace in a skein relation. Through the Ocneanu
trace (normalised) the invariant that is obtained is the HOMFLY-PT polynomial,
which specialises in both Alexander and Jones. Each specialisation corresponds to
factoring through a further quotient of the Hecke algebra (in the case of Jones, this
is a quotient of the Temperley–Lieb algebra). Below we “reverse engineer” this
process.

3. Generalising Burau and Hecke to loop braid groups

3A. The loop braid group. Here S1 denotes the unit circle. We now consider the
loop braid group

LBn = Mo(R3, n × S1);

see e.g., [Goldsmith 1981; Savushkina 1996; Fenn et al. 1997; Brendle and Hatcher
2013; Damiani 2017; Kádár et al. 2017; Bruillard et al. 2015].

Consider the set 4n = {σi , ρi , i = 1, 2, . . . , n−1} and group ⟨4n |Qn⟩ presented
by generators σi and ρi , and relations Qn as follows. The generators may be
visualised as the “leapfrog” and loop exchange, such as the following depictions of
σ1 and ρ1 as generators of LB3 (motions read bottom-to-top):

σ1 =

31 2

ρ1 =

31 2



38 CELESTE DAMIANI, PAUL MARTIN AND ERIC C. ROWELL

The σi obey the braid relations as in (2-1); the ρi obey the braid relations and
also

(3-1) ρiρi = 1

and then there are mixed braid relations

ρiρi+1σi = σi+1ρiρi+1,(3-2)

ρiσi+1σi = σi+1σiρi+1,(3-3)

σiρi± j = ρi± jσi ( j > 1) (all distant commutators).(3-4)

Remark 3.1. The first mixed relation (3-2) implies its reversed order counterpart:

(3-5) σiρi+1ρi = ρi+1ρiσi+1

whereas the reversed order second mixed relation does not hold. The relations also
imply

(3-6) ρ2σ1ρ2 = ρ1σ2ρ1.

We have (see e.g., [Fenn et al. 1997]) that

(3-7) LBn ∼= ⟨4n | Qn⟩.

It will be convenient to give an algebra presentation for the group algebra. Recall
that in an algebra presentation inverses are not present automatically by freeness,
so we may put them in by hand as formal symbols and then impose the inverse
relations. Thus as a presented algebra we have

k⟨4n | Qn⟩ = ⟨4n ∪ 4−

n | Qn, In⟩k;

here kG means the group k-algebra of group G, ⟨− | −⟩k means a k-algebra
presentation and In is the set of inverse relations σiσ

−

i = 1.

3B. The loop–Hecke algebra LHn. With Section 2 in mind, there is a suitable
generalisation of the Burau representation to LBn .

Proposition 3.2 [Vershinin 2001]. The map on generators of LBn given by

σi 7→ Ii−1 ⊕

(
1 − t t

1 0

)
⊕ In−i−1.(3-8)

ρi 7→ Ii−1 ⊕

(
0 1
1 0

)
⊕ In−i−1.(3-9)

extends to a representation ϱG B : LBn → GLn(Z[t, t−1
]).

Proof. Direct calculation. □
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This group representation is not faithful for n ≥ 3 [Bardakov 2005], and corre-
sponds to an Alexander polynomial for welded knots.

We consider a quotient algebra of the group algebra (over a suitable commutative
ring) of the group ⟨4n | Qn⟩. The quotient algebra is

(3-10) LHZ
n := Z[t, t−1

]⟨4n | Qn⟩Rn = ⟨4n ∪ 4−

n | Qn, In,Rn⟩Z[t,t−1]

where Rn is the set of (algebra) relations:

σ 2
i = (1 − t)σi + t (i.e., (σi − 1)(σi + t) = 0),(3-11)

ρiσi = −tρi + σi + t (i.e., (ρi − 1)(σi + t) = 0),(3-12)

σiρi = −σi + ρi + 1 (i.e., (σi − 1)(ρi + 1) = 0).(3-13)

(NB we already have (ρi − 1)(ρi + 1 = 0.)
Observe that (3-11) yields an inverse for σi (the inverse to t is specifically needed),

so we have

(3-14) LHZ
n = ⟨4n | Qn,Rn⟩Z[t,t−1].

Observe then that the relations as such do not require an inverse to t , so we could
consider the variant algebra over Z[t].

For any field K that is a Z[t, t−1
] algebra we then define the base change

LHK
n = K ⊗Z[t,t−1] LHZ

n and, for given tc ∈ C,

LHn(tc) = LHn = LHC
n

where C is a Z[t]-algebra by evaluating t at tc (the choice of which we notationally
suppress). Note that there is no reason to suppose that this gives a flat deformation
(i.e., the same dimension) in all cases. (It will turn out that it does, at least in low
rank, if we can localise at t2

− 1. In particular, perhaps surprisingly, in the variant
t = 0 is isomorphic to the generic case.)

Remark. The relations (3-11) et seq. are suggested by (2-3) and the following
calculations (on σ1 and ρ1 in LB3, noting that blocks work the same way for all
generators):

ϱG B(σ1ρ1) =

t 1 − t 0
0 1 0
0 0 1

 = −

1 − t t 0
1 0 0
0 0 1

 +

0 1 0
1 0 0
0 0 1

 + I3,

ϱG B(ρ1σ1) =

 1 0 0
1 − t t 0

0 0 1

 = −t

0 1 0
1 0 0
0 0 1

 +

1 − t t 0
1 0 0
0 0 1

 + t I3.
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3C. Notable direct consequences of the relations: Finiteness. Given a word in
the generators, of form σ3σ4ρ2 say, by a translate of it we mean the word obtained
by shifting the indices thus: σ3+iσ4+iρ2+i .

With the Q and R relations we can derive the following ones, together with the
natural translates thereof (here

∗
= uses (3-1);

ρρσ
= uses (3-2);

σρ
= uses (3-13), and so on):

σ2ρ1σ2
∗
= σ2ρ2ρ2ρ1σ2(M1)

ρρσ
= σ2ρ2σ1ρ2ρ1
σρ
= −σ2σ1ρ2ρ1 + ρ2σ1ρ2ρ1 + σ1ρ2ρ1

ρσσ,ρρσ
= −ρ1σ2σ1ρ1 + ρ2ρ2ρ1σ2 + σ1ρ2ρ1
σρ
= σ1ρ2ρ1 + ρ1σ2σ1 − ρ1σ2ρ1,

ρ2σ1σ2
∗
= ρ2σ1ρ2ρ2σ2(M2)
ρσ
= −tρ2σ1ρ2ρ2 + ρ2σ1ρ2σ2 + tρ2σ1ρ2

∗,ρσρ
= −tρ2σ1 + ρ1σ2ρ1σ2 + tρ1σ2ρ1
M1
= −tρ2σ1 + ρ1(ρ1σ2σ1 − ρ1σ2ρ1 + σ1ρ2ρ1) + tρ1σ2ρ1

∗,ρσ
= −tρ2σ1 + σ2σ1 − σ2ρ1 + (−tρ1 + σ1 + t)ρ2ρ1 + tρ1σ2ρ1

= σ1ρ2ρ1 + tρ1σ2ρ1 − tρ1ρ2ρ1 + σ2σ1 − σ2ρ1 − tρ2σ1 + tρ2ρ1.

Definition 3.3. For given n and m ≤ n let LH⟨
m denote the subalgebra of LHn+1

generated by 4m (it is a quotient of LHm , as per the 9 map formalism in Section 4B).

Lemma 3.4. For any n let X i be the vector subspace of L Hn spanned by {1, σi , ρi }.
Then LHn+1 = LH⟨

n Xn LH⟨
n .

Proof. It is enough to show that Xn LH⟨
n Xn lies in LH⟨

n Xn LH⟨
n . We work by

induction on n. The case n = 1 is clear, since L H1 = C. Assume true in case n − 1
and consider case n. We have

Xn LH⟨

n Xn = Xn LH⟨

n−1 Xn−1 LH⟨

n−1 Xn

by assumption. But LH⟨

n−1 and Xn commute so we have LH⟨

n−1 Xn Xn−1 Xn LH⟨

n−1.
The inductive step follows from the relations Q and R and the relations (M1) and
(M2) above. □

Corollary 3.5. LHn is finite dimensional. □

Remark 3.6. We may also treat certain other quotients of C LBn . For example,
eliminating either relations (3-12) or (3-13) we still obtain finite dimensional
quotients. In particular, if we only include (3-13) and not (3-12) then the analogous
proof with Xn replaced by {1, ρn, σn, ρnσn} proves finite dimensionality.
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3D. Refining the spanning set. Can we express elements of LH3 as sums of length-
2 words (and hence eventually solve word problem)? We have, for example,
(3-15)

ρ1ρ2ρ1 = −1+ρ2 +
(−t − 1)

(t − 1)
(−ρ1 +ρ2ρ1 −ρ1ρ2)+

2
(t − 1)

(−σ1 +σ2ρ1 −ρ1σ2)

But in general this is not easy. And another problem is that we do not have
immediately manifest relationships between different ranks (such as inclusion) that
would be useful. With this (and several related points) in mind it would be useful
to have a tensor space representation. In what follows we address the construction
of such a representation.

4. Basic arithmetic with LHn

Here we briefly report some basic arithmetic in LHn that gives the clues we need
for our local representation constructions below.

4A. Fundamental tools, locality. In what follows, B denotes the braid cate-
gory: a strict monoidal category with object monoid (N0, +) generated by 1, and
B(n, n)= Bn , B(n, m)=∅ otherwise, and monoidal composition is via side-by-side
concatenation of suitable braid representatives; see e.g., [Mac Lane 1998, XI.4].
Similarly S is the permutation category (of symmetric groups). Let H denote the
ordinary Hecke category — again monoidal, but less obviously so [Humphreys
1990]. (We have not yet shown that LH, the loop-Hecke category, is monoidal.)

Let LB denote the loop-braid category — this is the strict monoidal category
analogous to the braid category where the object monoid is (N, +), LB(n, n)= LBn ,
LB(n, m)=∅ otherwise, and monoidal composition ⊗ is side-by-side concatenation
of loop-braids.

Suppose C is a strict monoidal category with object monoid (N0, +) generated by
1 (for example, LB). Write 11 for the unique element of C(1, 1) and for x ∈ C(n, n)

define the translate

(4-1) x (t)
= 1⊗t

1 ⊗ x ∈ C(n + t, n + t)

For k a commutative ring, define translates of elements of k LBn (i.e., kLB(n, n)),
and kSn and so on, by linear extension.

Caveat. Note that it is a property of the geometric topological construction of
loop braids that the composition ⊗ in LB makes manifest sense. It requires that
side-by-side concatenation of rank n with rank m passes to n + m. This is clear by
construction. But in groups/algebras defined by generators and relations it would
not be intrinsically clear. For example, how do we know that the subalgebra of
LHn generated in LHn by the elements pi , si , i = 1, 2, . . . , n − 2 is isomorphic
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to LHn−1? (Some of our notation requires care at this point since it may lead us to
take isomorphism for granted!)

4B. The 9 maps. Let A = ⟨X | R⟩k be an algebra presented with generators X
and relations R. Then there is a homomorphism from the free algebra generated
by any subset X1 of X to A, taking s ∈ X1 to its image in A. This factors through
the quotient by any relations, R1 say, expressed only in X1. We may consider it
as a homomorphism from this quotient. But of course the kernel may be bigger —
relations induced indirectly by the relations in R. A 9 map is such a homomorphism:

⟨X1 | R1⟩k
9

−↠ ⟨X1 | R⟩k ↪→ ⟨X | R⟩k

Note that arithmetic properties such as idempotency, orthogonality and vanishing
are preserved under 9 maps. Thus for example a decomposition of 1 into orthogonal
idempotents in kSn passes to such a decomposition in LHn (see (4-3)). However
conditions such as primitivity, inequality and even nonzeroness are not preserved
in general.

Note that there is a natural (not generally isomorphic) image of

(4-2) kSn ∼= k⟨p1, . . . , pi , . . . , pn−1 | An(p), pi pi = 1⟩

in LHn obtained by the map of generators pi 7→ ρi . Let us call it LHρ
n . Thus

(4-3) kSn
9

−↠ LHρ
n ↪→ LHn

Similarly Hn =⟨T1, . . . , Ti , . . . , Tn−1 |An(T), . . . ⟩k has image LHσ
n under Ti 7→ σi :

(4-4) Hn ↠ LHσ
n ↪→ LHn

Let us consider the image of a primitive idempotent decomposition in kSn

1 =

∑
λ∈3n

dλ∑
i=1

ei
λ

under 9 : kSn → LHn . Here 3n denotes the set of integer partitions of n, and dλ

is the dimension of the Sn irrep. See the Appendix for explicit constructions. We
will also write (3, ⊆) for the poset of all integer partitions ordered by the usual
inclusion as a Young diagram.

Proposition 4.1. Let k be the field of fractions of Z[t, t−1
]:

(I) The image 9(ei
λ) in LHk

n of every idempotent with (2, 2) ⊆ λ ∈ 3n is zero.

(II) On the other hand all other λ ∈ 3n , i.e., all hook shapes, give nonzero image.
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Proof. (I) Note that e1
µ with µ ∈ 3m is defined in kSn for n ≥ m by Sm ↪→ Sn . It

is shown for example in [Martin and Rittenberg 1992] that if the relation e1
µ = 0

is imposed in a quotient of kSn then ei
ν = 0 holds for µ ⊆ ν ∈ 3n (a proof uses

Sn−1 ↪→ Sn restriction rules, from which we see that e1
µ is expressible as a sum of

orthogonal such idempotents). Consider e1
(2,2) (i.e., with (2, 2) ∈ 34) which may

be expressed as

e1
(2,2) = ∝ (p1 + 1)(p3 + 1)p2(p1 − 1)(p3 − 1)p2(p1 + 1)(p3 + 1)

(using notation and a choice from (A-5)). By a direct calculation in LH4

(4-5) 9((p1 + 1)(p3 + 1)p2(p1 − 1)(p3 − 1)) = 0

(NB we know no elegant way to do this calculation; the result holds also for generic
t , but not for t = 1).

(II) This can be verified by evaluation as nonzero in a suitable representation. (For
simplicity it is sufficient to work in the “SP quotient” that we give in Theorem 5.2
below, working with Kronecker products. We will omit the explicit calculation.) □

With identity (4-5) in mind, recall that in [Martin and Rittenberg 1992] local
representations of ordinary Hecke (and hence Sn) with this property were constructed
from spin chains. In Section 5 we will combine this with Burau and thus find the
representations of loop-Hecke that we need here.

By Proposition 4.1 we have a decomposition of 1 in LHn according to hook
partitions

(4-6) 1 =

n−1∑
i=0

d
(n−i,1i )∑
j=1

9(e j
(n−i,1i )

).

(NB j varies over idempotents that are equivalent in the sense that they induce
isomorphic modules — it will be sufficient to focus on j = 1.)

(Left) multiplying by A = LHn we thus have a decomposition of the algebra

A ∼= ⊕
n−1
i=0 ⊕ j A9(e j

(n−i,1i )
)

as a left-module for itself, into projective summands.
We have not yet shown that these summands are indecomposable. But consider

for a moment the action of LHn on the image under 9 of

Y n
±

=

∑
g∈Sn

(±1)len(g)g

in LHn (we write Y n
+

for unnormalised e1
(n) and Y n

−
for e1

(1n); again, see the Appendix
for a review). By abuse of notation we will write Y n

±
also for the image. By (3-13)
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and the classical identities Y a(1)
± Y n

±
= a!Y n

±
(recall Y a(1)

± means Y a
±

with indices
shifted by +1, see (A-2) et seq.) we have

(4-7) σi Y n
+

= Y n
+
, Y n

−
σi = −tY n

−
.

It follows that Y n
+

spans a 1-d left ideal in LHn . If we work over a field containing the
rationals then it is normalisable as an idempotent, and so we have an indecomposable
projective left module

P(n) = LHn Y n
+

= LHn e1
(n) = ke1

(n).

5. On local representations

Here Mat is the monoidal category of matrices over a given commutative ring (and
Matk the case over commutative ring k), with object monoid (N, ×) and tensor
product on morphisms given by a Kronecker product (NB there is a convention
choice in defining the Kronecker product). We often focus on the monoidal subcat-
egory Matm generated by a single object m ∈ N — usually m = 2. Then the object
monoid (2N, ×) becomes (N, +) in the natural way.

In the study of ordinary Hecke algebras (and particularly quantum-group-
controlled quotients like Temperley–Lieb) a very useful tool is the beautiful set of
local tensor space representations generalising those arising from XXZ spin chains
and Schur–Weyl duality. For example we have the following.

Consider the TL diagram category T with object monoid (N, +) k-linear-
monoidally generated by the morphisms represented by diagrams

u = ∈ T(2, 0) and u∗
= .

This has a TQFT F2 given by u 7→ (0, τ, τ−1, 0) (the target category is Mat) and
taking ∗ to transpose. Of course for 11 ∈ T(1, 1) we have F2(11) = I2.

To pass to our present topic we note that 11 ⊗ 11 = 12 and that the Yang–Baxter
construction σ1 7→ 12 − τ 2u∗u gives

(5-1) σ1 7→ F2(12) − τ 2


0

τ 2 1
1 τ−2

0

 =


1

1 − τ 4
−τ 2

−τ 2 0
1


thus a representation of the braid category B (note that eigenvalues are 1 and −τ 4 so
τ 4 here passes to t in our parametrisation for loop-Hecke). But also note that u, u∗

can be used for a Markov trace. And also for idempotent localisation functors: let
U= u∗u, U1 =U⊗1n−2, and Tn =T(n, n) regarded as a k-algebra; then we have the
algebra isomorphism U1TnU1 ∼= Tn−2. This naturally gives a category embedding
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GU of Tn−2-mod in Tn-mod. Recall that irreps are naturally indexed by partitions of
n into at most two parts: λ = (n − m, m), or equivalently (for given n) by “charge”
λ1 − λ2 = n − 2m, thus by ϒn = {n, n − 2, n − 4, . . . , 0/1} (depending on n is
odd or even). This latter labeling scheme is stable under the embedding. That is,
indecomposable projective modules are mapped by GU according to ϒn−2 ↪→ ϒn .

5A. Charge conservation. Another useful property of F2 is “charge conservation”.
We may label the row/column index for object 2 in Mat by {ε1, ε2} or {+, −}. Then
2 ⊗ 2 has index set {ε1 ⊗ ε1, ε2 ⊗ ε1, ε1 ⊗ ε2, ε2 ⊗ ε2} (which we may abbreviate to
{11, 21, 12, 22}) and so on. The “charge” ch of an index is ch = #1−#2. Note from
(5-1) that F2 does not mix between different charges (hence charge conservation).

For a functor with the charge conservation property the representation of Bn

(say) obtained has a direct sum decomposition according to charge, with “Young
blocks” βi of charge i = n, n − 2, . . . ,−n. The dimensions of the blocks are given
by Pascal’s triangle. It will be convenient to express this with the semiinfinite
Toeplitz matrices U and T :

U =


1 1

1 1
1 1

1 1
. . .

 , U2
=


1 2 1

1 2 1
1 2 1

1 2 1
. . .

 , T =


0 1
1 0 1

1 0 1
1 0 1

. . .


and semiinfinite vectors v1 = (1, 0, 0, 0, . . . ), v2 = (0, 1, 0, 0, . . . ), . . . . Thus v1Un

(respectively vn+1T n) gives the numbers in the n + 1-th row of Pascal (followed
by a tail of zeros). (The two different formulations correspond to two different
thermodynamic limits — T corresponds to the ϒn−2 ↪→ ϒn limit — see later.) Then

(5-2) dim(βi ) = (v1Un)(n−i+2)/2 = (vn+1T n)n−i+1.

In the case of F2 these blocks are not linearly irreducible in general (the generic
irreducible dimensions are given by v1T n). But they still provide a useful framework.
We return to this later.

With this construction and Proposition 3.2 in mind, it is natural to ask if we can
make a local version of generalised Burau. (Folklore is that this cannot work, and
directly speaking it does not. But we now have some more clues at our disposal.)

5B. Representations of B. Now we have in mind Proposition 4.1; and brute force
calculations in low rank showing (see Section 6) that LHn is nonsemisimple but has
irreducible representations with dimensions given by Pascal’s triangle. This is rem-
iniscent of Rittenberg’s analysis of the quantum spin chains over Lie superalgebras
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found in [Deguchi 1989; Deguchi et al. 1989; Deguchi and Akutsu 1990; Kauffman
and Saleur 1991; Martin and Rittenberg 1992; Deguchi and Martin 1992]. It is
also reminiscent of work of Saleur on “type-B” braids [Martin and Saleur 1994];
emdash but for this see e.g., [Bullivant et al. 2020]. Inspired by this and the Burau
representation (and see [Damiani and Florens 2018]) we proceed as follows. Define

(5-3) Mt(σ ) =


1

1 − t t
1 0

1

 , M ′

t (σ ) =


1

1 − t t
1 0

−t


as in [Deguchi 1989; Kauffman and Saleur 1991]. Fix a commutative ring k, τ ∈ k×,
and t = τ 4. Observe that there is a monoidal functor FM from the Braid category B

to Vect (or at least Mat) given by object 1 mapping to V = C{e1, e2} (i.e., to 2 in
MatZ[t]) and the positive braid σ in B(2, 2) mapping to Mt(σ ). The conjugation
of this matrix to F2(σ ) lifts to a natural isomorphism of functors. Another natural
isomorphism class of charge conserving functors has representative functor FM ′

given by M ′
t (σ ). (According to the scheme of Deguchi et al., this is the (1,1)-super

class; see for example [Deguchi 1989; Kauffman and Saleur 1991]. But note that in
extending to LB below, isomorphism will not be preserved, so we are focusing on
the specific representative.) In fact some elementary analysis shows that these two
classes are all of this form that factor through Hecke (apart from the trivial class).

Let us formulate this in language that will be useful later. First note that (like
any invertible matrix) Mt(σ ) and M ′

t (σ ) extend to monoidal functors from the free
monoidal category generated by σ to Mat. Thus, in particular,

M ′

t (σ ⊗ 11) = M ′

t (σ ) ⊗ Id2 ∈ Mat(23, 23).

Given the form of the construction, proof of the above factoring through B follows
from a direct verification of the braid relation in each case. More interestingly we
have, again by direct calculation, the stronger result

(5-4) M ′

t (σ ⊗ 11)M ′

t (11 ⊗ σ)M ′

s(σ ⊗ 11) = M ′

s(11 ⊗ σ)M ′

t (σ ⊗ 11)M ′

t (11 ⊗ σ)

while the tss version of this identity does not hold (unless we force s = 1, or s = t)
(NB care must be taken with conventions here.)

To pass back from the basic-algebra/homology to the full algebra we need the
dimensions of the irreducibles. For an algebra A with Cartan matrix CL(A) and a
vector vL(A) giving the dimensions of the irreducible heads of the projectives we
have

(5-5) dim(A) = vL(A)CL(A)vL(A)T .
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Definition 5.1. Let the n × n matrix Mn be:

Mn =



1
1 1

1 1
1 1

. . .
. . .

1 1


We label columns left to right (and rows top to bottom) by the ordered set hn of
hook integer partitions of n:

hn = ((n), (n − 1, 1), (n − 2, 12), . . . , (1n)).

We will see in Theorem 5.8 that Mn is the left Cartan decomposition matrix of
SPn (it follows that the Ext-matrix is the same except without the main diagonal
entries).

5C. Extending to LB. Recall we introduced the loop-braid category LB. We write
σ ∈ LB(2, 2) for the positive braid exchange and ρ ∈ LB(2, 2) for the symmetric
exchange.

Formally extending with elementary transpositions (cf. ϱG B), the FM construction
fails to satisfy the mixed braid relation (3-3). However the functor FM ′ fairs better.

Theorem 5.2. (i) The σ 7→ M ′
t (σ ) construction extended using the super transpo-

sition ρ 7→ M ′

1(σ ) gives a monoidal functor Fe
M ′ from the loop Braid category LB

to Mat.

(ii) Fe
M ′ factors through LH.

Proof. The proof is a linear algebra calculation similar to the B cases above, using
Kronecker product identities; but also using the appropriate special case of (5-4)
for (3-3). □

Definition 5.3. Fix a field k and t ∈ k. Then the k-algebra SPn = k LBn / Ann Fe
M ′ .

We conjecture that the extended super representation, which we call Burau–
Rittenberg, or “SP” rep for short, is faithful on LH unless t2

= 1 (see later).

Remark 5.4. As the Hecke algebra is related to the quantum groups Uqsl(k | m)

via Schur–Weyl duality [Jimbo 1986; Deguchi and Akutsu 1990] one naturally
wonders if local representations of LH can be obtained from the R-matrices coming
from quantum groups, by extension. The results of [Kádár et al. 2017] suggest that
R-matrices that extend to local representations of LBn are in general somewhat rare.
The SP representation is of this form: M ′

t comes from the super-quantum group
Uqsl(1 | 1). We are not aware of other R-matrices coming from quantum groups
that extend to LBn , but this approach is nevertheless intriguing.
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Proposition 5.5. Fix a field k and t ∈ k, t ̸= 1. Let χi = (σi − ρi )/(1 − t). Then:

(a) χi and ρi (i = 1, 2, . . . , n − 1) are alternative generators of SPn .

(b) The k-algebra isomorphism class of SPn is independent of t .

Proof. (a) Elementary. (b) The images of the alternative generators in the defining
representation are independent of t . □

5D. Towards linear structure of SP. Let us work out the linear structure of SP.
(i.e., its Artin–Wedderburn linear representation theory over C: simple modules,
projective modules and so on. See Section 5E for a review.)

Proposition 5.6. Suppose t ̸= 1 ∈ k. Let χ = (σ − ρ)/(1 − t) and χ1 =

(σ1 − ρ1)/(1 − t) ∈ SPn .

(I) Then

(5-6) χ1 SPn χ1 ∼= SPn−1

and

(5-7) SPn / SPn χ1 SPn ∼= k.

(II) In particular the map fχ : SPn−1 → χ1 SPn χ1 given by w 7→ χ1w
(1)χ1 (recall

the translation notation from (4-1)) is an algebra isomorphism.

Proof. (I) Let us write simply F = Fn for the defining representation Fe
M ′ of SPn .

We write {1, 2}
n for the basis (i.e., we write simply symbols 1, 2 for e1, e2 and the

word 112 for e1 ⊗e1 ⊗e2 and so on). Our convention for ordering the basis is given
by 11,21,12,22. First observe that the image in F is (here with n = 3):

(5-8) (χ ⊗ 12) 7→


0

1 −1
0

1

 ⊗ 12 =



0
1 −1

0
1

0
1 −1

0
1


Note that the basis change conjugating by

(5-9)


1

1 1
1

1

 ⊗ 12
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(again this is the example with n = 3) brings this into diagonal form, projecting onto
the 2{1, 2}

n−1 subspace (the subspace of V n
= C{1, 2}

n spanned by basis elements
of form 2w with w ∈ {1, 2}

n−1, i.e., of form e2 ⊗ . . .). That is: χ 7→
(0

1

)
⊗ 12.

Furthermore:

(5-10) (χ ⊗ 12)(12 ⊗ σ)(χ ⊗ 12) 7→



0
1 −1

0
1 − t 0 t −t

0
1 0 0

0
−t


Note that after the (5-9) basis change this decomposes as a sum of several copies
of the 0 module together with the submodule N with basis 2{1, 2}

n−1. Then the
map from N to {1, 2}

n−1 given by 2w 7→ w gives

χ1σ1χ1 = −t.χ1 7→ Fn−1(−t.1)

and χ1σ2χ1 7→ Fn−1(σ1) and χ1ρ2χ1 7→ Fn−1(ρ1). Also note that χ1 commutes
with σi for i > 2 so we have

(5-11) χ1σiχ1 = χ1σi 7→ Fn−1(σi−1), χ1ρiχ1 7→ Fn−1(ρi−1) i > 2.

Thus the images of the generators under w 7→ χ1wχ1 are the generators of SPn−1,
establishing (5-6) on generators. To show that the images of the generators span we
proceed as follows. From Lemma 3.4 and the (sufficient) symmetry of the relations
under i 7→ n − i on indices, writing LHn = Ln for short, we have

Ln+1 = Ln Xn Ln

= L(1)
n X1L(1)

n

= L(2)
n−1 X2L(2)

n−1 X1L(2)
n−1 X2L(2)

n−1

= L(2)
n−1 X2L(3)

n−2 X3L(3)
n−2 X1 X2L(2)

n−1

= L(2)
n−1 X2 X3 X1 X2L(2)

n−1.

Thus

χ1Ln+1χ1 = χ1L(2)
n−1 X2 X3 X1 X2L(2)

n−1χ1 = L(2)
n−1χ1 X2 X3 X1 X2χ1L(2)

n−1.

We can show by direct calculations that χ1 X2 X3 X1 X2χ1 lies in the algebra gener-
ated by the images of the generators. (We can do this even in LH4. The result then
holds in SP4 since it is a quotient; and then in SPn by construction. Note however
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that we have not shown that it holds in LHn .) Also L(2)
n−1χ1 evidently lies in the

algebra generated by the images of the generators, by commutation, so we are done.
Finally (5-7) follows on noting that the quotient corresponds to imposing χ1 = 0,

i.e., σ1 = ρ1. Noting that t ̸= 1, this gives σi = 1.

(II) Note that fχ inverses the map from (5-11) above. □

5E. Aside on linear/Artinian representation theory. Since this paper bridges
between topology and linear representation theory it is perhaps appropriate to say a
few words on the bridge. While topology focuses on topological invariants, linear
rep theory is concerned with invariants such as the spectrum of linear operators
(and the generalised “spectrum” of algebras of linear operators). The former is thus
of interest for topological quantum field theories, and the latter for usual quantum
field theories (where notions such as mass are defined). In this section we recall a
few key points of linear/Artinian rep theory that are useful for us. (So of course it
can be skipped if you are not interested in this aspect, or are already familiar.)

Recall that every finite dimensional algebra over an algebraically closed field is
Morita equivalent to a basic algebra; see e.g., [Nesbitt and Scott 1943; Jacobson
1974; Benson 1991]. This allows us to track separately the combinatorial and
homological data of an algebra.

Let A be a finite dimensional algebra over an algebraically closed field k; see,
e.g., [Benson 1991]. Let J (A) denote the radical. Let L = {L1, . . . , Lr } be an
ordered set of the isomorphism classes of simple A-modules, with projective covers
Pi = Aei (i.e., the ei s are a set of primitive idempotents). Given an A-module M let
Rad(M) denote the intersection of the maximal proper submodules. Now suppose
A is basic. Recall that Ext1A(L i , L j ) codifies the nonsplit extensions between these
modules; i.e., the “atomic” components of nonsemisimplicity. The corresponding
“Ext-matrix” EL(A) is given by

(EL(A))i j = dimk Ext1A(L i , L j )

or equivalently

dimk Ext1A(L i , L j ) = dimk(HomA(Pj , Rad(Pi ))/ HomA(Pj , Rad2(Pi )))

= dimk(e j J (A)ei/e j J 2(A)ei ).

This perhaps looks technical, but note that e j J (A)ei = e j Aei when i ̸= j and so
then is essentially what we study in Section 4B et seq. (and in our case the quotient
factor is even conjecturally zero, so in fact we are already studying the Ext-matrix!).
Note that the Ext-matrix defines a quiver and hence a path algebra k EL(A). For
any finite dimensional algebra A, basic or otherwise, the Cartan decomposition
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matrix CL(A) is given by

(5-12) (CL(A))i j = dimk HomA(Pj , Pi )

that is, the i-th row gives the number of times each simple module occurs in Pi .

5F. Linear structure of SPn. A corollary of Proposition 5.6 is that we have an
embedding of module categories Gχ : SPn−1 − mod → SPn − mod . In fact we
can use this (together with our earlier calculations) to determine the structure of
these algebras. Before giving the structure theorem let us recall the relevant general
theory.

Lemma 5.7 (see, e.g., [Green 1980, Section 6.2]). Let A be an algebra and e ∈ A
an idempotent. Then:

(i) The functor Ae ⊗eAe − : eAe− mod → A− mod takes a complete set of in-
equivalent indecomposable projective left eAe-modules to a set of inequivalent
indecomposable projective A-modules that is complete except for the projective
covers of simple modules L in which eL = 0. (There is a corresponding right-
module version.)

(ii) This functor and the functor Ge : A− mod → eAe− mod given by M 7→ eM
form a left-right adjoint pair.

(iii) The Cartan decomposition matrix of eAe embeds in that of A according to the
labeling of modules in (i). □

Theorem 5.8. (i) Isomorphism classes of irreps of SPn are naturally indexed
by hn . (Indeed SPn /rad ∼= QSn/e1

2,2 so the dimensions are given by the n-th
row of Pascal’s triangle; see Figure 1.)

(ii) The left Cartan decomposition matrix is Mn . Note that this determines the
structure of SPn . It gives the dimension as

dim =

(
2(n − 1)

n − 1

)
+

(
2(n − 1)

n

)
=

1
2

(
2n
n

)
.

(iii) The image of the decomposition (4-6) is complete in SPn .

Proof. (i) Consider Lemma 5.7(i). In our case, putting

A = SPn and e = χ1,

then by (5-7) there is exactly one module L such that eL = 0 (at each n) — the
trivial module. Thus by Proposition 5.6 SPn has one more class of projectives and
hence irreps than SPn−1.
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Figure 1. Young graph up to rank 5 with 22-diagrams removed.

In particular write

Gχ : SPn−1 − mod → SPn − mod

for the functor in our case obtained using (5-6) from Proposition 5.6, that is

Gχ (M) = SPn χ ⊗χ SPn χ fχ M,
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suppressing the index n, where fχ is as described above. Then a complete set of
indecomposable projectives is

Pn
n = SPn e1

(n),

Pn
n−1 = Gχ (Pn−1

n−1 ) = Gχ (SPn−1 e1
(n−1)),

Pn
n−2 = Gχ (Gχ (SPn−2 e1

(n−2)),

...

Pn
n− j = G◦ j

χ (SPn− j e1
(n− j)),

...

Pn
1 = G◦n−1

χ (k).

It follows that the Cartan decomposition matrix C(n) contains C(n−1) as a sub-
matrix, with one new row and column with the label n. The new row gives the
simple content of Pn

n . But by (4-7) (noting Theorem 5.2(ii)) this projective is simple.
Iterating, we deduce that C(n) is lower-unitriangular.

Working by induction, suppose C(n) is of the claimed form in (ii) at level n−1.
Then at level n we have

(5-13) C(n) =



1
∗ 1
∗ 1 1
∗ 1 1
∗ 1 1
...

. . .
. . .

∗ 1 1


(omitted entries 0). To complete the inductive step we need to compute the e1

(n) Pn− j

for each j . Write Gm
χ for Gχ and f m

χ for fχ at level m < n, and note that

Gχ (SPn−1 e1
λ) = SPn χ1 ⊗χ SPn χ fχ (SPn−1 e1

λ)

= SPn χ1 ⊗χ SPn χ χ1 SP(1)
n−1 e(1)

λ χ1

= SPn χ1 SP(1)
n−1 e(1)

λ χ1 ⊗χ SPn χ χ1

∼= SPn χ1 SP(1)
n−1 e(1)

λ χ1

where we have used that these modules are idempotently generated ideals to apply
the tensor product up to isomorphism (and where again we use the notation from
(4-1), so SP(1)

n−1 is the 1-step translated copy of SPn−1 in SPn). So in particular

e1
(n) SPn Gχ (SPn−1 e1

(n−1))
∼= e1

(n) SPn χ1 SP(1)
n−1 e(1)

(n−1)χ1 ⊆ e1
(n) SPn χ1.
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It follows from the form of the image of e1
(n) in the SP representation (see

[Hamermesh 1962; Martin 1992, Appendix B; Martin and Rittenberg 1992]) that
the dimension of e1

(n) SPn χ1 is 1, so the first ∗ is 1. Specifically we have for example

e2 =
1
2(1 + p1) 7→


1

1/2 1/2
1/2 1/2

0

 , χ 7→


0

1 −1
0 0

1


and

e3 7→
1
3



3
1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0


, χ1 7→



0
0

1 −1
0 0

1 −1 0
0 0 0
0 0 1

1


where we have reordered the basis into fixed charge sectors, i.e., as 111, 112, 121,
211, 122, 212, 221, 222 (the charge of a basis element is #(1)−#(2), where #(1) is
the number of 1’s [Baxter 1982; Martin 1992]). Note from the construction that
charge is conserved in SP, so each charge sector is a submodule. We see that in
each charge sector except (n−1, 1) we have that either the image of e1

(n) is zero or
the image of χ1 is zero. Finally in the (n−1, 1) sector both of these have rank 1.
We deduce that e1

n Aχ1 is 1-dimensional as required.
Similarly we have to consider

Gχ Gn−1
χ (SPn−2 e1

(n−2))
∼= SPn χ1 fχ f n−1

χ (SPn−2 e1
(n−2))

∼= SPn χ1 fχ (χ1 SP(1)
n−2 e(1)

(n−2)χ1)

= SPn χ1χ1χ
(1)
1 SP(2)

n−2 e(2)
(n−2)χ

(1)
1 χ1,

(NB χ
(1)
1 = χ2) giving

e1
(n) SPn Gχ Gχ (SPn−2 e1

(n−2))
∼= e1

(n) SPn fχ fχ (SPn−2 e1
(n−2)) = e1

(n) SPn χ1χ2 . . . .
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We have, in the charge block basis,

χ2 7→



0
1 −1

0 0
0 0

1 0 0
0 1 −1
0 0 0

1


, χ1χ2 7→



0
0 0

0 0
0 0

1 −1 1
0 0 0
0 0 0

1


(in general for a nonzero entry in χ1χ2 we need basis elements with 2 in the first
and second position) so

e1
(n) SPn χ1χ2 = 0.

Remark. Indeed we can verify that e1
(n)χ2χ1 = 0 holds in LHn) so the second ∗

and indeed the other ∗s in (5-13) are all zero. We have verified the inductive step
for (ii).

Statement (iii) may be deduced from (i,ii) as follows. Note that we have n iso-
morphism classes in the decomposition, and their multiplicities are the dimensions
of the hook irreps of Sn in the natural order. On the other hand the n+1 charge
blocks of the SP representation are each either an irrep or contains two irreps, since
each contains one or two irreps upon restricting to Sn . The first is an irrep (since
dimension 1). By the proof of (ii) the second contains the first irrep, so two irreps
in total, and the other again has the same dimension as the corresponding Sn hook
representation. Furthermore no other block contains the first irrep so this block
must be indecomposable (else the SP representation could not be faithful, which it
is by definition). Proceeding through the blocks then by (ii) the first n of them are
a complete set of projective modules, so each one except the first and last contains
two simple modules (“adjacent” in the hook order). But then by the construction of
the Pascal triangle and (ii) these simple modules have the same dimension as the
corresponding Sn irreps, and (iii) follows. □

6. On representation theory of LHn

Combining (5-2) with (5-5) and Theorem 5.8 we have

dim(SPn(t ̸= 1)) = v1Un−1


1
1 1

1 1
1 1

. . .
. . .

 (v1Un−1)T
=

(
2n − 1
n − 1

)
=

1
2

(
2n
n

)
.



56 CELESTE DAMIANI, PAUL MARTIN AND ERIC C. ROWELL

t = 1 t = −1 t2
̸= 1 t ̸= 1 irreps/dimensions

n dim dim dim ss dim –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

1 1 1 1 1 1
2 3 3 3 2 1 1
3 15 11 10 6 1 2 1
4 114 42 35 20 1 3 3 1
5 1170 163 126 70 1 4 6 4 1
6 15570 638 462 252 1 5 10 10 5 1
7 2510 1716 924 1 6 15 20 15 6 1

Table 1. A summary of what we learn for the algebra dimensions,
and irreducible reps, of LHn . The irrep labels here are given by
(n − i, 1i ) 7→ n − 2i − 1.

NB we have used the obvious “global” limit of all the Cartan matrices (it is a
coincidence that this and the U matrix are similar).

Given a vector v we write Diag(v) for the diagonal matrix with v down the
diagonal. Let pn be the vector with the n-th row of Pascal’s triangle as the entries,
thus for example p4

= (1, 3, 3, 1). We have

Mp
n := Diag(pn)Mn Diag(pn)

(examples are given in (6-2) below) and the dimension is the sum of all the entries.
The closed form follows readily from this. Also from Theorem 5.8 we have:

Corollary 6.1. For t ̸= 1 the Morita class of SPn is of the path algebra with An

quiver (directed 1 → 2 → · · · → n) and relations given by vanishing of all proper
paths of length 2. In particular the radical-squared vanishes.

6A. Properties determined from Theorem 5.8 and direct calculation in low rank.
Our results for LHn may be neatly given as follows. Firstly,

Proposition 6.2. For t2
̸= 1 and n < 8,

LHn ∼= SPn .

Proof. Here we can compute dimensions directly, which saturates the bound on the
kernel. □

Conjecture 6.3. For t2
̸= 1,

LHn ∼= SPn .
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Combining (5-2) with (5-5), Theorems 5.8 and 6.3 we have the conjecture

dim(LHn(t2
̸=1))=v1Un−1


1
1 1

1 1
1 1

. . .
. . .

 (v1Un−1)T
=

(
2n − 1
n − 1

)
=

1
2

(
2n
n

)
.

For t = −1 we note that SPn is generally a proper quotient of LHn , and that LHn

has larger radical (the square does not vanish). We define the semiinfinite matrix

C(LH(t = −1)) =


1
1 1
1 1 1
1 1 1 1
...

...
...

...
. . .


and conjecture that the Cartan matrix C(LHn(t = −1)) is this truncated at n × n
(i.e., the quiver is the same as the generic case, but without quotient relations); and
thus we conjecture

(6-1) dim(LHn(t = −1)) = v1Un−1


1
1 1
1 1 1
1 1 1 1
...

...
...

...
. . .

 (v1Un−1)T
=

n2
+

(2n−2
n−1

)
2

;

see OEIS A032443. Note that our calculations verify this for n ≤ 7.
For t = 1 we see that LHn(t = 1) has semisimple quotient at least as big as CSn ,

which is of dimension n!. Indeed, in this case the quotient by the relation σi = ρi

is precisely CSn , since in this case σ 2
i = 1. For n ≤ 4 we have computationally

verified that the semisimple subalgebra of LHn(t = 1) is precisely CSn , and we
conjecture that this is the case for all n. The Jacobson radical grows quite quickly
however, and we do not have a conjecture on the general structure.

Observe that the numbers in Table 1 follow the conjectured patterns. Since the
vector v1 has finite support the nominally infinite sums above are all finite. To
inspect the supported part, in the generic case consider matrices Mp

n (n = 2, 3, 4, 5)

(6-2)
(

1
1 1

)
,

1
2 22

2 1

 ,


1
3 33

9 33

3 1

 ,


1
4 42

24 62

24 42

4 1

 .
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Here the semisimple dimension is given by the sum down the diagonal and the
radical dimension is given by the sum in the off-diagonal.

For t = −1

(
1
1 1

)
,

1
2 22

1 2 1

 ,


1
3 33

3 9 33

1 3 3 1

 ,


1
4 42

6 24 62

4 16 24 42

1 4 6 4 1

 .

6B. On χ elements. Let us define

(6-3) χ (m+1)
= (σ1 − ρ1)(σ2 − ρ2) . . . (σm − ρm),

understood as an element in LHn with n >m. Thus in particular χ (2)
=χ1. Similarly

for sequence X = (x1, x2, . . . , xk) define

(6-4) χ (X)
= (σx1 − ρx1)(σx2 − ρx2) · · · (σxk − ρxk ),

and

(6-5) χ
(m+1)
− = (σm − ρm)(σm−1 − ρm−1) · · · (σ2 − ρ2)(σ1 − ρ1).

It is easy to verify that if X is nonincreasing then χ (X)χ (X)
= (1 − t)kχ (X). Thus

(for t ̸= 1) the nonincreasing cases can all be normalised as idempotents. However
it is also easy to check that no increasing case can. (A nice illustration of the
“chirality” present in the defining relations.)

Observe that imposing the relation σ1 = ρ1 in LHn forces σ1 = 1, unless t = 1.
Thus the quotient algebra

(6-6) LHn /χ (2) ∼= k, t ̸= 1

i.e., only the trivial, or label λ = +n, irrep survives. And the same holds for SPn .
The following has been checked up to rank 5.

Conjecture 6.4. The structure of the quotient LHn /χ ( j+1) is given by the j × j
truncation of Mp

n .

7. Discussion and avenues for future work

Above we give answers to the main structural questions for SPn and LHn . But
exploration of generalisations is also well-motivated, since these algebras (even
taken together with the constructions discussed in [Kádár et al. 2017]) cover a
relatively small quotient inside Rep(LBn). With this in mind, there are a number of
other questions worth addressing around SPn and LHn , offering clues on generali-
sation, and hence towards understanding more of the structure of the group algebra.
Remark 3.6 suggests that for most values of t we obtain larger finite dimensional
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quotients by eliminating one of the local relations (3-12) or (3-13). Computational
experiments suggest that for t = 0 eliminating (3-13) yields infinite dimensional
algebras. This parameter-dependence should be further explored.

In light of the results of [Reutter 2020] the nonsemisimplicity of LHn is an impor-
tant feature, rather than a shortcoming. Extracting topological information from the
nonsemisimple part requires some further work, as Markov traces typically “see” the
semisimple part. Another aspect of our work is the (conjectural) localisation of the
regular representation of LHn . It is worth pointing out that localisations of unitary
sequences of Bn representations are relatively rare, conjecturally corresponding to
representations with finite braid group image [Rowell and Wang 2012; Galindo et al.
2013]. Since LHn is nonsemisimple and hence nonunitary this does not contradict
this conjectural relationship, but gives us some hope that localisations are possible
for other parameter choices and other quotients.

The quotient of LBn by the relation σi
2
= 1 is a potentially interesting infinite

group, which we call the mixed double symmetric group MDSn . The reason for
this nomenclature is that MDSn is a quotient of the free product of two copies of
the symmetric group. In particular, MDSn surjects onto Sn by σi → ρi . It is of
special interest here as LHn(1) is a quotient of Z[MDSn]. We expect it could be of
quite general interest.

In [Kádár et al. 2017] constructions are developed based on BMW algebras, but
still starting from “classical” precepts. It would be very interesting to meld the
super-Burau–Rittenberg construction to the KMRW construction. For example, one
might try to use cubic local (eigenvalue) relations among the generators ρi , σi to
obtain finite dimensional quotients, possibly inspired by the relations satisfied by a
subsequence of LBn lifts of BMW algebra representations.

Appendix: Preparatory arithmetic and notation for left ideals

AA. Symmetric group and Hecke algebra arithmetic. Recall Young’s (anti)
symmetrisers in kSn . Unnormalised in ZSn they are

(A-1) Y n
±

=

∑
g∈Sn

(±1)len(g)g

where len(g) is the usual Coxeter length function. If k has characteristic 0 then
kSn is semisimple and these elements are simply the (unnormalised) idempotents
corresponding to the trivial and alternating representations respectively. Note that
exactly the same classical construction works for the Hecke algebra over any field
where it is semisimple. (The corresponding idempotents are sometimes called Jones–
Wenzl projectors.) Specifically (see e.g., [Curtis and Reiner 1981, Section 9B])

Xn
±

=

∑
g∈Sn

(−λ∓)− len(g)Tg, i.e., X2
−

= 1 − σ1, X2
+

= 1 + t−1σ1, . . .
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where for us λ− = −t and λ+ = 1 (the apparent flip of labels is just because we
use non-Lusztig scaling), and Tg is the product of generators obtained by writing g
in reduced form then applying ρi 7→ Ti .

Working in kSn+m we understand Y n
±

and translates such as Y n(1)
+ in the obvious

way. Note then that we have many identities like

(A-2) Y 2
+

Y n
+

= 2Y n
+
, Y a(1)Y n

+
= a!Y n

+
(a < n).

Recall 3n denotes the set of integer partitions of n. Over the rational field we
have a decomposition of 1 ∈ kSn into primitive central idempotents

(A-3) 1 =

∑
λ∈3n

ϵλ

where each ϵλ is a known unique element; see e.g., [Cohn 1977, Section 7.6] or
[Curtis and Reiner 1981] for gentle expositions. There is a further (not generally
unique) decomposition of each ϵλ into primitive orthogonal idempotents

(A-4) ϵλ =

dimλ∑
i=1

ei
λ

where dimλ is the number of walks from the root to λ on the directed Young graph.
The elements ei

λ are conjugate to each other. The elements ei
λ are not uniquely

defined in general. Two possible constructions of one for each λ are exemplified
pictorially by (case λ = 442)

(A-5) e1
λ = cλ , ê1

λ = cλ

where an undecorated box is a symmetriser and a “−” decorated box an antisym-
metriser, and the factor cλ is just a scalar. (NB For the moment we write e1

λ instead
of e1

λ for this specific choice.) In particular though, e1
(n) is unique: e1

(n) =
1
n!

Y n
+

. (The
whole story lifts to the Hecke case; see e.g., [Martin 1991] for a gentle exposition.)

An idempotent decomposition of 1 in a subalgebra B of an algebra A is of course
a decomposition in A. Thus in particular we can take an idempotent in kSn and
consider it as an idempotent in kSn+1 by the inclusion that is natural from the
presentation (pi 7→ pi ). Understanding e1

λ with λ ⊢ n in kSn+1 in this way, a useful
property in our k = C case will be

(A-6) e j
λ =

∑
µ∈λ+

e′

µ
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where λ+ denotes the set of partitions obtained from λ by adding a box, and the
prime indicates that we identify this idempotent only up to equivalence. (Various
proofs exist. For example note that the existence of such a decomposition follows
from the induction rules for Sn ↪→ Sn+1.) For example

e1
(2,2) = e′

(3,2) + e′

(2,2,1).
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