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Abstract: Modular data is a significant invariant of a modular tensor category. We
pursue an approach to the classification of modular data of modular tensor categories
by building the modular S and 7 matrices directly from irreducible representations of
SLy(Z/nZ). We discover and collect many conditions on the SL, (Z/nZZ) representations
to identify those that correspond to some modular data. To arrive at concrete matrices
from representations, we also develop methods that allow us to select the proper basis
of the SL»(Z/nZ) representations so that they have the form of modular data. We apply
this technique to the classification of rank-6 modular tensor categories, obtaining a
classification of modular data, up to Galois conjugation and changing spherical structure.
Most of the calculations can be automated using a computer algebraic system, which
can be employed to classify modular data of higher rank modular tensor categories.
Our classification employs a hybrid of automated computational methods and by-hand
calculations.
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1. Introduction

Just as conventional symmetries are described by groups, gapped quantum liquid phases
of bosonic matter (i.e. bosonic topological order) seem to be described by non-degenerate
higher braided fusion categories. It has been conjectured that topological orders are
classified by the collection of projective representations of mapping class groups for
various topologies of closed space manifolds [39]. In particular, we believe that a gapped
phase of quantum matter in two spacial dimensions is classified by a pair (3, ¢), where B
is a unitary modular tensor category (MTC) and c is a rational number equal to the central
charge of B mod 8. Physically, B models the topological excitations (i.e. the anyons) in
the gapped phase [19], and ¢ measures the possible stacking of Eg quantum Hall state,
which has central charge ¢ = 8. Therefore, a classification of unitary MTCs should give
rise to a classification of all gapped quantum phases of bosons without symmetry in two
spacial dimensions.

MTCs are defined by very complicated data. The classification of MTCs naturally
breaks into two steps: the first step is to classify the modular data (MD), and the second
is to classify modular isotopes with a given MD if not unique. The MD (S, T) of an
MTC form a projective representation of the mapping class group of the 2-dimensional
torus. (In fact, the notion of topological order was first introduced based on modular
data (S, T) [39].) We will see that the classification of MDs is much more manageable
than the full classification of MTCs.

Modular data (S, T') corresponding to MTCs of rank » < 5 have been completely
classified [5,17,33]. More recently, such a classification for MTCs of rank 6 containing a
pair of non-self-dual simple objects and a partial classification of general MTCs of rank
6 has also been obtained [9]. The strategy employed in those classifications begins with
a stratification of the Galois group of the extension of QQ by the entries of the modular S
matrix, followed by a case by case analysis on the inferred polynomial constraints. As
the Galois group is isomorphic to an abelian subgroup of &,, this program is tractable,
although somewhat tedious. As a last resort in a few cases, the classification of low-
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dimensional representations of SL,(Z/nZ) for small n was required as well. The typical
outcome is that most Galois groups can be eliminated and one eventually finds a finite
list of modular data which can then be realized from known constructions.

In this article we complete the classification of rank 6 MDs using the reverse strategy:
we build upon the approach in [5, 12] by constructing the MDs directly from SL» (Z/nZ)
representations of low dimension. Since n is bounded in terms of the rank, expressing
irreducible SL;(Z/nZ) representations as tensor products of prime-power level repre-
sentations (i.e. SLy(Z/p*Z) for primes p) allows us to stratify by representation type
and level. Thus, up to basis choice, the SL;(Z) representations can be presented as pairs
(s, 1), where s is symmetric and ¢ is diagonal. The construction of symmetric represen-
tations of SL;(Z) is an interesting problem of its own [27,28]. We note that the number
of inequivalent SL;(Z/nZ) representations is finite at a given dimension, since the di-
mension and n are bounded in terms of the rank. These facts make our classification
possible. We find that up to Galois conjugation and altering spherical structures there
are 12 classes (orbits) of modular data, all of which are realized via quantum groups,
see Table 2. Only one of these orbits has no pseudo-unitary representative, while two
distinct orbits have the same fusion rules.

In the next step of our classification, for each representation (s, ¢), we conjugate s by
an arbitrary (real orthogonal) matrix that commutes with ¢ to reconstruct the potential
MD (S, T) with S symmetric and 7 diagonal. We find several methods that allow us to
select a finite number of possible real orthogonal matrices from the uncountable set of real
orthogonal matrices, so that the resulting (S, T') include all the MDs. Up to reordering
the objects in the category, i.e., the rows/columns of the resulting (S, T), these must
satisfy the algebraic and number-theoretic constraints of MDs. Case by case analyses,
following a similar pattern, then yield our classification. We remark that this approach
was used in a particular case in [ 14] to construct modular data for the center of the fusion
category associated with the extended Haagerup subfactor. At a BIRS workshop in 2014
with the first 3 authors present, Gannon suggested that the classification of SL,(Z/nZ)
representations could provide an alternative proof to the rank-finiteness theorem [6] if
one could show there are at most finitely many modular data (S, T') associated to any
given SLy(Z/nZ) representation. In fact, we found this to be true for dimension < 6.
The difficulty is to find the appropriate basis changes, even if their existence is known.
For small ranks, doing this by hand is a serious hurdle, although feasible. For larger
ranks, this can be overcome through computer implementation.

The approach to the classification of MDs by building the modular S and 7" matrices
directly from irreducible representations of SL2(Z/nZ) is applicable to much more
general cases than the rank 6 case in this paper. One version of our approaches that is
presented in the “Appendix” can be automated and almost all of the calculations in this
approach can be implemented using the GAP computer algebra system.

The content of the paper is as follows: In Sects. 2 and 3, we discover and collect
many conditions on the SL;(Z/nZ) representations to help us identifying those that are
from some MDs. To arrive at concrete matrices from representations, we also develop
methods that allow us to select the proper basis of the SL,(Z/nZ) representations so
that they become the MDs. In Sects. 4 and 5, we apply this technique to the classification
of rank-6 MTCs, obtaining a classification up to MD. Most of the calculations can be
automated using a computer algebraic system, which can be employed to classify MDs
of higher rank MTCs.
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2. Modular Tensor Categories and Modular Data

Given a modular tensor category (MTC)! B, the modular data (MD) of B consists of
the un-normalized S- and T'- matrices of 3, hence the MD of an MTC is independent of
any normalizations. Though the MD of an MTC does not determine the MTC uniquely
[22], it is still the most useful and important invariant of an MTC. Moreover, the MDs
of MTCs have enchanting relations with diverse areas from congruence subgroups to
vector-valued modular forms to topological phases of matter.

2.1. Necessary conditions for the modular data of an MTC. An obvious strategy to
classify MDs would be first to find all necessary and sufficient conditions for MDs,
and then simply look for solutions. But it seems very hard to find such a complete
characterization of MD. Instead we will list some necessary conditions and then appeal
to other methods to finish a classification.

The following collection of results on modular data which will be useful in the sequel.
Many are well-known and found in, e.g. [2].

Theorem 2.1. The modular data (S, T) of an MTC satisfies:

(1) S, T are symmetric complex matrices, indexed by i, j =0,...,r — 1.2
(2) T is unitary, diagonal, and Tog = 1.

(3) Soo = 1. Let d; = So; and D = /3"i_} d;d*. Then

sst = p?id, (2.1)

and the d; € R.

(4) S;j are cyclotomic integers in @ord(T)3 [26]. The ratios S;j/So; are cyclotomic inte-
gers for all i, j [8]. Also there is a j such that S;;/So; € [1, +00) for all i [13].

(5) Let 6; = Ti; and py = Y 1y d*(6:)*".
Then p../ p— is a root of unity, and p, = Del*"</8 for some rational number c.* More-
over, the modular data (S, T) is associated with a projective SLo(Z) representation,
since:

52 ,
(ST) = psS?%, 5 =G c? =id, 2.2)

where C is a permutation matrix satisfying
Tr(C) > 0. (2.3)

(6) Cauchy Theorem [6]: The set of distinct prime factors of ord(T) coincides with the
distinct prime factors of norm(D?).’

! We use the terminology of MTC as in its original sense [23], which is equivalent to a semi-simple modular
category of [36], i.e. a semi-simple modular category.

2 The index also labels the simple objects in the MTC, with i = 0 corresponding to the unit object, and r
is the rank of the modular data and the MTC.

3 Here @y, denotes the field Q(¢,) for a primitive nth root of unity ¢,

4 The central charge ¢ of the modular data and of the MTC is only defined modulo 8.

5 Here norm(x) is the product of the distinct Galois conjugates of the algebraic number x.
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(7) Verlinde formula (cf. [37]):

Sii Sl/ Slk

ij
N =23 Z eN, (2.4)
where i, j,k =0,1,...,r — 1 and N is the set of non-negative integers.6 The N(i)j
satisfy
ij
Ny = Cij, (2.5)

which defines a charge conjugation i — i via

Ny =i (2.6)

(8) Let n € Ny. The n™ Frobenius-Schur indicator of the i-th simple object

. 1 jk n N
w(@) = =5 Z];N; (dj07)(db}) 2.7)
Js

is a cyclotomic integer whose conductor divides n and ord(T) [24,25]. The Ist
Frobenius-Schur indicator satisfies vi (i) = 8i0 while the 2nd I_’robenius-Schur indi-
cator v2 (1) satisfies vo(i) = 0ifi # i, and vo(i) = 1 ifi =i (see [3,25,33]).

We denote by Gal(Q),,) the Galois group of the cyclotomic field Q,,.

Remark 2.2. The above conditions are for modular data of unitary or non-unitary MTCs.
In particular, the above conditions are invariant under Galois conjugations in Gal(Qora(1)/
Q). Therefore, we can group modular data into Galois orbits.

The mathematical definition of Frobenius-Schur indicators of an object in pivotal
fusion category was introduced in [25] and the trichotomy of the 2nd Frobenius-Schur
indicator of a simple object was also proved therein. If the underlying pivotal structure
is not spherical, the d; in the preceding theorem could be complex. We do not need this
for the sequel, but it may lead to an interesting generalization.

2.2. Classification of modular data up to rank = 5 and candidate list of rank = 6.

2.2.1. Rank 1-5 MTCs The rank< 5 unitary MTCs are classified [5,17,33]; Table 1
lists all 45 rank < 5 cases, only the quantum dimensions and twists are displayed. These
are labeled by N., where N is the rank and c the (additive) central charge. The entries
of the table are ordered by the total quantum dimension D?. Also d; is the quantum
dimension and s; = arg(T};) is the topological spin of the i simple object in the MTC.

The quantum dimensions are given in terms of £/* = % and §" = &' ‘1 The

fusion coefficients N kj and the S-matrices of MTCs can be deduced from the given data
in these low rank cases, and we do not list them for brevity’s sake.

6 The N ,ij are called the fusion coefficients.
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Table 1. Rank < 5 modular data

N D? do,dy, -+ 50, 81 N D? do,dy, - S0, ST,

[ 1 1 0

2 2 1,1 0,1 2., 2 1,1 0,—1

215 36180 1,155 0,2 2145 36180 1,155 0,-2

3 3 11,1 0.4, % 3, 3 111 0,-1.-1

3ip 4 1,1,V2 0.5, 1% iy 4 1,1,V2 0.3, — &

30 4 1,1,V2 0.1 2 33p 4 L1,V2 0.4, -

350 4 L1,v2 0.5, 3% s 4 1,1,vV2 0,4 -2

30 4 1.1.v2 0.5 1% 3 4 1.1,v2 0.3~

337 9.2946 1,872,835 0,-1.2 3.g/7 92946 1,828 0,4,-2

44 4 L1,1,1 0,00, 1 45 4 L1111 0,0, 4. -4

4 4 11,11 0.§.%.3 4 4 11,11 0.-%.—%.%

4 4 L1 11 0,4, 4.1 4., 4 L1, 1,1 0.-4.-4.1

45 4 1,1,1,1 0.3.3.1 44 4 1,1,1,1 0,-3.-3.4

4 4 L11,1 0,544 do;5 72360 1,115 155 0,-4.3.2

4lgis 72360 1,1, 155 155 01 -3 -2 45 72360 1,1, 155 15 01 -1 2

4igs 72360 1,1, 155, 155 0,-1, 2. -2 45 13.000 1,155 15 S5 g2 2

45 13.000 1,155 15 18 1es g 2 2 ) 45 13.000 1,155 15 LS Ids o202 L

4oz 19234 1,82.85 .68 0.5.3.-% 4o 19.234 1,838, 68 0,-3.-%.%

50 5 L LT 04 L -1 -1 54 5 L1111 0,2,2,-2 -2

54 12 1,1,8,82.2 0.0.4.-3.4 sb 12 1,1,8,82.2 0,0,—4.3.4

s, 12 1,1,82,8.2 00,1, -3 -1 59, 12 1,1,62,€2,2 0,0,—4,3,-1

Sigm 34645 1&7 & 618 0. =3 fro e =i Soiem 34645 LEEENLE) 0% % i &

Siyy 35339 18864 0.-7.-7.7.5  Ssp 35339 L&.8 &8, 0.4.4.-73.-3
Table 2. Realizations of known rank 6 modular data, their Galois groups and representation types

C Gal(C) Type

PSUQ2)3 X SU((2), ((01)(23),(02)(13)45)=Zy x Ly (6)

PSU2)3 K UA3) ((01)(23)45),24)(35)=Zy xZy 4,2)

PSU2)3 X PSU(2)5 ((01)(23)(45),(024)(135)) =Z¢ (6)

U(2)1 K SU(2)2 ((0D23) =Zy (6)

U211 ®U@G) ((12)34) =7 “4.2)

U)X PSUQ2)s ((012)(345) =73 (6)

50(5)2.50(5) (01)(23)) =Z> (3,3),(3,2,1)

PSU(2)1; ((012345) =7 6)

G(2)3 ((01),(234) =Zs¢ “4.2)

PSO(8)3 ((012)) =73 4, 1,1

PSO(S)% ((012)(345) =73 (6)

2.2.2. Known rank-6 MD of MTCs and their Galois Groups Among the known rank 6
modular tensor categories there are 11 distinct fusion rules. We can determine their Galois
groups Gal(Q(S;;)/Q) and the representation type (i.e. dimensions of their irreducible
subrepresentations) of their SL; (Z) representation, displayed in Table 3. Six are realized
as product categories, the other 5 by prime categories. Note that there are two types that
yield the fusion rules of SO (5)2: (3, 2, 1) is realized by a zesting of SO(5)>, denoted
SO(S)/2 in Table 2, see Theorem 4.15.

The example PSO(5) 3 is noteworthy—it is the smallest example of a MTC the fusion

rules of which are never realized as those of a unirary MTC. We also remark that the
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Table 3. Table of rank 6 modular data with N ]ij <3and D2 < 18

Ne¢ D? do.dy, - 50, 515 Comment

61 6 1,1,1,1,1,1 0155 —4.3.3 2.1 X3,

6_1 6 L1,1L,1,1,1 0. —15 —15 =% -3 2H3,

63 6 1,1,1,1,1,1 0434 -5 - 21 X3,

6_3 6 1,1,1,1,1,1 0-+ -1 -135. 3 2 K3,
61/2 8 L1, 1L, 1L,v2,v2 04 —1 %15 2183 1)
6-12 8 LL1L1LV2,V2 04 -14 & -5 2183 3
63/2 8 L1,1,1,v2,v2 0.4 -1 %% 21831
6-32 8 LL1L1LV2,V2 0.4 —1 %~ —15  2X3sp
65/2 8 L1,1,1,v2,v2 0} -4 & 21835
6_sp 8 1L1,1,1,v2,42 04 -1 4 -%-%& 2R3,
672 8 L1L1L1LV2,v2 04 -143-% 2 R 35,
672 8 LLLLV2 V2 0.4.-+ 1 -3 & 21 ® 37

64/5 10854 1,1,1,14/5 155 145 0,—4, -1 L L2 21453,
6ogs 10854 111 155 18 1 04 4~ ~f—F  2-1458%
616/5 10854 1,1,1, 145 145 145 0.-1, -1 & 4 2 9, 5®3,
6_16;s 10854 1,1,1, 155 155 145 04,1 4 42 204583,
6300 14472 L LVZ RS 15 sl g s L2 T 9, RS 5,
6-310 14472 1L LVZ RS 15 5 g 1 S L 2T g sR3s),
610 14472 LLVEZ IS IS A 0 L E -2 g 2_145 8372
6_710 14472 L 1LV2, S8 S 5 o L T L33 9 sR3 ),
6y 14472 LLVZ IS IS IS 0 SR S 3 25 R
6oi3t0 14472 1 1,VZ B IS5 s o L3 L 2 T 2583
61700 14472 1 1,v2, 155 S5 a5 o ) T b2 13 2 14583 7
61710 14472 1 1L,VZ B 15 ples g L T2 13 21458372
6sjt0 14472 1 1,V2 B IS s o b 28 2,503,
6-2310 14472 1 1L,V2 155 185 sl g 12 2 2145831
60 14412 LLVEISB B AS 0 —f 6 - E 2.usRisp
6yjo 14472 LLVZISB IS5 a5 0 L X o h 2B 215835
60 14472 L1V ISE 10 S 0 L k12 2145 8312
6310 14472 1 1,V2 B8 IS s g L d -2 8 2583,
610 14472 L1V IS5 5 g5 g L3 12 8 2 145833
6oyt 14472 11V B B8 oS 0 - -8 2usB3p
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N¢ D? do,dy, - 50, 515" Comment

617 18591 1,1,£7,67,65, & 0, -4 - - T 2R3y,
617 18591 1,1,67.57.69.& oL -k -2 2R3 g
6157 18591 1,1,£7, 62,63, &3 03 % -1,2 -1 2 K 3g7
6_157 18591 1,1,£2, 62,63, &3 0.4 —3. 7. —3. 5 2-183_g7
64 20 1.1.2,2,V5.V5 0.0.f.-1.0.3 root of SO(10)2
6} 20 1L,1,2,2,V5,45 0,0 L -11 -1 root of SO(10),
64 20 1L,1,2,2,V545 0,0.2,-2.0,% root of SO(5)2
62 20 1,1,2,2,v/5,/5 0,0, %_% %,_% SO(5),

65535 33.632 1, 15505 62 &3 1652, 0.3. 7. -7.—38.35 2145835y
65535 33.632 1, 15505 ¢2 &3 1652, 0.-3-7.7.35.—35  2-14583sy7
Giagzs  33.632 1, 1505 62 g3 1652, 0.3.-7.7. 3% —3%  ZiaysR3gy
613835 33.632 1,155 &2 &3 155 0.-2.4. -3 % 1 25R3,
64613 56.746 1,65 & &l &0, 65 0,4 & -8 & —& rootof SUQ,
6_46/13 56746 1,60 &0 &1, &0, 65 0, —fo — & & -8, 5 rootof SUQ)
68/3 74.617 1&g &y &y &y £y 0.5.5. 53 —3 root of SO(8)3
63  TA61T 1, &5 & &g 5. Eg 0.—8. -1, -1, -1 1 rootof SO8)3
6, 100.61 1. 3+E/ﬁ’ 3+\2/i’ 3+«2/ﬁ’ 5+x2/ﬁ’ 7+\2/ﬁ 0. _%’ _%’ %,O, % root of G(2)5
62 100.61 1, 3+}/ﬁ, 3+~2ﬂ’ 3+‘2/271, 5+}/ﬁ, 7+‘2/ﬁ 0, % % f%, 0, f% root of G(2)3

fusion rules of SO(5); are realized by categories with distinct representation types:
namely the zested version of SO (5)2, see Theorem 4.15. In particular, the fusion rules

do not determine the representation type.

We also did a computer search for all rank-6 unitary modular data with N,ij < 3.

(Ref. [40] computed all rank-6 unitary modular data with N, < 2.) The Tables 3 and
4 list all 50 of the resulting modular data, we include only the quantum dimensions and
twists. In the last column, N. X N/, indicates that the rank-6 MTC is the product of
two MTCs labeled by N, and N/,. The prime MTCs are all non-Abelian roots of MTCs
from Kac-Moody algebra. (The notion of non-Abelian roots is introduced in Ref. [21].)
In this paper, we will show that the Tables 3 and 4 include all modular data of rank-6

unitary MTCs.

3. Modular Data Representations of Modular Tensor Categories

While the number theoretical properties of MD allow the classification of MTCs up to
rank = 4, the deeper properties of the SL;(Z) representations of MD (cf. Definition 3.1)
lead to a more streamlined approach with the potential to achieve a classification up
to rank = 10. The classification of rank = 5 MTCs is already a mixture of both Galois
theory and representation techniques. Instead of working on cases labeled by abelian
subgroups of S, for rank = r as in earlier classification, we introduce the notion type of
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the MD of an MTC-the list of dimensions of irreducible subrepresentations, so that the
cases are indexed by Young diagrams with r boxes.

Every MTC B leads to a (2 + 1)-TQFT, hence there is a corresponding projective
matrix representation pg of SL,(Z)—the mapping class group of the torus. We will
refer to this representation as the projective SL,(Z) representation of the MTC B, and
is given by the S-, T'- matrices of 3. The linearizations of this projective matrix SL2(Z)
representation pg, called SLy(Z) representations of 3, will be elaborated upon in next
section.

3.1. SLy(Z) representations of MTC or MD. Since our classification is based on SL;(Z)

. . . 0 -1
representations, let us first summarize some important facts about them. Lets = |:1 0 ] s

t= [(1) i:| be the standard generators of SL;(Z). This admits the presentation:

SLy(Z) = (s, t | s* = id, (st) = s2).

The 1-dimensional representations of SL»(Z), denoted S@), form a cyclic group

of order 12 under tensor product. We will take x € sz(\Z) defined by x(t) = ¢12
to be the generator, where g,{‘ = e27ik/n_Under this convention, every 1-dimensional
representation of SL(Z) is equivalent to x* for some integer o, unique modulo 12:

X%(5) =Cq, x40 =28 3.1)

Given a modular tensor category B with the modular data (S, T') and central charge
¢, the assignment

Pu() = C4S/D, py(t) = L%e AT (a € Zpa). (3.2)

define a (linear) representation of SL,(Z), and we call these representations p, the
SLy(Z) representations of B or the SL,(Z) representations of the modular data
(S, T).Forany a, @’ € Z1»,

Pu = X" @ por

as SL,(Z) representations. Therefore, the SL;(Z) representation pg of B is unique up
to a tensor factor of linear characters of SLy(Z).

Note that two modular data (S, T') and (S’, T") are regarded as the same if they differ
only by a permutation of indices:

S'=PSP", T =PTPT, (3.3)

where P is a permutation matrix. Throughout this paper, we simply identify p, and its
conjugations by permutation matrices.

Definition 3.1. A unitary matrix representation p of SL,(Z) is called an MD represen-
tation if p is an SL,(Z) representation of some modular tensor category. It is called
a pseudo-MD (pMD) representation if VpV is an MD representation for some signed
diagonal matrix V.
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3.2. Type and level of modular data.

Definition 3.2. Given an MTC B of rank r, an SL;(Z) representation pg decomposes
into direct sum of irreducible representations of dimensions A1, . . ., A;; innon-increasing
order. The type of the corresponding MD of B of rank = r is the Young diagram of r
boxes (Aq, ..., Ay) with Y 7* | A; = r. The type of an MTC simply refers to the type of
its MD.

The modular representations of the Fibonacci and Ising theories are both irreducible,
so they are of types (2), (3), respectively. The modular representation of the toric code
has an image isomorphic to SL,(Z/2Z) and is reducible of type (2, 1, 1).

We note that for any positive integer n, the reduction Z — Z/nZ defines a sur-
jective group homomorphism m,, : SLo(Z) — SLy(Z/nZ). Thus, a representation
of SLy(Z/nZ) is also a representation of SL»(Z), which will be called a congruence
representation of SL,(Z) in this paper. It is immediate to see that a representation
of SLo(Z/nZ) is also a SL,(Z/mnZ) representation for any positive integer m. The
smallest positive integer n such that a congruence representation p of SL(Z) factors
through 7, : SLy(Z) — SLy(Z/nZ) is called the level of p. It is known that the level
n = ord(p(t)) (cf.[11, Lem. A.1]). Here ord(t) is the order of ¢, i.e., the smallest positive
integer such that

o740 = iq . (3.4)

There are many more finite-dimensional noncongruence representations of SL(Z)
(cf. [20]) but they are not associated with any modular tensor category by [11, Thm. II].
Since we only deal with congruence representations of SL(Z), all the representations
of SL,(Z) throughout this paper are assumed to be congruence and finite-dimensional
over C.

An SL,(Z) representation p of an MTC is also symmetric, which means p is a unitary
matrix representation with p(s) symmetric and p(t) diagonal. The following theorem
proved in [28] provides the theoretic background for the GAP package [27] and our
reconstruction process:

Theorem 3.3. Every finite-dimensional congruence representation of SLa(Z) is equiv-
alent to a symmetric one.

Therefore, throughout this paper, we always assume our general representations of
SL>(Z) to be congruence and symmetric.

In “Appendix A”, we list all the irreducible SL;(Z) representations, generated by
[27], of prime-power levels and dimensions < 6. These SL,(Z) representations are con-
gruence and symmetric. From these representations, we can construct all the inequivalent
SL>(Z) representations with dimensions < 6. The MD representations of dimensions
< 6 can be reconstructed from these symmetric representations with the help of the
following theorem.

Theorem 3.4. Let p, p’ : SLy(Z) — U, (C) be unitarily equivalent symmetric repre-
sentations of SLo(Z) such that p(t) = p'(t) = ¢, and define s = p(s) and s' = p’(s).
Then there exists a (real) orthogonal matrix U such that

s'=UsU" and Ut =1U.
Proof. Let Q be a unitary matrix such that

s’ =0s0" and Qr=10.
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Since ¢ is diagonal and unitary, " = 7. Taking the conjugate transpose of the second
equality implies

0'1=70" or 0r=10.
Let Q = X +iX» for some real matrices X; and X,. Then we have
(X1 xiX)t =t(X1 £iX»)

which implies [X;, t] = O for i = 1, 2. Similarly, s’ Q = Qs implies 5’0 = O since
both s and s’ are symmetric. Therefore, we also have s'Q = Qs, which implies

Xis =S/Xl' fori = 1,2.

Since there are only finitely many roots for the equation det(X; + xX») = 0, one can
take A € R such that X = X| + A X is invertible. Then

Xs=s'X and Xr=1X.

Let X = U P be the polar decomposition of X where U is orthogonal and P is the
unique positive definite satisfying P2 = X " X. In fact, P is a polynomial of P (cf. [16,
Chap.9. Thm 11.]). Since s~! = 5 and s =y,

P2=XTX = (X0 (s'X5) =sX s s'XsT =sP%5
and
XTr=1x".
Therefore,
P?s =sP?> and P?t =1tP>.
Since P is a polynomial of P2, we find
Ps=sP and Pt=1tP.

Therefore,

Us=UPsP™ ' =XsP™ ! =s'XP~! =5'U
and

Ut=UPtP~ ' =xtP' =tXxP™ ' =1U. O
Remark 3.5. An SL;(Z) representation p is said to be even (resp. odd) if p(s?) = id
(resp. p(s%) = —id). If p is symmetric and irreducible, then p(s) or ip(s) is a real
symmetric matrix, depending on whether p is even or odd respectively. A direct sum of
irreducible representations of opposite parties is neither even nor odd. In particular, if

p is an SL,(Z) representation of a modular tensor category C, then p is even or odd if,
and only if, C is self-dual.
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3.3. Useful conditions on SL,(Z) representations. The set of all the roots of unity can
be totally ordered as follows: For any roots of unity x, y, we say that x < y if one the
following conditions hold:

(1) ord(x) < ord(y), or
(i) ord(x) = ord(y) and arg(x) < arg(y),

where arg(¢) denotes the unique number s; € [0, 1) N Q such that e2mse — ¢

Definition 3.6. For any representation p of SL2(Z), p(t) has finite order. We denoted
by spec(p(t)) the increasing ordered set of eigenvalues of p(t) with multiplicities. If
spec(p (1)) is multiplicity free p is called non-degenerate. If p’ is another representation
of SLy(Z), spec(p(t)) = {x1, ..., xn}and spec(p’(t)) = {y1, ..., y»} can be compared
by the lexicographical order.

Two representations p, p” of SLy(7Z) are called projectively equivalent if

o = x* ® p for some a € Z/127Z.

A representations p of SL,(Z) is said to have a minimal t-spectrum if spec(p(t)) is
minimal among all the representations projectively equivalent to p, i.e.,

spec(p(®)) < spec((x* ® p)(t)) forall o € Z/127.

Let ¢ be any matrix over C. The smallest positive integer n such that " = « id for
some « € C is called the projective order of t, and denoted by pord(z) := n. If such
integer does not exist, we define pord(?) := oo.

We can organize the irreducible representations of SL,(Z) by the level and the di-
mension of the representations. Due to the Chinese remainder theorem, if the level

of a irreducible representation p factors as n = [; pf" where p; are distinct primes,

then p = ); p;i where p; are level pf[ representations. Thus we can construct all irre-
ducible SL;(Z) representations as tensor products of irreducible SL, (Z) representations
of prime-power levels, which in turn, yields a construction of all SL,(Z) representations
p via direct sums of the irreducible representations.

Define Q, = Q(¢,) to be the cyclotomic field of order n. For any positive integer
n, we can construct a faithful representation D, : Gal(Q,) — SL2(Z/nZ), which
identifies the Galois group Gal(Q,) = Z,° with the diagonal subgroup of SL,(Z/nZ)
[11, Remark 4.5]. More generally, for any o € Gal(@), 0(Q,) = Q, and so there exists
an integer a (unique modulo n) such that o (¢,) = ¢ and

Dy (o) = t%st’st%s ! = (g 2) € SLy(Z/n7Z), (3.5)

where b satisfies ab = 1 mod n. If p is a level n representation of SLy(Z), the compo-
sition

D,(0) :=po Dy(o) (3.6)

defines a representation of Gal(Q). We may also write D, (o) as D, (a). Such a represen-
tation of Galois group captures the Galois conjugation action on SL,(Z) representations
pMp of modular data, and plays a very important role in our classification. Many of the
following collection of results on ppp were proved in [11,26].
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Theorem 3.7. Every SL,(Z) representation p of an MTC B is a matrix representation
with the standard basis (e, . . ., e,—1) identified withirr (). Assuming eq = 1, p satisfies
the following conditions:

(1) Let n = ord(p(t)). For any g € SLy(Z), p(g) is a matrix over Q,,. In particular,
p(8);; are cyclotomic numbers in Q, for all i, j.
(2) The modular data (S, T) of B is given by

p(s) T — o)

- , = . 3.7
P ()00 P (oo

(3) In particular, p is symmetric, ord(T) = pord p(t)) and (cf. Theorem 2.1(4))

p(9)ij

Z&Lor .
()0 € ZlEord(1)]

(4) The representation p is congruence of level n ord(T) | n | 12ord(T). Thus, p is a
symmetric and congruence SLo(Z) representation.

(5) One has 1/p(s)i0 € Z[¢,), and the set of distinct prime factors of ord(T') coincides
with that of the integer norm(1/p(s)o0).

(6) Let o € Gal(Q,) be a Galois automorphism. Then (cf. (3.5))

Dy(0)ij = €5(1)853), > (3.8)
where €, (i) € {1, —1} and 6 is a permutation on {0, ..., r — 1} determined by
- (p(ﬁ)u> _ P(ﬁ)i&(j). (3.9)
p(8)oj P ()05 (j)

Moreover,
o (p(s) = Dy(@)p(s) = p(5)D] (@) and o (p(H)) = D,(@)p(H)D;] (o13.10)

(7) The matrix p(s) satisfies the Verlinde formula (cf. [37]):

Ny = rX: p(s)np(s)sz(s)fk’ =01 1. G.11)
P P80

(8) For m € Ny, the m™ Frobenius-Schur indicator of the i-th simple object can also be
expressed in terms of p(s) and p(t):

v i) = Y N p ()00 - (p(Srop O (3.12)
j.k

Remark 3.8. 1t is worth noting that a pMD representation ppmp shares arithmetic prop-
erties with MD representations as o = VppmpV is an MD representation for some
signed diagonal matrix V. Therefore, Theorem 3.7 (1) and (3-6) also hold for any pMD
representation. In particular, for o € Gal(Q), Dpn(0) = VD,(0)V, and so

o (ppMD (8)i) = €, () PpMD (9611 = €5 () PpMD (8)i5(j)

but the sign function €, is different from €, in Theorem 3.7 (6) in general.
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3.4. Modular data representations and our classification strategy. The MD representa-
tion introduced in Definition 3.1 plays an important role in our approach. We now explain
the strategy of a systematic construction for low rank modular data, implementable on a
computer. In Sect. 4 we provide a largely by-hand approach to the classification of rank
6 MD.

For a given rank, we first construct all the inequivalent SL,(Z) representations pjsum
of finite levels, as direct sums of irreducible SL,(Z) representations obtained as tensor
products of the prime-power level representations listed in “Appendix A”. Each of these
SL;(Z) irreducible representations is symmetric, and so iS Pjsum-

Although the number of the SL,(Z) representations pjsum 1s finite, most of these
representations are not associated to any MTC. In next section, we introduce and collect
conditions on MD representations, to reject as much as possible the SL,(Z) representa-
tions that are not associated to MTCs.

After we obtain a short list of candidate SL;(Z) representations pjsum, We permute
the indices using a permutation matrix P

p = PpisumP " (3.13)

such that arg(p (1);;) is ordered for computer implementation or mathematical deduction.
Suppose p is equivalent to an MD representation p. Without losing generality, we
can further assume p (t) = p(1). It follows from Theorem 3.4 there exists an orthogonal
matrix U such that p(s) = Up(s)U " and p(t) = Up(H)U . In this case, U is a block-
diagonal orthogonal matrix. The size of each block U; is equal to the multiplicity of the
eigenvalue p(t);;. We first assume that each of these blocks is of determinant 1. Then

ppmp = UpU " (3.14)

is a pseudo-MD representation. Using Theorem 3.7, Remark 3.8 and the conditions
established in the next section, the existence of such U could either imply contradiction
or be determined for all the rank 6 modular data. In the former case, representation pisum
will be rejected. Once the matrix U is determined, one can determine the correct signed
diagonal matrix by using the Frobenius-Perron dimensions or the Verlinde formula.

The eigenvectors of the diagonal matrix p(t) corresponding to the eigenvalues of
multiplicity 1 are of particular importance in the determination of the orthogonal ma-
trix U. We simply called the block of po(s) corresponding to these eigenvectors the
non-degenerate block, and denoted by /(s)"¢. The following proposition provide a
convenient sufficient condition for any SL,(Z) representation equivalent to an MD rep-
resentation.

Proposition 3.9. Let p be any (symmetric) SLo(Z) representation. If p is equivalent to
an MD representation, then the entries of p(s)"°€ are cyclotomic numbers in Qord(p)-

Proof. The statement is an immediate consequence of Theorems 3.4 and 3.7(1). O

The proposition can be implemented for computer automation to eliminate many
Pisum- Theorem 3.7 (6) and the property of second Frobenius-Schur indicators are im-
plemented to eliminate pisym or solving the matrix U. When the matrix U is determined,
the signed diagonal matrix Psg, can be searched by using the nonnegative integral fusion
coefficients (cf. Theorem 3.7 (7)). The potential MD representation pyp is then given
by

PMD = PsgnppMDPs—gn, (3.15)
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Again, pisum Will be rejected if no such Pggy is found. From the potential MD represen-
tations pvp we can then obtain the potential modular data (S, 7) via (3.7), and they will
be verified if Theorems 2.1 and 3.7 are satisfied. This allows us to get a list of (S, T')

pairs that include all the modular data. The computer automation for the endeavor is

robust particularly when pjgym = piiff.

By comparing the listof (S, 7') pairs to known rank-6 MTCs, we obtain a classification
of all modular data via matrix representations of SL;(Z).

3.5. More general properties of SLy(Z) representations. In this subsection, we intro-
duce and collect conditions on SL(Z) representations necessary for them to be MD
representations

The decomposition criteria on t-spectrum [5] of a linear representation of SL;(Z)
associated with a MTC is one of the major tools.

Theorem 3.10 (t-spectrum criteria). Let p be an MD representation. If

p=p1®m

for some representations p1, p2 of SLa(Z), then spec(p1(t)) N spec(pa2(t)) # 2.

Let p be a prime. We denote by G, the Galois group Gal(Q,). The least dimension
of an irreducible representation of SL;(Z) of level p is pT_l. Their t-spectrum is either
Gf, - ¢por G%, . ;I‘j where x> = ¢ mod p has no integer solution. Note that an integer
a is called a nonresidue modulo p if x> = a mod p has no integral solution. The
second least dimension irreducible representation p of SL;(Z) of level p is ”TH whose
t-spectrum is either G%, - e¥/P U {1} or G%, - €27ia/P U {1} where a is any nonresidue

modulo p. In this case, ,o(s)2 = (%) id (see for example [18]).

Proposition 3.11. Let 3 < p < g be prime such that pq =3 mod 4. For any modular
tensor category C such that ord(T) = pq, then rank(C) # % + 1. Moreover, if p > 5,

rank(C) > # + 1.

Proof. Let C be amodular tensor category of rank r < p—;q +1 and ord(T') = pq. There
exists an SL,(Z) representation p of C with level pg [11]. Suppose p has an irreducible
subrepresentation p’ of level pg. By the Chinese remainder theorem, the o’ = p; ® 02,
where p1, pp are irreducible representations of SL(Z) of levels p and g respectively.
Then

-1 -1
+1 > dimp’ = (dim py)(dim pp) > (”T) (%)

Pty

The inequality implies p = 5 and ¢ = 7, and hence dim p’ = 6. Therefore, the t-
spectrum of p’ consists of 6 distinct primitive 35-th roots of unity, and rank(C) = 6
or 7. There exists a modular tensor category of rank 6 with ord(7) = 35. However, if
rank(C) =7, then p = p’ @ pog where py is a 1-dimensional representation. The level
of po is a divisor of 12 but this is not possible by Theorem 3.10. In conclusion, if p has
an irreducible subrepresentation of level pg, then p =5, ¢ = 7 and rank(C) = 6.
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Now, we assume p has no irreducible subrepresentation of level pq. Then p must have

irreducible subrepresentations pp, p» of levels p and g respectively. If dim p; < pTH or

dim pp < %, then

P=p1Dp2®p3

where p3 is a subrepresentation of p of dimension < 2. If p3 has a 1-dimensional
component p4, then p4(t) must be a 12-th root of unity. Since 3 < p < ¢, the only 12-th
root which could appear in the t-spectrum of p is 1, or p4 is trivial. However, spec(p1 (1))
and spec(pz(t)) do not contain 1 by the remark preceding this proposition, and this
contradicts Theorem 3.10. Note that irreducible SL,(Z) representation of dimension 2
at prime levels only appear for the primes 2, 3 and 5. Therefore, if p3 is irreducible
of dimension 2, then p = 5 and p3 is of level 5, but this contradicts Theorem 3.10
again. Thus, dim p; > pT“ and dim p, > #. Since rank(C) < p—;q + 1, we find
rank(C) = pzi +1,dimp; = pTH and dim pp; = % Now, we would like to show that
this also impossible.

Without loss of generality, we may assume (_71) =1 and (‘71) = —1. Then p(s)?

is a signed diagonal matrix and the multiplicities 1, —1 are respectively pT“ and %

Thus, | Tr(p(s)?)| = 452. Since rank C — 452 = p + 1, C has ”T“ > 3 pairs of simple
objects which are not self-dual. Since p (t) has only one eigenvalue of multiplicity 2 and
all other eigenvalues are of multiplicity 1, C has at most 1 pair of simple objects which
dual of each other, a contradiction! O

Let p be an SL(Z) representation of a modular tensor category C and let n be the
level of p. For any o € Gal(Q), D,(c) defined in (3.6) is a signed permutation matrix
of 6 by [11, Theorem II] (or Theorem 3.7 (6)). The permutation 6 on irr(C) is given by
(3.9), and we set

Inve(o) :={i €irr(C) | 6 (i) = i}.
If y is complex conjugation, by (3.10),
D,(y) =p(E)p() " = p(s)” = +C,
where C is the charge conjugation matrix of C. Since p (i) = i* fori € irr(C),
| Tr(D, ()| = Tr(p(s*))| = Tr(C) = |{i € irr(C) | i* =i} = |Tnve(y).

This equality can be generalized to any o € Gal(Q) as an inequality in the following
proposition.

Proposition 3.12. Let p be an SLy(Z) representation of a modular tensor category C.
For any o € Gal(Q),

| Tr(Dp(0))| < [Inve(o)].

Let s := p(s), and follow the notation of Theorem 3.7(6). If s;j # O for any i, j €
Inve (o), then €5 (i) = €5(j). If there exists i € Inve(o) such that s;; # 0 for all
Jj € Inve(o), then

| Tr(Dy(0))| = | Inve (o).
In particular,

Tr(s?) = |{i € irr(C) | i* =i}| > 0.
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Proof. By Theorem 3.7(6), D,(0) = &5 (i)85(;y, j- Therefore,

| Tr(Dy (ol =| D & ()| < |Inve(o).

iclnve (o)

If 5;j # O for any 7, j € Inve (o), then o (sij) = €5 (i)sij = €5(j)sij, and s0 &5 (i) =
£s(j). Thus, if there exists i € Inve(o) such that s;; # 0 for all j € Inve(o), then
&x(i) = &4 (j) for all j and hence the equality

[ Tr(Dy(0)| = [Inve(o)].

The last statement was proved in the preceding remark and since 1* = 1 this completes
the proof of the proposition. O

According to [11], if p is an MDD representation of an integral modular tensor category
C,then p(t)1,1 = ¢ for some 24-th root of unity ¢ under the identification of the standard
basis for p and irr(C). The following proposition provides a sufficient condition on the
representation type of p for C to be integral.

Proposition 3.13. Let p be any SLy(7Z) representation. For any ¢ € spec(p(t)), denote
by E(p) the eigenspace of p(t) for the eigenvalue . Suppose p is equivalent to an MD
representation p of a modular tensor category C. Then

(1) D;(0)(E¢(p)) € E¢(p) forall o € Gal(Q) if and only if {** = 1.
Q) If 1 € E(p) for some ¢ € spec(p(t)), and for each o € Gal(@), there exists
€, = £1 such that

D (0|, (5) = €0 1dE (),

then C is integral. In particular, ¢** = 1.

BRIf1 e EByeA E, (p) for some subset A C spec(p(t)), and for any y € A, o €
Gal(Q), there exists €, (y) = 1 such that Ds(0)|E, 5) = €5 () idEV(/i): then A is
a set of 24-th roots of unity and C is integral. ~

(4) If C is integral and d; > 0 for all i, then for any o € Gal(Q), d; = ds ;) for all i,
D, (0)(1) = €1 for some €; = £1, and éDp (o) is the permutation matrix of G.

Proof. Assuming the identification of the standard basis for p and irr(C), E;(p) is

spanned by the objects X € irr(C) such that p(t)x, x = ¢. Leto € Gal(Q). It follows
from Theorem 3.7(6) that D,(c) is a signed permutation matrix of a permutation &

on irr(C), and that o2(p(t)) = D,(0)p(t)D,y(a)", or equivalently p(t)D,(0) =
D,(0)o"2(p(1). If ¢** = 1, then 02(¢) = ¢ for all ¢ € Gal(Q). Thus, for any simple
object X € E:(p),

P(OD,(0)(X) = Dy(0)o 2 (p()(X) = 0 2(£)Dp(0)(X) = £ Dp(0)(X).

Therefore, D,(0)(E;(p)) € E;(p). Let ¢ : p — p be an isomorphism of SL2(_Z)
representations. Then ¢ (E¢ (p)) = E;(p),and ¢ D;(c) = D,(0)¢ forany o € Gal(Q).
This implies D;(0)(E¢(p)) € E¢(0).



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

Conversely, if D;(0)(E¢(p)) € E¢(p), then D,(0)(E¢(p)) € E;(p) by the same
reason. Thus, for any X € E:(p), p(t) D,(0)(X) = ¢D,(0)(X). However, we also
have

P(OD,(0)(X) = Dp(0)o 2 (p())(X) = 0 2()Dp(0)(X).

Therefore, o 2 (¢)=¢forallo € Gal(@), This implies ¢ is a 24-th root (cf. [11, Prop.
6.7 and Lem. A.2]). This proves statement (1). B

For statement (2), we assume 1 € E;(p), and for each o € Gal(Q) there exists
€, = £1suchthat D,(;(O')|E{(15) = €4 idEg(ﬁ).Itfollows frorn(l)that{24 = 1. Moreover,
Dy (0)|E,(p) = €5 1dE, (p) and Dyp(0)(1) = €, 1 = £ (1). Therefore, 6(1) = 1, and
hence o (dim(V)) = dim(V) for any V € irr(C) by Theorem 3.7(6). Thus, dim(V') are
integers for V € irr(C). It follows from [11, Rem. 6.3] that FPdim(V) € Z, and hence
C is integral.

Statement (3) follows directly from (2), and this completes the proof of the proposi-
tion.

(4) Since C is integral, S; o = d; € Zforall j. Forany o € Gal(Q), o (S0 = S§j0.
Therefore, 6 (0) = 0, and so o (p(8);.0) = €5(0)p(s); 0 for all i, where €,(0) = +£1.
This is equivalent to that D, (c)(1) = €, 1.

Since 0 (0(8)i,0) = €5 (i) ()5 (i),0 for some €, (i) = +1, we have €, (i) p(8)5 (;),0 =
€50(8)i,0 Of €5(I)dy(i) = €5(0)d;. This implies €5(0) = €,(j) and d; = dy(;) as
d,‘, d&(i) > 0.

For any i, j € irr(C),

0 (p(8)i,j) =€ (D)p(8)si),; = € (0)p(8)5(), )

which implies D, (0)p(s) = €5(0)P(6)p(s), where P(6);j = 85(;),;j- Thus, D,(0) =
& O)P6). O

The following result in [7] is important for determining whether an SLy(Z) repre-
sentation of small level is an MD representation.

Theorem 3.14. Modular tensor categories with ord(T) = 2, 3, 4, 6 are integral.

Then the case for ord(7") = 2 is completely classified in [38], and the types of these
MTCs are given in the following proposition.

Proposition 3.15. Let C be a modular tensor category withord(T) = 2. Thenrank(C) =
4" for some positive integer n, and every SLo(7) representation p of C is projectively
equivalent to

(02 ®2x0)%" = anp2 ® bup1 ® cux0,

where p1, p2 are respectively the level 2 irreducible representations of dimension 1 and
2, and

4n — 1 2.4 14 O 2.4 14 i
3 ’ bI’lZT_Zn ’ anT"'zn .

a, =

Proof. By [38],C is a Deligne product of the pointed modular tensor categories C(Z2, ¢)
and C (Z%, q’) with the quadratic forms g, ¢’ : Z% — {£1} given by

GG ) = (DY, ¢, y) = (=)¥ 7,
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Both modular tensor categories, up to a linear character, have a representation of SL;(Z)
equivalent to p» @2 xo. Note that SL,(Z/2Z) = S3, symmetric group of degree 3. Thus,
0 = (p2 ®2x0)%" = anp2 ® byp1 ® cuxo for some nonnegative integers ay,, by, ¢,
The fusion matrix of py @ 2o relative to the basis {xo, p1, p2} is given by

[2 0 1 4 0 0 1 1 1
F=|0 2 1|=P|0 2 O0|P" whereP=|1 -1 1
1 1 3 0O 0 1 2 0 -1
Thus,
47 0 0 on—1 o 2-4";1+1 _on—1 2-4”;1+1 4"3—1
Fr=p|l o0 20 o|lpl= _on—1 2.41— 14 on—1 o 24141 4]
0o 0 1 4"—1 3 41 3 2.4"31 _
— 3 3 3 =
The result follows from the first column of F”. O

The following proposition follows immediately from the classification of [4], where
strictly weakly integral means FPdim(C) € Z while FPdim(X) ¢ Z for some object X.

Proposition 3.16. Let C be a modular tensor category of rank 6.

(1) If C is integral, then C is pointed and hence C is of type (4,2) and every SLy(Z)
representation of C has level 24.

(2) If C is strictly weakly integral, then C is braided equivalent to a Galois conjugate of
UQR) R SUQR)3, SO(5); or its zesting. If p is an SLy(Z) representations of C with
a minimal t-spectrum, then one of the following holds: (i) C is of type (6) and p has
level 16, (ii) C is of type (3, 3) and p has level 20, or (iii) C is of type (3,2, 1) and p
has level 10.

(3) In particular, if C is weakly integral, then dim(C) = 6, 8, 20.

When a potential modular data is obtained from a representation of SL;(Z), one
could obtain the FPdim(X) of each simple object X. Those simple objects X with
FPdim(X) = 1 generate a pointed ribbon subcategory. The next proposition, which can
be derived from [32] in different notation, describes some relations between the rank of
a pointed ribbon category and the orders of the twists.

Proposition 3.17. Let C be a pointed ribbon category of rank n. Then ord(T) | n if n is
odd, and ord(T) | 2n if n is even. If, in addition, C is symmetric and dim(a) > 0 for all
a € irr(C), then either ord(T) = 1 or 2. In the latter case, n must be even and there are
exactly n/2 simple objects with twist —1.

Proof. Since C pointed, the set G = irr(C) forms an abelian group under the tensor
product and the map g : G — C*, g(a) = 6, defines a quadratic form on G. Therefore,

By(a,b) = q(‘fa()”qb()b) defines a bicharacter on G. In particular, B, (a, b) is an n-th root of

unity for any a, b € G. Now, for any positive integer m and a € G, we have

g(a™) = q(@)q@" ") By(a,a" ") = q(a)q(a" ") By(a,a)" "

Therefore, by induction, we have

q(a™) = g(@)" B,(a,a)y™ "1/,
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In particular, g(a)" = By(a,a)""~D/2 If nis odd, 25! € Z and so g(a)" = 1. If n
is even, then g(a)>" = 1. This completes the proof of the first statement.
If, in addition, C is symmetric and dim(a) = 1 for a € G, then

- i _ at@q(b)
1= Sup =By ) = Bya. )™ =% HE

forany a, b € G. Therefore, ¢ is a character of G. Since ¢(a™") = g(a), g(a)*> = 1 for
alla € G.If g is of order 1, then g(a) = 1 foralla € G or T = id. However, if ¢ is of
order 2, then the image of ¢ is the group {£1} which is of order 2. Therefore, ker g is of
index 2 which means there are exactly n/2 simple objects in G with twists are 1. Thus,
the second statement follows. O

It is worth noting that last statement of the preceding proposition does not hold for
super-Tannakian fusion categories which are not pointed. For example, if we take Q to
be the quaternion group of order 8 and z the unique central element of order 2, then
the super-Tannakian fusion categories Rep(Q, z) has 4 simple objects a of dimension 1
with 6, = 1 and a unique simple object b of dimension 2 with 6, = —1.

For any legitimate fusion rules N i’} , one could obtain the possible 6, = e>™* by solv-
ing a system of linear equations with unknowns si. The following proposition provides
a condition for legitimate s; of a potential modular data.

Proposition 3.18. Let C be a modular tensor category of rank n and central charge c.
If the twists of C are e2misi - e2misy for some rational numbers sy, s2, ..., Sy, then

n
12) s —nc/2 €
k=1

Proof. Note that e™i¢/4 = % - d,? e?™ % where dj denotes the dimension of the

simple object k with twist 2" and D = +/dim(C). Let (S, T') be the modular data of
C. Then

1 .
p@=5&pw=€mmﬁ

defines an SL,(Z) representation of C. Thus, det op is a 1-dimensional representation
of SL»(Z). Since the group of linear characters of SL»(Z) is a cyclic group of order 12,
det p(g)'? = 1 forall g € SL>(Z). In particular,
1= detp(t)12 — (CZnisl o eZnisn . e—27rinc/24)12 — e2ﬂi<12 ZZ:I sk—nc/2
This implies 12) }_, sk —nc/2 € Z. O
The following proposition is proved in [31] will also be useful later.

Proposition 3.19. Let p an MD linear representation. Then

p F npo

for any integer n > 1 and any non-degenerate representation pgy of SLo(Z).
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3.6. Modular tensor categories of type (d,1,...,1). For a representation pisym Of
SL2(Z) of type (d, 1, ..., 1) it is generally more difficult to determine whether it is
equivalent to an MD representation. However, this type of MTC does exist. It is desir-
able to deduce some conditions for such MD representations.

Lemma 3.20. Let p be an MD representation. If p = po @ p1 & --- & p¢ for some
1-dimensional representations p1, ..., p¢ of SLa(Z), then spec(p;(t)) C spec(po(t))
foralli > 0. In particular, if po(t) has exactly one eigenvalue which is a 12-th root of
unity, then p1, ..., p¢ are all equivalent, and p = py @ £p.

Proof. By the t-spectrum criteria, spec(p;(t)) C spec(poo(t)) for some j > 0. Suppose
there exists j > O such that spec(p;(t)) ¢ spec(po(t)). Let J = {j € {0,...,¢} |
spec(p;(t)) & spec(po(t))}. Then, the decomposition

p= ij ® ij

jeld JEd

does not satisfies the t-spectrum criteria. Therefore, spec(p; (t)) C spec(po(t)) forall j.
If, in particular, spec(p (¢)) contains exactly one 12-th root of unity ¢, then spec p; (t) =
{¢} for alli > 0. Hence p; = p; fori > 1, and the last assertion follows. O

Corollary 3.21. Let p be an SLy(Z) representation of a modular tensor category C.
Suppose that p = po @ p1 D - - - @D pg for some 1-dimensional representations p1, . .., pg
and some non-degenerate irreducible representation po of SL2(Z) such that spec(pg(t))
has a unique 12-th root of unity. Then C admits an MD representation p' = py @ £ xo,
where yq is the trivial representation and py, is projectively equivalent to po with 1 €
spec(p)(t)).

If ¢ & {1,2dim pg — 1}, then C is self-dual, and py is even. If £ € {1,2dim py — 1}
and C is not self-dual, then p is odd, and the set of non-self-dual objects is given by
{i €irr@©) | p'(Vi; = 1}

Proof. By Lemma 3.21, p = pg @ £p;. Since dimp; = 1, p’ = p{ ® p is another
SL;,(Z) representation of C. Moreover, p’ = p(/) @ £ xo0, where ,06 = p{ ® po which is
also non-degenerate.

Suppose ,o(’)(sz) = —id. By Proposition 3.12, the number of self-dual objects in
irr(C) is given by

| Tr(p'(5%)| = |£ — dim pg| > 0

since 1 is self-dual simple object. If £ > dim pg, then | Tr(p’ (52))| = ¢ — dim pg and
so number of non-self-dual objects in irr(C) is 2dim pp. The non-degeneracy of o,
implies that p’(t);; = 1 for any non-self-dual i € irr(C). Therefore, 2dim pp = £ + 1 or
¢ =2dim pg — 1.

On the other hand, if £ < dim py, then | Tr(p/(s%))| = dim p; — £ and so number
of non-self-dual objects in irr(C) is 2£. Since p’(t);; = 1 for any non-self-dual simple
objecti,2¢ ={¢+1orl = 1.

Thus, if £ # 1 or 2dim p; — 1, then ,0(’) (s2) = id and so C is self-dual. On the other
hand, if £ € {1, 2dim pg — 1} and C is not self-dual, then p(’) (s?) = —id and the above
discussion shows that the non-self-dual objects i € irr(C) are exactly those i satisfying
P®=1 O
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Now, we can prove a sufficient condition for any MD representation of prime level
p+l
p > 3andof type (-, 1, ..., 1).

Proposition 3.22. Let C be an MTC of type (d, 1, ..., 1) such that ord(T) is a prime
p > 3, whered = pTH. Then C is of type (d, 1), and hence rank C = d + 1. Moreover,
Inve (o) = O for any generator o € Gal(Q,/Q). Furthermore, if p = 1 mod 4, then
C is self-dual; otherwise C is not self-dual.

Proof. By [11], there is an SL, (Z) representation p of C, which has level p. Then, every
subrepresentation of p must have a level dividing p. Since C is of type (d, 1, ..., 1), p
has a irreducible subsrepresentation pg of dimension d and level p. By the classification

of irreducible representation SLy(Z/ pZ), po (s2) = (‘71) id, po is non-degenerate and
1 is the unique 12-th root of unity in spec(pp(t)). By Corollary 3.21,

P = po @ £xo.

Thus, if p = 1 mod 4, then pg is even and hence C is self-dual. However, if p = 3
mod 4, then pg is odd and so C is not self-dual.
One can derive from [30] that

L[V2 - "
(s) = <%> V2 4raij ) = ’
po(s) = 7| 2 cos (T) o Pl =

V2

d—1)?
;z( )

=1
P
2
p@) = diag(l,...,1, {S, R {g(d_l) ). By Theorem 3.4, there exists W € Og4¢(R)

such that p = W (€xo @ po)W '. Note that W = VU for some signed diagonal matrix
V and

where 1 <i,j<d-—1,p*= ( )p, and a an integer coprime to p. One may assume

_ 1Sl 0
U= |:0 = i|, where f € SOy (R),

and ppmp = U (€xo @ po)U Tisa pseudo-MD representation, where I;_1 denotes the
identity matrix of dimension d — 1.
By direct computation,

Ll o 7,
=U U
PpMD (8) [0 '00(5)}
Iect + front £l (x — 1)‘Xx/§f*,e+1rd—1
= T T 4maij (3.16)
XV2ry g [y 2x cos -

where fi ¢4 = [fies1. -+ ferrent]oracr =[1, -+ . 1] € R andx = (%)/\/F
Let o be the generator of Gal(Q,/Q). For any j € {1,...,d — 1}, there exists
j€fl,....d — 1} such that

o (2cos(2rj/p)) = 2cos(2m j/ p).
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Since /p* € Qp, 0 (/p*) = —/p*, and s0

o (2x cos(4maij/p)) = —2x cos(4mwai j/p).

forany i, j € {1,...,d — 1}. If one identifies irr(C) with {1, ..., d + £}, then we have
6(0+1+j)=£+1+foreach j € {l,...,d — 1}. In particular, & has no fixed point
in{€+2,...,0+d}.

By (3.16) and Remark 3.8,

o (V2 fige1) = —xV2fipe1 foralli € {1,...,€+1}.

Since x, xv/2fi 11 € Qp and 0(x) = —x, V2fis1 € Qp and 0(V2fi441) =
ﬁﬁ,gH.Therefore, «/if,-,gﬂ € Qforalli e {1,...,£€+1},andhence f; ¢+1fje+1 € Q
foralli, j e {1l,...,£+1}.

We claim that 0 < fful < lforalli e {1,...,€+1}.If f; 441 = O for some i, then
each row of p,yp(s) has a zero entry by (3.16). Therefore, f; ¢+1 # O for all i. Since
Sx.e+1 as unit length, if fi?(+l = 1, then fi ¢+1 = Oforall k # i < £+1, acontradiction.
This proves the claim.

Now we can show that Inve (o) = @. It suffices to show that 6 has no fixed point
in {1,..., £+ 1}. Suppose the i-th column of s := p,yp(s) is fixed by o forsomei €
{1,...,£+1}. Then o (s;;) = €. (i)sii, where /. (i) = £1. Since s;; = 1+ff,é+l(x -1,
the preceding equality implies

€r ()L + (= D) = L+ f (—x = 1),

Since flzz +1 < 1is rational, the equation forces flzz = 1,6(/, (i) = —1or flze =
0, €/ (i) = 1. Both are not possible as 0 < ffe +1 < L. Therefore, 6 has no fixed point
in irr(C).

Leto(¢p) = {I'j. Then Tr(D,,(0)) = Tr(po(t'st“st’s 1)) = —1 (cf. [18]), where
uv =1 mod p. It follows from Proposition 3.12, | Invg(o)| > | Tr(D,(0))| =€ — 1.
Therefore, £ = 1. O

3.7. MDD representations with multiplicities. In this subsection, we investigate the MD
representations p = p; @ p» such that pj, pp are non-degenerate, symmetric, and their
t-spectrums have nonempty intersection.

Theorem 3.23. Let p1, p2 be non-degenerate symmetric representations of SLo (Z) such
that the intersection of their t-spectra is of sizel > 1. Letdim py = [+k anddim p; = [+
m and suppose k,m > 1. Let p1(s) = [¥;;], ;1 () = diag(ay, ..., axw), p2(8) = [7ni]
and py(t) = diag(By, ..., Bmy1) with o; = B fori = 1,...,1. Suppose p1 @ p2 is
equivalent to an SL,(Z) representation p of a modular tensor category C. Then

(1) there exists a signed diagonal matrix V and 2 x 2 orthogonal matrices U; = |:Z’ _f"i|
L L
witha; > 0(i =1, ...,1) such that
AlBT|CT

p) =V | B[y 0 |Vand
Cl0|7n
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p(t) = dlag(OKlIZ, ey all27 Ul41y o ooy Xtks ﬂl+]a ey ﬂl+m),

where A, B and C are block matrices with
Aij =U; [w,, m/} U, Bij =W, OWU] and Cirj =10 i j1U}

1<i,j<L1<i’<kandl <i” <m,and ', n' are respectively the k x k and
the m x m bottom dmgonal blocks of p1(s) and py(s), i.e.,

p1(s) = [ﬂ%} and py(s) = H%}

(ii) Let (e, . . ., ex1+m+k) be the standard basis for p which is identified with irr(C). Then
the unit object 1 of C is ey, —1 or ey, for some u < L. In this case,

@) Yuu + uu # 0, dim(C) = e and the modular data of C is given by

= ﬁp(s) and T =« ' p(b). (3.17)
u,u u,u

In particular, the 2u — 1)-th, the 2u-th rows of the S-matrix have the following
form up to signs:

1 Yuu—Nuu . ﬁ‘/’u,/-H . ﬁ¢u,l+k ﬁﬂu‘lﬂ ﬁ’]u,lﬂn

Yuu+uu Yuu+Nuu Yuutuw  Yuutuu * " Yuutuu . (318)
. Yuu—Nuu 1 . ﬁwu.lﬁ—l . ‘/E‘pu,l-#k ﬁnu,lﬂ ‘/Enu.l-*—m
Yuu+uu Yuu+Nuu Vuutuw  Yuutuu " Yuutuu
(b ) M € {+dim(ey,—1), = dim(ez,)}, and the dimensions of ezjs1, - . ., €21+k+m,

Yuu+Nuu
up to some signs, are respectively given by

ﬁ‘ﬂu,Hl \/zwu,Hk \/zr/u,l+l \/Enu,lﬂn

wuu"'nuu’”.’wuu"'nuu’ l[fuu"'r)uu’”.’wuu"'nuu.

Hence, these numbers are real nonzero cyclotomic integers in Z[{n] where N =

ord(T) Moreover, 11/;/”” +1;’:;‘ € Z[¢n] is a unit.

l 1 fr]l l” b .
() % ”, 77/”// € Zleylforl <i, 1 <i’ <k, 1 <i” <m.

1+’

(iii) If p1 and py are irreducible, then py and py must have the same parity and C is
self-dual.

Proof. We first obtain a representation p by conjugating p; @ p2 with a permutation
matrix so that

cT
0

/

n

o
_'

o) =diag(ai bp, ..., a1, 011, ..o ek, Bty - -+, Biax) and p(s) =

O &Y 2

S

where I is the 2 x 2 identity matrix, and A, f?, C are block matrices given by

- 0 - -
Ajj = [%] m]} » Bij=[¥5; 0] and Cirj = [0 npyn ;]
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with 1 < i,j <I,1 <i < kand1 < i” < m, Suppose there exists an MD
representation p of a modular tensor category C such that p = p; @ p2. Then p = p
and we may assume p(t) = p(t) by conjugating a permutation matrix to p. According
to Theorem 3.4, there exists a block diagonal orthogonal matrix U of the form

U =diag(Uy, ..., Up, yasts - - - Valem+k)

such that p(s) = Up(s)U" and p(t) = 5(t), where yj = £land U; isa2 x 2
orthogonal matrix fori = 1,...,land j =21+1, ..., 2] +k+m. We can always write
U =YV |:Z’ _al_?ii| where ai2 + bi2 =1, a; > 0 and V; a signed diagonal matrix. Now,
1 1

we set V = diag(V1, ..., Vi, V2141, - - - » V21+k+m)- Then statement (i) follows.

The standard basis (e, .. ., €/+k+m) is now identified with irr (C). Since only the first
2l rows of p(s) may not contain any zero entries, the unit object 1 can only be e, with
1 <x <21 Letu = [x/2], the least integer > u/2. Then,

S
T =, diag(a1lz, ...l 041, ..., Qksls Bists - - s Biem)

and the (2u — 1)-th and 2u-th rows of p(s) are given by

A= ay@jVYuj +bubjnu; aubjuj — buajnug (BT) 0= Y et ay
’ buajVuj — aubjnuj bubjyuj +auvajnug |’ ! N

—b
(€ Duir = i [ P ] :
u

Sincee, = Landx € {2u—1, 2u}, ay, by, ¥, 1+i» and ny, 147 arenon-zero for 1 < i’ < k
and 1 <i” < m.
Now, we assume x = 2u — 1. Then, by [26],

p(5)2u,21+i’ buWu,lﬂ" bu
= = — and
P& ou—1204i7 QuWuisir@u Gy
P (8)2u, 21 ++i” —@u i —ay
= = —— € Z[¢w]
P(8)2u—1,20+k+i" butu, 1+i7 by

where N = ord(T'). Therefore, “—Z isaunitin Z[¢y]. According to [29], both spec(p1 (1))
and spec(pa(t)) are closed under the action of o? for any o € Gal(Q). Therefore, the
subsets

{ars1, ..., i} Cspec(pr(t)) and  {Bi+1, ..., Biem) C spec(p2(t))

are closed under o2 for all o € Gal(Q). Thus, {27+ 1,...,21 + k} and {21 + k +
1,...,21+k+m} are both closed under the action of & for ¢ € Gal(Q). In particular,
for o € Gal(Q), 6 (21 + 1) = 21 + i’ for some positive integer i’ < k. Hence,

o (@) Y < 0(8)2u,21+1 ) P (8) 2,6 21+1) 0(8)2u,21+i by

ay P(8)2u—1,21+1

@ a—rs@en PO 12 G

So, b, /a, € Q and hence b,/a, = £1 = ¢,. Since ag + bg = 1, we have q, = «/LE
This implies that

1 Yuu +Muu €uuu — Nuu) T 1 1
Au,u - z[éu(‘ﬁuu = Nuu) Vuu + Nuu :I’ (B )u,i/ - EI//MJH‘/ €y ’
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1 —€
(Cyir = Eﬁu,m” [ 1"} .

In particular, % = m Therefore, v, + 1y, # 0 and so the S-matrix (3.17) of C is
then obtained. In particular, the (2u — 1)-th and 2u-th rows of S are displayed in (3.18).
Thus, the dimensions of 2y, €2/+1, - - - , €21 +k+m» UP O SOMe signs, are respectively given
by

Yuu — Nuu \/EWM,IH ﬁlﬂu,Hk \/zﬂu,lﬂ \/Enu,Hm
wuu + nuu ’ wuu + nuu ’ ' WMM + nuu ’ wuu + nuu ’ ' WMM + nuu ’

which are non-zero real numbers in Z[¢y].
Now, the global dimension

+4
(Vyu + nuu)z

p(5)y.z

dim(C) = e R* NZ[¢y].

It follows from [26] that € Zl¢y] forany y,z = 1,...,21 + k + m. For

P(8)2u—1z
y =z = 2u, we find
+
M € Zlenl,
Yuu — Nuu

and so W is a real unit in Z[¢y]. For y, z > 2/, we find

V2 14 V20 14ir
and e

[Zn]-
wu,lﬂ" Nu 1+i"

fori >1, 1 <i’ <k, 1<i” < m.This completes the case for x = 2u — 1.

One can follow the same argument for the case when x = 2u. However, the con-

clusions are identical to the case x = 2u — 1. Therefore, the proof of statement (ii) is
completed.
(iii). Assume the contrary. Then pj, p; are irreducible representations with opposite
parities. Thus, | Tr(p(s)%)| = |k —m/|, which is the number of self-dual objects in irr(C).
Since p(t) has m + k eigenvalues of multiplicity 1, the number of self-dual objects in
irr(C) is at least m + k which is greater than |k — m|, a contradiction. The proof of
statement (iii) is completed. O

As aconsequence of the preceding theorem, two non-degenerate irreducible represen-
tations with opposite parities will never satisfy the conditions of the theorem. However,
we can solve the modular data if the t-spectrum of p; is subset of that of pj.

Theorem 3.24. Let py, p2 be non-degenerate symmetric representations of SLo(Z)such
that

spec(p2(t)) < spec(pi(t)).

Let | +k = dimp; and | = dim p;, p1(s) = [¥i;], p1(H) = diag(aq, ..., o),
02(8) = [nij], p2(t) = diag(ay, ..., ). Suppose p1 ® p2 is equivalent to an SL(Z)
representation p of a modular tensor category C. Then
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(i) there exists a signed diagonal matrix V and 2 x 2 orthogonal matrices U; = |:Z’ _al-]ii|
1 1

withai2+bl.2= landa; > 0(i =1,...,1) such that

A|BT .
ps) =V B[y V oand pt) =diag(aila, ..., oql, o4l .., 0p4),

where ' is the k x k lower right corner block of p1(s) and A, B are block matrices
given by

Au=w[%hu}7’&q=wmgmuﬁ
for1 <i,j<landl1 < j <k

(1) Suppose p1 and py have opposite parities. We identify the standard basis (e1, . . ., €21+k)
of p with irr(C). Then
(a) e2i—1 and ey; form a dual pair fori =1, ...,1.
(b) The unit object 1 can only be ey with 1 < u < k such that Yy 14y 7 0 and

. _ . . :I:wi I+u
dim(C) = [Yrsuteul %, dim(esi—1) = dim(ey;) = ———,
o l l \/Ewl+u,l+u
:|: .
dim(ej) = 20l
w1+u,l+u
fori =1,....,1and j =1+ 1,...,1 +k. In particular, they are elements of
ZIENINR* where N is the order of T = (x[:}d,o(t), and the S-matrix of C is given
by
_ A'|B'T
S =iV [B, 7 } 4 (3.19)

for some signed diagonal matrix V' and block matrices A’, B’ given by

Vi rei€inij Wi €€, Viai i

;o . 2' * 5 ’ _ [+i ]

Aij |:*lfi,./—fff./m,./ vigréemy | ad By ;= NG (1]
2 2

wheree; = £1,1 <i,j <land1<i <k

Proof. By conjugating a permutation matrix to p; @ pz, we can obtain an equivalent
representation p given by

. A|BT . .
p(s) = By and po(t) =diag(ailp, ..., 000, 041, ..y Oktl),

where ¥’ is the k x k bottom diagonal block of p (s), and A, B are block matrices with

~ w 0 ~
Ajj = |: 6] ni | Bj j = [y, 0]

forl <i,j <land1 < j' < k. By Theorem 3.4, there exists an orthogonal matrix U =
diag(Uy, ..., U, Y2141, - .- y21+1) such that p(s) = Up(s)U " and p(t) = 5(t) where
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yj = £land U; isa2 x 2 orthogonal matrix fori = 1,...,land j =21+1,...,2[+k.

As before, we write U; = V; |:a,- _l_)i:| where ai2 + bi2 = 1,a; > 0 and V; a signed
1

b,‘ a
diagonal matrix. Now, we set V = diag(V1, ..., Vi, Y2141, - - -, Y214k), and statement (i)
follows immediately.

(i1). Now we assume p; and p; are of opposite parities. Then | Tr(p(s)%)| = k and
so there are exactly k self-dual simple objects in irr(C) and / dual pairs. Since ez;_1 and
eo; give rise to the same eigenvalue of p(t) fori = 1,...,/[, and p(t)2;2; # p(V);
for j ¢ {2i — 1, 2i}, they must form a dual pair. Since the unit object 1 is self-dual,
1 = ep4y for some positive integer u < k, and so 1/4/dim(C), up to a 4-th root,
iS 0(8)21+u204u = Wivut4u- In particular, Yy v # 0, im(C) = | i4u| > and
Wl:i,lm € Z[cn] NR*, where N is the order of T = a;Lp(t). By (i),

_1 A|BT
S =Vt V [F‘W} &

where A, B are block matrices given by

ajajyi j+bibjn; ; aibjyi j—a;bin; ;
Aij =
2

2 2 P o la: b
ajbivi,j—aibjni,j bibjI//i,j+ai“jrli‘jj| and By j = Vi jlaj bjl.
2

Thus, the dimensions of ;1 and e;; are respectively given by

Vitu,ja) —Yisu,jbj
w4 ond u, jOj
w[+u,[+u 1//l+u,l+u
soh imnli —p. S 2,12 . R o &
which implies £a; —b].Slnceaj+bj =landa; > 0,wehavea; = ﬁandb] =5

2
Vi j—€inij €€V jtnij

Vi jtei€ini,j €V j—€ini,j
for some €; = £1 (j = 1,...,[). Therefore, A;; = and

By j = w%"/[l €jl.LetE; = |:(1) 2] for j =1,...,1. Then

Ajj = E,'A;]-Ej and Bij = Bi/’jEj

and the expression (3.19) of the S-matrix follows immediately by setting V' = V E where

E = diag(Ey, ..., E;, 1, ..., 1).iM0reover, dim(ez;j—1) = dim(ez;) = % for
j=1,...,1,and dim(ey4;’) = # for 1 < i’ < k. It follows from [24] that they
are elements of Z[¢y] N R*. This completes the proof of statement (ii). O

4. Classification of Modular Data of rank = 6: Admissible Types

In this section, we prove that admissible types of MDs that can be realized by some rank
=6 MTCs include (4, 1, 1), (4, 2), (3, 3),and (3,2, 1).

Definition 4.1. Let (S, T') be amodular data. Denote by ¢ the object (label) corresponding
to the column of the S-matrix that is a multiple of the column of FP-dimensions.
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4.1. Classification of modular data of type (4,1,1). Recall that SO(8)3 = PSO(8)3 X
SO(8)1 as modular tensor categories, which defines the notation PSO(8)3. Alterna-
tively, the modular data of PSO(8)3 can be obtained from SU (3)¢ via boson conden-
sation [34]. We will prove in this section that the Galois conjugates of the modular data
of PSO(8)3 are characterized by the MTCs of type (4,1,1).

Theorem 4.2. Let C be a rank 6 modular tensor category of type (4, 1, 1). Then the
modular data of C is a Galois conjugate of PSO(8)3.

LetCbean MTC of type (4, 1, 1), and p an SL, (Z) representation of C. Then p admits
an irreducible decomposition pg @ p1 @ p2 in which dim pg, dim p;, dim p, respectively
4,1,1. By tensoring a suitable 1-dimensional representation of SL>(Z), we will assume
po has a minimal t-spectrum.

In particular, all the 4-dimensional irreducible representations of level 6 are even.
Now, can prove

Lemma 4.3. C is self-dual, po must be even of level 9, and p = pog D 2 xo.

Proof. From “Appendix A”, 4-dimensional irreducible representations of SLy(Z) with
minimal t-spectrums appear at the levels 5, 6, 7, 8, 9, 10, 12, 15, 20, 24 and 40. The
t-spectrums of those 4-dimensional irreducible representations of levels 5, 8, 10, 15, 20,
24 and 40 do not contain any 12-th root of unity. It follows from Lemma 3.20 that pg
cannot be of any of these levels.

It remains to show that the level of pg cannot be 6, 7 or 12. Suppose pg has level 7.
Then C is of type (4,1,1), which contradicts Proposition 3.22. Therefore, the level of pg
cannot be 7.

Suppose pp has level 6 or 12. Since there is no 4-dimensional irreducible represen-
tation of levels 2, 3 or 4 in the tables of “Appendix A”, pop must be projectively equiv-
alent to a tensor product of two 2-dimensional representations, namely p, 10 ® P10 Or

p,1.0® p,1.0. However, p,1.0 and p, 1.0 are projectively equivalent, hence so are p,1.0® 0,10
4 3 2 4 2 3
and p,1.0 ® p,1.0. SO po is projectively equivalent to p,1.0 ® p,1.0, which has a minimal

4 3 2 3
t-spectrums {1, —1, ¢3, —¢3}. Therefore, po = p,1.0 @ p,10.
2 3

By Lemma 3.20, the levels of p; and p» are divisors of 6, and so is the level of p.
Therefore, ord(7")|6 and hence C is integral by Theorem 3.14. It follows from Proposition
3.16 that C is of type (4,2), a contradiction. Therefore, the level of py cannot be 6 or 12.

As a consequence, pp must have level 9, and p = pg @ 29 by Lemma 3.20 since 1
is the unique eigenvalue of p(t) with order dividing 12. It follows from Corollary 3.21
that po(s%) = id and C is self-dual. O

4.1.1. Solving modular data of type (4,1,1) By “Appendix A”, there is only one Galois

orbit of 4-dimensional irreducible representations of level 9 which is even. This Galois

orbit has two projectively equivalent classes given by p,1,0 and p,s,0 which are complex
9,1 9,1

conjugate of each other. First, we consider pg = p,1.0.
9,1
Letz; = cg, 23 = cg and z3 = cé where ¢! := ¢ +¢,™. Then
0 -3 -3 -3
L —V3 21 22 z3 ~ 4 .7
§5) = — , t) = diag(1, &9, &g, .
po(s) = 3 Y S po(t) g(1, %9, %9 ¢9)

-3 31
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Let o = 2x0 ® po and set s := p(s) and t := p(t). By reordering irr(C), one can
assume

p(t) = p(t) = diag(1, 1, 1, ¢9, &g, £9).-

By Theorem 3.4, there exists U € Og(R) such that p = UpU . Then U = f @ V
for some signed diagonal matrix V = diag(ey, €2, €3) and f € O3(R) where f & V
denotes the block direct sum of f and V. We may further assume e3 = 1, and we get

Fha+ il fefn fufn fofy Mg A I8
fubi+finfr A+ fh Pt e % 82\&; ff/%
fuifsi+ fiafz2 fifsi+ fafse fH+ 12 By flps Lo

_ ~ T _ 31 32 ,ﬁ —/3 —~3
s = Up(S)U - 81{‘1[3 81{;3 1 /33 :Tl 518%212 81323
—J/3 -3 -3
/13 /23 £33 £1€222 23 €21
3 /3 73 3 3 3
13 fa3 33 £123 €21 22
L -3 -3 -3 3 3 3
M1 _ f2 _ _ /13 efiz  _fi3 7]
-1 f13f§3 f13/33 8_}/5 5{ _fﬁ
_ — _ 1J23 2J23 _J23
fi3fz 1= [y f23f233 - }/g - }f = 7
— — _ 1J33 2J33 _J33
_ fafs —ffs 1= —5 TKF A
e1f13 €1./23 e1./33 21 £1€22) €123
—/3 /3 ~/3 3 3 3
/13 &/23 &/33 £1€222 23 £2]
~A ~A -5 3 3 3
f13 /23 33 €123 £21 22
L V3 -3 -3 3 3 3

We now apply the Galois symmetry [11, Theorem II] of p to determine f and €1, &3
(cf. Theorem 3.7 (6)). Since ord(t) = 9, then s is a matrix over Q9. The Galois group
Gal(Q9/Q) is generated by o defined by o : {9 592, and & denotes the corresponding

permutation on irr(C) = {1, ..., 6}. The i-th diagonal entry of ¢ will be denoted by ;.

Under the action of o2,

ta > ts, ts5t>1g, and tg > 14.

We find 6(4) = 5, 5(5) = 6 and 6(6) = 4. Recall that o (s;;) = €, (i)s5(;); Where
€, (i) = 1. Applying o to those s;; with i, j € {4, 5, 6}, we have

0(z1) = €5 (4)e18222, 0(818222) = €5(5)€1z3 and o(€123) = €5 (6)21.
Since 0 (z1) = 22, 0(z2) = z3 and 0 (z3) = z1, we find
€& (4) =¢c182, €(5) =6 and €;(6) =¢y.

Now, we apply o to those s;; withi € {1,2,3}and j € {4, 5, 6}. Wehavea( ) =

and hence {’; € Qfori = 1,2, 3. This implies that fi3 fj3 € Qforanyi, j € {l 2, 3}
Therefore, the first 3 rows of s have rational entries, and hence & fixes 1,2,3. Now, we
can conclude that 6 = (4, 5, 6).

Since C is notintegral by Proposition 3.16, none of 1, 2 or 3 cannot be the isomorphism
class of the unit object 1 or the simple object ¢ for the Frobenius-Perron dimensions.
Therefore, dim(C) and FPdim(C) are Galois conjugates, and FPdim(C) is the largest
conjugate of dim(C). The global dimension dim(C) can be 9zf2, 9z3 2or 9z, 2 depending
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which of the classes 4,5,6 corresponds 1. Since they are conjugates and —zp > z3 >
z1 > 0, FPdim(C) = 9z;2.
Let (S, T') be the modular data of C. Note that z1, 72, z3 are units, and they are roots

of the irreducible polynomial x3 — 3x + 1. No matter which of 4,5,6 is the isomorphism
classof 1, fori € {1,2,3}and j € {4, 5, 6},

V3fi

2k

Sij ==

for some k € {1, 2, 3}. Since S;; is a cyclotomic integer, so is \/gf,g. Thus, «/§f,~3 is an
integer and they satisfy

(V311302 + (V3 f23)* + (V3 f33)* = 3.

Therefore, \/§fi3 = =1 or equivalently fj3 = :t\/L§ fori = 1,2,3. Now, we can
compute the modular data for the cases 1 = 4, 5 or 6:

(i) Suppose 4 is the isomorphism class of 1. Then D = 3/z; and

31_f123 3f13f23 3f13f33 e1v3fi3 e2v3fi3 V313
21 -z —z1 —z1 —z1 —z1
3f13f23 31*f23 3f23f33 e1V3f3 ev3f3 V33
—z1 71 -z —z1 —z1 —z1
3/l 3fofn 3o eiV3f3s V313 V3f
S = —Z1 —21 Z1 —zZ1 =21 —21
e1v3fi3 e1v3f3 e1v3f33 1 £1€222 €123
—z1 —zi —zi 21 1
ev3fi3 V33 ©V3fi aen 23 e
—z1 —z1 —z1 21 71 2
V3fis  N3fs V3fn £123 & 2
L -z —z1 —z1 71 o
Note that
6 2
S; 9
3 <—4> = 5 = FPdim(C).
— S4.4 23

Therefore, 4 is also the isomorphism class of ¢ (recall Definition 4.1). In particular,
C is pseudounitary and the entries of 4th row of S must be positive. Since ;—f <0
and ;—? > 0, we have ey = 1, e, = —1 and fi3 < 0 fori = 1, 2, 3. This implies

V3fiz=—1fori =1,2,3and

ro—1 =1 -1 _—1 __—1 _—1-
221 _Zl _Zl Zl _Zl Zl

15 ~1 __—1 = -1 _~1
—z; 2z —z; z; =7

. 8 .8 .8 2
S = T T N [ < R} and T = diag(¢y, ¢y, &g, 1,83, 83).
1 | 1 | 1 | Z1 Z1
— - -1 -2z _
-z, —Z _le o 1
7 7 7 B 1 2
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(i1) Suppose 5 is the isomorphism class of 1. Then D = 3/z3 and hence

0 31_f123 3f13f23 3f13f33 eiv3fiz e2v3fiz V3fi3 ]
23 —z3 —z3 —z3 —23 —23
3f13f23 31*f223 3f23f33 e1v3f3 V33 V3f3
-3 23 —23 —23 -3 —23
3fi3fs g fnfn -/ ei3fn eV3fn V3
S = —23 —23 z3 —23 -3 —23
eiv3fizs e1v3fs e1v3 /3 21 g8z o
—23 -3 —23 3 23 1
ev3fis eV3fs 9V3fis aon 1 £21
—Z3 —23 —3 23
V3fis  3f3  V3f3 e &2z1 2
L =z —23 —-z3 1 23 3
Now, one can check directly that
6 6
S; 9 S; 9
DGt = g ad 3=
= Ss4 7 = Ss6 ]

which implies 6 is the isomorphism class of «. Thus, all the entries of the 6th row of
S have the same sign. Since z2/z3 < 0 and z1/z3 > 0, we obtain thate; = ¢, = —1
and fi3 > Ofori = 1, 2, 3. Therefore,

V3fis=V3fa=+3f3=1

and hence
-~ -1 1 =1 =1 —1 _—17
223_1 _Zil % 13_1 <Y
3 213_1 _Zil z3_1 23_1 3
—23 —%3 223 23 23 I3 . 5 .5 .5 .2
S=| 2 2 21 a o2 and T =diag(¢g.49.¢9,¢3,1,83).
3 | 3 | 3 | z3 z3
- - -1 2 -z
23 . <3 | 23 | 3 1 23
- - - - 22
[~~~ Sl

(iii) Suppose 6 is the isomorphism class of 1. Then D = 3/z, and

0 31*f123 3f13f23 3f13f33 eiv3fi3 ev3fi3 V3fi3 |
2 —2 -2 -2 -2 —22
3f13f23 31—f23 3f23f33 e1v3f3 ev3f3 V33
—22 22 —Z —22 —22 —22
3f13f33 3f23f33 31—f33 eiv3f3 ev3f13 V33
S = -2 -2 o -2 -2 -2
e1v3f13 e1v3f3 133 21 &8 £123
) -2 -2 2 182 22
22V3fis V33 8vifs oo 2 8z
—22 —22 —22 162 22 22
V3fis  3f3  3fn €123 €21 1
L - -2 —22 22 2 _
Now,
6 6
Sia 9 Sis 9
DG =g and Y (et =
— Se4 z3 — S6 7
i=1 i=1
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@iv)

v)

(vi)

which implies 5 is the isomorphism class of ¢. Thus, all the entries of the 4th row

have the same signs. Since z3/z2 < 0 and z1/z2 < 0, €]

fori =1, 2, 3. Therefore,

V3fis=V3fn=+3f3=1

and hence

and T = diag(;‘g, C92, ;“92, &3, C32

=—-1l,eo=1and fi3 >0

, D).

Now, we compute the modular data for pp = p 4505 which is the complex conjugate of

P 410 (s). Since p41 0(5)) = ,043 0(5) modular data are complex conjugations of those
obtamed for pg = ,041 0. They are

S S B
- -1 _—1
21 T4 &y
- -1 _—1
1 T4 %
1 =£2 =
271 21
—22 23 _1
21 21
Bz ] 2
21 1 =
-1 -1 __—1-
Z3 ] Z3 _Z3 1
231 131 —z31
3 23 —%3
. n
23 23
2 ] =z
23 3
1z 2
23 3
-1 _—1 _—17
2 2
2151 L5
2 4 2
1 41 =
—Z, Z; 2y
FAT <]
22 22
-1 B8 2
22 22
B4
22 22 -

and T = dlag(§9ﬂ {97 CQ, 17 ;-327 ;3)

and T = diag(¢y, ¢, ¢4, 6, 1, &9).

and T = diag(é‘g, §97, {97, §32, &3, D).
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4.1.2. Proof of Theorem 4.2 Since modular data of Type (4,1,1) have been completely
solved in the last subsection. The modular data of PSO(8)3 coincides with (i) up to a
permutation. Let o € Gal(Q9) be the generator defined by o : g > 592. Applying o to
the modular data (i)-(vi), One can check directly

Q) > (vi) > (i) = (iv) 2 (i) = (v) > (i)

up to permutations of the objects. This completes the proof of Theorem 4.2. O

4.2. Classification of modular data of type (4,2). In this section, we will complete the
classification of modular data of type (4,2) in the following theorem.

Theorem 4.4. Let C be a rank 6 modular tensor category of type (4, 2). Then the modular
data of C can only be a Galois conjugate of the modular data of the following modular
tensor categories:

(1) C(Zg. q) with q(1) = 12,
(2) C(Z3,q) W PSU(2)3 with q(1) = ¢3;
(3) GQ2)s.

We will use the following level 5 irreducible representations p,1, P4l and p,1 , when
necessary. > >

@=—|1 () = diag(cs. ¢) 1)
/02; = s51 go _1 B 102; - g §5’ {5 . .
Note that Pl is defined over Qs. Let o € Gal(Q) such that o(¢s) = ;5 Then Pyz =00
Pal- Pois i = 1,2, form a complete set of inequivalent 2-dimensional representatlons of

level 5. The following irreducible representations also form a complete set of inequivalent
4-dimensional representations of level 5:

R —/3 .
i @=5 1 n, U ot e 0 =dinges. 6 56D,
V3 Ve ¢ ¢
4.2)
I —1¢' o
-1 1 - .
P, @= | o, 50| e 0 =i i) @)
o o' 1 -1

We will need to establish a few lemmas to complete the proof of this theorem. Let C
be a modular tensor category of type (4,2) and p an SLy(Z) representation of C. Then

p = p1 @ p2

for some irreducible representations pp, oz of dimensions 4 and 2 respectively. By ten-
soring with a suitable x/ € Sm), we may assume that the t-spectrum of p; is minimal.
Therefore, p; has a prime power level or p; is a tensor product of two 2-dimensional
irreducible representations of distinct prime power levels.
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According to “Appendix A”, p; can only have the prime power levels 5,7, 8, 9 or the
composite levels 6, 10, 15, 24, 40. Note that a 4-dimensional irreducible representation
of level 12 is projectively equivalent to an irreducible representation of level 6 as shown
in the proof of Lemma 4.3. We will prove that only the levels 7, 15 and 24 are possible.

It follows from “Appendix A” that the eigenvalues of p; (t) and p> (t) are multiplicity
free. By the t-spectrum criteria, spec(p1(t)) N spec(p2(t)) = {00} or spec(pa(t)) C
spec(pj (t). These situations have been studied in Theorems 3.23 and 3.24. Now, we can
begin to prove the level of p; cannot 5, 8, or 9.

Lemma 4.5. The level of p1 cannot be 5.
Proof. Suppose pj is of level 5. Since there are exactly two inequivalent irreducible
representations of level 5 and dimension 4, which are given by P4l and Pal s P1 must

be equivalent one of them. In particular, the spectrum of pj (t) con51sts of all the primitive
5-throotof unity. By the t-spectrum criteria, o, can only be equivalent to p, 101 P2, which

are the inequivalent irreducible representations of level 5 and dimension 2. Therefore, p
is of level 5 and hence p(s) is a matrix over Qs. Let o € Gal(Q) such that o (¢5) = ;52.
Then Paz =0 0Pyl

Note that T o Pyl = ,041 for all T € Gal(Q) and i = 1,2. Thus, if p; @ P2}
is not equivalent to any MD representatlon then so is o o (p; @ p21) o1 D P2
Therefore, it suffices to show that Pa1 © Py and P41, © py1 are not equlvalent to any

MD representation.
(i) Suppose p; = Pal | and pp = Pal- Using the representations p41 and P pre-

sented in (4.2) and (4.1), we have
53 _?12 (p;l «/j_QD :;‘i 11
mepe="7| % Y 5T e [s@ _ﬂ
V3 =3 ¢* ¢!
(p1 ® p2)(t) = diag(¢s, §5 §5 §5 5, 85 )
By Theorem 3.24 (1), There exists a block diagonal orthogonal matrix

U:[Z a]@[; C}@Iz witha> +b* =1, & +d* = 1,

such that p(t) = diag(¢s, ¢s, 4“54, {é‘, {52, §53) and p(s) is a conjugation of s” by a signed
diagonal matrix, where s’ is given by

% % * * —\/gbgo —3b
* * * * \/§a<p V3a
, Sg * * * * —/3d 3dg

5= 5 * * * * V3e —\/gcgo
—3byp V3ap —3d 3¢ o' ¢?
—V3b V3a V3de —3cp ¢*  —¢7!

It follows from the action of o2 on p(t), we find 6 (5) = 6. Since
3 3 53 1
olss/P) =<5 ==-5¢ and o(p)=—¢
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the action of o on sgs implies €/ (5) = 1. Hence, by the action of o on the 5-th column,
we have

a(\/§x) = 3x forx = a,b,c,d.

Therefore, v/3a, v/3b, v/3¢,v/3d € Q as olgs generates Gal(Qs/Q). If 5 (resp. 6)
corresponds to the unit object 1, then s/sgs (resp. s”/s¢) is a matrix Z[¢s]. Since ¢ is a
unitin Z[¢s], v/3a, v/3b, ~/3¢, v/3d € Z[¢s5]) and hence /3a, v/3b, /3¢, /3d € 7\{0)}.
However, this contradicts that (v/3a)? + (+/3b)% = 3. Therefore, 5 and 6 cannot be 1.
Suppose 1 is theisomorphism classof 1. Then's; 5/s 5 € Z[¢s] foralli. In particular,
E,a/b € Z[¢s]. So, fb ,a/b e Z.Letm,n € Z such thata = mb and 1 = /3bn.

The equality a” + b> = 1 implies (m? + 1)3b> = 3 and so m? + 1 = 3n>. However,
34 (m? + 1) for any integer m. Therefore, 1 cannot the unit object. By the same reason,
2, 3, and 4 are not the isomorphism class of 1. This ultimate contradiction implies that
p4; ® P2l is not equivalent any MD representation.

(ii) Now we assume p; = p41 and pp = ,021 . It follows from (4.1) and (4.3) that

I —1¢' g
1 -1 1 ¢ ¢! L1 ¢
Blet o -1 1 |®T et
51¢ @ S5

o o1 1 -1
(01 ® p2) () = diag(¢s. &5, 65 63 65, ¢3).
Note that p1, p» have opposite parities. We reorder the simple objects as in Theorem
3.24 so that p(t) = diag(¢s, ¢s, ;54, {54, {52, ;53). The unit object can only be e5 or eg. In
either case, we find dim(C) = 5, and dim(e;) = dim(ep) = 2L — iL' Z Qs.

V2p1(s)33
This contradicts Theorem 2.1 (4). Therefore, Pl @ p21 is not equivalent to any MD

(o1 ® p2)(s) =

representation. This completes the proof of this lemma O
Lemma 4.6. The level p; cannot be 8.
Proof. Suppose p; has level 8. Since there is only one projectively equivalent class of

irreducible representations of level 8 and dimension 4. One can assume p; = p,1.0 (cf.
8

“Appendix A”). In particular, p; is odd, and spec(p1 (t)) consists of all the primitive §-th
roots of unity.

By the t-spectrum criteria, spec(pz(t)) must be a set of primitive 8-th roots of unity,
and hence p; has level 8. Therefore, po must be projectively equivalent p, 1.0, or p2 =

PylLe, where £ = 0, 3, 6, 9. Note that p; is equivalent to its complex conjugation while
8
{pzé’o’ p2§'6} and {p,1.3, p,1.0} are complex conjugation pairs. It suffices to show that p2
is not equivalent to (i) Py1.0 OF (i) PyL3.
8 8
(1) Suppose p2 = p,1.0. Then spec(p2(t)) C spec(pi(t)) and pi, p2 have opposite
8
parities. Their direct sum p = p,1.0 @ p,1.0 is given by
8 8

1 V3 V3 1
3 T S e[ ] and o = ding(es, & 68 4. ).

1 —V3V3 -1

p(s) =
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However,

N

is not a matrix over Qg, a contradiction to Proposition 3.9. Therefore, p» Z Py1.0.
8
(i1) Now, we assume py = P13 Then py, p3 have the same party, and p = Pg10D 0,13
8 8 8

is given by
1 V3 V3 1
por = |2 T e [ ] and 5 = diages, 6, 6. 6 65 ).
1 —/343 -1
However,
e
is not a matrix over QQg, a contradiction to Proposition 3.9. Therefore, py Z pz§'3' O

Lemma 4.7. The level of p1 cannot be 9.
Proof. There are 4 projectively inequivalent 4-dimensional irreducible SL;(Z) repre-
sentations of level 9, which are given by p 4105 430 P 4395 and p 489 (cf. “Appendix A”).
p41 0, ,043 o are complex conjugate of each other and SO are ,04| 0, and p4s o. Therefore, it
sufﬁces to show that p; cannot be equivalent to (i) ,o41 0 or (11) ,041 0.

(1) Suppose p; = ,041 0, which is odd. By the t- spectrum crlterra p2 can only be
projectively equivalent to ,021 0 or p,1.0, and this implies p) = ,02; 0, ’02% 0 or p2; s. In any

of these cases, spec(p1(t)) ﬂ spec(pz (t)) = {1}. Therefore, by Theorem 3.23 (iii), p3 is
also odd, which means p % p, 1.0 as it is even.
2

Now py = pz;-(’ or ,023I),8. Note that

[ =142 .
py10(8) = 7 [ﬁ “/I] s pyro(t) = diag(l, 83),
i1 42
,02;8(5) = ﬁ |:\/§ _1] )
By Theorem 3.23 (ii), the unit object 1 of C is an eigenvector of p(t) of eigenvalue 1, and

dim(C) = 4/|p1(8) 11+ p2(8)11 |2 = 12. By the Cauchy Theorem of modular categories,
2 | ord(T) | ord(p(t)) = 9, a contradiction. Therefore, p; Z PyL.0.
9,1

po1s(t) = diag(l, 3.

(i) Now, we assume p; = p 41,0, which is even. Using similar argument as in Case (i),
9,2
P2 = p,10 by the t-spectrum criteria and Theorem 3.23 (iii). In this case, spec(p1 () N
2

spec(p2(t)) = {1} and p has level 18. Theorem 3.23 (ii), the unit object of C is an
eigenvector of p(t) of eigenvalue 1, and dim(C) = 4/|p1(s)11 + ,02(5)11|2 = 16. By
the Cauchy Theorem of modular categories, ord(7') is a 2-power, but this contradicts
Theorem 3.7 (4). Therefore, p; Z p 410 O
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Lemma 4.8. If p; projectively equivalent to an irreducible representation of prime
power level, then the modular data of C is a Galois conjugate of that of G(2)3.

Proof. By Lemmas 4.5, 4.6, 4.7 and “Appendix A”, p; can only be projective equivalent
a level 7 irreducible representation. By the t-spectrum criteria, p; = Pyy OF its complex

conjugate Pas> which They are defined over Qs¢.

If there exists some modular data (S, T) whose associated SL;(Z) representation
p = ,04; @ py for some irreducible 2-dimensional representation p», one can obtain

the modular data derived from the MD representation which admits the decomposition
Pag @ p, by the complex conjugation of (S, T').
(I Assume p; = Pats which is odd. It follows the t-spectrum criteria that p, must

be equivalent to a level 2 or level 3 irreducible representation. In any of these cases,

spec(p (t)) N spec(pa(t)) = {1}. There is only one 2-dimensional irreducible represen-

tation of level 2 which is even. By Theorem 3.23 (iii), p2 = p,1.0 or p,15, which is odd.
3 3

Since

We will solve the modular data for (i) p = P4} ® p,10 and (ii) p = P4} ® p,20.
3 3
(i) Let 5 = pg1 @ pyro- Then 5(t) = diag(l, &7, &7, ¢, 1, ¢3) and

—1v2V2V2
5(5)=L 2y o on @L[—lﬁ}
Vi|V2rn vnon V3Lv2 1
V215 viom
where y; = —c%, Y = —c; and y3 = —c%. We reorder irr(C) so that p(t) =

diag(1, 1, ¢7, ¢7, ¢, ¢3), and identify irr(C) with the standard basis of CS. By Theo-
rem 3.23,

—/21-3 (@53)81 e e —\/26185
V21-3)e1  —/21-3
; ( 5 )¢ ‘/; ele2 €183 €184 Les
p(s) = — €2 162 vt r2e2e3 yaezea 0
NG €3 E1€3  V2€2€3 V3 VIE3E4
&4 E1E4  V3E284 VIEIE4 V2

moo

- %8]65 \/285 0 0 0

-1
for some ¢; = £1,and so D = 2 (\% + #) or dim(C) = % (5 — \/21). Since

% (5 + «/21) is a Galois conjugate of dim(C) and

21
dim(C) < - (5 + Jﬁ) < FPdim(C),

the objects 1 and ¢ are distinct. By Theorem 3.23 (ii), e, e> are the only rows of the
S-matrix with no zero entry. Therefore, {1, ¢} = {e, €2}, and the modular data of C is
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given by

1 —di&1 —dpen —dre3 —drey dieles

—d &1 1 —dye1ey  —dpye1e3  —drer1eq —dies

—dpey —dye1ey  —dayr  —dayaene3 —dryzenes 0

= and T =
§ —dyez —dyeje3 —dyyrenes  —dyys  —dyyiezes O p®).
—dyey —dyeeq —dryzeres  —dyyy —dyy2 0
dze1es  —dzes 0 0 0 —d3

where dy = £ (5= v/21). d> = (V2T =3). ds = £ (7= v21).
If 1 =ej,thent = ex and so So « = [d1, 1, d2, da, da, d3]. This forces ¢1 = ¢5 =
—1,& = &3 =¢e4 = 1. Thus,

1 dy —dy —-d» —-d» d3
d 1 d dy d d3
_ | 2 d2 —dry1 —doyr —dry3 O — di 2 4
S = —dy dy —dyyy —dyyz —day; O and T =diag(l, 1, ¢7, £7.87, £3).
—dy dy —dyy3 —doy1 —days O
dz dz 0 0 0 —d3

If 1 = e, thent = e and so S1 4« = [1,d1, da, da, d>, d3]. This forces ¢; = —1 for
i =1,...,5, and so resulting S-matrix is equivalent to the preceding one interchanges

the indexes of ¢; and e;.
(ii) Let 5 = py1 @ py20. Then /() = diag(l, ¢7, ¢2,¢4,1,¢3) and
3

I I RYZRNGRVE) ,
sy L | V2 oo Tl v2
p(s)_ﬁ V2r s n eaﬁ[ﬁ—l]'

V2Zynom

Note that 5 is defined over Q63. Let o € Gal(Q168/Q) such that o (¢168) = §]16183. Then
0]y, = id and o (£3) = ¢7. One can see easily that

00 (py @ ;02;,0) = P4} ® py2o.

Thus the modular data (S’, T”) for the MD representation equivalent to 5 is the Galois
conjugate by o of the modular data (S, T') obtained in (i). Therefore,

U od) —dy —dy —d) dj
1 2 2 2
40 @ 8 & d

! ! 2 3
—d5 dy — —d —d 0 .
S'=| ZEE s iy o | ad T'=diagl 160,766

—dé dé —dyy3 —déyl —déyz 0

dy di 0 0 0 —dj
where d} = o(d)) = £ (5+21), &) = o(d) = =3 (3+v21), dy = 0(dy) =
% (7 + «/21). Since Si’j > 0,e; = 1 = ¢, and so C is pseudounitary and dim(C) =

o2 (5 - «/21)) =2 (5 + «/21). The modular data of G(2)5 is also (S, T').
(IT) Now, we assume p| = Pag and proceed to solve the modular data for (i) p =
Pas ® p,10 and (i) p = Pag @ py2.0. Note that both of them are defined over Q16s-
3 3
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(1) Let p = Pas @ p,10. Then P4} @ py20 = p. Thus the modular data (S”, T") of
3 3

the MD representations equivalent to p is (3/, T’), which is given by

1 d) —dy -d5 —dj d
1 d dj dy d;

—d} dy —dhyr —dhyr —dhy; 0O

s =5 = and T" =T =diag(1,1,2%.23, 53, 03),

—dj dy —dyyr —dyy3 —dyy; 0
—dy dy —dyy3 —dyy) —dyyr 0O
a4 & 0 0 0 -d

In particular, the MTC C is also pseudounitary with dim(C) = % (5 + 21).
(ii) Finally, we consider p = Pag @ p,2.0 which is the complex conjugate of Py} Dp,10.
3 3

Thus the modular data (S, T””) of the MD representations equivalent to 5 is (S, T),
which is given by

1 dy —d» —-d» —-d» d3
d 1 d dr dy d3
" —dy dy —dyyy —dayr —day3 O mo_ 6 .5 .3 .2
§7T=8= —dy dy —doys —doys —doy; O and T" =T =diag(l,1,¢7,¢7,%7,83).
—dy dy —dyy3 —day1 —day2 O
dz d3 0 0 0 —d3

Therefore, the MTC C is not pseudounitary and dim(C) = % (5 - \/21). O

Lemma 4.9. The level of p1 cannot be 6, 10 or 40.

Proof. (i) Suppose pj is of level 6. Then p; = 1 ® n for some 2-dimensional irreducible
representations ¥ and n of level 2 and 3 respectively. There is only one 2-dimensional
irreducible representation, up to projective equivalence, of levels 2 and 3. Since
the t-spectrum of p; is minimal, p; = ,02;0 ® pzé,o. In particular, spec(p1(t)) =

{1, —1, &3, —¢3}. By the t-spectrum criteria, p> can only be equivalent to p, = PyLis
2
i €{0,4,6, 10},orp21‘,-,jeven. Therefore, ord(p2(t)) | 6 and soord(p(t)) = 6. This
3

implies ord(T) | 6 and so C is integral by Theorem 3.14. However, this contradicts
Proposition 3.16. Therefore, the level of p; cannot be 6.
(ii) Suppose py is of level 40. Then py is projectively equivalent to p, 1,0 ®,02; OT 0,10 ®,02§
8 8

(cf. “Appendix A”). In particular, spec(p1 (1)) is a set of primitive 40-th roots of unity.
However, there does not exist any 2-dimensional representation p» which satisfies
the t-spectrum criteria. Therefore, the level p; cannot be 40.

(iii) Suppose p; is of level 10. Then p; is projectively equivalent to pz;o ®p2% or ,02;,0 ®p22 .

Since ,02;,0 is equivalent to any of it Galois conjugates, '025 0® P} Or ,02; 0Q Py are

Galois conjugate. So, it suffices to show that p; = P10 ® Pl is not possible.

Assume p; = pzé,o ®p2;. Then spec(p1 (t)) = {5, {;‘, —{s, —{;‘}. By the t-spectrum
criteria, pp = P OF X6 ®p2g. Since X6 ®p2£.0 = ,02;,0, P1 @ng and p; @ X6 ®,02; are
projectively equivalent. Therefore, p is projectively equivalentto p = (,02; 0® 0, ! VD, !
and we can simply assume p = p. Asin Lemma 4.5, we the use the following equivalent
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form of Pai:

171 .
pai(s) = Q [(p _ﬂ » o1 () = diag(Ss, ).

ThllS, ﬁ(t) = diag(é‘Sa ;547 _§59 _§547 4‘5’ é‘é) and

o 1\? 7?” 1
~ _ —¢ 1 =3¢ 3 |
PO=3T| -5 3 1 o 695_1[9)—1]'
5 5
—x/gtp V3 [ —1

By Theorem 3.24 (i), if we reorder irr(C) so that p(t) = diag(¢s I, ¢ I, —C5, —¢2),
then p(s) = Vs’V for some signed diagonal matrix V and

* * * * —\/§a —\/gafﬂ
* * * * —V3b —/3bg
§ = L * * * x  —/3cp 3¢
- 2S51 * * * x  —/3de ~/3d
—V3a —/3b —3cp —/3dg 1 @

—3ap —3bgp 3¢ 3d @ -1

where a, b, ¢, d € R satisfying a?+b>=1land?+d*=1.
Note that ¢ is a unit in Z[{s5], and the automorphism o defined by o (¢10) = ;170
generates Gal(Q1o). By the action of o2 on p (1), we see 6 (5) = 6. Since

o‘(sg’s) == il = S§6,

2535 255
o(ss) = S,{,s fori = 1,...,6. This implies V3a, /3b, /3¢, /3¢ are fixed by o and
so they are rational.

The unit object cannot be es, for otherwise v/3a, v/3b € Z and they satisfy the
equation (v/3a)* + (+/3b)? = 3, which is not possible. Similarly, eg # 1. So, the unit
object 1 € {ey, ez, e3, ea}.

Assume 1 = ej. Thena # 0, b/a € Z and ﬁ € 7Z. However, this will imply
31+ (b/a)z) which is not possible. Therefore, 1 # e;. Since ¢ is a unit in Z[{s5],
if 1 ¢ {en, e3, e4} for similar reason. Now, we find 1 ¢ {eq, ..., ec}, a contradiction.
Therefore, the level of p; cannot be 10. O

Lemma 4.10. If the level of py is 24, then C is equivalent to C(Zg, q) for some non-
degenerate quadratic form q : Ze — C*.
Proof. Since py is of level 24, py is projectively equivalent to p,1.0 ® p,1.0 according to
3 8
“Appendix A”. Therefore, we can simply assume p1 = p,10 ® p,1.0 as it has a minimal
3 8
t-spectrum. Then, p; is odd and

1 —-1-v2V2
i -1 -1 2 /2 .
e =72 5o *_/I { . pi() = diag(¢s. &5 834 09)-

V2 /20101
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By the t-spectrum criteria, p» = p,1.j, j € {0, 1,3, 4,7, 9}, and
8

T _ .
o @ =T | ] 0 =t 27

Forj =1,3,7,9, |spec(p1(t)) Nspec(pz(t))| = 1 and so Theorem 3.23 can be applied.

For j = 1,9, spec(p1(t)) N spec(p2 (1)) = {§2+ ]} and for j = 3,7, spec(p1(t)) N
spec(p2(t)) = {{2+2]} Ifp = p1 & ,021 ;j is an MD representation of an MTC C, for
j=1,3,7,9, then by Theorem 3.23, ord(T) = 12 and

= V&m(©) = 1 = V63T .
75( iTg)

Note that each row of pj(s) has an off diagonal entry of the form % and so % / V2 is
the dimension of an object up to a sign. However,

D 3+l
NV NG

Therefore, p; @ Pyl is not equivalent to any MD representation for j = 1,3,7,9.
8

Z Q2.

Now, we can conclude that p = p; @ p> where py = Pyl for some j = 0, 4.
8
In particular, p; and p; have opposite parties and spec(p2(t)) C spec(pi(t)). By
Theorem 3.24 (ii), the unit object 1 is an eigenvector of p(t) with eigenvalue { €
spec(p1(t))\ spec(p2(t)). Let E; be the subspace of C® spanned by the eigenvectors of
pj=p1(H) ® Pyl.j () with eigenvalues in spec(p1 (t)) \ spec(pzl,j (t)) for j =0, 4. One
8 8
can compute that for o € Gal(Q4/Q), D;.(0)|g; = id or —id. By Proposition 3.13,
C is integral. It follows from [4] that C is a pointed modular tensor category, which is
equivalent to to C(Zg, q) for some non-degenerate quadratic form g : Z¢ — C*. O

Lemma 4.11. If the level of py is 15, then the modular data of C is a Galois conjugate
of that of C(Z3,q) X PSU2)3, where q : Z3z — C* is a quadratic form given by
q(1) = &.

Proof. Since p; has a minimal t-spectrum, it must be equivalent to a tensor product of

two 2- dlmenswnal irreducible representations of levels 3 and 5. Accordlng to “Appendix
A, p = p210 ®,02, ,i = 1, 2. By the t-spectrum criteria, p; = y/ ®,02, with j =0, 4.

Thus, p is equlvalent to
pij = (o ®py) ® (X! ® py), i=12 j=0.4.

Note that p; ; is defined over Q9 for i, j. Let o, € Gal(Q120/Q) such that 6, (Z120) =
§1“20.‘Then, o970 p1,j = po,j for j =0, 4.
Since 0410 (0,10 @ P1) ® P31) = (0,10® P21) B Pyt = (P18 @ Py1) D py1 . We have
x* ® 041 0 p1.o0 = p1.4. Therefore, ;. j is projectively equivalent to a Galois conjugate
of p1,0. Hence, it suffices to consider p = py,0, or equivalently p; = p,10 ® Pl and
3

= Pz;
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Now, the MD representation p of C is equivalent to p; @ 02, where pj is even, p is
odd and spec(p1(t)) C spec(p2(t)). Moreover,

<o 1 —¢ 1 20 =2 R %
p(ﬁ)—\/?—,ssl ﬁﬁ‘ﬂ 1 0 @sl I:(P—l
V20 —V2 ¢ -1

|, 5 = diag(es, & s, o g, 6.

By Theorem 3.24, dim(C) = 12sin?(27/5) = 3(2 + ¢). Reorder irr(C) so that

p() = diag(¢s, ¢4, ¢s, ¢35, &8s, ¢s).

Again, by Theorem 3.24 (ii), there exist y;, k;, &; € {£1} such that

r 1+iv3 (l—iﬁ)m nw(lﬁﬂmezsz) Vw('f:fiﬁswm) 3 3 b
2 2 2 7 Vi )21%
1-iv/3 K1 . V3¢ K|71ﬁ5|£2»(2 V3¢ I([Kz+i\/§8152
( > ) 71+12~/§ ( > ) ( 5 ) =Ykl —Y2K1@
—1 V3@ 1+iv/3e1e2k1 k2 V3¢ K1 —iv/3e1 €262 —(1+iv3 —1+iv/3 )2
o= O ) B ) e e
V3<0(K2*iﬁmezl<1> yw(xwzﬁﬁswz) (fl+i\/§)~z —(l+i\/§)
2 2 2 ) —V1V3Kk2¢ V2Y3K2
! —Yiki —Y1V3¢9 —Y1V3K20 -1 —rine
L -9 —Y2K1 273 V2Y3K2 Ve [

We will use the equalities #ﬁ = {3 and # = —{5 to simplify S-matrix, but
we need to determine which of the standard basis elements is the unit object. According
to Theorem 3.24 (ii), 1 € {es, e¢}.

(i) Suppose eg = 1. Then T' = diag(¢ys. ¢, {15, £7, ¢2, 1). Then dim(es)? = ¢? >
1 and so eg = . Thus, all the entries of 6-th rows of p(s) has the same signed, we find
v2=y3=—1,y1 = k1 = k2 = 1. Thus,

—03 —53 9l3 953 1o
—83 =83 9f3 i3 —lg
S— | #3985 63 G ¢l
083 9l3 &3 i3 ¢ 1
-1 =1 ¢ ¢ —lg¢
@ 1% 1 1 ¢ 1

By reordering irr(C), we find T = diag(1, 4“52, C32, 15, §32, ¢15) =T ® T, and

Le 1 ¢ 1 ¢
-1 ¢ -1 ¢ -1
_ |1 e &3 0l3 &3 w3 |
=10 1603203 003 -5 | =519 52,
1 ¢ {3 903 {3 9g3
¢ —1 9t3 =3 &3 —¢3

where (S1, T1) is the modular data of C(Z3, ¢) and (S», T>) given by $» = [; _(p1i|

and 7, = diag(l, {52) is the modular data of PSU (2)3. In particular, (S, T) is a Galois
conjugate of the modular data of C(Z/3Z, q1) K PSU (2)3.
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(i1) Now, we assume es = 1. Then T = diag(;%, ;fs, §32, §145, 1, ;53) and dim(eg)? =
<p2 > 1, and so e5 = ¢. Then y; = y» = 3 = k1 = k2 = 1, and we obtain

&G Benele
303 3w 3l g

S — | §3¢ &3¢ —t3 —8 ¢~
03¢ {3 =3 —C3 ¢ —1
I 1T ¢ ¢ 1y

¢ -1 -1 ¢-1
By reordering irr(C), we find T = diag(1, ¢, ¢7. ¢k, ¢4, ¢f5) = T ® T and

1o 1 ¢ 1 ¢
-1 ¢ -1 ¢ -1
_ | Ve &3 wi3 &3 w53 | _
S=1 4 1033 053 55 | = 51952
1 ¢ &3 93 {3 ¢i3
v —1 ¢i3 =3 9l3 —{3

Since (S», T») is the complex conjugate of modular data of PSU (2)3. Therefore, (S, T)
is a Galois conjugate of the modular data of C(Z3, g) ¥ PSU (2)3. This completes the
proof of statement.

As a consequence, for any i, j, p;, ; is equivalent to SL;(Z) representations of some
modular tensor categories Galois conjugate to C(Z3, g) X PSU (2)3. O

Proof of Theorem 4.4. The result of Theorem 4.4 is a consequence of Lemmas 4.5 to
4.11. O

4.3. Classification of modular data of type (3,3).

Theorem 4.12. The modular data of any type (3, 3) modular tensor category is a Galois
conjugate of that of SO(5);.

Let C be a modular tensor category of type (3,3) and p an SL,(Z) representation of
C. Then

p=p1®m

for some 3-dimensional irreducible representations p1, p2. If p1, p2 have opposite par-
ities, then Tr(p(s)) = 0 which contradicts to Proposition 3.12. Therefore, they have
the same parity. We may assume that p; has a minimal t-spectrum and show that for
p1 cannot be projectively equivalent of any 3-dimensional irreducible representation of
levels 3, 7, 8 or 16.

Lemma 4.13. Neither p1 nor p> is projectively equivalent to a 3-dimensional irreducible
representation of level 3, 7, 8 or 16.

Proof. Suppose p; is a 3-dimensional irreducible representation of level 3, 7, 8 or 16
with a minimal t-spectrum.

(1) p1 cannot be of level 7: Suppose p; is of level 7. Then, by the t-spectrum criteria
and “Appendix A”, p» = p; but this contradicts Proposition 3.19.
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(ii) p; cannotbe oflevel 3: Suppose p is thelevel 3. Then p; = ,ogu o0.Sincedim(py) = 3

which is a prime number, p, must be projectively equivalent to a 3-dimensional irre-

ducible representations of prlme power level (cf. “Appendix A”). If p; is projectively

equivalent to p,1.0, then pp = P310 by the t-spectrum criteria, but this contradicts
3

Proposition 3.19. Therefore, p; is not projectively equivalent to p3L0-

It follows from (i) that p, cannot be projectively equivalent to a level 7 representation.
Therefore, by “Appendix A”, p» can only be projectively equivalent to a representation
of levels 4, 5, 8, 16.

By the t-spectrum criteria, p; is not projectively equivalent to any level 16 irreducible
representations. If p, is projectively equivalent a level 8 irreducible representation, then
02 = x/ ® ¢ for any level 8 representations in “Appendix A”. Since p; is even,
Jj =0 mod 4, and so ¥ must be even. This implies ¥ = P3335 L3135 P339, P39, but
none of them satisfies the t-spectrum criteria. Therefore, p» can only be projectively
equivalent to some ¥ of level 5 or 4 in “Appendix A”. Thus, by the t-spectrum criteria,

0= X ® P30 OF X! ® P3i for j = 0,4,8 and i = 1, 3. In any of these cases,
o4 5
| spec(p1(t)) N spec(p2(t))| = 1 and ord(p(t)) = 12 or 15. It follows from Theorem

3.23 (i) (c) that if spec(p1 (1)) N spec(p2()) = {p1(Du.u}, then fﬁﬁ;‘)” € Qpp or Qs
foru # j.However, % = _—; & Q12 or Q5. Therefore, p> cannot be projectively

equivalent to any irreducible of level 4 or 5. This completes the proof that p; cannot be
of level 3.
(iii) p; cannot be of level 8: Let

i o v2v2
A==-|v2-11 |[.
2lvat -1
Then, by “Appendix A”,

py10(8) = A and pyo(t) = diag(l, &g, &)
-8 8

which is odd and has a minimal t-spectrum. Since all other 4-dimensional level 8 ir-
reducible representations are projectively equivalent to a Galois conjugate of p;1.0, it
8

suffices to show that p1 Z p;10.
8
Assume to the contrary. Then p; = p,1.0, and hence pp must be odd. It follows from
-8

(i) and (i1), pp cannot be projectively equivalent to any irreducible representation of level
3 or 7. By the t-spectrum criteria and the parity constraint, py cannot be projectively
equivalent to any irreducible representations of level 5. Therefore, p, can only be pro-
jectively equivalent to an irreducible representation of level 4, 8 or 16. By the t-spectrum
criteria, pj is of level 4, 8 or 16.
Suppose p; has level 4 or 8. Since py is 0dd, p2 = p13, P51.9, P31.0, P33.0, P31.6, P336-
4 4 8 8 8 8

However, D, g0, (0) = *£id for all 0 € Gal(Qg/Q). By Proposition 3.13, C is integral

which contradicts Proposition 3.16. Therefore, the level of p is neither 4 nor 8.
Suppose p» is an odd irreducible representation of level 16. By the t-spectrum criteria,

o = P310 5 336 5 P31.6 5 L350, and they are respectively isomorphic to the following

representations:

() s> A, t> diag(ss, Ci6, £16)s
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(2) s> —A, tr> diag(Zs, &g, £1g);
(3) s> —A, tr> diag(5g, L16, £1p);
@) s> A, t> diag((gg, iy, 1)
In any of these cases, spec(p1 (t)) Nspec(pa(t)) = {¢g} or {;“85 }. It follows from Theorem

3.23 (ii) (a) and (b) that D = 4 as ¥, = —i/2 and n,, = 0. The two nonzero rows of
the S-matrix up to some signs are the same:

1,1,2,7/2,2,2

and one of these rows is t. Therefore, the Frobenius-Perron dimensions of the simple
objects of C are 1, 1, 2, «/5, 2,2 . In particular, C is weakly integral, which contradicts
Proposition 3.16 (ii). Thus, p; is not of level 16 either. As a consequence, p; cannot be
of level 8.
(iv) p1 cannot be of level 16: Assume contrary. Then p1 = p;10, P339, p356, 0373,
16 16 16 16

which are projectively inequivalent and have a minimal t-spectrum. Moreover,
py0(s) = A and 7(t) = diag(s. C16. 1)

which is odd. Since all the 3-dimensional level 16 irreducible representations are projec-
tively equivalent to a Galois conjugates of p,1.0, its suffices consider the case p1 = p;1.0.
16 16
By the t-spectrum criteria, pp cannot be projectively equivalent to any irreducible
representation of level 4 or 5. By (i), (ii) and (iii), o cannot be projectively equivalent
to any irreducible representation of level 3, 7, 8. Therefore, p, can only be projectively
equivalent to an irreducible representation of level 16. The t-spectrum criteria forces
p2 to be an irreducible representation of level 16. Since p; is odd, by Proposition 3.19,
P2 = psi6 Or pise, which are respectively isomorphic to the following irreducible
16 ~16
representations:
(1) s> —A, t> diag(sd, fi6. £jp):
(2) s> —A, t> diag(ss, £ £12)-
For Case (1), spec(p1(6) N spec(p2(8) = {&16, ¢f) but
p1(8)ii + p2(8)ii = Aii — Aii =0
for i = 2, 3. Therefore, p = p;1.0 ® p51.6 is impossible by Theorem 3.23.
16 16
For Case (2), spec(p1(t)) Nspec(p2(t)) = {¢g} and p1(s)11 + p2(s)11 = 0. It follows
from Theorem 3.23 that p = p;1.0 @ p55.6 is also not possible. O
16 16
Lemma 4.14. If p| is of level 5, then py cannot be projectively equivalent to any level 5
irreducible representation.

Proof. Suppose p» is projectively equivalent to some level 5 irreducible representation.
Then, by the t-spectrum criteria, p; is a level 5 irreducible representation. Since there
are only two inequivalent level 5 irreducible representation, p; % pz by Proposition
3.19. Then spec(p1 (t)) N spec(p2(t)) = {1}. It follows from “Appendix A” that

p1(8)11 + p2(8)11 = 0.

By Theorem 3.23(i), p1 @ p2 is not equivalent to any MD representation. Therefore, p2
cannot be projectively equivalent to any level 5 irreducible representation. O

It follows from Lemmas 4.3 and 4.14 that the MD representation p of C of type (3,3)
must have the irreducible decomposition p; @ p» where p; and p, are 3-dimensional
and of levels 5 and 4.
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4.3.1. Solving modular data of type (3,3) level (5,4) There are only two inequivalent
level 5 irreducible representations o, ! and P33 Note that o005 1= P33 where o € Gal(Q)

such that o (¢5) = ;53. One may assume p; = P31 which is even, and has a minimal

t-spectrum.
By the t-spectrum criteria and the parity constraint, p» = p;1.0, and so
4

spec(p1 () N spec(p2(t) = (1).

By Theorem 3.23, D = 2/% = 24/5 or dim(C) = 20. Moreover, if irr(C) is reordered
so that p(t) = diag(1, 1, {5, ¢4, i, 1), then

1 K =2y =2y —5y36 —/Syak
K 1 —2y1x =2y Vs sy
p(s) = 2 2y —1=V5 1Ym0 0
25| "2 ok CleVSyym —1-45 0 0
—V3y36 V5y3 0 0 -5 3y
—V5vak NSva 0 0 Ve =5
for some «, y; € {£1}. One can conclude from § that C is pseudounitary, and so we can
assume 1 = = e;. This impliesk = 1, y; = —1 fori =1, ..., 4. Thus, the modular
data of C is given by
11 2 2 V55
11 2 2 =55
_ 2 2 -1-v5-1+v5 0 0 iy 4. .
S = 2 2 _1+5-1-45 0 0 and T = diag(l,1, ¢s, 85,1, —i).
V5-V5 0 0 V545

V5-v5 0 0 V3 -5

However, if 1 # ¢, then one may assume e; = 1 and e; = . Then the resulting modular
data is (PSP, T) where P is the permutation matrix of the transposition (1, 2). In this
sense, the two modular data corresponding to different spherical structures are the same.

For p; = P33 the corresponding modular data is (o (S), o (7)), where o € Gal(Q)

such that o (¢5) = ;53 and o (i) = i. Precisely,

11 2 2 =55

1 2 2 V55

2 2 —1+4/5-1-V5 0 0
o) =1 5 5 1 5 1+v5 0 o and

VARV 0 V5 =5

VA 0 o BB
o (T) = diag(1, 1, &3, 2, i, —i).

In this case, the e = ¢. One can use the other spherical structure of C sothat 1 = ¢ = ¢;.
The resulting modular data is (Po (S) P, o(T)), which is the same as the modular data
(0(S), 0 (T)), and is the modular data of SO (5),. This completes the proof of Theorem
4.12.
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4.4. Classification of Modular Data of type (3,2, 1). We now classify modular tensor
categories with SL»(Z) representations decomposing as a direct sum of irreducible
representations of dimension 3, 2 and 1. The main theorem of this section is:

Theorem 4.15. The modular data of any type (3,2, 1) modular tensor category is a
Galois conjugate of a non-trivial braided zesting of SO (5)3.

The zesting procedure is found in [10]. An alternative approach is to consider the
classification of metaplectic modular tensor categories in [1]: this shows that the cate-
gories above can be obtained by gauging the particle-hole symmetry (i.e. the Z; action
g < g~ 1) on a pointed modular tensor category of the form C(Zs, ¢). In [15] it is
shown that of the 4 modular tensor categories obtained in this way, 2 are SO (5), and its
(unitary) Galois conjugate and the other two are the non-trivial zesting of SO(5), and
its (unitary) Galois conjugate.

Let p = x1 @ (02 ® x2) @ (p3 ® x3) be the irreducible decomposition a modular
representation with p; irreducible of dimension i of prime power level and x; a character.
This description is possible by the Chinese Remainder Theorem and the fact that 2 and 3
are prime. As before, we may assume x3 = 1 and require p3 has a minimal t-spectrum.

We consider cases in turn, describing the level triples for (o3, p2, x1). The t-spectrum
criteriaimmediately implies that the level of p3 cannot be 7. Similarly the level of p3 can-
not be 16: looking at the eigenvalues of the level 16 irreducible 3-dimensional represen-
tation we see that 1 (t) & spec(p3(t)), and hence spec((p2 ® x2)(H)) Nspec(p3(t)) # .
This implies p» ® x2 has level 8 but then x1(t) & spec(p3(t) @ (02 ® x2)(t)), which
contradicts the t-spectrum criteria.

Suppose the level of p3 is 8. Then p3 = pzé,o or p2§,0, and hence p3 is odd. Note that

spec(pzé,o) = {1, ¢g, —¢g} and spec(ng,o) = {1, ;g, —gg}. The level of p, cannot be 5,

by inspection of the corresponding eigenvalues. If the level of p» is 2 then the t-spectrum
criteria implies that ( x2)2 = (x1 )2 = 1. But now ,0(52) has trace 0, contradicting Propo-
sition 2.1. Thus the level of p; is either 8 or 3. Applying the t-spectrum criteria yields
the following possible levels in this case: (8, 8, 1), (8, 3, 3) or (8, 3, 1). In particular, if
the level of py is 8 we cannot have levels (8, 8, 2) or (8, 8, 4) as the t-spectrum criteria
fails in these cases. In all three cases we see that p» ® x2 must be odd for otherwise
Tr(p(s%)) = 0. Hence, the corresponding category would be non-self-dual.

Now suppose that the level of p3 is 5. Then p3 is even. The t-spectrum criteria
implies the level of py cannot be 8. Inspecting the remaining possibilities we find the
following possible level triples: (5,5, 1), (5,3, 1), (5,3,3),(5,2,1) or (5,2,2). The
parities imply that the corresponding category would be non-self-dual in the first three
cases and self-dual for the last two.

Next if the level of p3 is 4, then p3 = p31 3 which is odd, and has the minimal t-

spectrum {1, —1, i} according “Appendix A”. The t-spectrum criteria show that the level
of pr cannot be 8 or 5. If p; had level 2 then the order of p(t) would be 4, yielding a
pointed integral category (by Theorem 3.14) with T -matrix of order 4, which contradicts
Proposition 3.16. Thus p; has level 3 and we find (4, 3, 1), (4, 3,2), (4, 3,3)and (4, 3,4)
as possible level triples.

Finally, if the level of p3 were 3 then the t-spectrum criteria implies that the order
of p(t) is a divisor of 6 and hence pointed integral by Theorem 3.14. This contradicts
Proposition 3.16.

Below we provide the details of the cases of levels (4, 3, 2), (5,2,2) and (5,2, 1) ex-
plicitly. The remaining cases {(8, 8, 1), (8,3,3), (8,3, 1), (5,5, 1), (5,3, 1), (5, 3, 3),
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4,3,1),(4,3,3), (4, 3,4)} can be similarly addressed (and indeed are easier). We can
eliminate all of these cases computationally as well, see Section B.2.

4.4.1. Case (4,3,2) Suppose that the levels of p3, p2 and x; are 4, 3 and 2, respectively.
Without loss of generality we may assume that p3 = p513 and p2 = p,10, which are
odd, and respectively have the minimal t-spectrums {1, —1, i} and {1, {3} according to
“Appendix A”. Let us determine what x, can be. Note that x1 is even. Now if x» is odd,
then Tr(p(s%)) = 0, which is impossible. The t-spectrum criteria implies that x»(t) #
+¢3, and a relabeling eliminates {5 Laf x2(t) € {—1, —Eg}, then p is projectively
equivalent to the complex conjugate the (4, 3, 1) case. So we will assume that x> (t) =
I,i30r ;0 Q@ 2 = P10 Or P18 In either case, p is defined over Q4. If 0 € Gal(Q)

such that (£3) = §32 and o (£3) = g, then we have
3 ® p31s B x1 = 0 0 (03 B p310 B 1)

It suffices to consider p = p := p3 @ p,10 ® x1. By “Appendix A”, we have
3

=11 42 .
;3(5):% \}5\_/%? @%[\}{]@[—1] and

p(t) = diag(1, —1,1, 1, &3, —1)
Reordering irr(C) so that p(t) = diag(1l, 1, —1, —1,1, £3). By Theorem 3.23, the unit
object 1 must be an eigenvector p(t) with eigenvalue 1 and so D = 2/ (% + \%) =
83 — 12 or dim(C) = 48(7 — 4+/3). Moreover, T = diag(1, 1, —1, —1,1, £3) and
p(s) = #22‘/5)5, where

B (2v3-3)« N N 6y 4Bk
2343 2343 2343 2343 24343
_ <2ﬁ_3)K 1 _ 32ax _3\2bk _byik 43y
2343 2343 2343 2343 24343
N2
3% 343k 76(‘“(“2’)” ) (6+12i)ab 6y
S = 2343 24343 2343 2343 2343
) 12i(—1+(1—i)b2)
_ 3J2b _ 3/2bk (6+12i)ab 2 _ 6v/2by,
2343 2343 2343 2343 2343
__6y _ byix _ 6v2ay; _ 6v2by; 0 0
2./3+3 24/3+3 24/3+3 2./3+3
Wik 4Gy 0 0 0 _ 43
2343 2343 2343 |
forsomex, y; € {£1}anda, b € R such thata®+b% = 1. Since 1, € {e1, er}, 6k = —1,
(2f3—3)

anda, b # 0. Since dim()) = === =7 4+/3 < 1, FPdim(C) = 48(7 +4+/3) and
t # 1. We may simply assume e; = lande; =¢. Theny; =1,y = —landa, b > 0.
Since Tr(p(s%)) = —4, there is exactly one dual pair of simple objects, and they can
only be e3, e4. Therefore,a = b = f andsoa =b = 7 Thus,

1 1-2d —d —d —2d2-2d
1-2d 1 d d 2 2-2d
—d d (1-2)d 1+2d —2d 0
—d d (1+2)d (1-2d —2d 0
—2d 2d -2d -2d 0 0
2-2d2-2d 0 0 0 2d-2

S =
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where d = 2+/3 — 3. Remarkably, the Verlinde formula yields a consistent set of fusion
rules. For example the object with twist i has the fusion matrix:

Ns

2
.. s 6;
However, the second FS-indicator for this objectis vp (e5) = m > ik N j5 «djdk (é)
= 2, a contradiction.

4.4.2. Case (5,2, 1) Consider the case of levels (5,2, 1). Then p = P31 ® py10 @ x°
2
or p33 ® py10 @ x© according to “Appendix A”. Since the latter is a Galois conjugate
2
of the former one, it suffices to solve the first case. Let p = p,10 @ x0 @ P33 in
2

which p(t) = diag (1, —-1,1,1,¢s, {é‘). By permuting the first two basis elements,
we may assume that 1 = p(t) = diag(—1,1,1,1,¢s, ;54). Conjugating by a block

fir fiz fis
diagonal matrix of the form (r1) @ F & (r2) @ (r3) where F = | f2.1 f2.2 f2.3 | isreal
f1 f32 33
orthogonal matrix (cf. Prop. 3.4) and r; = 41. One may assume r; = 1, and we find
that £5/D = s = p(s) has the form:
o1 _fuv3 pav3 a3 7
2 2 2 2 0 0
_hav3 f1.33/10r; f1.3v/10r3
2 5 5
_ hav3 A f2.3v/10r f2.3v/10r3
2 5 5
a3 f3.3v/10r f3.3v/10r3
2 5 5
0 S13V10r2 f23v/10r2 f3.3v/10r2 545 n2 ﬁ<ﬁ71)r3
5 5 5 10 10
0 f1.3¥V10r3 f33/10r3  f334/10r3 72 ﬁ(ﬁq)m ﬁ<ﬁ+l>
L 5 5 5 10 - 10 -
where
_“le +f1,22+7f1'352“/g * *
A= _f1,12f2,1 +flafrn+ f1,3~5f5f2,3 _fz.Tl2 +f2,22+ f2,352«f5 j i
flafsn+ f1,3«§f3,3 _ f1,12f3,1 Frafin+ f2,3«§f3,3 _ f2.12f3,1 f3,22 + f3,35~f5 _ J%Tl

First we observe that the FP-dimensions and categorical dimensions (which may
coincide) must appear as multiples of one of the columns 2, 3 or 4. Moreover, since our
category is non-integral by Proposition 3.16, the Galois orbit of the dimension column
has size 2. The FP-dimension column of s must have all the same sign, which implies
that ro = r3.

Leto € Gal(Qs/Q) be the automorphism defined by ¢s — {53 . By Galois symmetry
we have: 6(1) = 1, 6(5) = 6. Therefore, 6 has order 2. Reordering the rows of F
if necessary (which permutes the corresponding rows/columns of s) we may assume
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that 6 (2) = 2 and 6(3) = 4, so that the FP-dimensions and categorical dimensions
correspond to either columns 3 or 4 (or one of each).

We will make frequent use of the fact that o' (s;;) = €5 (i)s5(;),; = €5 (J)si 5(j) Where
€ (i) is a sign.

Now 1/2 = o(s1,1) = €(1)/2 so that €5(1) = 1. By a similar computation

0 (s1,2) = € (1)s1,2 = €5(2)s1,2, so that €, (2) = 1. From o (s55) = flo‘s =€;(5)s56
we find that €, (5) = —1. Now we compute two ways: 0(52,5) = €5(2)s25 = 52,5 =
€5(5)s2,6 = —S2,6 = —s2,5, which implies 52 5 = 0 so that f; 3 = 0. Now o (s3,5) =

€0 (3)s45 = €5(5)s3,6 = —s3,6 implies f33 = £ >3 so that (f>,3)> = 5. Applying a
similar calculation we see that o (s1,3) = 51,3 = €5 (3)s1, 4 implies f>1 = £ f3 1. Setting
z = f1,1 and y = f> 1 orthogonality yields the following:

z 812y 0
=812 =583

82y =818z O3
2 V2

One important consequence is that there are only 2 rows of p(s) that have strictly non-
zero entries: the 3rd and the 4th.

Next we find that o (s; 1) = s;,1 since €, (1) = 1 and 6 (1) = 1. Thus fi,l\/§ e Q.
Note that z2 + 2y2 = 1 where z,y € %Q and one of s2.1/53,1 = =£s52,1/54,1 is of
the form Sx y/dx, i.e., an eigenvalue of a fusion matrix. In part1cular z/y = yisa
(rational) algebralc integer, i.e., y € Z. From this we find that y> +2 = 1/y? € Z so
that 0 < y2 < 1/3,andso 1/3 < z2 < 1.

Let us compute the values of the submatrix A above. We have:

—z2/2+2y? * *
A=| “Wy2 3@ -y + ) *
1) 2 2 1 1,.2 2 1
—023yz/2 F(" =y = 7) 3@ =y + %)

Since the unit object can only correspond to either row 3 or 4 and s3> = 542, $22/532
is an algebraic integer in Q(+/5). Note that

Therefore, # € Z and so y | 4. Thus, y% = 1,4 or 16. However, if y> = 4 or 16,

i]
= ¢ (()2 IhuS =1 orz = +

This nnphes that y = +--

1 — 4 L
f’ from which we compute: f, = 76’ 32 = :I:\/g,
fii1= f, and fio = ﬂ:T
—1//32x1/46 0
Now we may assume F' = | xp/ V3 X3 /\/6 x4/ /2 | where the x; = +1 after an
xs5/3/3 x6/v/6 x7/3/2
overall rescaling by £ 1. Orthogonality of F implies several additional conditions on the
X;, so that all are determined by the values of x», x4, x5 and x7.



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

Substituting into s above, rescaling by =D and permuting the rows/columns so that
the two non-zero rows appear first, we have:

1 xqx7 \/§x5 \/§x5 2 x7r3 2 x7r3
X4X7 1 \/gxz \/gxz 2 x473 2 x413
g — V5x5 V3x2 V5 =5 0 0
T Vx5 V5xp =5 A5 0 0
2xr32x4r3 0 0 —/5-1 /5-1
2xr32x4r3 0 0 5-1 —/5-1

Thus we see that the dimensions and FP-dimensions must be, up to sign choices,
among 1, 2, +/5. In particular, any such category must be weakly integral, and there is
an invertible object of order 2. Therefore, are two spherical structures on C which make
1 =cor1 # . We may assume 1 corresponds to the first row. For the first case, we
find X4X7 = X5 = X713 = 1 and X2 = —1.

Thus we obtain the following S-matrix:

1 1 V5 5 2 2

1 1 =V/5-V5 2 2
§— V55 V5 V500 0
I RVA VARV 0 0

22 0 0 —v/5-145-1

22 0 0 5-1-/5-1

For the second case, one can obtain the same S-matrix except the first two rows/columns
are interchanged, but the 7-matrix is unchanged. Therefore, we have only one modular
data for either case.

Applying o to (S, T'), we obtain the modular data for p = P33 @ P10 @ x° with the

T-matrix given by o (T) = diag(1, 1, 1, —1, £2, ¢2). Both of these modular data (S, T)
and (o (S), o(T)) are modular data of non-trivial braided zesting of MTCs (see [10]) of
type (3,3). Notice that the MTCs of type (3,3) have T-matrix of order 20.

4.4.3. Case (5,2,2) It suffice to consider the case with p = p := Pl ® pyl0 x©.
2
Then

I_—V2-v2 1 1 -3
ps)=—7=|-v2 —¢p ¢! 69—[__\/5_1 ]@[—1] and
Bloviet | 2

p(t) = diag(l, &5, ¢35, 1, —1, —1).
Permute irr(C) so that p(t) = diag(—1, —1, 1, 1, ¢s, {54). By Theorem 3.23, the objects
1,ue{es,es}, D=2/(5 — %) =20 + 8+/5, and

B R 1O R e N 0 o
—1Gab) 3 (1-30%?)  -1./3a —5/3ax 0 0
i () — l%\/gb ~3ia E(VE-5) % (2vEes)e - ~ g
E\/gbl( —%\/gak —2'70 (2\f5+5)/< 2'70 (26—5) y—ls %
Lo o -z 3 yn (V) |
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5t22:§ >1,.=1.
We may simply assume e4 = 1. Thenk =1,y =y, = —landa > Oand b < 0.

By Proposition 3.16, C is not integral. Let 0 € Gal(Q5/Q) be a generator. Then
6(3) = 4 and €,(3) = 1 since 0(s35) = s4.5. Therefore, o fixes s3,1, 53, 2, and so
\/ga, \/gb € Q. Now, 5.1 = 52,1 € Qsince ab € Q. By Theorem 3.7, Sjll and 541‘22 are

in Z[z5]1 N Q, v/6a, ~/6b € Z and (v/6a)? + (+/6b)* = 6. But the Diophantine equation
X2+ Y2 = 6has no integral solutions, so we conclude that p has no realization.

for some «, y1, y» € {1} and a, b € R such that a® + b% = 1. Since

4.5. Classification of modular data of type (6). Inthis subsection, we discuss the possible
rank-6 MDs of type (6) (i.e. MDs from dimension-6 irreducible SL,(Z) symmetric
representations). This part of the classification relies upon computer computations.

Theorem 4.16. Let C be a rank 6 modular tensor category of type (6) with dim(C) =
D? ¢ 7. Then the modular data of C can be obtained, up to a choice of (spherical)
pivotal structure, as a Galois conjugate of the modular data of the following modular
tensor categories:

(1) PSU(2)11 (entry 10 in Appendix C.2);
(i) PSU(2)3 ® PSU (2)5 (entry 20 in Appendix C.2);
(iii) SU(2)1 X PSU (2)s (entry 24 in Appendix C.2);
@iv) PSU(2)3 X SU(2); (entry 36 in Appendix C.2).
(v) PSU2)3 X E(8)7 (entry 28 in Appendix C.2).
(vi) PSO(5)3/2 (non-unitary, entry 9 in Appendix C.2);

Itis worth noting that (i), (ii) and (vi) have a unique pivotal structure, up to equivalence
(cf. [6]). The categories (i) and (ii) are transitive [29], and they are completely determined
by their modular data. We note that by [35], any fusion category with the same fusion
rules as those of (vi) is non-pseudo-unitary.

Recall that a symmetric SL,(Z) representation p is defined to be an unitary repre-
sentation which has diagonal p(t) and symmetric p(s). Every finite-dimensional rep-
resentation of SL,(Z/nZ) is equivalent to a symmetric one. Two symmetric SL,(Z)
representations are equivalent if and only if they are related by a conjugation of a real
orthogonal matrix (see Theorem 3.4). There are 70 inequivalent 6-dimensional symmet-
ric irreducible SL;(Z) representations of prime-power levels (cf. “Appendix A”). Up to
tensoring one of the 12 1-dimensional representations, other 6-dimensional irreducible
representations are tensor products of one of the 11 2-dimensional and one of the 33
3-dimensional irreducible symmetric representations of distinct prime-power levels.

Since there are only a finite number of SL;(Z) representations, up to equivalence,
for any given dimension, we can examine representatives of each of those symmetric
representations by computer and reject those representations that do not satisfy the
following necessary conditions (for a symmetric SL,(Z) representation equivalent to an
MD representation):

(1) If all the eigenvalues of p(t) are distinct (non-degenerate) then p(s) has a row that
contains no zero. Note that when p(t) has non-degenerate spectrum, the matrix
p(s) differs from that of an MD representation only by a conjugation by signed
diagonal matrix. In this case, p(s) must have a row that contains no zero (i.e. the
row corresponding to the unit object).

(2) Let p(s)™°€ (or M) be the non-degenerate block of p(s) (or M), (i.e., corre-
sponding to the multiplicity 1 eigenvalues of the diagonal matrix p (t), see Sect. 3.4).
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Then the conductor of p(s)"2 divides ord(p(t)) (cf. Proposition 3.9). If the p(t)-
spectrum is non-degenerate then we may drop the ndeg superscript.
(3) 7(p(8)™2) = (p%(1)p(5)p" (1) (5)p% (1)"** forany & € Gal(Q), where o () =
< for an unique integer a modulo n. Here n = ord(p(t)) and b satisfies ab = 1
mod 7 (cf. Theorem 3.7). Again, this is because p(s)"4€ can only differ from that
of an MD representation by a conjugation of signed diagonal matrix.

Since the weakly integral rank-6 MD of MTCs are classified, we can exclude sym-
metric SL,(Z) representations that must produce such MDs. Thus we also reject the
representations that satisfy the following conditions, both of which imply weak integral-

1ty:

(1) pord(p(t)) € {2, 3, 4, 6}.In fact, this implies the category is pointed, see Proposition
3.16(1).

(2) The squares of the matrix entries of p(s) in each row containing no zeros are all
rational numbers, and p is non-degenerate. Indeed, in this case 1/ D2, d;/ D)2 and
(d; FPdim(X;)/ D)? are rational, where column i is the unique strictly positive
(or negative) column. (This condition only rejects one case. See entry 566 in the
Supplementary material section of the arXiv version of this paper.)

We remark that there are 6-dimensional irreducible SL,(Z) representations where
o (t) are degenerate, for example, the representation 6; in “Appendix A”. Such a rep-
resentation is rejected since the conductor of p(s)"€ is 40 which does not divides
ord(p(t)) = 5 (see also entry 582 in Supplementary material Section of the arXiv
version of this paper).

All the passing symmetric SL,(Z) representations can be grouped into orbits gener-
ated by Galois conjugations and tensoring 1-dimensional representations. There are
7 such orbits. A representative for each orbit is listed in Section B.2, which have
(dims; levels) = (6;9), (6; 13), (6; 15), (6; 16), (6; 35), (6; 56), (6; 80).

Fortunately, we find that all these SL,(Z) representations have non-degenerate p (t),
so they can only possibly differ from an MD representation by a conjugation of signed
diagonal matrix, if they indeed are associated with MDs. We can then search through the
finite number of signed diagonal conjugations, and find the (S, T') matrices that satisfy
the conditions listed in Theorems 2.1 and 3.7. The results are given in Section C.2,
where (S, T') matrices are found from SL(Z) representations that have (dims; levels) =
(6;9), (6; 13), (6; 16), (6; 35), (6; 56), (6; 80). Those computer assisted calculations
are described in detail in the “Appendix”.

5. Classification of Modular Data of rank = 6: Non-admissible Types

In this section, we complete the classification of rank = 6 MDs by eliminating the
remaining types.

Theorem 5.1. There are no rank = 6 MTCs of types (3,1, 1,1),(2,2,2), (2,2, 1, 1),
2,1,1,1,D),5,D),0r(1,1,1,1, 1, 1).

Obviously, type Vec is the only MTC of type (1). However, no MTCs of rank n > 1
isoftype (1, ..., 1), as the associated SL,(Z) representations p = nx' for some integer
i by Corollary 3.21. In particular, p(s) has zeros in each row if n > 1.
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5.1. Nonexistence of type (3,1, 1, 1).
Proposition 5.2. There does not exist any modular tensor category of type (3,1,1,1).

Proof. Assume contrary. Let C be a modular tensor category of type (3, 1,1, 1) and p
an SL,(Z) representation of C. Then

P=p0D x1D x2D x3.

where pg is irreducible of dimension 3 and x;,i = 1, 2, 3, are 1-dimensional represen-
tations. By Lemma 3.20, spec(x;(t)) C spec(po(t)) fori = 1,2, 3. One may assume
po has a minimal t-spectrum. Then pp must have a prime power level. By “Appendix
A”, the level of pg can only be 3, 4, 5,7, 8 or 16. The t-spectrum of any 3-dimensional
irreducible representations of level 7 or 16 does not contain any 12-th root of unity.
Therefore, the level of pg can only be 3, 4, 5, or 8. It suffices to show that none of these
levels is possible.

If pg were of level 3 or 4, then ord(p(t)) = 3 or 4, by Lemma 3.20. This implies
ord(T) = 2,3 or 4 and hence C is integral by Theorem 3.14. By Proposition 3.16, C
must be of type (4,2), a contradiction. Therefore, pg can only be of level 5 or 8.

If pp were of level 5, then ord(p(t)) = 5 by Lemma 3.20. Hence, ord(7) = 5 which
is not possible by Proposition 3.22.

If the level of py were 8, then py = p3é,o or p3§,o as they are the 3-dimensional irre-

ducible representations of level 8 with a minimal t-spectrum. In either case, spec(pg(t))
has exactly one 12-th root of unity, which is 1, and pg is odd. Therefore, p = po @ 3x°
by Corollary 3.21. This implies Tr(p(s2)) = 0, which is impossible for any MD repre-
sentation. O

5.2. Nonexistence of types (2,2,2),(2,2,1,1) and (2,1,1,1,1). We will prove the following
theorem which leads to the nonexistence of modular tensor categories of these types.

Theorem 5.3. Let C a be modular tensor category with rank C > 2, and p an SLy(Z)
representation of C. If all the irreducible subrepresentations of p have dimensions < 2,
then ord(T) = 1, 2, 3, 4, or 6 and therefore C is integral.

Proof. 1f every irreducible subrepresentation of p is 1-dimensional, then C is of type
(1, ..., 1) which can only be trivial by the beginning remark of this section. In particular,
ord(7) = 1 and C is integral.

Now, we assume p admits a 2-dimensional irreducible subrepresentation pg. By
tensoring a 1-dimensional representation to p, we may assume the level of pg to be
2,3,5,or8.

Suppose po is of level 5. Then each irreducible subrepresentations p(, of p which is
not isomorphic to pg satisfies spec(py(t)) N spec(po(t)) = @ by “Appendix A”. This
implies p = £py, but this is impossible by Proposition 3.19. Therefore, pg cannot have
level 5.

Assume pg is of level 8. Note that the t-spectrum of any 2-dimensional level 8
irreducible representation consists of primitive 8-th roots of unity. By the t-spectra
criterion and “Appendix A”, all the irreducible subrepresentations of p are of dimension
2 and level 8. In particular, ord(7T") = pord(p(t)) = 4.

If pp is of level 2 or 3, it follows from the preceding discussion that all the 2-
dimensional irreducible subrepresentations of p are of level 2 or 3. By Lemma 3.20,
ord(p(t)) = 2,3 or 6 and so ord(T) = 2, 3 or 6.

The last assertion follows from Theorem 3.14. O
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Corollary 5.4. There is no modular tensor category of types (2,2,2), (2,2,1,1) or
2,1,1,1, 1.

Proof. Suppose there exists a modular tensor category C of any of these types. By
Theorem 5.3, C is integral, but this contradicts Proposition 3.16 which shows C is of
type (4, 2). O

5.3. Nonexistence of type (5, 1). Suppose that C is a modular tensor category of type
(5, 1), and p an SL,(Z) representation of C. Then C is not integral by Proposition 3.16,
and p = po @ p; where pg, p; are irreducible of dimension 5 and 1 respectively. By
tensoring a 1-dimensional representation of SL;(Z), one may assume pq is of prime
power level. By “Appendix A”, the level of py can only be 11 or 5.

In the former case the t-spectrum consists primitive 11-th roots of unity. Since pj (t)
is a 12 root of unity, the t-spectrum criteria shows this is impossible.

Now if ps has level 5 and py = Ps!- This implies p; = x°. Let g = x° @ Pst- Then

p(t) = diag(1, 1, ¢5,¢2, ¢3, ¢2), and

10 0 0 0 0
0-L 6 A6 A6 N
5 5 5 5 5
o6 =5 _1_ L L _ 1 35
5 10 57/ 55 10
pe=M1& | g6 1 1 3+/5 35 1 1
5 7357 5 10 10 N
o6 L _ 1 345 V5 1 _ L
5 55 10 10 575
o¥6 Y5 1 _ 1 _1_ 1 35
|V 5 10 55 T34 0

There exists a real orthogonal matrix U = diag(f, €1, €2, €3, &4) such that p(s) =
U,5(5)U—r and p(t) = p(t), where f € O2(R) and g; = £1.
The group Gal(Qs/Q) is generated by o defined by o (¢5) = {52, and

Ds(0) =1, & Jy where Jy = [8;5-jl1<i,j<4-

So 6 fixes 1 and 2. Since C is non-integral, the row corresponding to 1 must be one of
the last 4. Since p(5)"%¢ and 5 (s)"9°¢ are the same up to some signs, D = 3 il(\)/E which
has norm 25.

Observe that each row of §(s)"°¢ has the entries —3 L+ f Therefore, (—

—) / L = 1++/5 are dimensions of some objects up to a sign. However, their norms

are -4 Wthh is not a divisor of 25, a contradiction. So, we conclude that such a category
cannot exist.

6. Summary and Future Directions

We have developed tools for classifying modular data directly from representations
of SL»(Z), and have applied them to provide a classification of rank 6 modular data.
Sufficiently many of these tools have been implemented as computer algorithms to
yield a purely computational approach to the rank 6 classification. A purely “by hand"
approach to higher ranks is too involved for the currently theory, but the computational
approach can be implemented in higher ranks. It should be noted that in this work we



Reconstruction of Modular Data from SL;(Z) Representations

used the classification of weakly integral modular data [4] of rank up to 7 to simplify
the computer calculations. For higher ranks this will require further work.
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A. List of SL,(Z) Irreducible Representations of Prime-Power Levels

In this section, we list all the SL,(Z) symmetric irreducible representations of dimension
1-6, whose level (I = ord(p(t))) is a power of single prime number, which are generated
by the GAP program [27]. In the list, p(t) is presented in term of topological spins
(51, 82, -+ +) (5; = arg(pq (V)ii))-

Note that p(s) is symmetric and p(s);;’s are either all real or all imaginary. When

p(5)i;’s are all real, p(s) is presented as (011, P12, P13: P145*** 5 P22, P23, P24, ).
In this case, ,0(5)2 = id and the representation p is said to be even. When p(s);;’s are
all imaginary, p(s) is presented as i(—ip11, —ip12, —ip13, —ip14, - -+ ; —ip22, —ip23,
—ipo4, -+ ),0ras (sp) T (S P11 S P12, SI P13, SIE P14, L S 022, SH P23, Sh P24, ),
where s := ¢ — ¢ In this case, p(s)> = —id and the representation p is said

to be odd. In any case, the numbers inside the bracket (- --) are all real. We can tell a
representation to be even or odd by the absence or the presence of i or (s”)~!in front of
the bracket (- - -).

We note that two symmetric representations are equivalent up to a permutation of
indices, and a conjugation of signed diagonal matrix. To choose the ordering in indices,
we introduce arrays O; = [DenominatorOf(s;), s;, p;;]. The order of two arrays is
determined by first comparing the lengths of the two arrays. If the lengths are equal,
we then compare the first elements of the two arrays. If the first elements are equal, we
then compare the second elements of the two arrays, efc. To compare two cyclotomic
numbers, here we used the ordering of cyclotomic numbers provided by GAP computer
algebraic system. We order the indices to make O; < Oz < O3 ---. The conjugation
of signed diagonal matrix is chosen to make —p(s)1; < p(s)1; for j = 2,3,.... If
p(8)1; = 0, we will try to make —p(s)2; < p(5)2;, etc.

All the prime-power-level irreducible representations are labeled by index Z;Cm,
where d is the dimension and / is the level of the representation. The irreducible represen-
tations of a given d, I can be grouped into several orbits, generated by Galois conjugations
and tensoring of 1-dimensional representations that do not change the level /: the k in
dl‘f}(m labels those different orbits. If there is only 1 orbit for a given d, [, the index k will
be dropped.

The irreducible representation labeled by d)'}" is generated from the irreducible

representation labeled by dll’ko via the following Galois conjugations and tensoring of
1-dimensional representations

s m
27i1s

%sz%@%ﬂm



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

pdlal\m (5) = Oy (pdll,k()(ﬁ))e_zjﬁ% (Al)
where the Galois conjugation o, is in Gal(Q, ) with n be the least common multiple of
ord(p i 0(t)) and the conductor of p dl 0(s). The Galois conjugation o, is labeled by an
integer a which is given by

- (e271i/n) — 2mia/n (A.2)

Also m € Zy is such that ord(pdl o(t)62”‘12) = ord(pdl 0(t)). Due to this condition,

when [ is not d1v151ble by 2 and 3, m can only be 0. In thls case, we will drop m. Here
we choose dl % 9 to be the representation in the orbit with minimal [5q, 52, - - - ].

The numbers of distinct irreducible representations with prime-power level (PPL) in
each dimension are given by

dim: 1 2 3 4 5 6 7 8 9 10 | 11 12
# of irreps with PPL 6 | 11 33 18 3 70 3 10 4 7 3 176
#ofirreps | 12 | 54 | 136 | 180 | 36 | 720 | 36 | 456 | 476 | 222 | 36 | 3214

(A3)

In the above we also list the numbers of distinct irreducible representations, which
are tensor products of the irreducible representations with prime-power levels.

In the following tables, we list all irreducible representations with prime-power levels
for rank 2, 3, 4, 5. For rank 6, to save space, we only list all irreducible representations
with prime-power levels that have a form p 4o Other irreducible representations, with

prime-power levels and the same dimension, can be obtained from those listed ones via
Galois conjugations and tensoring 1-dimensional representations. In the Supplementary
Material section of the arXiv version of the article we list all distinct irreducible repre-
sentations of prime-power levels. In the tables ¢! := ¢ + ¢, ™ and s} := ¢ — ¢, ™"

a'" # p(®), p(s)
! 1 ©. (1)
Lo o
1 2 . =D
to ?

Iy 3 4. m
1?'4 4 . M
ng0 5 h. i
13 6 (. i1

" # o), p(s)

20 1 0 bR

2;° 2 0 sha vz -1
2,8 3 0.3 6hl-1L—v2
23! 4 D ehla vz -
220 s b8 D

! 6 (hhH shta -5
2 7 G dlals f -1
5 8 G P 4)
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616,2 12 (O, 7’ TG’W ﬁv 76)’ 1(0309 77 js 7’ Z’ O, 77_7a 71_77 07_7107 ja O, 7,0, 03_77

1,0 1 1 . 1 1 l.
6163 13 (O’jvﬁyﬁsﬁsﬁ) ©,0,} 3,737,705, —73,3,—7:0,—5,0,

1,0 1 1 1 .
6ioa 14 %16 160 160 10 0.0.3.3.5.%
1,0 3 11 19 27\ 1 1 1 1. 1 1 1 1 1.1 1.3 1.1 1.3.
635, 15 (0,§ 32032 320 320 10,0, 5. 5.7, 735 0, 5. =7, 3, =35 —7€16> —3C%6° 3€16° 3€16°
J RIS Sl ol S O S D Sl
i€ ]6’4 16> 4 16’ 4%16>  4%16° 4%16
1,0 7 15 23 31 1 1 1 1 1 1 1 1 1.1 13 1.1 1.3
63, 16 (0. PR 3)> 0,0,5, 5,5, 3:0, 3. =3, 3 =35 —3¢6> ~3CT6> 316> 3165
J RIS D Sl ol S DN D B
i€ ]6’4 16> 4 16’ 4%16°  4%16° 4%16

B. A List of All Candidate SL,(Z) Representations of MTCs

We will follow the strategy outlined in Sect. 3.4. We first try to obtain a list that includes
all SL»(Z) representations associated with MTCs. Certainly, one such list is the list of
all SL,(Z) representations of finite levels. But such a list is very inefficient since most
representations in the list are not associated with MTCs. So in this section we collect
the conditions that a representation coming from a MTC must satisfy, to obtain a shorter
list.

B.1. The conditions on Slo(Z) representations. Some of the conditions on SL>(Z)
representations are obtained from the necessary conditions on modular data Propositions
B.1 and 3.7, and others are discussed in the main text of this paper. Let us first translate
the conditions on the (S, 7)) matrices to condition on an MD representations p:

Proposition B.1. Given a modular data S, T of rank r, let py be any one of its 12 MD
representations. Then py has the following properties:

(1) po is an SLy(Z) representation of level ord(py (1)), and ord(T) | ord(py(t)) |
12 ord(T).
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(2) The conductor of the elements of py(s) divides ord(pg (t)).
(3) If py is a direct sum of two SLo(Z) representations

Pa = p Dy, (B.1)
then the eigenvalues of p(t) and p'(t) must overlap. This implies that if py, =
PBX1D- - D x¢ for some I-dimensional representations x1, . . ., X¢, then xi, - - xe

are the same I-dimensional representation.

(4) Suppose that py, = p ® Ly for an irreducible representation p with non-degenerate
o (t), and an 1-dimensional representation y. If £ # 2dim(p) — 1 or £ > 1, then
() x ()~ =id

(5) pq satisfies

Pa F NP (B.2)

for any integer n > 1 and any representation p such that p(t) is non-degenerate.
(6) If py ()2 = +id (i.e. if the modular data or MTC is self dual), pord(py (1)) is a
prime and satisfies pord(py (t)) = 1 mod 4, then the representation py cannot be a
direct sum of a d-dimensional irreducible SL,(Z) representation and two or more
1-dimensional SL,(7Z) representations withd = (p +1)/2.
(7) Let 3 < p < q be prime such that pq = 3 mod 4 and pord(p,(t)) = pq, then
the rank r # Pzﬂ + 1. Moreover, if p > 5, rank r > 254 4 1.

2
(8) The number of self dual objects is greater than 0. Thus
Tr(pa(s)®) # 0. (B.3)
Since Tr(pg (s)%) # 0, let us introduce
Tr(pa(5)*) >
= 5 Pal8)". (B4
| Tr(pa ()2

The above C is the charge conjugation operator of MTC, i.e. C is a permutation
matrix of order 2. In particular, Tr(C) is the number of self dual objects. Also, for

each eigenvalue ] of pa (1),
Trz(C) > 0, (B.5)

where Tt is the trace in the degenerate subspace of py(t) with eigenvalue 6.
(9) For any Galois conjugation o in Gal(Qora(p, (1)), there is a permutation of the
indices, i — & (i), and €, (i) € {1, —1}, such that

0 (pa(9)i,j) = €0 (D) pa(®)50).j = Pa(8)i(j)€o () (B.6)
2 (pa (Vi) = PaDs0i).50)> (B.7)

foralli, j.
(10) By [11, Theorem I1], D, (o) defined in (3.6) must be a signed permutation

(Dp, (0))i,j = €5 ()35 i), -
and satisfies
0 (pa(8)) = Dp, (0)pu(8) = pu(s)D) (o),
o> (pa (1)) = Dp, (0)pa(OD, (0) (B.8)
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(11) There exists a u such that py(s),, 7 0 and

Pa(8)ij  Pu(8)ij Pa(8)ij
Pa(®ui #0eR, L 222 € Oy, ——— € Qord(T),
Po(Suu Pa(8)uj Pa(8)ijr
r—1 _
N]ij _ Z P ()1 P (8)1] P (57 ik C N
=0 Pa(8)1u
Vi,j,k=0,1,...,r —1. (B.9)

(u corresponds the unit object of MTC).
(12) Let n € Ny. The n™* Frobenius-Schur indicator of the i-th simple object

r—1 r—1
. ik ik —n.—
vu (i) = E Nij pa(ﬁ)jug}'l[pot@)kue]l:]* = E N,'j pa(tnﬁ)jupa(t "s l)ku
J-k=0 J:k=0

_ i Pa ()1} Pu ()1t 03 (i

0u (5)1 Pa (tnﬁ)jupol (t_n5_l)ku
o (5)1u

k=0

—1 o _
_ N Palst" ) upa (5t iupa (s i (B.10)

=0 P (9)1u

is a cyclotomic integer whose conductor divides n and ord(T). The 1st Frobenius-
Schur indicator satisfies vi (i) = 8;,, while the 2nd Frobenius-Schur indicator v, (i)
satisfies v2(i) = +pq (s2)ii (see [3,24,33]).

(13) If we further assume the modular data or the MTC to be non-integral, then
pord(p (t)) = ord(T) ¢ {2, 3, 4, 6}. In particular, ord(p, (1)) ¢ {2, 3, 4, 6}.

In Sect.3.1 and “Appendix A”, we have explicitly constructed all irreducible uni-
tary representations of SL,(Z) (up to unitary equivalence). However, this only gives the
SLy(Z) representations in some arbitrary basis, not in the basis yielding MD represen-
tations (i.e. satisfying (3.7)). We can improve the situation by choosing a basis to make
p(t) diagonal and p(s) symmetric. Since we are going to use several types of bases, let
us define these choices:

Definition B.2. An unitary SL,(Z) representations p is called a general SL,(Z) matrix
representations if 5(t) is diagonal.” A general SL,(Z) matrix representation 4 is called
symmetric if p(s) is symmetric. An general SL;(Z) matrix representation p is called
irrep-sum if p(s), p(t) are matrix-direct sum of irreducible SL(Z) representations. An
SL,(Z) matrix representations p is called an SL,(Z) representation of modular data
S, T, if p is unitary equivalent to an MD representation of the modular data, i.e.,

o 1 KN o+ s(—C o
ps) = e_szB USUT, p@)y=UTU ™ r+12), (B.11)

for some unitary matrix U and o € Z17, where c is the central charge.8

7 We will consider only SL;(Z) matrix representations with diagonal /(%) in this paper.

8 Note that D? is always positive and D in (B.11) is the positive square root of D?, even for non-unitary
cases.
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Through our explicit construction, we observe that all irreducible unitary representa-
tions of SLy(Z) are unitarily equivalent to symmetric matrix representations of SLy(Z),
at least for dimension equal or less than 12.

We note that different choices of orthogonal basis give rise to different matrix repre-
sentations of SL»(Z). The modular data S, T is obtained from some particular choices
of the basis. Some properties on the MD representations of a modular data do not depend
on the choices of basis in the eigenspaces of p(t) (induced by the block-diagonal unitary
transformation U in (B.11) that leaves p(t) invariant). Those properties remain valid for
any general SL;(Z) representations p of the modular data. In the following, we collect
the basis-independent conditions on the SL; (Z) matrix representations of modular data.
Those conditions have been discussed in the main text.

Proposition B.3. Let p be a general SLy(Z) matrix representations of a modular data
or a MTC. Then p must satisfy the following conditions:

(1) If p is a direct sum of two SLy(Z) representations
PEp@p, (B.12)

then the diagonals entries of p(t) and p'(t) must overlap.

(2) Suppose that p = p @ Lx for an irreducible representation p with p(t) non-
degenerate, and a character x. If€ # 1 and £ # 2dim(p) — 1, then (p(s) x (5)"HZ =
id.

3) If p(s)® = +id, and pord(p(t)) = 1 mod 4 is a prime, then the representation p
cannot be a direct sum of a d-dimensional irreducible SL,(Z) representation and
two or more 1-dimensional SLy(Z) representations with d = (pord(p(t)) + 1)/2.

(4) p satisfies

5% np (B.13)

for any integer n > 1 and any representation p such that p(t) is non-degenerate.
(5) Let 3 < p < q be prime such that pg = 3 mod 4 and pord(p(t)) = pq, then the
rank r # pzﬂ + 1. Moreover, if p > 5, rank r > # + 1.
(6) If we further assume D? of the modular data or the MTC to be non-integral, then
pord(p(t)) = ord(T) ¢ {2, 3, 4, 6}. This implies that ord(p(t)) ¢ {2, 3, 4, 6}.

Some properties of an MD representation depend on the choice of basis. To make
use of those properties, we can construct some combinations of o(s)s that are invariant
under the block-diagonal unitary transformation U.

The eigenvalues of p(t) partition the indices of the basis vectors. To construct the
invariant combinations of p(s), for any eigenvalue 6 of p(t), let

I =i |5V = 0). (B.14)

Let I =I5, J = J;, K = K, for some eigenvalues 6,6', 0" of p(t). We see that the
following uniform polynomials of p(s) are invariant

Pi(p(e) =Trp(s)ir =Y (i,
iel

Pry(p(s)) =Trp(s)1s0(8) g1 = Z 0(5)i,j0(8)jis
iel,jeJ
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Pryk(p(s) =Trp(s)150(5) sk p(8) k1 = Z 0(5)i,j0(8)jkP(8)k,i- (B.15)
iel,jelJ,keK

Certainly we can construction many other invariant uniform polynomials in the similar
way. Using those invariant uniform polynomials, we have the following results

Proposition B.4. Let p be a general SLy(Z) representations of a modular data or a
MTC. Then following statements hold:

(1) p(s) satisfies

Tr(5(s)%) € Z \ {0}. (B.16)
Let
Tr(5(s)?) .
= 7 . B.17
TG0 17
Forall 1,
P;(C) > 0. (B.18)

(2) The conductor of Pogd(p(s)) divides ord(p(t)) for all the invariant uniform polyno-
mials Poaq with odd powers of p(s) (such as Py and Pyjk in (B.15)). The conductor
Of Peven (0 (5)) divides pord(p (t)) for all the invariant uniform polynomials Peyen with
even powers of p(s) (such as Pyy in (B.15)).

(3) For any Galois conjugation o € Gal(Qora(p(t))), there is a permutation on the set
(I}, I — o (I), such that

0 Prj(p(8)) = Prs(s)(p(8)) = Ps 1)y (0(8))

o?(01) = 651). (B.19)
forall I, J.
(4) For any invariant uniform polynomials P (such as those in (B.15))
o P(5(s) = P(05(s) = P(5()5©)FM A1) (B20)

where o € Gal(Qora(5(1))), and a, b are given by J(eiz”/ Ord(ﬁ(t))) = eaiZn/ord(p(1)
and ab = 1 mod ord(p(%)).

Instead of constructing invariants, there is another way to make use of the properties
of an MD representation that depend on the choices of basis. We can choose a more
special basis, so that the basis is closer to the basis that leads to the MD representation.
For example, we can choose a basis to make p(s) symmetric (i.e. to make p a symmetric
representation).

Now consider a symmetric SL,(Z) matrix representation p of a modular data or of
a MTC. We find that the restriction of the unitary U in (B.11) on the non-degenerate
subspace (see Theorem 3.4) must be diagonal with diagonal elements U;; € {1, —1}.
Therefore, on the non-degenerate subspace, p(s) of a symmetric representation differs
from p(s) of an MD representation only by a diagonal unitary transformation U with
diagonal elements £1, i.e., a signed diagonal matrix. In this case some properties of
MD representation apply to the blocks of the symmetric representation within the non-
degenerate subspace. This allows us to obtain



Reconstruction of Modular Data from SL;(Z) Representations

Proposition B.5. Let p be a symmetric SLo(Z) representations equivalent to an MD
representation. Let

Ingeg := {i | p(V)i,; is a non-degenerate eigenvalue}, (B.21)

Then there exists an orthogonal U such that U U " is a pMD representation, and the
following statements hold:

(1) The conductor of (Uﬁ(s)UT)i,j divides ord(p (1)) for all i, j. This implies that the
conductor of (p(5));,j divides ord(p (1)) for all i, j € Indeg.

(2) For any Galois conjugation o in Gal(Qqrq(5(1))), there is a permutation i — (i),
such that

o ((UpSU ;) = € DUEU sy, = UREU ;)€ ()
o (B®ii) = Ps).50)- (B.22)
foralli, j, where €5 (i) € {1, —1}. This implies that
o (p(8)ij) = p©®)sa),; or o(p()ij) =—P)sq),
o (p(8)ij) = P®)is() or a(p®)ij)=—P®)is() (B.23)

Sforalli, j € lwdeg. This also implies that D (o) defined in (3.6) is a signed permu-
tation matrix in the Ingeg block, i.e. (D;(0));,j for i, j € Ingeg are matrix elements
of a signed permutation matrix.

) Foralli, j,

o (UBEU ;) = (Up® B&)5M ()50 UT), ; (B.24)

where o € Gal(Qora(5(1y)), and a, b are given by o (e!27/r(P(V)) = eaiZr/ord(p()
and ab = 1 mod ord(p(t)). This implies that

o ((5(s))i ) = (O HEOFOAEFMT), . (B.25)
foralli, j € Iydeg.

(4) Both T and p (%) are diagonal, and without loss of generality, we may assume p(t) is
a scalar multiple of T. In this case U in (B.11) is a block diagonal matrix preserving
the eigenspaces of p(1). Let Iyonzero = {i} be a set of indices such that the i row of
Up(s)U T contains no zeros for some othorgonal U satisfying Up()U T = p(4). The
index for the unit object of MTC must be in Inonzero- ThuS Inonzero must be nonempty:

Tnonzero 5& . (B26)

(5) Let 1 be a set of indices for an eigenspace Ej; of p(t)

Iz =i | 5V =0}, (B.27)
Then there exists a I such that

I5 N Thonzero # @ and TrE(j C >0, (B.28)

where C is given in (B.17).



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

(6) If we further assume the modular data to be non-integral, then there exists a I;
that has a non-empty overlap with Inonzero, such that Dj(o) I; # xid for some
o € Gal(Qqra(5(1))/Q). Here D;(0) is defined in (3.6):

D;(0) = O p(e)pM° 5 ()5 5 (9) (B.29)

wherea, b are given by o (e271/ ord(2(1)y — ea2mi/ord(6() yudab =1 mod ord(5(4)).
Also Dj (0)15 is the block of Dj(o) with indices in 1, i.e. the matrix elements of
Dﬁ(a)lé are given by (D5(0));i,j, i, J € 1.

Proposition B.5(6) is a consequence of Theorem 3.13(3). Using GAP System for
Computational Discrete Algebra, we obtain a list of symmetric irrep-sum SL (Z) matrix
representations that satisfy the conditions in Propositions B.3, B.4, and B.5. The list is
given below for rank » = 6 case (see Appendix section B.2).

Some of those symmetric irrep-sum SL,(Z) matrix representations are representa-
tions of modular data, while others are not. However, the list includes all the symmetric
irrep-sum SL (Z) matrix representations of modular data or MTC’s which are not weakly
integral (and some that are weakly integral).

B.2. List of symmetric irrep-sum representations. The following is a list the all rank-6
symmetric irrep-sum representations that satisfy the conditions in Propositions B.3, B .4,
and B.5. The list contains all the rank-6 symmetric irrep-sum representations that are
unitarily equivalent to rank-6 MD representations, plus some extra ones.

For each symmetric irrep-sum representation, we may generate an orbit by orthogonal
transformations

pisum(8) = Upisam (&)U, pisam () > Upium U T, (B.30)
tensoring 1-dimensional SL,(Z) representations xq, o = 1,...,12:
Pisum (8) = X (8) Pisum(8),  Pisum(H) = Xo (V) Pisum (D), (B.31)

and applying Galois conjugations o in Gal(Qord(pium(t))):

Pisum(8) = 0 (Pisum (), Pisum(t) = 0 (Pisum (V). (B.32)

We will call such an orbit a GT orbit. The following list includes only one representative
for each GT orbit. The list can also be regarded as a list GT orbits.

In the list, a representation pjsum is expressed as the direct sum of irreducible rep-
resentations pisum = p1 D p2 D ---, where p,(t) is presented as (5, 52, ---) with
5;i = arg(pq(V)ii), and pg (5) is presented as (011, P12, P13, P14, =+ 5 P22, P23, P24, " ).
The direct sum is also given via an index form, for example, irreps = 2§’O®2é‘0 &) Zé‘o.
It means that the representation pisum is a direct sum of two irreducible representations
2;’0®2é’0 and 210, Here 2%’0, 2;’0 are indices of SL,(Z) irreducible representations

5
with prime-power levels. Those prime-power-level SL, (Z) irreducible representation are

listed in “Appendix A”, where the meaning of the indices is explained further. 25’0@)2;’0
is the irreducible representation obtained by the tensor product of 2;’0 and 2;’0.

The dimensions of the representations pjsum are given by dims = (ry, r2, - - - ), where
r, is the dimension of the irreducible representation p,, satisfying r; > rp > ---. The
levels of the representations p, are given by levels = (I1, I, - - - ), where [, = ord(p, (1)).
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We will use (dims;levels) = (rq, r2, - - - ; 11, [, - - -) to label those representations. Now
we can explain how the representative of a GT orbit is chosen. The representative for a
GT orbit is chosen to be the one with minimal [[ry, 2, - - - |, ord (0isum (), [I1, I2, - - - 11.
Here the order of two lists is determined by first compare the first elements of the two
lists. If the first elements are equal, we then compare the second elements, efc. The order
of cyclotomic numbers are given by GAP.
To describe the entries of p,(s), we also introduced the following notations:
Crrln — e27tim /n

i T L L )
EMk = (g — M (K, — 5, g =gl (B.33)

We find that, for rank 6, there are only 25 GT orbits. The GT orbits can be divided
into two classes, resolved and unresolved, whose definition will to given in the next
section. Below each GT orbit, we indicate whether it is resolved or unresolved. Among
25 GT orbits, 17 are resolved and 8 are unresolved.

For the 17 resolved GT orbits, it is easy to compute all the corresponding pairs of
(S, T') matrices that satisfied the conditions in Proposition B.1, which will be done in
next section. Below each resolved GT orbit, we indicate the number valid (S, T') pairs
obtain with such a computation. Those valid (S, T') pairs will be listed in “Appendix
C.2”. The 8 unresolved GT orbits are difficult to handle by computer, which are discussed
in the main text. (The main text also discussed most of the resolved cases.)

1. (dims;levels) =(3,2, 15 5,5, 1), irreps = 31 @ 2L @ 11, pord(pisum(t)) = 5,
pisam(® =0, 2. Hed, H e,
pisam(® = (/3. /2. f (=305 35,5 @ i(—dechy Lk Sy
@ 1)
Resolved. Number of valid (S, T') pairs = 0.

2. (dimsilevels) =(3, 2. 1: 8,8, 1, irreps = 35 @ 2¢° @ 11, pord(pisum (1)) = 8,
Pisum (t) = (0, 3> 8)@(8 8)@(0)
piam(® =0, /3. /3 =4, & )eal( Ja/E hew
Resolved. Number of valid (S, T) pairs =

3. (dims;levels) (3 2,1;5,2, 1), 1rreps—3; 6922 &) ll,pord(,oisum(t)) =10,
Pisum (t) = (0’ 3> 5) ® (0, 2) ® (0),

pram(®) = ([1. =2 - 3 - 38, 58 s o (- - L he )

Unresolved.
4. (dims:levels) =(3,2, 1; 5,2, 2), irreps=3; @2, @ 15°, pord(pisum(t)) = 10,

Pisum(t) = (0, £, ) @ (0, 1) & (3),

pram(®) = (1, 2~ 3 -5 58 B g (L - [E he -

Unresolved.
5. (dims;levels) (3 2,1:4,3,2), 1rreps— 3,7 @20 @157, pord(pisum (1) = 12,

Pisum (t) = (0, 2 4) ® (0, ';) ® ( ),
pram(®) =i~ 1. /1: 2,\@, 0)@1( JE/E heen
Resolved. Number of valid (S, T) pairs =
6. (dims;levels) (3 2,1:4,3,4), 1rreps—3i3 @2 ® 157, pord(pisum () = 12,

Pisum () = (Oa 2 4) & (0, 3) D ( )s




10.

11.

12.

13.

14.

15.
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pm@ =i—1. 4. /5 4 S oei- /L2 [Hei

Unresolved.

. (dims;levels) (3 2,1;8,3,1),irreps = 3%’0 @ 2;’0 @ 11, pord(pisum (1)) = 24,

pisam() = (0, §, 3) @ (0, 3)@(0)

pram(®) =0, /3. /3 =4 1 2>ea1( JaE U heo

Resolved. Number of valid (S, T) pairs =

. (dims;levels) (3 2,1:8,3,3), 1rreps=3§° 200 ® 130, pord(pisum (1) = 24,

Pisum (t) = (07 3 8) ® (O, 3) EB ( ),

pisum(®) =100, /. /5 —1. L “Dei- JVE he

Resolved. Number of valid (S, T') pairs =

. (dims; levels) (3 3;5,3), 1rreps—3; 6933 ,pord(,oisum(t)) =15,

Pisum (t) = (0, 5 5)@(0, 3> 3)

Pisum(s) = (f, R e L OIS T
Resolved. Number of valid (S, T') pairs = 0.

(dims;levels) =(3, 3; 16, 16), irreps = 310 @ 318, pord(pisum () = 16,

Pisum(D) = (§. 15, 15) ® (3. 15+ 15)-

praam(® =0, /3. /5 —4 5 —heio, /L5 L -k D

Unresolved.

(dims;levels) =(3, 3; 5, 4), irreps=3§ @ 357, pord(pisum (1)) = 20,

pisam(t) = (0, £, H @ (0, 1. 3),

Pisum (8) =(\/;7 _\/g, - %; _Sﬁb/g, 2 105; 5+[) @ (0, \/>, \/7’ _%’ %, —%

Resolved. Number of valid (S, T) pairs = 2.
(dimsilevels) =(4, 1,159, 1, 1), irreps = 443 @ 1] @ 1}, pord(pisum (1) = 9,
pisum() = (0, 5. 5. 5) & (0) B (0),

pram(® = 0./}~ /=i 4 4 e
Unresolved.
(dims;levels) =(4, 2; 5, 5), irreps — 4%»1 fay 21’ POTd(,Oisum(t)) =5,

plsum(t)—(é g g 451)@(1 4)

Plsluml(5)—;(séczol+écgoﬁc%sl*éc?s’ 1%"‘%0%53 écis’éciogécgol; I_%Céqz%cgo’
—5C30 = 3630 3~ 5C15 + 5C755 3C3 — 5C0» 515+ 5C155 5050 — 563 D
i(—%cgo’ %Céo; %030)

Unresolved.

(dims;levels) =(4,2; 5, 5; a), irreps = 4} , & 21, pord(pisum(t)) = 5,

plﬂum(t)—(5 % g g)@(S é)

pan(® = (5 S -3 L - L L eE oL D e
H 1.3 1 1. 1.3

1(_75%0’ /5200 ﬁczo)

Resolved. Number of valid (S, T') pairs = 0.

(dimslevels) =(4, 2; 10, 5), irreps = 25 ©2,"" @ 24, pord(pisum () = 10,

Pisum(t) = (%» %‘a %1 %) @ (év %)7

¢, 33t @ (D@ (1)

wl-—
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13 1 1 3 l 3 3 1.3 3 3 3 1
: (L3 1.3 13 3. _ 1 3 __ 3 3 1.
pllsum(ﬁ) (2ﬁC20’ 2[6.20’ Wil 20, 2 /*020, 2756200 7559200 575200
3 1 .1 1 1.3
75620 T3 5500 szZO) il fczo’ 200 7500

Unresolved.
16. (dims;levels) (4 2 15, 5), irreps—z;@)z;(’@zl,pord(pisum(t)) = 15,

Pisum (t) = (5 5s 15’ 15)@(5 5)
L1 T2 91 2 3,13 2.3 2 1. 13
Pisum (8) = (— fczo’ 020’ mczo’_ﬁczo’ﬁczo’ﬁczo’ﬁczo’_ﬁc2o’
11 L1, 1.3
~ 75500 fczo) @1( fczo’ 56205 5620
Resolved. Number of valid (S, T') pairs = 1.
17. (dims;levels) (4 2:7,3), irreps_4; @ 25°, pord(pisum (1) = 21,

Pisum (1) = (07 7> 7 7) ® (0, 3)
Pisum(8) = 1(— \/>: f, \/>, [, C7, —\%C%, ﬁs%; ﬁsgg, —\/L?C%;
S ILUGNENEND

Resolved. Number of valid (S, T') pairs = 1.
18. (dims;levels) (5 1; 5 1), irreps = 5 @ 1{, pord(pisum (1)) = 5,

pisum(®) = 0, £, 2, 2, H) @ (0),

/6 /6 /6 /6. 3=+5 1+v5 —1 3 3 3
,Oisum(5) =(_§’ 25> 25> 25> 25 10fa - +{ +f7 -:B/»’ 3{7 10f’
—l+f 3445 1445, 3—«/5) & (1)

5 ° 10

b 1 0 b
Unresolved

19. (dims;levels) =(6; 9), irreps = 64’3, pord(pisum (1)) =9,
Plsum(t)—(g % % g g g)

211 1 4.1 1 4 1 1 1.1 1.2 1 1.1.1 1 4

pisum (8) = (3, 63, 3> — 3¢5, 35 5€55 55 5C85 — 5> 560 33 3> —5€55 3 3¢5 3> — 365
1.1 1.2.1
_55_ 697 )

Resolved Number of valid (S, T) pairs = 1.
20. (dims;levels) (6 13), 1rreps = 613, pord(pisum(t)) = 13,

4
Pisum (t) = (ﬁ, ﬁ, 13 ﬁ, ﬁ, ﬁ)

5 1 7 1.3 111 L .9 N 111

i 5 ——7=C5, 7=Cs5y, 7=C59, 7= = —7=C505 T 705
Pisum (5) = i(— / 52° /13752 /13 °52° /13 2 /13 C52s /1352 /1352
L.l 1.5 L3 Lo C7 1 _ 1 1 Cll __L 7

/13 52° /13 °52° /13 52’ /13 52 /1352’ /1 /13 /13 52° /13 52°

L1 3. 1C11_lc7 15)
3% TS sy fsz’fs
Resolved. Number of valid (S, T') pairs = 1.

21. (dims;levels) (6 15) irreps = 3] 0®21, pord(pisum(t)) = 15,
Pisum (t) = (3 3> E’ B’ ﬁ’ E)

3
Plsum(s)—l(%/“cms 3fc20’ 3[620’ 3[620’ 3[620’ 3[C20’ 3f620’_3fczo’
2 .3 2 .1 2 .. 1.3 2.3 1.l cl o3
3f 20’ 3[ 20’ 3f 20’ 3[ 20° 3[ 20° 3f 20° 3[ 20’ 3[ 20°
cl el L¢3 2 3. 1.3 )
3[ 20 3f 20° 3[ 20° 3f 20’ 3f 20
Resolved. Number of valid (S, T') pairs = 0.

22. (dims;levels) —(6' 16) ineps=6}>6?l,pord(pisum(t)) = 16,
,Olsum(t) (0’ Z9 Ev Ev B’ E)

plsum(s) _1(0 O z l %. 09 %, _%9 %’ _%; _\/I, _\/Ia \/Is \/I; \/I’ \/I,
_f \f 1
8 ’ 8

hw
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Resolved. Number of valid (S, T') pairs = 4.
23. (dims;levels) —(6' 35), irreps = 33 ®22, pord(pisum (1)) = 35,
9 11 16 29

pisum (1) = (55, % 3503535 35);

Pisam (8) = i(=35¢140 = 35¢140 = TCT40 + 35¢1a0 + 3150?40 + 35cio + $5¢ido —
35014710’“3956120 345Cﬂo %Cﬁo’ _%043‘5*' f‘és’ f C3s \/l_:TSCgS’ \/_3*5035
LA L g0 L 13 1 47 20 13 1S5 37
7355357 35635 T /356350 T a5 140 fl 140 35€140~ 35140~ 7€140 — 35140
$€740— 35110~ 35¢130 — 35C1a0* 35C1a0* F5CTho — 7¢Ti0’ ﬁsﬂo_%sﬂo’
%0140 +35C740 + 76740 — 35¢140 — %0?401 35‘1’30 5Ci30 + 35"};710 3fci?10 +
35€140 + 7€130° — 35635 T 55635 T340 T 35C140 + 7¢T40 + 35C140 — 510 *
F5¢ldo + 75¢130 + 35¢140 — 35C1i0 — 5CTho + 7¢Tio- J%Cgs + \/%Cgs + \/13*50;2 +
\/;3*5‘%;; %C§5+&C§5+¢%Cég+¢%c§é’ —35¢la0+ 3540+ 7040 * 35140 —
5€Ta0 * 35¢1d0 + 35¢130 + 35¢1do — 35C1d0 — 35¢Tho + 7<Tio- % J%céé
_ﬁsﬂo \/Ll S1do’ }1 +ﬁsllo,—%44o 35C140 — 7€ f4o+350Z40+

19 4 13, 215 317 9 19 _ 4 21 _ 223 _1 4 111,
35€140 T 35C140 + 35€140 — 35C140 T 35€140 — 35CT40 — 7CTa00 35635 T fc35’

2 3 14 110 11 11 1 6. 4.1 33
T35 T 35935 T As€3s T 3535 T 35035 T /359350 35C€140 T 35C40 T
1.5 17 19 4 13 215 , 317 _ 9 19 , 4 21 ,223
7€140 ~ 35€140 ~ 35€140 ~ 35€140 — 35€130 T 35€140 ~ 35€140 + 35CT40 T 7CTa0)
Resolved. Number of valid (S, T') pa1rs =1.

24. (dimsilevels) =(6: 56), irreps = 32y ", pord(pisum (1)) = 28,
lois‘um(t)=(L 9 11 25 43 51)
‘ 56° 56° 56 36 36° 56

. (L1 1 3 _ 5 1.5 1 .1 1 3.__1 .5 _1 .1
Pisum (8) =( 712 €28 mc2g’ /*628’ 12628 1128 11 ¢28° 712628 71128
|13 5. 13 13 1S 1 1. 13 _ 1.5
13628 7138 T 713 _Jﬁ 28’_ﬂ 28> 712628~ /1328 71328 T /13 €28

Ll Ll L3 c3e)

/12528 T /1228 T /a 28’f 28

Resolved. Number of valid (S, T) pairs = 2.

25. (dims;levels) =(6; 80), irreps = 37 ®22, pord(pisum (1)) = 80,

isam (D) = (o, 3 27 43 67,

Pisum 40" %0 80 80 8?’8? , 1.3 1 .1 1.1 1 3 1.1

pisum(s) =1i(0, 0, \/*cz(), mczo, ﬁc20’ «/_170620; 0, \/_17002()’ _«/_170620’ \/_170020’

- tB3. a3 1 .1 1. 3. 1.1 1 3 _ 1 .1.
JF) ?0’ 12ﬁ3 20° : 2{5 20° 25 20° 25 20° 25 20° 25 20° 2.5 20°

~573620° 556200 35620

Resolved. Number of valid (S, T') pairs = 2.

C. A List of Candidate Modular Data from Resolved SL;(Z) Representations

C.1. The notion of resolved SL,(Z) matrix representations. In the above, we have cho-
sen a special basis in the eigenspaces of an SL,(Z) matrix representation p to make p(s)
symmetric. But such a special basis is still not special enough to make p to be an MD
representation p.

We can choose a more special basis to make /3(52) a signed permutation matrix, and
5 (s) symmetric. We know that, for an MD representation p, p(s2) is a signed permutation
matrix. So the new special basis makes p closer to the MD representation p.

We can choose an even more special basis in the eigenspaces of p(t) to make p even
closer to the MD representation p, by using the matrix D;(o) in (B.29). For an MD
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representation p, D, (o) is suppose to be signed permutations. So we will try to choose
a basis to transform each Dj;(o) into signed permutations. We like to point out that,
since both p and p are symmetric SL;(Z) matrix representations that are related by an
unitary transformation, according to Theorem 3.4, they can be related by an orthogonal
transformation.

Let us consider a simple case to demonstrate our approach. If p(t) is non-degenerate,
then D;(o) will automatically be a signed permutation matrix. Using signed diagonal
matrices Vyq, we can transform p to many other symmetric representations, p’s:

p = VsapVsds (C.DH

where D, (o) remains a signed permutation. In fact the signed diagonal matrices Vyq are
the most general orthogonal matrices that fix 5(t) and transform all D;(o)’s into (po-
tentially different) signed permutations. Thus the resulting symmetric representations,
p’s, include all the symmetric representations where D, (c)’s are signed permutations.
From those p’s, we can then construct many pairs of S, 7" matrices via (3.7), and check
which one satisfies the conditions in Proposition B.1. Those S, T matrices that satisfy
those conditions may very likely correspond to modular data (or MTC’s). If none of the
S, T matrices satisfy the conditions, then the representation p will not be an SL,(Z)
representation of any modular data.

When some eigenspaces of 0 (t) are more than 1-dimensional, then the D ; (o) may not
be signed permutations. There may be infinite many orthogonal matrices that can trans-
form D (o) into signed permutations, which make the subsequent selection difficult. In
the following, we will generalize the above notion of non-degenerate representation, to
include some cases where some eigenspaces of p(t) are 2-dimensional or more. We will
show that, for those special representations, there is only a finite number of orthogonal
matrices that can transform D (o) into signed permutations.

To carry through this program, let us concentrate on an eigenspace Ej; of p(t) corre-

sponding to an eigenvalue 6, and let
Q;(6) = {o € GalQor(sry) | 07(9) =6} (C2)

Then ,;(5) is a subgroup of Gal(Qorq(5(1)))- By definition, D;(c) stabilizes the 0-
eigenspace Ej; for o € Q;,(é), and commute with each other. In particular, Dj|g,
(restricted on Ej) defines a representation of €25 (5) on Ej.

We can diagonalize {D;(0)| E; | o € Q,;(é)} simultaneously within E;. The de-

generacy of the f-eigenspace Ej is fully resolved by these Dj;(0)’s, if the common
eigenspace of these D; (U)lEé’s are all 1-dimensional. In terms of the characters of

Q5 (5 ), the degeneracy of E; can be fully resolved if each irreducible character of €25 (é )
has multiplicity at most 1 in the character decomposition of Ej; as a representation of

Q5 (6). Now we can introduce the notion of resolved representation:

Definition C.1. A general SL,(Z) matrix representation p is called resolved if the de-
generacy of each of eigenspace of 4(t) is fully resolved by Dj;(0), 0 € Q5(6), as
described above.

Given a symmetric irrep-sum matrix representation (denoted as pjsum), We can use
unitary matrices, U’s, to transform it into a symmetric representation p via

p(t) = Upisum(OUT,  p(5) = Upisum(5)U . (C.3)
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where D, (0)| Ej» forallo € Q ﬁ(é), are signed permutations within the 0 -eigenspace. If
Pisum 18 resolved, then there is only a finite number of such representations. We then can
check which of those representations satisfy Proposition B.1. This is how we compute
the potential modular data S, T"’s from resolved pisum’s.

To show aresolved pisum 1S unitarily equivalent to only a finite number representations
whose D, (0)| E; are signed permutations, we note that both p and pjsum are symmetric,
and according to Theorem 3.4, p and pjsum are in fact orthogonally equivalent, i.e. the
above U can be chosen to satisfy U = U* and UU T = id. If the number of most
general orthogonal matrices U that transform pjgum to p is finite, then the number of
representations p are finite.

Since the orthogonal U acts within the eigenspace of pisum (t), to show the number of
possible U’s are finite, we can concentrate on a single G-eigenspace E 5> and denote o €

Q5 (é) as ojny- In the following, we will consider the cases where Ej is 1-dimensional,
2-dimensional, etc.. For each case, we will show the number of possible U’s are finite,
and give the possible choices of U’s.

C.1.1. Within an 1-dimensional eigenspace of pisum(t) D piyum (Giny) | E; = +1 are al-
ready signed permutations. In this case the orthogonal matrix U (within the 1-dimensional
eigenspace) has only two choices

U=+, (C.4)

which is finite.

C.1.2. Within a 2-dimensional eigenspace of pisym(t) In this case, the matrix groups
MG generated by 2-by-2 matrices, Dy, (0inv)|£;, can have several different forms,
for those passing representations. By examine the computer results, we find that, for
unresolved cases, matrix groups M G can be

MG = { <(1) (1)> } for dim(pjsum) = 5;
MG =1 <(1) ?) - (g) (1’) | for dim(pigum) > 6. (C.5)
For resolved cases, we have
MG = { ((1) (1)) , ((1) _01) } for dim(pisum) = 4;
wo= {5 (b Db 23 Y wwamnr o

(C.6)

In those two cases,

1 /1 1 I (-1 1 1 0
U=ﬁ<1 _1> or U:E<1 1) or U:(O 1) (C.7)

will transform all D (0inv)| ;s into signed permutations. In general we have

Pisum
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Theorem C.2. Let

wer- (3 - %)
T S R N TR

The most general orthogonal matrices that transform all matrices in MG, or M G4 into
signed permutations must have one of the following forms

_ PVa (1 1 PV (-1 1 3 10
U_7<1 _1),OVU—W<] 1>,OFU—Png<O ]> (C9)

where Vg are signed diagonal matrices, and P are permutation matrices. The number
of the orthogonal transformations U is finite.

Proof of Theorem C.2. We only needs to consider the first matrix group M G, where the
matrix group is isomorphic to the Z, group. There are only four matrix groups formed
by 2-dimensional signed permutations matrices, that are isomorphic Z,. The four matrix
groups are generated by the following four generators respectively:

10 “1 0\ (0 1 0 -1
<0 —1)’ (o 1)’ (1 o>’ (-1 o>' (C.10)

An orthogonal transformation U that transforms M G to one of the above matrix groups
must have a from U = V Uy, where V transforms M G5 into itself, and Uy is a fixed
orthogonal transformation that transforms M G, to one of the above matrix groups. We
can choose Uy to have the following form

vo= L (1! cUp=— (" N orvo=r(L 0 (C.11)
o= npl ) reE Al 1) T = 0 1) '

To keep M G unchanged V must satisfy

1 0 1 0
o(b 0)=(b o) )

We find that V must be diagonal. Thus V, as an orthogonal matrix, must be signed
diagonal. This gives us the result (C.9). O

If dim(pisum) = 8, itis possible that the matrix group of D
by the following non-diagonal matrix

0 -1
+ <1 0 ) (C.13)
This is because the direct sum decomposition of pjg,m contains a dimension-6 irreducible

representation 6(1)’l in “Appendix A”, whose p(t) has a 2-dimensional eigenspace. The

. 0,1 . . >
representation 6, can give rise to such form of D .. (oinv)|E;’s.

The eigenvalues of the matrices are (i, —i). The most general orthogonal matrices
that transform all D (Oiny) | E; ’s into signed permutations must have a form

Pisum

(0iny)| ;s is generated

Pisum

U=PVy ((1) (1)) . (C.14)
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If dim(pjsum) = 8, it is also possible that D
group:

(0inv) | ;s form the following matrix

Pisum

(C.15)

l—= w0

(1 0) -3 /i -3
o\ )\ -
4 2 4

This is because the direct sum decomposition of pjsum contains a dimension-8 irreducible
representation whose p (t) has a 2-dimensional eigenspace, which gives rise to the such
form of D, (inv)| ;s

The eigenvalues of the later two matrices are 4(e'>"/3, e=127/3). A permutation of
two elements can only have orders 1 or 2. The corresponding 2 x 2 signed permutation
matrix can only have eigenvalues 1, —1 or %i. Any other eigenvalue is not possible.
Thus, there is no orthogonal matrix that can transform the above two matrices into
signed permutation. Such pjgn is not a representation of any modular data.

C.1.3. Within a 3-dimensional eigenspace of pisum (t) for rank < 6 There is only one
such case for rank < 6. The 3 x 3 matrix group M G generated by D, .. (Giny)] Eé’s is
given by

1 0 0\ /(=1 0 0\ /1 0 0\ /(=1 0 0
MG:{010,0—10,0—10,010},
00 1 o o 1) \o o 1 0 0 1
for dim(pjsum) = 6. (C.16)

which is resolved. To find the most general orthogonal matrices that transform the above
3 x 3 matrices in M G into signed permutation matrices, we first show

Theorem C.3. If P is a permutation matrix with P*> = id, then P is a direct sum of
2 x 2 and 1 x 1 matrices. If Psgn is a signed permutation matrix with Pszgn = id, then
Py is a direct sum of 2 x 2 and 1 x 1 matrices.

Proof of Theorem C.3. If P is a permutation matrix with P2 = id, then P must be a
pair-wise permutation, and thus P is a direct sum of 2 x 2 and 1 x 1 matrices. The
reduction from signed permutation matrix to permutation matrix by ignoring the signs
is homomorphism of the matrix product. If Psg, is a signed permutation matrix with
Pszgn = id, then its reduction gives rise to a permutation matrix P with P? = id. Since
P 1s a direct sum of 2 x 2 and 1 x 1 matrices, Psgy is also a direct sum of 2 x 2 and
1 x 1 matrices. O

Using the above result, similarly, we can show that the most general orthogonal
matrices that transform all D (Oinv)| E; ’s into signed permutations must have a form

Pisum

pry (1 10 pry (-1 10
U = 1 =1 0],or U= I 1 0},
v2lo o 1 V2 \lo o 1
10 1 1 0 1
PV, PV,
o U=—2210 1 o), ocv="210 1 of,
V2 \1 0 -1 V2 N1 01
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prg (1 0 0 pvg [l 0 0O
or U= 0 1 1 ],o0r U= 0o -1 1],
V2 \o 1 -1 V2 lo 1 1
1 00
PV,
o U=—"22[0 1 0 (C.17)
V2 \o 0 1

where Vg are signed diagonal matrices, and P are permutation matrices. We note that
the non-trivial part of U is a 2 x 2 block for index (1, 2), (1, 3), and (2, 3). The 2 x 2
block has three possibilities given in (C.9). Such U’s transform the diagonal matrices in
MG into a direct sum of a 2 x 2 and an 1 x 1 matrices. This is a general pattern that
apply for all resolved diagonal matrix group MG generated by D .., (Oinv) | E;-

The above are all the possibilities that can appear in resolved dimension-6 representa-
tions. In the following, we will consider more possibilities, that appear only for resolved
representations with dimension larger than 6.

C.2. List of S, T matrices from resolved representations. We have constructed a list of
irrep-sum symmetric representations (see “Appendix B.2”) that include all the repre-
sentations of modular data. Among them, we can select a sublist of resolved symmetric
representations, denoted as {pres}. We then use the orthogonal matrix U constructed
above (see (C.4), (C.9) and (C.17)) to transform the resolved symmetric representations
Pres 1O representations, p’s:

p(t) = Upres(WU ", p(5) = Upres(s)U " (C.18)

such that the corresponding D, (o) are either zero or signed permutation in each eigenspace
of p(t). Since the number of such representations is finite, we can examine all resulting
representations one by one.

Foreach U, the resulting representation p should satisfy Proposition B.1. In particular,
we examine all possible choices of index u that may correspond to the unit object, to see if
p satisfy the condition (B.9). If no choices of u can satisfy (B.9), then the representations
p is rejected. If some u’s satisfy (B.9), then for each u, we can construct S, T matrices
via (3.7). We then check if the resulting S, 7 matrices satisfy the conditions of modular
data summarized in Proposition B.1

In the following, we list all the pairs of S, 7" matrices that satisfy the conditions in
Proposition B.1, and come from the dimension-6 resolved SL,(Z) representations listed
in “Appendix B.2”. The list includes all the modular data with D> ¢ Z from resolved
SLy(Z) representations (and the list also includes some modular data with D? € 7).
In the list, the S, T matrices are grouped into orbits generated by Galois conjugations,
which are called Galois orbits. To save space, we only list one representative for each
orbit. If possible, the representative is chosen to have all-positive quantum dimensions.

Eachpairof S, T matricesisindexed by (r1, r2, - -+ ; 11, 2, - - -)Z,suchas 3,3;5, 4)%.
The first part of index, (3, 3; 5, 4) = (dims;levels), is the index of GT orbit listed in
“Appendix B.2”, indicating that the S, 7 matrices arise from a particular SL,(Z) repre-
sentation in the GT orbit. The subscript k labels the different Galois orbits. The a-index
labels the Galois conjugation o, : 27/ od(T) _ eai2r/ord(T) Thoge g-indexed S, T
matrices form a Galois orbit.

Some Galois orbits contain no unitary S, 7 matrices, but some of those S, 7" matrices
are pseudo-unitary, i.e. those S, T matrices can be obtained from unitary S, 7 matrices
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via a change of spherical structure. In this case those Galois orbits can be obtained from
Galois orbits that contain Galois orbits. To save space further, we also drop those Galois
orbits that contain pseudo-unitary S, 7 matrices. There is only one orbit which contains
no unitary and no pseudo-unitary S, 7 matrices. The numbering in the following list
includes gaps as we maintain the numbering from the arXiv version for consistency.

In the list, T is presented in terms of topological spin (s1, 52, - - - ) with s; = arg(7;;).
S is presented as (Soo, So1, So02, S03, -+ 5 Sti1, S12, S13, -+ - ). di = Sp; are the quantum
dimensions.

Our calculation actually produces 174 pairs of §, T matrices, which are given in
Supplementary Material Section in the arXiv version. All those 174 pairs of S, T ma-
trices can be obtained from the pairs of S, 7 matrices in the following list, via Galois
conjugations and change of the spherical structures.

1. ind = (3,3;5,4)!: d; = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)
DZ—ZOO 20
=(0,0, 3.3, 3.3,
S—(1,1,2,2,«/_,f, 1,2,2, =3, =v/3; =1 —=+/5,-1++/5,0,0; —1 —+/5,
0; —/5,+/5; —/5)
2. ind=(3,3;5,4)1: d; =(1.0,1.0, 2.0, 2.0, 2.236, 2.236)
1)2—200 20
=(0.0,3.3. 3. 3.
—(1,1,2,2,f,¢§; 1,2,2, =5, =v/3; —1++/5, =1 —=+/5,0,0; —1 ++/5,
0,0; /3, —/53; /3)
3. ind=(4,2;15,5: d; =(1.0,1.0, 1.0, 1.618, 1.618, 1.618)

2 _ _ 154345
D —10-854—+T

S=(,1,1, 1+/5  1+/5 1+\f5; Cl, _{61’ 1+2\f5’ 1+£/§§31’ _1+5/§§6}; §'31, 1+£/§
SleSel Sl g 11 =), gl —oh)
7. ind=(4, 2; 7,3){: d; =(1.0,3.791, 3.791, 3.791, 4.791, 5.791)
105421421
—100.617 = 1052121

(01240)
2 707:7% 3
s=, 3+ﬂ 3+f 3+ﬂ 5+f 7+f 5 _

’

5
c21 — 2()21 + 3c21 + 2021 203,

4 3+«/
—c21 —2c21 —c21+021, —1+2c21 +3c21 —c21 +2c21, —
3+v/21 O
2 9

,0; —1+2¢} +3c3, —

3 5 5 4 5
1 +2¢5,,2— 021 2621 +3c21 +2€21 2¢5,, — 621 2C21 Cy1+63ps
_ 3+4/21 0 1 T+4/2 _7+\/ )

2 £ ’ ’ 2 9 2

9. ind = (6; 9)}: d; =(1.0,0.347, 1.0, 1.532, —1.0, —1.879)

D’ = 9'01 :29 4 1
7
T = (09 953> 05 3> §)a

Sz(l»cg» 1309’ _19c3; 19057 1’ _C39 1; 13033_1’03; 1’ _6351; 1’ _Cé; 1)

10. ind = (6; 13)}: d; = (1.0, 1.941,2.770, 3.438, 3.907, 4.148)
02 = 56. 746 21 + 15c13 +10c3; +6¢3; + 3¢ty + ¢35

4 6 5 3 2 5. &3
—6(1’ 513’ &3 5413, 513’3513’ —&5, &5 —ED3 6 — 1 i 1 =6 —E3 &3,
_§13’§13§ _],%-13; _%-13)
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12. ind = (6; 16)}: d; = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)
D2—80 8
T=0.3 73 3 16 i6)
S=(LLLLV2V2Z LLL V2, -V2 1, -1 V2, —V2; —1, -V2,V2;
0,0; 0)
16. ind = (6; 16)1: d; = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)
D2—80 8
T=03%3 %5
S=(1,1,1 1[[111-[-[ —1, -1, —v2,v2; —1,v/2, —V2;
0,0; 0)
20. ind = (6; 35)1: d; = (1.0, 1.618, 1.801, 2.246, 2.915, 3.635)
D? =33. 632_1?9+ 34c;5+2c§5+6c§5+3c§5+3c§5+2c;2+2c;;
T=037735% 3%

_(1 1/5 6 6 , .11
S_(19 +2

&7, "37’035’“025’C§5+C‘3‘5+c35+c3s»f1 Css+cgs’;35+0§5+c35+c35’
2 3 3 4 6 11 21 1
—&§7, —&7; =&, 1, C35 €35 — €35 — €35, = —&7, = _C35_635’ 57’
)
=15 &)
24. ind = (6; 56){: d; =(1.0, 1.0, 1.801, 1.801, 2.246, 2.246)
02 = 18. 591 =12+ 6¢} +2¢2
— (. ] 15 27y

4 7 pAA
S—(l 1,E2,87, &, 65; — 1,87, —&2, 63, —&3; —&3,—&5, 1, 1; &, 1, —1; —&7,
—£3; £2)

28. ind = (6;80)!: d; =(1.0,1.0, 1.414, 1.618, 1.618, 2.288)

=14.472= 10+2f
T—(O’E’E 3 10 30
S=(1,1,v2, HTI 1+Tf Cho+ €l — Chor 1. —V2, #»#’_Cio_"iffdm
0, Cio"'cio —CZO, —cfw cio+c40,0 -1, —1, —«/E; —1,\/5; 0)
36. ind = (6; 80)%: di =(1.0,1.0,1.414, 1.618, 1.618, 2.288)
132 = 14472_10+2«/—
= (0. 3. 1§ 3. 70 0)-
S=(1,1,v2, 1+TJ 1+T[ Cho+ i — Caps L =2, # HTﬁ —Clo — Cho + o’
0, Cio +c20 — cZO, _C?to - cio +cZO, 0; —1,—1, —v/2; —1,4/2; 0)

The above list include all rank-6 modular data with non-integral D? and coming from
resolved SL(Z) representations (as well as some with D? integral, as we filter using con-
ditions that imply D? e Z, but not conversely). The list misses two known modular data
with non-integral D? = 74.617, whose topological spins are s; = 0, s 5 § % %) or

= (0, g % g 3 3) From those s;’s, we find that they must come from the unresolved
GT orbit (4, 1, 1; 9, 1, 1). In the main text of this paper, we showed that the unresolved
SLy(Z) representations can only produce such modular data (and its conjugations by
Galois action and signed diagonal matrices). The unresolved cases are handled in the
main text of the paper, which leads to a complete classification of all rank-6 modular
data.
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