
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04775-w
Commun. Math. Phys. Communications in

Mathematical
Physics

Reconstruction of Modular Data from SL2(Z)

Representations

Siu-Hung Ng1, Eric C. Rowell2 , Zhenghan Wang3,4, Xiao-Gang Wen5

1 Department of Mathematics, Louisiana State University, Baton Rouge, US. E-mail: rng@math.lsu.edu
2 Department of Mathematics, Texas A&M University, College Station, USA.
E-mail: rowell@math.tamu.edu

3 Department of Mathematics, University of California, Santa Barbara, USA.
E-mail: zhenghwa@microsoft.com

4 Microsoft Station Q, Santa Barbara, USA .
5 Department of Physics, Massachusetts Institute of Technology, Cambridge, USA. E-mail: xgwen@mit.edu

Received: 17 September 2022 / Accepted: 25 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract: Modular data is a significant invariant of a modular tensor category. We
pursue an approach to the classification of modular data of modular tensor categories
by building the modular S and T matrices directly from irreducible representations of
SL2(Z/nZ).Wediscover and collectmany conditions on theSL2(Z/nZ) representations
to identify those that correspond to some modular data. To arrive at concrete matrices
from representations, we also develop methods that allow us to select the proper basis
of the SL2(Z/nZ) representations so that they have the form of modular data. We apply
this technique to the classification of rank-6 modular tensor categories, obtaining a
classification ofmodular data, up toGalois conjugation and changing spherical structure.
Most of the calculations can be automated using a computer algebraic system, which
can be employed to classify modular data of higher rank modular tensor categories.
Our classification employs a hybrid of automated computational methods and by-hand
calculations.
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1. Introduction

Just as conventional symmetries are described by groups, gapped quantum liquid phases
of bosonicmatter (i.e. bosonic topological order) seem to be described by non-degenerate
higher braided fusion categories. It has been conjectured that topological orders are
classified by the collection of projective representations of mapping class groups for
various topologies of closed space manifolds [39]. In particular, we believe that a gapped
phase of quantummatter in two spacial dimensions is classified by a pair (B, c), whereB
is a unitarymodular tensor category (MTC) and c is a rational number equal to the central
charge of B mod 8. Physically, B models the topological excitations (i.e. the anyons) in
the gapped phase [19], and c measures the possible stacking of E8 quantum Hall state,
which has central charge c = 8. Therefore, a classification of unitary MTCs should give
rise to a classification of all gapped quantum phases of bosons without symmetry in two
spacial dimensions.

MTCs are defined by very complicated data. The classification of MTCs naturally
breaks into two steps: the first step is to classify the modular data (MD), and the second
is to classify modular isotopes with a given MD if not unique. The MD (S, T ) of an
MTC form a projective representation of the mapping class group of the 2-dimensional
torus. (In fact, the notion of topological order was first introduced based on modular
data (S, T ) [39].) We will see that the classification of MDs is much more manageable
than the full classification of MTCs.

Modular data (S, T ) corresponding to MTCs of rank r � 5 have been completely
classified [5,17,33].More recently, such a classification forMTCs of rank 6 containing a
pair of non-self-dual simple objects and a partial classification of general MTCs of rank
6 has also been obtained [9]. The strategy employed in those classifications begins with
a stratification of the Galois group of the extension of Q by the entries of the modular S
matrix, followed by a case by case analysis on the inferred polynomial constraints. As
the Galois group is isomorphic to an abelian subgroup of Sr , this program is tractable,
although somewhat tedious. As a last resort in a few cases, the classification of low-
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dimensional representations of SL2(Z/nZ) for small n was required as well. The typical
outcome is that most Galois groups can be eliminated and one eventually finds a finite
list of modular data which can then be realized from known constructions.

In this article we complete the classification of rank 6MDs using the reverse strategy:
we build upon the approach in [5,12] by constructing theMDs directly from SL2(Z/nZ)

representations of low dimension. Since n is bounded in terms of the rank, expressing
irreducible SL2(Z/nZ) representations as tensor products of prime-power level repre-
sentations (i.e. SL2(Z/pkZ) for primes p) allows us to stratify by representation type
and level. Thus, up to basis choice, the SL2(Z) representations can be presented as pairs
(s, t), where s is symmetric and t is diagonal. The construction of symmetric represen-
tations of SL2(Z) is an interesting problem of its own [27,28]. We note that the number
of inequivalent SL2(Z/nZ) representations is finite at a given dimension, since the di-
mension and n are bounded in terms of the rank. These facts make our classification
possible. We find that up to Galois conjugation and altering spherical structures there
are 12 classes (orbits) of modular data, all of which are realized via quantum groups,
see Table 2. Only one of these orbits has no pseudo-unitary representative, while two
distinct orbits have the same fusion rules.

In the next step of our classification, for each representation (s, t), we conjugate s by
an arbitrary (real orthogonal) matrix that commutes with t to reconstruct the potential
MD (S, T ) with S symmetric and T diagonal. We find several methods that allow us to
select a finite number of possible real orthogonalmatrices from the uncountable set of real
orthogonal matrices, so that the resulting (S, T ) include all the MDs. Up to reordering
the objects in the category, i.e., the rows/columns of the resulting (S, T ), these must
satisfy the algebraic and number-theoretic constraints of MDs. Case by case analyses,
following a similar pattern, then yield our classification. We remark that this approach
was used in a particular case in [14] to construct modular data for the center of the fusion
category associated with the extended Haagerup subfactor. At a BIRS workshop in 2014
with the first 3 authors present, Gannon suggested that the classification of SL2(Z/nZ)

representations could provide an alternative proof to the rank-finiteness theorem [6] if
one could show there are at most finitely many modular data (S, T ) associated to any
given SL2(Z/nZ) representation. In fact, we found this to be true for dimension � 6.
The difficulty is to find the appropriate basis changes, even if their existence is known.
For small ranks, doing this by hand is a serious hurdle, although feasible. For larger
ranks, this can be overcome through computer implementation.

The approach to the classification of MDs by building the modular S and T matrices
directly from irreducible representations of SL2(Z/nZ) is applicable to much more
general cases than the rank 6 case in this paper. One version of our approaches that is
presented in the “Appendix” can be automated and almost all of the calculations in this
approach can be implemented using the GAP computer algebra system.

The content of the paper is as follows: In Sects. 2 and 3, we discover and collect
many conditions on the SL2(Z/nZ) representations to help us identifying those that are
from some MDs. To arrive at concrete matrices from representations, we also develop
methods that allow us to select the proper basis of the SL2(Z/nZ) representations so
that they become theMDs. In Sects. 4 and 5, we apply this technique to the classification
of rank-6 MTCs, obtaining a classification up to MD. Most of the calculations can be
automated using a computer algebraic system, which can be employed to classify MDs
of higher rank MTCs.
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2. Modular Tensor Categories and Modular Data

Given a modular tensor category (MTC)1 B, the modular data (MD) of B consists of
the un-normalized S- and T - matrices of B, hence the MD of an MTC is independent of
any normalizations. Though the MD of an MTC does not determine the MTC uniquely
[22], it is still the most useful and important invariant of an MTC. Moreover, the MDs
of MTCs have enchanting relations with diverse areas from congruence subgroups to
vector-valued modular forms to topological phases of matter.

2.1. Necessary conditions for the modular data of an MTC. An obvious strategy to
classify MDs would be first to find all necessary and sufficient conditions for MDs,
and then simply look for solutions. But it seems very hard to find such a complete
characterization of MD. Instead we will list some necessary conditions and then appeal
to other methods to finish a classification.

The following collection of results onmodular data whichwill be useful in the sequel.
Many are well-known and found in, e.g. [2].

Theorem 2.1. The modular data (S, T ) of an MTC satisfies:

(1) S, T are symmetric complex matrices, indexed by i, j = 0, . . . , r − 1.2

(2) T is unitary, diagonal, and T00 = 1.

(3) S00 = 1. Let di = S0i and D =
√∑r−1

i=0 did
∗
i . Then

SS† = D2 id, (2.1)

and the di ∈ R.
(4) Si j are cyclotomic integers in Qord(T )

3 [26]. The ratios Si j/S0 j are cyclotomic inte-
gers for all i, j [8]. Also there is a j such that Si j/S0 j ∈ [1,+∞) for all i [13].

(5) Let θi = Tii and p± = ∑r−1
i=0 d

2
i (θi )

±1.
Then p+/p− is a root of unity, and p+ = Dei2πc/8 for some rational number c.4More-
over, the modular data (S, T ) is associated with a projective SL2(Z) representation,
since:

(ST )3 = p+S
2,

S2

D2 = C, C2 = id, (2.2)

where C is a permutation matrix satisfying

Tr(C) > 0. (2.3)

(6) Cauchy Theorem [6]: The set of distinct prime factors of ord(T ) coincides with the
distinct prime factors of norm(D2).5

1 We use the terminology ofMTC as in its original sense [23], which is equivalent to a semi-simple modular
category of [36], i.e. a semi-simple modular category.

2 The index also labels the simple objects in the MTC, with i = 0 corresponding to the unit object, and r
is the rank of the modular data and the MTC.

3 Here Qn denotes the field Q(ζn) for a primitive nth root of unity ζn
4 The central charge c of the modular data and of the MTC is only defined modulo 8.
5 Here norm(x) is the product of the distinct Galois conjugates of the algebraic number x .
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(7) Verlinde formula (cf. [37]):

N i j
k = 1

D2

r−1∑
l=0

Sli Sl j S∗
lk

dl
∈ N, (2.4)

where i, j, k = 0, 1, . . . , r − 1 and N is the set of non-negative integers.6 The Ni j
0

satisfy

N i j
0 = Ci j , (2.5)

which defines a charge conjugation i → ī via

N ī j
0 = δi j . (2.6)

(8) Let n ∈ N+. The nth Frobenius-Schur indicator of the i-th simple object

νn(i) = 1

D2

∑
j,k

N jk
i (d jθ

n
j )(dkθ

n
k )∗ (2.7)

is a cyclotomic integer whose conductor divides n and ord(T ) [24,25]. The 1st
Frobenius-Schur indicator satisfies ν1(i) = δi,0 while the 2nd Frobenius-Schur indi-
cator ν2(i) satisfies ν2(i) = 0 if i �= ī , and ν2(i) = ±1 if i = ī (see [3,25,33]).

We denote by Gal(Qn) the Galois group of the cyclotomic field Qn .

Remark 2.2. The above conditions are for modular data of unitary or non-unitaryMTCs.
In particular, the above conditions are invariant underGalois conjugations inGal(Qord(T )/

Q). Therefore, we can group modular data into Galois orbits.
The mathematical definition of Frobenius-Schur indicators of an object in pivotal

fusion category was introduced in [25] and the trichotomy of the 2nd Frobenius-Schur
indicator of a simple object was also proved therein. If the underlying pivotal structure
is not spherical, the di in the preceding theorem could be complex. We do not need this
for the sequel, but it may lead to an interesting generalization.

2.2. Classification of modular data up to rank = 5 and candidate list of rank = 6.

2.2.1. Rank 1-5 MTCs The rank� 5 unitary MTCs are classified [5,17,33]; Table 1
lists all 45 rank� 5 cases, only the quantum dimensions and twists are displayed. These
are labeled by Nc, where N is the rank and c the (additive) central charge. The entries
of the table are ordered by the total quantum dimension D2. Also di is the quantum
dimension and si = arg(Tii ) is the topological spin of the i th simple object in the MTC.
The quantum dimensions are given in terms of ξ

m,k
n = sin(mπ/n)

sin(kπ/n)
and ξmn = ξ

m,1
n . The

fusion coefficients Ni j
k and the S-matrices of MTCs can be deduced from the given data

in these low rank cases, and we do not list them for brevity’s sake.

6 The Ni j
k are called the fusion coefficients.
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Table 1. Rank � 5 modular data

Nc D2 d0, d1, · · · s0, s1, · · · Nc D2 d0, d1, · · · s0, s1, · · ·
11 1 1 0

21 2 1, 1 0, 1
4 2−1 2 1, 1 0, − 1

4

214/5 3.6180 1, 1+
√
5

2 0, 2
5 2−14/5 3.6180 1, 1+

√
5

2 0, − 2
5

32 3 1, 1, 1 0, 1
3 , 1

3 3−2 3 1, 1, 1 0, − 1
3 , − 1

3

31/2 4 1, 1,
√
2 0, 1

2 , 1
16 3−1/2 4 1, 1,

√
2 0, 1

2 , − 1
16

33/2 4 1, 1,
√
2 0, 1

2 , 3
16 3−3/2 4 1, 1,

√
2 0, 1

2 , − 3
16

35/2 4 1, 1,
√
2 0, 1

2 , 5
16 3−5/2 4 1, 1,

√
2 0, 1

2 , − 5
16

37/2 4 1, 1,
√
2 0, 1

2 , 7
16 3−7/2 4 1, 1,

√
2 0, 1

2 , − 7
16

38/7 9.2946 1, ξ27 , ξ37 0, − 1
7 , 2

7 3−8/7 9.2946 1, ξ27 , ξ37 0, 1
7 , − 2

7

4a0 4 1, 1, 1, 1 0, 0, 0, 1
2 4b0 4 1, 1, 1, 1 0, 0, 1

4 , − 1
4

41 4 1, 1, 1, 1 0, 1
8 , 1

8 , 1
2 4−1 4 1, 1, 1, 1 0, − 1

8 , − 1
8 , 1

2

42 4 1, 1, 1, 1 0, 1
4 , 1

4 , 1
2 4−2 4 1, 1, 1, 1 0, − 1

4 , − 1
4 , 1

2

43 4 1, 1, 1, 1 0, 3
8 , 3

8 , 1
2 4−3 4 1, 1, 1, 1 0, − 3

8 , − 3
8 , 1

2

44 4 1, 1, 1, 1 0, 1
2 , 1

2 , 1
2 49/5 7.2360 1, 1, 1+

√
5

2 , 1+
√
5

2 0, − 1
4 , 3

20 , 2
5

4−9/5 7.2360 1, 1, 1+
√
5

2 , 1+
√
5

2 0, 1
4 , − 3

20 , − 2
5 419/5 7.2360 1, 1, 1+

√
5

2 , 1+
√
5

2 0, 1
4 , − 7

20 , 2
5

4−19/5 7.2360 1, 1, 1+
√
5

2 , 1+
√
5

2 0, − 1
4 , 7

20 , − 2
5 4c0 13.090 1, 1+

√
5

2 , 1+
√
5

2 , 1+
√
5

2
1+

√
5

2 0, 2
5 , − 2

5 , 0

412/5 13.090 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2
1+

√
5

2 0, − 2
5 , − 2

5 , 1
5 4−12/5 13.090 1, 1+

√
5

2 , 1+
√
5

2 , 1+
√
5

2
1+

√
5

2 0, 2
5 , 2

5 , − 1
5

410/3 19.234 1, ξ29 , ξ39 , ξ49 0, 1
3 , 2

9 , − 1
3 4−10/3 19.234 1, ξ29 , ξ39 , ξ49 0, − 1

3 , − 2
9 , 1

3

50 5 1, 1, 1, 1, 1 0, 1
5 , 1

5 , − 1
5 , − 1

5 54 5 1, 1, 1, 1, 1 0, 2
5 , 2

5 , − 2
5 , − 2

5

5a2 12 1, 1, ξ26 , ξ26 , 2 0, 0, 1
8 , − 3

8 , 1
3 5b2 12 1, 1, ξ26 , ξ26 , 2 0, 0, − 1

8 , 3
8 , 1

3

5b−2 12 1, 1, ξ26 , ξ26 , 2 0, 0, 1
8 , − 3

8 , − 1
3 5a−2 12 1, 1, ξ26 , ξ26 , 2 0, 0, − 1

8 , 3
8 , − 1

3

516/11 34.645 1, ξ211, ξ
3
11, ξ

4
11, ξ

5
11 0, − 2

11 , 2
11 , 1

11 , − 5
11 5−16/11 34.645 1, ξ211, ξ

3
11, ξ

4
11, ξ

5
11 0, 2

11 , − 2
11 , − 1

11 , 5
11

518/7 35.339 1, ξ37 , ξ37 , ξ314, ξ
5
14 0, − 1

7 , − 1
7 , 1

7 , 3
7 5−18/7 35.339 1, ξ37 , ξ37 , ξ314, ξ

5
14 0, 1

7 , 1
7 , − 1

7 , − 3
7

Table 2. Realizations of known rank 6 modular data, their Galois groups and representation types

C Gal(C) Type

PSU (2)3 � SU (2)2 〈(0 1)(2 3), (0 2)(1 3)(4 5)〉 ∼= Z2 × Z2 (6)
PSU (2)3 �U (3)1 〈(0 1)(2 3)(4 5), (2 4)(3 5)〉 ∼= Z2 × Z2 (4, 2)
PSU (2)3 � PSU (2)5 〈(0 1)(2 3)(4 5), (0 2 4)(1 3 5)〉 ∼= Z6 (6)
U (2)1 � SU (2)2 〈(0 1)(2 3)〉 ∼= Z2 (6)
U (2)1 �U (3)1 〈(1 2)(3 4)〉 ∼= Z2 (4, 2)
U (2)1 � PSU (2)5 〈(0 1 2)(3 4 5)〉 ∼= Z3 (6)
SO(5)2,SO(5)′2 〈(0 1)(2 3)〉 ∼= Z2 (3, 3), (3, 2, 1)
PSU (2)11 〈(0 1 2 3 4 5)〉 ∼= Z6 (6)
G(2)3 〈(0 1), (2 3 4)〉 ∼= Z6 (4, 2)
PSO(8)3 〈(0 1 2)〉 ∼= Z3 (4, 1, 1)
PSO(5) 3

2
〈(0 1 2)(3 4 5)〉 ∼= Z3 (6)

2.2.2. Known rank-6 MD of MTCs and their Galois Groups Among the known rank 6
modular tensor categories there are 11distinct fusion rules.Wecandetermine theirGalois
groups Gal(Q(Si j )/Q) and the representation type (i.e. dimensions of their irreducible
subrepresentations) of their SL2(Z) representation, displayed in Table 3. Six are realized
as product categories, the other 5 by prime categories. Note that there are two types that
yield the fusion rules of SO(5)2: (3, 2, 1) is realized by a zesting of SO(5)2, denoted
SO(5)′2 in Table 2, see Theorem 4.15.

The example PSO(5) 3
2
is noteworthy–it is the smallest example of aMTC the fusion

rules of which are never realized as those of a unitary MTC. We also remark that the
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Table 3. Table of rank 6 modular data with Ni j
k � 3 and D2 � 18

Nc D2 d0, d1, · · · s0, s1, · · · Comment

61 6 1, 1, 1, 1, 1, 1 0, 1
12 , 1

12 , − 1
4 , 1

3 , 1
3 2−1 � 32

6−1 6 1, 1, 1, 1, 1, 1 0, − 1
12 ,− 1

12 , 1
4 ,− 1

3 , − 1
3 21 � 3−2

63 6 1, 1, 1, 1, 1, 1 0, 1
4 , 1

3 , 1
3 , − 5

12 , − 5
12 21 � 32

6−3 6 1, 1, 1, 1, 1, 1 0, − 1
4 , − 1

3 ,− 1
3 , 5

12 , 5
12 2−1 � 3−2

61/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , − 1
16 , 3

16 21 � 3−1/2

6−1/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , 1
16 , − 3

16 21 � 3−3/2

63/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , 1
16 , 5

16 21 � 31/2

6−3/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , − 1
16 ,− 5

16 21 � 3−5/2

65/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , 3
16 , 7

16 21 � 33/2

6−5/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , − 3
16 ,− 7

16 21 � 3−7/2

67/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , 5
16 , − 7

16 21 � 35/2

6−7/2 8 1, 1, 1, 1,
√
2,

√
2 0, 1

4 , − 1
4 , 1

2 , − 5
16 , 7

16 21 � 37/2

64/5 10.854 1, 1, 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2 0, − 1
3 ,− 1

3 , 1
15 , 1

15 , 2
5 214/5 � 3−2

6−4/5 10.854 1, 1, 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2 0, 1
3 , 1

3 ,− 1
15 , − 1

15 , − 2
5 2−14/5 � 32

616/5 10.854 1, 1, 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2 0, − 1
3 ,− 1

3 , 4
15 , 4

15 , − 2
5 2−14/5 � 3−2

6−16/5 10.854 1, 1, 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2 0, 1
3 , 1

3 ,− 4
15 , − 4

15 , 2
5 214/5 � 32

63/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 5

16 , − 1
10 , 2

5 , 7
80 214/5 � 3−5/2

6−3/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 5

16 , 1
10 , − 2

5 ,− 7
80 2−14/5 � 35/2

67/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 7

16 , 1
10 , − 2

5 , 3
80 2−14/5 � 37/2

6−7/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 7

16 , − 1
10 , 2

5 , − 3
80 214/5 � 3−7/2

613/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 3

16 , − 1
10 , 2

5 , 17
80 214/5 � 3−3/2

6−13/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 3

16 , 1
10 , − 2

5 ,− 17
80 2−14/5 � 33/2

617/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 7

16 , 1
10 , − 2

5 , 13
80 2−14/5 � 3−7/2

6−17/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 7

16 ,− 1
10 , 2

5 ,− 13
80 214/5 � 37/2

623/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 1

16 , − 1
10 , 2

5 , 27
80 214/5 � 3−1/2

6−23/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 1

16 , 1
10 , − 2

5 ,− 27
80 2−14/5 � 31/2

627/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 5

16 , 1
10 , − 2

5 , 23
80 2−14/5 � 3−5/2

6−27/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 5

16 ,− 1
10 , 2

5 ,− 23
80 214/5 � 35/2

633/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 1

16 ,− 1
10 , 2

5 , 37
80 214/5 � 31/2

6−33/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 1

16 , 1
10 , − 2

5 , − 37
80 2−14/5 � 3−1/2

637/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 ,− 3

16 , 1
10 , − 2

5 , 33
80 2−14/5 � 3−3/2

6−37/10 14.472 1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 ,
√
2 1+

√
5

2 0, 1
2 , 3

16 ,− 1
10 , 2

5 ,− 33
80 214/5 � 33/2
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Table 4. Table of rank 6 modular data with Ni j
k � 3 and D2 > 18

Nc D2 d0, d1, · · · s0, s1, · · · Comment
61/7 18.591 1, 1, ξ27 , ξ27 , ξ37 , ξ37 0, − 1

4 , − 1
7 ,− 11

28 , 1
28 , 2

7 2−1 � 38/7

6−1/7 18.591 1, 1, ξ27 , ξ27 , ξ37 , ξ37 0, 1
4 , 1

7 , 11
28 , − 1

28 , − 2
7 21 � 3−8/7

615/7 18.591 1, 1, ξ27 , ξ27 , ξ37 , ξ37 0, 1
4 , 3

28 , − 1
7 , 2

7 ,− 13
28 21 � 38/7

6−15/7 18.591 1, 1, ξ27 , ξ27 , ξ37 , ξ37 0, − 1
4 , − 3

28 , 1
7 ,− 2

7 , 13
28 2−1 � 3−8/7

6a0 20 1, 1, 2, 2,
√
5,

√
5 0, 0, 1

5 ,− 1
5 , 0, 1

2 root of SO(10)2

6b0 20 1, 1, 2, 2,
√
5,

√
5 0, 0, 1

5 ,− 1
5 , 1

4 , − 1
4 root of SO(10)2

6a4 20 1, 1, 2, 2,
√
5,

√
5 0, 0, 2

5 , − 2
5 , 0, 1

2 root of SO(5)2

6b4 20 1, 1, 2, 2,
√
5,

√
5 0, 0, 2

5 , − 2
5 , 1

4 , − 1
4 SO(5)2

658/35 33.632 1, 1+
√
5

2 , ξ27 , ξ37 , 1+
√
5

2 ξ27 , 1+
√
5

2 ξ37 0, 2
5 , 1

7 , − 2
7 ,− 16

35 , 4
35 214/5 � 3−8/7

6−58/35 33.632 1, 1+
√
5

2 , ξ27 , ξ37 , 1+
√
5

2 ξ27 , 1+
√
5

2 ξ37 0, − 2
5 , − 1

7 , 2
7 , 16

35 ,− 4
35 2−14/5 � 38/7

6138/35 33.632 1, 1+
√
5

2 , ξ27 , ξ37 , 1+
√
5

2 ξ27 , 1+
√
5

2 ξ37 0, 2
5 ,− 1

7 , 2
7 , 9

35 ,− 11
35 214/5 � 38/7

6−138/35 33.632 1, 1+
√
5

2 , ξ27 , ξ37 , 1+
√
5

2 ξ27 , 1+
√
5

2 ξ37 0, − 2
5 , 1

7 , − 2
7 , − 9

35 , 11
35 2−14/5 � 3−8/7

646/13 56.746 1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13 0, 4

13 , 2
13 , − 6

13 , 6
13 , − 1

13 root of SU (2)11

6−46/13 56.746 1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13 0, − 4

13 , − 2
13 , 6

13 , − 6
13 , 1

13 root of SU (2)�11
68/3 74.617 1, ξ318, ξ

3
18, ξ

3
18, ξ

5
18, ξ

7
18 0, 1

9 , 1
9 , 1

9 , 1
3 , − 1

3 root of SO(8)3̄
6−8/3 74.617 1, ξ318, ξ

3
18, ξ

3
18, ξ

5
18, ξ

7
18 0, − 1

9 ,− 1
9 , − 1

9 ,− 1
3 , 1

3 root of SO(8)3

62 100.61 1, 3+
√
21

2 , 3+
√
21

2 , 3+
√
21

2 , 5+
√
21

2 , 7+
√
21

2 0, − 1
7 ,− 2

7 , 3
7 , 0, 1

3 root of G(2)3̄

6−2 100.61 1, 3+
√
21

2 , 3+
√
21

2 , 3+
√
21

2 , 5+
√
21

2 , 7+
√
21

2 0, 1
7 , 2

7 , − 3
7 , 0,− 1

3 root of G(2)3

fusion rules of SO(5)2 are realized by categories with distinct representation types:
namely the zested version of SO(5)2, see Theorem 4.15. In particular, the fusion rules
do not determine the representation type.

We also did a computer search for all rank-6 unitary modular data with Ni j
k � 3.

(Ref. [40] computed all rank-6 unitary modular data with Ni j
k � 2.) The Tables 3 and

4 list all 50 of the resulting modular data, we include only the quantum dimensions and
twists. In the last column, Nc � N ′

c′ indicates that the rank-6 MTC is the product of
two MTCs labeled by Nc and N ′

c′ . The prime MTCs are all non-Abelian roots of MTCs
from Kac-Moody algebra. (The notion of non-Abelian roots is introduced in Ref. [21].)
In this paper, we will show that the Tables 3 and 4 include all modular data of rank-6
unitary MTCs.

3. Modular Data Representations of Modular Tensor Categories

While the number theoretical properties of MD allow the classification of MTCs up to
rank = 4, the deeper properties of the SL2(Z) representations of MD (cf. Definition 3.1)
lead to a more streamlined approach with the potential to achieve a classification up
to rank = 10. The classification of rank = 5 MTCs is already a mixture of both Galois
theory and representation techniques. Instead of working on cases labeled by abelian
subgroups of Sr for rank = r as in earlier classification, we introduce the notion type of
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the MD of an MTC–the list of dimensions of irreducible subrepresentations, so that the
cases are indexed by Young diagrams with r boxes.

Every MTC B leads to a (2 + 1)-TQFT, hence there is a corresponding projective
matrix representation ρB of SL2(Z)—the mapping class group of the torus. We will
refer to this representation as the projective SL2(Z) representation of the MTC B, and
is given by the S-, T - matrices of B. The linearizations of this projective matrix SL2(Z)

representation ρB, called SL2(Z) representations of B, will be elaborated upon in next
section.

3.1. SL2(Z) representations ofMTC orMD. Since our classification is based on SL2(Z)

representations, let us first summarize some important facts about them.Let s =
[
0 −1
1 0

]
,

t =
[
1 1
0 1

]
be the standard generators of SL2(Z). This admits the presentation:

SL2(Z) = 〈s, t | s4 = id, (st)3 = s2〉.
The 1-dimensional representations of SL2(Z), denoted ŜL2(Z), form a cyclic group
of order 12 under tensor product. We will take χ ∈ ŜL2(Z) defined by χ(t) = ζ12
to be the generator, where ζ k

n := e2π ik/n . Under this convention, every 1-dimensional
representation of SL2(Z) is equivalent to χα for some integer α, unique modulo 12:

χα(s) = ζ
α

4 , χα(t) = ζ α
12. (3.1)

Given a modular tensor category B with the modular data (S, T ) and central charge
c, the assignment

ρα(s) = ζ
α

4 S/D, ρα(t) = ζ α
12e

−2π i c
24 T (α ∈ Z12). (3.2)

define a (linear) representation of SL2(Z), and we call these representations ρα the
SL2(Z) representations of B or the SL2(Z) representations of the modular data
(S, T ). For any α, α′ ∈ Z12,

ρα
∼= χα−α′ ⊗ ρα′

as SL2(Z) representations. Therefore, the SL2(Z) representation ρB of B is unique up
to a tensor factor of linear characters of ŜL2(Z).

Note that two modular data (S, T ) and (S′, T ′) are regarded as the same if they differ
only by a permutation of indices:

S′ = PSP�, T ′ = PT P�, (3.3)

where P is a permutation matrix. Throughout this paper, we simply identify ρα and its
conjugations by permutation matrices.

Definition 3.1. A unitary matrix representation ρ of SL2(Z) is called an MD represen-
tation if ρ is an SL2(Z) representation of some modular tensor category. It is called
a pseudo-MD (pMD) representation if VρV is an MD representation for some signed
diagonal matrix V .
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3.2. Type and level of modular data.

Definition 3.2. Given an MTC B of rank r , an SL2(Z) representation ρB decomposes
into direct sumof irreducible representations of dimensionsλ1, . . . , λm in non-increasing
order. The type of the corresponding MD of B of rank = r is the Young diagram of r
boxes (λ1, . . . , λm) with

∑m
i=1 λi = r . The type of an MTC simply refers to the type of

its MD.

The modular representations of the Fibonacci and Ising theories are both irreducible,
so they are of types (2), (3), respectively. The modular representation of the toric code
has an image isomorphic to SL2(Z/2Z) and is reducible of type (2, 1, 1).

We note that for any positive integer n, the reduction Z → Z/nZ defines a sur-
jective group homomorphism πn : SL2(Z) → SL2(Z/nZ). Thus, a representation
of SL2(Z/nZ) is also a representation of SL2(Z), which will be called a congruence
representation of SL2(Z) in this paper. It is immediate to see that a representation
of SL2(Z/nZ) is also a SL2(Z/mnZ) representation for any positive integer m. The
smallest positive integer n such that a congruence representation ρ of SL2(Z) factors
through πn : SL2(Z) → SL2(Z/nZ) is called the level of ρ. It is known that the level
n = ord(ρ(t)) (cf. [11, Lem.A.1]). Here ord(t) is the order of t , i.e., the smallest positive
integer such that

tord(t) = id . (3.4)

There are many more finite-dimensional noncongruence representations of SL2(Z)

(cf. [20]) but they are not associated with any modular tensor category by [11, Thm. II].
Since we only deal with congruence representations of SL2(Z), all the representations
of SL2(Z) throughout this paper are assumed to be congruence and finite-dimensional
over C.

An SL2(Z) representation ρ of anMTC is also symmetric, whichmeans ρ is a unitary
matrix representation with ρ(s) symmetric and ρ(t) diagonal. The following theorem
proved in [28] provides the theoretic background for the GAP package [27] and our
reconstruction process:

Theorem 3.3. Every finite-dimensional congruence representation of SL2(Z) is equiv-
alent to a symmetric one.

Therefore, throughout this paper, we always assume our general representations of
SL2(Z) to be congruence and symmetric.

In “Appendix A”, we list all the irreducible SL2(Z) representations, generated by
[27], of prime-power levels and dimensions� 6. These SL2(Z) representations are con-
gruence and symmetric. From these representations, we can construct all the inequivalent
SL2(Z) representations with dimensions � 6. The MD representations of dimensions
� 6 can be reconstructed from these symmetric representations with the help of the
following theorem.

Theorem 3.4. Let ρ, ρ′ : SL2(Z) → Un(C) be unitarily equivalent symmetric repre-
sentations of SL2(Z) such that ρ(t) = ρ′(t) = t , and define s = ρ(s) and s′ = ρ′(s).
Then there exists a (real) orthogonal matrix U such that

s′ = UsU� and Ut = tU.

Proof. Let Q be a unitary matrix such that

s′ = QsQ† and Qt = t Q.
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Since t is diagonal and unitary, t† = t . Taking the conjugate transpose of the second
equality implies

Q†t = t Q† or Qt = t Q.

Let Q = X1 + i X2 for some real matrices X1 and X2. Then we have

(X1 ± i X2)t = t (X1 ± i X2)

which implies [Xi , t] = 0 for i = 1, 2. Similarly, s′Q = Qs implies s′Q = Qs since
both s and s′ are symmetric. Therefore, we also have s′Q = Qs, which implies

Xi s = s′Xi for i = 1, 2.

Since there are only finitely many roots for the equation det(X1 + x X2) = 0, one can
take λ ∈ R such that X = X1 + λX2 is invertible. Then

Xs = s′X and Xt = t X.

Let X = U P be the polar decomposition of X where U is orthogonal and P is the
unique positive definite satisfying P2 = X�X . In fact, P is a polynomial of P2 (cf. [16,
Chap.9. Thm 11.]). Since s−1 = s and s′−1 = s′,

P2 = X�X = (s′Xs)†(s′Xs) = sX�s′†s′Xs� = sP2s

and

X�t = t X�.

Therefore,

P2s = sP2 and P2t = t P2.

Since P is a polynomial of P2, we find

Ps = sP and Pt = t P.

Therefore,

Us = U PsP−1 = XsP−1 = s′X P−1 = s′U

and

Ut = U Pt P−1 = Xt P−1 = t X P−1 = tU.

Remark 3.5. An SL2(Z) representation ρ is said to be even (resp. odd) if ρ(s2) = id
(resp. ρ(s2) = − id). If ρ is symmetric and irreducible, then ρ(s) or iρ(s) is a real
symmetric matrix, depending on whether ρ is even or odd respectively. A direct sum of
irreducible representations of opposite parties is neither even nor odd. In particular, if
ρ is an SL2(Z) representation of a modular tensor category C, then ρ is even or odd if,
and only if, C is self-dual.



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

3.3. Useful conditions on SL2(Z) representations. The set of all the roots of unity can
be totally ordered as follows: For any roots of unity x, y, we say that x < y if one the
following conditions hold:

(i) ord(x) < ord(y), or
(ii) ord(x) = ord(y) and arg(x) < arg(y),

where arg(ζ ) denotes the unique number sζ ∈ [0, 1) ∩ Q such that e2iπsζ = ζ .

Definition 3.6. For any representation ρ of SL2(Z), ρ(t) has finite order. We denoted
by spec(ρ(t)) the increasing ordered set of eigenvalues of ρ(t) with multiplicities. If
spec(ρ(t)) is multiplicity free ρ is called non-degenerate. If ρ′ is another representation
of SL2(Z), spec(ρ(t)) = {x1, . . . , xm} and spec(ρ′(t)) = {y1, . . . , yn} can be compared
by the lexicographical order.

Two representations ρ, ρ′ of SL2(Z) are called projectively equivalent if

ρ′ ∼= χα ⊗ ρ for some α ∈ Z/12Z.

A representations ρ of SL2(Z) is said to have a minimal t-spectrum if spec(ρ(t)) is
minimal among all the representations projectively equivalent to ρ, i.e.,

spec(ρ(t)) � spec((χα ⊗ ρ)(t)) for all α ∈ Z/12Z.

Let t be any matrix over C. The smallest positive integer n such that tn = α id for
some α ∈ C is called the projective order of t , and denoted by pord(t) := n. If such
integer does not exist, we define pord(t) := ∞.

We can organize the irreducible representations of SL2(Z) by the level and the di-
mension of the representations. Due to the Chinese remainder theorem, if the level
of a irreducible representation ρ factors as n = ∏

i p
ki
i where pi are distinct primes,

then ρ ∼= ⊗
i ρi where ρi are level p

ki
i representations. Thus we can construct all irre-

ducible SL2(Z) representations as tensor products of irreducible SL2(Z) representations
of prime-power levels, which in turn, yields a construction of all SL2(Z) representations
ρ via direct sums of the irreducible representations.

Define Qn = Q(ζn) to be the cyclotomic field of order n. For any positive integer
n, we can construct a faithful representation Dn : Gal(Qn) → SL2(Z/nZ), which
identifies the Galois group Gal(Qn) ∼= Z

×
n with the diagonal subgroup of SL2(Z/nZ)

[11, Remark 4.5]. More generally, for any σ ∈ Gal(Q̄), σ(Qn) = Qn and so there exists
an integer a (unique modulo n) such that σ(ζn) = ζ an and

Dn(σ ) := tastbstas−1 =
(
a 0
0 b

)
∈ SL2(Z/nZ) , (3.5)

where b satisfies ab ≡ 1 mod n. If ρ is a level n representation of SL2(Z), the compo-
sition

Dρ(σ ) := ρ ◦ Dn(σ ) (3.6)

defines a representation of Gal(Q̄). Wemay also write Dn(σ ) as Dn(a). Such a represen-
tation of Galois group captures the Galois conjugation action on SL2(Z) representations
ρMD of modular data, and plays a very important role in our classification. Many of the
following collection of results on ρMD were proved in [11,26].



Reconstruction of Modular Data from SL2(Z) Representations

Theorem 3.7. Every SL2(Z) representation ρ of an MTC B is a matrix representation
with the standardbasis (e0, . . . , er−1) identifiedwith irr(B). Assuming e0 = 1,ρ satisfies
the following conditions:

(1) Let n = ord(ρ(t)). For any g ∈ SL2(Z), ρ(g) is a matrix over Qn. In particular,
ρ(s)i j are cyclotomic numbers in Qn for all i, j .

(2) The modular data (S, T ) of B is given by

S = ρ(s)

ρ(s)00
, T = ρ(t)

ρ(t)00
. (3.7)

(3) In particular, ρ is symmetric, ord(T ) = pord ρ(t)) and (cf. Theorem 2.1(4))

ρ(s)i j

ρ(s)0 j
∈ Z[ζord(T )].

(4) The representation ρ is congruence of level n ord(T ) | n | 12 ord(T ). Thus, ρ is a
symmetric and congruence SL2(Z) representation.

(5) One has 1/ρ(s)i0 ∈ Z[ζn], and the set of distinct prime factors of ord(T ) coincides
with that of the integer norm(1/ρ(s)00).

(6) Let σ ∈ Gal(Qn) be a Galois automorphism. Then (cf. (3.5))

Dρ(σ )i j = εσ (i)δσ̂ (i), j , (3.8)

where εσ (i) ∈ {1,−1} and σ̂ is a permutation on {0, . . . , r − 1} determined by

σ

(
ρ(s)i j

ρ(s)0 j

)
= ρ(s)i σ̂ ( j)

ρ(s)0σ̂ ( j)
. (3.9)

Moreover,

σ(ρ(s)) = Dρ(σ )ρ(s) = ρ(s)D�
ρ (σ ) and σ 2(ρ(t)) = Dρ(σ )ρ(t)D�

ρ (σ ).(3.10)

(7) The matrix ρ(s) satisfies the Verlinde formula (cf. [37]):

N i j
k =

r−1∑
l=0

ρ(s)liρ(s)l jρ(s)∗lk
ρ(s)l0

, i, j = 0, 1, . . . , r − 1 . (3.11)

(8) For m ∈ N+, the mth Frobenius-Schur indicator of the i-th simple object can also be
expressed in terms of ρ(s) and ρ(t):

νm(i) =
∑
j,k

N jk
i ρ(s) j0ρ(t)mj j · (ρ(s)k0ρ(t)mkk)

∗. (3.12)

Remark 3.8. It is worth noting that a pMD representation ρpMD shares arithmetic prop-
erties with MD representations as ρ = VρpMDV is an MD representation for some
signed diagonal matrix V . Therefore, Theorem 3.7 (1) and (3-6) also hold for any pMD
representation. In particular, for σ ∈ Gal(Q̄), DρpMD(σ ) = V Dρ(σ )V , and so

σ(ρpMD(s)i j ) = ε′
σ (i)ρpMD(s)σ̂ (i) j = ε′

σ ( j)ρpMD(s)i σ̂ ( j)

but the sign function ε′
σ is different from εσ in Theorem 3.7 (6) in general.
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3.4. Modular data representations and our classification strategy. The MD representa-
tion introduced inDefinition 3.1 plays an important role in our approach.We now explain
the strategy of a systematic construction for low rank modular data, implementable on a
computer. In Sect. 4 we provide a largely by-hand approach to the classification of rank
6 MD.

For a given rank, we first construct all the inequivalent SL2(Z) representations ρisum
of finite levels, as direct sums of irreducible SL2(Z) representations obtained as tensor
products of the prime-power level representations listed in “Appendix A”. Each of these
SL2(Z) irreducible representations is symmetric, and so is ρisum.

Although the number of the SL2(Z) representations ρisum is finite, most of these
representations are not associated to any MTC. In next section, we introduce and collect
conditions on MD representations, to reject as much as possible the SL2(Z) representa-
tions that are not associated to MTCs.

After we obtain a short list of candidate SL2(Z) representations ρisum, we permute
the indices using a permutation matrix P

ρ̃ = PρisumP� (3.13)

such that arg(ρ̃(t)i i ) is ordered for computer implementation ormathematical deduction.
Suppose ρ̃ is equivalent to an MD representation ρ. Without losing generality, we

can further assume ρ(t) = ρ̃(t). It follows from Theorem 3.4 there exists an orthogonal
matrix U such that ρ(s) = U ρ̃(s)U� and ρ(t) = U ρ̃(t)U�. In this case, U is a block-
diagonal orthogonal matrix. The size of each block Ui is equal to the multiplicity of the
eigenvalue ρ̃(t)i i . We first assume that each of these blocks is of determinant 1. Then

ρpMD = U ρ̃U� (3.14)

is a pseudo-MD representation. Using Theorem 3.7, Remark 3.8 and the conditions
established in the next section, the existence of suchU could either imply contradiction
or be determined for all the rank 6 modular data. In the former case, representation ρisum
will be rejected. Once the matrixU is determined, one can determine the correct signed
diagonal matrix by using the Frobenius-Perron dimensions or the Verlinde formula.

The eigenvectors of the diagonal matrix ρ̃(t) corresponding to the eigenvalues of
multiplicity 1 are of particular importance in the determination of the orthogonal ma-
trix U . We simply called the block of ρ̃(s) corresponding to these eigenvectors the
non-degenerate block, and denoted by ρ̃(s)ndeg. The following proposition provide a
convenient sufficient condition for any SL2(Z) representation equivalent to an MD rep-
resentation.

Proposition 3.9. Let ρ̃ be any (symmetric) SL2(Z) representation. If ρ̃ is equivalent to
an MD representation, then the entries of ρ̃(s)ndeg are cyclotomic numbers in Qord(ρ̃).

Proof. The statement is an immediate consequence of Theorems 3.4 and 3.7(1).

The proposition can be implemented for computer automation to eliminate many
ρisum. Theorem 3.7 (6) and the property of second Frobenius-Schur indicators are im-
plemented to eliminate ρisum or solving the matrixU . When the matrixU is determined,
the signed diagonal matrix Psgn can be searched by using the nonnegative integral fusion
coefficients (cf. Theorem 3.7 (7)). The potential MD representation ρMD is then given
by

ρMD = PsgnρpMDP
�
sgn, (3.15)
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Again, ρisum will be rejected if no such Psgn is found. From the potential MD represen-
tations ρMD we can then obtain the potential modular data (S, T ) via (3.7), and they will
be verified if Theorems 2.1 and 3.7 are satisfied. This allows us to get a list of (S, T )

pairs that include all the modular data. The computer automation for the endeavor is
robust particularly when ρisum = ρ

ndeg
isum.

Bycomparing the list of (S, T )pairs to known rank-6MTCs,weobtain a classification
of all modular data via matrix representations of SL2(Z).

3.5. More general properties of SL2(Z) representations. In this subsection, we intro-
duce and collect conditions on SL2(Z) representations necessary for them to be MD
representations

The decomposition criteria on t-spectrum [5] of a linear representation of SL2(Z)

associated with a MTC is one of the major tools.

Theorem 3.10 (t-spectrum criteria). Let ρ be an MD representation. If

ρ ∼= ρ1 ⊕ ρ2

for some representations ρ1, ρ2 of SL2(Z), then spec(ρ1(t)) ∩ spec(ρ2(t)) �= ∅.

Let p be a prime. We denote by Gp the Galois group Gal(Qp). The least dimension
of an irreducible representation of SL2(Z) of level p is p−1

2 . Their t-spectrum is either
G2

p · ζp or G2
p · ζ ap where x2 ≡ a mod p has no integer solution. Note that an integer

a is called a nonresidue modulo p if x2 ≡ a mod p has no integral solution. The
second least dimension irreducible representation ρ of SL2(Z) of level p is p+1

2 whose
t-spectrum is either G2

p · e2π i/p ∪ {1} or G2
p · e2π ia/p ∪ {1} where a is any nonresidue

modulo p. In this case, ρ(s)2 =
(−1

p

)
id (see for example [18]).

Proposition 3.11. Let 3 < p < q be prime such that pq ≡ 3 mod 4. For any modular
tensor category C such that ord(T ) = pq, then rank(C) �= p+q

2 + 1. Moreover, if p > 5,
rank(C) >

p+q
2 + 1.

Proof. Let C be a modular tensor category of rank r � p+q
2 +1 and ord(T ) = pq. There

exists an SL2(Z) representation ρ of C with level pq [11]. Suppose ρ has an irreducible
subrepresentation ρ′ of level pq. By the Chinese remainder theorem, the ρ′ ∼= ρ1 ⊗ ρ2,
where ρ1, ρ2 are irreducible representations of SL2(Z) of levels p and q respectively.
Then

p + q

2
+ 1 � dim ρ′ = (dim ρ1)(dim ρ2) �

(
p − 1

2

)(
q − 1

2

)
.

The inequality implies p = 5 and q = 7, and hence dim ρ′ = 6. Therefore, the t-
spectrum of ρ′ consists of 6 distinct primitive 35-th roots of unity, and rank(C) = 6
or 7. There exists a modular tensor category of rank 6 with ord(T ) = 35. However, if
rank(C) = 7, then ρ ∼= ρ′ ⊕ ρ0 where ρ0 is a 1-dimensional representation. The level
of ρ0 is a divisor of 12 but this is not possible by Theorem 3.10. In conclusion, if ρ has
an irreducible subrepresentation of level pq, then p = 5, q = 7 and rank(C) = 6.
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Now,we assumeρ has no irreducible subrepresentation of level pq. Thenρ must have
irreducible subrepresentations ρ1, ρ2 of levels p and q respectively. If dim ρ1 <

p+1
2 or

dim ρ2 <
q+1
2 , then

ρ ∼= ρ1 ⊕ ρ2 ⊕ ρ3

where ρ3 is a subrepresentation of ρ of dimension � 2. If ρ3 has a 1-dimensional
component ρ4, then ρ4(t) must be a 12-th root of unity. Since 3 < p < q, the only 12-th
root which could appear in the t-spectrum of ρ is 1, or ρ4 is trivial. However, spec(ρ1(t))
and spec(ρ2(t)) do not contain 1 by the remark preceding this proposition, and this
contradicts Theorem 3.10. Note that irreducible SL2(Z) representation of dimension 2
at prime levels only appear for the primes 2, 3 and 5. Therefore, if ρ3 is irreducible
of dimension 2, then p = 5 and ρ3 is of level 5, but this contradicts Theorem 3.10
again. Thus, dim ρ1 � p+1

2 and dim ρ2 � q+1
2 . Since rank(C) � p+q

2 + 1, we find

rank(C) = p+q
2 + 1, dim ρ1 = p+1

2 and dim ρ2 = q+1
2 . Now, we would like to show that

this also impossible.

Without loss of generality, we may assume
(−1

p

)
= 1 and

(−1
q

)
= −1. Then ρ(s)2

is a signed diagonal matrix and the multiplicities 1,−1 are respectively p+1
2 and q+1

2 .

Thus, |Tr(ρ(s)2)| = q−p
2 . Since rank C − q−p

2 = p + 1, C has p+1
2 � 3 pairs of simple

objects which are not self-dual. Since ρ(t) has only one eigenvalue of multiplicity 2 and
all other eigenvalues are of multiplicity 1, C has at most 1 pair of simple objects which
dual of each other, a contradiction!

Let ρ be an SL2(Z) representation of a modular tensor category C and let n be the
level of ρ. For any σ ∈ Gal(Q̄), Dρ(σ ) defined in (3.6) is a signed permutation matrix
of σ̂ by [11, Theorem II] (or Theorem 3.7 (6)). The permutation σ̂ on irr(C) is given by
(3.9), and we set

InvC(σ ) := {i ∈ irr(C) | σ̂ (i) = i}.
If γ is complex conjugation, by (3.10),

Dρ(γ ) = ρ(s)ρ(s)−1 = ρ(s)2 = ±C,

where C is the charge conjugation matrix of C. Since γ̂ (i) = i∗ for i ∈ irr(C),

|Tr(Dρ(γ ))| = |Tr(ρ(s2))| = Tr(C) = |{i ∈ irr(C) | i∗ = i} = | InvC(γ )|.
This equality can be generalized to any σ ∈ Gal(Q̄) as an inequality in the following
proposition.

Proposition 3.12. Let ρ be an SL2(Z) representation of a modular tensor category C.
For any σ ∈ Gal(Q̄),

|Tr(Dρ(σ ))| � | InvC(σ )|.
Let s := ρ(s), and follow the notation of Theorem 3.7(6). If si j �= 0 for any i, j ∈
InvC(σ ), then εσ (i) = εσ ( j). If there exists i ∈ InvC(σ ) such that si j �= 0 for all
j ∈ InvC(σ ), then

|Tr(Dρ(σ ))| = | InvC(σ )|.
In particular,

Tr(s2) = |{i ∈ irr(C) | i∗ = i}| > 0.
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Proof. By Theorem 3.7(6), Dρ(σ ) = εσ (i)δσ̂ (i), j . Therefore,

|Tr(Dρ(σ ))| =
∣∣∣∣∣∣

∑
i∈InvC(σ )

εσ (i)

∣∣∣∣∣∣
� | InvC(σ )|.

If si j �= 0 for any i, j ∈ InvC(σ ), then σ(si j ) = εσ (i)si j = εσ ( j)si j , and so εσ (i) =
εσ ( j). Thus, if there exists i ∈ InvC(σ ) such that si j �= 0 for all j ∈ InvC(σ ), then
εσ (i) = εσ ( j) for all j and hence the equality

|Tr(Dρ(σ ))| = | InvC(σ )|.
The last statement was proved in the preceding remark and since 1∗ = 1 this completes
the proof of the proposition.

According to [11], if ρ is anMD representation of an integral modular tensor category
C, then ρ(t)1,1 = ζ for some 24-th root of unity ζ under the identification of the standard
basis for ρ and irr(C). The following proposition provides a sufficient condition on the
representation type of ρ for C to be integral.

Proposition 3.13. Let ρ̃ be any SL2(Z) representation. For any ζ ∈ spec(ρ̃(t)), denote
by Eζ (ρ̃) the eigenspace of ρ̃(t) for the eigenvalue ζ . Suppose ρ̃ is equivalent to an MD
representation ρ of a modular tensor category C. Then
(1) Dρ̃ (σ )(Eζ (ρ̃)) ⊆ Eζ (ρ̃) for all σ ∈ Gal(Q̄) if and only if ζ 24 = 1.
(2) If 1 ∈ Eζ (ρ) for some ζ ∈ spec(ρ(t)), and for each σ ∈ Gal(Q̄), there exists

εσ = ±1 such that

Dρ̃ (σ )|Eζ (ρ̃) = εσ idEζ (ρ̃),

then C is integral. In particular, ζ 24 = 1.
(3) If 1 ∈ ⊕

γ∈A Eγ (ρ) for some subset A ⊆ spec(ρ(t)), and for any γ ∈ A, σ ∈
Gal(Q̄), there exists εσ (γ ) = ±1 such that Dρ̃ (σ )|Eγ (ρ̃) = εσ (γ ) idEγ (ρ̃), then A is
a set of 24-th roots of unity and C is integral.

(4) If C is integral and di > 0 for all i , then for any σ ∈ Gal(Q̄), di = dσ̂ (i) for all i ,
Dρ(σ )(1) = εσ1 for some εσ = ±1, and 1

εσ
Dρ(σ ) is the permutation matrix of σ̂ .

Proof. Assuming the identification of the standard basis for ρ and irr(C), Eζ (ρ) is
spanned by the objects X ∈ irr(C) such that ρ(t)X,X = ζ . Let σ ∈ Gal(Q̄). It follows
from Theorem 3.7(6) that Dρ(σ ) is a signed permutation matrix of a permutation σ̂

on irr(C), and that σ 2(ρ(t)) = Dρ(σ )ρ(t)Dρ(σ )−1, or equivalently ρ(t)Dρ(σ ) =
Dρ(σ )σ−2(ρ(t)). If ζ 24 = 1, then σ 2(ζ ) = ζ for all σ ∈ Gal(Q̄). Thus, for any simple
object X ∈ Eζ (ρ),

ρ(t)Dρ(σ )(X) = Dρ(σ )σ−2(ρ(t))(X) = σ−2(ζ )Dρ(σ )(X) = ζDρ(σ )(X).

Therefore, Dρ(σ )(Eζ (ρ)) ⊆ Eζ (ρ). Let φ : ρ̃ → ρ be an isomorphism of SL2(Z)

representations. Thenφ(Eζ (ρ̃)) = Eζ (ρ), andφDρ̃ (σ ) = Dρ(σ )φ for anyσ ∈ Gal(Q̄).
This implies Dρ̃ (σ )(Eζ (ρ̃)) ⊆ Eζ (ρ̃).
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Conversely, if Dρ̃ (σ )(Eζ (ρ̃)) ⊆ Eζ (ρ̃), then Dρ(σ )(Eζ (ρ)) ⊆ Eζ (ρ) by the same
reason. Thus, for any X ∈ Eζ (ρ), ρ(t)Dρ(σ )(X) = ζDρ(σ )(X). However, we also
have

ρ(t)Dρ(σ )(X) = Dρ(σ )σ−2(ρ(t))(X) = σ−2(ζ )Dρ(σ )(X).

Therefore, σ−2(ζ ) = ζ for all σ ∈ Gal(Q̄). This implies ζ is a 24-th root (cf. [11, Prop.
6.7 and Lem. A.2]). This proves statement (1).

For statement (2), we assume 1 ∈ Eζ (ρ), and for each σ ∈ Gal(Q̄) there exists
εσ = ±1 such that Dρ̃ (σ )|Eζ (ρ̃) = εσ idEζ (ρ̃). It follows from (1) that ζ 24 = 1.Moreover,
Dρ(σ )|Eζ (ρ) = εσ idEζ (ρ) and Dρ(σ )(1) = εσ1 = ±σ̂ (1). Therefore, σ̂ (1) = 1, and
hence σ(dim(V )) = dim(V ) for any V ∈ irr(C) by Theorem 3.7(6). Thus, dim(V ) are
integers for V ∈ irr(C). It follows from [11, Rem. 6.3] that FPdim(V ) ∈ Z, and hence
C is integral.

Statement (3) follows directly from (2), and this completes the proof of the proposi-
tion.

(4) Since C is integral, S j,0 = d j ∈ Z for all j . For any σ ∈ Gal(Q̄), σ(S j,0) = S j,0.
Therefore, σ̂ (0) = 0, and so σ(ρ(s)i,0) = εσ (0)ρ(s)i,0 for all i , where εσ (0) = ±1.
This is equivalent to that Dρ(σ )(1) = εσ1.

Since σ(ρ(s)i,0) = εσ (i)ρ(s)σ̂ (i),0 for some εσ (i) = ±1, we have εσ (i)ρ(s)σ̂ (i),0 =
εσ ρ(s)i,0 or εσ (i)dσ(i) = εσ (0)di . This implies εσ (0) = εσ ( j) and di = dσ(i) as
di , dσ̂ (i) > 0.

For any i, j ∈ irr(C),

σ(ρ(s)i, j ) = εσ (i)ρ(s)σ̂ (i), j = εσ (0)ρ(s)σ̂ (i), j

which implies Dρ(σ )ρ(s) = εσ (0)P(σ̂ )ρ(s), where P(σ̂ )i j = δσ(i), j . Thus, Dρ(σ ) =
εσ (0)P(σ̂ ).

The following result in [7] is important for determining whether an SL2(Z) repre-
sentation of small level is an MD representation.

Theorem 3.14. Modular tensor categories with ord(T ) = 2, 3, 4, 6 are integral.

Then the case for ord(T ) = 2 is completely classified in [38], and the types of these
MTCs are given in the following proposition.

Proposition 3.15. Let C be amodular tensor category with ord(T ) = 2. Then rank(C) =
4n for some positive integer n, and every SL2(Z) representation ρ of C is projectively
equivalent to

(ρ2 ⊕ 2χ0)
⊗n ∼= anρ2 ⊕ bnρ1 ⊕ cnχ0,

where ρ1, ρ2 are respectively the level 2 irreducible representations of dimension 1 and
2, and

an = 4n − 1

3
, bn = 2 · 4n−1 + 1

3
− 2n−1, cn = 2 · 4n−1 + 1

3
+ 2n−1.

Proof. By [38], C is a Deligne product of the pointedmodular tensor categories C(Z2
2, q)

and C(Z2
2, q

′) with the quadratic forms q, q ′ : Z
2
2 → {±1} given by

q(x, y) = (−1)xy, q ′(x, y) = (−1)x
2+xy+y2 .
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Both modular tensor categories, up to a linear character, have a representation of SL2(Z)

equivalent to ρ2 ⊕2χ0.Note that SL2(Z/2Z) ∼= S3, symmetric group of degree 3. Thus,
ρ ∼= (ρ2 ⊕ 2χ0)

⊗n = anρ2 ⊕ bnρ1 ⊕ cnχ0 for some nonnegative integers an, bn, cn .
The fusion matrix of ρ2 ⊕ 2χ0 relative to the basis {χ0, ρ1, ρ2} is given by

F =
⎡
⎣
2 0 1
0 2 1
1 1 3

⎤
⎦ = P

⎡
⎣
4 0 0
0 2 0
0 0 1

⎤
⎦ P−1 where P =

⎡
⎣
1 1 1
1 −1 1
2 0 −1

⎤
⎦ .

Thus,

Fn = P

⎡
⎣
4n 0 0
0 2n 0
0 0 1

⎤
⎦ P−1 =

⎡
⎢⎣

2n−1 + 2·4n−1+1
3 −2n−1 + 2·4n−1+1

3
4n−1
3

−2n−1 + 2·4n−1+1
3 2n−1 + 2·4n−1+1

3
4n−1
3

4n−1
3

4n−1
3

2·4n+1
3 =

⎤
⎥⎦ .

The result follows from the first column of Fn .

The following proposition follows immediately from the classification of [4], where
strictly weakly integral means FPdim(C) ∈ Z while FPdim(X) �∈ Z for some object X .

Proposition 3.16. Let C be a modular tensor category of rank 6.

(1) If C is integral, then C is pointed and hence C is of type (4, 2) and every SL2(Z)

representation of C has level 24.
(2) If C is strictly weakly integral, then C is braided equivalent to a Galois conjugate of

U (2)1 � SU (2)3, SO(5)2 or its zesting. If ρ is an SL2(Z) representations of C with
a minimal t-spectrum, then one of the following holds: (i) C is of type (6) and ρ has
level 16, (ii) C is of type (3, 3) and ρ has level 20, or (iii) C is of type (3, 2, 1) and ρ

has level 10 .
(3) In particular, if C is weakly integral, then dim(C) = 6, 8, 20.

When a potential modular data is obtained from a representation of SL2(Z), one
could obtain the FPdim(X) of each simple object X . Those simple objects X with
FPdim(X) = 1 generate a pointed ribbon subcategory. The next proposition, which can
be derived from [32] in different notation, describes some relations between the rank of
a pointed ribbon category and the orders of the twists.

Proposition 3.17. Let C be a pointed ribbon category of rank n. Then ord(T ) | n if n is
odd, and ord(T ) | 2n if n is even. If, in addition, C is symmetric and dim(a) > 0 for all
a ∈ irr(C), then either ord(T ) = 1 or 2. In the latter case, n must be even and there are
exactly n/2 simple objects with twist −1.

Proof. Since C pointed, the set G = irr(C) forms an abelian group under the tensor
product and the map q : G → C

×, q(a) = θa defines a quadratic form on G. Therefore,
Bq(a, b) = q(ab)

q(a)q(b) defines a bicharacter on G. In particular, Bq(a, b) is an n-th root of
unity for any a, b ∈ G. Now, for any positive integer m and a ∈ G, we have

q(am) = q(a)q(am−1)Bq(a, am−1) = q(a)q(am−1)Bq(a, a)m−1.

Therefore, by induction, we have

q(am) = q(a)mBq(a, a)m(m−1)/2.



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

In particular, q(a)n = Bq(a, a)−n(n−1)/2. If n is odd, n−1
2 ∈ Z and so q(a)n = 1. If n

is even, then q(a)2n = 1. This completes the proof of the first statement.
If, in addition, C is symmetric and dim(a) = 1 for a ∈ G, then

1 = Sa,b = Bq(a
−1, b) = Bq(a, b)−1 = q(a)q(b)

q(ab)

for any a, b ∈ G. Therefore, q is a character of G. Since q(a−1) = q(a), q(a)2 = 1 for
all a ∈ G. If q is of order 1, then q(a) = 1 for all a ∈ G or T = id. However, if q is of
order 2, then the image of q is the group {±1} which is of order 2. Therefore, ker q is of
index 2 which means there are exactly n/2 simple objects in G with twists are 1. Thus,
the second statement follows.

It is worth noting that last statement of the preceding proposition does not hold for
super-Tannakian fusion categories which are not pointed. For example, if we take Q to
be the quaternion group of order 8 and z the unique central element of order 2, then
the super-Tannakian fusion categories Rep(Q, z) has 4 simple objects a of dimension 1
with θa = 1 and a unique simple object b of dimension 2 with θb = −1.

For any legitimate fusion rules Nk
i j , one could obtain the possible θk = e2π isk by solv-

ing a system of linear equations with unknowns sk . The following proposition provides
a condition for legitimate sk of a potential modular data.

Proposition 3.18. Let C be a modular tensor category of rank n and central charge c.
If the twists of C are e2π is1 , . . . , e2π isn for some rational numbers s1, s2, . . . , sn, then

12
n∑

k=1

sk − nc/2 ∈ Z

Proof. Note that eπ ic/4 = 1
D

∑n
k=1 d

2
k e

2π isk where dk denotes the dimension of the
simple object k with twist e2π isk and D = √

dim(C). Let (S, T ) be the modular data of
C. Then

ρ(s) = 1

D
S, ρ(t) = e−2π ic/24 T

defines an SL2(Z) representation of C. Thus, det ◦ρ is a 1-dimensional representation
of SL2(Z). Since the group of linear characters of SL2(Z) is a cyclic group of order 12,
det ρ(g)12 = 1 for all g ∈ SL2(Z). In particular,

1 = det ρ(t)12 = (e2π is1 · · · e2π isn · e−2π inc/24)12 = e2π i·12
∑n

k=1 sk−nc/2.

This implies 12
∑n

k=1 sk − nc/2 ∈ Z.

The following proposition is proved in [31] will also be useful later.

Proposition 3.19. Let ρ an MD linear representation. Then

ρ �∼= nρ0

for any integer n > 1 and any non-degenerate representation ρ0 of SL2(Z).
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3.6. Modular tensor categories of type (d, 1, . . . , 1). For a representation ρisum of
SL2(Z) of type (d, 1, . . . , 1) it is generally more difficult to determine whether it is
equivalent to an MD representation. However, this type of MTC does exist. It is desir-
able to deduce some conditions for such MD representations.

Lemma 3.20. Let ρ be an MD representation. If ρ ∼= ρ0 ⊕ ρ1 ⊕ · · · ⊕ ρ� for some
1-dimensional representations ρ1, . . . , ρ� of SL2(Z), then spec(ρi (t)) ⊂ spec(ρ0(t))
for all i > 0. In particular, if ρ0(t) has exactly one eigenvalue which is a 12-th root of
unity, then ρ1, . . . , ρ� are all equivalent, and ρ ∼= ρ0 ⊕ �ρ1.

Proof. By the t-spectrum criteria, spec(ρ j (t)) ⊂ spec(ρ0(t)) for some j > 0. Suppose
there exists j > 0 such that spec(ρ j (t)) �⊂ spec(ρ0(t)). Let J = { j ∈ {0, . . . , �} |
spec(ρ j (t)) �⊂ spec(ρ0(t))}. Then, the decomposition

ρ ∼=
⎛
⎝∑

j∈J

ρ j

⎞
⎠ ⊕

⎛
⎝∑

j �∈J

ρ j

⎞
⎠

does not satisfies the t-spectrum criteria. Therefore, spec(ρ j (t)) ⊂ spec(ρ0(t)) for all j .
If, in particular, spec(ρ(t)) contains exactly one12-th root of unity ζ , then spec ρi (t) =

{ζ } for all i > 0. Hence ρ1 ∼= ρi for i > 1, and the last assertion follows.

Corollary 3.21. Let ρ be an SL2(Z) representation of a modular tensor category C.
Suppose that ρ ∼= ρ0⊕ρ1⊕· · ·⊕ρ� for some 1-dimensional representations ρ1, . . . , ρ�

and some non-degenerate irreducible representation ρ0 of SL2(Z) such that spec(ρ0(t))
has a unique 12-th root of unity. Then C admits an MD representation ρ′ ∼= ρ′

0 ⊕ �χ0,
where χ0 is the trivial representation and ρ′

0 is projectively equivalent to ρ0 with 1 ∈
spec(ρ′

0(t)).
If � �∈ {1, 2 dim ρ0 − 1}, then C is self-dual, and ρ′

0 is even. If � ∈ {1, 2 dim ρ0 − 1}
and C is not self-dual, then ρ′

0 is odd, and the set of non-self-dual objects is given by
{i ∈ irr(C) | ρ′(t)i i = 1}.
Proof. By Lemma 3.21, ρ ∼= ρ0 ⊕ �ρ1. Since dim ρ1 = 1, ρ′ = ρ∗

1 ⊗ ρ is another
SL2(Z) representation of C. Moreover, ρ′ ∼= ρ′

0 ⊕ �χ0, where ρ′
0 = ρ∗

1 ⊗ ρ0 which is
also non-degenerate.

Suppose ρ′
0(s

2) = − id. By Proposition 3.12, the number of self-dual objects in
irr(C) is given by

|Tr(ρ′(s2))| = |� − dim ρ′
0| > 0

since 1 is self-dual simple object. If � > dim ρ0, then |Tr(ρ′(s2))| = � − dim ρ0 and
so number of non-self-dual objects in irr(C) is 2 dim ρ0. The non-degeneracy of ρ′

0
implies that ρ′(t)i i = 1 for any non-self-dual i ∈ irr(C). Therefore, 2 dim ρ0 = � + 1 or
� = 2 dim ρ0 − 1.

On the other hand, if � < dim ρ0, then |Tr(ρ′(s2))| = dim ρ1 − � and so number
of non-self-dual objects in irr(C) is 2�. Since ρ′(t)i i = 1 for any non-self-dual simple
object i , 2� = � + 1 or � = 1.

Thus, if � �= 1 or 2 dim ρ1 − 1, then ρ′
0(s

2) = id and so C is self-dual. On the other
hand, if � ∈ {1, 2 dim ρ0 − 1} and C is not self-dual, then ρ′

0(s
2) = − id and the above

discussion shows that the non-self-dual objects i ∈ irr(C) are exactly those i satisfying
ρ′(t)i i = 1.
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Now, we can prove a sufficient condition for any MD representation of prime level
p > 3 and of type (

p+1
2 , 1, . . . , 1).

Proposition 3.22. Let C be an MTC of type (d, 1, . . . , 1) such that ord(T ) is a prime
p > 3, where d = p+1

2 . Then C is of type (d, 1), and hence rank C = d + 1. Moreover,
InvC(σ ) = ∅ for any generator σ ∈ Gal(Qp/Q). Furthermore, if p ≡ 1 mod 4, then
C is self-dual; otherwise C is not self-dual.

Proof. By [11], there is an SL2(Z) representation ρ of C, which has level p. Then, every
subrepresentation of ρ must have a level dividing p. Since C is of type (d, 1, . . . , 1), ρ
has a irreducible subsrepresentation ρ0 of dimension d and level p. By the classification

of irreducible representation SL2(Z/pZ), ρ0(s2) =
(−1

p

)
id, ρ0 is non-degenerate and

1 is the unique 12-th root of unity in spec(ρ0(t)). By Corollary 3.21,

ρ ∼= ρ0 ⊕ �χ0.

Thus, if p ≡ 1 mod 4, then ρ0 is even and hence C is self-dual. However, if p ≡ 3
mod 4, then ρ0 is odd and so C is not self-dual.

One can derive from [30] that

ρ0(s) =
(
a
p

)
√
p∗

⎡
⎢⎢⎢⎣

1
√
2 · · · √

2√
2
2 cos

(
4πai j

p

)
...√
2

⎤
⎥⎥⎥⎦ , ρ0(t) =

⎡
⎢⎣

ζ a·0
p

. . .

ζ
a(d−1)2
p

⎤
⎥⎦

where 1 � i, j � d − 1, p∗ =
(−1

p

)
p, and a an integer coprime to p. One may assume

ρ(t) = diag(1, . . . , 1, ζ ap , . . . , ζ
a(d−1)2
p ). By Theorem 3.4, there exists W ∈ Od+�(R)

such that ρ = W (�χ0 ⊕ ρ0)W�. Note that W = VU for some signed diagonal matrix
V and

U =
[
f 0
0 Id−1

]
, where f ∈ SO�+1(R),

and ρpMD = U (�χ0 ⊕ ρ0)U� is a pseudo-MD representation, where Id−1 denotes the
identity matrix of dimension d − 1.

By direct computation,

ρpMD(s) = U

[
I� 0
0 ρ0(s)

]
U�

=
[
I�+1 + f∗,�+1 f �∗,�+1(x − 1) x

√
2 f∗,�+1rd−1

x
√
2 r�

d−1 f
�∗,�+1 2x cos

(
4πai j

p

)
]

(3.16)

where f∗,�+1 = [ f1,�+1, · · · , f�+1,�+1]�, rd−1 = [1, · · · , 1] ∈ R
d−1, and x =

(
a
p

)
/
√
p∗.

Let σ be the generator of Gal(Qp/Q). For any j ∈ {1, . . . , d − 1}, there exists
j̃ ∈ {1, . . . , d − 1} such that

σ (2 cos(2π j/p)) = 2 cos(2π j̃/p).
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Since
√
p∗ ∈ Qp, σ(

√
p∗) = −√

p∗, and so

σ (2x cos(4πai j/p)) = −2x cos(4πai j̃/p).

for any i, j ∈ {1, . . . , d − 1}. If one identifies irr(C) with {1, . . . , d + �}, then we have
σ̂ (� + 1 + j) = � + 1 + j̃ for each j ∈ {1, . . . , d − 1}. In particular, σ̂ has no fixed point
in {� + 2, . . . , � + d}.

By (3.16) and Remark 3.8,

σ(x
√
2 fi,�+1) = −x

√
2 fi,�+1 for all i ∈ {1, . . . , � + 1}.

Since x, x
√
2 fi,�+1 ∈ Qp and σ(x) = −x ,

√
2 fi,�+1 ∈ Qp and σ(

√
2 fi,�+1) =√

2 fi,�+1. Therefore,
√
2 fi,�+1 ∈ Q for all i ∈ {1, . . . , �+1}, and hence fi,�+1 f j,�+1 ∈ Q

for all i, j ∈ {1, . . . , � + 1}.
We claim that 0 < f 2i,�+1 < 1 for all i ∈ {1, . . . , � + 1}. If fi,�+1 = 0 for some i , then

each row of ρpMD(s) has a zero entry by (3.16). Therefore, fi,�+1 �= 0 for all i . Since
f∗,�+1 as unit length, if f 2i,�+1 = 1, then fk,�+1 = 0 for all k �= i � �+1, a contradiction.
This proves the claim.

Now we can show that InvC(σ ) = ∅. It suffices to show that σ̂ has no fixed point
in {1, . . . , � + 1}. Suppose the i-th column of s := ρpMD(s) is fixed by σ̂ for some i ∈
{1, . . . , �+1}. Then σ(sii ) = ε′

σ (i)sii , where ε′
σ (i) = ±1. Since sii = 1+ f 2i,�+1(x −1),

the preceding equality implies

ε′
σ (i)(1 + f 2i,�+1(x − 1)) = 1 + f 2i,�+1(−x − 1).

Since f 2i,�+1 � 1 is rational, the equation forces f 2i,�+1 = 1, ε′
σ (i) = −1 or f 2i,�+1 =

0, ε′
σ (i) = 1. Both are not possible as 0 < f 2i,�+1 < 1. Therefore, σ̂ has no fixed point

in irr(C).
Let σ(ζp) = ζ v

p . Then Tr(Dρ0(σ )) = Tr(ρ0(tvstustvs−1)) = −1 (cf. [18]), where
uv ≡ 1 mod p. It follows from Proposition 3.12, | InvC(σ )| � |Tr(Dρ(σ ))| = � − 1.
Therefore, � = 1.

3.7. MD representations with multiplicities. In this subsection, we investigate the MD
representations ρ ∼= ρ1 ⊕ ρ2 such that ρ1, ρ2 are non-degenerate, symmetric, and their
t-spectrums have nonempty intersection.

Theorem 3.23. Let ρ1, ρ2 be non-degenerate symmetric representations of SL2(Z) such
that the intersection of their t-spectra is of size l � 1. Let dim ρ1 = l+k and dim ρ2 = l+
m and suppose k,m � 1. Let ρ1(s) = [ψi j ], ρ1(t) = diag(α1, . . . , αk+l), ρ2(s) = [ηi j ]
and ρ2(t) = diag(β1, . . . , βm+l) with αi = βi for i = 1, . . . , l. Suppose ρ1 ⊕ ρ2 is
equivalent to an SL2(Z) representation ρ of a modular tensor category C. Then

(i) there exists a signed diagonalmatrix V and 2×2 orthogonalmatricesUi =
[
ai −bi
bi ai

]

with ai � 0 (i = 1, . . . , l) such that

ρ(s) = V

⎡
⎣
A B� C�
B ψ ′ 0
C 0 η′

⎤
⎦ V and
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ρ(t) = diag(α1 I2, . . . , αl I2, αl+1, . . . , αl+k, βl+1, . . . , βl+m),

where A, B and C are block matrices with

Ai j = Ui

[
ψi j 0
0 ηi j

]
U�

j , Bi ′ j = [ψl+i ′, j 0]U�
j and Ci ′′ j = [0 ηl+i ′′, j ]U�

j ,

1 � i, j � l, 1 � i ′ � k and 1 � i ′′ � m, and ψ ′, η′ are respectively the k × k and
the m × m bottom diagonal blocks of ρ1(s) and ρ2(s), i.e.,

ρ1(s) =
[∗ ∗

∗ ψ ′
]

and ρ2(s) =
[∗ ∗

∗ η′
]

.

(ii) Let (e1, . . . , e2l+m+k) be the standard basis for ρ which is identified with irr(C). Then
the unit object 1 of C is e2u−1 or e2u for some u � l. In this case,
(a) ψuu + ηuu �= 0, dim(C) = 4

|ψuu+ηuu |2 and the modular data of C is given by

S = 2

ψu,u + ηu,u
ρ(s) and T = α−1

u ρ(t). (3.17)

In particular, the (2u − 1)-th, the 2u-th rows of the S-matrix have the following
form up to signs:

· · · 1 ψuu−ηuu
ψuu+ηuu

· · ·
√
2ψu,l+1

ψuu+ηuu
· · ·

√
2ψu,l+k

ψuu+ηuu

√
2ηu,l+1

ψuu+ηuu
. . .

√
2ηu,l+m

ψuu+ηuu

· · · ψuu−ηuu
ψuu+ηuu

1 · · ·
√
2ψu,l+1

ψuu+ηuu
· · ·

√
2ψu,l+k

ψuu+ηuu

√
2ηu,l+1

ψuu+ηuu
. . .

√
2ηu,l+m

ψuu+ηuu

. (3.18)

(b) ψuu−ηuu
ψuu+ηuu

∈ {± dim(e2u−1),± dim(e2u)}, and thedimensions of e2l+1, . . . , e2l+k+m,
up to some signs, are respectively given by

√
2ψu,l+1

ψuu + ηuu
, . . . ,

√
2ψu,l+k

ψuu + ηuu
,

√
2ηu,l+1

ψuu + ηuu
, . . . ,

√
2ηu,l+m

ψuu + ηuu
.

Hence, these numbers are real nonzero cyclotomic integers in Z[ζN ] where N =
ord(T ). Moreover, ψuu−ηuu

ψuu+ηuu
∈ Z[ζN ] is a unit.

(c)
√
2ψi,l+i ′
ψu,l+i ′

,

√
2ηi,l+i ′′
ηu,l+i ′′

∈ Z[ζN ] for l < i, 1 � i ′ � k, 1 � i ′′ � m .

(iii) If ρ1 and ρ2 are irreducible, then ρ1 and ρ2 must have the same parity and C is
self-dual.

Proof. We first obtain a representation ρ̃ by conjugating ρ1 ⊕ ρ2 with a permutation
matrix so that

ρ̃(t) = diag(α1 I2, . . . , αl I2, αl+1, . . . , αl+k, βl+1, . . . , βl+k) and ρ̃(s) =
⎡
⎣
Ã B̃� C̃�
B̃ ψ ′ 0
C̃ 0 η′

⎤
⎦

where I2 is the 2 × 2 identity matrix, and Ã, B̃, C̃ are block matrices given by

Ãi j =
[
ψi j 0
0 ηi j

]
, B̃i ′ j = [ψl+i ′, j 0] and C̃i ′′ j = [0 ηl+i ′′, j ]
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with 1 � i, j � l, 1 � i ′ � k and 1 � i ′′ � m, Suppose there exists an MD
representation ρ of a modular tensor category C such that ρ ∼= ρ1 ⊕ ρ2. Then ρ ∼= ρ̃

and we may assume ρ(t) = ρ̃(t) by conjugating a permutation matrix to ρ. According
to Theorem 3.4, there exists a block diagonal orthogonal matrix U of the form

U = diag(U1, . . . ,Ul , γ2l+1, . . . , γ2l+m+k)

such that ρ(s) = U ρ̃(s)U� and ρ(t) = ρ̃(t), where γ j = ±1 and Ui is a 2 × 2
orthogonal matrix for i = 1, . . . , l and j = 2 l +1, . . . , 2 l + k +m. We can always write

Ui = Vi

[
ai −bi
bi ai

]
where a2i + b2i = 1, ai � 0 and Vi a signed diagonal matrix. Now,

we set V = diag(V1, . . . , Vl , γ2 l+1, . . . , γ2 l+k+m). Then statement (i) follows.
The standard basis (e1, . . . , e2l+k+m) is now identified with irr(C). Since only the first

2l rows of ρ(s) may not contain any zero entries, the unit object 1 can only be ex with
1 � x � 2 l. Let u = �x/2�, the least integer � u/2. Then,

T = α−1
u diag(α1 I2, . . . , αl I2, αl+1, . . . , αk+l , βl+1, . . . , βl+m)

and the (2u − 1)-th and 2u-th rows of ρ(s) are given by

Au,i =
[
aua jψu j + bub jηu j aub jψu j − bua jηu j
bua jψu j − aub jηu j bub jψu j + aua jηu j

]
, (B�)u,i ′ = ψu,l+i ′

[
au
bu

]
,

(C�)u,i ′′ = ηu,l+i ′′
[−bu
au

]
.

Since ex = 1 and x ∈ {2u−1, 2u}, au, bu, ψu,l+i ′ and ηu,l+i ′′ are non-zero for 1 � i ′ � k
and 1 � i ′′ � m.

Now, we assume x = 2u − 1. Then, by [26],

ρ(s)2u,2l+i ′

ρ(s)2u−1,2l+i ′
= buψu,l+i ′

auψu,l+i ′au
= bu

au
and

ρ(s)2u,2l+k+i ′′

ρ(s)2u−1,2l+k+i ′′
= −auηu,l+i ′′

buηu,l+i ′′
= −au

bu
∈ Z[ζN ]

where N = ord(T ). Therefore, aubu is a unit inZ[ζN ]. According to [29], both spec(ρ1(t))
and spec(ρ2(t)) are closed under the action of σ 2 for any σ ∈ Gal(Q̄). Therefore, the
subsets

{αl+1, . . . , αl+k} ⊂ spec(ρ1(t)) and {βl+1, . . . , βl+m} ⊂ spec(ρ2(t))

are closed under σ 2 for all σ ∈ Gal(Q̄). Thus, {2 l + 1, . . . , 2 l + k} and {2 l + k +
1, . . . , 2 l + k + m} are both closed under the action of σ̂ for σ ∈ Gal(Q̄). In particular,
for σ ∈ Gal(Q̄), σ̂ (2l + 1) = 2l + i ′ for some positive integer i ′ � k. Hence,

σ

(
bu
au

)
= σ

(
ρ(s)2u,2l+1

ρ(s)2u−1,2l+1

)
= ρ(s)2u,σ̂ (2l+1)

ρ(s)2u−1,σ̂ (2l+1)
= ρ(s)2u,2l+i ′

ρ(s)2u−1,2l+i ′
= bu

au
.

So, bu/au ∈ Q and hence bu/au = ±1 = εu . Since a2u + b2u = 1, we have au = 1√
2
.

This implies that

Au,u = 1

2

[
ψuu + ηuu εu(ψuu − ηuu)

εu(ψuu − ηuu) ψuu + ηuu

]
, (B�)u,i ′ = 1√

2
ψu,l+i ′

[
1
εu

]
,
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(C�)u,i ′′ = 1√
2
ηu,l+i ′′

[−εu
1

]
.

In particular,
ζ i4
D = ψuu+ηuu

2 . Therefore, ψuu + ηuu �= 0 and so the S-matrix (3.17) of C is
then obtained. In particular, the (2u − 1)-th and 2u-th rows of S are displayed in (3.18).
Thus, the dimensions of e2u, e2 l+1, . . . , e2 l+k+m , up to some signs, are respectively given
by

ψuu − ηuu

ψuu + ηuu
,

√
2ψu,l+1

ψuu + ηuu
, . . . ,

√
2ψu,l+k

ψuu + ηuu
,

√
2ηu,l+1

ψuu + ηuu
, . . . ,

√
2ηu,l+m

ψuu + ηuu
,

which are non-zero real numbers in Z[ζN ].
Now, the global dimension

dim(C) = ±4

(ψuu + ηuu)2
∈ R

× ∩ Z[ζN ].

It follows from [26] that ρ(s)y,z
ρ(s)2u−1,z

∈ Z[ζN ] for any y, z = 1, . . . , 2 l + k + m. For
y = z = 2u, we find

ψuu + ηuu

ψuu − ηuu
∈ Z[ζN ],

and so ψuu−ηuu
ψuu+ηuu

is a real unit in Z[ζN ]. For y, z > 2l, we find

√
2ψi,l+i ′

ψu,l+i ′
and

√
2ηi,l+i ′′

ηu,l+i ′′
∈ Z[ζN ].

for i > l, 1 � i ′ � k, 1 � i ′′ � m. This completes the case for x = 2u − 1.
One can follow the same argument for the case when x = 2u. However, the con-

clusions are identical to the case x = 2u − 1. Therefore, the proof of statement (ii) is
completed.
(iii). Assume the contrary. Then ρ1, ρ2 are irreducible representations with opposite
parities. Thus, |Tr(ρ(s)2)| = |k−m|, which is the number of self-dual objects in irr(C).
Since ρ(t) has m + k eigenvalues of multiplicity 1, the number of self-dual objects in
irr(C) is at least m + k which is greater than |k − m|, a contradiction. The proof of
statement (iii) is completed.

As a consequence of the preceding theorem, two non-degenerate irreducible represen-
tations with opposite parities will never satisfy the conditions of the theorem. However,
we can solve the modular data if the t-spectrum of ρ2 is subset of that of ρ1.

Theorem 3.24. Let ρ1, ρ2 be non-degenerate symmetric representations of SL2(Z)such
that

spec(ρ2(t)) � spec(ρ1(t)).

Let l + k = dim ρ1 and l = dim ρ2, ρ1(s) = [ψi j ], ρ1(t) = diag(α1, . . . , αk+l),
ρ2(s) = [ηi j ], ρ2(t) = diag(α1, . . . , αl). Suppose ρ1 ⊕ ρ2 is equivalent to an SL2(Z)

representation ρ of a modular tensor category C. Then



Reconstruction of Modular Data from SL2(Z) Representations

(i) there exists a signed diagonalmatrix V and 2×2 orthogonalmatricesUi =
[
ai −bi
bi ai

]

with a2i + b2i = 1 and ai � 0 (i = 1, . . . , l) such that

ρ(s) = V

[
A B�
B ψ ′

]
V and ρ(t) = diag(α1 I2, . . . , αl I2, αl+1, . . . , αk+l),

where ψ ′ is the k × k lower right corner block of ρ1(s) and A, B are block matrices
given by

Ai j = Ui

[
ψi j 0
0 ηi j

]
U�

j , Bi ′ j = [ψl+i ′, j 0]U�
j ,

for 1 � i, j � l and 1 � j ′ � k.
(ii) Supposeρ1 andρ2 haveopposite parities.We identify the standardbasis (e1, . . . , e2l+k)

of ρ with irr(C). Then
(a) e2i−1 and e2i form a dual pair for i = 1, . . . , l.
(b) The unit object 1 can only be e2l+u with 1 � u � k such that ψl+u,l+u �= 0 and

dim(C) = |ψl+u,l+u |−2, dim(e2i−1) = dim(e2i ) = ±ψi,l+u√
2ψl+u,l+u

,

dim(e j ) = ±ψ j,l+u

ψl+u,l+u

for i = 1, . . . , l and j = l + 1, . . . , l + k . In particular, they are elements of
Z[ζN ] ∩R

× where N is the order of T = α−1
l+uρ(t), and the S-matrix of C is given

by

S = ψ−1
l+u,l+u V

′
[
A′ B ′�
B ′ ψ ′

]
V ′ (3.19)

for some signed diagonal matrix V ′ and block matrices A′, B ′ given by

A′
i j =

[
ψi, j+εi ε jηi, j

2
ψi, j−εi ε jηi, j

2
ψi, j−εi ε jηi, j

2
ψi, j+εi ε jηi, j

2

]
and B ′

i ′, j = ψl+i ′, j√
2

[1 1]

where ε j = ±1, 1 � i, j � l and 1 � i ′ � k.

Proof. By conjugating a permutation matrix to ρ1 ⊕ ρ2, we can obtain an equivalent
representation ρ̃ given by

ρ̃(s) =
[
Ã B̃�
B̃ ψ ′

]
and ρ̃(t) = diag(α1 I2, . . . , αl I2, αl+1, . . . , αk+l),

where ψ ′ is the k × k bottom diagonal block of ρ1(s), and Ã, B̃ are block matrices with

Ãi j =
[

ψi j 0
0 ηi j

]
, B̃i ′, j = [ψl+i ′, j 0]

for 1 � i, j � l and 1 � j ′ � k. By Theorem 3.4, there exists an orthogonal matrixU =
diag(U1, . . . ,Ul , γ2 l+1, . . . , γ2 l+1) such that ρ(s) = U ρ̃(s)U� and ρ(t) = ρ̃(t) where
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γ j = ±1 andUi is a 2×2 orthogonal matrix for i = 1, . . . , l and j = 2 l +1, . . . , 2 l +k.

As before, we write Ui = Vi

[
ai −bi
bi ai

]
where a2i + b2i = 1, ai � 0 and Vi a signed

diagonal matrix. Now, we set V = diag(V1, . . . , Vl , γ2 l+1, . . . , γ2 l+k), and statement (i)
follows immediately.

(ii). Now we assume ρ1 and ρ2 are of opposite parities. Then |Tr(ρ(s)2)| = k and
so there are exactly k self-dual simple objects in irr(C) and l dual pairs. Since e2i−1 and
e2i give rise to the same eigenvalue of ρ(t) for i = 1, . . . , l, and ρ(t)2i,2i �= ρ(t) j, j
for j �∈ {2i − 1, 2i}, they must form a dual pair. Since the unit object 1 is self-dual,
1 = e2l+u for some positive integer u � k, and so 1/

√
dim(C), up to a 4-th root,

is ρ(s)2l+u,2l+u = ψl+u,l+u . In particular, ψl+u,l+u �= 0, dim(C) = |ψl+u,l+u |−2 and
ψ−2
l+u,l+u ∈ Z[ζN ] ∩ R

×, where N is the order of T = α−1
l+uρ(t). By (i),

S = ψ−1
l+u,l+u V

[
A B�
B ψ ′

]
V,

where A, B are block matrices given by

Ai j =
[

ai a jψi, j+bi b jηi, j
2

ai b jψi, j−a j biηi, j
2

a j biψi, j−ai b jηi, j
2

bi b jψi, j+ai a jηi, j
2

]
and Bi ′, j = ψl+i ′, j [a j b j ].

Thus, the dimensions of e2 j−1 and e2 j are respectively given by

ψl+u, j a j

ψl+u,l+u
and

−ψl+u, j b j

ψl+u,l+u

which implies±a j = b j . Since a2j +b
2
j = 1 and a j � 0, we have a j = 1√

2
and b j = ε j√

2

for some ε j = ±1 ( j = 1, . . . , l). Therefore, Ai j =
[

ψi, j+εi ε jηi, j
2

ε jψi, j−εiηi, j
2

εiψi, j−ε jηi, j
2

εi ε jψi, j+ηi, j
2

]
and

Bi ′, j = ψl+i ′, j√
2

[1 ε j ]. Let E j =
[
1 0
0 ε j

]
for j = 1, . . . , l. Then

Ai j = Ei A
′
i j E j and Bi ′ j = B ′

i ′ j E j

and the expression (3.19) of the S-matrix follows immediately by settingV ′ = V E where
E = diag(E1, . . . , El , 1, . . . , 1). Moreover, dim(e2 j−1) = dim(e2 j ) = ±ψl+u, j√

2ψl+u,l+u
for

j = 1, . . . , l, and dim(e2l+i ′) = ±ψl+i ′,l+u
ψl+u,l+u

for 1 � i ′ � k. It follows from [24] that they

are elements of Z[ζN ] ∩ R
×. This completes the proof of statement (ii).

4. Classification of Modular Data of rank = 6: Admissible Types

In this section, we prove that admissible types of MDs that can be realized by some rank
= 6 MTCs include (4, 1, 1), (4, 2), (3, 3), and (3, 2, 1).

Definition 4.1. Let (S, T )be amodular data.Denote by ι the object (label) corresponding
to the column of the S-matrix that is a multiple of the column of FP-dimensions.
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4.1. Classification of modular data of type (4,1,1). Recall that SO(8)3 ∼= PSO(8)3 �
SO(8)1 as modular tensor categories, which defines the notation PSO(8)3. Alterna-
tively, the modular data of PSO(8)3 can be obtained from SU (3)6 via boson conden-
sation [34]. We will prove in this section that the Galois conjugates of the modular data
of PSO(8)3 are characterized by the MTCs of type (4,1,1).

Theorem 4.2. Let C be a rank 6 modular tensor category of type (4, 1, 1). Then the
modular data of C is a Galois conjugate of PSO(8)3.

Let C be anMTCof type (4, 1, 1), andρ an SL2(Z) representation of C. Thenρ admits
an irreducible decomposition ρ0⊕ρ1⊕ρ2 in which dim ρ0, dim ρ1, dim ρ2 respectively
4,1,1. By tensoring a suitable 1-dimensional representation of SL2(Z), we will assume
ρ0 has a minimal t-spectrum.

In particular, all the 4-dimensional irreducible representations of level 6 are even.
Now, can prove

Lemma 4.3. C is self-dual, ρ0 must be even of level 9, and ρ ∼= ρ0 ⊕ 2χ0.

Proof. From “Appendix A”, 4-dimensional irreducible representations of SL2(Z) with
minimal t-spectrums appear at the levels 5, 6, 7, 8, 9, 10, 12, 15, 20, 24 and 40. The
t-spectrums of those 4-dimensional irreducible representations of levels 5, 8, 10, 15, 20,
24 and 40 do not contain any 12-th root of unity. It follows from Lemma 3.20 that ρ0
cannot be of any of these levels.

It remains to show that the level of ρ0 cannot be 6, 7 or 12. Suppose ρ0 has level 7.
Then C is of type (4,1,1), which contradicts Proposition 3.22. Therefore, the level of ρ0
cannot be 7.

Suppose ρ0 has level 6 or 12. Since there is no 4-dimensional irreducible represen-
tation of levels 2, 3 or 4 in the tables of “Appendix A”, ρ0 must be projectively equiv-
alent to a tensor product of two 2-dimensional representations, namely ρ21,02

⊗ ρ21,03
or

ρ21,04
⊗ρ21,03

. However,ρ21,02
andρ21,04

are projectively equivalent, hence so areρ21,02
⊗ρ21,03

and ρ21,04
⊗ ρ21,03

. So ρ0 is projectively equivalent to ρ21,02
⊗ ρ21,03

, which has a minimal

t-spectrums {1,−1, ζ3,−ζ3}. Therefore, ρ0 ∼= ρ21,02
⊗ ρ21,03

.

By Lemma 3.20, the levels of ρ1 and ρ2 are divisors of 6, and so is the level of ρ.
Therefore, ord(T )|6 and hence C is integral byTheorem3.14. It follows fromProposition
3.16 that C is of type (4,2), a contradiction. Therefore, the level of ρ0 cannot be 6 or 12.

As a consequence, ρ0 must have level 9, and ρ ∼= ρ0 ⊕ 2χ0 by Lemma 3.20 since 1
is the unique eigenvalue of ρ(t) with order dividing 12. It follows from Corollary 3.21
that ρ0(s2) = id and C is self-dual.

4.1.1. Solving modular data of type (4,1,1) By “Appendix A”, there is only one Galois
orbit of 4-dimensional irreducible representations of level 9 which is even. This Galois
orbit has two projectively equivalent classes given by ρ41,09,1

and ρ48,09,1
which are complex

conjugate of each other. First, we consider ρ0 = ρ41,09,1
.

Let z1 = c29, z2 = c49 and z3 = c19 where c
m
n := ζm

n + ζ−m
n . Then

ρ0(s) = 1

3

⎡
⎢⎢⎣

0 −√
3 − √

3 − √
3

−√
3 z1 z2 z3

−√
3 z2 z3 z1

−√
3 z3 z1 z2

⎤
⎥⎥⎦ , ρ0(t) = diag(1, ζ9, ζ

4
9 , ζ 7

9 ).
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Let ρ̃ = 2χ0 ⊕ ρ0 and set s := ρ(s) and t := ρ(t). By reordering irr(C), one can
assume

ρ(t) = ρ̃(t) = diag(1, 1, 1, ζ9, ζ
4
9 , ζ 7

9 ).

By Theorem 3.4, there exists U ∈ O6(R) such that ρ = U ρ̃U�. Then U = f ⊕ V
for some signed diagonal matrix V = diag(ε1, ε2, ε3) and f ∈ O3(R) where f ⊕ V
denotes the block direct sum of f and V . We may further assume ε3 = 1, and we get

s = U ρ̃(s)U� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 211 + f 212 f11 f21 + f12 f22 f11 f31 + f12 f32
ε1 f13
−√

3
f13

−√
3

f13
−√

3
f11 f21 + f12 f22 f 221 + f 222 f21 f31 + f22 f32

ε1 f23
−√

3
ε2 f23
−√

3
f23

−√
3

f11 f31 + f12 f32 f21 f31 + f22 f32 f 231 + f 232
ε1 f33
−√

3
ε2 f33
−√

3
f33

−√
3

ε1 f13
−√

3
ε1 f23
−√

3
ε1 f33
−√

3
z1
3

ε1ε2z2
3

ε1z3
3

ε2 f13
−√

3
ε2 f23
−√

3
ε2 f33
−√

3
ε1ε2z2

3
z3
3

ε2z1
3

f13
−√

3
f23

−√
3

f33
−√

3
ε1z3
3

ε2z1
3

z2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − f 213 − f13 f23 − f13 f33
ε1 f13
−√

3
ε2 f13
−√

3
f13

−√
3

− f13 f23 1 − f 223 − f23 f33
ε1 f23
−√

3
ε2 f23
−√

3
f23

−√
3

− f13 f33 − f23 f34 1 − f 233
ε1 f33
−√

3
ε2 f33
−√

3
f33

−√
3

ε1 f13
−√

3
ε1 f23
−√

3
ε1 f33
−√

3
z1
3

ε1ε2z2
3

ε1z3
3

ε2 f13
−√

3
ε2 f23
−√

3
ε2 f33
−√

3
ε1ε2z2

3
z3
3

ε2z1
3

f13
−√

3
f23

−√
3

f33
−√

3
ε1z3
3

ε2z1
3

z2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now apply the Galois symmetry [11, Theorem II] of ρ to determine f and ε1, ε2
(cf. Theorem 3.7 (6)). Since ord(t) = 9, then s is a matrix over Q9. The Galois group
Gal(Q9/Q) is generated by σ defined by σ : ζ9 �→ ζ 2

9 , and σ̂ denotes the corresponding
permutation on irr(C) = {1, . . . , 6}. The i-th diagonal entry of t will be denoted by ti .
Under the action of σ 2,

t4 �→ t5, t5 �→ t6, and t6 �→ t4.

We find σ̂ (4) = 5, σ̂ (5) = 6 and σ̂ (6) = 4. Recall that σ(si j ) = εσ (i)sσ̂ (i) j where
εσ (i) = ±1. Applying σ to those si j with i, j ∈ {4, 5, 6}, we have

σ(z1) = εσ (4)ε1ε2z2, σ (ε1ε2z2) = εσ (5)ε1z3 and σ(ε1z3) = εσ (6)z1.

Since σ(z1) = z2, σ(z2) = z3 and σ(z3) = z1, we find

εσ (4) = ε1ε2, εσ (5) = ε2 and εσ (6) = ε1.

Now, we apply σ to those si j with i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. We have σ(
fi3√
3
) = fi3√

3
,

and hence fi3√
3

∈ Q for i = 1, 2, 3. This implies that fi3 f j3 ∈ Q for any i, j ∈ {1, 2, 3}.
Therefore, the first 3 rows of s have rational entries, and hence σ̂ fixes 1,2,3. Now, we
can conclude that σ̂ = (4, 5, 6).

SinceC is not integral byProposition 3.16, none of 1, 2 or 3 cannot be the isomorphism
class of the unit object 1 or the simple object ι for the Frobenius-Perron dimensions.
Therefore, dim(C) and FPdim(C) are Galois conjugates, and FPdim(C) is the largest
conjugate of dim(C). The global dimension dim(C) can be 9z−2

1 , 9z−2
3 or 9z−2

2 depending
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which of the classes 4,5,6 corresponds 1. Since they are conjugates and −z2 > z3 >

z1 > 0, FPdim(C) = 9z−2
1 .

Let (S, T ) be the modular data of C. Note that z1, z2, z3 are units, and they are roots
of the irreducible polynomial x3 − 3x + 1. No matter which of 4,5,6 is the isomorphism
class of 1, for i ∈ {1, 2, 3} and j ∈ {4, 5, 6},

Si j = ±
√
3 fi3
zk

for some k ∈ {1, 2, 3}. Since Si j is a cyclotomic integer, so is
√
3 fi3. Thus,

√
3 fi3 is an

integer and they satisfy

(
√
3 f13)

2 + (
√
3 f23)

2 + (
√
3 f33)

2 = 3.

Therefore,
√
3 fi3 = ±1 or equivalently fi3 = ± 1√

3
for i = 1, 2, 3. Now, we can

compute the modular data for the cases 1 = 4, 5 or 6:

(i) Suppose 4 is the isomorphism class of 1. Then D = 3/z1 and

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1− f 213
z1

3 f13 f23
−z1

3 f13 f33
−z1

ε1
√
3 f13

−z1
ε2

√
3 f13

−z1

√
3 f13
−z1

3 f13 f23
−z1

3
1− f 223
z1

3 f23 f33
−z1

ε1
√
3 f23

−z1
ε2

√
3 f23

−z1

√
3 f23
−z1

3 f13 f33
−z1

3 f23 f33
−z1

3
1− f 233
z1

ε1
√
3 f33

−z1
ε2

√
3 f33

−z1

√
3 f33
−z1

ε1
√
3 f13

−z1
ε1

√
3 f23

−z1
ε1

√
3 f33

−z1
1 ε1ε2z2

z1
ε1z3
z1

ε2
√
3 f13

−z1
ε2

√
3 f23

−z1
ε2

√
3 f33

−z1
ε1ε2z2
z1

z3
z1

ε2√
3 f13
−z1

√
3 f23
−z1

√
3 f33
−z1

ε1z3
z1

ε2
z2
z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that

6∑
i=1

(
Si,4
S4,4

)2

= 9

z21
= FPdim(C).

Therefore, 4 is also the isomorphism class of ι (recall Definition 4.1). In particular,
C is pseudounitary and the entries of 4th row of S must be positive. Since z2

z1
< 0

and z3
z1

> 0, we have ε1 = 1, ε2 = −1 and fi3 < 0 for i = 1, 2, 3. This implies√
3 fi3 = −1 for i = 1, 2, 3 and

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
1 −z−1

1 −z−1
1 z−1

1 −z−1
1 z−1

1
−z−1

1 2z−1
1 −z−1

1 z−1
1 −z−1

1 z−1
1

−z−1
1 −z−1

1 2z−1
1 z−1

1 −z−1
1 z−1

1
z−1
1 z−1

1 z−1
1 1 −z2

z1
z3
z1

−z−1
1 −z−1

1 −z−1
1

−z2
z1

z3
z1

−1

z−1
1 z−1

1 z−1
1

z3
z1

−1 z2
z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ 8
9 , ζ 8

9 , ζ 8
9 , 1, ζ3, ζ

2
3 ).
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(ii) Suppose 5 is the isomorphism class of 1. Then D = 3/z3 and hence

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1− f 213
z3

3 f13 f23
−z3

3 f13 f33
−z3

ε1
√
3 f13

−z3
ε2

√
3 f13

−z3

√
3 f13
−z3

3 f13 f23
−z3

3
1− f 223
z3

3 f23 f33
−z3

ε1
√
3 f23

−z3
ε2

√
3 f23

−z3

√
3 f23
−z3

3 f13 f33
−z3

3 f23 f33
−z3

3
1− f 233
z3

ε1
√
3 f33

−z3
ε2

√
3 f33

−z3

√
3 f33
−z3

ε1
√
3 f13

−z3
ε1

√
3 f23

−z3
ε1

√
3 f33

−z3
z1
z3

ε1ε2z2
z3

ε1
ε2

√
3 f13

−z3
ε2

√
3 f23

−z3
ε2

√
3 f33

−z3
ε1ε2z2
z3

1 ε2z1
z3√

3 f13
−z3

√
3 f23
−z3

√
3 f33
−z3

ε1
ε2z1
z3

z2
z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, one can check directly that

6∑
i=1

(
Si4
S54

)2 = 9

z22
and

6∑
i=1

(
Si6
S56

)2 = 9

z21
,

which implies 6 is the isomorphism class of ι. Thus, all the entries of the 6th row of
S have the same sign. Since z2/z3 < 0 and z1/z3 > 0, we obtain that ε1 = ε2 = −1
and fi3 > 0 for i = 1, 2, 3. Therefore,

√
3 f13 = √

3 f23 = √
3 f33 = 1

and hence

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
3 −z−1

3 −z−1
3 z−1

3 z−1
3 −z−1

3
−z−1

3 2z−1
3 −z−1

3 z−1
3 z−1

3 −z−1
3

−z−1
3 −z−1

3 2z−1
3 z−1

3 z−1
3 −z−1

3
z−1
3 z−1

3 z−1
3

z1
z3

z2
z3

−1

z−1
3 z−1

3 z−1
3

z2
z3

1 −z1
z3

−z−1
3 −z−1

3 −z−1
3 −1 −z1

z3
z2
z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ 5
9 , ζ 5

9 , ζ 5
9 , ζ 2

3 , 1, ζ3).

(iii) Suppose 6 is the isomorphism class of 1. Then D = 3/z2 and

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1− f 213
z2

3 f13 f23
−z2

3 f13 f33
−z2

ε1
√
3 f13

−z2
ε2

√
3 f13

−z2

√
3 f13
−z2

3 f13 f23
−z2

3
1− f 223
z2

3 f23 f33
−z2

ε1
√
3 f23

−z2
ε2

√
3 f23

−z2

√
3 f23
−z2

3 f13 f33
−z2

3 f23 f33
−z2

3
1− f 233
z2

ε1
√
3 f33

−z2
ε2

√
3 f33

−z2

√
3 f33
−z2

ε1
√
3 f13

−z2
ε1

√
3 f23

−z2
ε1

√
3 f33

−z2
z1
z2

ε1ε2
ε1z3
z2

ε2
√
3 f13

−z2
ε2

√
3 f23

−z2
ε2

√
3 f33

−z2
ε1ε2

z3
z2

ε2z1
z2√

3 f13
−z2

√
3 f23
−z2

√
3 f33
−z2

ε1z3
z2

ε2z1
z2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now,

6∑
i=1

(
Si4
S64

)2 = 9

z23
and

6∑
i=1

(
Si5
S65

)2 = 9

z21
,
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which implies 5 is the isomorphism class of ι. Thus, all the entries of the 4th row
have the same signs. Since z3/z2 < 0 and z1/z2 < 0, ε1 = −1, ε2 = 1 and fi3 > 0
for i = 1, 2, 3. Therefore,

√
3 f13 = √

3 f23 = √
3 f33 = 1

and hence

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
2 −z−1

2 −z−1
2 −z−1

2 z−1
2 z−1

2
−z−1

2 2z−1
2 −z−1

2 −z−1
2 z−1

2 z−1
2

−z−1
2 −z−1

2 2z−1
2 −z−1

2 z−1
2 z−1

2
−z−1

2 −z−1
2 −z−1

2
z1
z2

−1 −z3
z2

z−1
2 z−1

2 z−1
2 −1 z3

z2
z1
z2

z−1
2 z−1

2 z−1
2

−z3
z2

z1
z2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ 2
9 , ζ 2

9 , ζ 2
9 , ζ3, ζ

2
3 , 1).

Now, we compute the modular data for ρ0 = ρ48,09,1
, which is the complex conjugate of

ρ41,09,1
(s). Since ρ41,09,1

(s)) = ρ48,09,1
(s), modular data are complex conjugations of those

obtained for ρ0 = ρ41,09,1
. They are:

(iv)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
1 −z−1

1 −z−1
1 z−1

1 −z−1
1 z−1

1
−z−1

1 2z−1
1 −z−1

1 z−1
1 −z−1

1 z−1
1

−z−1
1 −z−1

1 2z−1
1 z−1

1 −z−1
1 z−1

1
z−1
1 z−1

1 z−1
1 1 −z2

z1
z3
z1

−z−1
1 −z−1

1 −z−1
1

−z2
z1

z3
z1

−1

z−1
1 z−1

1 z−1
1

z3
z1

−1 z2
z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ9, ζ9, ζ9, 1, ζ
2
3 , ζ3).

(v)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
3 −z−1

3 −z−1
3 z−1

3 z−1
3 −z−1

3
−z−1

3 2z−1
3 −z−1

3 z−1
3 z−1

3 −z−1
3

−z−1
3 −z−1

3 2z−1
3 z−1

3 z−1
3 −z−1

3
z−1
3 z−1

3 z−1
3

z1
z3

z2
z3

−1

z−1
3 z−1

3 z−1
3

z2
z3

1 −z1
z3

−z−1
3 −z−1

3 −z−1
3 −1 −z1

z3
z2
z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ 4
9 , ζ 4

9 , ζ 4
9 , ζ3, 1, ζ

2
3 ).

(vi)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z−1
2 −z−1

2 −z−1
2 −z−1

2 z−1
2 z−1

2
−z−1

2 2z−1
2 −z−1

2 −z−1
2 z−1

2 z−1
2

−z−1
2 −z−1

2 2z−1
2 −z−1

2 z−1
2 z−1

2
−z−1

2 −z−1
2 −z−1

2
z1
z2

−1 −z3
z2

z−1
2 z−1

2 z−1
2 −1 z3

z2
z1
z2

z−1
2 z−1

2 z−1
2

−z3
z2

z1
z2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T = diag(ζ 7
9 , ζ 7

9 , ζ 7
9 , ζ 2

3 , ζ3, 1).
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4.1.2. Proof of Theorem 4.2 Since modular data of Type (4,1,1) have been completely
solved in the last subsection. The modular data of PSO(8)3 coincides with (i) up to a
permutation. Let σ ∈ Gal(Q9) be the generator defined by σ : ζ9 �→ ζ 2

9 . Applying σ to
the modular data (i)-(vi), One can check directly

(i)
σ−→ (vi)

σ−→ (ii)
σ−→ (iv)

σ−→ (iii)
σ−→ (v)

σ−→ (i)

up to permutations of the objects. This completes the proof of Theorem 4.2.

4.2. Classification of modular data of type (4,2). In this section, we will complete the
classification of modular data of type (4,2) in the following theorem.

Theorem 4.4. Let C be a rank 6modular tensor category of type (4, 2). Then themodular
data of C can only be a Galois conjugate of the modular data of the following modular
tensor categories:

(1) C(Z6, q) with q(1) = ζ12;
(2) C(Z3, q) � PSU (2)3 with q(1) = ζ3;
(3) G(2)3 .

Wewill use the following level 5 irreducible representations ρ215
, ρ415,1

and ρ415,2
when

necessary.

ρ215
(s) = 1

s15

[
1 ϕ

ϕ −1

]
, ρ215

(t) = diag(ζ5, ζ
4
5 ). (4.1)

Note that ρ215
is defined overQ5. Let σ ∈ Gal(Q̄) such that σ(ζ5) = ζ 2

5 . Then ρ225
:= σ ◦

ρ215
. ρ2i5

, i = 1, 2, form a complete set of inequivalent 2-dimensional representations of
level 5. The following irreducible representations also forma complete set of inequivalent
4-dimensional representations of level 5:

ρ415,1
(s) = s35

5

⎡
⎢⎢⎣

−ϕ2 ϕ−1
√
3ϕ

√
3

ϕ−1 ϕ2
√
3 −√

3ϕ√
3ϕ

√
3 ϕ−1 ϕ2√

3 −√
3ϕ ϕ2 −ϕ−1

⎤
⎥⎥⎦ , ρ415,1

(t) = diag(ζ5, ζ
2
5 , ζ 3

5 , ζ 4
5 ).

(4.2)

ρ415,2
(s) = 1√

5

⎡
⎢⎢⎣

1 −1 ϕ−1 ϕ

−1 1 ϕ ϕ−1

ϕ−1 ϕ −1 1
ϕ ϕ−1 1 −1

⎤
⎥⎥⎦ , ρ415,2

(t) = diag(ζ5, ζ
2
5 , ζ 3

5 , ζ 4
5 ). (4.3)

We will need to establish a few lemmas to complete the proof of this theorem. Let C
be a modular tensor category of type (4,2) and ρ an SL2(Z) representation of C. Then

ρ ∼= ρ1 ⊕ ρ2

for some irreducible representations ρ1, ρ2 of dimensions 4 and 2 respectively. By ten-
soringwith a suitableχ i ∈ ŜL2(Z), wemay assume that the t-spectrum of ρ1 is minimal.
Therefore, ρ1 has a prime power level or ρ1 is a tensor product of two 2-dimensional
irreducible representations of distinct prime power levels.
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According to “Appendix A”, ρ1 can only have the prime power levels 5, 7, 8, 9 or the
composite levels 6, 10, 15, 24, 40. Note that a 4-dimensional irreducible representation
of level 12 is projectively equivalent to an irreducible representation of level 6 as shown
in the proof of Lemma 4.3. We will prove that only the levels 7, 15 and 24 are possible.

It follows from “Appendix A” that the eigenvalues of ρ1(t) and ρ2(t) are multiplicity
free. By the t-spectrum criteria, spec(ρ1(t)) ∩ spec(ρ2(t)) = {θ̃0} or spec(ρ2(t)) ⊂
spec(ρ1(t). These situations have been studied in Theorems 3.23 and 3.24. Now, we can
begin to prove the level of ρ1 cannot 5, 8, or 9.

Lemma 4.5. The level of ρ1 cannot be 5.

Proof. Suppose ρ1 is of level 5. Since there are exactly two inequivalent irreducible
representations of level 5 and dimension 4, which are given by ρ415,1

and ρ415,2
, ρ1 must

be equivalent one of them. In particular, the spectrum of ρ1(t) consists of all the primitive
5-th root of unity.By the t-spectrumcriteria,ρ2 canonly be equivalent toρ215

orρ225
,which

are the inequivalent irreducible representations of level 5 and dimension 2. Therefore, ρ
is of level 5 and hence ρ(s) is a matrix over Q5. Let σ ∈ Gal(Q̄) such that σ(ζ5) = ζ 2

5 .
Then ρ225

= σ ◦ ρ215
.

Note that τ ◦ ρ415,i
∼= ρ415,i

for all τ ∈ Gal(Q̄) and i = 1, 2. Thus, if ρ1 ⊕ ρ215
is not equivalent to any MD representation, then so is σ ◦ (ρ1 ⊕ ρ215

) ∼= ρ1 ⊕ ρ225
.

Therefore, it suffices to show that ρ415,1
⊕ ρ215

and ρ415,2
⊕ ρ215

are not equivalent to any

MD representation.
(i) Suppose ρ1 = ρ415,1

and ρ2 = ρ215
. Using the representations ρ415,1

and ρ215
pre-

sented in (4.2) and (4.1), we have

(ρ1 ⊕ ρ2)(s) = s35
5

⎡
⎢⎢⎣

−ϕ2 ϕ−1
√
3ϕ

√
3

ϕ−1 ϕ2
√
3 −√

3ϕ√
3ϕ

√
3 ϕ−1 ϕ2√

3 −√
3ϕ ϕ2 −ϕ−1

⎤
⎥⎥⎦ ⊕ 1

s15

[
1 ϕ

ϕ −1

]

(ρ1 ⊕ ρ2)(t) = diag(ζ5, ζ
4
5 , ζ 2

5 , ζ 3
5 , ζ5, ζ

4
5 ).

By Theorem 3.24 (1), There exists a block diagonal orthogonal matrix

U =
[
a −b
b a

]
⊕
[
c −d
d c

]
⊕ I2 with a2 + b2 = 1, c2 + d2 = 1,

such that ρ(t) = diag(ζ5, ζ5, ζ 4
5 , ζ 4

5 , ζ 2
5 , ζ 3

5 ) and ρ(s) is a conjugation of s′ by a signed
diagonal matrix, where s′ is given by

s′ = s35
5

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ −√
3bϕ −√

3b
∗ ∗ ∗ ∗ √

3aϕ
√
3a

∗ ∗ ∗ ∗ −√
3d

√
3dϕ

∗ ∗ ∗ ∗ √
3c −√

3cϕ
−√

3bϕ
√
3aϕ −√

3d
√
3c ϕ−1 ϕ2

−√
3b

√
3a

√
3dϕ −√

3cϕ ϕ2 −ϕ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It follows from the action of σ 2 on ρ(t), we find σ̂ (5) = 6. Since

σ(s35/5) = s15
5

= − s35
5

ϕ and σ(ϕ) = −ϕ−1,



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

the action of σ on s′
55 implies ε′

σ (5) = 1. Hence, by the action of σ on the 5-th column,
we have

σ(
√
3x) = √

3x for x = a, b, c, d.

Therefore,
√
3a,

√
3b,

√
3c,

√
3d ∈ Q as σ |Q5 generates Gal(Q5/Q). If 5 (resp. 6)

corresponds to the unit object 1, then s′/s′
55 (resp. s

′/s′
66) is a matrix Z[ζ5]. Since ϕ is a

unit inZ[ζ5],
√
3a,

√
3b,

√
3c,

√
3d ∈ Z[ζ5] and hence

√
3a,

√
3b,

√
3c,

√
3d ∈ Z\{0}.

However, this contradicts that (
√
3a)2 + (

√
3b)2 = 3. Therefore, 5 and 6 cannot be 1.

Suppose 1 is the isomorphism class of1. Then s′
i,5/s

′
1,5 ∈ Z[ζ5] for all i . In particular,

1√
3b
, a/b ∈ Z[ζ5]. So, 1√

3b
, a/b ∈ Z. Let m, n ∈ Z such that a = mb and 1 = √

3bn.

The equality a2 + b2 = 1 implies (m2 + 1)3b2 = 3 and so m2 + 1 = 3n2. However,
3 � (m2 + 1) for any integer m. Therefore, 1 cannot the unit object. By the same reason,
2, 3, and 4 are not the isomorphism class of 1. This ultimate contradiction implies that
ρ415,1

⊕ ρ215
is not equivalent any MD representation.

(ii) Now we assume ρ1 = ρ415,2
and ρ2 = ρ215,1

. It follows from (4.1) and (4.3) that

(ρ1 ⊕ ρ2)(s) = 1√
5

⎡
⎢⎢⎣

1 −1 ϕ−1 ϕ

−1 1 ϕ ϕ−1

ϕ−1 ϕ −1 1
ϕ ϕ−1 1 −1

⎤
⎥⎥⎦ ⊕ 1

s15

[
1 ϕ

ϕ −1

]

(ρ1 ⊕ ρ2)(t) = diag(ζ5, ζ
4
5 , ζ 2

5 , ζ 3
5 , ζ5, ζ

4
5 ).

Note that ρ1, ρ2 have opposite parities. We reorder the simple objects as in Theorem
3.24 so that ρ(t) = diag(ζ5, ζ5, ζ 4

5 , ζ 4
5 , ζ 2

5 , ζ 3
5 ). The unit object can only be e5 or e6. In

either case, we find dim(C) = 5, and dim(e1) = dim(e2) = ±ρ1(s)13√
2ρ1(s)33

= ±ϕ−1√
2

�∈ Q5.

This contradicts Theorem 2.1 (4). Therefore, ρ415,2
⊕ ρ215,1

is not equivalent to any MD

representation. This completes the proof of this lemma.

Lemma 4.6. The level ρ1 cannot be 8.

Proof. Suppose ρ1 has level 8. Since there is only one projectively equivalent class of
irreducible representations of level 8 and dimension 4. One can assume ρ1 = ρ41,08

(cf.

“Appendix A”). In particular, ρ1 is odd, and spec(ρ1(t)) consists of all the primitive 8-th
roots of unity.

By the t-spectrum criteria, spec(ρ2(t)) must be a set of primitive 8-th roots of unity,
and hence ρ2 has level 8. Therefore, ρ2 must be projectively equivalent ρ21,08

, or ρ2 ∼=
ρ21,�8

, where � = 0, 3, 6, 9. Note that ρ1 is equivalent to its complex conjugation while

{ρ21,08
, ρ21,68

} and {ρ21,38
, ρ21,98

} are complex conjugation pairs. It suffices to show that ρ2
is not equivalent to (i) ρ21,08

or (ii) ρ21,38
.

(i) Suppose ρ2 ∼= ρ21,08
. Then spec(ρ2(t)) ⊂ spec(ρ1(t)) and ρ1, ρ2 have opposite

parities. Their direct sum ρ̃ = ρ41,08
⊕ ρ21,08

is given by

ρ̃(s) = i√
8

⎡
⎢⎣

1
√
3

√
3 1√

3 1 −1 −√
3√

3 −1 −1
√
3

1 −√
3

√
3 −1

⎤
⎥⎦ ⊕ 1√

2

[−1 1
1 1

]
and ρ̃(t) = diag(ζ8, ζ

3
8 , ζ 5

8 , ζ 7
8 , ζ8, ζ

3
8 ).
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However,

ρ̃(s)ndeg = i√
8

[−1
√
3√

3 1

]

is not a matrix over Q8, a contradiction to Proposition 3.9. Therefore, ρ2 �∼= ρ21,08
.

(ii)Now,we assumeρ2 ∼= ρ21,38
. Thenρ1, ρ2 have the sameparty, and ρ̃ = ρ41,08

⊕ρ21,38
is given by

ρ̃(s) = i√
8

⎡
⎢⎣

1
√
3

√
3 1√

3 1 −1 −√
3√

3 −1 −1
√
3

1 −√
3

√
3 −1

⎤
⎥⎦ ⊕ i√

2

[−1 1
1 1

]
and ρ̃(t) = diag(ζ8, ζ

3
8 , ζ 5

8 , ζ 7
8 , ζ 3

8 , ζ 5
8 ).

However,

ρ̃(s)ndeg = i√
8

[
1

√
3√

3 −1

]

is not a matrix over Q8, a contradiction to Proposition 3.9. Therefore, ρ2 �∼= ρ21,38
.

Lemma 4.7. The level of ρ1 cannot be 9.

Proof. There are 4 projectively inequivalent 4-dimensional irreducible SL2(Z) repre-
sentations of level 9, which are given by ρ41,09,1

, ρ48,09,1
, ρ41,09,2

, and ρ48,09,2
(cf. “Appendix A”).

ρ41,09,1
, ρ48,09,1

are complex conjugate of each other and so are ρ41,09,2
, and ρ48,09,2

. Therefore, it

suffices to show that ρ1 cannot be equivalent to (i) ρ41,09,1
or (ii) ρ41,09,2

.

(i) Suppose ρ1 ∼= ρ41,09,1
, which is odd. By the t-spectrum criteria, ρ2 can only be

projectively equivalent to ρ21,02
or ρ21,03

, and this implies ρ2 ∼= ρ21,02
, ρ21,03

or ρ21,83
. In any

of these cases, spec(ρ1(t)) ∩ spec(ρ2(t)) = {1}. Therefore, by Theorem 3.23 (iii), ρ2 is
also odd, which means ρ2 �∼= ρ21,02

as it is even.

Now ρ2 ∼= ρ21,03
or ρ21,83

. Note that

ρ21,03
(s) = i√

3

[−1
√
2√

2 1

]
, ρ21,03

(t) = diag(1, ζ3),

ρ21,83
(s) = i√

3

[
1

√
2√

2 −1

]
, ρ21,83

(t) = diag(1, ζ 2
3 ).

By Theorem 3.23 (ii), the unit object 1 of C is an eigenvector of ρ(t) of eigenvalue 1, and
dim(C) = 4/|ρ1(s)11 +ρ2(s)11|2 = 12. By the Cauchy Theorem of modular categories,
2 | ord(T ) | ord(ρ(t)) = 9, a contradiction. Therefore, ρ1 �∼= ρ41,09,1

.

(ii) Now, we assume ρ1 ∼= ρ41,09,2
, which is even. Using similar argument as in Case (i),

ρ2 ∼= ρ21,02
by the t-spectrum criteria and Theorem 3.23 (iii). In this case, spec(ρ1(t)) ∩

spec(ρ2(t)) = {1} and ρ has level 18. Theorem 3.23 (ii), the unit object of C is an
eigenvector of ρ(t) of eigenvalue 1, and dim(C) = 4/|ρ1(s)11 + ρ2(s)11|2 = 16. By
the Cauchy Theorem of modular categories, ord(T ) is a 2-power, but this contradicts
Theorem 3.7 (4). Therefore, ρ1 �∼= ρ41,09,2

.
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Lemma 4.8. If ρ1 projectively equivalent to an irreducible representation of prime
power level, then the modular data of C is a Galois conjugate of that of G(2)3.

Proof. By Lemmas 4.5, 4.6, 4.7 and “Appendix A”, ρ1 can only be projective equivalent
a level 7 irreducible representation. By the t-spectrum criteria, ρ1 ∼= ρ417

or its complex
conjugate ρ467

, which They are defined over Q56.
If there exists some modular data (S, T ) whose associated SL2(Z) representation

ρ ∼= ρ417
⊕ ρ2 for some irreducible 2-dimensional representation ρ2, one can obtain

the modular data derived from the MD representation which admits the decomposition
ρ467

⊕ ρ2 by the complex conjugation of (S, T ).
(I) Assume ρ1 ∼= ρ417

, which is odd. It follows the t-spectrum criteria that ρ2 must
be equivalent to a level 2 or level 3 irreducible representation. In any of these cases,
spec(ρ1(t)) ∩ spec(ρ2(t)) = {1}. There is only one 2-dimensional irreducible represen-
tation of level 2 which is even. By Theorem 3.23 (iii), ρ2 ∼= ρ21,03

or ρ21,83
, which is odd.

Since

ρ21,83

∼= ρ21,03
= ρ22,03

.

We will solve the modular data for (i) ρ ∼= ρ417
⊕ ρ21,03

and (ii) ρ ∼= ρ417
⊕ ρ22,03

.

(i) Let ρ̃ = ρ417
⊕ ρ21,03

. Then ρ̃(t) = diag(1, ζ7, ζ 2
7 , ζ 4

7 , 1, ζ3) and

ρ̃(s) = i√
7

⎡
⎢⎢⎣

−1
√
2

√
2

√
2√

2 γ1 γ2 γ3√
2 γ2 γ3 γ1√
2 γ3 γ1 γ2

⎤
⎥⎥⎦ ⊕ i√

3

[−1
√
2√

2 1

]

where γ1 = −c27, γ2 = −c17 and γ3 = −c37. We reorder irr(C) so that ρ(t) =
diag(1, 1, ζ7, ζ 2

7 , ζ 4
7 , ζ3), and identify irr(C) with the standard basis of C

6. By Theo-
rem 3.23,

ρ(s) = i√
7

⎡
⎢⎢⎢⎢⎢⎢⎣

−√
21−3
6

(
√
21−3)ε1
6 ε2 ε3 ε4 −

√
7
3 ε1ε5

(
√
21−3)ε1
6

−√
21−3
6 ε1ε2 ε1ε3 ε1ε4

√
7
3 ε5

ε2 ε1ε2 γ1 γ2ε2ε3 γ3ε2ε4 0
ε3 ε1ε3 γ2ε2ε3 γ3 γ1ε3ε4 0
ε4 ε1ε4 γ3ε2ε4 γ1ε3ε4 γ2 0

−
√

7
3 ε1ε5

√
7
3 ε5 0 0 0

√
7
3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

for some εi = ±1, and so D = 2
(

1√
3
+ 1√

7

)−1
or dim(C) = 21

2

(
5 − √

21
)
. Since

21
2

(
5 +

√
21
)
is a Galois conjugate of dim(C) and

dim(C) <
21

2

(
5 +

√
21
)

� FPdim(C),

the objects 1 and ι are distinct. By Theorem 3.23 (ii), e1, e2 are the only rows of the
S-matrix with no zero entry. Therefore, {1, ι} = {e1, e2}, and the modular data of C is
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given by

S =

⎡
⎢⎢⎢⎣

1 −d1ε1 −d2ε2 −d2ε3 −d2ε4 d3ε1ε5−d1ε1 1 −d2ε1ε2 −d2ε1ε3 −d2ε1ε4 −d3ε5−d2ε2 −d2ε1ε2 −d2γ1 −d2γ2ε2ε3 −d2γ3ε2ε4 0
−d2ε3 −d2ε1ε3 −d2γ2ε2ε3 −d2γ3 −d2γ1ε3ε4 0
−d2ε4 −d2ε1ε4 −d2γ3ε2ε4 −d2γ1 −d2γ2 0
d3ε1ε5 −d3ε5 0 0 0 −d3

⎤
⎥⎥⎥⎦ and T = ρ(t),

where d1 = 1
2

(
5 − √

21
)
, d2 = 1

2

(√
21 − 3

)
, d3 = 1

2

(
7 − √

21
)
.

If 1 = e1, then ι = e2 and so S2,∗ = [d1, 1, d2, d2, d2, d3]. This forces ε1 = ε5 =
−1, ε2 = ε3 = ε4 = 1. Thus,

S =

⎡
⎢⎢⎢⎣

1 d1 −d2 −d2 −d2 d3
d1 1 d2 d2 d2 d3

−d2 d2 −d2γ1 −d2γ2 −d2γ3 0
−d2 d2 −d2γ2 −d2γ3 −d2γ1 0
−d2 d2 −d2γ3 −d2γ1 −d2γ2 0
d3 d3 0 0 0 −d3

⎤
⎥⎥⎥⎦ and T = diag(1, 1, ζ7, ζ

2
7 , ζ 4

7 , ζ3).

If 1 = e2, then ι = e1 and so S1,∗ = [1, d1, d2, d2, d2, d3]. This forces εi = −1 for
i = 1, . . . , 5, and so resulting S-matrix is equivalent to the preceding one interchanges
the indexes of e1 and e2.

(ii) Let ρ̃ = ρ417
⊕ ρ22,03

. Then ρ̃(t) = diag(1, ζ7, ζ 2
7 , ζ 4

7 , 1, ζ 2
3 ) and

ρ̃(s) = i√
7

⎡
⎢⎣

−1
√
2

√
2

√
2√

2 γ1 γ2 γ3√
2 γ2 γ3 γ1√
2 γ3 γ1 γ2

⎤
⎥⎦ ⊕ i√

3

[
1

√
2√

2 −1

]
.

Note that ρ̃ is defined over Q168. Let σ ∈ Gal(Q168/Q) such that σ(ζ168) = ζ 113
168 . Then

σ |Q56 = id and σ(ζ3) = ζ 2
3 . One can see easily that

σ ◦ (ρ417
⊕ ρ21,03

) = ρ417
⊕ ρ22,03

.

Thus the modular data (S′, T ′) for the MD representation equivalent to ρ̃ is the Galois
conjugate by σ of the modular data (S, T ) obtained in (i). Therefore,

S′ =

⎡
⎢⎢⎢⎣

1 d ′
1 −d ′

2 −d ′
2 −d ′

2 d ′
3

d ′
1 1 d ′

2 d ′
2 d ′

2 d ′
3−d ′

2 d ′
2 −d ′

2γ1 −d ′
2γ2 −d ′

2γ3 0
−d ′

2 d ′
2 −d ′

2γ2 −d ′
2γ3 −d ′

2γ1 0
−d ′

2 d ′
2 −d ′

2γ3 −d ′
2γ1 −d ′

2γ2 0
d ′
3 d ′

3 0 0 0 −d ′
3

⎤
⎥⎥⎥⎦ and T ′ = diag(1, 1, ζ7, ζ

2
7 , ζ 4

7 , ζ 2
3 ),

where d ′
1 = σ(d1) = 1

2

(
5 +

√
21
)
, d ′

2 = σ(d2) = − 1
2

(
3 +

√
21
)
, d ′

3 = σ(d3) =
1
2

(
7 +

√
21
)
. Since S′

1, j > 0, e1 = 1 = ι, and so C is pseudounitary and dim(C) =
σ( 212

(
5 − √

21
)
) = 21

2

(
5 +

√
21
)
. The modular data of G(2)3 is also (S′, T ′).

(II) Now, we assume ρ1 = ρ467
and proceed to solve the modular data for (i) ρ ∼=

ρ467
⊕ ρ21,03

and (ii) ρ ∼= ρ467
⊕ ρ22,03

. Note that both of them are defined over Q168.
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(i) Let ρ̃ = ρ467
⊕ ρ21,03

. Then ρ417
⊕ ρ22,03

= ρ̃. Thus the modular data (S′′, T ′′) of

the MD representations equivalent to ρ̃ is (S
′
, T

′
), which is given by

S′′ = S′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 d ′
1 −d ′

2 −d ′
2 −d ′

2 d ′
3

d ′
1 1 d ′

2 d ′
2 d ′

2 d ′
3

−d ′
2 d ′

2 −d ′
2γ1 −d ′

2γ2 −d ′
2γ3 0

−d ′
2 d ′

2 −d ′
2γ2 −d ′

2γ3 −d ′
2γ1 0

−d ′
2 d ′

2 −d ′
2γ3 −d ′

2γ1 −d ′
2γ2 0

d ′
3 d ′

3 0 0 0 −d ′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and T ′′ = T
′ = diag(1, 1, ζ 6

7 , ζ 5
7 , ζ 3

7 , ζ3),

In particular, the MTC C is also pseudounitary with dim(C) = 21
2

(
5 +

√
21
)
.

(ii) Finally, we consider ρ̃ = ρ467
⊕ρ22,03

which is the complex conjugate of ρ417
⊕ρ21,03

.

Thus the modular data (S′′′, T ′′′) of the MD representations equivalent to ρ̃ is (S, T ),
which is given by

S′′′ = S =

⎡
⎢⎢⎢⎣

1 d1 −d2 −d2 −d2 d3
d1 1 d2 d2 d2 d3

−d2 d2 −d2γ1 −d2γ2 −d2γ3 0
−d2 d2 −d2γ2 −d2γ3 −d2γ1 0
−d2 d2 −d2γ3 −d2γ1 −d2γ2 0
d3 d3 0 0 0 −d3

⎤
⎥⎥⎥⎦ and T ′′′ = T = diag(1, 1, ζ 6

7 , ζ 5
7 , ζ 3

7 , ζ 2
3 ).

Therefore, the MTC C is not pseudounitary and dim(C) = 21
2

(
5 − √

21
)
.

Lemma 4.9. The level of ρ1 cannot be 6, 10 or 40.

Proof. (i) Suppose ρ1 is of level 6. Then ρ1 ∼= ψ⊗η for some 2-dimensional irreducible
representationsψ and η of level 2 and 3 respectively. There is only one 2-dimensional
irreducible representation, up to projective equivalence, of levels 2 and 3. Since
the t-spectrum of ρ1 is minimal, ρ1 ∼= ρ21,02

⊗ ρ21,03
. In particular, spec(ρ1(t)) =

{1,−1, ζ3,−ζ3}. By the t-spectrum criteria, ρ2 can only be equivalent to ρ2 ∼= ρ21,i2
,

i ∈ {0, 4, 6, 10}, orρ
21, j3

, j even. Therefore, ord(ρ2(t)) | 6 and so ord(ρ(t)) = 6. This

implies ord(T ) | 6 and so C is integral by Theorem 3.14. However, this contradicts
Proposition 3.16. Therefore, the level of ρ1 cannot be 6.

(ii) Supposeρ1 is of level 40. Thenρ1 is projectively equivalent toρ21,08
⊗ρ215

orρ21,08
⊗ρ225

(cf. “Appendix A”). In particular, spec(ρ1(t)) is a set of primitive 40-th roots of unity.
However, there does not exist any 2-dimensional representation ρ2 which satisfies
the t-spectrum criteria. Therefore, the level ρ1 cannot be 40.

(iii) Supposeρ1 is of level 10.Thenρ1 is projectively equivalent toρ21,02
⊗ρ215

orρ21,02
⊗ρ225

.

Since ρ21,02
is equivalent to any of it Galois conjugates, ρ21,02

⊗ ρ215
or ρ21,02

⊗ ρ225
are

Galois conjugate. So, it suffices to show that ρ1 ∼= ρ21,02
⊗ ρ215

is not possible.

Assume ρ1 ∼= ρ21,02
⊗ρ215

. Then spec(ρ1(t)) = {ζ5, ζ 4
5 ,−ζ5,−ζ 4

5 }. By the t-spectrum
criteria, ρ2 ∼= ρ215

or χ6 ⊗ρ215
. Since χ6 ⊗ρ21,02

∼= ρ21,02
, ρ1 ⊕ρ215

and ρ1 ⊕χ6 ⊗ρ215
are

projectively equivalent. Therefore, ρ is projectively equivalent to ρ̃ = (ρ21,02
⊗ρ215

)⊕ρ215
and we can simply assume ρ ∼= ρ̃. As in Lemma 4.5, we the use the following equivalent
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form of ρ215
:

ρ215
(s) = 1

s15

[
1 ϕ

ϕ −1

]
, ρ215

(t) = diag(ζ5, ζ
4
5 ).

Thus, ρ̃(t) = diag(ζ5, ζ 4
5 ,−ζ5,−ζ 4

5 , ζ5, ζ
4
5 ) and

ρ̃(s) = 1

2s15

⎡
⎢⎣

−1 −ϕ −√
3 −√

3ϕ
−ϕ 1 −√

3ϕ
√
3

−√
3 −√

3ϕ 1 ϕ

−√
3ϕ

√
3 ϕ −1

⎤
⎥⎦ ⊕ 1

s15

[
1 ϕ

ϕ −1

]
.

By Theorem 3.24 (i), if we reorder irr(C) so that ρ(t) = diag(ζ5 I2, ζ 4
5 I2,−ζ5,−ζ 4

5 ),
then ρ(s) = V s′V for some signed diagonal matrix V and

s′ = 1

2s15

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ −√
3a −√

3aϕ

∗ ∗ ∗ ∗ −√
3b −√

3bϕ
∗ ∗ ∗ ∗ −√

3cϕ
√
3c

∗ ∗ ∗ ∗ −√
3dϕ

√
3d

−√
3a −√

3b −√
3cϕ −√

3dϕ 1 ϕ

−√
3aϕ −√

3bϕ
√
3c

√
3d ϕ −1

⎤
⎥⎥⎥⎥⎦

.

where a, b, c, d ∈ R satisfying a2 + b2 = 1 and c2 + d2 = 1.
Note that ϕ is a unit in Z[ζ5], and the automorphism σ defined by σ(ζ10) = ζ 7

10
generates Gal(Q10). By the action of σ 2 on ρ(t), we see σ̂ (5) = 6. Since

σ(s′
5,5) = 1

2s25
= ϕ

2s15
= s′

56,

σ (s′
i,5) = s′

i,6 for i = 1, . . . , 6. This implies
√
3a,

√
3b,

√
3c,

√
3c are fixed by σ and

so they are rational.
The unit object cannot be e5, for otherwise

√
3a,

√
3b ∈ Z and they satisfy the

equation (
√
3a)2 + (

√
3b)2 = 3, which is not possible. Similarly, e6 �= 1. So, the unit

object 1 ∈ {e1, e2, e3, e4}.
Assume 1 = e1. Then a �= 0, b/a ∈ Z and 1√

3a
∈ Z. However, this will imply

3 | (1 + (b/a)2) which is not possible. Therefore, 1 �= e1. Since ϕ is a unit in Z[ζ5],
if 1 �∈ {e2, e3, e4} for similar reason. Now, we find 1 �∈ {e1, . . . , e6}, a contradiction.
Therefore, the level of ρ1 cannot be 10.

Lemma 4.10. If the level of ρ1 is 24, then C is equivalent to C(Z6, q) for some non-
degenerate quadratic form q : Z6 → C

×.

Proof. Since ρ1 is of level 24, ρ1 is projectively equivalent to ρ21,03
⊗ ρ21,08

according to

“Appendix A”. Therefore, we can simply assume ρ1 ∼= ρ21,03
⊗ ρ21,08

as it has a minimal

t-spectrum. Then, ρ1 is odd and

ρ1(s) = i√
6

⎡
⎢⎢⎣

1 −1 −√
2

√
2

−1 −1
√
2

√
2

−√
2

√
2 −1 1√

2
√
2 1 1

⎤
⎥⎥⎦ , ρ1(t) = diag(ζ8, ζ

3
8 , ζ 11

24 , ζ 17
24 ).



S.-H. Ng, E. C. Rowell, Z. Wang, X.-G. Wen

By the t-spectrum criteria, ρ2 ∼= ρ
21, j8

, j ∈ {0, 1, 3, 4, 7, 9}, and

ρ
21, j8

(s) = (−i) j√
2

[−1 1
1 1

]
, ρ

21, j8
(t) = diag(ζ 3+2 j

24 , ζ
9+2 j
24 ).

For j = 1, 3, 7, 9, | spec(ρ1(t))∩ spec(ρ2(t))| = 1 and so Theorem 3.23 can be applied.
For j = 1, 9, spec(ρ1(t)) ∩ spec(ρ2(t)) = {ζ 9+2 j

24 }, and for j = 3, 7, spec(ρ1(t)) ∩
spec(ρ2(t)) = {ζ 3+2 j

24 }. If ρ ∼= ρ1 ⊕ ρ
21, j8

is an MD representation of an MTC C, for
j = 1, 3, 7, 9, then by Theorem 3.23, ord(T ) = 12 and

D = √
dim(C) = 2

1√
2
(1 ± 1√

3
)

= √
6(

√
3 ∓ 1).

Note that each row of ρ1(s) has an off diagonal entry of the form ±i√
6
and so D√

6
/
√
2 is

the dimension of an object up to a sign. However,

D√
6
√
2

=
√
3 ± 1√
2

�∈ Q12.

Therefore, ρ1 ⊕ ρ
21, j8

is not equivalent to any MD representation for j = 1, 3, 7, 9.

Now, we can conclude that ρ ∼= ρ1 ⊕ ρ2 where ρ2 ∼= ρ
21, j8

for some j = 0, 4.

In particular, ρ1 and ρ2 have opposite parties and spec(ρ2(t)) ⊂ spec(ρ1(t)). By
Theorem 3.24 (ii), the unit object 1 is an eigenvector of ρ(t) with eigenvalue ζ ∈
spec(ρ1(t))\ spec(ρ2(t)). Let E j be the subspace of C

6 spanned by the eigenvectors of
ρ̃ j = ρ1(t) ⊕ ρ

21, j8
(t) with eigenvalues in spec(ρ1(t)) \ spec(ρ

21, j8
(t)) for j = 0, 4. One

can compute that for σ ∈ Gal(Q24/Q), Dρ̃ j (σ )|E j = id or − id. By Proposition 3.13,
C is integral. It follows from [4] that C is a pointed modular tensor category, which is
equivalent to to C(Z6, q) for some non-degenerate quadratic form q : Z6 → C

×.

Lemma 4.11. If the level of ρ1 is 15, then the modular data of C is a Galois conjugate
of that of C(Z3, q) � PSU (2)3, where q : Z3 → C

× is a quadratic form given by
q(1) = ζ3.

Proof. Since ρ1 has a minimal t-spectrum, it must be equivalent to a tensor product of
two 2-dimensional irreducible representations of levels 3 and 5. According to “Appendix
A”, ρ1 ∼= ρ21,03

⊗ρ2i5
, i = 1, 2. By the t-spectrum criteria, ρ2 ∼= χ j ⊗ρ2i5

with j = 0, 4.

Thus, ρ is equivalent to

ρ̃i, j = (ρ21,03
⊗ ρ2i5

) ⊕ (χ j ⊗ ρ2i5
), i = 1, 2, j = 0, 4.

Note that ρ̃i, j is defined over Q120 for i, j . Let σa ∈ Gal(Q120/Q) such that σa(ζ120) =
ζ a120. Then, σ97 ◦ ρ̃1, j = ρ̃2, j for j = 0, 4.

Since σ41◦((ρ21,03
⊗ρ215

)⊕ρ215
) ∼= (ρ21,03

⊗ρ215
)⊕ρ215

∼= (ρ21,83
⊗ρ215

)⊕ρ215
,we have

χ4 ⊗ σ41 ◦ ρ̃1,0 ∼= ρ̃1,4. Therefore, ρ̃i, j is projectively equivalent to a Galois conjugate
of ρ̃1,0. Hence, it suffices to consider ρ̃ = ρ̃1,0, or equivalently ρ1 ∼= ρ21,03

⊗ ρ215
and

ρ2 ∼= ρ215
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Now, the MD representation ρ of C is equivalent to ρ1 ⊕ ρ2, where ρ1 is even, ρ2 is
odd and spec(ρ1(t)) ⊂ spec(ρ2(t)). Moreover,

ρ̃(s) = i√
3s15

⎡
⎢⎣

−1 −ϕ
√
2

√
2ϕ

−ϕ 1
√
2ϕ −√

2√
2

√
2ϕ 1 ϕ√

2ϕ −√
2 ϕ −1

⎤
⎥⎦ ⊕ 1

s15

[
1 ϕ

ϕ −1

]
, ρ̃(t) = diag(ζ5, ζ

4
5 , ζ 8

15, ζ
2
15, ζ5, ζ

4
5 ).

By Theorem 3.24, dim(C) = 12 sin2(2π/5) = 3(2 + ϕ). Reorder irr(C) so that

ρ(t) = diag(ζ5, ζ
4
5 , ζ5, ζ

4
5 , ζ 8

15, ζ
2
15).

Again, by Theorem 3.24 (ii), there exist γi , κi , εi ∈ {±1} such that

ρ(s) = −1

D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+i
√
3

2

(
1−i

√
3
)
κ1

2

γ3ϕ
(
1+i

√
3ε1ε2κ1κ2

)

2

γ3ϕ
(
κ2−i

√
3ε1ε2κ1

)

2 −γ1 −γ2ϕ(
1−i

√
3
)
κ1

2
1+i

√
3

2

γ3ϕ
(
κ1−i

√
3ε1ε2κ2

)

2

γ3ϕ
(
κ1κ2+i

√
3ε1ε2

)

2 −γ1κ1 −γ2κ1ϕ

γ3ϕ
(
1+i

√
3ε1ε2κ1κ2

)

2

γ3ϕ
(
κ1−i

√
3ε1ε2κ2

)

2

−
(
1+i

√
3
)

2

(
−1+i

√
3
)
κ2

2 −γ1γ3ϕ γ2γ3
γ3ϕ

(
κ2−i

√
3ε1ε2κ1

)

2

γ3ϕ
(
κ1κ2+i

√
3ε1ε2

)

2

(
−1+i

√
3
)
κ2

2

−
(
1+i

√
3
)

2 −γ1γ3κ2ϕ γ2γ3κ2

−γ1 −γ1κ1 −γ1γ3ϕ −γ1γ3κ2ϕ −1 −γ1γ2ϕ

−γ2ϕ −γ2κ1ϕ γ2γ3 γ2γ3κ2 −γ1γ2ϕ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will use the equalities −1+i
√
3

2 = ζ3 and
1+i

√
3

2 = −ζ 3 to simplify S-matrix, but
we need to determine which of the standard basis elements is the unit object. According
to Theorem 3.24 (ii), 1 ∈ {e5, e6}.

(i) Suppose e6 = 1. Then T = diag(ζ15, ζ 2
3 , ζ15, ζ

2
3 , ζ 2

5 , 1). Then dim(e5)2 = ϕ2 >

1 and so e6 = ι. Thus, all the entries of 6-th rows of ρ(s) has the same signed, we find
γ2 = γ3 = −1, γ1 = κ1 = κ2 = 1. Thus,

S =

⎡
⎢⎢⎢⎣

−ζ 3 −ζ3 ϕζ 3 ϕζ3 −1 ϕ

−ζ3 −ζ 3 ϕζ3 ϕζ 3 −1 ϕ

ϕζ 3 ϕζ3 ζ 3 ζ3 ϕ 1
ϕζ3 ϕζ 3 ζ3 ζ 3 ϕ 1
−1 −1 ϕ ϕ −1 ϕ

ϕ ϕ 1 1 ϕ 1

⎤
⎥⎥⎥⎦ .

By reordering irr(C), we find T = diag(1, ζ 2
5 , ζ 2

3 , ζ15, ζ
2
3 , ζ15) = T1 ⊗ T2 and

S =

⎡
⎢⎢⎢⎣

1 ϕ 1 ϕ 1 ϕ

ϕ −1 ϕ −1 ϕ −1
1 ϕ ζ 3 ϕζ 3 ζ3 ϕζ3
ϕ −1 ϕζ 3 −ζ 3 ϕζ3 −ζ3
1 ϕ ζ3 ϕζ3 ζ 3 ϕζ 3
ϕ −1 ϕζ3 −ζ3 ϕζ 3 −ζ 3

⎤
⎥⎥⎥⎦ = S1 ⊗ S2,

where (S1, T1) is the modular data of C(Z3, q) and (S2, T2) given by S2 =
[
1 ϕ

ϕ −1

]

and T2 = diag(1, ζ 2
5 ) is the modular data of PSU (2)3. In particular, (S, T ) is a Galois

conjugate of the modular data of C(Z/3Z, q1) � PSU (2)3.
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(ii) Now, we assume e5 = 1. Then T = diag(ζ 2
3 , ζ 4

15, ζ
2
3 , ζ 4

15, 1, ζ
3
5 ) and dim(e6)2 =

ϕ2 > 1, and so e5 = ι. Then γ1 = γ2 = γ3 = κ1 = κ2 = 1, and we obtain

S =

⎡
⎢⎢⎢⎣

ζ 3 ζ3 ζ 3ϕ ζ3ϕ 1 ϕ

ζ3 ζ 3 ζ3ϕ ζ 3ϕ 1 ϕ

ζ 3ϕ ζ3ϕ −ζ 3 −ζ3 ϕ −1
ζ3ϕ ζ 3ϕ −ζ3 −ζ 3 ϕ −1
1 1 ϕ ϕ 1 ϕ

ϕ ϕ −1 −1 ϕ −1

⎤
⎥⎥⎥⎦ .

By reordering irr(C), we find T = diag(1, ζ 3
5 , ζ 2

3 , ζ 4
15, ζ

2
3 , ζ 4

15) = T1 ⊗ T 2 and

S =

⎡
⎢⎢⎢⎣

1 ϕ 1 ϕ 1 ϕ

ϕ −1 ϕ −1 ϕ −1
1 ϕ ζ 3 ϕζ 3 ζ3 ϕζ3
ϕ −1 ϕζ 3 −ζ 3 ϕζ3 −ζ3
1 ϕ ζ3 ϕζ3 ζ 3 ϕζ 3
ϕ −1 ϕζ3 −ζ3 ϕζ 3 −ζ 3

⎤
⎥⎥⎥⎦ = S1 ⊗ S2,

Since (S2, T 2) is the complex conjugate of modular data of PSU (2)3. Therefore, (S, T )

is a Galois conjugate of the modular data of C(Z3, q) � PSU (2)3. This completes the
proof of statement.

As a consequence, for any i, j , ρ̃i, j is equivalent to SL2(Z) representations of some
modular tensor categories Galois conjugate to C(Z3, q) � PSU (2)3.

Proof of Theorem 4.4. The result of Theorem 4.4 is a consequence of Lemmas 4.5 to
4.11.

4.3. Classification of modular data of type (3,3).

Theorem 4.12. The modular data of any type (3, 3)modular tensor category is a Galois
conjugate of that of SO(5)2.

Let C be a modular tensor category of type (3,3) and ρ an SL2(Z) representation of
C. Then

ρ ∼= ρ1 ⊕ ρ2

for some 3-dimensional irreducible representations ρ1, ρ2. If ρ1, ρ2 have opposite par-
ities, then Tr(ρ(s)) = 0 which contradicts to Proposition 3.12. Therefore, they have
the same parity. We may assume that ρ1 has a minimal t-spectrum and show that for
ρ1 cannot be projectively equivalent of any 3-dimensional irreducible representation of
levels 3, 7, 8 or 16.

Lemma 4.13. Neitherρ1 norρ2 is projectively equivalent to a 3-dimensional irreducible
representation of level 3, 7, 8 or 16.

Proof. Suppose ρ1 is a 3-dimensional irreducible representation of level 3, 7, 8 or 16
with a minimal t-spectrum.

(i) ρ1 cannot be of level 7: Suppose ρ1 is of level 7. Then, by the t-spectrum criteria
and “Appendix A”, ρ2 ∼= ρ1 but this contradicts Proposition 3.19.
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(ii) ρ1 cannot be of level 3: Supposeρ1 is the level 3. Thenρ1 ∼= ρ31,03
. Since dim(ρ2) = 3

which is a prime number, ρ2 must be projectively equivalent to a 3-dimensional irre-
ducible representations of prime power level (cf. “Appendix A”). If ρ2 is projectively
equivalent to ρ31,03

, then ρ2 ∼= ρ31,03
by the t-spectrum criteria, but this contradicts

Proposition 3.19. Therefore, ρ2 is not projectively equivalent to ρ31,03
.

It follows from (i) that ρ2 cannot be projectively equivalent to a level 7 representation.
Therefore, by “Appendix A”, ρ2 can only be projectively equivalent to a representation
of levels 4, 5, 8, 16.

By the t-spectrum criteria, ρ2 is not projectively equivalent to any level 16 irreducible
representations. If ρ2 is projectively equivalent a level 8 irreducible representation, then
ρ2 ∼= χ j ⊗ ψ for any level 8 representations in “Appendix A”. Since ρ1 is even,
j ≡ 0 mod 4, and so ψ must be even. This implies ψ = ρ33,38

, ρ31,38
, ρ33,98

, ρ31,98
, but

none of them satisfies the t-spectrum criteria. Therefore, ρ2 can only be projectively
equivalent to some ψ of level 5 or 4 in “Appendix A”. Thus, by the t-spectrum criteria,
ρ2 ∼= χ j ⊗ ρ31,04

or χ j ⊗ ρ3i5
for j = 0, 4, 8 and i = 1, 3. In any of these cases,

| spec(ρ1(t)) ∩ spec(ρ2(t))| = 1 and ord(ρ(t)) = 12 or 15. It follows from Theorem

3.23 (ii) (c) that if spec(ρ1(t)) ∩ spec(ρ2(t)) = {ρ1(t)u,u}, then
√
2ρ1(s) j j
ρ1(s)u j

∈ Q12 or Q15

for u �= j . However,
√
2ρ1(s) j j
ρ1(s)u j

= −1√
2

�∈ Q12 orQ15. Therefore, ρ2 cannot be projectively

equivalent to any irreducible of level 4 or 5. This completes the proof that ρ1 cannot be
of level 3.

(iii) ρ1 cannot be of level 8: Let

A = i

2

[
0

√
2

√
2√

2 −1 1√
2 1 −1

]
.

Then, by “Appendix A”,

ρ31,08
(s) = A and ρ31,08

(t) = diag(1, ζ8, ζ
5
8 )

which is odd and has a minimal t-spectrum. Since all other 4-dimensional level 8 ir-
reducible representations are projectively equivalent to a Galois conjugate of ρ31,08

, it

suffices to show that ρ1 �∼= ρ31,08
.

Assume to the contrary. Then ρ1 ∼= ρ31,08
, and hence ρ2 must be odd. It follows from

(i) and (ii), ρ2 cannot be projectively equivalent to any irreducible representation of level
3 or 7. By the t-spectrum criteria and the parity constraint, ρ2 cannot be projectively
equivalent to any irreducible representations of level 5. Therefore, ρ2 can only be pro-
jectively equivalent to an irreducible representation of level 4, 8 or 16. By the t-spectrum
criteria, ρ2 is of level 4, 8 or 16.

Suppose ρ2 has level 4 or 8. Since ρ2 is odd, ρ2 ∼= ρ31,34
, ρ31,94

, ρ31,08
, ρ33,08

, ρ31,68
, ρ33,68

.

However, Dρ1⊕ρ2(σ ) = ± id for all σ ∈ Gal(Q8/Q). By Proposition 3.13, C is integral
which contradicts Proposition 3.16. Therefore, the level of ρ2 is neither 4 nor 8.

Suppose ρ2 is an odd irreducible representation of level 16. By the t-spectrum criteria,
ρ2 ∼= ρ31,016

, ρ35,616
, ρ31,616

, ρ35,016
, and they are respectively isomorphic to the following

representations:

(1) s �→ A, t �→ diag(ζ8, ζ16, ζ 9
16);
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(2) s �→ −A, t �→ diag(ζ8, ζ 5
16, ζ

13
16 );

(3) s �→ −A, t �→ diag(ζ 5
8 , ζ16, ζ

9
16);

(4) s �→ A, t �→ diag((ζ 5
8 , ζ 5

16, ζ
13
16 ).

In any of these cases, spec(ρ1(t))∩ spec(ρ2(t)) = {ζ8} or {ζ 5
8 }. It follows from Theorem

3.23 (ii) (a) and (b) that D = 4 as ψuu = −i/2 and ηuu = 0. The two nonzero rows of
the S-matrix up to some signs are the same:

1, 1, 2,
√
2, 2, 2

and one of these rows is ι. Therefore, the Frobenius-Perron dimensions of the simple
objects of C are 1, 1, 2,

√
2, 2, 2 . In particular, C is weakly integral, which contradicts

Proposition 3.16 (ii). Thus, ρ2 is not of level 16 either. As a consequence, ρ1 cannot be
of level 8.

(iv) ρ1 cannot be of level 16: Assume contrary. Then ρ1 ∼= ρ31,016
, ρ33,916

, ρ35,616
, ρ37,316

,

which are projectively inequivalent and have a minimal t-spectrum. Moreover,

ρ31,016
(s) = A and η(t) = diag(ζ8, ζ16, ζ

9
16)

which is odd. Since all the 3-dimensional level 16 irreducible representations are projec-
tively equivalent to a Galois conjugates of ρ31,016

, its suffices consider the case ρ1 ∼= ρ31,016
.

By the t-spectrum criteria, ρ2 cannot be projectively equivalent to any irreducible
representation of level 4 or 5. By (i), (ii) and (iii), ρ2 cannot be projectively equivalent
to any irreducible representation of level 3, 7, 8. Therefore, ρ2 can only be projectively
equivalent to an irreducible representation of level 16. The t-spectrum criteria forces
ρ2 to be an irreducible representation of level 16. Since ρ2 is odd, by Proposition 3.19,
ρ2 ∼= ρ31,616

or ρ35,616
, which are respectively isomorphic to the following irreducible

representations:
(1) s �→ −A, t �→ diag(ζ 5

8 , ζ16, ζ
9
16);

(2) s �→ −A, t �→ diag(ζ8, ζ 5
16, ζ

13
16 ).

For Case (1), spec(ρ1(t)) ∩ spec(ρ2(t)) = {ζ16, ζ 9
16} but

ρ1(s)i i + ρ2(s)i i = Aii − Aii = 0

for i = 2, 3. Therefore, ρ ∼= ρ31,016
⊕ ρ31,616

is impossible by Theorem 3.23.

For Case (2), spec(ρ1(t)) ∩ spec(ρ2(t)) = {ζ8} and ρ1(s)11 + ρ2(s)11 = 0. It follows
from Theorem 3.23 that ρ ∼= ρ31,016

⊕ ρ35,616
is also not possible.

Lemma 4.14. If ρ1 is of level 5, then ρ2 cannot be projectively equivalent to any level 5
irreducible representation.

Proof. Suppose ρ2 is projectively equivalent to some level 5 irreducible representation.
Then, by the t-spectrum criteria, ρ2 is a level 5 irreducible representation. Since there
are only two inequivalent level 5 irreducible representation, ρ1 �∼= ρ2 by Proposition
3.19. Then spec(ρ1(t)) ∩ spec(ρ2(t)) = {1}. It follows from “Appendix A” that

ρ1(s)11 + ρ2(s)11 = 0.

By Theorem 3.23(i), ρ1 ⊕ ρ2 is not equivalent to any MD representation. Therefore, ρ2
cannot be projectively equivalent to any level 5 irreducible representation.

It follows from Lemmas 4.3 and 4.14 that the MD representation ρ of C of type (3,3)
must have the irreducible decomposition ρ1 ⊕ ρ2 where ρ1 and ρ2 are 3-dimensional
and of levels 5 and 4.
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4.3.1. Solving modular data of type (3,3) level (5,4) There are only two inequivalent
level 5 irreducible representationsρ315

andρ335
. Note thatσ ◦ρ315

= ρ335
whereσ ∈ Gal(Q̄)

such that σ(ζ5) = ζ 3
5 . One may assume ρ1 ∼= ρ315

which is even, and has a minimal
t-spectrum.

By the t-spectrum criteria and the parity constraint, ρ2 ∼= ρ31,04
, and so

spec(ρ1(t)) ∩ spec(ρ2(t)) = {1}.

By Theorem 3.23, D = 2/ 1√
5

= 2
√
5 or dim(C) = 20. Moreover, if irr(C) is reordered

so that ρ(t) = diag(1, 1, ζ5, ζ 4
5 , i, i), then

ρ(s) = 1

2
√
5

⎡
⎢⎢⎢⎢⎣

1 κ −2γ1 −2γ2 −√
5γ3κ −√

5γ4κ
κ 1 −2γ1κ −2γ2κ

√
5γ3

√
5γ4

−2γ1 −2γ1κ −1 − √
5 (−1 +

√
5)γ1γ2 0 0

−2γ2 −2γ2κ (−1 +
√
5)γ1γ2 −1 − √

5 0 0
−√

5γ3κ
√
5γ3 0 0 −√

5
√
5γ3γ4

−√
5γ4κ

√
5γ4 0 0

√
5γ3γ4 −√

5

⎤
⎥⎥⎥⎥⎦

for some κ, γi ∈ {±1}. One can conclude from S that C is pseudounitary, and so we can
assume 1 = ι = e1. This implies κ = 1, γi = −1 for i = 1, . . . , 4. Thus, the modular
data of C is given by

S =

⎡
⎢⎢⎢⎢⎣

1 1 2 2
√
5

√
5

1 1 2 2 −√
5 −√

5
2 2 −1 − √

5 −1 +
√
5 0 0

2 2 −1 +
√
5 −1 − √

5 0 0√
5 −√

5 0 0 −√
5

√
5√

5 −√
5 0 0

√
5 −√

5

⎤
⎥⎥⎥⎥⎦

and T = diag(1, 1, ζ5, ζ
4
5 , i,−i).

However, if 1 �= ι, then one may assume e1 = 1 and e2 = ι. Then the resulting modular
data is (PSP, T ) where P is the permutation matrix of the transposition (1, 2). In this
sense, the two modular data corresponding to different spherical structures are the same.

For ρ1 = ρ335
, the corresponding modular data is (σ (S), σ (T )), where σ ∈ Gal(Q̄)

such that σ(ζ5) = ζ 3
5 and σ(i) = i. Precisely,

σ(S) =

⎡
⎢⎢⎢⎢⎣

1 1 2 2 −√
5 −√

5
1 1 2 2

√
5

√
5

2 2 −1 +
√
5 −1 − √

5 0 0
2 2 −1 − √

5 −1 +
√
5 0 0

−√
5

√
5 0 0

√
5 −√

5
−√

5
√
5 0 0 −√

5
√
5

⎤
⎥⎥⎥⎥⎦

and

σ(T ) = diag(1, 1, ζ 3
5 , ζ 2

5 , i,−i).

In this case, the e2 = ι. One can use the other spherical structure of C so that 1 = ι = e1.
The resulting modular data is (Pσ(S)P, σ (T )), which is the same as the modular data
(σ (S), σ (T )), and is the modular data of SO(5)2. This completes the proof of Theorem
4.12.
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4.4. Classification of Modular Data of type (3, 2, 1). We now classify modular tensor
categories with SL2(Z) representations decomposing as a direct sum of irreducible
representations of dimension 3, 2 and 1. The main theorem of this section is:

Theorem 4.15. The modular data of any type (3, 2, 1) modular tensor category is a
Galois conjugate of a non-trivial braided zesting of SO(5)2.

The zesting procedure is found in [10]. An alternative approach is to consider the
classification of metaplectic modular tensor categories in [1]: this shows that the cate-
gories above can be obtained by gauging the particle-hole symmetry (i.e. the Z2 action
g ↔ g−1) on a pointed modular tensor category of the form C(Z5, q). In [15] it is
shown that of the 4 modular tensor categories obtained in this way, 2 are SO(5)2 and its
(unitary) Galois conjugate and the other two are the non-trivial zesting of SO(5)2 and
its (unitary) Galois conjugate.

Let ρ = χ1 ⊕ (ρ2 ⊗ χ2) ⊕ (ρ3 ⊗ χ3) be the irreducible decomposition a modular
representation with ρi irreducible of dimension i of prime power level and χi a character.
This description is possible by the Chinese Remainder Theorem and the fact that 2 and 3
are prime. As before, we may assume χ3 = 1 and require ρ3 has a minimal t-spectrum.

We consider cases in turn, describing the level triples for (ρ3, ρ2, χ1). The t-spectrum
criteria immediately implies that the level of ρ3 cannot be 7. Similarly the level of ρ3 can-
not be 16: looking at the eigenvalues of the level 16 irreducible 3-dimensional represen-
tation we see that χ1(t) �∈ spec(ρ3(t)), and hence spec((ρ2⊗χ2)(t))∩spec(ρ3(t)) �= ∅.
This implies ρ2 ⊗ χ2 has level 8 but then χ1(t) �∈ spec(ρ3(t) ⊕ (ρ2 ⊗ χ2)(t)), which
contradicts the t-spectrum criteria.

Suppose the level of ρ3 is 8. Then ρ3 ∼= ρ21,08
or ρ23,08

, and hence ρ3 is odd. Note that

spec(ρ21,08
) = {1, ζ8,−ζ8} and spec(ρ23,08

) = {1, ζ 3
8 ,−ζ 3

8 }. The level of ρ2 cannot be 5,

by inspection of the corresponding eigenvalues. If the level of ρ2 is 2 then the t-spectrum
criteria implies that (χ2)

2 = (χ1)
2 = 1. But now ρ(s2) has trace 0, contradicting Propo-

sition 2.1. Thus the level of ρ2 is either 8 or 3. Applying the t-spectrum criteria yields
the following possible levels in this case: (8, 8, 1), (8, 3, 3) or (8, 3, 1). In particular, if
the level of ρ2 is 8 we cannot have levels (8, 8, 2) or (8, 8, 4) as the t-spectrum criteria
fails in these cases. In all three cases we see that ρ2 ⊗ χ2 must be odd for otherwise
Tr(ρ(s2)) = 0. Hence, the corresponding category would be non-self-dual.

Now suppose that the level of ρ3 is 5. Then ρ3 is even. The t-spectrum criteria
implies the level of ρ2 cannot be 8. Inspecting the remaining possibilities we find the
following possible level triples: (5, 5, 1), (5, 3, 1), (5, 3, 3), (5, 2, 1) or (5, 2, 2). The
parities imply that the corresponding category would be non-self-dual in the first three
cases and self-dual for the last two.

Next if the level of ρ3 is 4, then ρ3 ∼= ρ31,34
which is odd, and has the minimal t-

spectrum {1,−1, i} according “Appendix A”. The t-spectrum criteria show that the level
of ρ2 cannot be 8 or 5. If ρ2 had level 2 then the order of ρ(t) would be 4, yielding a
pointed integral category (by Theorem 3.14) with T -matrix of order 4, which contradicts
Proposition 3.16. Thusρ2 has level 3 andwefind (4, 3, 1), (4, 3, 2), (4, 3, 3) and (4, 3, 4)
as possible level triples.

Finally, if the level of ρ3 were 3 then the t-spectrum criteria implies that the order
of ρ(t) is a divisor of 6 and hence pointed integral by Theorem 3.14. This contradicts
Proposition 3.16.

Below we provide the details of the cases of levels (4, 3, 2), (5, 2, 2) and (5, 2, 1) ex-
plicitly. The remaining cases {(8, 8, 1), (8, 3, 3), (8, 3, 1), (5, 5, 1), (5, 3, 1), (5, 3, 3),
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(4, 3, 1), (4, 3, 3), (4, 3, 4)} can be similarly addressed (and indeed are easier). We can
eliminate all of these cases computationally as well, see Section B.2.

4.4.1. Case (4, 3, 2) Suppose that the levels of ρ3, ρ2 andχ1 are 4, 3 and 2, respectively.
Without loss of generality we may assume that ρ3 ∼= ρ31,34

and ρ2 ∼= ρ21,03
, which are

odd, and respectively have the minimal t-spectrums {1,−1, i} and {1, ζ3} according to
“Appendix A”. Let us determine what χ2 can be. Note that χ1 is even. Now if χ2 is odd,
then Tr(ρ(s2)) = 0, which is impossible. The t-spectrum criteria implies that χ2(t) �=
±ζ3, and a relabeling eliminates ζ−1

3 . If χ2(t) ∈ {−1,−ζ 3}, then ρ is projectively
equivalent to the complex conjugate the (4, 3, 1) case. So we will assume that χ2(t) =
1, ζ3 or ρ2 ⊗ χ2 ∼= ρ21,03

or ρ21,83
. In either case, ρ is defined over Q24. If σ ∈ Gal(Q̄)

such that σ(ζ3) = ζ 2
3 and σ(ζ8) = ζ8, then we have

ρ3 ⊕ ρ31,82
⊕ χ1 ∼= σ ◦ (ρ3 ⊕ ρ31,02

⊕ χ1).

It suffices to consider ρ ∼= ρ̃ := ρ3 ⊕ ρ21,03
⊕ χ1. By “Appendix A”, we have

ρ̃(s) = i

2

⎡
⎣

−1 1
√
2

1 −1
√
2√

2
√
2 0

⎤
⎦ ⊕ i√

3

[−1
√
2√

2 1

]
⊕ [−1] and

ρ̃(t) = diag(1,−1, i, 1, ζ3,−1)

Reordering irr(C) so that ρ(t) = diag(1, 1,−1,−1, i, ζ3). By Theorem 3.23, the unit
object 1 must be an eigenvector ρ(t) with eigenvalue 1 and so D = 2/( 12 + 1√

3
) =

8
√
3 − 12 or dim(C) = 48(7 − 4

√
3). Moreover, T = diag(1, 1,−1,−1, i, ζ3) and

ρ(s) = −i(3+2
√
3)

12 S, where

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
(
2
√
3−3

)
κ

2
√
3+3

− 3
√
2a

2
√
3+3

− 3
√
2b

2
√
3+3

− 6γ1
2
√
3+3

4
√
3γ2κ

2
√
3+3

−
(
2
√
3−3

)
κ

2
√
3+3

1 − 3
√
2aκ

2
√
3+3

− 3
√
2bκ

2
√
3+3

− 6γ1κ
2
√
3+3

− 4
√
3γ2

2
√
3+3

− 3
√
2a

2
√
3+3

− 3
√
2aκ

2
√
3+3

− 6
(
−1+(1+2i)b2

)

2
√
3+3

(6+12i)ab
2
√
3+3

− 6
√
2aγ1

2
√
3+3

0

− 3
√
2b

2
√
3+3

− 3
√
2bκ

2
√
3+3

(6+12i)ab
2
√
3+3

12i
(
−1+

(
1− i

2

)
b2
)

2
√
3+3

− 6
√
2bγ1

2
√
3+3

0

− 6γ1
2
√
3+3

− 6γ1κ
2
√
3+3

− 6
√
2aγ1

2
√
3+3

− 6
√
2bγ1

2
√
3+3

0 0

4
√
3γ2κ

2
√
3+3

− 4
√
3γ2

2
√
3+3

0 0 0 − 4
√
3

2
√
3+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for some κ, γi ∈ {±1} and a, b ∈ R such that a2 +b2 = 1. Since 1, ι ∈ {e1, e2}, κ = −1,

and a, b �= 0. Since dim(ι) =
(
2
√
3−3

)

2
√
3+3

= 7− 4
√
3 < 1, FPdim(C) = 48(7 + 4

√
3) and

ι �= 1. We may simply assume e1 = 1 and e2 = ι. Then γ1 = 1, γ2 = −1 and a, b > 0.
Since Tr(ρ(s2)) = −4, there is exactly one dual pair of simple objects, and they can
only be e3, e4. Therefore, a = b = ±1√

2
and so a = b = 1√

2
. Thus,

S =

⎡
⎢⎢⎢⎣

1 1 − 2d −d −d −2d 2 − 2d
1 − 2d 1 d d 2d 2 − 2d

−d d (1 − 2i)d (1 + 2i)d −2d 0
−d d (1 + 2i)d (1 − 2i)d −2d 0
−2d 2d −2d −2d 0 0
2 − 2d 2 − 2d 0 0 0 2d − 2

⎤
⎥⎥⎥⎦
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where d = 2
√
3− 3. Remarkably, the Verlinde formula yields a consistent set of fusion

rules. For example the object with twist i has the fusion matrix:

N5 =

⎡
⎢⎢⎢⎣

0 0 0 0 1 0
0 4 2 2 3 4
0 2 2 0 1 2
0 2 0 2 1 2
1 3 1 1 4 4
0 4 2 2 4 4

⎤
⎥⎥⎥⎦ .

However, the secondFS-indicator for this object isν2(e5) = 1
dim(C)

∑
j,k N

5
j,kd j dk

(
θ j
θk

)2

= 2, a contradiction.

4.4.2. Case (5, 2, 1) Consider the case of levels (5, 2, 1). Then ρ ∼= ρ315
⊕ ρ21,02

⊕ χ0

or ρ335
⊕ ρ21,02

⊕ χ0 according to “Appendix A”. Since the latter is a Galois conjugate

of the former one, it suffices to solve the first case. Let ρ̃ = ρ21,02
⊕ χ0 ⊕ ρ335

in

which ρ̃(t) = diag
(
1,−1, 1, 1, ζ5, ζ 4

5

)
. By permuting the first two basis elements,

we may assume that t = ρ(t) = diag(−1, 1, 1, 1, ζ5, ζ 4
5 ). Conjugating by a block

diagonal matrix of the form (r1)⊕ F ⊕ (r2)⊕ (r3) where F =
⎡
⎣

f1,1 f1,2 f1,3
f2,1 f2,2 f2,3
f3,1 f3,2 f3,3

⎤
⎦ is real

orthogonal matrix (cf. Prop. 3.4) and ri = ±1. One may assume r1 = 1, and we find
that ±S/D = s = ρ(s) has the form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 − f1,1

√
3

2 − f2,1
√
3

2 − f3,1
√
3

2 0 0

− f1,1
√
3

2
f1,3

√
10r2

5
f1,3

√
10r3

5

− f2,1
√
3

2 A f2,3
√
10r2

5
f2,3

√
10r3

5

− f3,1
√
3

2
f3,3

√
10r2

5
f3,3

√
10r3

5

0 f1,3
√
10r2

5
f2,3

√
10r2

5
f3,3

√
10r2

5 −
√
5+5
10

r2
√
5
(√

5−1
)
r3

10

0 f1,3
√
10r3

5
f2,3

√
10r3

5
f3,3

√
10r3

5

r2
√
5
(√

5−1
)
r3

10 −
√
5
(√

5+1
)

10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

A =
⎡
⎢⎣

− f1,1
2

2 + f1,2
2 +

f1,3
2√5
5 ∗ ∗

− f1,1 f2,1
2 + f1,2 f2,2 +

f1,3
√
5 f2,3
5 − f2,1

2

2 + f2,2
2 +

f2,3
2√5
5 ∗

f1,2 f3,2 +
f1,3

√
5 f3,3
5 − f1,1 f3,1

2 f2,2 f3,2 +
f2,3

√
5 f3,3
5 − f2,1 f3,1

2 f3,2
2 +

f3,3
2√5
5 − f3,1

2

2

⎤
⎥⎦ .

First we observe that the FP-dimensions and categorical dimensions (which may
coincide) must appear as multiples of one of the columns 2, 3 or 4. Moreover, since our
category is non-integral by Proposition 3.16, the Galois orbit of the dimension column
has size 2. The FP-dimension column of s must have all the same sign, which implies
that r2 = r3.

Let σ ∈ Gal(Q5/Q) be the automorphism defined by ζ5 → ζ 3
5 . By Galois symmetry

we have: σ̂ (1) = 1, σ̂ (5) = 6. Therefore, σ̂ has order 2. Reordering the rows of F
if necessary (which permutes the corresponding rows/columns of s) we may assume
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that σ̂ (2) = 2 and σ̂ (3) = 4, so that the FP-dimensions and categorical dimensions
correspond to either columns 3 or 4 (or one of each).

Wewill make frequent use of the fact that σ(si j ) = εσ (i)sσ̂ (i), j = εσ ( j)si,σ̂ ( j) where
εσ (i) is a sign.

Now 1/2 = σ(s1,1) = εσ (1)/2 so that εσ (1) = 1. By a similar computation

σ(s1,2) = εσ (1)s1,2 = εσ (2)s1,2, so that εσ (2) = 1. From σ(s5,5) =
√
5−5
10 = εσ (5)s5,6

we find that εσ (5) = −1. Now we compute two ways: σ(s2,5) = εσ (2)s2,5 = s2,5 =
εσ (5)s2,6 = −s2,6 = −s2,5, which implies s2,5 = 0 so that f1,3 = 0. Now σ(s3,5) =
εσ (3)s4,5 = εσ (5)s3,6 = −s3,6 implies f3,3 = ± f2,3 so that ( f2,3)2 = 1

2 . Applying a
similar calculation we see that σ(s1,3) = s1,3 = εσ (3)s1,4 implies f2,1 = ± f3,1. Setting
z = f1,1 and y = f2,1 orthogonality yields the following:

F =
⎡
⎢⎣

z δ1
√
2y 0

y −δ1z√
2

−δ2δ3√
2

δ2y
−δ1δ2z√

2
δ3√
2

⎤
⎥⎦ .

One important consequence is that there are only 2 rows of ρ(s) that have strictly non-
zero entries: the 3rd and the 4th.

Next we find that σ(si,1) = si,1 since εσ (1) = 1 and σ̂ (1) = 1. Thus fi,1
√
3 ∈ Q.

Note that z2 + 2y2 = 1 where z, y ∈ 1√
3
Q, and one of s2,1/s3,1 = ±s2,1/s4,1 is of

the form SX,Y /dX , i.e., an eigenvalue of a fusion matrix. In particular z/y = γ is a
(rational) algebraic integer, i.e., γ ∈ Z. From this we find that γ 2 + 2 = 1/y2 ∈ Z so
that 0 < y2 � 1/3, and so 1/3 � z2 � 1.

Let us compute the values of the submatrix A above. We have:

A =
⎡
⎢⎣

−z2/2 + 2y2 ∗ ∗
−3yz/2 1

2 (z
2 − y2 + 1√

5
) ∗

−δ23yz/2
δ2
2 (z2 − y2 − 1√

5
) 1

2 (z
2 − y2 + 1√

5
)

⎤
⎥⎦ .

Since the unit object can only correspond to either row 3 or 4 and s32 = ±s42, s22/s32
is an algebraic integer in Q(

√
5). Note that

s22
s32

= γ

3
− 4

3γ
= γ 2 − 4

3γ
∈ Q.

Therefore, γ 2−4
3γ ∈ Z and so γ | 4. Thus, γ 2 = 1, 4 or 16. However, if γ 2 = 4 or 16,

y = ±1√
γ 2+2

�∈ 1√
3
Q. Thus, γ 2 = 1 or z = ±y.

This implies that y = ± 1√
3
, from which we compute: f2,2 = ± 1√

6
, f3,2 = ± 1√

6
,

f1,1 = ± 1√
3
, and f1,2 = ± 2√

6
.

Now we may assume F =
⎡
⎣

−1/
√
3 2x1/

√
6 0

x2/
√
3 x3/

√
6 x4/

√
2

x5/
√
3 x6/

√
6 x7/

√
2

⎤
⎦ where the xi = ±1 after an

overall rescaling by±1. Orthogonality of F implies several additional conditions on the
xi , so that all are determined by the values of x2, x4, x5 and x7.
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Substituting into s above, rescaling by ±D and permuting the rows/columns so that
the two non-zero rows appear first, we have:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x4x7
√
5x5

√
5x5 2 x7r3 2 x7r3

x4x7 1
√
5x2

√
5x2 2 x4r3 2 x4r3√

5x5
√
5x2

√
5 −√

5 0 0√
5x5

√
5x2 −√

5
√
5 0 0

2 x7r3 2 x4r3 0 0 −√
5 − 1

√
5 − 1

2 x7r3 2 x4r3 0 0
√
5 − 1 −√

5 − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus we see that the dimensions and FP-dimensions must be, up to sign choices,
among 1, 2,

√
5. In particular, any such category must be weakly integral, and there is

an invertible object of order 2. Therefore, are two spherical structures on C which make
1 = ι or 1 �= ι. We may assume 1 corresponds to the first row. For the first case, we
find x4x7 = x5 = x7r3 = 1 and x2 = −1.

Thus we obtain the following S-matrix:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
√
5

√
5 2 2

1 1 −√
5 −√

5 2 2√
5

√
5

√
5 −√

5 0 0√
5

√
5 −√

5
√
5 0 0

2 2 0 0 −√
5 − 1

√
5 − 1

2 2 0 0
√
5 − 1 −√

5 − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

For the secondcase, one canobtain the same S-matrix except thefirst two rows/columns
are interchanged, but the T -matrix is unchanged. Therefore, we have only one modular
data for either case.

Applying σ to (S, T ), we obtain the modular data for ρ ∼= ρ335
⊕ ρ21,02

⊕ χ0 with the

T -matrix given by σ(T ) = diag(1, 1, 1,−1, ζ 3
5 , ζ 2

5 ). Both of these modular data (S, T )

and (σ (S), σ (T )) are modular data of non-trivial braided zesting of MTCs (see [10]) of
type (3,3). Notice that the MTCs of type (3,3) have T -matrix of order 20.

4.4.3. Case (5, 2, 2) It suffice to consider the case with ρ ∼= ρ̃ := ρ315
⊕ ρ21,02

⊕ χ6.

Then

ρ̃(s) = 1√
5

⎡
⎣

1 −√
2 −√

2
−√

2 −ϕ ϕ−1

−√
2 ϕ−1 −ϕ

⎤
⎦ ⊕ 1

2

[
−1 −√

3
−√

3 1

]
⊕ [−1] and

ρ̃(t) = diag(1, ζ5, ζ
4
5 , 1,−1,−1).

Permute irr(C) so that ρ(t) = diag(−1,−1, 1, 1, ζ5, ζ 4
5 ). By Theorem 3.23, the objects

1, ι ∈ {e3, e4}, D = 2/( 12 − 1√
5
) = 20 + 8

√
5, and

s := ρ(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3b2
2 − 1 − 1

2 (3ab) 1
2

√
3
2 b

1
2

√
3
2 bκ 0 0

− 1
2 (3ab) 1

2

(
1 − 3b2

) − 1
2

√
3
2 a − 1

2

√
3
2 aκ 0 0

1
2

√
3
2 b − 1

2

√
3
2 a

1
20

(
2
√
5 − 5

)
− 1

20

(
2
√
5 + 5

)
κ − γ1κ√

5
− γ2κ√

5
1
2

√
3
2 bκ − 1

2

√
3
2 aκ − 1

20

(
2
√
5 + 5

)
κ 1

20

(
2
√
5 − 5

)
γ1√
5

γ2√
5

0 0 − γ1κ√
5

γ1√
5

1
10

(
−√

5 − 5
)

2γ1γ2√
5+5

0 0 − γ2κ√
5

γ2√
5

2γ1γ2√
5+5

1
10

(
−√

5 − 5
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for some κ, γ1, γ2 ∈ {±1} and a, b ∈ R such that a2 + b2 = 1. Since 5+2
√
5

5−2
√
5

> 1, ι = 1.
We may simply assume e4 = 1. Then κ = 1, γ1 = γ2 = −1 and a > 0 and b < 0.

By Proposition 3.16, C is not integral. Let σ ∈ Gal(Q5/Q) be a generator. Then
σ̂ (3) = 4 and εσ (3) = 1 since σ(s3,5) = s4,5. Therefore, σ fixes s3,1, s3, 2, and so√

3
2a,

√
3
2b ∈ Q. Now, s2,1 = s2,1 ∈ Q since ab ∈ Q. By Theorem 3.7, s2,1

s4,1 and
s1,2
s4,2 are

in Z[ζ5] ∩ Q,
√
6a,

√
6b ∈ Z and (

√
6a)2 + (

√
6b)2 = 6. But the Diophantine equation

X2 + Y 2 = 6 has no integral solutions, so we conclude that ρ̃ has no realization.

4.5. Classificationofmodular data of type (6). In this subsection,wediscuss the possible
rank-6 MDs of type (6) (i.e. MDs from dimension-6 irreducible SL2(Z) symmetric
representations). This part of the classification relies upon computer computations.

Theorem 4.16. Let C be a rank 6 modular tensor category of type (6) with dim(C) =
D2 �∈ Z. Then the modular data of C can be obtained, up to a choice of (spherical)
pivotal structure, as a Galois conjugate of the modular data of the following modular
tensor categories:

(i) PSU (2)11 (entry 10 in Appendix C.2);
(ii) PSU (2)3 � PSU (2)5 (entry 20 in Appendix C.2);
(iii) SU (2)1 � PSU (2)5 (entry 24 in Appendix C.2);
(iv) PSU (2)3 � SU (2)2 (entry 36 in Appendix C.2).
(v) PSU (2)3 � E(8)2 (entry 28 in Appendix C.2).
(vi) PSO(5)3/2 (non-unitary, entry 9 in Appendix C.2);

It isworth noting that (i), (ii) and (vi) have a unique pivotal structure, up to equivalence
(cf. [6]). The categories (i) and (ii) are transitive [29], and they are completely determined
by their modular data. We note that by [35], any fusion category with the same fusion
rules as those of (vi) is non-pseudo-unitary.

Recall that a symmetric SL2(Z) representation ρ is defined to be an unitary repre-
sentation which has diagonal ρ(t) and symmetric ρ(s). Every finite-dimensional rep-
resentation of SL2(Z/nZ) is equivalent to a symmetric one. Two symmetric SL2(Z)

representations are equivalent if and only if they are related by a conjugation of a real
orthogonal matrix (see Theorem 3.4). There are 70 inequivalent 6-dimensional symmet-
ric irreducible SL2(Z) representations of prime-power levels (cf. “Appendix A”). Up to
tensoring one of the 12 1-dimensional representations, other 6-dimensional irreducible
representations are tensor products of one of the 11 2-dimensional and one of the 33
3-dimensional irreducible symmetric representations of distinct prime-power levels.

Since there are only a finite number of SL2(Z) representations, up to equivalence,
for any given dimension, we can examine representatives of each of those symmetric
representations by computer and reject those representations that do not satisfy the
following necessary conditions (for a symmetric SL2(Z) representation equivalent to an
MD representation):

(1) If all the eigenvalues of ρ(t) are distinct (non-degenerate) then ρ(s) has a row that
contains no zero. Note that when ρ(t) has non-degenerate spectrum, the matrix
ρ(s) differs from that of an MD representation only by a conjugation by signed
diagonal matrix. In this case, ρ(s) must have a row that contains no zero (i.e. the
row corresponding to the unit object).

(2) Let ρ(s)ndeg (or Mndeg) be the non-degenerate block of ρ(s) (or M), (i.e., corre-
sponding to themultiplicity 1 eigenvalues of the diagonal matrix ρ(t), see Sect. 3.4).
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Then the conductor of ρ(s)ndeg divides ord(ρ(t)) (cf. Proposition 3.9). If the ρ(t)-
spectrum is non-degenerate then we may drop the ndeg superscript.

(3) σ(ρ(s)ndeg) = (
ρa(t)ρ(s)ρb(t)ρ(s)ρa(t)

)ndeg for any σ ∈ Gal(Q̄), where σ(ζn) =
ζ an for an unique integer a modulo n. Here n = ord(ρ(t)) and b satisfies ab ≡ 1
mod n (cf. Theorem 3.7). Again, this is because ρ(s)ndeg can only differ from that
of an MD representation by a conjugation of signed diagonal matrix.

Since the weakly integral rank-6 MD of MTCs are classified, we can exclude sym-
metric SL2(Z) representations that must produce such MDs. Thus we also reject the
representations that satisfy the following conditions, both of which imply weak integral-
ity:

(1) pord(ρ(t)) ∈ {2, 3, 4, 6}. In fact, this implies the category is pointed, see Proposition
3.16(i).

(2) The squares of the matrix entries of ρ(s) in each row containing no zeros are all
rational numbers, and ρ is non-degenerate. Indeed, in this case 1/D2, (di/D)2 and
(di FPdim(Xi )/D)2 are rational, where column i is the unique strictly positive
(or negative) column. (This condition only rejects one case. See entry 566 in the
Supplementary material section of the arXiv version of this paper.)

We remark that there are 6-dimensional irreducible SL2(Z) representations where
ρ(t) are degenerate, for example, the representation 615 in “Appendix A”. Such a rep-
resentation is rejected since the conductor of ρ(s)ndeg is 40 which does not divides
ord(ρ(t)) = 5 (see also entry 582 in Supplementary material Section of the arXiv
version of this paper).

All the passing symmetric SL2(Z) representations can be grouped into orbits gener-
ated by Galois conjugations and tensoring 1-dimensional representations. There are
7 such orbits. A representative for each orbit is listed in Section B.2, which have
(dims; levels) = (6; 9), (6; 13), (6; 15), (6; 16), (6; 35), (6; 56), (6; 80).

Fortunately, we find that all these SL2(Z) representations have non-degenerate ρ(t),
so they can only possibly differ from an MD representation by a conjugation of signed
diagonal matrix, if they indeed are associated withMDs.We can then search through the
finite number of signed diagonal conjugations, and find the (S, T ) matrices that satisfy
the conditions listed in Theorems 2.1 and 3.7. The results are given in Section C.2,
where (S, T )matrices are found from SL2(Z) representations that have (dims; levels) =
(6; 9), (6; 13), (6; 16), (6; 35), (6; 56), (6; 80). Those computer assisted calculations
are described in detail in the “Appendix”.

5. Classification of Modular Data of rank = 6: Non-admissible Types

In this section, we complete the classification of rank = 6 MDs by eliminating the
remaining types.

Theorem 5.1. There are no rank = 6 MTCs of types (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1),
(2, 1, 1, 1, 1), (5, 1), or (1, 1, 1, 1, 1, 1).

Obviously, type Vec is the only MTC of type (1). However, no MTCs of rank n > 1
is of type (1, . . . , 1), as the associated SL2(Z) representations ρ ∼= nχ i for some integer
i by Corollary 3.21. In particular, ρ(s) has zeros in each row if n > 1.
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5.1. Nonexistence of type (3, 1, 1, 1).

Proposition 5.2. There does not exist any modular tensor category of type (3,1,1,1) .

Proof. Assume contrary. Let C be a modular tensor category of type (3, 1, 1, 1) and ρ

an SL2(Z) representation of C. Then
ρ ∼= ρ0 ⊕ χ1 ⊕ χ2 ⊕ χ3.

where ρ0 is irreducible of dimension 3 and χi , i = 1, 2, 3, are 1-dimensional represen-
tations. By Lemma 3.20, spec(χi (t)) ⊂ spec(ρ0(t)) for i = 1, 2, 3. One may assume
ρ0 has a minimal t-spectrum. Then ρ0 must have a prime power level. By “Appendix
A”, the level of ρ0 can only be 3, 4, 5, 7, 8 or 16. The t-spectrum of any 3-dimensional
irreducible representations of level 7 or 16 does not contain any 12-th root of unity.
Therefore, the level of ρ0 can only be 3, 4, 5, or 8. It suffices to show that none of these
levels is possible.

If ρ0 were of level 3 or 4, then ord(ρ(t)) = 3 or 4, by Lemma 3.20. This implies
ord(T ) = 2, 3 or 4 and hence C is integral by Theorem 3.14. By Proposition 3.16, C
must be of type (4,2), a contradiction. Therefore, ρ0 can only be of level 5 or 8.

If ρ0 were of level 5, then ord(ρ(t)) = 5 by Lemma 3.20. Hence, ord(T ) = 5 which
is not possible by Proposition 3.22.

If the level of ρ0 were 8, then ρ0 ∼= ρ31,08
or ρ33,08

as they are the 3-dimensional irre-

ducible representations of level 8 with a minimal t-spectrum. In either case, spec(ρ0(t))
has exactly one 12-th root of unity, which is 1, and ρ0 is odd. Therefore, ρ ∼= ρ0 ⊕ 3χ0

by Corollary 3.21. This implies Tr(ρ(s2)) = 0, which is impossible for any MD repre-
sentation.

5.2. Nonexistence of types (2,2,2), (2,2,1,1) and (2,1,1,1,1). Wewill prove the following
theorem which leads to the nonexistence of modular tensor categories of these types.

Theorem 5.3. Let C a be modular tensor category with rank C > 2, and ρ an SL2(Z)

representation of C. If all the irreducible subrepresentations of ρ have dimensions � 2,
then ord(T ) = 1, 2, 3, 4, or 6 and therefore C is integral.

Proof. If every irreducible subrepresentation of ρ is 1-dimensional, then C is of type
(1, . . . , 1)which can only be trivial by the beginning remark of this section. In particular,
ord(T ) = 1 and C is integral.

Now, we assume ρ admits a 2-dimensional irreducible subrepresentation ρ0. By
tensoring a 1-dimensional representation to ρ, we may assume the level of ρ0 to be
2, 3, 5, or 8.

Suppose ρ0 is of level 5. Then each irreducible subrepresentations ρ′
0 of ρ which is

not isomorphic to ρ0 satisfies spec(ρ′
0(t)) ∩ spec(ρ0(t)) = ∅ by “Appendix A”. This

implies ρ ∼= �ρ0, but this is impossible by Proposition 3.19. Therefore, ρ0 cannot have
level 5.

Assume ρ0 is of level 8. Note that the t-spectrum of any 2-dimensional level 8
irreducible representation consists of primitive 8-th roots of unity. By the t-spectra
criterion and “Appendix A”, all the irreducible subrepresentations of ρ are of dimension
2 and level 8. In particular, ord(T ) = pord(ρ(t)) = 4.

If ρ0 is of level 2 or 3, it follows from the preceding discussion that all the 2-
dimensional irreducible subrepresentations of ρ are of level 2 or 3. By Lemma 3.20,
ord(ρ(t)) = 2, 3 or 6 and so ord(T ) = 2, 3 or 6.

The last assertion follows from Theorem 3.14.
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Corollary 5.4. There is no modular tensor category of types (2, 2, 2), (2, 2, 1, 1) or
(2, 1, 1, 1, 1).

Proof. Suppose there exists a modular tensor category C of any of these types. By
Theorem 5.3, C is integral, but this contradicts Proposition 3.16 which shows C is of
type (4, 2).

5.3. Nonexistence of type (5, 1). Suppose that C is a modular tensor category of type
(5, 1), and ρ an SL2(Z) representation of C. Then C is not integral by Proposition 3.16,
and ρ ∼= ρ0 ⊕ ρ1 where ρ0, ρ1 are irreducible of dimension 5 and 1 respectively. By
tensoring a 1-dimensional representation of SL2(Z), one may assume ρ0 is of prime
power level. By “Appendix A”, the level of ρ0 can only be 11 or 5.

In the former case the t-spectrum consists primitive 11-th roots of unity. Since ρ1(t)
is a 12 root of unity, the t-spectrum criteria shows this is impossible.

Now if ρ2 has level 5 and ρ2 ∼= ρ515
. This implies ρ1 ∼= χ0. Let ρ̃ = χ0 ⊕ ρ515

. Then

ρ̃(t) = diag(1, 1, ζ5, ζ 2
5 , ζ 3

5 , ζ 4
5 ), and

ρ̃(s) = [1] ⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 − 1
5

√
6
5

√
6
5

√
6
5

√
6
5

0
√
6
5

3−√
5

10 − 1
5 − 1√

5
1√
5

− 1
5

3+
√
5

10

0
√
6
5 − 1

5 − 1√
5

3+
√
5

10
3−√

5
10

1√
5

− 1
5

0
√
6
5

1√
5

− 1
5

3−√
5

10
3+

√
5

10 − 1
5 − 1√

5

0
√
6
5

3+
√
5

10
1√
5

− 1
5 − 1

5 − 1√
5

3−√
5

10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There exists a real orthogonal matrix U = diag( f, ε1, ε2, ε3, ε4) such that ρ(s) =
U ρ̃(s)U� and ρ(t) = ρ̃(t), where f ∈ O2(R) and εi = ±1.

The group Gal(Q5/Q) is generated by σ defined by σ(ζ5) = ζ 2
5 , and

Dρ̃ (σ ) = I2 ⊕ J4 where J4 = [δi,5− j ]1�i, j�4.

So σ̂ fixes 1 and 2. Since C is non-integral, the row corresponding to 1 must be one of
the last 4. Since ρ(s)ndeg and ρ̃(s)ndeg are the same up to some signs, D = 10

3±√
5
which

has norm 25.
Observe that each row of ρ̃(s)ndeg has the entries − 1

5 ± 1√
5
. Therefore, (− 1

5 ±
1√
5
)/ 3∓√

5
10 = 1±√

5 are dimensions of some objects up to a sign. However, their norms

are -4 which is not a divisor of 25, a contradiction. So, we conclude that such a category
cannot exist.

6. Summary and Future Directions

We have developed tools for classifying modular data directly from representations
of SL2(Z), and have applied them to provide a classification of rank 6 modular data.
Sufficiently many of these tools have been implemented as computer algorithms to
yield a purely computational approach to the rank 6 classification. A purely “by hand"
approach to higher ranks is too involved for the currently theory, but the computational
approach can be implemented in higher ranks. It should be noted that in this work we
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used the classification of weakly integral modular data [4] of rank up to 7 to simplify
the computer calculations. For higher ranks this will require further work.

Acknowledgements. The authors are partially supported by an NSF FRG grant: Z.W. by DMS-1664351,
E.C.R. by DMS-1664359. Funding was provided by the Directorate for Mathematical and Physical Sciences
(Grant No. 2000331), X.-G. W. by DMS-1664412 and S.-H. N. by DMS-1664418. Z.W. is also partially
supported byCCF2006463 andAROMURI contractW911NF-20-1-0082. E.C.R.was also partially supported
by NSF grant DMS-2205962. The authors have no relevant financial or non-financial interests to disclose.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

A. List of SL2(Z) Irreducible Representations of Prime-Power Levels

In this section, we list all the SL2(Z) symmetric irreducible representations of dimension
1–6, whose level (l = ord(ρ(t))) is a power of single prime number, which are generated
by the GAP program [27]. In the list, ρ(t) is presented in term of topological spins
(s̃1, s̃2, · · · ) (s̃i = arg(ρa(t)i i )).

Note that ρ(s) is symmetric and ρ(s)i j ’s are either all real or all imaginary. When
ρ(s)i j ’s are all real, ρ(s) is presented as (ρ11, ρ12, ρ13, ρ14, · · · ; ρ22, ρ23, ρ24, · · · ).
In this case, ρ(s)2 = id and the representation ρ is said to be even. When ρ(s)i j ’s are
all imaginary, ρ(s) is presented as i(−iρ11,−iρ12,−iρ13,−iρ14, · · · ; −iρ22,−iρ23,
−iρ24, · · · ), or as (smn )−1(smn ρ11, smn ρ12, smn ρ13, smn ρ14, · · · ; smn ρ22, smn ρ23, smn ρ24, · · · ),
where smn := ζm

n − ζ−m
n . In this case, ρ(s)2 = − id and the representation ρ is said

to be odd. In any case, the numbers inside the bracket (· · · ) are all real. We can tell a
representation to be even or odd by the absence or the presence of i or (smn )−1in front of
the bracket (· · · ).

We note that two symmetric representations are equivalent up to a permutation of
indices, and a conjugation of signed diagonal matrix. To choose the ordering in indices,
we introduce arrays Oi = [DenominatorOf(s̃i ), s̃i , ρi i ]. The order of two arrays is
determined by first comparing the lengths of the two arrays. If the lengths are equal,
we then compare the first elements of the two arrays. If the first elements are equal, we
then compare the second elements of the two arrays, etc. To compare two cyclotomic
numbers, here we used the ordering of cyclotomic numbers provided by GAP computer
algebraic system. We order the indices to make O1 � O2 � O3 · · · . The conjugation
of signed diagonal matrix is chosen to make −ρ(s)1 j < ρ(s)1 j for j = 2, 3, . . .. If
ρ(s)1 j = 0, we will try to make −ρ(s)2 j < ρ(s)2 j , etc.

All the prime-power-level irreducible representations are labeled by index da,m
l,k ,

where d is the dimension and l is the level of the representation. The irreducible represen-
tations of a givend, l can be grouped into several orbits, generated byGalois conjugations
and tensoring of 1-dimensional representations that do not change the level l: the k in
da,m
l,k labels those different orbits. If there is only 1 orbit for a given d, l, the index k will
be dropped.

The irreducible representation labeled by da,m
l,k is generated from the irreducible

representation labeled by d1,0l,k via the following Galois conjugations and tensoring of
1-dimensional representations

ρda,m
l,k

(t) = σa
(
ρd1,0l,k

(t)
)
e2π i

m
12
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ρda,m
l,k

(s) = σa
(
ρd1,0l,k

(s)
)
e−2π im4 (A.1)

where the Galois conjugation σa is in Gal(Qn) with n be the least common multiple of
ord(ρd1,0l,k

(t)) and the conductor of ρd1,0l,k
(s). The Galois conjugation σa is labeled by an

integer a, which is given by

σa
(
e2π i/n

) = e2π ia/n . (A.2)

Also m ∈ Z12 is such that ord(ρd1,0l,k
(t)e2π i

m
12 ) = ord(ρd1,0l,k

(t)). Due to this condition,

when l is not divisible by 2 and 3, m can only be 0. In this case, we will drop m. Here
we choose d1,0l,k to be the representation in the orbit with minimal [s̃1, s̃2, · · · ].

The numbers of distinct irreducible representations with prime-power level (PPL) in
each dimension are given by

dim: 1 2 3 4 5 6 7 8 9 10 11 12
# of irreps with PPL 6 11 33 18 3 70 3 10 4 7 3 176

# of irreps 12 54 136 180 36 720 36 456 476 222 36 3214

(A.3)

In the above we also list the numbers of distinct irreducible representations, which
are tensor products of the irreducible representations with prime-power levels.

In the following tables, we list all irreducible representations with prime-power levels
for rank 2, 3, 4, 5. For rank 6, to save space, we only list all irreducible representations
with prime-power levels that have a form ρd1,0l,k

. Other irreducible representations, with

prime-power levels and the same dimension, can be obtained from those listed ones via
Galois conjugations and tensoring 1-dimensional representations. In the Supplementary
Material section of the arXiv version of the article we list all distinct irreducible repre-
sentations of prime-power levels. In the tables cmn := ζm

n + ζ−m
n and smn := ζm

n − ζ−m
n .

da,m
l,k # ρ(t), ρ(s)

111 1 (0), (1)

11,02 2 ( 12 ), (−1)

11,03 3 ( 13 ), (1)

11,43 4 ( 23 ), (1)

11,04 5 ( 14 ), i(1)

11,64 6 ( 34 ), i(−1)

da,m
l,k # ρ(t), ρ(s)

21,02 1 (0, 1
2 ), (− 1

2 ,−
√
3
2 ; 1

2 )

21,03 2 (0, 1
3 ), (s13 )−1(1, −√

2; −1)

21,83 3 (0, 2
3 ), (s13 )−1(−1, −√

2; 1)

21,43 4 ( 13 , 2
3 ), (s13 )−1(1, −√

2; −1)

21,04 5 ( 14 , 3
4 ), i(− 1

2 ,
√
3
2 ; 1

2 )

215 6 ( 15 , 4
5 ), (s15 )−1(1, − 1+

√
5

2 ; −1)

225 7 ( 25 , 3
5 ), (s25 )−1(1, 1−

√
5

2 ; −1)

21,08 8 ( 18 , 3
8 ), (−

√
2
2 ,

√
2
2 ;

√
2
2 )
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da,m
l,k # ρ(t), ρ(s)

21,98 9 ( 18 , 7
8 ), i(−

√
2
2 ,

√
2
2 ;

√
2
2 )

21,38 10 ( 38 , 5
8 ), i(−

√
2
2 ,

√
2
2 ;

√
2
2 )

21,68 11 ( 58 , 7
8 ), (

√
2
2 ,

√
2
2 ; −

√
2
2 )

da,m
l,k # ρ(t), ρ(s)

31,03 1 (0, 1
3 , 2

3 ), (− 1
3 ,

2
3 ,

2
3 ; − 1

3 ,
2
3 ; − 1

3 )

31,04 2 (0, 1
4 , 3

4 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

31,34 3 (0, 1
2 , 1

4 ), i(− 1
2 ,

1
2 ,

√
2
2 ; − 1

2 ,
√
2
2 ; 0)

31,94 4 (0, 1
2 , 3

4 ), i( 12 ,
1
2 ,

√
2
2 ; 1

2 , −
√
2
2 ; 0)

31,64 5 ( 12 , 1
4 , 3

4 ), (0,
√
2
2 ,

√
2
2 ; 12 , − 1

2 ;
1
2 )

315 6 (0, 1
5 , 4

5 ), (
√
5
5 , −

√
10
5 , −

√
10
5 ; − 5+

√
5

10 , 5−
√
5

10 ; − 5+
√
5

10 )

335 7 (0, 2
5 , 3

5 ), (−
√
5
5 , −

√
10
5 , −

√
10
5 ; − 5−√

5
10 , 5+

√
5

10 ; − 5−√
5

10 )

317 8 ( 17 , 2
7 , 4

7 ), (− c128√
7
, − c328√

7
,
c528√
7
;
c528√
7
, − c128√

7
; − c328√

7
)

337 9 ( 37 , 5
7 , 6

7 ), (− c328√
7
, − c128√

7
,
c528√
7
;
c528√
7
, − c328√

7
; − c128√

7
)

31,08 10 (0, 1
8 , 5

8 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

33,08 11 (0, 3
8 , 7

8 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

33,38 12 ( 14 , 1
8 , 5

8 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

31,38 13 ( 14 , 3
8 , 7

8 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

31,68 14 ( 12 , 1
8 , 5

8 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

33,68 15 ( 12 , 3
8 , 7

8 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

33,98 16 ( 34 , 1
8 , 5

8 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

31,98 17 ( 34 , 3
8 , 7

8 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

31,016 18 ( 18 , 1
16 , 9

16 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

37,316 19 ( 18 , 3
16 , 11

16 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

35,616 20 ( 18 , 5
16 , 13

16 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

33,916 21 ( 18 , 7
16 , 15

16 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

35,916 22 ( 38 , 1
16 , 9

16 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

33,016 23 ( 38 , 3
16 , 11

16 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

31,316 24 ( 38 , 5
16 , 13

16 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

37,616 25 ( 38 , 7
16 , 15

16 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )
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da,m
l,k # ρ(t), ρ(s)

31,616 26 ( 58 , 1
16 , 9

16 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

37,916 27 ( 58 , 3
16 , 11

16 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

35,016 28 ( 58 , 5
16 , 13

16 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

da,m
l,k # ρ(t), ρ(s)

33,316 29 ( 58 , 7
16 , 15

16 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

35,316 30 ( 78 , 1
16 , 9

16 ), (0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

33,616 31 ( 78 , 3
16 , 11

16 ), i(0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

31,916 32 ( 78 , 5
16 , 13

16 ), (0,
√
2
2 ,

√
2
2 ; − 1

2 ,
1
2 ; − 1

2 )

37,016 33 ( 78 , 7
16 , 15

16 ), i(0,
√
2
2 ,

√
2
2 ; 1

2 , − 1
2 ;

1
2 )

da,m
l,k # ρ(t), ρ(s)

415,1 1 ( 15 , 2
5 , 3

5 , 4
5 ), (s25 )−1(− 5+

√
5

10 , −
√
15
5 , 3−3

√
5

2
√
15

, 5−3
√
5

10 ; − 5−3
√
5

10 , 5+
√
5

10 , − 3−3
√
5

2
√
15

;

5−3
√
5

10 , −
√
15
5 ; 5+

√
5

10 )

415,2 2 ( 15 , 2
5 , 3

5 , 4
5 ), (

√
5
5 , − 5−√

5
10 , − 5+

√
5

10 ,
√
5
5 ; −

√
5
5 ,

√
5
5 , 5+

√
5

10 ; −
√
5
5 , 5−

√
5

10 ;
√
5
5 )

417 3 (0, 1
7 , 2

7 , 4
7 ), i(−

√
7
7 ,

√
14
7 ,

√
14
7 ,

√
14
7 ; − c27√

7
, − c17√

7
, − c37√

7
; − c37√

7
, − c27√

7
; − c17√

7
)

437 4 (0, 3
7 , 5

7 , 6
7 ), i(

√
7
7 ,

√
14
7 ,

√
14
7 ,

√
14
7 ;

c17√
7
,
c27√
7
,
c37√
7
;

c37√
7
,
c17√
7
;

c27√
7
)

41,08 5 ( 18 , 3
8 , 5

8 , 7
8 ), i(

√
2
4 ,

√
6
4 ,

√
6
4 ,

√
2
4 ;

√
2
4 , −

√
2
4 , −

√
6
4 ; −

√
2
4 ,

√
6
4 ; −

√
2
4 )

41,38 6 ( 18 , 3
8 , 5

8 , 7
8 ), (

√
2
4 ,

√
2
4 ,

√
6
4 ,

√
6
4 ; −

√
2
4 ,

√
6
4 , −

√
6
4 ; −

√
2
4 , −

√
2
4 ;

√
2
4 )

41,09,1 7 (0, 1
9 , 4

9 , 7
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; − 1

3 c
1
36,

1
3 c

7
36,

1
3 c

5
36;

1
3 c

5
36, − 1

3 c
1
36;

1
3 c

7
36)

42,09,1 8 (0, 2
9 , 5

9 , 8
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; − 1

3 c
7
36,

1
3 c

1
36, − 1

3 c
5
36; − 1

3 c
5
36, − 1

3 c
7
36;

1
3 c

1
36)

41,49,1 9 ( 13 , 1
9 , 4

9 , 7
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; 1

3 c
7
36,

1
3 c

5
36, − 1

3 c
1
36; − 1

3 c
1
36,

1
3 c

7
36;

1
3 c

5
36)

42,49,1 10 ( 13 , 2
9 , 5

9 , 8
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; 1

3 c
1
36, − 1

3 c
5
36, − 1

3 c
7
36; − 1

3 c
7
36,

1
3 c

1
36; − 1

3 c
5
36)

da,m
l,k # ρ(t), ρ(s)

41,89,1 11 ( 23 , 1
9 , 4

9 , 7
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; 1

3 c
5
36,− 1

3 c
1
36,

1
3 c

7
36;

1
3 c

7
36,

1
3 c

5
36; − 1

3 c
1
36)

42,89,1 12 ( 23 , 2
9 , 5

9 , 8
9 ), i(0,

√
3
3 ,

√
3
3 ,

√
3
3 ; − 1

3 c
5
36, − 1

3 c
7
36,

1
3 c

1
36;

1
3 c

1
36, − 1

3 c
5
36;

− 1
3 c

7
36)

41,09,2 13 (0, 1
9 , 4

9 , 7
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
2
9,

1
3 c

4
9,

1
3 c

1
9;

1
3 c

1
9,

1
3 c

2
9;

1
3 c

4
9)

45,09,2 14 (0, 2
9 , 5

9 , 8
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
4
9,

1
3 c

2
9,

1
3 c

1
9;

1
3 c

1
9,

1
3 c

4
9;

1
3 c

2
9)

41,49,2 15 ( 13 , 1
9 , 4

9 , 7
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
4
9,

1
3 c

1
9,

1
3 c

2
9;

1
3 c

2
9,

1
3 c

4
9;

1
3 c

1
9)

45,49,2 16 ( 13 , 2
9 , 5

9 , 8
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
2
9,

1
3 c

1
9,

1
3 c

4
9;

1
3 c

4
9,

1
3 c

2
9;

1
3 c

1
9)

41,89,2 17 ( 23 , 1
9 , 4

9 , 7
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
1
9,

1
3 c

2
9,

1
3 c

4
9;

1
3 c

4
9,

1
3 c

1
9;

1
3 c

2
9)

45,89,2 18 ( 23 , 2
9 , 5

9 , 8
9 ), (0, −

√
3
3 , −

√
3
3 , −

√
3
3 ; 1

3 c
1
9,

1
3 c

4
9,

1
3 c

2
9;

1
3 c

2
9,

1
3 c

1
9;

1
3 c

4
9)



Reconstruction of Modular Data from SL2(Z) Representations

da,m
l,k # ρ(t), ρ(s)

515 1 (0, 1
5 , 2

5 , 3
5 , 4

5 ), (− 1
5 ,

√
6
5 ,

√
6
5 ,

√
6
5 ,

√
6
5 ; 3−√

5
10 , − 1+

√
5

5 , − 1−√
5

5 , 3+
√
5

10 ; 3+
√
5

10 , 3−√
5

10 ,

− 1−√
5

5 ; 3+
√
5

10 , − 1+
√
5

5 ; 3−√
5

10 )

5111 2 ( 1
11 , 3

11 , 4
11 , 5

11 , 9
11 ), (− c344√

11
, − c744√

11
, − c544√

11
, − c144√

11
, − c944√

11
;
c944√
11
, − c344√

11
,
c544√
11

,
c144√
11
;
c144√
11
,

c944√
11
,
c744√
11
;

c744√
11

, − c344√
11

;
c544√
11

)

5211 3 ( 2
11 , 6

11 , 7
11 , 8

11 , 10
11 ), (

c544√
11

,
c344√
11

,− c744√
11

,− c144√
11
,− c944√

11
;
c744√
11
,
c944√
11

,
c544√
11

,
c144√
11
;
c144√
11

,− c344√
11
,

c544√
11
;

c944√
11

,
c744√
11

; − c344√
11

)

da,m
l,k # ρ(t), ρ(s)

615 1 (0, 0, 1
5 , 2

5 , 3
5 , 4

5 ), (s25 )−1(
√
5
5 , − 5−√

5
10 , −

√
10
5 , − 5+

√
5

10 , 5−3
√
5

10 , 1−√
5√

10
; −

√
5
5 , −1+

√
5√

10
,

5−3
√
5

10 , 5+
√
5

10 , −
√
10
5 ; 5−√

5
10 , 1−√

5√
10

, −
√
10
5 , −

√
5
5 ; −

√
5
5 , 5−√

5
10 ,

√
10
5 ;

√
5
5 , 1−√

5√
10

;

− 5−√
5

10 )

617,1 2 ( 17 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 ), i( 17 c

2
56− 1

7 c
3
56+

1
7 c

11
56,

1
7 c

5
56+

1
7 c

6
56+

1
7 c

9
56,

1
7 c

3
112− 1

7 c
9
112+

1
7 c

11
112+

1
7 c

23
112,

2
7 c

1
56− 1

7 c
3
56− 1

7 c
5
56 +

1
7 c

7
56 +

1
7 c

9
56− 1

7 c
10
56− 1

7 c
11
56,

1
7 c

1
112 +

1
7 c

3
112− 1

7 c
5
112− 1

7 c
7
112− 1

7 c
9
112−

1
7 c

11
112 +

2
7 c

13
112 +

1
7 c

15
112 +

2
7 c

17
112 +

1
7 c

19
112 − 1

7 c
21
112 − 1

7 c
23
112,

1
7 c

1
112 +

1
7 c

5
112 − 1

7 c
15
112 +

1
7 c

19
112;

2
7 c

1
56 − 1

7 c
3
56 − 1

7 c
5
56 + 1

7 c
7
56 + 1

7 c
9
56 − 1

7 c
10
56 − 1

7 c
11
56,

1
7 c

1
112 + 1

7 c
5
112 − 1

7 c
15
112 + 1

7 c
19
112,

1
7 c

2
56 − 1

7 c
3
56 +

1
7 c

11
56, − 1

7 c
3
112 +

1
7 c

9
112 − 1

7 c
11
112 − 1

7 c
23
112, − 1

7 c
1
112 − 1

7 c
3
112 +

1
7 c

5
112 +

1
7 c

7
112 +

1
7 c

9
112 +

1
7 c

11
112 − 2

7 c
13
112 − 1

7 c
15
112 − 2

7 c
17
112 − 1

7 c
19
112 +

1
7 c

21
112 +

1
7 c

23
112; − 1

7 c
5
56 − 1

7 c
6
56 − 1

7 c
9
56,

− 1
7 c

1
112 − 1

7 c
3
112 + 1

7 c
5
112 + 1

7 c
7
112 + 1

7 c
9
112 + 1

7 c
11
112 − 2

7 c
13
112 − 1

7 c
15
112 − 2

7 c
17
112 − 1

7 c
19
112 +

1
7 c

21
112 +

1
7 c

23
112,

1
7 c

2
56 − 1

7 c
3
56 +

1
7 c

11
56, − 2

7 c
1
56 +

1
7 c

3
56 +

1
7 c

5
56 − 1

7 c
7
56 − 1

7 c
9
56 +

1
7 c

10
56 +

1
7 c

11
56;

1
7 c

5
56 + 1

7 c
6
56 +

1
7 c

9
56, − 1

7 c
1
112 − 1

7 c
5
112 + 1

7 c
15
112 − 1

7 c
19
112,

1
7 c

3
112 − 1

7 c
9
112 + 1

7 c
11
112 + 1

7 c
23
112;

− 2
7 c

1
56+

1
7 c

3
56+

1
7 c

5
56− 1

7 c
7
56− 1

7 c
9
56+

1
7 c

10
56+

1
7 c

11
56,

1
7 c

5
56+

1
7 c

6
56+

1
7 c

9
56; − 1

7 c
2
56+

1
7 c

3
56− 1

7 c
11
56)

617,2 3 ( 17 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 ), ( 27 − 1

7 c
2
7,− 2

7 +
1
7 c

1
7,

1
7 c

3
56+

2
7 c

5
56− 1

7 c
7
56− 2

7 c
9
56+

1
7 c

11
56,− 3

7 − 1
7 c

1
7− 1

7 c
2
7,

− 1
7 c

3
56 + 1

7 c
5
56 − 1

7 c
9
56 − 1

7 c
11
56, − 2

7 c
3
56 − 1

7 c
5
56 + 1

7 c
7
56 + 1

7 c
9
56 − 2

7 c
11
56;

3
7 + 1

7 c
1
7 + 1

7 c
2
7,

2
7 c

3
56 +

1
7 c

5
56 − 1

7 c
7
56 − 1

7 c
9
56 +

2
7 c

11
56,

2
7 − 1

7 c
2
7,

1
7 c

3
56 +

2
7 c

5
56 − 1

7 c
7
56 − 2

7 c
9
56 +

1
7 c

11
56, − 1

7 c
3
56 +

1
7 c

5
56 − 1

7 c
9
56 − 1

7 c
11
56;

2
7 − 1

7 c
1
7, − 1

7 c
3
56 +

1
7 c

5
56 − 1

7 c
9
56 − 1

7 c
11
56, − 2

7 + 1
7 c

2
7,

3
7 + 1

7 c
1
7 +

1
7 c

2
7;

2
7 − 1

7 c
1
7, − 2

7 c
3
56 − 1

7 c
5
56 + 1

7 c
7
56 + 1

7 c
9
56 − 2

7 c
11
56, − 1

7 c
3
56 − 2

7 c
5
56 + 1

7 c
7
56 + 2

7 c
9
56 − 1

7 c
11
56;

3
7 + 1

7 c
1
7 +

1
7 c

2
7, − 2

7 + 1
7 c

1
7;

2
7 − 1

7 c
2
7)

61,08,1 4 (0, 1
2 , 1

8 , 3
8 , 5

8 , 7
8 ), (0, 0, 12 ,

1
2 ,

1
2 ,

1
2 ; 0,

1
2 , − 1

2 ,
1
2 , − 1

2 ; 0, − 1
2 , 0,

1
2 ; 0,

1
2 , 0; 0, − 1

2 ; 0)

61,08,2 5 (0, 1
2 , 1

4 , 3
4 , 1

8 , 3
8 ), i(−

√
2
4 ,

√
2
4 ,

√
2
4 ,

√
2
4 , 1

2 ,
1
2 ; −

√
2
4 , −

√
2
4 , −

√
2
4 , 1

2 ,
1
2 ;

√
2
4 ,

√
2
4 , − 1

2 ,
1
2 ;

√
2
4 , 12 , − 1

2 ; 0, 0; 0)
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da,m
l,k # ρ(t), ρ(s)

61,09,1 6 ( 19 , 2
9 , 4

9 , 5
9 , 7

9 , 8
9 ), i(− 1

3 ,
1
3 c

7
72,

1
3 ,− 1

3 c
17
72,

1
3 ,− 1

3 c
5
72;

1
3 ,

1
3 c

5
72,− 1

3 ,− 1
3 c

17
72,

1
3 ; − 1

3 ,
1
3 c

7
72,

− 1
3 , − 1

3 c
17
72;

1
3 , − 1

3 c
5
72, − 1

3 ; − 1
3 , − 1

3 c
7
72;

1
3 )

61,09,2 7 ( 19 , 2
9 , 4

9 , 5
9 , 7

9 , 8
9 ), (− 1

3 ,
1
3 c

1
36,

1
3 ,

1
3 c

5
36,

1
3 , − 1

3 c
7
36; − 1

3 ,
1
3 c

7
36,

1
3 ,

1
3 c

5
36, − 1

3 ; − 1
3 ,

1
3 c

1
36,

− 1
3 ,

1
3 c

5
36; − 1

3 , − 1
3 c

7
36,

1
3 ; − 1

3 , − 1
3 c

1
36; − 1

3 )

61,09,3 8 ( 19 , 2
9 , 4

9 , 5
9 , 7

9 , 8
9 ), ( 13 ,

1
3 c

2
9,

1
3 , − 1

3 c
1
9,

1
3 ,

1
3 c

4
9;

1
3 ,

1
3 c

4
9, − 1

3 ,
1
3 c

1
9,

1
3 ;

1
3 , − 1

3 c
2
9,

1
3 ,

1
3 c

1
9;

1
3 ,

− 1
3 c

4
9, − 1

3 ;
1
3 ,

1
3 c

2
9;

1
3 )

6111 9 (0, 1
11 , 3

11 , 4
11 , 5

11 , 9
11 ), i(−

√
11
11 ,

√
22
11 ,

√
22
11 ,

√
22
11 ,

√
22
11 ,

√
22
11 ; − c211√
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B. A List of All Candidate SL2(Z) Representations of MTCs

We will follow the strategy outlined in Sect. 3.4. We first try to obtain a list that includes
all SL2(Z) representations associated with MTCs. Certainly, one such list is the list of
all SL2(Z) representations of finite levels. But such a list is very inefficient since most
representations in the list are not associated with MTCs. So in this section we collect
the conditions that a representation coming from aMTCmust satisfy, to obtain a shorter
list.

B.1. The conditions on SL2(Z) representations. Some of the conditions on SL2(Z)

representations are obtained from the necessary conditions onmodular data Propositions
B.1 and 3.7, and others are discussed in the main text of this paper. Let us first translate
the conditions on the (S, T ) matrices to condition on an MD representations ρα:

Proposition B.1. Given a modular data S, T of rank r , let ρα be any one of its 12 MD
representations. Then ρα has the following properties:

(1) ρα is an SL2(Z) representation of level ord(ρα(t)), and ord(T ) | ord(ρα(t)) |
12 ord(T ) .
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(2) The conductor of the elements of ρα(s) divides ord(ρα(t)).
(3) If ρα is a direct sum of two SL2(Z) representations

ρα
∼= ρ ⊕ ρ′, (B.1)

then the eigenvalues of ρ(t) and ρ′(t) must overlap. This implies that if ρα =
ρ⊕χ1⊕· · ·⊕χ� for some 1-dimensional representationsχ1, . . . , χ�, thenχ1, · · · χ�

are the same 1-dimensional representation.
(4) Suppose that ρα

∼= ρ ⊕�χ for an irreducible representation ρ with non-degenerate
ρ(t), and an 1-dimensional representation χ . If � �= 2 dim(ρ) − 1 or � > 1, then
(ρ(s)χ(s)−1)2 = id.

(5) ρα satisfies

ρα �∼= nρ (B.2)

for any integer n > 1 and any representation ρ such that ρ(t) is non-degenerate.
(6) If ρα(s)2 = ± id (i.e. if the modular data or MTC is self dual), pord(ρα(t)) is a

prime and satisfies pord(ρα(t)) = 1 mod 4, then the representation ρα cannot be a
direct sum of a d-dimensional irreducible SL2(Z) representation and two or more
1-dimensional SL2(Z) representations with d = (p + 1)/2.

(7) Let 3 < p < q be prime such that pq ≡ 3 mod 4 and pord(ρα(t)) = pq, then
the rank r �= p+q

2 + 1. Moreover, if p > 5, rank r >
p+q
2 + 1.

(8) The number of self dual objects is greater than 0. Thus

Tr(ρα(s)2) �= 0. (B.3)

Since Tr(ρα(s)2) �= 0, let us introduce

C = Tr(ρα(s)2)

|Tr(ρα(s)2)|ρα(s)2. (B.4)

The above C is the charge conjugation operator of MTC, i.e. C is a permutation
matrix of order 2. In particular, Tr(C) is the number of self dual objects. Also, for
each eigenvalue θ̃ of ρα(t),

Trθ̃ (C) � 0, (B.5)

where Trθ̃ is the trace in the degenerate subspace of ρα(t) with eigenvalue θ̃ .
(9) For any Galois conjugation σ in Gal(Qord(ρα(t))), there is a permutation of the

indices, i → σ̂ (i), and εσ (i) ∈ {1,−1}, such that

σ
(
ρα(s)i, j

) = εσ (i)ρα(s)σ̂ (i), j = ρα(s)i,σ̂ ( j)εσ ( j) (B.6)

σ 2(ρα(t)i,i
) = ρα(t)σ̂ (i),σ̂ (i), (B.7)

for all i, j .
(10) By [11, Theorem II], Dρα (σ ) defined in (3.6) must be a signed permutation

(Dρα (σ ))i, j = εσ (i)δσ̂ (i), j .

and satisfies

σ(ρα(s)) = Dρα (σ )ρα(s) = ρα(s)D�
ρα

(σ ),

σ 2(ρα(t)) = Dρα (σ )ρα(t)D�
ρα

(σ ) (B.8)
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(11) There exists a u such that ρα(s)uu �= 0 and

ρα(s)ui �= 0 ∈ R,
ρα(s)i j

ρα(s)uu
,

ρα(s)i j

ρα(s)u j
∈ Oord(T ),

ρα(s)i j

ρα(s)i ′ j ′
∈ Qord(T ),

Ni j
k =

r−1∑
l=0

ρα(s)liρα(s)l jρα(s−1)lk

ρα(s)lu
∈ N.

∀ i, j, k = 0, 1, . . . , r − 1. (B.9)

(u corresponds the unit object of MTC).
(12) Let n ∈ N+. The nth Frobenius-Schur indicator of the i-th simple object

νn(i) =
r−1∑
j,k=0

N jk
i ρα(s) juθ

n
j [ρα(s)kuθ

n
k ]∗ =

r−1∑
j,k=0

N jk
i ρα(tns) juρα(t−ns−1)ku

=
r−1∑

j,k,l=0

ρα(s)l jρα(s)lkρ
∗
α(s)li

ρα(s)lu
ρα(tns) juρα(t−ns−1)ku

=
r−1∑
l=0

ρα(stns)luρα(st−ns−1)luρα(s−1)li

ρα(s)lu
(B.10)

is a cyclotomic integer whose conductor divides n and ord(T ). The 1st Frobenius-
Schur indicator satisfies ν1(i) = δiu while the 2nd Frobenius-Schur indicator ν2(i)
satisfies ν2(i) = ±ρα(s2)i i (see [3,24,33]).

(13) If we further assume the modular data or the MTC to be non-integral, then
pord(ρ̃α(t)) = ord(T ) /∈ {2, 3, 4, 6}. In particular, ord(ρα(t)) /∈ {2, 3, 4, 6}.

In Sect. 3.1 and “Appendix A”, we have explicitly constructed all irreducible uni-
tary representations of SL2(Z) (up to unitary equivalence). However, this only gives the
SL2(Z) representations in some arbitrary basis, not in the basis yielding MD represen-
tations (i.e. satisfying (3.7)). We can improve the situation by choosing a basis to make
ρ(t) diagonal and ρ(s) symmetric. Since we are going to use several types of bases, let
us define these choices:

Definition B.2. An unitary SL2(Z) representations ρ̃ is called a general SL2(Z) matrix
representations if ρ̃(t) is diagonal.7 A general SL2(Z) matrix representation ρ̃ is called
symmetric if ρ̃(s) is symmetric. An general SL2(Z) matrix representation ρ̃ is called
irrep-sum if ρ̃(s), ρ̃(t) are matrix-direct sum of irreducible SL2(Z) representations. An
SL2(Z) matrix representations ρ̃ is called an SL2(Z) representation of modular data
S, T , if ρ̃ is unitary equivalent to an MD representation of the modular data, i.e.,

ρ̃(s) = e−2π i α4
1

D
USU †, ρ̃(t) = UTU †e2π i(

−c
24 +

α
12 ), (B.11)

for some unitary matrix U and α ∈ Z12, where c is the central charge.8

7 We will consider only SL2(Z) matrix representations with diagonal ρ̃(t) in this paper.
8 Note that D2 is always positive and D in (B.11) is the positive square root of D2, even for non-unitary

cases.
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Through our explicit construction, we observe that all irreducible unitary representa-
tions of SL2(Z) are unitarily equivalent to symmetric matrix representations of SL2(Z),
at least for dimension equal or less than 12.

We note that different choices of orthogonal basis give rise to different matrix repre-
sentations of SL2(Z). The modular data S, T is obtained from some particular choices
of the basis. Some properties on theMD representations of a modular data do not depend
on the choices of basis in the eigenspaces of ρ̃(t) (induced by the block-diagonal unitary
transformationU in (B.11) that leaves ρ̃(t) invariant). Those properties remain valid for
any general SL2(Z) representations ρ̃ of the modular data. In the following, we collect
the basis-independent conditions on the SL2(Z) matrix representations of modular data.
Those conditions have been discussed in the main text.

Proposition B.3. Let ρ̃ be a general SL2(Z) matrix representations of a modular data
or a MTC. Then ρ̃ must satisfy the following conditions:

(1) If ρ̃ is a direct sum of two SL2(Z) representations

ρ̃ ∼= ρ ⊕ ρ′, (B.12)

then the diagonals entries of ρ(t) and ρ′(t) must overlap.
(2) Suppose that ρ̃ ∼= ρ ⊕ �χ for an irreducible representation ρ with ρ(t) non-

degenerate, and a character χ . If � �= 1 and � �= 2 dim(ρ)−1, then (ρ(s)χ(s)−1)2 =
id.

(3) If ρ̃(s)2 = ± id, and pord(ρ̃(t)) = 1 mod 4 is a prime, then the representation ρ̃

cannot be a direct sum of a d-dimensional irreducible SL2(Z) representation and
two or more 1-dimensional SL2(Z) representations with d = (pord(ρ̃(t)) + 1)/2.

(4) ρ̃ satisfies

ρ̃ �∼= nρ (B.13)

for any integer n > 1 and any representation ρ such that ρ(t) is non-degenerate.
(5) Let 3 < p < q be prime such that pq ≡ 3 mod 4 and pord(ρ(t)) = pq, then the

rank r �= p+q
2 + 1. Moreover, if p > 5, rank r >

p+q
2 + 1.

(6) If we further assume D2 of the modular data or the MTC to be non-integral, then
pord(ρ̃(t)) = ord(T ) /∈ {2, 3, 4, 6}. This implies that ord(ρ̃(t)) /∈ {2, 3, 4, 6}.
Some properties of an MD representation depend on the choice of basis. To make

use of those properties, we can construct some combinations of ρ̃(s)s that are invariant
under the block-diagonal unitary transformation U .

The eigenvalues of ρ̃(t) partition the indices of the basis vectors. To construct the
invariant combinations of ρ̃(s), for any eigenvalue θ̃ of ρ̃(t), let

Iθ̃ = {i ∣∣ ρ̃(t)i i = θ̃}. (B.14)

Let I = Iθ̃ , J = Jθ̃ ′ , K = K θ̃ ′′ for some eigenvalues θ̃ , θ̃ ′, θ̃ ′′ of ρ̃(t). We see that the
following uniform polynomials of ρ̃(s) are invariant

PI (ρ(s)) = Tr ρ̃(s)I I ≡
∑
i∈I

ρ̃(s)i i ,

PI J (ρ(s)) = Tr ρ̃(s)I J ρ̃(s)J I ≡
∑

i∈I, j∈J

ρ̃(s)i, j ρ̃(s) j i ,
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PI J K (ρ(s)) = Tr ρ̃(s)I J ρ̃(s)J K ρ̃(s)K I ≡
∑

i∈I, j∈J,k∈K
ρ̃(s)i, j ρ̃(s) j,k ρ̃(s)k,i . (B.15)

Certainly we can construction many other invariant uniform polynomials in the similar
way. Using those invariant uniform polynomials, we have the following results

Proposition B.4. Let ρ̃ be a general SL2(Z) representations of a modular data or a
MTC. Then following statements hold:

(1) ρ̃(s) satisfies

Tr(ρ̃(s)2) ∈ Z \ {0}. (B.16)

Let

C = Tr(ρ̃(s)2)

|Tr(ρ̃(s)2)| ρ̃(s)2. (B.17)

For all I ,

PI (C) � 0. (B.18)

(2) The conductor of Podd(ρ̃(s)) divides ord(ρ̃(t)) for all the invariant uniform polyno-
mials Podd with odd powers of ρ̃(s) (such as PI and PI J K in (B.15)). The conductor
of Peven(ρ̃(s)) divides pord(ρ̃(t)) for all the invariant uniform polynomials Peven with
even powers of ρ̃(s) (such as PI J in (B.15)).

(3) For any Galois conjugation σ ∈ Gal(Qord(ρ(t))), there is a permutation on the set
{I }, I → σ̂ (I ), such that

σ PI J (ρ̃(s)) = PI σ̂ (J )(ρ̃(s)) = Pσ̂ (I )J (ρ̃(s))

σ 2(θ̃I
) = θ̃σ̂ (I ), (B.19)

for all I, J .
(4) For any invariant uniform polynomials P (such as those in (B.15))

σ P
(
ρ̃(s)

) = P
(
σ ρ̃(s)

) = P
(
ρ̃(t)a ρ̃(s)ρ̃(t)bρ̃(s)ρ̃(t)a

)
(B.20)

where σ ∈ Gal(Qord(ρ̃(t))), and a, b are given by σ(ei2π/ ord(ρ̃(t))) = eai2π/ ord(ρ̃(t))

and ab ≡ 1 mod ord(ρ̃(t)).

Instead of constructing invariants, there is another way to make use of the properties
of an MD representation that depend on the choices of basis. We can choose a more
special basis, so that the basis is closer to the basis that leads to the MD representation.
For example, we can choose a basis to make ρ̃(s) symmetric (i.e. to make ρ̃ a symmetric
representation).

Now consider a symmetric SL2(Z) matrix representation ρ̃ of a modular data or of
a MTC. We find that the restriction of the unitary U in (B.11) on the non-degenerate
subspace (see Theorem 3.4) must be diagonal with diagonal elements Uii ∈ {1,−1}.
Therefore, on the non-degenerate subspace, ρ̃(s) of a symmetric representation differs
from ρ(s) of an MD representation only by a diagonal unitary transformation U with
diagonal elements ±1, i.e., a signed diagonal matrix. In this case some properties of
MD representation apply to the blocks of the symmetric representation within the non-
degenerate subspace. This allows us to obtain
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Proposition B.5. Let ρ̃ be a symmetric SL2(Z) representations equivalent to an MD
representation. Let

Indeg := {i | ρ̃(t)i,i is a non-degenerate eigenvalue}, (B.21)

Then there exists an orthogonal U such that U ρ̃U� is a pMD representation, and the
following statements hold:

(1) The conductor of (U ρ̃(s)U�)i, j divides ord(ρ̃(t)) for all i, j . This implies that the
conductor of (ρ̃(s))i, j divides ord(ρ̃(t)) for all i, j ∈ Indeg.

(2) For any Galois conjugation σ in Gal(Qord(ρ̃(t))), there is a permutation i → σ̂ (i),
such that

σ
(
(U ρ̃(s)U�)i, j

) = εσ (i)(U ρ̃(s)U�)σ̂ (i), j = (U ρ̃(s)U�)i,σ̂ ( j)εσ ( j)

σ 2(ρ̃(t)i,i
) = ρ̃(t)σ̂ (i),σ̂ (i), (B.22)

for all i, j , where εσ (i) ∈ {1,−1}. This implies that
σ
(
ρ̃(s)i, j

) = ρ̃(s)σ̂ (i), j or σ
(
ρ̃(s)i, j

) = −ρ̃(s)σ̂ (i), j

σ
(
ρ̃(s)i, j

) = ρ̃(s)i,σ̂ ( j) or σ
(
ρ̃(s)i, j

) = −ρ̃(s)i,σ̂ ( j) (B.23)

for all i, j ∈ Indeg. This also implies that Dρ̃ (σ ) defined in (3.6) is a signed permu-
tation matrix in the Indeg block, i.e. (Dρ̃ (σ ))i, j for i, j ∈ Indeg are matrix elements
of a signed permutation matrix.

(3) For all i, j ,

σ
(
(U ρ̃(s)U�)i, j

) = (
U ρ̃(t)a ρ̃(s)ρ̃(t)bρ̃(s)ρ̃(t)aU�)

i, j (B.24)

where σ ∈ Gal(Qord(ρ̃(t))), and a, b are given by σ(ei2π/ ord(ρ̃(t))) = eai2π/ ord(ρ̃(t))

and ab ≡ 1 mod ord(ρ̃(t)). This implies that

σ
(
(ρ̃(s))i, j

) = (
ρ̃(t)a ρ̃(s)ρ̃(t)bρ̃(s)ρ̃(t)a

)
i, j . (B.25)

for all i, j ∈ Indeg.
(4) Both T and ρ̃(t) are diagonal, and without loss of generality, we may assume ρ̃(t) is

a scalar multiple of T . In this case U in (B.11) is a block diagonal matrix preserving
the eigenspaces of ρ̃(t). Let Inonzero = {i} be a set of indices such that the i th row of
U ρ̃(s)U� contains no zeros for some othorgonal U satisfyingU ρ̃(t)U� = ρ̃(t). The
index for the unit object of MTC must be in Inonzero. Thus Inonzero must be nonempty:

Inonzero �= ∅. (B.26)

(5) Let Iθ̃ be a set of indices for an eigenspace Eθ̃ of ρ̃(t)

Iθ̃ := {i | ρ̃(t)i,i = θ̃}. (B.27)

Then there exists a Iθ̃ such that

Iθ̃ ∩ Inonzero �= ∅ and TrE
θ̃
C > 0, (B.28)

where C is given in (B.17).
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(6) If we further assume the modular data to be non-integral, then there exists a Iθ̃
that has a non-empty overlap with Inonzero, such that Dρ̃ (σ )I

θ̃
�= ± id for some

σ ∈ Gal(Qord(ρ̃(t))/Q). Here Dρ̃ (σ ) is defined in (3.6):

Dρ̃ (σ ) = ρ̃(t)a ρ̃(s)ρ̃(t)bρ̃(s)ρ̃(t)a ρ̃−1(s) (B.29)

wherea, b aregivenbyσ(e2π i/ ord(ρ̃(t))) = ea2π i/ ord(ρ̃(t)) andab ≡ 1 mod ord(ρ̃(t)).
Also Dρ̃ (σ )I

θ̃
is the block of Dρ̃ (σ ) with indices in Iθ̃ , i.e. the matrix elements of

Dρ̃ (σ )I
θ̃
are given by (Dρ̃ (σ ))i, j , i, j ∈ Iθ̃ .

Proposition B.5(6) is a consequence of Theorem 3.13(3). Using GAP System for
Computational Discrete Algebra, we obtain a list of symmetric irrep-sum SL2(Z)matrix
representations that satisfy the conditions in Propositions B.3, B.4, and B.5. The list is
given below for rank r = 6 case (see Appendix section B.2).

Some of those symmetric irrep-sum SL2(Z) matrix representations are representa-
tions of modular data, while others are not. However, the list includes all the symmetric
irrep-sumSL2(Z)matrix representations ofmodular data orMTC’swhich are notweakly
integral (and some that are weakly integral).

B.2. List of symmetric irrep-sum representations. The following is a list the all rank-6
symmetric irrep-sum representations that satisfy the conditions in Propositions B.3, B.4,
and B.5. The list contains all the rank-6 symmetric irrep-sum representations that are
unitarily equivalent to rank-6 MD representations, plus some extra ones.

For each symmetric irrep-sum representation,wemay generate an orbit by orthogonal
transformations

ρisum(s) → Uρisum(s)U�, ρisum(t) → Uρisum(t)U�, (B.30)

tensoring 1-dimensional SL2(Z) representations χα , α = 1, . . . , 12:

ρisum(s) → χα(s)ρisum(s), ρisum(t) → χα(t)ρisum(t), (B.31)

and applying Galois conjugations σ in Gal(Qord(ρisum(t))):

ρisum(s) → σ(ρisum(s)), ρisum(t) → σ(ρisum(t)). (B.32)

Wewill call such an orbit aGTorbit. The following list includes only one representative
for each GT orbit. The list can also be regarded as a list GT orbits.

In the list, a representation ρisum is expressed as the direct sum of irreducible rep-
resentations ρisum = ρ1 ⊕ ρ2 ⊕ · · · , where ρa(t) is presented as (s̃1, s̃2, · · · ) with
s̃i = arg(ρa(t)i i ), and ρa(s) is presented as (ρ11, ρ12, ρ13, ρ14, · · · ; ρ22, ρ23, ρ24, · · · ).
The direct sum is also given via an index form, for example, irreps = 21,02 ⊗21,05 ⊕ 21,05 .
It means that the representation ρisum is a direct sum of two irreducible representations
21,02 ⊗21,05 and 21,05 . Here 21,02 , 21,05 are indices of SL2(Z) irreducible representations
with prime-power levels. Those prime-power-level SL2(Z) irreducible representation are
listed in “Appendix A”, where the meaning of the indices is explained further. 21,02 ⊗21,05

is the irreducible representation obtained by the tensor product of 21,02 and 21,05 .
The dimensions of the representations ρisum are given by dims = (r1, r2, · · · ), where

ra is the dimension of the irreducible representation ρa , satisfying r1 � r2 � · · · . The
levels of the representations ρa are given by levels = (l1, l2, · · · ), where la = ord(ρa(t)).
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We will use (dims;levels) = (r1, r2, · · · ; l1, l2, · · · ) to label those representations. Now
we can explain how the representative of a GT orbit is chosen. The representative for a
GT orbit is chosen to be the one with minimal [[r1, r2, · · · ], ord(ρisum(t)), [l1, l2, · · · ]].
Here the order of two lists is determined by first compare the first elements of the two
lists. If the first elements are equal, we then compare the second elements, etc. The order
of cyclotomic numbers are given by GAP.

To describe the entries of ρa(s), we also introduced the following notations:

ζm
n = e2π im/n, cmn = ζm

n + ζ−m
n , smn = ζm

n − ζ−m
n ,

ξm,k
n = (ζm

2n − ζ−m
2n )/(ζ k

2n − ζ−k
2n ), ξmn = ξm,1

n . (B.33)

We find that, for rank 6, there are only 25 GT orbits. The GT orbits can be divided
into two classes, resolved and unresolved, whose definition will to given in the next
section. Below each GT orbit, we indicate whether it is resolved or unresolved. Among
25 GT orbits, 17 are resolved and 8 are unresolved.

For the 17 resolved GT orbits, it is easy to compute all the corresponding pairs of
(S, T ) matrices that satisfied the conditions in Proposition B.1, which will be done in
next section. Below each resolved GT orbit, we indicate the number valid (S, T ) pairs
obtain with such a computation. Those valid (S, T ) pairs will be listed in “Appendix
C.2”. The 8 unresolvedGTorbits are difficult to handle by computer, which are discussed
in the main text. (The main text also discussed most of the resolved cases.)

1. (dims;levels) =(3, 2, 1; 5, 5, 1), irreps = 315 ⊕ 215 ⊕ 111, pord(ρisum(t)) = 5,
ρisum(t) = (0, 1

5 ,
4
5 ) ⊕ ( 15 ,

4
5 ) ⊕ (0),

ρisum(s) = (
√

1
5 ,−

√
2
5 ,−

√
2
5 ;− 5+

√
5

10 , 5−
√
5

10 ;− 5+
√
5

10 )⊕ i(− 1√
5
c320,

1√
5
c120;

1√
5
c320)

⊕ (1)
Resolved. Number of valid (S, T ) pairs = 0.

2. (dims;levels) =(3, 2, 1; 8, 8, 1), irreps = 31,08 ⊕ 21,98 ⊕ 111, pord(ρisum(t)) = 8,
ρisum(t) = (0, 1

8 ,
5
8 ) ⊕ ( 18 ,

7
8 ) ⊕ (0),

ρisum(s) = i(0,
√

1
2 ,
√

1
2 ; − 1

2 ,
1
2 ; − 1

2 ) ⊕ i(−
√

1
2 ,
√

1
2 ;

√
1
2 ) ⊕ (1)

Resolved. Number of valid (S, T ) pairs = 0.
3. (dims;levels) =(3, 2, 1; 5, 2, 1), irreps = 315 ⊕ 21,02 ⊕ 111, pord(ρisum(t)) = 10,

ρisum(t) = (0, 1
5 ,

4
5 ) ⊕ (0, 1

2 ) ⊕ (0),

ρisum(s) = (
√

1
5 , −

√
2
5 , −

√
2
5 ; − 5+

√
5

10 , 5−√
5

10 ; − 5+
√
5

10 ) ⊕ (− 1
2 , −

√
3
4 ;

1
2 ) ⊕ (1)

Unresolved.
4. (dims;levels) =(3, 2, 1; 5, 2, 2), irreps = 315 ⊕ 21,02 ⊕ 11,02 , pord(ρisum(t)) = 10,

ρisum(t) = (0, 1
5 ,

4
5 ) ⊕ (0, 1

2 ) ⊕ ( 12 ),

ρisum(s) = (
√

1
5 , −

√
2
5 , −

√
2
5 ; − 5+

√
5

10 , 5−√
5

10 ; − 5+
√
5

10 ) ⊕ (− 1
2 , −

√
3
4 ;

1
2 ) ⊕ (−1)

Unresolved.
5. (dims;levels) =(3, 2, 1; 4, 3, 2), irreps = 31,34 ⊕ 21,03 ⊕ 11,02 , pord(ρisum(t)) = 12,

ρisum(t) = (0, 1
2 ,

1
4 ) ⊕ (0, 1

3 ) ⊕ ( 12 ),

ρisum(s) = i(− 1
2 ,

1
2 ,
√

1
2 ; − 1

2 ,
√

1
2 ; 0) ⊕ i(−

√
1
3 ,
√

2
3 ;

√
1
3 ) ⊕ (−1)

Resolved. Number of valid (S, T ) pairs = 0.
6. (dims;levels) =(3, 2, 1; 4, 3, 4), irreps = 31,34 ⊕ 21,03 ⊕ 11,04 , pord(ρisum(t)) = 12,

ρisum(t) = (0, 1
2 ,

1
4 ) ⊕ (0, 1

3 ) ⊕ ( 14 ),
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ρisum(s) = i(− 1
2 ,

1
2 ,
√

1
2 ; − 1

2 ,
√

1
2 ; 0) ⊕ i(−

√
1
3 ,
√

2
3 ;

√
1
3 ) ⊕ i(1)

Unresolved.
7. (dims;levels) =(3, 2, 1; 8, 3, 1), irreps = 31,08 ⊕ 21,03 ⊕ 111, pord(ρisum(t)) = 24,

ρisum(t) = (0, 1
8 ,

5
8 ) ⊕ (0, 1

3 ) ⊕ (0),

ρisum(s) = i(0,
√

1
2 ,
√

1
2 ; − 1

2 ,
1
2 ; − 1

2 ) ⊕ i(−
√

1
3 ,
√

2
3 ;

√
1
3 ) ⊕ (1)

Resolved. Number of valid (S, T ) pairs = 0.
8. (dims;levels) =(3, 2, 1; 8, 3, 3), irreps = 31,08 ⊕ 21,03 ⊕ 11,03 , pord(ρisum(t)) = 24,

ρisum(t) = (0, 1
8 ,

5
8 ) ⊕ (0, 1

3 ) ⊕ ( 13 ),

ρisum(s) = i(0,
√

1
2 ,
√

1
2 ; − 1

2 ,
1
2 ; − 1

2 ) ⊕ i(−
√

1
3 ,
√

2
3 ;

√
1
3 ) ⊕ (1)

Resolved. Number of valid (S, T ) pairs = 0.
9. (dims;levels) =(3, 3; 5, 3), irreps = 315 ⊕ 31,03 , pord(ρisum(t)) = 15,

ρisum(t) = (0, 1
5 ,

4
5 ) ⊕ (0, 1

3 ,
2
3 ),

ρisum(s) = (
√

1
5 , −

√
2
5 , −

√
2
5 ; − 5+

√
5

10 , 5−√
5

10 ; − 5+
√
5

10 ) ⊕ (− 1
3 ,

2
3 ,

2
3 ; − 1

3 ,
2
3 ; − 1

3 )
Resolved. Number of valid (S, T ) pairs = 0.

10. (dims;levels) =(3, 3; 16, 16), irreps = 31,016 ⊕ 31,616 , pord(ρisum(t)) = 16,
ρisum(t) = ( 18 ,

1
16 ,

9
16 ) ⊕ ( 58 ,

1
16 ,

9
16 ),

ρisum(s) = i(0,
√

1
2 ,
√

1
2 ; − 1

2 ,
1
2 ; − 1

2 ) ⊕ i(0,
√

1
2 ,
√

1
2 ;

1
2 , − 1

2 ;
1
2 )

Unresolved.
11. (dims;levels) =(3, 3; 5, 4), irreps = 315 ⊕ 31,04 , pord(ρisum(t)) = 20,

ρisum(t) = (0, 1
5 ,

4
5 ) ⊕ (0, 1

4 ,
3
4 ),

ρisum(s) = (
√

1
5 , −

√
2
5 , −

√
2
5 ; − 5+

√
5

10 , 5−√
5

10 ; − 5+
√
5

10 ) ⊕ (0,
√

1
2 ,
√

1
2 ; − 1

2 ,
1
2 ; − 1

2 )
Resolved. Number of valid (S, T ) pairs = 2.

12. (dims;levels) =(4, 1, 1; 9, 1, 1), irreps = 41,09,2 ⊕ 111 ⊕ 111, pord(ρisum(t)) = 9,

ρisum(t) = (0, 1
9 ,

4
9 ,

7
9 ) ⊕ (0) ⊕ (0),

ρisum(s) = (0, −
√

1
3 , −

√
1
3 , −

√
1
3 ;

1
3c

2
9,

1
3c

4
9,

1
3c

1
9;

1
3c

1
9,

1
3c

2
9;

1
3c

4
9) ⊕ (1) ⊕ (1)

Unresolved.
13. (dims;levels) =(4, 2; 5, 5), irreps = 415,1 ⊕ 215, pord(ρisum(t)) = 5,

ρisum(t) = ( 15 ,
2
5 ,

3
5 ,

4
5 ) ⊕ ( 15 ,

4
5 ),

ρisum(s) = i( 15c
1
20+

1
5c

3
20,

2
5c

2
15+

1
5c

3
15,− 1

5 +
2
5c

1
15− 1

5c
3
15,

1
5c

1
20− 1

5c
3
20; − 1

5c
1
20+

1
5c

3
20,

− 1
5c

1
20 − 1

5c
3
20,

1
5 − 2

5c
1
15 +

1
5c

3
15;

1
5c

1
20 − 1

5c
3
20,

2
5c

2
15 +

1
5c

3
15; − 1

5c
1
20 − 1

5c
3
20) ⊕

i(− 1√
5
c320,

1√
5
c120;

1√
5
c320)

Unresolved.
14. (dims;levels) =(4, 2; 5, 5; a), irreps = 415,2 ⊕ 215, pord(ρisum(t)) = 5,

ρisum(t) = ( 15 ,
2
5 ,

3
5 ,

4
5 ) ⊕ ( 15 ,

4
5 ),

ρisum(s) = (
√

1
5 ,

−5+
√
5

10 , − 5+
√
5

10 ,
√

1
5 ; −

√
1
5 ,

√
1
5 ,

5+
√
5

10 ; −
√

1
5 ,

5−√
5

10 ;
√

1
5 ) ⊕

i(− 1√
5
c320,

1√
5
c120;

1√
5
c320)

Resolved. Number of valid (S, T ) pairs = 0.
15. (dims;levels) =(4, 2; 10, 5), irreps = 215⊗21,02 ⊕ 215, pord(ρisum(t)) = 10,

ρisum(t) = ( 15 ,
4
5 ,

3
10 ,

7
10 ) ⊕ ( 15 ,

4
5 ),
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ρisum(s) = i( 1
2
√
5
c320,

1
2
√
5
c120,

3
2
√
15
c120,

3
2
√
15
c320; − 1

2
√
5
c320, − 3

2
√
15
c320,

3
2
√
15
c120;

1
2
√
5
c320, − 1

2
√
5
c120; − 1

2
√
5
c320) ⊕ i(− 1√

5
c320,

1√
5
c120;

1√
5
c320)

Unresolved.
16. (dims;levels) =(4, 2; 15, 5), irreps = 215⊗21,03 ⊕ 215, pord(ρisum(t)) = 15,

ρisum(t) = ( 15 ,
4
5 ,

2
15 ,

8
15 ) ⊕ ( 15 ,

4
5 ),

ρisum(s)= (− 1√
15
c320,

1√
15
c120,

2√
30
c120,− 2√

30
c320;

1√
15
c320,

2√
30
c320,

2√
30
c120;− 1√

15
c320,

− 1√
15
c120;

1√
15
c320) ⊕ i(− 1√

5
c320,

1√
5
c120;

1√
5
c320)

Resolved. Number of valid (S, T ) pairs = 1.
17. (dims;levels) =(4, 2; 7, 3), irreps = 417 ⊕ 21,03 , pord(ρisum(t)) = 21,

ρisum(t) = (0, 1
7 ,

2
7 ,

4
7 ) ⊕ (0, 1

3 ),

ρisum(s) = i(−
√

1
7 ,

√
2
7 ,

√
2
7 ,

√
2
7 ; − 1√

7
c27, − 1√

7
c17,

1√
7i
s528;

1√
7i
s528, − 1√

7
c27;

− 1√
7
c17) ⊕ i(−

√
1
3 ,
√

2
3 ;

√
1
3 )

Resolved. Number of valid (S, T ) pairs = 1.
18. (dims;levels) =(5, 1; 5, 1), irreps = 515 ⊕ 111, pord(ρisum(t)) = 5,

ρisum(t) = (0, 1
5 ,

2
5 ,

3
5 ,

4
5 ) ⊕ (0),

ρisum(s) = (− 1
5 ,
√

6
25 ,

√
6
25 ,

√
6
25 ,

√
6
25 ;

3−√
5

10 , − 1+
√
5

5 , −1+
√
5

5 , 3+
√
5

10 ; 3+
√
5

10 , 3−√
5

10 ,
−1+

√
5

5 ; 3+
√
5

10 , − 1+
√
5

5 ; 3−√
5

10 ) ⊕ (1)
Unresolved.

19. (dims;levels) =(6; 9), irreps = 61,09,3, pord(ρisum(t)) = 9,

ρisum(t) = ( 19 ,
2
9 ,

4
9 ,

5
9 ,

7
9 ,

8
9 ),

ρisum(s) = (13 ,
1
3c

2
9,

1
3 ,− 1

3c
1
9,

1
3 ,

1
3c

4
9;

1
3 ,

1
3c

4
9,− 1

3 ,
1
3c

1
9,

1
3 ;

1
3 ,− 1

3c
2
9,

1
3 ,

1
3c

1
9;

1
3 ,− 1

3c
4
9,

− 1
3 ;

1
3 ,

1
3c

2
9;

1
3 )

Resolved. Number of valid (S, T ) pairs = 1.
20. (dims;levels) =(6; 13), irreps = 6113, pord(ρisum(t)) = 13,

ρisum(t) = ( 1
13 ,

3
13 ,

4
13 ,

9
13 ,

10
13 ,

12
13 ),

ρisum(s) = i(− 1√
13
c552,

1√
13
c752,

1√
13
c352,

1√
13
c1152,

1√
13
c952, − 1√

13
c152; − 1√

13
c1152,

1√
13
c152,− 1√

13
c552,

1√
13
c352,

1√
13
c952;

1√
13
c752,

1√
13
c952,− 1√

13
c552,

1√
13
c1152; − 1√

13
c752,

− 1√
13
c152, − 1√

13
c352;

1√
13
c1152, − 1√

13
c752;

1√
13
c552)

Resolved. Number of valid (S, T ) pairs = 1.
21. (dims;levels) =(6; 15), irreps = 31,03 ⊗215, pord(ρisum(t)) = 15,

ρisum(t) = ( 15 ,
4
5 ,

2
15 ,

7
15 ,

8
15 ,

13
15 ),

ρisum(s)= i( 1
3
√
5
c320,

1
3
√
5
c120,

2
3
√
5
c120,

2
3
√
5
c120,

2
3
√
5
c320,

2
3
√
5
c320; − 1

3
√
5
c320,− 2

3
√
5
c320,

− 2
3
√
5
c320,

2
3
√
5
c120,

2
3
√
5
c120; − 1

3
√
5
c320,

2
3
√
5
c320,

1
3
√
5
c120, − 2

3
√
5
c120; − 1

3
√
5
c320,

− 2
3
√
5
c120,

1
3
√
5
c120;

1
3
√
5
c320, − 2

3
√
5
c320;

1
3
√
5
c320)

Resolved. Number of valid (S, T ) pairs = 0.
22. (dims;levels) =(6; 16), irreps = 61,016,1, pord(ρisum(t)) = 16,

ρisum(t) = (0, 1
4 ,

1
16 ,

5
16 ,

9
16 ,

13
16 ),

ρisum(s) = i(0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 ; 0, 1

2 , − 1
2 ,

1
2 , − 1

2 ; −
√

1
8 , −

√
1
8 ,
√

1
8 ,
√

1
8 ;

√
1
8 ,
√

1
8 ,

−
√

1
8 ; −

√
1
8 , −

√
1
8 ;

√
1
8 )
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Resolved. Number of valid (S, T ) pairs = 4.
23. (dims;levels) =(6; 35), irreps = 337⊗225, pord(ρisum(t)) = 35,

ρisum(t) = ( 1
35 ,

4
35 ,

9
35 ,

11
35 ,

16
35 ,

29
35 ),

ρisum(s) = i(− 4
35c

1
140 − 3

35c
3
140 − 1

7c
5
140 + 1

35c
7
140 + 1

35c
9
140 + 4

35c
13
140 + 2

35c
15
140 −

3
35c

17
140 +

9
35c

19
140 − 4

35c
21
140 − 2

7c
23
140, − 1√

35
c435 +

1√
35
c1135,

1√
35
c135 − 1√

35
c635,

2√
35
c335 +

1√
35
c435+

1√
35
c1035+

1√
35
c1135,− 1√

35i
s3140− 1√

35i
s17140,

2
35c

1
140− 1

35c
3
140− 1

7c
5
140− 3

35c
7
140+

1
5c

9
140− 2

35c
13
140− 1

35c
15
140− 1

35c
17
140 +

3
35c

19
140 +

2
35c

21
140− 2

7c
23
140; − 1√

35i
s3140− 1√

35i
s17140,

4
35c

1
140 +

3
35c

3
140 +

1
7c

5
140 − 1

35c
7
140 − 1

35c
9
140 − 4

35c
13
140 − 2

35c
15
140 +

3
35c

17
140 − 9

35c
19
140 +

4
35c

21
140 +

2
7c

23
140, − 1√

35
c135 +

1√
35
c635, − 2

35c
1
140 +

1
35c

3
140 +

1
7c

5
140 +

3
35c

7
140 − 1

5c
9
140 +

2
35c

13
140 +

1
35c

15
140 +

1
35c

17
140 − 3

35c
19
140 − 2

35c
21
140 +

2
7c

23
140,

2√
35
c335 +

1√
35
c435 +

1√
35
c1035 +

1√
35
c1135;

2√
35
c335 +

1√
35
c435 +

1√
35
c1035 +

1√
35
c1135, − 2

35c
1
140 +

1
35c

3
140 +

1
7c

5
140 +

3
35c

7
140 −

1
5c

9
140 +

2
35c

13
140 +

1
35c

15
140 +

1
35c

17
140 − 3

35c
19
140 − 2

35c
21
140 +

2
7c

23
140,

1√
35
c435 − 1√

35
c1135,

− 1√
35i

s3140 − 1√
35i

s17140;
1√
35i

s3140 +
1√
35i

s17140, − 4
35c

1
140 − 3

35c
3
140 − 1

7c
5
140 +

1
35c

7
140 +

1
35c

9
140 +

4
35c

13
140 +

2
35c

15
140 − 3

35c
17
140 +

9
35c

19
140 − 4

35c
21
140 − 2

7c
23
140,

1√
35
c435 − 1√

35
c1135;

− 2√
35
c335 − 1√

35
c435 − 1√

35
c1035 − 1√

35
c1135, − 1√

35
c135 +

1√
35
c635;

4
35c

1
140 +

3
35c

3
140 +

1
7c

5
140 − 1

35c
7
140 − 1

35c
9
140 − 4

35c
13
140 − 2

35c
15
140 +

3
35c

17
140 − 9

35c
19
140 +

4
35c

21
140 +

2
7c

23
140)

Resolved. Number of valid (S, T ) pairs = 1.
24. (dims;levels) =(6; 56), irreps = 317⊗21,68 , pord(ρisum(t)) = 28,

ρisum(t) = ( 1
56 ,

9
56 ,

11
56 ,

25
56 ,

43
56 ,

51
56 ),

ρisum(s)= ( 1√
14
c128,

1√
14
c328,− 1√

14
c528,− 1√

14
c528,

1√
14
c128,

1√
14
c328;− 1√

14
c528,

1√
14
c128,

1√
14
c128,

1√
14
c328,− 1√

14
c528;− 1√

14
c328,

1√
14
c328,

1√
14
c528,− 1√

14
c128;

1√
14
c328,− 1√

14
c528,

1√
14
c128; − 1√

14
c128, − 1√

14
c328;

1√
14
c528)

Resolved. Number of valid (S, T ) pairs = 2.
25. (dims;levels) =(6; 80), irreps = 33,316 ⊗225, pord(ρisum(t)) = 80,

ρisum(t) = ( 1
40 ,

9
40 ,

3
80 ,

27
80 ,

43
80 ,

67
80 ),

ρisum(s) = i(0, 0, 1√
10
c320,

1√
10
c120,

1√
10
c320,

1√
10
c120; 0, 1√

10
c120, − 1√

10
c320,

1√
10
c120,

− 1√
10
c320; − 1

2
√
5
c120, − 1

2
√
5
c320,

1
2
√
5
c120,

1
2
√
5
c320;

1
2
√
5
c120,

1
2
√
5
c320, − 1

2
√
5
c120;

− 1
2
√
5
c120, − 1

2
√
5
c320;

1
2
√
5
c120)

Resolved. Number of valid (S, T ) pairs = 2.

C. A List of Candidate Modular Data from Resolved SL2(Z) Representations

C.1. The notion of resolved SL2(Z) matrix representations. In the above, we have cho-
sen a special basis in the eigenspaces of an SL2(Z)matrix representation ρ̃ to make ρ̃(s)
symmetric. But such a special basis is still not special enough to make ρ̃ to be an MD
representation ρ.

We can choose a more special basis to make ρ̃(s2) a signed permutation matrix, and
ρ̃(s) symmetric.Weknow that, for anMDrepresentationρ,ρ(s2) is a signed permutation
matrix. So the new special basis makes ρ̃ closer to the MD representation ρ.

We can choose an even more special basis in the eigenspaces of ρ̃(t) to make ρ̃ even
closer to the MD representation ρ, by using the matrix Dρ̃ (σ ) in (B.29). For an MD
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representation ρ, Dρ(σ ) is suppose to be signed permutations. So we will try to choose
a basis to transform each Dρ̃ (σ ) into signed permutations. We like to point out that,
since both ρ̃ and ρ are symmetric SL2(Z) matrix representations that are related by an
unitary transformation, according to Theorem 3.4, they can be related by an orthogonal
transformation.

Let us consider a simple case to demonstrate our approach. If ρ̃(t) is non-degenerate,
then Dρ̃ (σ ) will automatically be a signed permutation matrix. Using signed diagonal
matrices Vsd, we can transform ρ̃ to many other symmetric representations, ρ’s:

ρ = Vsdρ̃Vsd, (C.1)

where Dρ(σ ) remains a signed permutation. In fact the signed diagonal matrices Vsd are
the most general orthogonal matrices that fix ρ̃(t) and transform all Dρ̃ (σ )’s into (po-
tentially different) signed permutations. Thus the resulting symmetric representations,
ρ’s, include all the symmetric representations where Dρ(σ )’s are signed permutations.
From those ρ’s, we can then construct many pairs of S, T matrices via (3.7), and check
which one satisfies the conditions in Proposition B.1. Those S, T matrices that satisfy
those conditions may very likely correspond to modular data (or MTC’s). If none of the
S, T matrices satisfy the conditions, then the representation ρ̃ will not be an SL2(Z)

representation of any modular data.
When some eigenspaces of ρ̃(t) aremore than 1-dimensional, then the Dρ̃ (σ )maynot

be signed permutations. There may be infinite many orthogonal matrices that can trans-
form Dρ̃ (σ ) into signed permutations, which make the subsequent selection difficult. In
the following, we will generalize the above notion of non-degenerate representation, to
include some cases where some eigenspaces of ρ̃(t) are 2-dimensional or more. We will
show that, for those special representations, there is only a finite number of orthogonal
matrices that can transform Dρ̃ (σ ) into signed permutations.

To carry through this program, let us concentrate on an eigenspace Eθ̃ of ρ̃(t) corre-
sponding to an eigenvalue θ̃ , and let

�ρ̃(θ̃) = {σ ∈ Gal(Qord(ρ̃(t))) | σ 2(θ̃) = θ̃} . (C.2)

Then �ρ̃(θ̃) is a subgroup of Gal(Qord(ρ̃(t))). By definition, Dρ̃ (σ ) stabilizes the θ̃ -
eigenspace Eθ̃ for σ ∈ �ρ̃(θ̃), and commute with each other. In particular, Dρ̃ |E

θ̃

(restricted on Eθ̃ ) defines a representation of �ρ̃(θ̃) on Eθ̃ .
We can diagonalize {Dρ̃ (σ )|E

θ̃
| σ ∈ �ρ̃(θ̃)} simultaneously within Eθ̃ . The de-

generacy of the θ̃ -eigenspace Eθ̃ is fully resolved by these Dρ̃ (σ )’s, if the common
eigenspace of these Dρ̃ (σ )|E

θ̃
’s are all 1-dimensional. In terms of the characters of

�ρ̃(θ̃), the degeneracy of Eθ̃ can be fully resolved if each irreducible character of�ρ̃(θ̃)

has multiplicity at most 1 in the character decomposition of Eθ̃ as a representation of
�ρ̃(θ̃). Now we can introduce the notion of resolved representation:

Definition C.1. A general SL2(Z) matrix representation ρ̃ is called resolved if the de-
generacy of each of eigenspace of ρ̃(t) is fully resolved by Dρ̃ (σ ), σ ∈ �ρ̃(θ̃), as
described above.

Given a symmetric irrep-sum matrix representation (denoted as ρisum), we can use
unitary matrices, U ’s, to transform it into a symmetric representation ρ via

ρ(t) = Uρisum(t)U †, ρ(s) = Uρisum(s)U †. (C.3)
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where Dρ(σ )|E
θ̃
, for all σ ∈ �ρ̃(θ̃), are signed permutations within the θ̃ -eigenspace. If

ρisum is resolved, then there is only a finite number of such representations. We then can
check which of those representations satisfy Proposition B.1. This is how we compute
the potential modular data S, T ’s from resolved ρisum’s.

To show a resolvedρisum is unitarily equivalent to only a finite number representations
whose Dρ(σ )|E

θ̃
are signed permutations, we note that both ρ and ρisum are symmetric,

and according to Theorem 3.4, ρ and ρisum are in fact orthogonally equivalent, i.e. the
above U can be chosen to satisfy U = U∗ and UU� = id. If the number of most
general orthogonal matrices U that transform ρisum to ρ is finite, then the number of
representations ρ are finite.

Since the orthogonalU acts within the eigenspace of ρisum(t), to show the number of
possibleU ’s are finite, we can concentrate on a single θ̃ -eigenspace Eθ̃ , and denote σ ∈
�ρ̃(θ̃) as σinv. In the following, we will consider the cases where Eθ̃ is 1-dimensional,
2-dimensional, etc.. For each case, we will show the number of possible U ’s are finite,
and give the possible choices of U ’s.

C.1.1. Within an 1-dimensional eigenspace of ρisum(t) Dρisum (σinv)|E
θ̃

= ±1 are al-
ready signedpermutations. In this case theorthogonalmatrixU (within the1-dimensional
eigenspace) has only two choices

U = ±1, (C.4)

which is finite.

C.1.2. Within a 2-dimensional eigenspace of ρisum(t) In this case, the matrix groups
MG generated by 2-by-2 matrices, Dρisum (σinv)|E

θ̃
, can have several different forms,

for those passing representations. By examine the computer results, we find that, for
unresolved cases, matrix groups MG can be

MG =
{(1 0

0 1

)}
, for dim(ρisum) � 5;

MG =
{(1 0

0 1

)
,−

(
1 0
0 1

)}
, for dim(ρisum) � 6. (C.5)

For resolved cases, we have

MG =
{(1 0

0 1

)
,

(
1 0
0 −1

)}
, for dim(ρisum) � 4;

MG =
{(1 0

0 1

)
,−

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(−1 0
0 1

)}
, for dim(ρisum) � 6.

(C.6)

In those two cases,

U = 1√
2

(
1 1
1 −1

)
or U = 1√

2

(−1 1
1 1

)
or U =

(
1 0
0 1

)
(C.7)

will transform all Dρisum (σinv)|E
θ̃
’s into signed permutations. In general we have
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Theorem C.2. Let

MG2 =
{(1 0

0 1

)
,

(
1 0
0 −1

)}
,

MG4 =
{(1 0

0 1

)
,−

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(−1 0
0 1

)}
. (C.8)

The most general orthogonal matrices that transform all matrices in MG2 or MG4 into
signed permutations must have one of the following forms

U = PVsd√
2

(
1 1
1 −1

)
, or U = PVsd√

2

(−1 1
1 1

)
, or U = PVsd

(
1 0
0 1

)
(C.9)

where Vsd are signed diagonal matrices, and P are permutation matrices. The number
of the orthogonal transformations U is finite.

Proof of Theorem C.2. Weonly needs to consider the first matrix groupMG2, where the
matrix group is isomorphic to the Z2 group. There are only four matrix groups formed
by 2-dimensional signed permutations matrices, that are isomorphicZ2. The four matrix
groups are generated by the following four generators respectively:

(
1 0
0 −1

)
,

(−1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −1

−1 0

)
. (C.10)

An orthogonal transformationU that transforms MG to one of the above matrix groups
must have a from U = VU0, where V transforms MG2 into itself, and U0 is a fixed
orthogonal transformation that transforms MG2 to one of the above matrix groups. We
can choose U0 to have the following form

U0 = P√
2

(
1 1
1 −1

)
, or U0 = P√

2

(−1 1
1 1

)
, or U0 = P

(
1 0
0 1

)
. (C.11)

To keep MG unchanged V must satisfy

V

(
1 0
0 −1

)
=
(
1 0
0 −1

)
V . (C.12)

We find that V must be diagonal. Thus V , as an orthogonal matrix, must be signed
diagonal. This gives us the result (C.9).

If dim(ρisum) � 8, it is possible that thematrix group of Dρisum (σinv)|E
θ̃
’s is generated

by the following non-diagonal matrix

±
(
0 −1
1 0

)
(C.13)

This is because the direct sum decomposition of ρisum contains a dimension-6 irreducible
representation 60,11 in “Appendix A”, whose ρ(t) has a 2-dimensional eigenspace. The

representation 60,11 can give rise to such form of Dρisum (σinv)|E
θ̃
’s.

The eigenvalues of the matrices are (i,−i). The most general orthogonal matrices
that transform all Dρisum (σinv)|E

θ̃
’s into signed permutations must have a form

U = PVsd

(
1 0
0 1

)
. (C.14)
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If dim(ρisum) � 8, it is also possible that Dρisum (σinv)|E
θ̃
’s form the following matrix

group:

(
1 0
0 1

)
,

⎛
⎝− 1

2 −
√

3
4√

3
4 − 1

2

⎞
⎠ ,

⎛
⎝ − 1

2

√
3
4

−
√

3
4 − 1

2

⎞
⎠ (C.15)

This is because the direct sum decomposition of ρisum contains a dimension-8 irreducible
representation whose ρ(t) has a 2-dimensional eigenspace, which gives rise to the such
form of Dρisum (σinv)|E

θ̃
’s.

The eigenvalues of the later two matrices are ±(ei2π/3, e−i2π/3). A permutation of
two elements can only have orders 1 or 2. The corresponding 2 × 2 signed permutation
matrix can only have eigenvalues 1, −1 or ±i. Any other eigenvalue is not possible.
Thus, there is no orthogonal matrix that can transform the above two matrices into
signed permutation. Such ρisum is not a representation of any modular data.

C.1.3. Within a 3-dimensional eigenspace of ρisum(t) for rank � 6 There is only one
such case for rank � 6. The 3 × 3 matrix group MG generated by Dρisum (σinv)|E

θ̃
’s is

given by

MG =
{
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠ ,

⎛
⎝
1 0 0
0 −1 0
0 0 1

⎞
⎠ ,

⎛
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎠
}
,

for dim(ρisum) = 6. (C.16)

which is resolved. To find the most general orthogonal matrices that transform the above
3 × 3 matrices in MG into signed permutation matrices, we first show

Theorem C.3. If P is a permutation matrix with P2 = id, then P is a direct sum of
2 × 2 and 1 × 1 matrices. If Psgn is a signed permutation matrix with P2

sgn = id, then
Psgn is a direct sum of 2 × 2 and 1 × 1 matrices.

Proof of Theorem C.3. If P is a permutation matrix with P2 = id, then P must be a
pair-wise permutation, and thus P is a direct sum of 2 × 2 and 1 × 1 matrices. The
reduction from signed permutation matrix to permutation matrix by ignoring the signs
is homomorphism of the matrix product. If Psgn is a signed permutation matrix with
P2
sgn = id, then its reduction gives rise to a permutation matrix P with P2 = id. Since

P is a direct sum of 2 × 2 and 1 × 1 matrices, Psgn is also a direct sum of 2 × 2 and
1 × 1 matrices.

Using the above result, similarly, we can show that the most general orthogonal
matrices that transform all Dρisum (σinv)|E

θ̃
’s into signed permutations must have a form

U = PVsd√
2

⎛
⎝
1 1 0
1 −1 0
0 0 1

⎞
⎠ , or U = PVsd√

2

⎛
⎝

−1 1 0
1 1 0
0 0 1

⎞
⎠ ,

or U = PVsd√
2

⎛
⎝
1 0 1
0 1 0
1 0 −1

⎞
⎠ , or U = PVsd√

2

⎛
⎝

−1 0 1
0 1 0
1 0 1

⎞
⎠ ,
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or U = PVsd√
2

⎛
⎝
1 0 0
0 1 1
0 1 −1

⎞
⎠ , or U = PVsd√

2

⎛
⎝
1 0 0
0 −1 1
0 1 1

⎞
⎠ ,

or U = PVsd√
2

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ . (C.17)

where Vsd are signed diagonal matrices, and P are permutation matrices. We note that
the non-trivial part of U is a 2 × 2 block for index (1, 2), (1, 3), and (2, 3). The 2 × 2
block has three possibilities given in (C.9). SuchU ’s transform the diagonal matrices in
MG into a direct sum of a 2 × 2 and an 1 × 1 matrices. This is a general pattern that
apply for all resolved diagonal matrix group MG generated by Dρisum (σinv)|E

θ̃
.

The above are all the possibilities that can appear in resolved dimension-6 representa-
tions. In the following, we will consider more possibilities, that appear only for resolved
representations with dimension larger than 6.

C.2. List of S, T matrices from resolved representations. We have constructed a list of
irrep-sum symmetric representations (see “Appendix B.2”) that include all the repre-
sentations of modular data. Among them, we can select a sublist of resolved symmetric
representations, denoted as {ρres}. We then use the orthogonal matrix U constructed
above (see (C.4), (C.9) and (C.17)) to transform the resolved symmetric representations
ρres to representations, ρ’s:

ρ(t) = Uρres(t)U
�, ρ(s) = Uρres(s)U

�. (C.18)

such that the correspondingDρ(σ ) are either zeroor signedpermutation in each eigenspace
of ρ(t). Since the number of such representations is finite, we can examine all resulting
representations one by one.

For eachU , the resulting representationρ should satisfyPropositionB.1. In particular,
we examine all possible choices of index u thatmay correspond to the unit object, to see if
ρ satisfy the condition (B.9). If no choices of u can satisfy (B.9), then the representations
ρ is rejected. If some u’s satisfy (B.9), then for each u, we can construct S, T matrices
via (3.7). We then check if the resulting S, T matrices satisfy the conditions of modular
data summarized in Proposition B.1

In the following, we list all the pairs of S, T matrices that satisfy the conditions in
Proposition B.1, and come from the dimension-6 resolved SL2(Z) representations listed
in “Appendix B.2”. The list includes all the modular data with D2 /∈ Z from resolved
SL2(Z) representations (and the list also includes some modular data with D2 ∈ Z).
In the list, the S, T matrices are grouped into orbits generated by Galois conjugations,
which are called Galois orbits. To save space, we only list one representative for each
orbit. If possible, the representative is chosen to have all-positive quantum dimensions.

Eachpair of S, T matrices is indexedby (r1, r2, · · · ; l1, l2, · · · )ak , such as (3, 3; 5, 4)12.
The first part of index, (3, 3; 5, 4) = (dims;levels), is the index of GT orbit listed in
“Appendix B.2”, indicating that the S, T matrices arise from a particular SL2(Z) repre-
sentation in the GT orbit. The subscript k labels the different Galois orbits. The a-index
labels the Galois conjugation σa : ei2π/ ord(T ) → eai2π/ ord(T ). Those a-indexed S, T
matrices form a Galois orbit.

Some Galois orbits contain no unitary S, T matrices, but some of those S, T matrices
are pseudo-unitary, i.e. those S, T matrices can be obtained from unitary S, T matrices
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via a change of spherical structure. In this case those Galois orbits can be obtained from
Galois orbits that contain Galois orbits. To save space further, we also drop those Galois
orbits that contain pseudo-unitary S, T matrices. There is only one orbit which contains
no unitary and no pseudo-unitary S, T matrices. The numbering in the following list
includes gaps as we maintain the numbering from the arXiv version for consistency.

In the list, T is presented in terms of topological spin (s1, s2, · · · ) with si = arg(Tii ).
S is presented as (S00, S01, S02, S03, · · · ; S11, S12, S13, · · · ). di = S0i are the quantum
dimensions.

Our calculation actually produces 174 pairs of S, T matrices, which are given in
Supplementary Material Section in the arXiv version. All those 174 pairs of S, T ma-
trices can be obtained from the pairs of S, T matrices in the following list, via Galois
conjugations and change of the spherical structures.

1. ind = (3, 3; 5, 4)11: di = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)
D2 = 20.0 = 20
T = (0, 0, 1

5 ,
4
5 ,

1
4 ,

3
4 ),

S = (1, 1, 2, 2,
√
5,

√
5; 1, 2, 2, −√

5, −√
5; −1− √

5, −1 +
√
5, 0, 0; −1− √

5,
0, 0; −√

5,
√
5; −√

5)
2. ind = (3, 3; 5, 4)12: di = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)

D2 = 20.0 = 20
T = (0, 0, 2

5 ,
3
5 ,

1
4 ,

3
4 ),

S = (1, 1, 2, 2,
√
5,

√
5; 1, 2, 2, −√

5, −√
5; −1 +

√
5, −1− √

5, 0, 0; −1 +
√
5,

0, 0;
√
5, −√

5;
√
5)

3. ind = (4, 2; 15, 5)11: di = (1.0, 1.0, 1.0, 1.618, 1.618, 1.618)

D2 = 10.854 = 15+3
√
5

2
T = (0, 1

3 ,
1
3 ,

2
5 ,

11
15 ,

11
15 ),

S = (1, 1, 1, 1+
√
5

2 , 1+
√
5

2 , 1+
√
5

2 ; ζ 1
3 , −ζ 1

6 ,
1+

√
5

2 , 1+
√
5

2 ζ 1
3 , − 1+

√
5

2 ζ 1
6 ; ζ 1

3 ,
1+

√
5

2 ,

− 1+
√
5

2 ζ 1
6 ,

1+
√
5

2 ζ 1
3 ; −1, −1, −1; −ζ 1

3 , ζ
1
6 ; −ζ 1

3 )
7. ind = (4, 2; 7, 3)11: di = (1.0, 3.791, 3.791, 3.791, 4.791, 5.791)

D2 = 100.617 = 105+21
√
21

2
T = (0, 1

7 ,
2
7 ,

4
7 , 0,

2
3 ),

S = (1, 3+
√
21

2 , 3+
√
21

2 , 3+
√
21

2 , 5+
√
21

2 , 7+
√
21

2 ; 2 − c121 − 2c221 + 3c321 + 2c421 − 2c521,

−c221−2c321−c421+c
5
21,−1+2c121+3c

2
21−c321+2c

5
21,− 3+

√
21

2 , 0; −1+2c121+3c
2
21−

c321 +2c
5
21, 2− c121 −2c221 +3c

3
21 +2c

4
21 −2c521,− 3+

√
21

2 , 0; −c221 −2c321 − c421 + c
5
21,

− 3+
√
21

2 , 0; 1, 7+
√
21

2 ; − 7+
√
21

2 )
9. ind = (6; 9)11: di = (1.0, 0.347, 1.0, 1.532, −1.0, −1.879)

D2 = 9.0 = 9
T = (0, 1

9 ,
2
3 ,

4
9 ,

1
3 ,

7
9 ),

S = (1, c29, 1, c
1
9, −1, c49; 1, c19, 1, −c49, 1; 1, c49, −1, c29; 1, −c29, 1; 1, −c19; 1)

10. ind = (6; 13)11: di = (1.0, 1.941, 2.770, 3.438, 3.907, 4.148)
D2 = 56.746 = 21 + 15c113 + 10c213 + 6c313 + 3c413 + c513
T = (0, 4

13 ,
2
13 ,

7
13 ,

6
13 ,

12
13 ),

S = (1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13; −ξ413, ξ

6
13, −ξ513, ξ

3
13, −1; ξ413, 1, −ξ213, −ξ513; ξ313,

−ξ613, ξ
2
13; −1, ξ413; −ξ313)
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12. ind = (6; 16)11: di = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)
D2 = 8.0 = 8
T = (0, 1

2 ,
1
4 ,

3
4 ,

1
16 ,

5
16 ),

S = (1, 1, 1, 1,
√
2,

√
2; 1, 1, 1, −√

2, −√
2; −1, −1,

√
2, −√

2; −1, −√
2,

√
2;

0, 0; 0)
16. ind = (6; 16)12: di = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)

D2 = 8.0 = 8
T = (0, 1

2 ,
1
4 ,

3
4 ,

1
16 ,

13
16 ),

S = (1, 1, 1, 1,
√
2,

√
2; 1, 1, 1, −√

2, −√
2; −1, −1, −√

2,
√
2; −1,

√
2, −√

2;
0, 0; 0)

20. ind = (6; 35)11: di = (1.0, 1.618, 1.801, 2.246, 2.915, 3.635)
D2 = 33.632 = 15 + 3c135 + 2c435 + 6c535 + 3c635 + 3c735 + 2c1035 + 2c1135
T = (0, 2

5 ,
1
7 ,

5
7 ,

19
35 ,

4
35 ),

S = (1, 1+
√
5

2 , ξ27 , ξ
3
7 , c

1
35 +c

6
35, c

1
35 +c

4
35 +c

6
35 +c

11
35; −1, c135 +c

6
35, c

1
35 +c

4
35 +c

6
35 +c

11
35,

−ξ27 , −ξ37 ; −ξ37 , 1, −c135 − c435 − c635 − c1135,
1+

√
5

2 ; −ξ27 ,
1+

√
5

2 , −c135 − c635; ξ37 ,
−1; ξ27 )

24. ind = (6; 56)11: di = (1.0, 1.0, 1.801, 1.801, 2.246, 2.246)
D2 = 18.591 = 12 + 6c17 + 2c27
T = (0, 1

4 ,
1
7 ,

11
28 ,

5
7 ,

27
28 ),

S = (1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 ; −1, ξ27 , −ξ27 , ξ

3
7 , −ξ37 ; −ξ37 , −ξ37 , 1, 1; ξ37 , 1, −1; −ξ27 ,

−ξ27 ; ξ27 )
28. ind = (6; 80)11: di = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)

D2 = 14.472 = 10 + 2
√
5

T = (0, 1
2 ,

1
16 ,

2
5 ,

9
10 ,

37
80 ),

S = (1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 , c340 + c
5
40 − c740; 1, −

√
2, 1+

√
5

2 , 1+
√
5

2 , −c340 − c540 + c
7
40;

0, c340 + c540 − c740, −c340 − c540 + c740, 0; −1, −1, −√
2; −1,

√
2; 0)

36. ind = (6; 80)12: di = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)
D2 = 14.472 = 10 + 2

√
5

T = (0, 1
2 ,

3
16 ,

2
5 ,

9
10 ,

47
80 ),

S = (1, 1,
√
2, 1+

√
5

2 , 1+
√
5

2 , c340 + c
5
40 − c740; 1, −

√
2, 1+

√
5

2 , 1+
√
5

2 , −c340 − c540 + c
7
40;

0, c340 + c540 − c740, −c340 − c540 + c740, 0; −1, −1, −√
2; −1,

√
2; 0)

The above list include all rank-6 modular data with non-integral D2 and coming from
resolved SL2(Z) representations (aswell as somewith D2 integral, aswe filter using con-
ditions that imply D2 ∈ Z, but not conversely). The list misses two known modular data
with non-integral D2 = 74.617, whose topological spins are si = (0, 1

9 ,
1
9 ,

1
9 ,

1
3 ,

2
3 ) or

si = (0, 8
9 ,

8
9 ,

8
9 ,

1
3 ,

2
3 ). From those si ’s, we find that theymust come from the unresolved

GT orbit (4, 1, 1; 9, 1, 1). In the main text of this paper, we showed that the unresolved
SL2(Z) representations can only produce such modular data (and its conjugations by
Galois action and signed diagonal matrices). The unresolved cases are handled in the
main text of the paper, which leads to a complete classification of all rank-6 modular
data.
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