Check for
Updates

On Regularity Lemma and Barriers in Streaming and
Dynamic Matching’

Sepehr Assadi
sepehr.assadi@rutgers.edu
Rutgers University

New Brunswick, New Jersey, USA

Sanjeev Khanna
sanjeev@cis.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

ABSTRACT

We present a new approach for finding matchings in dense graphs
by building on Szemerédi’s celebrated Regularity Lemma. This al-
lows us to obtain non-trivial albeit slight improvements over long-
standing bounds for matchings in streaming and dynamic graphs.
In particular, we establish the following results for n-vertex graphs:

(i) A deterministic single-pass streaming algorithm that finds a
(1 — o(1))-approximate matching in o(n?) bits of space. This consti-
tutes the first single-pass algorithm for this problem in sublinear
space that improves over the !/>-approximation of the greedy algo-
rithm.

(ii) A randomized fully dynamic algorithm that with high probabil-
ity maintains a (1 — o(1))-approximate matching in o(n) worst-case
update time per each edge insertion or deletion. The algorithm
works even against an adaptive adversary. This is the first o(n)
update-time dynamic algorithm with approximation guarantee ar-
bitrarily close to one.

Given the use of regularity lemma, the improvement obtained
by our algorithms over trivial bounds is only by some (log* n)®
factor. Nevertheless, in each case, they show that the “right” answer
to the problem is not what is dictated by the previous bounds.

Finally, in the streaming model, we also present a randomized (1—
o(1))-approximation algorithm whose space can be upper bounded
by the density of certain Ruzsa-Szemerédi (RS) graphs. While RS
graphs by now have been used extensively to prove streaming lower

*Sepehr Assadi is supported in part by an NSF CAREER Grant CCF-2047061, a Sloan
Research Fellowship, a Google Research gift, and a Fulcrum award from Rutgers
Research Council. Sanjeev Khanna is supported in part by NSF awards CCF-1934876
and CCF-2008305. Huan Li is supported in part by NSF award CCF-2008305.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585110

131

Soheil Behnezhad
s.behnezhad@northeastern.edu
Northeastern University
Boston, Massachusetts, USA

Huan Li

huanli@cis.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

bounds, ours is the first to use them as an upper bound tool for
desigining improved streaming algorithms.

CCS CONCEPTS

» Theory of computation — Streaming models; Communica-
tion complexity;

KEYWORDS

Maximum Matching, Streaming Algorithms, Dynamic Algorithms,
Regularity Lemma

ACM Reference Format:

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On
Regularity Lemma and Barriers in Streaming and Dynamic Matching. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC °23), June 20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3564246.3585110

1 INTRODUCTION

Given a graph G = (V, E), a matching M in G is any collection of
edges that share no endpoints. Finding maximum matchings has
been a cornerstone of algorithm design starting from the work of
Konig [64] over a century ago. Nevertheless, many fundamental
questions regarding the complexity of this problem have remained
unresolved, specifically in modern models of computations such as
streaming or dynamic graphs. Indeed, in both mentioned models,
despite significant attention, there has been no improvement in
certain key cases over longstanding barriers that have remained in
place since the introduction of the model itself.

In this paper, we make an ever so slight improvement over these
barriers, showing that the right answer to the problem must be
different than what is dictated by prior bounds. Our results combine
tools from extremal combinatorics, primarily Szemerédi’s Regu-
larity Lemma [80] and its extensions, with multiple ideas (old and
new) tailored to each model specifically. To put our results in more
context, we start with the history of the problem in each model
separately.

https://doi.org/10.1145/3564246.3585110
https://doi.org/10.1145/3564246.3585110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585110&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Graph Streaming. In this model, edges of an n-vertex graph
appear one by one in a stream in an arbitrary order. The algorithm
can read the edges in the arrival order while using a limited memory
smaller than the input size, and output the solution at the end of
the stream. The holy grail of algorithms here is a one that uses
O(n - polylog(n)) memory and a single pass over the stream. The
study of graph streaming algorithms were initiated by Feigenbaum
et al. [43] who already observed that there is a straightforward
1/2-approximation algorithm for matching in O(nlogn) space!:
greedily maintain a maximal matching in the stream. They further
proved that finding an exact maximum matching requires Q(n?)
space, which matches the trivial algorithm that stores the entire
input via its adjacency matrix.

Almost two decades since [43], there are still no better algorithms
for matchings than these two straightforward solutions. On the
lower bound front, a series of work by Goel et al. [50] and Kapralov
[59] culminated in a recent work of Kapralov [60] that rules out
better than 1/(1 + In2) ~ 0.59 approximation in n!*o(1/loglogn)
space. This lack of progress has led researchers to consider various
relaxations of the problem, in particular by allowing a few more
passes over the input (e.g., in [9, 44, 58, 66-68]) or assuming random
arrival of edges in the stream (e.g., in [10, 11, 25, 42, 67])2. At this
point, beating 1/2-approximation factor of the greedy algorithm in
O(n - polylog(n)) space, or even much larger than that, has become
one of the most central open questions of the graph streaming
literature; see, e.g., [44, 60, 67, 71, 82] for various references to this
question.

(Fully) Dynamic Graphs. In this model, we have an n-vertex
graph that undergoes an arbitrary sequence of edge insertions and
deletions. The goal is to maintain the solution to the problem, say
an approximate maximum matching of the graph, with a quick
update time per each insertion or deletion. Dynamic algorithms for
matchings were studied first in this model by Ivkovic and Lloyd
[57] in 1993 and continue to be a highly active area of research (see,
e.g. [8, 19, 20, 22-24, 26, 27, 29-33, 37, 52, 53, 63, 72, 73, 76, 78, 83]
and references therein).

There is a folklore algorithm that for any ¢ > 0, maintains a
(1 — &)-approximate matching in O(n/e?) (amortized) update time:
Assume inductively that we have a (1 — ¢/2)-approximate matching
M of the current graph; (i) for the next (¢/2) - |M| updates do
nothing and return M still as the answer; after that, (ii) compute a
(1—¢/2)-approximate matching of the current graph in O(m/¢) time
using the Hopcroft-Karp algorithm [56] where m is the number of
edges in the graph and repeat from step (i). Since m = O(n - |M|)
in any graph with maximum matching size bounded by O(|M|),
the amortized update time will be O(n/e?), and the correctness can
be easily verified. This algorithm can also be deamortized using
standard batching ideas.

For sparser graphs, this folklore algorithm was improved by Gupta
and Peng [53] to achieve an O(ym/¢?) update time where m de-
notes the (dynamic) number of edges. Faster algorithms are only

! Throughout, we always measure the space of streaming algorithms in bits.

2See the papers of Feldman and Szarf [44] and Assadi and Behnezhad [11], respectively,
for the state of the art in each case, and more details on previous work on each
relaxation.

132

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

known for smaller approximations between 1/2 and 2/3 which
can respectively be maintained in O(1) [79] (see also [19]) and
O(+/n) update-times [29]. See also a recent result of [23] for update-
time/approximation trade-offs between 1/2 and 2/3, and the recent
breakthroughs of [21, 34] in beating 1/2-approximation in polylog-
arithmic time for estimating size of maximum matching. Yet, for
the original (1 — ¢)-approximation question, raised e.g. in [53], an
O(n) update time still remains a barrier in general.

1.1 Our Contributions

We present the first algorithms that beat the aforementioned barri-
ers for finding matchings in streaming and dynamic graphs with
non-trivial albeit quite small factors:

Result 1 (Formalized in Theorem 3). There is a random-
ized (1 — o(1))-approximate matching algorithm in single-pass
streams with adversarial order of edge arrivals in n® /(log*)
space and polynomial time.

This is the first o(n?)-space algorithm for matchings in adversarial-
order streams with better than 1/2-approximation guarantee. In
fact, it was not known previously how to achieve a (1 — o(1))-
approximation in o(n?) space even on random-arrival streams and
even if we allow any constant number passes over the input (see [1,
2,13, 17,46, 70] for representative examples of multi-pass streaming
matching algorithms®). Moreover, combined with the lower bound
of Q(n?) space by [43] for computing exact matchings, Result 1
shows the first provable separation between the space complexity
of computing nearly-optimal versus exact-optimal matchings in
single-pass streams.

Result 2 (Formalized in Theorem 2). There is a randomized
(1 — o(1))-approximate matching algorithm in fully dynamic
graphs against an adaptive adversary with n/(log* n)1) worst
case update time.

This is the first algorithm for matchings in fully dynamic graphs
that achieves o(n) update time for all densities with close to one
approximation guarantee (this was not known before even for
oblivious adversaries).

The key idea behind both these results is to maintain a match-
ing cover—introduced by Goel et al. [50] in spirit of cut/spectral
sparsifiers—that is a “sparse” subgraph which approximately pre-
serve matchings in each induced subgraph of the input graph. We
present a polynomial time algorithm for constructing o(n?)-size
matching covers using Szemerédi’s Regularity Lemma [80] and
along the way extend them to general graphs ([50] only proves
their existence and for bipartite graphs). We then show this new
construction can be maintained in streaming and dynamic graphs
using several new ideas combined with standard tools from prior
work specific to each model. We elaborate more on our techniques
in Section 2.

We also present a third result specific to the graph streaming
model. All previous lower bounds for approximating matchings in

3The state-of-the-art is the O, (n'*1/?)-space O(p/¢)-pass algorithm by Ahn and
Guha [2] and O, (n - polylog(n))-space poly(1/¢)-pass by Fischer et al. [46] (see also
algorithms by Assadi et al. [13] and Assadi et al. [17] with improved bounds for
bipartite graphs).

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

graph streams in a single pass [14, 50, 59, 60], multi-pass [9, 18, 38],
or random-order streams [11] rely on constructions based on Ruzsa-
Szemerédi (RS) graphs [77]. These are graphs whose edges can
be partitioned into “large” induced matchings (see Section 3.3 for
details). We present a converse approach by developing a streaming
algorithm for matchings whose space can be upper bounded by the
density of (certain) RS graphs. In particular,

Result 3. (Formalized in Theorem 4) For any k > 1, there is

a randomized (1 — o(1))-approximate matching algorithm in

single-pass streams with adversarial order of edge arrivals in

(n2 /k + RS(n, o(n/k))) - polylog (k)

space and exponential time; here, RS(n, r) denotes the largest
number of edges in any n-vertex graph whose edges can be par-
titioned into induced matchings of size r. The algorithm can be
made deterministic if the goal is an additive o(n) approximation
instead.

Result 3 builds on and generalize the RS graph based communi-
cation protocol of Goel et al. [50] to the streaming model (and from
bipartite to general graphs).

To put this result in more context, notice that RS graphs are
naturally becoming denser and denser by reducing the size of their
induced matchings®, leading to a tradeoff between the two terms
in the space guarantee of Result 3. Unfortunately, proving tight
bounds on the density of RS graphs is a notoriously difficult prob-
lem in combinatorics (see, e.g., [40, 48, 51]). As such, the space
complexity of the algorithm in Result 3 as purely a function of n
is not clear at this point. However, using Result 3 combined with
Fox’s triangle-removal lemma [47] that, to our knowledge, provides
the best approach currently for bounding density of RS graphs with
o(n)-size induced matchings, we can obtain the following result:

e A corollary of Result 3 (Formalized in Corollary 6.6). There
is a deterministic (1 — o(1))-approximate matching algorithm in
single-pass streams with adversarial order of edge arrivals using
n?/2000g" 1) space and exponential time.

This corollary improves upon our algorithm in Result 1 based
on the regularity lemma in terms of approximation ratio and being
deterministic at the cost of taking exponential time. Moreover, by a
result of Goel et al. [50] on lower bounds for streaming matching
via RS graphs, obtaining streaming algorithms with better space
complexity than this corollary, namely, beating n? by more than
a 20098" 1) factor, immediately implies improved RS graph upper
bounds; in other words, improving upon our algorithm at the
very least requires proving better RS graph upper bounds
than currently known bounds (see [49] for why this can be
challenging).

Finally, given the current state of knowledge about RS graphs
(see [6, 48]), it is possible that the space of the algorithm in Result 3

can be improved to n?/29(VI°8 ") _thus more than any polylog(n)
factor shaving in the space over n?—assuming that the currently
best construction of dense RS graphs in [77] (see also [6]) with
induced matchings of size n/29(VI°8™) cannot be improved sub-
stantially to larger induced matching sizes.

4 Any (simple) graph can be seen as an RS graph with induced matchings of size one.

133

STOC ’23, June 20-23, 2023, Orlando, FL, USA

In conclusion, our paper shows that these longstanding barriers
in computing large matchings in streaming and dynamic graphs
can at least be broken by some non-trivial albeit quite small factors.
Moreover, these algorithms rely on techniques and ideas that are
vastly different from prior approaches used in these two models.
We hope our work paves the path toward further progress on these
longstanding open questions.

2 TECHNICAL OVERVIEW

Matching sparsifiers, which loosely speaking, are sparse subgraphs
that approximately preserve the maximum matching have long
been known to be an important tool for fully dynamic and (vari-
ants of) streaming algorithms. Some prominent examples include
edge-degree constrained subgraphs (EDCS) [28, 29] and its gener-
alizations [12, 23], kernels [8, 26, 30, 31], and matching skeletons
[50]. One of our main contributions, and the key to both Result 1
and Result 2, is a new matching sparsifier based on Szemerédi’s
Regularity Lemma.

Our matching sparsifier, more strongly, is a matching cover—a la
Goel et al. [50]—which not only preserves an approximate maxi-
mum matching of the graph, but rather “covers” smaller matchings
of it as well. Let us formalize this. For a given graph G, we write
1(G) to denote the maximum matching size of G, and write G[A, B]
to denote the bipartite subgraph of G between some disjoint vertex
subsets A, B. We say a subgraph H of G is an a-matching cover
for « € (0,1) if for any disjoint subsets of vertices (4, B) in G,
u(H[A, B]) > p(GlA, B]) — a - n. That is, H preserves the largest
matching in the induced bipartite subgraph G[A, B] to within an ad-
ditive « - n factor. While from an information theoretic perspective,
existence of an o(n?)-edge o(1)-matching cover for bipartite graphs
was proved in the original paper of Goel et al. [50], it was not known
up until now whether one can find such matching covers efficiently,
say in polynomial time. Note that this is specially important, for
instance, for applications in dynamic algorithms where the goal is
to optimize the update time.

In this paper, we prove that there is an O(n®)-time® offline al-
gorithm that computes an o(n?)-edge o(1)-matching cover of any
n-vertex graph (not necessarily bipartite). Our algorithm builds on
Szemerédi’s Regularity Lemma (and its algorithmic version due to
Alon et al. [5]). We first explain how our offline algorithm for obtain-
ing a matching cover works, and then outline its use in obtaining
improved dynamic matching and streaming algorithms.

2.1 Matching Covers via Regularity Lemma

Roughly speaking, Szemerédi’s regularity lemma [80] says that the
vertices of any graph can be partitioned into a small irregular part
Co with |Cy| = o(n), plus k other equal-size parts Cy, . ..,Cy for
some k € [w(1),logn]. The latter k parts have the property that
all but o(1)-fraction of the C;, C; pairs are regular: for any pair of
subsets X C C;,Y C C; with large enough size, the edge density
between X, Y is similar to that of C;, C;. Therefore, if the edges

SHere and throughout, ~ 2.37286 is the matrix multiplication exponent with current
best bounds achieved by Alman and Williams [3].

STOC ’23, June 20-23, 2023, Orlando, FL, USA

between C;, C; are dense to start with, the density will also be high
between every large enough X C C;,Y C Cj pair.

It is not difficult to see that by regularity, any large matching
between a dense regular pair C;, Cj can be mostly preserved if we
subsample edges between them at a sufficiently high rate p = o(1).
In particular, the subsampled graph will be a matching cover of
the graph induced by edges between the regular pair C;, C;. This
suggests a natural strategy for building an o(1)-matching cover
with o(n?) edges: subsample the edges between dense regular C;, Cj
pairs at rate p = o(1) and take all other edges. We would like to
show that this is an @-matching cover for some a = o(1).

This idea runs into the following problem. Suppose we have an
(an)-size matching M whose edges are evenly distributed across
all (lzc) pairs of C;, Cj, then the number of edges of M between each
Ci, Cj pair is only O(e - n/k?). This means that only an O(a/k)
fraction of vertices in C;, Cj are matched to each other - this is
unfortunately way too small to invoke the regularity property.

We get around this issue by first focusing on solving an a-hitting
set problem: find one edge between endpoints of any (an)-size
matching — we will show later on using a similar argument as
in [50] that this is sufficient for obtaining an a-matching cover.
Now to fix our problem about an (an)-size matching whose edges
are distributed across many pairs, we present a strategy for consoli-
dating the support of a matching over different pairs. This consoli-
dation argument shows that whenever there is a large matching M
between dense regular C;, C; pairs, there must also exist another
(almost as) large matching M’ that is supported on the same set of
vertices V(M) but only uses edges between a small number of such
Ci, Cj pairs. As a result, there must exist one pair of Cj, C; where a
substantial fraction of vertices are matched to each other, to which
we are now able to apply regularity to prove the existence of an
edge between them in the subsampled graph (which solves our a-
hitting set problem). At a high level, our argument for consolidating
the support of the matching is proved by (i) viewing the matching
M as a fractional matching in a meta graph obtained by contracting
each C; into a supernode; and (ii) rounding the fractional matching
by an edge sampling process.

All in all, using the algorithm of [5] for finding the regular-
ity lemma partition in O(n®) time, and a direct sampling algo-
rithm between dense regular pairs, this step gives us an O(n®) time
and O(n) space algorithm for finding an a-matching cover of size
n?/(log* 1) for some o = 1/(log* n)@,

2.2 Applications of Matching Cover

A fully dynamic matching algorithm. The matching cover
algorithm above is offline. But observe that since the algorithm
takes O(n®) = n3~2(W time, the time spent per edge in a dense
instance is sublinear in n. This gives hope that perhaps such a
matching cover can be maintained in o(n) time, and indeed we
show this to be the case.

Our algorithm roughly proceeds by re-computing an o(1)-matching
cover every O(n@ 1) updates, and then using the O(y/m)-update
time data structure by Gupta and Peng [53] to maintain a nearly
optimal matching in the matching cover through the subsequent

134

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

O(n®~1) updates. Since the matching cover only has o(n®) edges,
we immediately get an update time of o(n) for the Gupta-Peng algo-
rithm. To argue the correctness, we show that the matching cover
found by our offline algorithm has the additional feature that it is
robust to edge updates: not only is it an o(1)-matching cover of the
graph at the time we compute it, but it remains an o(1)-matching
cover throughout any arbitrary sequence of n2z-o(1) updates. This
suffices to show that our algorithm can dynamically maintain an
approximate matching with an additive error o(n).

When the number of edges is close to n?, this additive approx-
imation becomes a (1 — o(1))-multiplicative approximation, since
the maximum matching size is itself Q(n). On the other hand, when
the number of edges is o(n?), directly applying the Gupta-Peng
data structure gives us a nearly-optimal matching in o(n) update
time. Our final algorithm then balances the dense and the sparse
regimes together to maintain a (1 — o(1))-approximate matching in
o(n) update time.

Streaming algorithms. Our streaming algorithm in Result 1
is also based on using matching covers as a natural sparsifier for
matchings. The algorithm works through a series of buffers of edges
Bi1, By, . . .,. The first buffer By reads the edges from the input until
it gets “full”, i.e., receives some o(n?) edges (which is some constant
factor larger than the size of our matching cover). At that point
we compute a matching cover of the edges in the buffer using an
offline/non-streaming algorithm and send its edges to the buffer By;
then, we “restart” By by emptying all its current edges and letting it
collect more edges from the stream. The same approach is repeated
across all other buffers as well. The number of these buffers can
be bounded as only a constant fraction of edges in one buffer can
make their way to the next one, eventually reaching a buffer that
never gets full. This also implies that fewer edges will be be further
“sparsified” in each matching cover, thus the error occurred due to
the approximation guarantee of the matching cover does not get
amplified “too much”. Thus, using this algorithm along with our
matching cover algorithm for regularity lemma, leads to an o(n?)-
space (1 — o(1))-approximation algorithm for single-pass streaming
matchings.

The strategy we outlined above works for any choice of matching
cover (as long as we can compute it in a small space offline). Thus,
we can alternatively implement the matching cover subroutine
by simply enumerating all subgraphs of the input (in exponential
time) and the optimal one. An argument due to Goel et al. [50]—
extended in our paper to general graphs—shows that density of
optimal matching covers can be bounded by the density of certain
RS graphs. To obtain Result 3, we also need to turn the additive ap-
proximation guarantee of the matching cover into a multiplicative
bound. This is done using vertex-sparsification methods of Assadi
et al. [16] and Chitnis et al. [39] (as specified in [15]) that reduce
the number of vertices in the graph down to its maximum matching
size without reducing the matching size by much. This turns the
additive guarantee of the matching cover into a multiplicative one,
giving us Result 3 as well.

Finally, one key step in making the above algorithms work is to
store the o(n?) edges they have in the buffers more efficiently than

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

spending ©(log n) bits per each (which is prohibitive for us given the
extremely small improvement in the space the algorithms get over
the trivial O(n?) bound). This is done by storing the edges via the
succinct dynamic dictionary of Raman and Rao [75] (see Section 3.4)
and then performing all the computation in this compressed space
instead.

3 PRELIMINARIES

Notation. For any integer t > s > 1, we let [¢] := {1,...,t} and
let [s,t] = {s, ..., t}. We use the term with high probability, abbre-
viated w.h.p., to imply probability at least 1 —1/n for any desirably
large constant ¢ > 1 (that might affect the hidden constants in our
statements).

For a graph G = (V, E), we use V(G) = V to denote the set of
vertices and E(G) = E to denote the edges. For any subsets of edges
F C E and disjoint subsets of vertices X, Y C V, we use X(F) and
Y (F) to denote the edges of F incident on X and Y, respectively, and
F(X,Y) to denote the edges of F going between X and Y. Similarly,
we use G[X] and G[X, Y] to respectively denote the subgraph of
G induced on vertices X, and the bipartite subgraph of G between
vertices X and Y. For any p € [0, 1], we use G[p] to denote a random
subgraph of G that includes each edge of G independently with
probability p.

For any graph G, 1(G) denotes the size of the maximum matching
in G. We have,

Fact 3.1. Any graph G has at most 2n - (G) edges.

The proof of Fact 3.1 is simply based on picking an arbitrary
edge of the graph and adding to a matching, removing at most 2n
edges incident on this edge, and repeating until the graph is empty.

We will also need the following version of Hall’s theorem.

Proposition 3.2 (Extended Hall’s marriage theorem; cf. [54]). Let
G = (L R E) be any bipartite graph with |L| = |R| = n. Then
max(|A| — [Ng(A)|) = n — u(G), where A ranges over all subsets
of L and R, and NG (A) denotes the neighbors of A in G.

3.1 Szemerédi’s Regularity Lemma

Szemerédi’s Regularity Lemma [80] is a powerful tool in extremal
combinatorics. Loosely speaking, it says that every dense graph
can be well-approximated by a “small” collection of random-like
subgraphs. To formally state the lemma, we need a few definitions.

Let G = (V, E) be any given graph, and A, B C V be any disjoint
vertex subsets. We write e(A, B) to denote the number of edges
between A, B. If A, B # 0, we define the density of edges between
A and B by:

e(A, B)
|Al1B| *
For a parameter y € (0, 1), we say (A, B) is y-regular if for every
X C Aand Y C Bsatisfying |X| > y - |Al and |Y| > y - |B|, we have
|d(A, B) —d(X,Y)| <y.

Let Co, Cy, . . ., Ck. be a partition of the vertex set V. We say this
partition is equitable if the classes Cy, ..., Cy all have the same

d(A, B) =

135

STOC ’23, June 20-23, 2023, Orlando, FL, USA

size. We will call Cy the exceptional class. We say this partition
is y-regular if both of the following statements are true:

(1) It is equitable and |Co| < yn.
(2) All but at most y(g) of the pairs C;, Cj for 1 < i < j < k are
y-regular.

Instead of the original formulation of Szemerédi’s Regularity
Lemma in [80], we state an algorithmic version of it due to Alon
et al. [5].

Proposition 3.3 ([5]). There exists a function Q : R* x RT — R*
satisfying log"™ Q(x, y) < poly(x, y) for all x,y, such that, given any
n-vertex graph G = (V,E) and y € (0,1),t > 1, one can find in

n® - Q(t,1/y) time a y-regular partition of V into k + 1 classes such
thatt < k < Q(t,1/y).

The algorithm in Proposition 3.3 can also be implemented in a
space-efficient manner (which is needed for our streaming algo-
rithms). The proof is deferred to the full version.

Proposition 3.4. Given query access to the adjacency matrix, the al-
gorithm in Proposition 3.3 can be implemented in O(n-Q(t, 1/y) log n)
space and poly(n, Q(t, 1/y)) time.

3.2 Fox’s Triangle Removal Lemma

Similar to the Regularity Lemma, the Triangle Removal Lemma is
another highly useful tool in extremal combinatorics. While original
proofs of this lemma were based on the regularity lemma, Fox [47]
presented a proof that bypasses regularity lemma and thus obtains
stronger bounds. We will use this result also in one of our streaming
algorithms.

Proposition 3.5 ([47]). There exists an absolute constantb > 1 such
that the following is true. For anyy € (0, 1) let § := 5(y) be inverse of
the tower of twos of height b - log (1/y), i.e, 871 =2 11 b -log (1/y).
Then, any n-vertex graph with at most § - n> triangles can be made
triangle-free by removing at most y - n® edges.

3.3 Ruzsa-Szemerédi Graphs

A matching M in a graph G is called an induced matching iff the
subgraph of G induced on vertices of M only contains the edges
of M itself; in other words, there are no other edges between the
vertices of this matching.

Definition 3.6. For integersr,t > 1, a graph G = (V, E) is called
an (r, t)-Ruzsa-Szemerédi graph (RS graph for short) iff its edge-set E
can be partitioned into t induced matchings My, . .., My, each of size
r. For any integer n > 1 and parameter f§ € (0,1/2), we use RS(n, f)
to denote the maximum number of edges in any n-vertex RS graph
with induced matchings of size f5 - n.

RS graphs have been extensively studied as they arise naturally in
property testing, PCP constructions, additive combinatorics, stream-
ing algorithms, graph sparsification, etc. (see, e.g., [4, 6, 7, 12, 35,
45, 49, 50, 55, 61, 81]). In particular, a line of work initiated by Goel
et al. [50] have used different constructions of these graphs to prove
communication complexity and streaming lower bounds for graph
streaming algorithms [11, 14, 16, 18, 38, 41, 50, 59, 60, 65]. In this

STOC ’23, June 20-23, 2023, Orlando, FL, USA

work however, we shall use them as an upper bound tool. The only
other upper bound application of these graphs in a similar con-
text that we are aware of is the communication protocols of [50]:
they show that to obtain a one-way communication protocol for
¢ - n-additive approximation of matchings, roughly O(RS(n, ¢)) com-
munication is sufficient and also necessary.

We establish a simple property of the RS(n,) function in Defi-
nition 3.6 that relates density of different RS graphs with similar
parameters (see full version for the proof).

Claim 3.7. For any integern > 1 andreal 0 < § < 1, RS(2n,3p) <
O(1) - RS(n,).

3.4 Succinct Dynamic Dictionaries

We need to use succinct dynamic dictionaries from prior work
in [36, 74, 75]. For concreteness, we use the construction of [75]
although the other ones work as fine also for us.

Proposition 3.8 (c.f. [75]). There exists a dynamic data structure
D for maintaining a subset S of size at most s from a universe U of
size u that supports the following operations:

e D.insert(a): Inserts an element a € U to the set S;

e D.member(a): Returns whether the given element a € U be-
longs toU or not;

The data structure requires (1 + o(1)) - log (134) bits of space to store
S and answers each query in O(1) amortized expected time or O(s)
worst-case deterministic time.

4 A MATCHING COVER VIA REGULARITY
LEMMA

In this section, we give a polynomial time algorithm for constructing
an matching cover of size o(n?). We use the algorithm of this section
both in the streaming model and the dynamic model. Most of the
proofs in this section are deferred to the full version.

Let us start by formally defining matching covers.

Definition 4.1 ([50]). A subgraph H of an n-vertex graph G is an
a-matching cover of G if for any disjoint subsets of vertices (A, B) in
G, we have u(H|A, B]) > u(G[A,B]) —a - n.

The following theorem is our main result of this section.

THEOREM 1. Given anyn-vertex graph G, for somea = (log* n)~),
there is an O(n® log n) time algorithm, which is formalized below as
Algorithm 1, for finding an a-matching cover H of G with at most
n?/(log* n)X(V) edges.

Even though existence of o(n?) size o(1)-matching covers for
bipartite graphs was already proved by Goel et al. [50], it was
not known whether it is possible to find one in polynomial time
(nor whether they also exist for general, not necessarily bipartite,

graphs).

136

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

4.1 First Step: A Hitting Set Argument

In this section, we give an algorithm for finding an a-hitting set,
defined below. We later show in Section 4.2 that this can be turned
into a matching cover.

Definition 4.2. A subgraph H of an n-vertex graph G is an a-hitting
set of G if for any disjoint subsets of vertices (A, B) in G satisfying
|A| = |B| = an and p(G[A,B]) = an, there is at least one edge
between A and B in H.

The following lemma is our main guarantee of this section.

Lemma 4.3. Given anyn-vertex graphG, for somea = (log* n)~%(),
there is an O(n® logn) time algorithm, formalized below as Algo-
rithm 1, for finding an a-hitting set H of G with at most n® /(log”* n)(
edges.

It is not hard to see that Algorithm 1 outputs a subgraph with
O(yn?) = o(n?) edges, since essentially the dense parts of the de-
composition are subsampled and there are ‘few’ other edges in the
graph. The following claim formalizes this.

Claim 4.4. The output F of Algorithm 1, w.h.p., has at most O(yn?)
edges.

The harder part of the proof, is to show that the sparse subgraph
returned by Algorithm 1 is indeed a matching cover. We continue
with the following claim.

Claim 4.5. W.h.p., it holds forallX C C;,Y C C; such that(C;,Cj)a
good pair, |X| > y|Ci|, and |Y| > y|Cj| that |[F3(X,Y)| > nz/log6 n.

Next, we prove the following lemma on consolidating the support
of an arbitrary fractional matching so that each non-zero variable
takes a sufficiently large value.

Algorithm 1. The construction of the matching cover for
Theorem 1.

Let t «— (log*n)?, y « (log* n)~9 for some constant § € (0,1)
such that Q(#, 1/y) < logn.

(i) Run the algorithm in Proposition 3.3 to obtain a y-
regular partition Cy, ...,Cy with t = (log" n)5 <k <
Q(t,1/y) < logn.

(i) Let (C;, Cj) for i # j. We say (C;, Cj) is good if (i) i, j # 0,
(ii) it is y-regular, and (iii) d(C;, Cj) > 8y. Otherwise, we
say (Cj, Cj) is bad.

(iii) Let F C E be a subset of edges obtained by F := F{UF,UF3
where

(a) Fi contains the edges between the bad pairs; i.e. Fj :=
Ubad Ci,C; EN(C; x Cj).

(b) F» contains the edges within each class; i.e. F» :=
Uogick EN(Ci X Cy).

(c) F3 is obtained by sampling the edges between
good pairs with probability p := 101;;1; ie. F3 =
Ugood Ci,Cj(E N (Ci X Cj))[P]v

(iv) Return F.

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

Lemma 4.6. Letx be any fractional matching (not necessarily in the
matching polytope). For any ¢ € (0, 1], there is a fractional matching
y such that all the following hold:

(1) For any vertex v, Yy, < Xy, where here y, =), .5, Ye and
Xo = Deso Xe-

(2) supp(y) € supp(x). That is, if ye > 0 for some edge e, then
Xe > 0.

83
12In(1/¢) "
(4) |yl = |x| — 2en, where here |y| := Y., ye and |x| := X, Xe.

(3) For any edge e, either y, = 0 ory, >

We are now ready to prove that Algorithm 1 returns a o(1)-
matching-cover w.h.p.

Lemma 4.7. The output of Algorithm 1 is, w.h.p., an a-hitting set
of G fora = O((y 10g(1/y))1/3) = (log* n)*Q(l)‘

4.2 Second Step: From Hitting Set to Matching
Cover

We now prove that any subgraph satisfying the hitting set require-
ment (Definition 4.2) is also a matching cover (Definition 4.1). This
will follow from Hall’s theorem (Proposition 3.2), and the proof
similar to that of Lemma 9.3 in [50].

Lemma 4.8 (From Hitting Set to Matching Cover). Let G = (V,E)
be any graph that is not necessarily bipartite. Then any subgraph H
of G that is an a-hitting set is also an a-matching cover of G.

We are now ready to prove Theorem 1.

ProoF oF THEOREM 1. The output of Algorithm 1 being an o(1)-
hitting set was proved in Lemma 4.7. By Lemma 4.8, the output
subgraph is an o(1)-matching cover. This matching cover having
at most O(yn?) = n?/(log* n)Q(l) edges was proved in Claim 4.4.
Finally, the running time follows from the algorithm of Proposi-
tion 3.3 for finding the regularity decomposition, and the fact that
Q(t,1/y) < logn in Algorithm 1. O

5 AFULLY DYNAMIC ALGORITHM VIA
MATCHING COVERS

In this section, we show that the matching cover of Section 4 can
be used to prove the following result in the fully dynamic model.

THEOREM 2. There is a randomized, fully dynamic algorithm that
maintains with high probability a (1 — o(1))-approximate matching
under (possibly adversarial) edge updates. The algorithm has initial-
ization time O(n® log n) and worst-case update time n/(log* n)2),

We start by giving an overview of our algorithm. We first describe
a strategy that enables us to maintain an approximate matching
with additive error o(n), and latter explain how to make the approx-
imation guarantee multiplicative. We re-compute an o(1)-matching
cover of the current graph every ©(n®~! log? n) updates, and then
pretend as if the matching cover is the entire graph, and use the
O(~/m) update-time algorithm of Gupta and Peng [53], stated below
as Proposition 5.1, to maintain a nearly optimal matching.

137

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Algorithm 2. A fully dynamic algorithm for Theorem 2.

Input: An n-vertex fully dynamic graph G subject to edge inser-
tions and deletions.

Output: A (dynamically changing) (1 — ¢)-approximate maxi-
mum of G.

Parameters: We set ¢, y, § as in Algorithm 1, and set ¢ «
10(log™* n)0/64,

Sparse regime:

(1) Whenever the number of edges in G exceeds
n?/(log* n)9/8, switch to the dense regime.

(2) Use Proposition 5.1 on the whole graph G to maintain a
(1 — ¢)-approximation.

Dense regime:

(1) Whenever the number of edges in graph G falls below
n?/(2(log* n)?/8), restart the algorithm of Proposition 5.1
on the whole graph G to maintain a (1 — ¢)-approximate
matching of it, and switch to the sparse regime.

(2) Do the following every n®~!log? n updates (including
before the first update):

(a) Use Algorithm 1 to construct an o(1)-matching cover F
of the graph G in O(n® log n) time (see Theorem 1).

(b) Restart the algorithm of Proposition 5.1 for maintaining
a (1 — ¢)-approximation of subgraph F.

(3) Upon insertion of an edge e, let F «— F U {e} and trigger
an edge insertion to the algorithm of Proposition 5.1 we
use on F.

(4) Upon deletion of an edge e, if e € F,let F < F — {e} and
trigger an edge deletion to the algorithm of Proposition 5.1
we use on F; otherwise ignore the deletion.

First, it is easy to see that the amortized update time of this strat-
egy is o(n), as the computation time O(n® log n) of the matching
cover gets amortized over ©(n®~! log? n) updates to o(n), and the
number of edges in the matching cover is o(n?). Then to argue the
correctness, we have to show that the matching cover found by
our offline algorithm is robust to edge updates - that is, it remains
an o(1)-matching cover throughout the following ©(n®~!log? n)
updates. This is indeed a feature of our offline algorithm: in par-
ticular, the number of edges between each pair of large enough
X C C;,Y C Cj for dense, regular C;, Cj pairs is f)(nz), which
means that the hitting set property will be preserved as long as
< n? edges have been deleted, and as a result the subgraph obtained
by our algorithm remains an o(1)-matching cover throughout the
following ©(n®~'log? n) < n® updates, as desired.

To turn the additive approximation guarantee to a multiplica-
tive one, we will deal with “sparse” and “dense” regimes separately.
Specifically, when the number of edges is at most n?/(log* n)?®,
we simply use the Gupta-Peng algorithm to maintain a (1 — ¢)-
approximation in n/(log* n)2(update time. On the other hand,
when the graph is dense, we first use the matching cover of Theo-
rem 1 to sparsify the graph while preserving its maximum matching,

STOC ’23, June 20-23, 2023, Orlando, FL, USA

then run Proposition 5.1 on this sparse graph to maintain a (1 — ¢)-
approximate matching of it in n/(log* n)®") update-time. We also
set up a “buffer zone” in the thresholds for switching between the
two algorithms so that we do not pay the switching overhead too
often.

We now present our algorithm. Here, we only show an algo-
rithm with initialization time O(n® log n) and amortized update
time n/(log* n)Q(l), which we believe suffices to demonstrate the
main idea. We defer the discussion on how to make the update time
worst-case in the full version.

Proposition 5.1 ([53]). There is a deterministic, fully dynamic al-
gorithm for maintaining a (1 — €)-approximate matching with initial-
ization time O(moe™1) and worst-case update time O(\me™?), where
my is the number of edges in the initial graph, and m is the maximum
number of edges in the graph throughout the updates.

Our algorithm is formally presented in Algorithm 2. We now
turn to analyze Algorithm 2. First, we prove that it has our desired
update-time via amortization. As discuss, we will later show how
the algorithm can be deamortized. The proof is deferred to the full
version.

Claim 5.2. The amortized update-time of Algorithm 2 isn/(log” n) (D),

Next, we prove that Algorithm 2 maintains a (1—o(1))-approximate
matching w.h.p.

Claim 5.3. At any point, the output of Algorithm 2 is w.h.p. a (1 —
o(1))-approximate maximum matching of G. This holds, in particular,
against an adaptive adversary that is aware of both the output and
the state of the algorithm.

Proor. For the sparse regime, this directly follows from the
correctness of Proposition 5.1 since we run it on the entire graph
G. We thus focus on the dense regime.

First, note that in the dense regime there are at least m >
n?/(2(log* n)3/8) edges in the graph. Observe that any n-vertex
m-edge graph has a matching of size at least m/(2n — 1): iteratively
pick an arbitrary free edge, add it to the matching, and remove its
endpoints from the graph; each step only removes at most (2n — 1)
edges, thus the matching must have size at least m/(2n — 1). From
this, we get that whenever the algorithm is in the dense regime,
there is a matching of size at least u(G) > n/(4(log" n)%/8) in it.

Next, we claim that at any point in the dense regime, F is an a-
matching cover of G (Definition 4.1), where as defined in Lemma 4.7,

a =0((y log(1/y))/*) = ©((log" n)~? log((log™ n)°))'/?)
=0((log" n)~%/*).

By Lemma 4.8, to show this, it suffices to show that F is an a-hitting
set of G (Definition 4.2) at any point in the dense regime. To see this,
observe that immediately after we call Algorithm 1, F must be an
a-hitting set of G simply by the guarantee of Theorem 1. However,
for the next n“~! log? n updates until we re-run Algorithm 1, both
the graph G and F change due to the updates to the graph. Observe
that edge insertions cause no problem since any edge added will
be added to F as well. But edge deletions may cause a problem. In
particular, recall that we subsample o(1) fraction of edges of the

138

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

good pairs in Algorithm 1, and if they are all removed then we
no longer have an a-hitting set. Indeed, given that the adaptive
adversary is aware of this sampled subset, he can attempt to remove
these edges one by one. The crucial observation, here, is that right
after we call Algorithm 1, Claim 4.5 guarantees that there are w.h.p.
at least |F3(X, Y)| > n?/log® n subsampled edges between any two
large enough subsets X C C;,Y C C; of any good pair (C;, Cj).
On the other hand, our guarantee of Theorem 1 that F is an a-
hitting set only requires |F3(X,Y)| > 0. As a result, even if the
adversary attempts to remove edges of F3 one by one within the
next n® !log? n < n?/log® n updates, F3(X, Y) will remain non-
empty and so F remains an a-hitting set.

Moreover, since F is an a-matching cover of G, we get from
Definition 4.1, taking M* to be an arbitrary maximum matching
of G and taking sets A and B to each include one endpoint of each
edge in M* arbitrarily, we get that

p(F) = p(FIA, B]) > p(GIA, B]) — an = |M*| - an = p(G) - an.

Putting together the bounds above, we get that at any point
during the updates in the dense regime, F includes a matching of
size at least

p(F) > p(G) - an = p(G) - O(n/(log" n)°/*) > (1 - o(1))(G),

where the last equality holds since p(G) > Q(n/(log* n)5/ 8) as
discussed above. Running the algorithm of Proposition 5.1 on top
of this, we maintain a (1 — £)(1 — o(1))u(G) = (1 — 0o(1))u(G) size
matching overall. O

6 SINGLE-PASS STREAMING ALGORITHMS

We prove Result 1 and Result 3 in this section. Both algorithms
rely on using matching covers iteratively in the same way and
differ primarily on how they compute matching covers and some
additional steps. Because of this, we first present and prove a generic
result that uses matching covers in a blackbox way to obtain a
streaming algorithm for finding matching covers and then extend
it separately to obtain for Result 1 and Result 3. When presenting
our results, we focus more on the correctness of our algorithms,
but defer proofs of the space usage to the full version.

6.1 A Streaming Algorithm for Matching
Covers

We present an algorithm that computes the matching cover of a
graph presented in a stream by iteratively computing matching
covers of smaller subsets of the stream without losing “much” on the
quality of the final matching cover. For technical reasons that will
become clear later, we need this algorithm to work for multi-graphs
as well.

Proposition 6.1. For any integerk > 1 and any o € (0,1/10), there
exists a single-pass streaming algorithm that computes an a-matching
cover of n-vertex multi-graphs with at most m edges in space
2 2
m n® -k n
O(—-lo ——— | lo k);

K g(m MC(n,a/zk)) J
here, we assume we are given a subroutine Matching-Cover that
given adjacency matrix access to any n-vertex graph with m/k edges,

) + MC(n, a/2k) - log (

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

can compute an (a/2k)-matching cover with MC(n, a/2k) < m/2k
edges in O((m/k) - log (n? - k/m)) space. The streaming algorithm
requires calling Matching-Cover O(k) times and is deterministic as
long as the Matching-Cover subroutine is deterministic.

The algorithm in Proposition 6.1 is based on a novel use and
modification of the widely used “Merge and Reduce” technique in
the streaming literature (used previously e.g., for quantile estima-
tion [62, 69] or cut/spectral sparsifiers [71]). We give a high level
overview of the algorithm here and present the formal description
in Algorithm 3.

The algorithm maintains ¢ := O(log k) different buffers By, . . ., By
of edges throughout the stream (all these buffers store their edges
using the succinct dynamic dictionary of Proposition 3.8 to save
space). Buffer By simply starts reading edges from the stream un-
til it collects m/k edges; it will then use the (offline) subroutine
Matching-Cover over these edges with parameter a’ = a/2k to
obtain an a’-matching cover of the subgraph of input on edges in
Bj. Edges of this matching cover are then inserted to buffer By and
we empty buffer By, which will continue reading edges from the
stream again. In the mean time, whenever buffer By gets “full”, this
time meaning that it receives twice as many edges as MC(n, a”), we
compute another a’-matching cover using Matching-Cover, this
time over the edges in By, pass them to buffer B3, and empty B>
which continues receiving edges from buffer B;. This process is
done the same way across all buffers until all edges of the stream
have passed (we prove buffer B; never gets full so not having a
buffer Bs+1 is not a problem). At the end, we argue that the edges
that are remained across all buffers By, ..., B; at the end of the
stream form an a-matching cover of the input.

Algorithm 3. An algorithm for Proposition 6.1.

Input: A multi-graph G = (V, E) in the stream with n edges and
at most m edges. We are also given integer k > 1 and approxi-
mation parameter a > 0, and access to the (offline) subroutine
Matching-Cover as specified in Proposition 6.1.

Output: An ¢-matching cover of G.
Parameters: We set t := (logk + 2) and o’ := a/2k.

(i) Maintain the following buffers of edges Bj, . . ., B; using
succinct dynamic dictionary of Proposition 3.8 (we specify
the details in Lemma 6.2):

(a) Buffer B;: add any arriving edge (u,v) arrives in
the stream to Bj. Once size of By reaches m/k, run
Matching-Cover to find an a’-matching-cover of the
subgraph (V, B1) of G and add all those edges to Bj.
Restart By by deleting all its current edges.

(b) Buffers B; fori > 1: once size of B; reaches 2-MC(n, a’),
run Matching-Cover to find an a’-matching-cover of
the subgraph (V, B;) of G and add all those edges to
Bi+1% Restart B; by deleting all its current edges.

(ii) Return (B; U ... U By) at the end of the stream.
“We will show in Claim 6.3 that this step never happens for buffer B, namely, it

never gets “full”, and thus the algorithm is well-defined even though there is no
buffer By41.

139

STOC ’23, June 20-23, 2023, Orlando, FL, USA

The analysis of the algorithm involves showing that: (i) fewer
and fewer edges find their way to higher-indexed buffers, (ii) the
repeated application of Matching-Cover does not blow up the ap-
proximation guarantee by too much, and (iii) all this can be im-
plemented in a relatively small space. We now present the formal
algorithm and its analysis.

We start by analyzing the space complexity of Algorithm 3.

Lemma 6.2. Algorithm 3 can be implemented in space of
2

m n‘ -k
Of—-1
(k og(m

2
n
+t-MC(n,a’) - log| ——|.
) (n,) Og(MC(n,a’)))
We now prove the correctness of Algorithm 3. To do so, we need
the following definitions:

e Let Hll, .. H li denote the k; separate matching covers con-
structed by the algorithm over the edges of buffer By, one for
each time that we restart B;. Let G2 := Hl1 u... UHll1 denote
the graph that is sent to buffer By throughout the algorithm
(for notational convenience, we also define Gl = G as the
input graph, namely, the graph that is sent to buffer BY).

e Foranyi € [2: t—1], similarly, let H{, .. .,H;c' denote the k;
separate matching covers constructed by the algorithm over
the edges of buffer B;. Let G'*1 := HiU...UH denote the
graph that is sent to buffer B;,; throughout the algorithm.

We claim that the number of subgraphs at buffer B; drops by a
factor of 2! compared to Bj, and defer the proof to the full version.
Claim 6.3. Foranyi € [t —1],k; < k/2""! and k; = 0 meaning
that bucket B; never generates a matching cover (namely, it never

gets full).

The following lemma captures the loss on the size of maximum
matching that the algorithm maintains from one buffer to the next
one. In other words, the cost we have to pay for introduction of
each level of buffers.

Lemma 6.4. Foranyi € [t — 1] and any disjoint subsets of vertices
X, Ycv,

p((G"+1 uBlu...UBx, Y])) >
p((GiuB{_lu...uB{)[X,Y])—k,--a’-n.

where B{ for j € [t] is the final content of the buffer at the end of the
stream.

Proor. Fix any i € [t — 1] and a maximum matching M of
(Gt u B‘il.r_1 U...u B{)[X, Y]. We construct a matching M;;; in

(G UBl UL UBIX, Y] such that [Mys1| > [M}| —k; -8 - n.
This will then immediately implies the lemma. To continue we need
some more definition.

For any H]’ for j € [ki], let B} denote the content of buffer B;
when the algorithm creates H j’ This way, H Jl is a matching-cover
of (V, BJ’) Moreover, B, . .., B]’;i together with BJ; partition all the
edges that are ever sent to buffer B;, namely, the graph G*. These

edges are also further disjoint from B{_l, A BJIC since the latter set

STOC ’23, June 20-23, 2023, Orlando, FL, USA

of edges were never sent to buffer B;. We can partition the edges
of M between these sets and along the way define our matching
M1 as well:

e For any j € [k;], let Ml.*j =M N B]i' and M; ; be the maxi-
mum matching in HJ’ between X(M;.kj) and Y(M:‘J)
e Forany i’ € [i], let Mj,’f = Mj OB{ and M{, = Mj,’f which
is between X(M;k,’f), Y(M?,’f).
o Define Miy1 := M{, U--- UM, UM U UM,
We note that M;1 is a matching between X and Y because the sets
of vertices X(M;‘j) and X(M;‘j) for j € [k;], as well as X(Mj,’f)
and Y(M:,’f) for i’ € [i] are all disjoint given they are defined with
respect to a fixed matching M; over disjoint sets of edges. Moreover,
Mi1 belongs to (GI*1 U Blf U...U B’;)[X, Y] as H]’ is part of G*1
for j € [k;]. It thus only remains to bound the size of M 1.

For all i’ € [i], M; and M;,’f are the same so there is nothing to
do here. For j € [k;i], we have,

M| =p (XM), Y)]
> (BIXM]), YOM] D)) - o <
(asH J’ is a a’-matching-cover of B;. and by Definition 4.1)
=M} .| —a-n.
IM;
as M} . is a perfect matching in B’ between X(M7}) and Y(M .
ij1%ap §1m5; ij ij

Thus,

3 M)

ki
IMit1] = Z IM; j| +
j=1 =1
>
j

i
Myl = -my+ > My

i'=1

VR

Il
> =

|—ki-a' -n,

concluding the proof. O

We can now conclude the bound on the approximation ratio of
the algorithm.

Lemma 6.5. Algorithm 3 outputs an a-matching cover of any input
multi-graph G.

PRroOF. Recall that for every i € [t], B{ denotes the final content
of the buffer B;. Moreover by Claim 6.3, buffer B; never gets full

and thus B{ =Gt Finally, the algorithm returns H := (Bf R B{).
Fix any disjoint sets of vertices X, Y C V(G). We have,

U(HIX, Y]) = u ((B{ uBl_ u...UuB)IX, Y])
(by the definition of H)
=p(6uBl U UBDIX.YI) (sB =G

2;1((Gt_1 UBLZU...UB{)[X,Y]) —ki1-a'on
(by Lemma 6.4 fori =t —1)

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

t-1
> pGIX.Y) = Y ki-a’-n
i=1

(by repeatedly applying Lemma 6.4 for all i < ¢ — 1 and since G! = G)

140

-1
> u(G) = Y (k/2"T) a’
i=1
(by Claim 6.3, k; < k/2i71)
>pG)—2k-a’ n
(by the sum of the geometric series)

=puG)—a-n. (by the choice of &’ = a/2k)

This implies that for every disjoint subsets of vertices X, Y C V(G),
we have p(H[X,Y]) > p(G[X,Y]) — @ - n, thus making H an a-
matching cover of G by Definition 4.1. O

PRroOF oF ProrosITION 6.1. The bound on the space complex-
ity of the algorithm follows from Lemma 6.2 by plugging the
value of ¢’ = a/2k and t = logk + 1. The correctness follows
from Lemma 6.5. Finally, Algorithm 3 is deterministic modulo any
potential randomness used by Matching-Cover. O

6.2 A Streaming Matching Algorithm via
Regularity Lemma

We now use Proposition 6.1 together with our Theorem 1 to for-
malize Result 1 as follows.

THEOREM 3 (FORMALIZATION OF RESULT 1). There is a randomized
single-pass streaming algorithm that with high probability computes
a (1 — o(1))-approximate matching of a graph presented in a stream
with adversarial order of edge arrivals in n?/(log* n)*(V) space and
polynomial time.

ProoF. Note that, to apply Proposition 6.1, we need a subroutine
Matching-Cover for computing an («/2k)-matching cover (for pa-
rameters & and k to be determined soon) on any n-vertex graph with
n? /k edges. Theorem 1 provides such an algorithm with parameters

2
(log" n)%’

for some absolute constants 81,8, € (0,1). Let a = 1/(log* rz)3‘5l/4
and k = % - (log* n)5l/ 4 which satisfies the conditions above. More-
over, by Proposition 3.4, we can implement Algorithm 1 of Theo-
rem 1 in polynomial time and space O((n? /k)-log k) = n?/(log* n)@),
given only adjacency matrix access to its input graph. This way,
by Proposition 6.1, we obtain a single-pass streaming algorithm
that with high probability computes an ¢-matching cover in space
n?/(log* n)@),

The main algorithm in the theorem is as follows. We store the
first 2n? /k edges in the stream using succinct dynamic dictionary
of Proposition 3.8 in n?/(log*)@ space. In parallel, we also run
the algorithm mentioned above to obtain an a-matching cover of
G. The space complexity and polynomial runtime of the algorithm
is thus already established.

(a/2k) = and MC(n, a/2k) =

1
(log* n)%

We now prove the correctness. If y(G) < n/k, then by Fact 3.1,
we have stored all edges of the graph and thus at the end can

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

simply return a maximum matching of the stored edges; to do so,
we simply run Hopcroft-Karp algorithm [56] by providing it with
the adjacency matrix of the stored edges using member query on
the succinct dynamic dictionary (which only requires O(nlogn)
additional space beside the input). Thus, in this case, we obtain an
exact maximum matching of the input graph.

If u(G) > n/k, then we can pick X and Y in the definition of
matching cover output by the algorithm of Proposition 6.1 to be
the endpoints of the maximum matching of G, and have,

p(H) > p(G)—a-n = (1-a-k)-u(G) = (1-1/(log* n)®/?)u(G),

which is (1 — 0(1)) - p(G) as desired. This concludes the proof. O

6.3 A Streaming Matching Algorithm via RS
Graph Upper Bounds

We formalize Result 3 as follows in this subsection (RS(n,) below
was defined in Definition 3.6).

THEOREM 4 (FORMALIZATION OF RESULT 3). There exists an ab-
solute constant > 0 such that the following is true. There is a ran-
domized single-pass streaming algorithm that for any 1 < k < n and
€ € (0,1/100), with high probability, computes a (1 — ¢)-approximate
matching of a graph presented in a stream with adversarial order of
edge arrivals in exponential time and space

o
RS(n, - €2/K)

Moreover, the algorithm can return an additive € - n approximation
deterministically in exponential time and space

2
O(%Jog2 k+RS(n, n-¢*/k)-log ()'1082 k-log (k/t“))~

2

o("—zl k + RS(n, ¢/16k) - log | ————
P e &\ RS(n, ¢/16k)

) logk -log (k/s)).

Roughly speaking, by ignoring lower order terms and in asymp-
totic notation, Theorem 4 gives a streaming algorithm for (1 - o(1))-
approximation of matchings in a single pass with adversarial order
of edge arrivals using essentially (n?/k + RS(n, o(1/k))) space for
any integer k > 1.

Before proving Theorem 4, let us present a corollary of this
theorem with concrete bounds on the space by using Fox’s triangle
removal lemma (Proposition 3.5) to bound the RS-graph density
terms in Theorem 4 (this appears to be the only known method for
bounding density of RS graphs with o(n)-size induced matchings;
moreover, we are not aware of any reference that bounds the density
of the type of RS graphs we need, thus we present a proof of that
here also for completeness).

Corollary 6.6. There is a deterministic single-pass streaming algo-
rithm that computes a (1 — o(1))-approximate matching of a graph
presented in a stream with adversarial order of edge arrivals in
n? /22098" 1) space and exponential time.

We defer the proof of this corollary to the full version. To con-
tinue, we need to recall some additional tools from prior work.
specific specific to our algorithms in this subsection.

6.3.1 Additional Tools from Prior Work.

141

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Matching covers via RS graphs. Goel et al. [50] showed that
matching covers and RS graphs are intimately connected: on bi-
partite graphs, the density of best construction for either can be
bounded by the density of other one for closely related parameters.
We need this result for general graphs as well which follows from
the result of [50] using a simple argument®.

Proposition 6.7 (an extension of [50, Theorem 9.2] to general
graphs). Forany a € (0,1) and n > 1, there exists an a-matching
cover of any n-vertex graph with number of edges bounded by

MC(n, @) < RS(n, a/8) - O(log (1/a)).

Proor. The result of [50] is formally as follows (to match the
definitions in our paper, our formulation is slightly different from
the statements in [50] but they are equivalent):

[50, Theorem 9.2]: For any bipartite graph G’ = (L', R, E’) with
n vertices on each side and &’ € (0, 1), there exists a subgraph H’
with RS(2n, 3a’/4) - O(log(1/a”)) edges such that for any disjoint
subsets of vertices X C L’ and Y C R/,

pH'[X,Y]) > p(G'[X.Y]) - a” - (2n).

We now use this to prove the bound for general graphs as well.
Let G = (V, E) be any (not necessarily bipartite) graph. Consider
the bipartite double cover of G obtained by copying vertices of G
twice into sets V; and V2 and connecting any vertex u; € Vj to
vy € Vo iff (u, v) is an edge in G. Let G’ denote this graph and so
G’ is a bipartite graph with n vertices on each side.

Compute an a’-matching cover H” of this bipartite graph using
Theorem 9.2 of [50] for parameter a’ = «/2 (for @ given to us
in the proposition statement). Thus, H’ contains RS(2n,3a’/4) -
O(log(1/a’)) edges. Create a subgraph H (not necessarily bipartite)
on the same vertices as G by adding the edges (u, v) to H iff either
(u1, vg) or (vy, u2) was an edge in H’. This way, the number of edges
in H will be at most

RS(2n,3a’/4) - O(log (1/a”)) < RS(n, a’/4) - O(log (1/a’)),
where the inequality is by Claim 3.7 that relates density of RS graphs
with similar parameters.

We now argue that H is an a-matching cover of G. Fix any
disjoint subsets of vertices X, Y in G. Consider X1 C Vj and Y, C V2
corresponding to these two subsets over vertices of G’ (and H’):

HH'[X1, Y2]) > p(G'[X1, Ya]) — @ - (2n)
(by Definition 4.1 as H’ is an a-matching cover of G’)

> p(GIX, Y]) - o’ - (2n),

as by the construction of G’ any edge (u,v) € G[X, Y] also has
a copy (u1,v2) € G'[X1, Y2] and thus u(G’'[X1, Y2]) > p(G[X, Y]).
Moreover, since X and Y are disjoint, the endpoints of the maximum
matching in H’[X, Y2] are disjoint from each other; thus, they are
mapped to unique edges in H also between X and Y, implying that

HHIX, Y]) = p(H'[X1, Y2]) > p(GIX, Y]) - 22 - n.

®We can in fact prove this result with better bounds nearly matching those of [50]
using a white-box application of the techniques in [50]; however, since the actual
constants do not matter for our application in this paper, we opted for the simpler and
more direct proof that uses the result of [50] in a black-box way.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Noting that &’ = /2 in the above equations, concludes the proof.
]

Vertex-sparsification for matchings. We also use the reduc-
tions of Assadi et al. [16] and Chitnis et al. [39] for reducing the
number of vertices while preserving maximum matching size ap-
proximately. The original versions of the reductions in these work
only achieved constant probability of success and boost this to a
high probability bound by applying it ©(log n) times in parallel. In
our setting, we cannot afford this direct success amplification. Thus,
we instead use the following variant proven by Assadi et al. [15]
that achieves a high success probability directly.

Proposition 6.8 ([15, Lemma 3.8]; see also [16, 39]). For any graph
G = (V,E), integer opt > 1, and parameter 0 € (0, 1), uniformly at
random pick a functionh : V. — [8-opt/0). Consider this multi-graph
H = (Vy, Eg) obtained from G and h:

o Vi is the range of the function of h, thus |Vy| = 8 - opt/0.
e For any edge (u,v) € G, there is an edge (h(u), h(v)) € Eg.
If u(G) < opt, then,

%«y&ﬂ<(l—9)p«ﬂ)<eq«—ﬁ%a)
6.3.2 Proof of Theorem 4. We now use these prior tools combined
with our Proposition 6.1 to prove Theorem 4. Recall that Proposi-
tion 6.1 returns an a-matching cover which can only guarantee an
additive approximation not a multiplicative one. Thus, we first use
the vertex-sparsification of Proposition 6.8 to reduce the number
of vertices in G to O(u(G))—by guessing p(G) in geometric values—
so that an additive approximation also becomes a multiplicative
one. We then use Proposition 6.7 to compute the matching covers
in Algorithm 3 of Proposition 6.1.

Algorithm 4. The randomized algorithm in Theorem 4.

Input: A graph G = (V, E) in the stream with n edges and at most
() edges. We are also given integer k > 1 and approximation
parameter ¢ € (0, 1) as in Theorem 4.

Output: A (1 — ¢)-approximate maximum matching of G.

(i) For i = 1to t := logk iterations in parallel:

(a) Let opt; := n/2"*1 and pick a hash function h; : V —
[32 - opt;/e].

(b) Consider the multi-graph G; obtained from G and h;
using Proposition 6.8; each edge of G arriving in the
stream can be mapped to an edge of G; using h;.

(c) Run Algorithm 3 on G; with parameters k and o
¢%/64 and m = () to obtain an a-matching cover Hj.
We use the matching cover construction of Proposi-
tion 6.7 as the subroutine Matching-Cover (as specified
in Claim 6.9 below).

(ii) Store the first n?/k edges of the stream using succinct
dynamic dictionary of Proposition 3.8 as the subgraph Hy.

(iii) Return a maximum matching in Hy U Hy U . ..U Hy (spec-
ified in Claim 6.9 below).

142

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li
We bound the space and approximation of Algorithm 4 in the fol-

lowing two claims, respectively.

Claim 6.9. Algorithm 4 (deterministically) requires space of

n2
-1
)-log (RS(n, £2/1024k)

aﬁl 2k +RS(e log? k-log ©)
k%8 " Toz2ak o8 R0)
Claim 6.10. Algorithm 4 outputs a (1 — €)-approximate matching

with high probability.

Proor. Suppose first that 4(G) < n/2k. By Fact 3.1, G in this
case has at most 2n - 4(G) < n?/k edges. Thus, in step (ii) of the
algorithm, we are simply storing all edges and thus the algorithm
returns an exact answer.

Now suppose p(G) > n/2k. This means that there is an index

i € [t] such that 2,% < u(G) < zﬂl For this choice of i, we have

opt; < p(G) < 2-opt; (and p(G) > n?/2k > n/2). By Proposition 6.8
for 0 = ¢/2 and opt = 2 - opt; > p(G), and h; : V — [320pt;/¢], we
have, Pry,, (u(G;) < (1-¢/2) - p(G)) < exp (—@) < 1/poly(n),
where we used that fact 32opt; /e = 8 - opt/6. We condition on the
complement of this event which happens with high probability.
Based on this, we further have that n; = |V(G;)| = % -opt; <
% - @(G). Since H; is an a-matching cover of G;, by letting X and Y
in Definition 4.1 to be the endpoints of the maximum matching of G;,
we have, u(H;) > p(Gi)—a-n; > (1-¢/2)-p(G)—(2/64)- 2 - j(G) =
(1—-¢) - u(G). Thus, returning the maximum matching of H; as part
of Hy U ... U H; achieves a (1 — ¢)-approximation. O

Theorem 4 for randomized case now follows from Claims 6.9
and 6.10. For the deterministic part with additive approximation
guarantee, we simply forgo guessing p(G) as well as using vertex-
sparsification of Proposition 6.8 at all; instead, we just run Algo-
rithm 3 over the entire input and use Proposition 6.7, the same way
as above exactly, as the subroutine Matching-Cover for computing
an a-matching cover. Since we now only need an additive ¢ - n
guarantee, we can take a = ¢ directly which implies the improved
bounds on the space as well.

REFERENCES

[1] Kook Jin Ahn and Sudipto Guha. 2011. Linear Programming in the Semi-streaming
Model with Application to the Maximum Matching Problem. In Automata, Lan-
guages and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 6756), Luca Aceto, Monika Henzinger, and Jiri Sgall (Eds.). Springer, 526-538.

Kook Jin Ahn and Sudipto Guha. 2018. Access to Data and Number of Iterations:
Dual Primal Algorithms for Maximum Matching under Resource Constraints.
ACM Trans. Parallel Comput. 4, 4 (2018), 17:1-17:40.

Josh Alman and Virginia Vassilevska Williams. 2021. A Refined Laser Method and
Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, Déniel
Marx (Ed.). SIAM, 522-539.

Noga Alon. 2002. Testing subgraphs in large graphs. Random Struct. Algorithms
21, 3-4 (2002), 359-370.

Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rédl, and Raphael Yuster.
1992. The Algorithmic Aspects of the Regularity Lemma (Extended Abstract). In
33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsyl-
vania, USA, 24-27 October 1992. IEEE Computer Society, 473-481.

Noga Alon, Ankur Moitra, and Benny Sudakov. 2012. Nearly complete graphs
decomposable into large induced matchings and their applications. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, Howard J. Karloff and Toniann Pitassi (Eds.). ACM,
1079-1090.

—_
o,

On Regularity Lemma and Barriers in Streaming and Dynamic Matching

7]

(8]

(9]

[10]

(1]

[12]

[13

[14

[15

[16]

[17]

(18]

[19

[20

[21

[22

[23

[24

[26]

Noga Alon and Asaf Shapira. 2006. A Characterization of Easily Testable Induced
Subgraphs. Combinatorics, Probability & Computing 15, 6 (2006), 791-805.
Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. 2018. Dy-
namic Matching: Reducing Integral Algorithms to Approximately-Maximal Frac-
tional Algorithms. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. 7:1-7:16.
Sepehr Assadi. 2022. A Two-Pass (Conditional) Lower Bound for Semi-Streaming
Maximum Matching. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022. SIAM, 708-742.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,
and Cliff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019. 1616-1635.

Sepehr Assadi and Soheil Behnezhad. 2021. Beating Two-Thirds For Random-
Order Streaming Matching. In 48th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
19:1-19:13.

Sepehr Assadi and Aaron Bernstein. 2019. Towards a Unified Theory of Sparsi-
fication for Matching Problems. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA. 11:1-11:20.

Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022.
Semi-Streaming Bipartite Matching in Fewer Passes and Optimal Space. In Pro-
ceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, Joseph (Seffi) Naor
and Niv Buchbinder (Eds.). SIAM, 627-669.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. The Stochastic Matching
Problem: Beating Half with a Non-Adaptive Algorithm. In Proceedings of the 2017
ACM Conference on Economics and Computation, EC ’17, Cambridge, MA, USA,
FJune 26-30, 2017. ACM, 99-116.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2019. The Stochastic Matching
Problem with (Very) Few Queries. ACM Trans. Economics and Comput. 7, 3 (2019),
16:1-16:19.

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-
mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-
tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 1345-
1364.

Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. 2021. An Auction Algorithm for
Bipartite Matching in Streaming and Massively Paralle]l Computation Models.
In 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, Hung Viet Le and Valerie King (Eds.). SIAM, 165-171.
Sepehr Assadi and Ran Raz. 2020. Near-Quadratic Lower Bounds for Two-Pass
Graph Streaming Algorithms. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy
Irani (Ed.). IEEE, 342-353.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2011. Fully Dynamic Max-
imal Matching in O (log n) Update Time. In IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011. IEEE Computer Society, 383-392.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2018. Fully Dynamic Maximal
Matching in O(log n) Update Time (Corrected Version). SIAM J. Comput. 47, 3
(2018), 617-650.

Soheil Behnezhad. 2022. To appear in SODA 2023. Dynamic Algorithms for
Maximum Matching Size. CoRR abs/2207.07607 (2022. To appear in SODA 2023).
Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, CIiff Stein,
and Madhu Sudan. 2019. Fully Dynamic Maximal Independent Set with Poly-
logarithmic Update Time. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019.
IEEE Computer Society, 382-405.

Soheil Behnezhad and Sanjeev Khanna. 2022. New Trade-Offs for Fully Dynamic
Matching via Hierarchical EDCS. In Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022. SIAM, 3529-3566.

Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. 2020. Fully Dynamic
Matching: Beating 2-Approximation in A® Update Time. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020. SIAM, 2492-2508.

Aaron Bernstein. 2020. Improved Bounds for Matching in Random-Order Streams.
In 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbriicken, Germany (Virtual Conference). 12:1-
12:13.

Aaron Bernstein, Aditi Dudeja, and Zachary Langley. 2021. A Framework for
Dynamic Matching in Weighted Graphs. In Proccedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, to appear.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A Deamor-
tization Approach for Dynamic Spanner and Dynamic Maximal Matching. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019. 1899-1918.

Aaron Bernstein and Cliff Stein. 2015. Fully Dynamic Matching in Bipartite
Graphs. In Automata, Languages, and Programming - 42nd International Collo-
quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 9134), Magniis M. Halld6rsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann (Eds.). Springer, 167-179.

Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with
Small Approximation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016. SIAM, 692-711.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-
ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM 7.
Comput. 47, 3 (2018), 859-887.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
Deterministic Approximation Algorithms for Fully Dynamic Matching. In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 398-411.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully
Dynamic Approximate Maximum Matching and Minimum Vertex Cover in
O(log® n) Worst Case Update Time. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19. SIAM, 470-489.

Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic
Fractional Matchings. In 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Con-
ference). 27:1-27:14.

Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2022.
To appear in SODA 2023. Dynamic Matching with Better-than-2 Approximation
in Polylogarithmic Update Time. CoRR abs/2207.07438 (2022. To appear in SODA
2023).

Yitzhak Birk, Nathan Linial, and Roy Meshulam. 1993. On the uniform-traffic
capacity of single-hop interconnections employing shared directional multichan-
nels. IEEE Transactions on Information Theory 39, 1 (1993), 186-191.

Andrej Brodnik and J. Ian Munro. 1999. Membership in Constant Time and
Almost-Minimum Space. SIAM J. Comput. 28, 5 (1999), 1627-1640.

Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Match-
ing: Breaking the Polynomial Worst-Case Time Barrier. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic. 33:1-33:14.

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song,
and Huacheng Yu. 2021. Almost optimal super-constant-pass streaming lower
bounds for reachability. In STOC "21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021. ACM, 570-583.
Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Haji-
aghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. 2016.
Kernelization via Sampling with Applications to Finding Matchings and Related
Problems in Dynamic Graph Streams. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, January 10-12,
2016. 1326-1344.

David Conlon and Jacob Fox. 2013. Graph removal lemmas. Surveys in combina-
torics 409 (2013), 1-49.

Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in
Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 45:1-45:14.
Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.
Rossi. 2020. Approximate Maximum Matching in Random Streams. In Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020. 1773-1785.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2005. On graph problems in a semi-streaming model. Theor. Comput. Sci.
348, 2-3 (2005), 207-216.

Moran Feldman and Ariel Szarf. 2021. Maximum Matching sans Maximal Match-
ing: A New Approach for Finding Maximum Matchings in the Data Stream Model.
CoRR abs/2109.05946. To appear in APPROX 2022. (2021).

Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. 2002. Monotonicity testing over general poset domains.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada. 474-483.

Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. 2022. Deterministic (1+¢)-
approximate maximum matching with poly(1/¢) passes in the semi-streaming
model and beyond. In STOC "22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam Gupta
(Eds.). ACM, 248-260.

[47] Jacob Fox. 2011. A new proof of the graph removal lemma. Annals of Mathematics

174, 1 (2011), 561-579.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[48] Jacob Fox, Hao Huang, and Benny Sudakov. 2017. On graphs decomposable into
induced matchings of linear sizes. Bulletin of the London Mathematical Society
49,1 (2017), 45-57.

[49] Jacob Fox, Hao Huang, and Benny Sudakov. 2017. On graphs decomposable into
induced matchings of linear sizes. Bulletin of the London Mathematical Society
49, 1(2017), 45-57.

[50] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication
and streaming complexity of maximum bipartite matching. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012. SIAM, 468-485.

[51] WT Gowers. 2001. Some unsolved problems in additive/combinatorial number

theory. preprint 4 (2001).

Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.

2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and

with Worst-Case Time Bounds. In 5th Symposium on Simplicity in Algorithms,

SOSA@SODA 2022, Virtual Conference, January 10-11, 2022. SIAM, 12-23.

[53] Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1 + &)-Approximate
Matchings. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer Society, 548—
557.

[54] Philip Hall. 1987. On representatives of subsets. Classic Papers in Combinatorics
(1987), 58-62.

[55] Johan Hastad and Avi Wigderson. 2003. Simple analysis of graph tests for linearity
and PCP. Random Struct. Algorithms 22, 2 (2003), 139-160.

[56] John E. Hopcroft and Richard M. Karp. 1973. An n%/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225-231.

[57] Zoran Ivkovic and Errol L. Lloyd. 1993. Fully Dynamic Maintenance of Vertex
Cover. In Graph-Theoretic Concepts in Computer Science, 19th International Work-
shop, WG °93, Utrecht, The Netherlands, June 16-18, 1993, Proceedings (Lecture
Notes in Computer Science, Vol. 790). Springer, 99-111.

[58] Sagar Kale and Sumedh Tirodkar. 2017. Maximum Matching in Two, Three,
and a Few More Passes Over Graph Streams. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2017, August 16-18, 2017, Berkeley, CA, USA (LIPIcs, Vol. 81). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 15:1-15:21.

[59] Michael Kapralov. 2013. Better bounds for matchings in the streaming model.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013. 1679~
1697.

[60] Michael Kapralov. 2021. Space Lower Bounds for Approximating Maximum

Matching in the Edge Arrival Model. In Proceedings of the 2021 ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,

2021. SIAM, 1874-1893.

Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. 2021.

Towards tight bounds for spectral sparsification of hypergraphs. In STOC "21:

53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,

Italy, June 21-25, 2021, Samir Khuller and Virginia Vassilevska Williams (Eds.).

ACM, 598-611.

Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. 2016. Optimal Quantile Approx-

imation in Streams. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,

USA, Irit Dinur (Ed.). IEEE Computer Society, 71-78.

Peter Kiss. 2022. Deterministic Dynamic Matching in Worst-Case Update Time. In

13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January

31 - February 3, 2022, Berkeley, CA, USA (LIPIcs, Vol. 215). Schloss Dagstuhl -

Leibniz-Zentrum fiir Informatik, 94:1-94:21.

Dénes Konig. 1916. Uber graphen und ihre anwendung auf determinantentheorie

und mengenlehre. Math. Ann. 77, 4 (1916), 453-465.

Christian Konrad. 2015. Maximum Matching in Turnstile Streams. In Algorithms

- ESA 2015 - 23rd Annual European Symposium, September 14-16, 2015, Proceedings.

840-852.

Christian Konrad. 2018. A Simple Augmentation Method for Matchings with

Applications to Streaming Algorithms. In 43rd International Symposium on Mathe-

matical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,

UK. 74:1-74:16.

Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum Match-

ing in Semi-streaming with Few Passes. In Approximation, Randomization, and

o
8

[61

[62

[63

[64

(65

[66

[67

144

(68

[69

[70

[74

[75

[76]

[77

[78

[79

(80]

oo
ot

(82

[83

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

Combinatorial Optimization. Algorithms and Techniques - 15th International Work-
shop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge,
MA, USA, August 15-17, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7408). Springer, 231-242.

Christian Konrad and Kheeran K. Naidu. 2021. On Two-Pass Streaming Algo-
rithms for Maximum Bipartite Matching. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual
Conference) (LIPIcs, Vol. 207). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
19:1-19:18.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1999. Random
Sampling Techniques for Space Efficient Online Computation of Order Statistics
of Large Datasets. In SIGMOD 1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania,
USA, Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (Eds.). ACM
Press, 251-262.

Andrew McGregor. 2005. Finding Graph Matchings in Data Streams. In Ap-
proximation, Randomization and Combinatorial Optimization, Algorithms and
Techniques, 8th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, APPROX 2005 and 9th International Workshop on
Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24,
2005, Proceedings (Lecture Notes in Computer Science, Vol. 3624), Chandra Chekuri,
Klaus Jansen, José D. P. Rolim, and Luca Trevisan (Eds.). Springer, 170-181.
Andrew McGregor. 2014. Graph stream algorithms: a survey. SIGMOD Rec. 43, 1
(2014), 9-20.

Ofer Neiman and Shay Solomon. 2013. Simple deterministic algorithms for fully
dynamic maximal matching. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 745-754.

Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and
a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. ACM,
457-464.

Rasmus Pagh. 2001. Low Redundancy in Static Dictionaries with Constant Query
Time. SIAM J. Comput. 31, 2 (2001), 353-363.

Rajeev Raman and S. Srinivasa Rao. 2003. Succinct Dynamic Dictionaries and
Trees. In Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings (Lecture
Notes in Computer Science, Vol. 2719). Springer, 357-368.

Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folklore
Algorithm for Dynamic Matching. In 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA
(LIPIcs, Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 111:1—
111:23.

Imre Z Ruzsa and Endre Szemerédi. 1978. Triple systems with no six points
carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai
18 (1978), 939-945.

Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update
Time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE
Computer Society, 325-334.

Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update
Time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE
Computer Society, 325-334.

Endre Szemerédi. 1975. Regular partitions of graphs. Technical Report. Stanford
Univ Calif Dept of Computer Science.

Terence Tao and Van H Vu. 2006. Additive combinatorics. Vol. 105. Cambridge
University Press.

David Wajc. 2020. Matching Theory Under Uncertainty. Ph.D. Dissertation.
Carnegie Mellon University.

David Wajc. 2020. Rounding Dynamic Matchings Against an Adaptive Adver-
sary. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM, 194-207.

Received 2022-11-07; accepted 2023-02-06

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Matching Covers via Regularity Lemma
	2.2 Applications of Matching Cover

	3 Preliminaries
	3.1 Szemerédi's Regularity Lemma
	3.2 Fox's Triangle Removal Lemma
	3.3 Ruzsa-Szemerédi Graphs
	3.4 Succinct Dynamic Dictionaries

	4 A Matching Cover via Regularity Lemma
	4.1 First Step: A Hitting Set Argument
	4.2 Second Step: From Hitting Set to Matching Cover

	5 A Fully Dynamic Algorithm via Matching Covers
	6 Single-Pass Streaming Algorithms
	6.1 A Streaming Algorithm for Matching Covers
	6.2 A Streaming Matching Algorithm via Regularity Lemma
	6.3 A Streaming Matching Algorithm via RS Graph Upper Bounds

	References

