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We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an ar-
ray of neutral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a
fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement
outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array.
This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an opti-
cally excited state under a magnetic field of B = 58 G, resulting in a bright/dark contrast of ≈ 105

during fluorescence readout. The performance improves further as ∼ 1/B2. The state-averaged read-
out survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via
post-selection by measuring the atom number at the end of the circuit, or during the circuit by
performing a measurement of both qubit states. We combine projective measurements with high-
fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic
scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum
Zeno mechanism in which measurements “freeze” coherent evolution. Finally, we employ real-time
feedforward to repetitively deterministically prepare the qubit in the +z or −z direction after ini-
tializing it in an orthogonal basis and performing a projective measurement in the z-basis. These
capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such
as in measurement-based quantum computation, fast many-body state preparation, holographic
dynamics simulations, and quantum error correction.

I. INTRODUCTION

Projective measurements are at the heart of quantum
theory and are central to the canonical picture in which
a quantum superposition collapses to the eigenstate cor-
responding to the measured eigenvalue. Such measure-
ments are an indispensable tool in emerging quantum
technologies for more than simply terminal readout at
the end of the circuit: The associated projection onto the
qubit basis plays a crucial role in quantum state engi-
neering protocols such as measurement-based quantum
computation [1–4], teleportation [5, 6] and many-body
teleportation [7], scalable preparation of useful many-
body entangled states [8–12], holographic dynamics sim-
ulations [13], and even fundamental research into entan-
glement phase transitions [14–18]. However, the proba-
bilistic nature of the projection process creates a “post-
selection” problem with exponentially many trajecto-
ries [19]. This limitation can be overcome by combin-
ing projective measurements with adaptive control that
performs an operation on the qubit conditional on the
measurement outcome such that the resulting state is
prepared deterministically.
Many leading quantum hardware platforms are based

on isolated atoms or atom-like systems in a solid state
host. In such systems, the textbook picture of projective
measurements – in which, after the measurement, the
qubit remains in the state corresponding to the measure-
ment outcome – is often hampered by the complex, multi-
level structure of the atomic system. Such measurements
are typically performed via optical fluorescence readout
in which one qubit state is “bright” while the other is
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“dark”. Imperfect cyclicity of the bright state limits the
brightness or contrast of the qubit, which can be ad-
dressed with either single photon detectors [20–22] or
by coupling the qubit to an optical cavity [23–28]. How-
ever, neither approach is readily compatible with scalable
parallel qubit readout. Instead, the qubit basis is often
mapped onto other degrees of freedom such as electric
charge [29–31], atom position [32–35], other atomic states
via “shelving” techniques [36–42], or even atom number
(0 or 1) [43–48]. To make them compatible with a canon-
ical projective measurement, these techniques at best re-
quire a qubit reset operation that maps the other degree
of freedom back to the qubit basis, often involving opti-
cal pumping or even real-time adaptive control. At worst,
mapping back may not be possible because the atom has
been lost, as in the case of charge- and atom number-
based readout. Notably, optical qubits have shelving built
in and thus are readily compatible with projective mea-
surements [36, 37, 49–51], but are hampered by require-
ments on optical phase stability and atomic temperature.
Here, we leverage the unique atomic structure of neu-

tral 171Yb atoms to directly perform high-fidelity projec-
tive measurements of a qubit encoded in the nuclear spin-
1/2 degree of freedom in the electronic ground state. By
performing fluorescence detection via the relatively nar-
row 3P1 optically excited state in which the mF = −3/2
Zeeman sub-state is sufficiently isolated at a modest mag-
netic field of 58 G, the polarization selection rule for
decay to only the mF = −1/2 ground state provides
a cyclicity of ≈ 105 with respect to the mF = +1/2
ground state, corresponding to an average qubit depo-
larization probability of 0.007(6) for a single tweezer
(0.019(4) for array-averaged) during measurements with
fidelity of 0.995(4). We demonstrate this technique for an
array of 171Yb atoms in optical tweezers of wavelength
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FIG. 1. Overview. (a) The experimental system consists of
a glass vacuum cell with one microscope objective on either
side. Atoms are illuminated with two retro-reflected probe
beams that each have an angle with respect to the xy- and
yz-planes. The tweezer array lies along the y-axis. The DC
magnetic field and the tweezer electric field point in the y-
direction. An AC magnetic field produced by the pair of coils
shown points in the z-direction. Images recorded on the cam-
era can be analyzed in real-time to enable or disable AC pulses
on the coils. (b) The relevant level structure of 171Yb, show-
ing the cycling transition from the 1S0 |mF = −1/2⟩ ≡ |0⟩
qubit state making it bright while |mF = +1/2⟩ ≡ |1⟩ is dark
during readout. (c) Energies of the four mF Zeeman states
in 3P1 F = 3/2 relative to free space versus magnetic field,
taken with a ≈ 1mK tweezer depth for a single array site.
(d) A histogram of 25ms fluorescence readout (15000 shots,
array-averaged) of the nuclear spin qubit, where the dark peak
is either zero atoms or an atom in |1⟩ and bright is an atom
in |0⟩. The system was initialized in |0⟩. The discrimination
fidelity is F = 0.995(4). Inset: Averaged (1000 shots) cam-
era image of fluorescence from a 5-site array with spacing of
7.8µm.

≈ 760 nm – ideal for subsequent manipulation of the op-
tical “clock” transition [52, 53]. Unlike previous efforts to
realize free space non-destructive qubit readout in alkali
atom arrays [38–40], our tweezers are relatively shallow
(U0/kB ≈ 580µK) and remain on the entire time, obvi-
ating the need to chop them out of phase with the probe
light. Moreover, the probe beams are randomly polarized
and have projections onto all three dimensions, allowing
the atoms to stay cold in three dimensions under probe
illumination, with a temperature of T ≈ 5 µK.
We combine high-fidelity projective measurements with

qubit rotations to explore textbook scenarios including
observation of the non-commutivity of measurements in
variable bases, and demonstration of the quantum Zeno
mechanism by studying the interplay of measurement
and qubit rotation during repetitive alternation. Finally,
we implement real-time adaptive control [54] to perform a
qubit rotation conditioned on the measurement outcome

in order to deterministically prepare a target state after
a projective measurement, and we show the ability to
repetitively do so in alternation with a rotation to an or-
thogonal basis. This work constitutes an enabling step for
measurement-based quantum computation [1, 2, 4] and,
when combined with the ability to perform measurements
on only subsets of qubits [28, 54, 55], will be instru-
mental to the realization of deterministic, non-unitary
many-body state preparation protocols [8–12], quantum
error correction [56, 57], and for experimental investiga-
tion of the nascent measurement-induced phase transi-
tions [14–18].

II. OVERVIEW OF THE EXPERIMENTAL
SYSTEM

We begin with a laser cooled ensemble of 171Yb atoms
suspended in the center of a glass cell held under ultra-
high vacuum [see Fig. 1(a)]. The atoms are cooled via
a magneto-optical trap (MOT) on the 1S0 ↔ 3P1 inter-
combination transition. High-resolution microscope ob-
jectives with NA ≈ 0.6 are placed on either side of the
glass cell. A one-dimensional array of five optical tweezers
with wavelength λT ≈ 760 nm and 1/e2 waist radius of
w0 ≈ 670 nm is generated with an acousto-optic deflec-
tor (AOD) [58]. The spacing between adjacent tweezers
is d = 7.8µm, corresponding to a frequency difference
between adjacent radio frequency tones sent to the AOD
of f = 1.75 MHz. The inset to Fig. 1(d) shows 500-shot
averaged images of the fluorescence from our 5-site array.
We use a power of 7mW per tweezer, which corresponds
to a depth of U0/h ≈ 12MHz (U0/kB ≈ 580µK) in the
ground state. Appendix A provides further details of our
experimental system.
The tweezers are continuously on during the MOT

phase; atoms remain in the tweezer traps after the MOT
light and magnetic field gradient have been turned off.
Single atoms are obtained in the tweezers by applying
a cooling pulse using the MOT beams under a field of
1.5G in the y-direction, which is also the direction of the
tweezer’s polarization [see Fig. 1(a)]. This pulse has a
total intensity of Icool = 1.3 Isat, where Isat is the satu-
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FIG. 2. Circuit legend. Simplified equivalent circuit el-
ements. The number 0/1 and the open/filled circle distin-
guishes “qubit readout” from “atom readout”, respectively.
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FIG. 3. Characterizing depolarization during readout. (a) Circuit diagram for studying the dependence of depolarization
during qubit readout on magnetic field. A probe block of variable magnetic field is placed between two measurements performed
at 58G. The final “atom readout” pulse is used to post-select on events in which the atom survived the entire sequence. (b) The
measured array-average (diamonds) and single-site best (squares), and predicted (line) state populations under real imaging
conditions versus magnetic field. (c) Circuit diagram for directly studying the depolarization probability during qubit readout
at 58G. (d) The array-averaged histograms from each image for 2500 shots (2500 × 5 total realizations, post-selected on the
final atom readout pulses), with the results shown together on a 2D scatter plot. These results show that the D→B and B→D
conditional depolarization probabilities during a 25ms probe pulse are 0.025(2) (0.014(4)) and 0.024(2) (0.012(4)) averaged
across the array (best site), respectively, before correction for discrimination infidelity.

ration intensity of the intercombination transition, with
a detuning of δ/2π ≈ −150 kHz (≈ −0.8Γ) from the
F = 3/2, mF = −1/2 state. This cooling pulse drives
light-assisted collisions that transform the initially Pois-
sonian atom number distribution into either just 0 or 1
atom remaining [59]. After the cooling pulse, we obtain a
tweezer loading fraction of f ≈ 0.75 – which is correlated
with the density of the reservoir from which we load, sug-
gesting that higher loading fractions are possible [47] –
and an atomic temperature of T ≈ 5µK measured via
release and recapture from the tweezers [60]. See Appen-
dices A and B for further details.
Atom readout is performed using the same transition

as that for the MOT (1S0 ↔ 3P1, F = 3/2) [48, 61],
where the transition linewidth of Γ/2π = 182 kHz is well
suited for our photon scattering rate of Γscatt/2π ≈ 48
kHz during fluorescence detection. Readout is performed
with two counter-propagating beams that each have an
angle of ≈ 15 degrees with respect to xy-plane and an
angle of ≈ ±30 degrees with respect to the yz-plane [see
Fig. 1(a)]. This configuration is used to minimize the
effect of surface scatter from the beams, which do not
pass through the faces of the cell used by the microscope
objectives. The polarization of the beams is chosen to
have large projections onto both π and σ±. Readout is
performed with an electron-multiplying CCD (EMCCD),
onto which atomic fluorescence is imaged via the micro-
scope objective opposite the one used to generate the

tweezers. Our imaging system uses a magnification of
≈ 9, and our estimated atom-to-camera collection effi-
ciency is ≈ 0.037(2). Typical readout pulses are 25ms
long with total probe intensity of Iprobe ≈ 3.0Isat and
detuning δ/2π ≈ −100 kHz with respect to the target
mF state within the F = 3/2 manifold.

III. NONDESTRUCTIVE QUBIT READOUT

A crucial feature of our nondestructive qubit readout
technique is the electric dipole polarization selection rule
associated with our choice of excited state [see Fig. 1(b)].
The mF states within 3P1 are well resolved even at low
magnetic fields due to the relatively narrow linewidth
(Γ/2π ≈ 182 kHz) and the large g-factor (≈ 1.4 MHz/G),
as shown in Fig. 1(c). Based on the zero-field detunings of
|mF | = 1/2 and |mF | = 3/2 and the known ground-state
light shift, we estimate the differential polarizabilities
α = (Ue−U0)/U0 at this tweezer wavelength (λT ≈ 760)
to be α|1/2| ≈ −0.030(3) and α|3/2| ≈ 0.25(3) (see Ap-
pendix F), which are in good agreement with recent ob-
servations [47, 48]. Although the |mF | = 1/2 states are
appealing due to the nearly-zero differential light shift
and the assurance that both nuclear spin ground states
will remain bright [48], the positive differential light shift
of the |mF | = 3/2 state corresponds to the case where
the excited state is deeper trapped than the ground state
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Table I. Summary of discrimination fidelity, atom survival, and depolarization probabilities. The discrimination
fidelity F , atom survival probabilities ηB

surv, η
D
surv, η̄surv, and depolarization probabilities PD→B

depol , PB→D
depol , P̄depol are listed for

the mF = −3/2 imaging condition both on a single array site and averaged over a 5-site array. Symbols with superscripts are
state-dependent, with ‘B’ referring to the |0⟩ bright state and ‘D’ referring to the |1⟩ dark state, while those with bars are
state-averaged. Numbers are listed with and without correction for relevant error channels (e.g. discrimination infidelity; see
Appendix H 2).

Array-averaged

F ηB
surv ηD

surv η̄surv PD→B
depol PB→D

depol P̄depol

Uncorrected 0.995(4) 0.94(2) 0.9971(1) 0.97(1) 0.025(2) 0.024(2) 0.024(2)

Corrected — 0.97(2) — 0.98(1) 0.019(4) 0.022(2) 0.019(4)

Best site

F ηB
surv ηD

surv η̄surv PD→B
depol PB→D

depol P̄depol

Uncorrected 0.994(5) 0.93(2) 0.9971(1) 0.96(1) 0.014(4) 0.012(4) 0.013(3)

Corrected — 0.96(2) — 0.98(1) 0.007(7) 0.010(4) 0.007(6)

– a scenario in which attractive Sisyphus cooling has been
observed for strontium (Sr) [42, 49, 62] and predicted for
Sr and Yb [63, 64].
In this work, we focus on the mF = −3/2 excited

state which, under ideal conditions, can decay only to
the mF = −1/2 ground state. This allows us to perform
“qubit readout” since the |mF = −1/2⟩ ≡ |0⟩ state will
remain bright while the |mF = 1/2⟩ ≡ |1⟩ state is dark
[see Fig. 1(b)]. It is also crucial to be able to perform
“atom readout” – in which both qubit states are bright
– in order to differentiate a perceived outcome of |1⟩ in a
qubit measurement from cases where the atom may have
been lost. We employ two techniques for performing atom
readout (see Fig. 2). One is to use the mF = −1/2 excited
state which is connected to both ground states; the other
is to re-initialize the qubit in |0⟩ via optical pumping and
then perform qubit readout. Our optical pumping effi-
ciency is 0.98(1) (see Appendix A). We focus primarily on
the latter technique, mostly to avoid the need to change
the probe frequency by many tens of MHz when going
between the mF = −3/2 and mF = −1/2 excited states.
Nevertheless, we find that imaging with mF = −3/2 and
−1/2 offer similar performance: the collection efficiency
is similar, and the steady-state temperature under prob-
ing is T ≈ 5 µK for both. See Appendix B for further
details on their comparison.
We note that both cases are limited by tweezer-induced

off-resonant scatter during probing and cooling from the
steady state population in 6s6p 3P1 to the higher 6s7s
3S1 state, which can then subsequently decay to the en-
tire 6s6p 3PJ manifold. In principle, 3P2 and 3P0 could
be repumped, but we note that 3P2 – which is the domi-
nant decay path – is unfortunately strongly anti-trapped
in tweezers with wavelength λT ≈ 760 nm due to its prox-
imity to the 3P2 ↔ 3S1 transition at 770.2 nm. Without
any repumping, we observe a lifetime under probing of
τ = 820(20)ms which is consistent with our model (see
Apppendix E). We choose a probe time of 25ms as an

optimal compromise that offers a bright/dark discrimi-
nation fidelity of F = 0.995(4) corresponding to the his-
togram in Fig. 1(d), and a probe survival of the |0⟩ state
of 0.97(2) with correction for discrimination infidelity
and optical pumping inefficiency (see Appendix H 2), in
good agreement with our measured lifetime. Significant
gains are possible by operating in a shallower tweezer
and improving the collection and detection efficiency.
The lifetime in the tweezer with no cooling light on is
8.8(3) s, suggesting that the survival of the |1⟩ dark state
is 0.9971(1). Hence, the state-averaged survival during
qubit readout is taken to be 0.98(1).
To ensure that the |0⟩ qubit state remains bright while

the |1⟩ qubit state remains dark during probing, we re-
quire excellent isolation of the |0⟩ ↔ |3/2,−3/2⟩ transi-
tion. There are two effects that limit this isolation: Ra-
man transitions via other excited states, and mixing be-
tween the excited states. We analyze these effects in Ap-
pendices D and G, respectively, showing that both are
suppressed quadratically in magnetic field. The Raman
transitions have a spontaneous contribution and a stim-
ulated contribution. The latter is due to the presence of
all polarization components [see Fig. 1(b)] but the effect
is suppressed by the ≈ 45 kHz nuclear spin splitting at 58
G. Although choosing our probe polarizations to contain
only σ± components would have broken the stimulated
Raman condition and removed the −1/2 → −1/2 scat-
tering channel, the results would not have significantly
changed due to the inevitable +1/2 → −1/2 channel [see
Fig. 1(b)], and doing so would have cost us the ability
to use “atom readout” via the mF = −1/2 excited state.
The mixing between the excited Zeeman states is zero
with a perfectly linearly polarized tweezer whose polar-
ization is perfectly aligned with the magnetic field. Fi-
nite mixing emerges due to deviations from this perfect
case, but they are suppressed as ∼ 1/B2 as shown in
Appendix G.
We study the qubit depolarization of our −3/2 imag-
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ing protocol for several magnetic fields. We place a 25-
ms qubit readout block performed at a variable mag-
netic field between two qubit readout blocks performed
at B = 58G [see Fig. 3(a)]. We place an atom read-
out block at the end of the sequence to post-select on
events where the atom survives the entire sequence; we
use this technique throughout the remainder of this pa-
per. As shown in Fig. 3(b), we see good agreement with
the expected ∼ 1/B2 scaling. The case of 58 G is stud-
ied in further detail in Fig. 3(c) & (d). By plotting all
camera counts in each image for all 15000 shots with re-
spect to the dark/bright (D/B) threshold [see Fig. 3(d)],
we can directly measurement the probability of all four
events: B→B, D→D, B→D, and D→B. These results
– with further analysis described in Appendix H – indi-
cate array-averaged and state-averaged conditional depo-
larization probabilities of P̄depol = 0.019(4) with correc-
tion for discrimination infidelity; P̄depol = 0.024(2) with-
out. Our ability to fully control the polarization across
the array is currently limited by a slight defocus in the
tweezer array optics. This causes the tweezers to not be
exactly parallel, which matters because the tweezer po-
larization is along the array axis. Therefore, we see sub-
stantially better depolarization values in the center of
our array where the polarization is better aligned to BDC

(see Appendix G): the state-averaged corrected and raw
depolarizations for our best site are P̄depol = 0.007(6)
and P̄depol = 0.013(3), respectively. This issue can be ad-
dressed with straightforward adjustments to our optics
or by rotating our array by 90 degrees, which we leave
for future work.
The measured results are listed in Table I, and include

both raw and corrected values (see Appendix H) for ar-
ray averages and the best site. As noted above, there
is a 0.03(2) (0.003) probability of atom loss in |0⟩ (|1⟩)
during readout, which would manifest mostly as an in-
flated B→D probability (a raw scatter plot is shown in
Appendix H). However, this issue can be addressed via
post-selection as we have done, or in real time via a sec-
ond measurement after a π-pulse on the qubit. Robust
error correction protocols have been developed to address
such qubit erasure errors [65, 66] caused by atom loss.

IV. INTERLEAVED READOUT AND QUBIT
ROTATION

We now add qubit rotations to demonstrate the utility
of high-fidelity repetitive qubit readout. Rotations are
driven by an AC magnetic field perpendicular to the DC
field. We note that the following data was obtained with a
single atom before we upgraded to the array, but compa-
rable array-averaged Rabi and Ramsey results have been
realized. At BDC = 58 G, the nuclear spin qubit split-
ting is f/2π ≈ 43.5 kHz. We apply up to BAC = 0.29
G directly to our shim coil pair in the x-direction [see
Fig. 1(a)], for which the Rabi frequency is ΩRF/2π ≈ 100
Hz (see Appendix C 1 for further details). Similar re-
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FIG. 4. Interleaved readout and qubit rotation. (a) Cir-
cuit for qubit rotations between two qubit readout pulses. The
atom readout pulse is again included at the end to post-select
on events in which the atom survives the entire sequence. We
start with a state aligned along |+⟩ = 1/

√
2(|0⟩ + |1⟩). (b)

Rabi oscillations versus time, showing three groups that span
the first second. The Rabi coherence time is estimated to be
≳ 5 sec. Psame refers to cases where the outcome of the two
qubit measurements are the same. This outcome is equally
split between |0⟩ and |1⟩ due to the initial state |+⟩. (c) The
2D scatter plots of photon counts associated with the early-
time data points with rotations of 0, ≈ π/2, and π as shown in
(b). These results indicate that the π-pulse fidelity is compa-
rable to the probably of remaining polarized during readout.

sults were recently obtained with a designated antenna
loop [48]. The data shown below uses a Rabi frequency
of ΩRF/2π ≈ 28 Hz to mitigate transient effects associ-
ated with the AC field. We note that stimulated Raman
rotations via optical transitions offer Rabi frequencies on
the ∼MHz scale [42, 47].
Rabi and Ramsey coherence. We add qubit ro-

tations between two qubit readout pulses as shown in
Fig. 4(a). We start with a state polarized along |+⟩ =

(|0⟩ + |1⟩)/
√
2 using a π/2-pulse, such that the proba-

bilities of measuring |0⟩ and |1⟩ in the first image are
equal. We plot the probability that both image outcomes
are the same, Psame, as shown in Fig. 4(b). We find a
Rabi coherence time of τRabi ≳ 5 seconds which is lim-
ited by slow (thermal) residual magnetic field noise (see
Appendix C 1). With the pulse sandwiched between two
qubit readout blocks, we again show a scatter plot of
counts in both images for all 200 shots [see Fig. 4(c)].
We show plots for rotations of θ = 0, ≈ π/2, and π. In
the case of the π-pulse, we see that nearly all occurrences
are B→D and D→B, and thereby calculate a π-pulse fi-
delity of 0.98(1) with discrimination infidelity and depo-
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FIG. 5. Repetitive readout in variable bases. (a) The
{+Z,−Z,+X,−X} measurement sequence, showing large bit
string probabilities only for cases where the outcome is oppo-
site between both the first two and last two measurements.
The correlation matrix shows strong off-diagonal negative cor-
relations for these pairs. (b) The {+Z,+X,−Z,−X} mea-
surement sequence, showing equal bit string probabilities for
all outcomes. The correlation matrix shows no significant off-
diagonal elements. The red lines show the ideal probability
distributions, which are either 0 or 1/22 = 0.25 in (a) and
1/24 = 0.0625 in (b). The ideal off-diagonal correlations are
either 0 or −1.

larization correction, 0.969(8) without (see Appendix H).
We also perform a Ramsey sequence to characterize

the T ∗
2 . We use two resonant π/2 pulses separated by a

dark time τ and we vary the phase of the second pulse
to obtain a Ramsey fringe. We plot the fringe contrast
versus τ to extract T ∗

2 . This data was taken with an ar-
ray; see Appendix I. The contrast data is well described
by a Gaussian envelope with 1/e contrast occurring at
T ∗
2 = 0.37(1) s. We believe that this is limited by ambi-

ent magnetic field noise (see Appendix I). We note that
T ∗
2 = 0.7(3) s has been realized with molecular nuclear

spins at 86 G [67] and that ≈ 2 mG stability has been
realized at ≈ 1000 G [68].
Repetitive readout in variable bases. The non-

commutivity of measurements in different bases is a hall-
mark feature of quantum behavior and underlies the text-
book examples of cascaded Stern-Gerlach devices and op-
tical polarizers. To further show the unique capabilities
of our repetitive qubit readout technique, we conduct a
version of such experiments by recognizing that readout
in any fixed basis can be combined with qubit rotations

to perform readout in any other basis: We rotate the de-
sired axis of the Bloch sphere into the measurement di-
rection (we define this without loss of generality to be in
the z-basis with a bright count mapped to +Z) and then
rotate back (see Fig. 2). We compare two measurement
sequences: {+Z,−Z,+X,−X} and {+Z,+X,−Z,−X}.
Figure 5(a) and (b) show these two cases, respectively,
where the qubit has again been initialized in |+⟩. We
show histograms of the outcome bit strings, where the
anti-correlation between the first two and latter two mea-
surements is clearly apparent in the first sequence, while
the non-commutativity between each consecutive mea-
surement in the second sequence leads to the absence of
correlations. We also directly quantify these correlations
through a correlation matrix that shows strong, negative
off-diagonal elements in the former case, but only diago-
nal elements in the latter case as expected.
The quantum Zeno mechanism. We can also study

the interplay between qubit rotations and projective mea-
surements. The quantum Zeno mechanism describes the
scenario where the measurement rate is large compared
to the qubit rotation rate, such that projection back to
the initial, un-rotated state overwhelms the growth of
population in others. This behavior has been observed
in myriad experimental systems [69–72], and we use our
ability to interleave qubit readout and rotation to access
this regime in a unique and discrete manner.
Specifically, after initializing the atom in the |+⟩ state

we perform a first qubit readout before alternating be-
tween qubit rotations R(θ) and readout N = 10 times
for variable rotation angle θ [see Fig. 6(a)]. We plot the
average probability of finding the qubit to be in the same
state as the first readout, Psame, versus the image index
for the N images. When θ = 0, we expect to always ob-
tain Psame = 1. The observed slow decay is due to the
small but finite depolarization probability P̄depol in each
image; Psame(N = 10) ≈ 0.90 is in good agreement with
(1 − P̄depol)

N for P̄depol ≈ 0.01. When θ = π, the mea-
surement outcome should alternate between |0⟩ and |1⟩
with contrast limited only by P̄depol and the π-pulse fi-
delity, consistent with our observations. For intermediate
angles, the probabilistic nature of outcomes in each mea-
surement combined with the averaging over all trajecto-
ries leads to a damping of Psame that asymptotically ap-
proaches Psame = 0.5. Figure 6(b) shows these expected
trends, where values within θ ∈ [0, π/2] decay monoton-
ically to Psame = 0.5 and values within θ ∈ [π/2, π] un-
dergo damped oscillation.
The quantum Zeno mechanism illustrates how projec-

tive measurements can suppress qubit dynamics when
the measurement rate exceeds the coherent qubit rota-
tion rate. Accordingly, for a total rotation angle θtot ap-
plied to the qubit, the Zeno mechanism predicts a strong
dependence of the dynamics on the number N−1 of pro-
jective measurements during the rotation. Specifically,
the rotation angle θtot/(N − 1) between each measure-
ment leaves the qubit in its initial state with probability
Psame = cos2(θtot/(2N − 2)). The probability that the
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FIG. 6. The quantum Zeno mechanism. (a) The Zeno
circuit. After initializing in |+⟩ and performing a qubit mea-
surement, we repetitively interleave a rotation R(θ) and a
readout N − 1 times. (b) The probability that the measure-
ment has the same outcome as the initial measurement, Psame,
versus the measurement index for many different rotation an-
gles θ. We see monotonic decay of Psame to 0.5 for θ ∈ [0, π/2]
and damped oscillations to 0.5 for θ ∈ [π/2, π]. The lines
deviate from the ideal case only by the finite depolarization
probably during readout which is fit to the θ = 0 case as
Pdepol = 0.0127(6). (c) The probability that all outcomes are
the same, Pall-same, versus total rotation angle θtot = θ·(N−1)
for several different numbers of repetitions N . The lines are
Pall-same = (1− Pdepol)

Ncos2N−2(θtot/(2N − 2)).

qubit has remained in the state measured in the first
readout during all N − 1 subsequent measurements is
therefore Pall-same = PN−1

same = cos2N−2(θtot/(2N − 2)).
Figure 6(c) shows this trend, limited primarily by the
(uncorrected) depolarization probability P̄depol ≈ 0.01
for each measurement. The data is in good agreement
with (1 − P̄depol)

N × Pall-same, and captures the essence
of the Zeno mechanism in which Pall-same → 1 as N → ∞
for fixed θtot.

V. REAL-TIME FEEDFORWARD FOR
DETERMINISTIC STATE PREPARATION

The probabilistic nature of projective measurements
causes exponentially many distinct trajectories that pre-
clude deterministic operations. We now add real-time
control [54] to our toolbox to deterministically prepare
the qubit in either |0⟩ or |1⟩. Again, we perform this
study with only a single atom; a possible extension to
arrays is discussed in Section VI. We initialize the qubit
in |+⟩ and then perform a measurement that projects it
to |0⟩ or |1⟩. We then perform six loops, where each is
composed of a π/2 rotation, a measurement, a conditional
rotation (R(0) or R(π)), and a second measurement. The
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FIG. 7. Repetitive real-time feedforward. (a) and
(c) The circuit for performing repetitive deterministic state
preparation for a single qubit. After initializing in |+⟩ and
performing an initial measurement, we repeat a loop that con-
tains a first pulse (π/2), a first measurement, a second pulse
(0 or π), and a second measurement. In (a), we choose the sec-
ond pulse based on the first measurement outcome in order
to yield the outcome of the second measurement to match
the initial measurement outcome. This requires feeding for-
ward the result obtained from an exclusive OR (XOR) gate
between the classical bits in the initial measurement and the
first measurement in the loop. The result is shown in (b),
where the thick solid line shows the result averaged over 400
shots. In (c), we choose to alternate between obtaining the
opposite and the same outcome in the second measurement
as that of the initial measurement, which requires alternating
between exclusive not OR (XNOR) and XOR classical logic
on odd- and even-numbered loops. The result is shown in (d),
where now we see full-contrast oscillations. The arrows in (b)
and (d) illustrate the role of the feedforward, with gray verti-
cal lines dividing loop iterations. Loops using XOR logic have
light gray backgrounds and loops using XNOR logic have dark
gray backgrounds. (e) & (f) show a single trajectory for each
circuit and the arrows indicate when a π-pulse is applied.

goal of the conditional rotation is to rotate the qubit to
the same or opposite state as measured in the initial read-
out. Hence, the rotation is conditional on both the initial
readout and the first readout in the loop. Details on the
real-time implementation of this circuit are described in
Appendix J.
To keep the qubit in the same state as the outcome of

the initial measurement [see Fig. 7(a) and (b)], a classi-
cal exclusive OR (XOR) gate is used to perform a R(π)
rotation if and only if the two classical bits are different.
Otherwise, no rotation is performed: R(0). We observe
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alternation between Psame ≈ 1 and Psame ≈ 0.5, where
“same” refers to the initial readout. The first jump is
identical to the R(π/2) case of the Zeno study above [see
Fig. 6(b)]; however, instead of staying at Psame = 0.5 on
average after each subsequent rotation, our feedforward
technique deterministically puts the qubit back into the
initial state, such that Psame goes back to unity. The jump
then repeats in each loop.
Alternatively, we can switch between obtaining the

initial readout outcome (Psame = 1) and the opposite
outcome (Psame = 0) on each iteration of the loop.
This can be accomplished by using an exclusive NOR
(XNOR) in odd-numbered loops and an XOR in even-
numbered loops [see Fig. 7(c)]. In this case, we observe
full-amplitude zig-zags of Psame as shown in Fig. 7(d). In-
dividual trajectories are shown in Fig. 7(e) and (f), indi-
cating when a π-pulse is required and showing “quantum
jump”-like behavior between sequential measurements.
Finally, since the qubit is deterministically reset, de-

polarization during readout does not accrue upon subse-
quent measurements. Thus, a high contrast is maintained
for an arbitrary number of loops; we choose six loops (13
total measurements) as a compromise against atom loss.

VI. CONCLUDING DISCUSSION

In summary, we have leveraged the unique level struc-
ture of 171Yb to perform repetitive qubit readout, with
qubits encoded in the nuclear spin-1/2 ground state.
With a bright/dark discrimination fidelity of F ≳ 0.99
and a depolarization probability of P̄depol ∼ 0.01 during
a 25ms probe pulse, we show that readout can be re-
peated 10 times while still maintaining control over the
qubit state at the ≈ 0.9 level. These numbers would im-
prove as ∼ 1/B2. By adding high fidelity qubit rotations
with an AC magnetic field, we study quantum circuits
that feature both measurements and rotations. These in-
clude measurements in variable bases as a demonstra-
tion of measurement non-commutivity akin to cascaded
Stern-Gerlach devices and optical polarizers, as well as a
manifestation of the quantum Zeno mechanism in which
dynamics is frozen by measurement. Additionally, we use
real-time feedforward to perform repetitive deterministic
initialization of the qubit in |0⟩ or |1⟩, and we show that
this deterministic operation circumvents the accrual of
depolarization errors during measurement thereby main-
taining excellent contrast after 13 measurements, limited
only by atom loss. The atom loss can be mitigated by
using shallower tweezers and/or shorter readout pulses,
or by working at a tweezer wavelength with larger detun-
ing from the 3PJ↔ 3S1 transitions for which we identify
≈ 778 nm as a good candidate where 3P1 |mF | = 3/2 is
magic with the ground state (see Appendix F).
We refer to our measurement scheme as a nonde-

structive, projective measurement – meaning that the
qubit is fiducially left in the state corresponding to the
measurement outcome without the need for any sub-

sequent operations such as, e.g., optical pumping. We
wish to make a connection to the pervasive term “quan-
tum non-demolition (QND)”, and it is our belief that
QND describes nothing more than a perfect projective
measurement. In this sense, we could call our measure-
ment technique QND; however, we note that the commu-
nity has developed different connotations for this term
in different contexts (see, e.g., Refs. [37, 46, 65, 73–84]),
that sometimes involve the use of an entangled an-
cilla [37, 79, 81, 83, 85]. Therefore, we choose not to in-
voke this term to avoid confusion [86].
Our scheme will find application in myriad protocols

that require measurement as a circuit element beyond
simply final state readout. We refer to such measure-
ments as “mid-circuit measurements”, and our work
demonstrates “global” mid-circuit measurement mean-
ing it is applied to the entire array. Although global
mid-circuit measurements are sufficient for protocols like
measurement-based quantum computation, unique “lo-
cal” (meaning single-site) qubit rotations are required for
most applications. This can be accomplished by using
stimulated Raman pulses [42, 47, 87] instead of an AC
magnetic field. Qubit rotations can then be performed at
∼MHz rates rather than ∼ 100 Hz, and single-site control
can be realized with adaptive optical elements [42, 88].
Notably, many applications of mid-circuit measurements
require them to be local, in which they are performed on
a subset of qubits while the others – the “spectators” –
remain unaffected. Local mid-circuit measurement with-
out crosstalk with the spectator qubits can be performed
using two atomic species [37, 54, 81, 83, 85, 89], sepa-
rate readout zones [28, 90–93], and via “shelving” with
other atomic states [55, 94, 95]. Our technique offers
non-destructive readout for all three approaches, and
is compatible with shelving techniques via the optical
“clock” transition [66, 87, 96, 97]. Indeed, this is our pri-
mary motivation for operating at the clock-magic wave-
length. In this approach, qubits will be encoded in the
metastable 3P0 nuclear spin, and optical pulses with a
phase-stabilized laser [98, 99] will transfer the targeted
qubit(s) to the ground state for measurement. We also
note that our technique is compatible with the use of
local light shifts to perform mid-circuit measurements.
Finally, we note that having a qubit with excellent op-

tical bright/dark discrimination is a key prerequisite for
time bin remote entanglement generation [100, 101]. In
this scheme, the qubit state becomes entangled with the
state of a single photon in the temporal basis (early or
late bin), and photons from the pair of atoms are coinci-
dent on a photonic Bell state analyzer that haralds the
generation of a remote Bell pair between the atoms. Our
work demonstrates that 171Yb is an excellent candidate
for high-fidelity atom-photon entanglement. This could
either be performed on the 1S0 ↔ 3P1 transition at 556
nm used in this work for short distance distributed or
modular computing [102–104], or via the identical config-
uration on the 3P0 ↔ 3D1 transition at 1389 nm in the
telecommunication wavelength band that is well suited
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for long distance networking [105, 106].
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APPENDIX A: Overview of the experimental
apparatus

1. Chamber, MOT, and imaging

The experimental apparatus is inspired by Ref. [107]
and comprises two main sections, wherein hot ytterbium
atom flux obtained from a single AlfaVakuo dispenser is
first cooled in two dimensions via a 2D magneto-optic
trap (MOT) and then transferred ≈ 40 cm via a nearly
resonant beam through a differential pumping tube to
load a full 3D MOT with ∼ 106 atoms over 500ms. Both
MOTs and the push beam are tuned to the 1S0 ↔ 1P1

(λ = 399 nm, Γ = 2π×31MHz) transition and are formed
at the centers of glass cells. Once loaded in the 3D MOT,
the atoms are approximately 1mK.
Next, another 3D MOT tuned to the 1S0 ↔ 3P1

(556 nm, Γ = 2π× 182 kHz) transition is turned on while
the 399 nm MOT is turned off and the magnetic field
gradient switched from ≈ 60G/cm to ≈ 10G/cm accord-
ingly. Initially, this transition is power-broadened signif-
icantly by beam intensities set to ∼ 104 Isat to ensure
sufficient atom transfer (roughly 50%) between the two
MOTs. The atoms are then cooled further to approx-
imately 5µK by ramping the beam intensity down to
0.6 Isat and detuning (relative to free space) from ≈ −20Γ
to ≈ −1.2Γ over 30ms. The MOT field gradient is then
increased to ≈ 14G/cm over 10ms to compress the atoms
into a volume roughly 150µm in diameter. We estimate
that the compressed MOT holds approximately 5 × 105

atoms at this stage.
The atoms are then loaded stochastically into optical

tweezers at spacing 7.8µm, 1/e2 waist 670 nm (radius),
depth 580µK, and wavelength 760 nm. The tweezers are

generated by a single acousto-optic deflector leading into
a NA ≳ 0.6 objective (Special Optics). The tweezer
light is sourced from a M Squared SolsTiS titanium-
sapphire laser pumped by a M Squared Equinox. We
choose the tweezer wavelength to give magic trapping for
the ground and excited state manifolds of the 1S0 ↔ 3P0

optical clock transition and near-magic trapping for the
|mF | = 1/2 states in the 3P1 F = 3/2 manifold. For
an array of 5 tweezers, we require roughly 35mW of
optical power in the plane of the atoms. We estimate
a loading fraction of approximately 0.75 (see Appendix
H). The atoms are then cooled using the same 556 nm
beams used for the 3D MOT, now with intensity 1.3 Isat
and frequency red-detuned from the free-space 1S0 ↔
3P1|F = 3/2, mF = −1/2⟩ transition by approximately
0.8Γ, which causes atoms to escape from the tweezers in
pairs through light-assisted collisions, leaving only 0 or 1
atom in the trap afterward. This process takes ≈ 120ms,
although we expect this could be improved significantly
with further optimization. We measure the temperature
of the atoms in the tweezers using a release-and-recapture
method to be ≈ 5µK, which is close to the Doppler limit
for the transition.
The atoms are imaged using two retro-reflected beams

tuned to the 1S0 ↔ 3P1 transition (see Appendix B) with
projections onto all three trap axes. The two beams are
collimated with a 1/e2 radius of approximately 750µm
and have a ≈ 70◦ angle between them. We estimate each
that each imaging beam has intensity 1.5 Isat. The two
probe beams have polarization overlap, and the polariza-
tion of the retro-reflection beams is not rotated. There-
fore, interference fringes are likely to be present; we do
not wash them out with e.g. dithering mirrors. Imaging
performed using either the mF = −3/2 or mF = −1/2
transition is done so with laser frequency red-detuned
by approximately 0.5Γ. Atomic fluorescence is collected
through a second objective identical to the one used to
generate the tweezers but placed on the opposite side of
the glass cell [see Fig. 1(a)] and focused onto an electron-
multiplying CCD (EMCCD, Andor iXon-888) with EM
gain set to 100.

2. Tweezer array homogenization

Homogenization of the optical tweezer array is key to
the maintenance of the imaging condition used for read-
out. Although the atoms in the tweezers are inherently
identical, it is critical – particularly given the nonzero dif-
ferential polarizabilities identified in Appendix F – that
the trapping potentials be as uniform as possible to pre-
vent undesired light shifts on the 3P1 imaging states.
To this purpose, we adopt an iterative procedure based

on spectroscopy of the 3S0 ↔ 3P1 F = 3/2, mF = −3/2
transition. Since this transition is non-magic in the pres-
ence of the chosen trapping wavelength, the measurement
of the transition’s resonance frequency is linearly related
to the trap depth. Thus, spectroscopy is repeatedly per-
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formed for each site in the array, and the amplitudes of
the five generating RF tones sent to the acousto-optic de-
flector (AOD, AA Opto Electronic DTSX-400-760) from
an arbitrary waveform generator (AWG, Spectrum In-
struments M4i6622) are adjusted to bring the transition
resonances measured across different sites to the same
center frequency. Then, the total RF power sent to the
AOD is adjusted to bring each site to the desired trap
depth. For an array of five tweezers, this process gen-
erally converges to the ∼ 0.1% level in around 10 itera-
tions. Post-imaging atom survival is homogenized by this
procedure to within 3%. Uniformity in the shapes and
depths of the tweezers is monitored by a CCD placed af-
ter a dichroic mirror used to separate atomic fluorescence
from tweezer light after they have both passed through
the imaging objective shown in Fig. 1(a). We have ob-
served similar homogeneity with 10 tweezers.

3. Optical pumping

Optical pumping is performed using a single beam di-
rected onto the atoms along an axis perpendicular to that
of the tweezers in the horizontal plane. The polarization
of the pump beam is set to be linear, with polarization
vector also lying in the horizontal plane, perpendicular to
the quantization axis set by a 58G and the polarization of
the tweezer light. The frequency of the beam is set to be
near-resonant with the 1S0 ↔ 3P1 F = 3/2, mF = −1/2
transition, such that the 1S0 |mF = +1/2⟩ ≡ |1⟩ state
is pumped to 1S0 |mF = −1/2⟩ ≡ |0⟩. The pump beam
has 1/e2 radius ≈ 2mm and intensity ≈ 1.3 Isat. After
a 80µs pulse is applied, we measure the atomic state to
be |0⟩ with probability ηOP = 0.98(1) (single-site best;
ηOP = 0.97(1) array-averaged) [see Appendix H3].

4. Brief overview of experiment control

The many individual components of the apparatus are
controlled by means of a combination of National In-
struments PCIe-7820 and PCIe-6738, which respectively
expose 128 digital input/output and 32 analog output-
only configurable voltage channels, housed in a single
computer. Communication with these devices is accom-
plished by means of low-level field-programmable gate
array (FPGA) programming software provided by En-
tangleware, Inc. Experimental sequences are ultimately
programmed through a high-level, Python-based inter-
face and executed via command line. The atomic signal
returned from the apparatus via collection on the EM-
CCD sensor is sent to a separate computer, which han-
dles both real-time feedforward (see Appendix J) and the
AWG used to control the tweezer array.

APPENDIX B: Comparison of mF = −3/2 and
mF = −1/2 readout

In this section, we compare aspects of the two methods
of performing readout (i.e. using the mF = −3/2 and
mF = −1/2 3P1 F = 3/2 excited state). As stated in
the main text, the principal reason to prefer one to the
other is that the mF = −3/2 method is state-selective
due to dipole selection rules and, hence, can be used to
convert bright/dark classifications into qubit state mea-
surements.
The exact imaging conditions used in the two cases

shown here differ by only the strength of the magnetic
field at which they are performed. We compare the meth-
ods by exposing the atoms to light from the probe beams
at total intensity 3 Isat and detuning −0.5Γ for 20ms,
but mF = −3/2 imaging is performed at 58G magnetic
field while mF = −1/2 imaging is performed at 18G
to minimize effects from the Zeeman splitting between
the nuclear spin ground states. Fig. 8(a) shows that the
mean numbers of photons collected from filled tweezer
sites (see Appendix H) differs only slightly with compa-
rable discrimination fidelities. Fig. 8(b) gives tempera-
ture estimates, obtained via a standard release-recapture
experiment, for both cases as well, showing ≈ 5µK for
mF = −3/2 and ≈ 4µK for mF = −1/2. We do not
explicitly measure the axial temperature and we expect
that it could be improved with an axial cooling beam
sent through the objectives. We leave this investigation
for future studies.
We also note differences in photon collection efficiency

between the two transitions. In the electric dipole ap-
proximation, the direction in which a given photon will
be radiated depends on the associated change in angular
momentum ∆mF undergone by the atom, and is gov-
erned by the following angular probability distributions:

f|∆mF |(θ, φ) =

{
3

16π

(
1 + cos2 θ

)
|∆mF | = 1

3
8π sin2 θ |∆mF | = 0

(B1)

with polar angle θ and azimuthal angle φ.
We then model the emission patterns for the two imag-

ing cases detailed here. For the mF = −3/2 case, we ex-
pect the pattern to follow purely that of f1 (|∆mF | = 1).
For the mF = −1/2 case, we expect it to follow a mix
of both f0 (|∆mF | = 0) and f1 in a 2 : 1 ratio equal to
that of the squared Clebsch-Gordan coefficients for the
possible decay paths from the 3P1 F = 3/2, mF = −1/2
excited state, assuming an approximately even mixture of
polarization modes in the incident light. Thus the pho-
ton emission for both imaging cases is modeled by the
distributions

gmF
(θ, φ) =

{
f1(θ, φ) mF = −3/2
2
3f0(θ, φ) +

1
3f1(θ, φ) mF = −1/2

.

(B2)
From these, we then compare the photon collection ef-
ficiencies between the two cases by roughly modeling
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FIG. 8. Comparison of the mF = −3/2 and mF = −1/2
imaging conditions. (a) Comparison of photon scatter dur-
ing imaging. The upper histogram shows that for imaging
using the mF = −3/2 excited state with mean number of
photons collected µ1 = 37.1(2) at 58G magnetic field when
an atom is present (see Appendix H) while the lower shows
that for imaging using mF = −1/2 with µ1 = 28.1(2) at 18G.
The red vertical lines show the photon collection threshold for
bright/dark discrimination in each case (see Appendix H). (b)
Rough measurement of atom temperature in the tweezer un-
der the mF = −3/2 (dark green circle) and mF = −1/2 (light
green diamond) via release-recapture experiment. Tweezer
sites are imaged and the tweezers are diabatically switched off
for variable time before being turned on and imaged again.
Recapture probability is calculated as that of the second im-
age being bright, post-conditioned on the first being bright as
well. Optical pumping is performed before both images in the
mF = −3/2 case. Probabilities have been re-scaled so that
the mean of the four shortest-time probabilities is equal to
1. The lines show predicted probabilities obtained via Monte
Carlo simulation for temperatures 4µK (black) up to 10µK
(red), indicating that the temperature after imaging using
mF = −3/2 (mF = −1/2) is approximately 5µK (4µK).

our microscope objectives as collection areas spanning
θ ∈ [3π/10, 7π/10] (π/5 above and below horizontal) and
comparing the total probability from each distribution
within this range. We find this ratio to be approximately
1.39, in favor of the mF = −1/2 case, which is in dis-
agreement with our findings shown in Fig. 8. We note
that the intensity distribution in the probe beams across
the π, σ± polarization modes may not be uniform. The
exact polarization of the beams is difficult to measure

given their angles of entry into the cell, and would man-
ifest as additional weighting factors on the f∆mF

com-
ponents of the overall photon emission distribution gmF

.
We note that interference between the two probe beams
may also play a role.
Additionally, the non-magic trapping of the mF =

−3/2 excited state implies that the detuning of the
probe beam varies spatially over the trap, which causes
broadening in the photon distribution. A temperature of
T ≈ 5µK gives rise to a frequency spread of ∆f ≈ 25 kHz
with a differential polarizability of 0.25(3), which is non-
negligible compared to the probe transition linewidth.
However, the excess broadening may suggest that our
atoms are somewhat hotter in the axial direction, to
which release-recapture measurements are not sensitive.
We note that it is straightforward to add an axial cooling
beam through the objective, and we leave this study for
future work.

APPENDIX C: Magnetic field system

1. AC magnetic field system

To manipulate the nuclear spin states, we can either
use the Raman transition via the electric dipole cou-
pling [42, 47] or directly using the magnetic dipole cou-
pling between nuclear states [48]. Here we introduce the
second method implemented in our experiment.
For the 171Yb ground state (6s2 1S0), the nuclear spin

I = 1/2 gives the hyperfine structure F = 1/2 with
two nuclear spin states |0⟩ ≡ |mF = −1/2⟩ and |1⟩ ≡
|mF = 1/2⟩. We apply a magnetic field along the y-axis
[see Fig. 1(a)], leading to Larmor precession in the atomic
spin. The Hamiltonian of the system is given by

Ĥ0 = gµBF ·B0, (C1)

where gµB/h is around −750Hz/G for the splitting be-
tween |0⟩ and |1⟩. Thus the Hamiltonian can be simplified
as:

Ĥ0 = ℏ
(
ω0 0
0 0

)
, (C2)

where ℏω is the energy splitting between |0⟩ and |1⟩. Now
considering we add a AC magnetic field along the z-axis,
the Hamiltonian is given by:

Ĥ = Ĥ0 +
1

2
ℏΩcos(ωt)σ̂x

= ℏ
(

ω0
1
2Ωcos(ωt)

1
2Ωcos(ωt) 0

)
,

(C3)

where Ω = 1
2gµBBAC/ℏ is the Rabi frequency (defined as

the frequency of oscillation in state probabilities, rather
than amplitudes), BAC is the strength of the driving
magnetic field and ω is the frequency of the driving sig-
nal. Since ω0 ≫ Ω, the factor 1/2 in Ω comes from the
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(a)

(b)(b)

FIG. 9. AC magnetic field system (a) The schematic of
the RF driver used to drive one pair of the horizontal shim
coils. The driver is capable of giving a maximum output volt-
age around 300Vpp and the peak current about 0.2A ranges
from 30 kHz to 2MHz. (b) The connection of the RF driver
to the shim coils. The isolated output of the RF driver (green
box) is connected in series with the shim coil driver (teal box).
A 1µF polypropylene film capacitor is used to bypass the RF
signal through the shim coil driver.

strength of the counter-rotating term, which does not sig-
nificantly contribute to the Rabi oscillation and, hence,
has been neglected.
To achieve a Rabi frequency Ω/2π ≈ 110Hz, we re-

quire BAC ≈ 0.29G. The easiest way of realizing such
magnetic field modulation is by using a pair of “shim”
coils [see Fig. 1(a)]. In our system this corresponds to a
current modulation amplitude Imod ≈ 0.15A. At 58G,
chosen to match the magnetic field applied during read-
out, the modulation must be applied at a RF frequency
equal to the Larmor frequency, f ≈ 43.5 kHz. Consider-
ing an inductance Lcoil ≈ 1.5mH of the shim coil, the
voltage modulation amplitude is calculated as Vmod =
Imod × 2πfLcoil = 64V = 128Vpp.
Since there is no commercial product that can give both

a high voltage and a high current drive at ≈ 45 kHz, we
built our own driver. The schematic of this RF driver
is shown in Fig. 9(a). The input RF signal is isolated
and divided into two parts with opposite polarity by the
signal transformer T1. Two high current and high speed
operational amplifiers (Linear Technology, LT1210) are
driven by the two signals and differentially drive the out-
put transformer T3. T3 is the main transformer recycled
from an ATX (Advanced Technology eXtended) power
supply of retired computers. This transformer has a turn
ratio of about 5 : 1 which increases the output voltage by
a factor of 5. The output transformer also isolates the RF
driving stage from the shim coils, which introduce min-
imum interference with the DC magnetic field control
system. Since the maximum output current of LT1210
is 1.1A, the maximum current available after the trans-

former is 0.2A.
It is also necessary to use these shim coils with constant

DC component in order to cancel background magnetic
fields – for which we also use two other pairs of coils
not shown in Fig. 1(a) – requiring the RF driver to be
connected in series with a DC driver used for all three
pairs. This is possible since the secondary winding of the
transformer T3 has very small DC resistance. However,
the magnetic core of T3 will be saturated if the DC cur-
rent is larger than 0.3A, which means the RF driver is
only functional when the shim coils have relatively small
DC current. This is not a problem for our experiment
since the background magnetic field is small. As shown
in Fig. 9(b), a 1µF polypropylene film capacitor is con-
nected in parallel with the shim coil driver, which is used
to bypass the RF signal that passes through the shim coil
driver. This capacitor also helps decrease the interference
of the shim coil driver from the RF driver.

2. DC magnetic field system

To generate the magnetic field for non-destructive
imaging at 58G, we repurpose the MOT coils by switch-
ing the coils’ electrical connection from anti-Helmholtz to
Helmholtz configuration. To achieve this, we use an H-
bridge to control the current flow direction of the upper
MOT coil. The H-bridge is constructed using eight high-
current metal-oxide-semiconductor field-effect transistors
(MOSFETs) connected in parallel. The specific model
used is IXFN300N20X3 from IXYS Corporation. The
voltage-controlled resistors are used to protect each indi-
vidual device from the back-electromotive force (EMF)
generated by the coils.
To isolate the noise and the computer’s control signal

ground from the coil’s ground connection, two isolated
gate drivers (Texas Instruments, UCC21320) are used to
control both sides of the half bridges. The drivers also
protect each side of the half bridge from the dead-zone,
which can cause a short in the coil connection.
The magnetic field stabilization is achieved by sta-

bilizing the current flowing through the coil. To mea-
sure the current with high stability, a high-stability
Hall sensor (Danisense, DS300ID) is used, which has a
long-term stability of better than 0.2 ppm per month.
The secondary current output of the Hall sensor is
converted to voltage through a Kelvin connection, us-
ing a high stability (0.05 ppm/◦C) metal film resistor
(Vishay, Y16065R00000F9W). For the error signal am-
plifier, a low-noise operational amplifier (Analog Devices,
AD8675) is DC stabilized by a zero-drift operational am-
plifier (Linear Technology, LTC2057), and high gain sta-
bility (0.2 ppm/◦C) is achieved by a matched resistor
network (Linear Technology, LT5400). The reference sig-
nal for the magnetic field servo is provided by a 20-bit
high-stability (0.05 ppm/◦C) digital-to-analog converter
(Analog Devices, AD5791), with the reference voltage
provided by a temperature-controlled buried Zener diode
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(Linear Technology, LTZ1000). The servo output is sent
to two insulated gate bipolar transistors (IGBTs) con-
nected in parallel, with each IGBT in series with the coils.
The specific model used is IXGN200N170, manufactured
by IXYS Corporation. Detailed schematics of the servo
and voltage reference can be found in Ref. [108].
The magnetic field servo board and voltage reference

board are connected closely inside a metal box that
is grounded. A low noise isolated DC-DC power sup-
ply [109, 110] is used to power the servo, voltage reference
and the Hall sensor, each with a separated ground. The
magnetic field control is achieved by the isolated digital
channels that directly control the digital to analog con-
verter using the serial peripheral interface (SPI) protocol.
This approach avoids any possible magnetic field change
introduced by the noise of external signal ground.

APPENDIX D: Simulating multi-level dynamics

During the qubit readout process, the relevant energy
levels are those in the 1S0 and

3P1 F = 3/2 manifolds. To
estimate the readout fidelity and to optimize experimen-
tal settings, we study the dynamics of atom population
transfer between the 1S0 nuclear spin ground states via
coherent and incoherent processes mediated by the 3P1

F = 3/2 states.
Since the 3P1 state lifetime is relatively short compared

with the imaging time (Γ−1 ∼ 10−6 s versus ∼ 10−2 s),
we ignore the populations in 3P1 states and only consider
the populations in the two nuclear spin qubit levels in the
1S0 manifold, |mF = −1/2⟩ ≡ |0⟩ and |mF = 1/2⟩ ≡ |1⟩.
As mentioned in Sec. III, the qubit readout (−3/2 imag-
ing) is achieved by applying a probe beam that is close
to |0⟩ ↔ |3P1,mF = −3/2⟩ transition, red-detuned by
0.5Γ. Due to the random polarization of the probe beams
(Iσ− ≈ Iσ+ ≈ Iπ = I/3), off-resonant scattering pro-
cesses via other 3P1 states can induce qubit depolariza-
tion between |0⟩ and |1⟩. Moreover, the probe beam can
coherently drive stimulated Raman transitions between
|0⟩ and |1⟩ mediated by the |3P1,mF = ±1/2⟩ states.
Figure 10 shows the energy levels of 1S0 and 3P1 states

and the probe beam with the corresponding branching ra-
tio of each transition. Since the probe beam is monochro-
matic, the Hamiltonian of the stimulated Raman transi-
tion driven by the probe beam reads

Ĥ =
ℏΩ
2

σ̂x +
ℏδ01
2

σ̂z. (D1)

Here Ω = Ω0Ω1/2∆ is the effective Raman Rabi fre-
quency, with Rabi frequencies Ω0 and Ω1 of the dipole
transition between a certain 3P1 Zeeman state and the
two ground states. Each of the two possible intermediate
states, |3P1,mF = ±1/2⟩, contributes to a Raman Rabi
frequency of

Ω±1/2 =

√
1

3

2

3

Γ2

2∆±1/2

I/3

2Isat
(D2)
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FIG. 10. Energy levels and probe beam configuration.
The energy splitting between different Zeeman states in 1S0

and 3P1 manifolds are determined by external magmetic field
(Zeeman splitting) and tweezer depth (vector and tensor light
shifts). For magnetic fields exceeding 5 G, the splitting be-
tween 3P1 Zeeman states look nearly identical.

where Isat is the saturation intensity for the |0⟩ ↔
|3P1,mF = −3/2⟩ transition. The total Raman Rabi fre-
quency is the sum of Ω−1/2 and Ω+1/2.

When the atoms are excited to 3P1 states, subsequent
scattering leads to an incoherent re-distribution of the
ground state populations, which can be described by the
following collapse operators

Γ00 = R00|0⟩⟨0|, Γ01 = R01|0⟩⟨1|,
Γ10 = R10|1⟩⟨0|, Γ11 = R11|1⟩⟨1|, (D3)

where Rij is the scattering rate from qubit state |i⟩ to |j⟩.
Each scattering rate contains contributions from several
paths via different Zeeman levels in the 3P1 manifold that
are allowed by the selection rule:

R00 = R
−3/2
0→0 +R

−1/2
0→0 +R

+1/2
0→0

R01 = R
−1/2
0→1 +R

+1/2
0→1

R10 = R
−1/2
1→0 +R

+1/2
1→0

R11 = R
−1/2
1→1 +R

+1/2
1→1 +R

+3/2
1→1 . (D4)

where Rm
i→j is the rate of the atom starting in |i⟩ being

excited to |3P1,mF = m⟩ and decaying to |j⟩. After tak-
ing the Clebsch-Gordan coefficients into consideration,
the scattering rate via every possible channel in Eqs. D4
can be calculated using rate equations. Equations D5 de-
scribe the transitions with the same initial and final state,
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representing a dephasing process,

R
−3/2
0→0 =

Γ

2

Iσ−/Isat
1 + 4(∆−3/2/Γ)2 + Iσ−/Isat

R
−1/2
0→0 =

Γ

2

2

3

2/3 · Iπ/Isat
1 + 4(∆−1/2/Γ)2 + 2/3 · Iπ/Isat

R
+1/2
0→0 =

Γ

2

1

3

1/3 · Iσ+/Isat
1 + 4(∆+1/2/Γ)2 + 1/3 · Iσ+/Isat

R
−1/2
1→1 =

Γ

2

1

3

1/3 · Iσ−/Isat
1 + 4[(∆−1/2 + δ01)/Γ]2 + 1/3 · Iσ−/Isat

R
+1/2
1→1 =

Γ

2

2

3

2/3 · Iπ/Isat
1 + 4[(∆+1/2 + δ01)/Γ]2 + 2/3 · Iπ/Isat

R
+3/2
1→1 =

Γ

2

Iσ+/Isat
1 + 4[(∆+3/2 + δ01)/Γ]2 + Iσ+/Isat

, (D5)

and Eqs. D6 describe the transitions between different
initial and final states, which represent an amplitude
damping process,

R
−1/2
0→1 =

Γ

2

1

3

2/3 · Iπ/Isat
1 + 4(∆−1/2/Γ)2 + 2/3 · Iπ/Isat

R
+1/2
0→1 =

Γ

2

2

3

1/3 · Iσ+/Isat
1 + 4(∆+1/2/Γ)2 + 1/3 · Iσ+/Isat

R
−1/2
1→0 =

Γ

2

1

3

2/3 · Iσ−/Isat
1 + 4[(∆−1/2 + δ01)/Γ]2 + 2/3 · Iσ−/Isat

R
+1/2
1→0 =

Γ

2

2

3

1/3 · Iπ/Isat
1 + 4[(∆+1/2 + δ01)/Γ]2 + 1/3 · Iπ/Isat

.

(D6)

With the above Hamiltonian and collapse operators,
we can therefore use master equations to extract the
simulation results in Fig. 3(b) for depolarization rates
under different imaging conditions, including magnetic
field, imaging time, probe beam intensity and detuning.
At high magnetic field, figure 3(b) indicates that the

contributions from the coherent and incoherent parts are
similar and they both scale as 1/B2. For the incoherent
population transfer, the 1/B2 scaling can be explained
by noticing that R01 and R10 both go as 1/B2 when
∆±1/2 ≫ Γ and I ∼ Isat. For the coherent part, the pres-
ence of all polarization components in our probe beam
can drive stimulated Raman transitions between the
qubit states, ostensibly at a rate of Ω+1/2+Ω−1/2 ∼ 1/B.
However, this rate is much smaller than the nuclear spin
splitting δ01 at modest magnetic fields, meaning the co-
herent population oscillation is negligible.

APPENDIX E: Simulating the off-resonant
scattering rate to 3P2 and 3P0

At typical trapping power for the tweezer wavelength
around 760 nm, the direct off-resonant scattering rates
from the 1S0 ground state to the 3P2 and 3P0 metastable

states are negligible due to their narrow linewidth. How-
ever, there is still a possibility of the atoms being scat-
tered to these two states through a two-photon process
involving the 6s7s 3S1 state when we probe the atoms on
the 1S0 ↔3P1 transition.
To estimate this off-resonant scattering rate, we can

simplify the calculation into two parts. First, we can cal-
culate the probability of atoms being in the 3P1 state
during imaging. Second, we can calculate the off-resonant
scattering rate from 3P1 to the 3P2 and 3P0 states.
The probability of an atom occupying 3P1 during the

imaging process is given by the expression

P3P1
=

1

2

Iprobe/Isat
1 + 4(∆/Γ3P1

)2 + Iprobe/Isat
(E1)

where Γ3P1
and Isat represent the linewidth and satura-

tion intensity of the probe transition, respectively. Iprobe
and ∆ denote the probe laser intensity and detuning, re-
spectively.
Starting from 3P1, the off-resonant scattering is domi-

nated by the 3P1 ↔ 3S1 transition. For the case of large
detuning and negligible saturation, the off-resonant scat-
tering rate is written as:

Γsc =
3πc2Γ2

3S1

2ℏω3
0

(
ω

ω0

)3 (
1

ω0 − ω
+

1

ω0 + ω

)2

Itrap,

(E2)

where Γ3S1
and ω0 are the linewidth and resonance fre-

quency of the transition. ω is the laser frequency and Itrap
is the intensity of the 760 nm tweezer. To match the ex-
periment, we set the tweezer power to be 7mW and the
waist (1/e2 radius) to be 670 nm.
However, the off-resonant scattering rate given above

does not take into account the atom’s initial mF state
and the polarization of the tweezer, which results in a re-
duced scattering rate due to the reduction of dipole ma-
trix elements. In our experiment, the tweezer is linearly
polarized with the polarization parallel to the external
magnetic field. Since J = J ′ = 1, for the transition start-
ing from the |F,mF ⟩ lower state (3P1) to the |F ′,mF ′⟩
upper state (3S1), the scattering rate is given by the ex-
pression

ΓF,mF
= 3Γsc

∑
F ′,mF ′

δmF ,mF ′ (2F + 1)(2F ′ + 1)

×
∣∣∣∣( F ′ 1 F

mF ′ −q −mF

){
1 1 1
F ′ F I

}∣∣∣∣2 ,
(E3)

where F ′ = 1/2 or 3/2 for the 3S1 state and q = mF ′ −
mF = 0 for a π-polarized tweezer. The symbols ( · · · ) and
{ · · · } represent Wigner 3-j and 6-j symbols, respectively.
For our |mF | = 1/2 and |mF | = 3/2 imaging methods,
the off-resonant scattering rates are given by Γsc/6 and
Γsc/2, respectively.
After being off-resonantly excited to the 3S1 state, the

atom can decay back to either the 3P2,
3P1 or 3P0 state.
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FIG. 11. Off-resonant scattering-limited probe lifetime
(a) The calculated lifetime under |mF | = 3/2 imaging as
a function of probe intensity. The dashed lines assume the
atom will be lost if it scatters to any 3PJ state, while the
solid lines assume it will survive only if scattered to 3P1. (b)
The lifetime under |mF | = 1/2 imaging for the same condi-
tion, which gives a three times higher lifetime due to the lower
off-resonant scattering rate. We set the tweezer {wavelength,
power, waist (1/e2 radius)} to {760 nm, 7mW, 670 nm} for
both calculations. A probe detuning of −0.5Γ is used to cal-
culate the 3P1 state population.

Since the 3P2 state cannot be trapped by the 760 nm
tweezer, atoms in this state will leave the trap immedi-
ately. The 3P0 state is dark to the probe transition and is
not re-pumped in our apparatus, so both processes con-
tribute to atom loss during the fluorescence imaging. By
comparing the branching ratios of all three paths [111],
we can calculate the possibility of decaying to the 3P2

and 3P0 to be around 63% – dominated by the 3P2 com-
ponent. The solid curves in Fig. 11(a) and (b) show the
calculation of the |mF | = 3/2 and |mF | = 1/2 imaging
lifetime limited by the rate at which atoms decay to ei-
ther the 3P2 or 3P0 states, assuming the atom survives
if it decays to 3P1.
However, we note that, even if the atom decays to

3P1, is not clear whether the atom survives after being
pumped to the 3S1 state for ≈ 100 ns. Although the 3S1
state is trappable with a tweezer wavelength of 760 nm,
the trap depth is around 70 times higher than that of
both 3P1 and the ground state under the same tweezer
power, which could introduce significant atom loss due to
the sudden increase in potential energy. For comparison,
we also plot the case that the atom is fully lost after being
pumped to the 3S1 state, as shown by the dashed curves
in Fig. 11(a) and (b). For the |mF | = 3/2 probe, this cal-
culation gives an imaging lifetime of ≈ 0.5 s under typi-
cal experimental conditions (7mW tweezer power, 3 Isat
probe beam intensity with 0.5Γ detuning), which is in
good agreement with observation. For the |mF | = 1/2
probe, this calculation gives a lifetime of ≈ 1.6 s, which is
longer than observation; we find similar probe lifetimes
and survivals in both cases. It is not clear what other

decay mechanism is in play. We measure a lifetime of
8.8(3) s for atoms in tweezers that are not illuminated
by any light, which is limited by a combination of back-
ground gas collisions due to finite vacuum pressure as well
as atomic heating due to intensity noise on the tweezer.
We also note that if an atom is off-resonantly excited to

the 3S1 state but eventually decays back to the original
3P1 state and survives, the atom can still be depolar-
ized between the mF = −1/2 and 1/2 ground states.
Using a similar calculation as the one we introduced in
the Equation E3, we can determine the probability of
the depolarization process for the |mF | = 3/2 readout.
After being off-resonantly pumped to the 3P1 state, this
probability is calculated to be 0.082, considering decay
from 3S1 to 3P1. This depolarization rate is significantly
smaller than the off-resonant excitation rate, but would
ultimately limit the depolarization during readout in sit-
uations where state mixing and multi-level dynamics can
be neglected at a much higher magnetic field.

APPENDIX F: Polarizability calculations

The potential that an atom experiences in an optical
trap is given by the product of the state-dependent po-
larizability α and the spatially varying intensity profile
I(r) of the trap

Utrap(r) =
α(ω)

2ϵ0c
I(r), (F1)

where ϵ0 is the vacuum permittivity, and c is the speed
of light in vacuum. The dependence on the frequency
of the trap laser and the atomic state in the polariz-
ability can be understood from a quantum mechanical
treatment of the induced dipole interaction energy, also
known as the AC Stark shift. Following the derivations in
Refs. [112, 113], the polarizability operator for an atomic
state |i⟩ can be written as a Cartesian tensor of the form

αµν(ω) =
∑
k

2ωki

ℏ(ω2
ki − ω2)

dµ|k⟩⟨k|dν , (F2)

where the sum is over all states connected to |i⟩ via a
dipole transition, dµ is the projection of the dipole op-
erator along the µ-th component of the incident electric
field, and ωki is the energy difference between the state
|k⟩ and |i⟩. It is more insightful to decompose the αµν

into spherical components. The final result is given as

α(ω) = αS(ω)− iαV (ω)
(û∗ × û) · F

2F

+αT (ω)
3{û∗ · F, û · F} − 2F2

2F (2F − 1)
.

(F3)

The object {·, ·} is the anti-commutator of two operators.
The coefficients αS , αV , and αT are the scalar, vector,
and tensor polarizabilities, respectively, of the atom for a
given hyperfine state characterized by quantum numbers
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|nJIFmF ⟩. The expressions for the individual polariz-
abilities are

αS =
1√

3(2J + 1)
α
(0)
nJ (F4)

αV = (−1)J+I+F

√
2F (2F + 1)

F + 1

{
F 1 F
J I J

}
α
(1)
nJ (F5)

αT = (−1)J+I+F+1

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α
(2)
nJ

(F6)

where the reduced polarizabilities α
(K)
nJ are given by

α
(K)
nJ = (−1)K+J+1

√
2K + 1

×
∑
n′J′

(−1)J
′
{
1 K 1
J J ′ J

}
|⟨n′J ′||d||nJ⟩|2

× 1

ℏ

(
1

ωn′J′nJ − ω
+

(−1)K

ωn′J′nJ + ω

)
.

(F7)

The reduced dipole matrix elements |⟨n′J ′||d||nJ⟩| can
be calculated from experimentally determined lifetimes
of the relevant states via

Γn′J′nJ =
ω3
n′J′nJ

3πε0ℏc3
|⟨J ′||d||J⟩|2

2J ′ + 1
. (F8)

A branching ratio will be needed if the excited state de-
cays to several states of lower energy, such as in the case
of the 3S1 → 3PJ transitions that lead to atomic loss
from the tweezer.
From (F3), we see that the tensor light shift vanishes

for states with F = 0, 1/2. Moreover, the vector light
shift vanishes when the tweezer is linearly polarized. We
work mainly with a linearly polarized tweezer, hence the
total light shift experienced by an atomic state is

Utrap = − I

2ϵ0c

(
αS + αT

3 cos2 θ − 1

2

3m2
F − F (F + 1)

F (2F − 1)

)
(F9)

where θ is the angle between the polarization of the
tweezer and the axis of quantization set by an applied
magnetic field. In the case of 171Yb, the 1S0 and 3P0

states have F = 1/2, hence they only have a scalar con-
tribution to the polarizability. On the other hand, the
3P1, F = 3/2 state will have all three components, in
general.
To calculate the polarizability of a given state, we per-

form a sum over states using measured values of the en-
ergy levels and lifetimes wherever possible. For the 3P1

state, we use the reduced dipole matrix elements given in
Ref. [114]. Our calculations yield αS(

1S0) = αS(
3P0) =

186, αS(
3P1) = 233 au, and αT (

3P1) = 87 au. The
value for αS(

1S0) is in excellent agreement with liter-
ature [115, 116]. This results in a predicted differential
polarizability of α|1/2| ≈ −0.22 and α|3/2| ≈ 0.72, which
is significantly larger than the experimentally measured
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FIG. 12. Polarizabilities of the atomic states of inter-
est. The polarizabilities of the 1S0 (black); 3P0 (yellow); 3P1,
F = 3/2, |mF | = 1/2 (light green); and 3P1, F = 3/2,
|mF | = 3/2 (dark green) are plotted as a function of the
tweezer frequency. The shaded band represents the uncer-
tainty in the total polarizability, which arises from uncer-
tainty in the trap waist and measured light shifts of the ex-
cited states. The magic wavelength (760 nm, red vertical line)
for the ground and clock states is also near-magic for the
|mF | = 1/2 state. We have included correction factors in the
calculations for the 3P1 states to match the experimentally
observed differential polarizabilities.

values of α|1/2| ≈ −0.030(3) and α|3/2| ≈ 0.25(3) (see
Sec III). As a result, we phenomenologically correct our
calculated values by using Eq. (F9) to generate a set of
linear equations

ℏ∆ω(|mF | = 3/2)

= − I

2ϵ0c

(
αS(

3P1) + αT (
3P1)− αS(

1S0)
)

(F10)

ℏ∆ω(|mF | = 1/2)

= − I

2ϵ0c

(
αS(

3P1)− αT (
3P1)− αS(

1S0)
)

(F11)

which yields αT (
3P1) = 26(6) a.u. and αS(

3P1) −
αS(

1S0) = 20(4) a.u. The uncertainty in the values are
mainly derived from the uncertainty in the measured dif-
ferential polarizabilities and the uncertainty in the mea-
sured beam waist of the tweezer. We have ascribed a con-
servative estimate for the uncertainties of 10%. Since the
trap depth depends on the beam waist as 1/w2

0, the over-
all uncertainty is mainly dominated by the uncertainty
in the beam waist.
Using the corrected values, we plot the polarizability

as a function of the tweezer wavelength in Fig. 12. It
is interesting to note that the polarizabilities of all 3P1

Zeeman states converge at ≈ 796 nm. Also, we identify ≈
778 nm as a good candidate for implementing our readout
technique because the 3P1 |mF | = 3/2 states are magic
with the ground state.
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APPENDIX G: Effect of vector and tensor light
shifts

The vector and tensor light shift can cause additional
state-mixing in the 3P1, F = 3/2 manifold, which opens
up a depolarization channel when probing via the mF =
−3/2 state that causes the atoms to decay into the dark
1S0, mF = 1/2 (|1⟩) state. We estimate the level of state-
mixing by numerically diagonalizing the AC Stark Hamil-
tonian together with the Zeeman Hamiltonian, and ob-
serve the complex amplitudes of the various eigenstates.
We use a different convention for the coordinate system

than in Fig 1 for the following calculations. The applied
magnetic field, which defines the axis of quantization, is
oriented along the +z-axis, and the tweezer propagates
along the +y-axis. Thus, the following parametrization
for the polarization of the tweezer is valid:

û = (cos γ cos θ − i sin γ sin θ) ẑ

+ (cos γ sin θ + i sin γ cos θ) x̂
(G1)

where 0 ≤ γ ≤ π/2 represents the degree of ellipticity
of the tweezer, and θ is the angle between the linear po-
larization of the tweezer and the axis of quantization.
This parametrization allows us to consider cases where
the tweezer is simultaneously rotated away from the axis
of quantization and contains some degree of ellipticity.
However, we will analyze the two cases separately by set-
ting the counterpart to zero.
For the 3P1, F = 3/2, mF = −3/2 state, the domi-

nant state that the vector and tensor light shift mixes
with is the neighboring mF = −1/2 state. In Fig. 13(a),
we consider the state-mixing as a function of the mag-
nitude of the applied magnetic field. We consider θ or
γ = 1 deg to illustrate the cases where the tweezer is not
purely linear, or when the tweezer is indeed linear but not
perfectly aligned onto the axis of quantization. At low
fields, state-mixing is significant as the light shifts (∼ 1
MHz) are comparable to the Zeeman energy (∼ 1.4×mF

MHz/G). The mixing can be suppressed by increasing
the magnetic field. A similar trend can be seen when we
fix the magnitude of the applied magnetic field and vary
the angles. Whenever the angles are non-zero, the state-
mixing is turned on as there is a competition between the
axis of quantization defined by the applied magnetic field
and those defined by the tweezer polarization. Naturally,
it follows that as the applied magnetic field increases in
strength, the effect of state-mixing decreases, which is
confirmed by the results in Figure 13(b).The trend phe-
nomenologically matches a ∼ 1/B2 scaling.
For a scattering rate of ≈ 48 kHz and a probe time of

25ms, we estimate that ≈ 1200 photons are scattered
by the atoms, which is consistent with our measured
collection of ≈ 45 photons with a measured atom-to-
camera collection efficiency of 0.037(2). For a depolar-
ization probability of P̄depol ≈ 0.01 during the readout,
we conclude that the depolarization probability per pho-
ton scatter is Pdepol ≲ 1×10−5. Up to a Clebsch-Gordan
coefficient, we expect that this depolarization probabil-
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FIG. 13. State-mixing of the 3P1, F = 3/2, mF = −3/2
imaging state due to the vector and tensor light shifts
(a) The probabilities in the mF = −3/2 (dark green) and
mF = −1/2 states (light green) due to the vector (γ = 1
degree and θ = 0 degrees; solid) and tensor (θ = 1 degree
and γ = 0 degrees; dashed) light shifts as the magnitude of
the applied magnetic field is varied. The gray vertical lines at
10G (dot-dash) and 60G (dotted) show field values chosen for
the angle studies shown in (b). (b) We study the dependence
on the angles θ and γ, which describes the misalignment of
the tweezer from the axis of quantization and the degree of
ellipticity of the tweezer polarization, respectively. There is a
sharp rise at angles close to zero degree due to the sudden
appearance of the off-diagonal matrix elements.

ity per photon is exactly equal to the contribution of the
mF = −1/2 state to the mixed eigenstate. As shown in
Fig. 10, the Clebsch-Gordan coefficients to decay from
3P1, mF = −1/2 favor 1S0, mF = −1/2 over mF = 1/2
by a factor of 2, so we can tolerate twice as much popula-
tion in 3P1, mF = −1/2 than if the branching ratios were
even for a given P̄depol. Therefore, this analysis suggests
that we can tolerate a population of ≈ 2.0×10−5 in 3P1,
mF = −1/2 to obtain P̄depol ≈ 0.01 during the readout,
which for B = 58 G corresponds to γ or θ ≈ 1−2 degrees.
This estimate is consistent with experimental observa-
tions in which the tweezer polarization was deterministi-
cally moved on the Poincaré sphere using a polarimeter,
and corroborates our observation of larger depolarization
probabilities for tweezers at the edges of the array.
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APPENDIX H: Fidelity, survival, and
depolarization estimation

1. Definition of base discrimination fidelity

Here we characterize the possible measurement-based
error channels in our atom- and state-readout detection
schemes. All such errors derive from a common source,
which is the degree to which the data from a single cam-
era exposure while a tweezer site is illuminated can be
correctly classified (or not) as holding an atom in a fluo-
rescent state. While it is straightforward to scatter pho-
tons from a single atom in a tweezer and count the num-
ber of detected by a sensor, this measurement may be
confounded by a number of other processes. For exam-
ple, it is possible that the atom is not in a state excited by
a particular laser frequency, the scattered photons may
not all be collected by the sensor, the atom may have
exited the trap or gone dark during the exposure, or the
atom simply may not have been loaded in the first place.
We first define a base discrimination fidelity F as the

probability of correctly classifying a single image as con-
taining a fluorescent atom, based on the number of col-
lected photons x. We assume a simple Gaussian mixture
model of two components governed by an overall distri-
bution of the form

Π(x) = P0f0(x) + P1f1(x) (H1)

where the mixture weights PN are the probabilities of
N such atoms in a single tweezer, and fN is a Gaussian
distribution with mean µN and variance σ2

N . Individual
images are classified as “bright” (B, indicating N = 1
fluorescent atom) if the total number of photons collected
is greater than or equal to some predetermined threshold
value θ, and “dark” (D, indicating N = 0 fluorescent
atoms) otherwise. We therefore define F more concretely
as

F = Pr(D|N = 0)Pr(N = 0)

+ Pr(B|N = 1)Pr(N = 1)

= P0

∫ θ

−∞
dx f0(x) + P1

∫ ∞

θ

dx f1(x)

(H2)

All the parameters of Π are readily obtained by fitting
to a measured histogram of photon counts from a series
of images, and θ is chosen to maximize F at the number
of photons where P0f0 and P1f1 intersect. We also define
discrimination fidelities based on the individual compo-
nents of the mixture for use in SPAM correction,

F0 = Pr(D|N = 0) =

∫ θ

−∞
dx f0(x)

F1 = Pr(B|N = 1) =

∫ ∞

θ

dx f1(x).

(H3)

In a typical experiment where we initialize atoms in
tweezers by loading and optically pumping to the bright

state before imaging, we usually measure P0 ≈ 25%, and
P1 ≈ 75%, with µ0 ≈ 1.5, σ0 ≈ 2, µ1 ≈ 40, σ1 ≈ 16 pho-
tons. Note that we calculate photon counts using a linear
transformation from raw photoelectron counts yielded by
our EMCCD (see Appendix A). This transformation is
calibrated to give zero photon counts at some non-zero
number of photoelectrons which, in relatively rare cases,
can lead to negative photon counts.
To estimate the uncertainty in F under both imag-

ing conditions described in Appendix B (treated inde-
pendently), we use a bootstrapping procedure following
Ref. [117]. From a data set of 15000 realizations of the
atomic fluorescence signal under a particular condition
from all sites of the array, we then generate 50 boot-
strap data sets, each with 200 realizations, by sampling
from the original set with replacement. The above cal-
culation is then carried out for each bootstrap set, and
the uncertainty in F is obtained from the standard devi-
ation over the bootstrap sets. We find F = 0.995(4) with
F0 = 0.998(1) and F1 = 0.994(4) for the mF = −3/2
imaging condition, and F = 0.995(3) with F0 = 0.997(2)
and F1 = 0.995(4) for the mF = −1/2 condition.

2. Estimation of atom survival

The state-averaged probability η̄surv that an atom re-
mains in its tweezer after readout is estimated in two
parts. The survival probability ηDsurv = 0.9971(1) of the
|1⟩ dark state is estimated based on the measured life-
time of atoms with no cooling light on. That of the |0⟩
bright state, ηBsurv, is measured by performing two atom
readouts a and b – of either sort shown in Fig. 2 – in
quick succession, post-selecting on a bright a readout,
and taking the fraction of those with bright b readout as
well. Uncertainties in raw measurements are obtained by
considering ηBsurv to parameterize a binomial distribution
and taking the distribution’s standard deviation divided
by the number of shots N(Ba) surviving post-selection,

i.e.
√

ηBsurv(1− ηBsurv)/N(Ba). See Appendix H 5 for state
preparation and correction (SPAM) correction.
Thus we find that, for the mF = −3/2 (mF = −1/2)

imaging condition taken for a single array site, ηBsurv =
0.96(2) (ηBsurv = 0.96(1)) with correction for discrimina-
tion infidelity and optical pumping inefficiency, ηBsurv =
0.93(2) (ηBsurv = 0.96(1)) without.

3. Isolating qubit state information via data
post-selection

The imaging method used for all of the experiments
discussed here scatters photons from an atom only if the
atom is in one of our selected qubit states. Therefore, the
mixture weights P0 and P1 are generally combinations of
probabilities in a space of events described by two binary
degrees of freedom: (a) the internal qubit state of the
atom, and (b) whether an atom whose state is in 1S0–
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FIG. 14. Depolarization probability study without
post-selection on atom readout. Photon counts from the
first two readouts in the circuit shown in Fig. 3(c) used to
study depolarization probability without post-selection on the
final atom readout. Here, the population in the B → D depo-
larization channel is artificially inflated by atom loss between
these two readouts, as is the population in the D → D quad-
rant due to failed loading of the tweezer.

3P1 manifold is present in the tweezer. Here, (a) is the
only relevant degree of freedom and (b) represents an
error channel to which experiments are coupled via atom
loss, either through off-resonant scatter to a dark state
outside the 1S0–

3P1 manifold or through heating. Due to
this, it is then impossible to determine whether a single
given image classified as dark holds an atom in the non-
fluorescent qubit state or no atom at all.
By appending a final, state-independent measurement

to the end of an experimental sequence, however, it is
possible to determine which shots of the sequence con-
tain atoms. Then filtering out all sequence shots with
dark final measurements, P0 and P1 are directly con-
verted to state probabilities with atom loss errors entirely
decoupled from all measurements, and bright-dark clas-
sifications on the single-image level are mapped to qubit
state measurements, with bright corresponding to |0⟩ and
dark to |1⟩. For sufficiently high ηsurv, qubit states can be
measured many times in a single shot of an experiment
using this method, at the cost of immediately rejecting
a portion of data recorded in an experiment that grows
roughly as 1− ηMsurv where M is the number of measure-
ments performed. Fig. 14 shows the results of the first
two readouts of Fig. 3(c), leaving out post-selection on
the final readout.
In a simpler case, the optical pumping efficiency can

also be measured using this technique. Here, the experi-
mental sequence consists of optical pumping followed by

qubit readout and then a final atom readout. After post-
selection on a bright count in the atom readout, the prob-
ability P1 of a bright count in the state readout is then
directly the optical pumping efficiency, which we measure
to be ηOP = 0.98(1) for a single site, and ηOP = 0.97(1)
averaged across the array.

4. Estimation of state-dependent readout fidelities

Following the method in Ref. [79], we estimate the
readout fidelity Fread of our non-destructive state-fidelity
measurement operator, realized by near-resonant exci-
tation of the qubit state |0⟩ to the excited state 3P1

F = 3/2, |mF = −3/2⟩ ≡ |e⟩. While Fread and state ini-
tialization fidelity Finit are generally coupled, it is pos-
sible to decouple them by using two consecutive mea-
surements. Explicitly, given a bimodal measurement his-
togram belonging to the bright (|0⟩) and dark (|1⟩) states
as shown in Fig. 2(d), setting a stricter state-assignment
threshold θ for |0⟩ (|1⟩) effectively allows one to initial-
ize the state with perceived increasing probability. Then
the resulting histogram of the second measurement, post-
selected on successful initialization via the first mea-
surement, yields the limiting readout fidelities F0

read and
F1

read for the individual states |0⟩ and |1⟩.
In practice, this translates to examining the results of

an experiment identical that shown in Fig. 3(c) with
modified post-selection conditions. Holding the thresh-
olds used for bright/dark classifications in the second
and third measurements fixed at some value θ′ (i.e. fix-
ing the conditions for detecting the presence/absence of
atoms and subsequent |0⟩/|1⟩ state readout), we allow
the threshold θ for the first measurement to vary. Still
post-selecting on a bright third measurement, we then ex-
amine the results of the second measurement conditioned
on those of the first as a function of θ and identify the
probabilities Pr(B|B) and Pr(D|D) with state readout
fidelities F0

read and F1
read, respectively (see Fig. 15). As θ

is increased (decreased), the perceived probability in the
θ → ∞ (θ → 0) limit of successfully initializing the state
in |0⟩ (|1⟩) increases, and the second measurement when
post-selected on the success of the first gives the desired
state detection fidelity. We find that F0

read = 0.996(3)
and F1

read = 0.994(6), which is in good agreement with
the discrimination fidelities measured in Appendix H1.

5. State preparation and measurement (SPAM)
correction

In experimental sequences, we infer the presence or in-
ternal state of atoms by mapping photon counts onto
a binary space and thereby extract desired quanti-
ties like readout survival probability, qubit depolariza-
tion probability, and π-pulse fidelity. However, imper-
fections in discrimination fidelity, optical pumping effi-
ciency, and indeed qubit depolarization can produce er-
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FIG. 15. Estimating readout fidelity. Using three consec-
utive measurement histograms a, b, c and post-selecting data
on measurement c being bright, we estimate the readout fi-
delity by examining the behavior of the conditional proba-
bilities F0

read = Pr(Bb|Ba) and F1
read = Pr(Db|Da) as well

as the average readout fidelity Fread = Pr(Db|Da)Pr(Da) +
Pr(Bb|Ba)Pr(Ba) by sweeping the threshold θ used in mea-
surement a while holding that for measurement b (and c) fixed
at the vertical red line. For large θ, |0⟩ is prepared by a with a
perceived near-unity probability and subsequently measured
in b with fidelity F0

read = 0.996(3). For small θ, |1⟩ is perceived
to be prepared with near-unity probability instead and mea-
sured with fidelity F1

read = 0.994(6). The filled red area shows
the threshold values typically used, and the inset shows a
zoomed-in view of the fidelities in this range.

rors in these measurements. State preparation and mea-
surement (SPAM) correction attempts to isolate quan-
tities of interest (in this case, those listed above) from
sources of error based on a constructed model of pos-
sible subprocesses that may occur in each experimental
sequence and estimated probabilities for each of those
subprocesses. Generically, we model a quantity ∗X mea-
sured directly from experimental data as a function of the
isolated “true” value of the quantity X and some num-
ber of other relevant quantities, and invert the model to
obtain X as the SPAM-corrected value.
The graphs shown in Fig. 16 are convenient depic-

tions of the models constructed for the experimental se-
quences we used to measure readout survival probabil-
ity, qubit depolarization probability, and π-pulse fidelity.
Each graph is directed, and shows a number of paths
from an initial node on the left to a corresponding fi-
nal node of the same color on the right, where each such
path represents a possible way for the system to pro-
duce a result that is counted as relevant to the quantity
of interest. For example, SPAM correction to obtain the
true survival rate is performed in consideration of state-
dependent discrimination fidelities F0 and F1, and the
optical pumping efficiency ηOP. Noting that, after post-
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FIG. 16. Probability graphs for single-atom SPAM
correction. Directed graphs giving probabilities for possible
events to occur in experimental sequences measuring bright
state survival ηB

surv (purple) in (a), depolarization probabili-
ties PB→D

depol (blue) and PD→B
depol (red) in (b), and π-pulse fidelity

ηπ (orange) in (c). Each possible path in the graphs represents
a probability formed as the product of all the weights on the
edges it comprises, and expressions for measured probabilities
are obtained by summing over all paths connecting nodes of
the same color.

selection on a bright initial atom readout,

∗ηBsurv = ηBsurvηOPF1

+ ηBsurv(1− ηOP)(1− F0)

+ (1− ηBsurv)(1− F0),

(H4)

one then obtains

ηBsurv =
∗ηBsurv − (1− F0)

ηOPF1 + (1− ηOP)(1− F0)− (1− F0)
(H5)

and error is propagated from there. For the mF = −1/2
imaging condition we take ηOP = 1. Models for the other
experimental sequences shown in Fig. 16 are obtained
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similarly as

∗PD→B
depol = PD→B

depol F1

+ (1− PD→B
depol )(1− F0)

(H6)

∗PB→D
depol = PB→D

depol F0

+ (1− PB→D
depol )(1− F1)

(H7)

∗P̄depol = P̄depolF
+ (1− P̄depol)(1−F)

(H8)

∗ηπ = ηπ(1− P̄depol)F
+ ηπP̄depol(1−F)

+ (1− ηπ)P̄depolF
+ (1− ηπ)(1− P̄depol)(1−F).

(H9)

We note that, here, the state discrimination fidelities
F , F0, and F1 are deliberately left uncorrected in or-
der to simplify calculations: Strictly, the treatment of
the depolarization probabilities here is as the probabil-
ity of a bit-flip occurring after a readout is performed,
which neglects the possibility that the flip occurs dur-
ing the readout itself. We note in this scenario, however,
that because the atom would not scatter photons for the
complete duration of the imaging pulse, the number of
photons scattered during readout would deviate signifi-
cantly from the means of either the N = 0 or N = 1
components identified in Eq. H1 and be detectable as a
count somewhere in overall count distribution between
the two peaks. Since such an event would directly affect
our measured discrimination fidelities, SPAM correction
using uncorrected fidelities therefore constitutes correc-
tion for both discrimination infidelity and any qubit flip
errors that occur during a single readout.

APPENDIX I: Estimation of T1 and T ∗
2

Measurement of the array-averaged T1 depolarization
lifetimes is often hampered by atom loss. When using
e.g. a state-dependent blow-away pulse to measure qubit
state populations [47], atom loss directly confounds the
measurements from which state populations are inferred.
Our ability to de-couple atom loss from state measure-
ment allows us to measure these quantities in a straight-
forward manner. In Figs. 17(a) & 17(b), we show the
circuits used to measure T1 and T ∗

2 , respectively. Both
circuits are similar to that shown in Fig. 3(c) used to
measure depolarization probability during readout, with
two state readouts followed by an atom readout for post-
selection, except for the inclusion of a variable holding
period and π/2 pulses in the T ∗

2 case.
In Fig. 17(a), we initialize in the |0⟩ qubit state via op-

tical pumping. This effectively turns the first state read-
out into an atom readout, which allows us to simulta-
neously measure atom survival as the number of shots
that are bright in the final atom readout as a fraction
of those bright in the initial readout as well. The atom
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FIG. 17. Estimation of array-averaged T1 and T ∗
2 . (a)

The circuit used to measure dark-state survival and the qubit
depolarization time, T1. This circuit is identical to that shown
in Fig. 3 except for the addition of a holding time τ between
the first two readouts. The qubit is also initialized in |0⟩ here
in order to measure both Psame (blue circles) and the atom
survival fraction (orange triangles), which are plotted below
as a function of τ . The atom survival lifetime is measured
to be 8.8(3) s. T1 is estimated to be 230(50) s, but our data
extends only to 13 s. (b) The circuit used to measure the qubit
dephasing time, T ∗

2 . Here, the qubit is rotated to and held at
the equator of the Bloch sphere for a time τ before a π/2 pulse
with phase φ relative to the first is applied and the qubit state
is measured. The resulting fringes in 1− Psame are plotted as
a function of φ in the insets, and the contrast of the fringes
is plotted as a function of the hold time τ in the main plot.
The decay of the contrast follows a Gaussian profile, the 1/e
time of which we measure as T ∗

2 = 0.37(1) s.

survival lifetime τsurv is obtained by fitting to a decay-
ing exponential, giving τDsurv = 8.8(3) s, which is then
used to bound the dark-state survival probability dur-
ing readout, ηDsurv = exp(25ms/τDsurv) = 0.9971(1). T1 is
similarly measured via the time dependence of the prob-
ability Psame that the two state readouts give the same
result. We estimate that T1 = 230(50) s, but we note that
our data only extends to 13 s. We expect that 0-1 and
1-0 depolarization should have the same rate.
In Fig. 17(b), we measure the array-averaged T ∗

2 de-
phasing time. We again initialize in |0⟩ and apply a π/2-
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pulse to rotate the qubit state to the equator of the Bloch
sphere, followed by a variable holding time and a second
π/2 with variable phase relative to the first. The two
pulses are line-triggered on a 60Hz signal to reduce ef-
fects from background magnetic field noise. Varying the
relative phase between the pulses leads to fringes in the
probability 1 − Psame that the two state readouts give
different results. T ∗

2 is extracted from the time depen-
dence of the contrast of these fringes as the 1/e time of
a Gaussian profile fit to the data, T ∗

2 = 0.37(1) s. We be-
lieve that this is limited by ambient magnetic field noise
in the lab, rather than the coil servo system.

APPENDIX J: Real-time feedforward architecture

Feedforward to the experiment for qubit X rotations is
done by processing scattered photon counts from images
taken by the EMCCD in real time and using the sub-
sequent bright/dark classification to determine whether
the AC magnetic coils (see Appendix C 1) should be

driven. More specifically, the AC current used to drive the
coils is generated by a RIGOL DG822 RF source whose
output is gated by an input TTL signal that normally
comes directly from the National Instruments PCIe-7820
board housed in the experiment control computer (see
Appendix A). When performing feedforward of the kind
described in Sec. V, we insert a switch on the TTL line
that is controlled by an Arduino Uno microcontroller,
which is programmed to convert an ASCII string input
over USB from the image-processing computer to a sim-
ple digital HIGH/LOW voltage for the switch. The feed-
forward logic shown in Fig. 7 is done by software run
by the image-processing computer before signals are sent
to the microcontroller. We note that the time required
to process an image, perform the appropriate logic for
the feedforward circuit, send the signal to the microcon-
troller, and set the state of the switch typically adds
about 70ms per feedforward event to the total experi-
mental sequence time. This is comparable to our current
combined readout and pulse time, but we expect that this
can be significantly reduced through optimized software
and specialized hardware.
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H. Pichler, and M. D. Lukin, Parallel Implementation
of High-Fidelity Multiqubit Gates with Neutral Atoms,
Phys. Rev. Lett. 123, 170503 (2019).

[45] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale,
A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams,
and M. Endres, High-fidelity entanglement and detec-
tion of alkaline-earth Rydberg atoms, Nat. Phys. 16,
857 (2020).

[46] Q. Zhang, Y. Guo, W. Ji, M. Wang, J. Yin, F. Kong,
Y. Lin, C. Yin, F. Shi, Y. Wang, and J. Du, High-fidelity
single-shot readout of single electron spin in diamond
with spin-to-charge conversion, Nat. Commun. 12, 1529
(2021).

[47] A. Jenkins, J. W. Lis, A. Senoo, W. F. McGrew, and
A. M. Kaufman, Ytterbium Nuclear-Spin Qubits in an
Optical Tweezer Array, Phys. Rev. X 12, 021027 (2022).

[48] S. Ma, A. P. Burgers, G. Liu, J. Wilson, B. Zhang,
and J. D. Thompson, Universal Gate Operations on Nu-
clear Spin Qubits in an Optical Tweezer Array of 171Yb

https://doi.org/10.1038/s41567-022-01619-7
http://arxiv.org/abs/2203.04338
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/nature10401
https://doi.org/10.1103/PhysRevLett.106.133003
https://doi.org/10.1103/PhysRevLett.106.133003
https://doi.org/10.1103/PhysRevLett.106.133002
https://doi.org/10.1103/PhysRevLett.106.133002
https://doi.org/10.1063/1.3262948
https://doi.org/10.1063/1.3262948
https://doi.org/10.1103/PhysRevLett.110.243602
https://doi.org/10.1103/PhysRevLett.110.243602
https://doi.org/10.1103/PhysRevLett.104.203602
https://doi.org/10.1103/PhysRevLett.104.203602
https://doi.org/10.1103/PhysRevLett.104.203601
https://doi.org/10.1103/PhysRevLett.120.243601
https://doi.org/10.1103/PhysRevLett.129.203602
https://doi.org/10.1103/PhysRevLett.129.203602
https://doi.org/10.1103/RevModPhys.51.767
https://doi.org/10.1103/PhysRevLett.105.253001
https://doi.org/10.1038/s41467-022-28550-y
https://doi.org/10.1038/s41467-022-28550-y
https://doi.org/10.1103/PhysRevA.91.041602
https://doi.org/10.1103/PhysRevA.91.041602
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1103/PhysRevLett.125.010403
https://doi.org/10.1103/PhysRevLett.125.010403
https://doi.org/10.1103/PhysRevLett.125.113601
https://doi.org/10.1103/PhysRevLett.125.113601
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/PhysRevLett.119.180503
https://doi.org/10.1103/PhysRevLett.119.180503
https://doi.org/10.1103/PhysRevLett.119.180504
http://arxiv.org/abs/2301.10510
https://doi.org/10.1088/1367-2630/aaba65
https://doi.org/10.1038/s41467-022-29977-z
https://doi.org/10.1038/s41467-022-29977-z
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41467-021-21781-5
https://doi.org/10.1038/s41467-021-21781-5
https://doi.org/10.1103/PhysRevX.12.021027


24

Atoms, Phys. Rev. X 12, 021028 (2022).
[49] J. P. Covey, I. S. Madjarov, A. Cooper, and M. En-

dres, 2000-Times Repeated Imaging of Strontium Atoms
in Clock-Magic Tweezer Arrays, Phys. Rev. Lett. 122,
173201 (2019).

[50] M. A. Norcia, A. W. Young, W. J. Eckner, E. Oelker,
J. Ye, and A. M. Kaufman, Seconds-scale coherence on
an optical clock transition in a tweezer array, Science
366, 93 (2019).

[51] I. S. Madjarov, A. Cooper, A. L. Shaw, J. P. Covey,
V. Schkolnik, T. H. Yoon, J. R. Williams, and M. En-
dres, An Atomic-Array Optical Clock with Single-Atom
Readout, Phys. Rev. X 9, 041052 (2019).

[52] J. Ye, H. J. Kimble, and H. Katori, Quantum State
Engineering and Precision Metrology Using State-
Insensitive Light Traps, Science 320, 1734 (2008).

[53] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O.
Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87,
637 (2015).

[54] K. Singh, C. E. Bradley, S. Anand, V. Ramesh,
R. White, and H. Bernien, Mid-circuit correction of cor-
related phase errors using an array of spectator qubits,
arXiv Prepr. 2208.11716 (2022).

[55] T. M. Graham, L. Phuttitarn, R. Chinnarasu, Y. Song,
C. Poole, K. Jooya, J. Scott, A. Scott, P. Eichler,
and M. Saffman, Mid-circuit measurements on a neu-
tral atom quantum processor, arXiv Prepr. 2303.10051
(2023).

[56] E. Knill, Resilient Quantum Computation, Science 279,
342 (1998).

[57] E. Knill, Quantum computing with realistically noisy
devices, Nature 434, 39 (2005).

[58] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic,
M. Greiner, and M. D. Lukin, Atom-by-atom assembly
of defect-free one-dimensional cold atom arrays, Science
354, 1024 (2016).

[59] N. Schlosser, G. Reymond, I. Protsenko, and P. Grang-
ier, Sub-poissonian loading of single atoms in a micro-
scopic dipole trap, Nature 411, 1024 (2001).

[60] C. Tuchendler, A. M. Lance, A. Browaeys, Y. R. P. Sor-
tais, and P. Grangier, Energy distribution and cooling
of a single atom in an optical tweezer, Phys. Rev. A 78,
033425 (2008).

[61] S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D.
Thompson, Narrow-Line Cooling and Imaging of Ytter-
bium Atoms in an Optical Tweezer Array, Phys. Rev.
Lett. 122, 143002 (2019).

[62] A. Urech, I. H. A. Knottnerus, R. J. C. Spreeuw, and
F. Schreck, Narrow-line imaging of single strontium
atoms in shallow optical tweezers, Phys. Rev. Res. 4,
023245 (2022).
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