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Abstract—A seminal work of [Ahn-Guha-McGregor, PODS’12]
showed that one can compute a cut sparsifier of an unweighted
undirected graph by taking a near-linear number of linear mea-
surements on the graph. Subsequent works also studied comput-
ing other graph sparsifiers using linear sketching, and obtained
near-linear upper bounds for spectral sparsifiers [Kapralov-
Lee-Musco-Musco-Sidford, FOCS’14] and first non-trivial up-
per bounds for spanners [Filtser-Kapralov-Nouri, SODA’21].
All these linear sketching algorithms, however, only work on
unweighted graphs, and are extended to weighted graphs by
weight grouping, a non-linear operation not implementable in,
for instance, general turnstile streams.

In this paper, we initiate the study of weighted graph spar-
sification by linear sketching by investigating a natural class of
linear sketches that we call incidence sketches, in which each
measurement is a linear combination of the weights of edges
incident on a single vertex. This class captures all aforementioned
linear sketches for unweighted sparsification. It also covers
linear sketches implementable in the simultaneous communication
model, where edges are distributed across n machines. Our results
are:

1) Weighted cut sparsification: We give an algorithm that
computes a (1 + ε)-cut sparsifier using Õ(nε−3)linear
measurements, which is nearly optimal. This also implies
a turnstile streaming algorithm with Õ(nε−3) space. Our
algorithm is achieved by building a so-called “weighted
edge sampler” for each vertex.

2) Weighted spectral sparsification: We give an algorithm that
computes a (1+ε)-spectral sparsifier using Õ(n6/5ε−4) lin-
ear measurements. This also implies a turnstile streaming
algorithm with Õ(n6/5ε−4) space. Key to our algorithm
is a novel analysis of how the effective resistances change
under vertex sampling. Complementing our algorithm, we
then prove a superlinear lower bound of Ω(n21/20−o(1))
measurements for computing some O(1)-spectral sparsifier
using incidence sketches.

3) Weighted spanner computation: We first show that any
o(n2) linear measurements can only recover a spanner of
stretch that in general depends linearly on wmax

wmin
. We thus

focus on graphs with wmax
wmin

= O(1) and study the stretch’s
dependence on n. On such graphs, the algorithm in [Filtser-
Kapralov-Nouri, SODA’21] can obtain a spanner of stretch
Õ(n

2
3 (1−α)) using Õ(n1+α) measurements for any α ∈

[0, 1]. We prove that, for incidence sketches, this tradeoff
is optimal up to an no(1) factor for all α < 1/10.

We prove both our lower bounds by analyzing the “effective
resistances” in certain matrix-weighted graphs, where we develop
a number of new tools for reasoning about such graphs – most
notably (i) a matrix-weighted analog of the widely used expander

This work was supported in part by NSF awards CCF-1763514, CCF-
1934876, and CCF-2008304.

decomposition of ordinary graphs, and (ii) a proof that a random
vertex-induced subgraph of a matrix-weighted expander is also an
expander. We believe these tools are of independent interest.

Index Terms—streaming algorithms, graph sparsification, lin-
ear sketch, spectral graph theory

I. INTRODUCTION

Graph sparsification is a process that reduces the number of
edges in a dense graph significantly while preserving certain
useful properties. Besides being an interesting problem in
its own right, graph sparsification has also been used as a
fundamental building block in many modern graph algorithms
such as maximum flow and minimum cut algorithms [4], [20],
[31], [32], solvers for graph structured linear systems [6], [14],
[34], and graph clustering [1], [5].

In addition to designing fast algorithms in the classic com-
putational model, a rich body of work has also studied graph
sparsification by linear sketching. In this setting, we can only
access the input graph by taking linear measurements, each
of which returns a linear combination of the edge weights,
and the goal is then to compute a sparsifier of the input graph
using as few measurements as possible. To state the previously
known results in this setting, let us first recall the definitions of
three extensively studied graph sparsifiers that we will study
in this work.

Definition I.1 (Cut sparsifiers). Given a weighted graph G =
(V,E,w) and a parameter ε ∈ (0, 1), another weighted graph
H = (V, F,w′) with F ⊆ E is called a (1 + ε)-cut sparsifier
of G if for every cut (S, V − S), its weight wG(S, V − S)
in G and its weight wH(S, V − S) in H satisfy that (1 −
ε)wG(S, V − S) ≤ wH(S, V − S) ≤ (1 + ε)wG(S, V − S).

Definition I.2 (Spectral sparsifiers). Given a weighted graph
G = (V,E,w) with Laplacian matrix LG and a parameter ε ∈
(0, 1), another weighted graph H = (V, F,w′) with Laplacian
matrix LH and F ⊆ E is called a (1 + ε)-spectral sparsifier
of G if for every vector x ∈ Rn we have (1 − ε)xTLGx ≤
xTLHx ≤ (1 + ε)xTLGx.

Definition I.3 (Spanners). Given a weighted graph G =
(V,E,w) and a parameter t ≥ 1 (called the stretch), another
weighted graph H = (V, F,w′) with F ⊆ E is called a t-
spanner of G if for every vertex pair u, v, the shortest path
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length dG(u, v)1 between u, v in G and the shortest path length
dH(u, v) in H satisfy dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v).

A seminal work by Ahn, Guha, and McGregor [2] showed
that one can compute a (1+ε)-cut sparsifier of an unweighted
graph using Õ(nε−2) linear measurements, which is nearly
optimal. Then subsequent works by Kapralov, Lee, Musco,
Musco, and Sidford [17] and Kapralov, Mousavifar, Musco,
Musco, Nouri, Sidford, and Tardos [19] showed that one can
also compute a (1 + ε)-spectral sparsifier of an unweighted
graph using Õ(nε−2) linear measurements. Finally, a recent
work by Filtser, Kapralov, and Nouri [10] showed that one
can compute an Õ(n

2
3 )-spanner of an unweighted graph using

Õ(n) linear measurements. [10] also showed that one can
compute an Õ(n

2
3 (1−α))-spanner of an unweighted graph

using Õ(n1+α) linear measurements for any α ∈ [0, 1], and
conjectured that this tradeoff might be close to optimal.

In all of these works [2], [10], [17], [19], the authors also
showed that their linear sketching algorithms can also be
applied to computing graph sparsifiers of weighted graphs in
dynamic streams, where the input graph is given by a stream of
insertions and deletions of weighted edges, and the goal is to
compute a sparsifier of the input graph using a small amount of
space. In all these works, this is achieved by grouping the edge
weights geometrically, and then applying the linear sketching
algorithm for unweighted graphs to the subgraph induced by
edges in each weight group. Note that this approach crucially
requires that if an edge e is inserted with weight we, then
any subsequent deletion of the edge e again reveals its weight
and it must be identical to we. This is crucial to ensuring that
each edge e is inserted into or deleted from the same geometric
group.

However, the operation of grouping edges by weight is
not linear, and as a result, the above approach for extending
unweighted sketches to weighted ones is not implementable in
the more general turnstile streams, where the graph is given as
a stream of arbitrary edge weight updates. Surprisingly, little
seems to be known about graph sparsification in this setting.

A. Our results

In this paper, we initiate the study of weighted graph
sparsification by linear sketching. To state our results, we need
to introduce some notation first. Let w ∈ R(

n
2)
≥0 denote the

weights of the edges of the input graph, where we = 0 means
that there is no edge in the edge slot e. A linear sketch of
N = N(n) measurements consists of a (random) sketching
matrix Φ ∈ RN×(n2), and a (randomized) recovery algorithm
A that takes as input Φw ∈ RN and outputs a sparsifier of
the graph with edge weights w. Note that, by definition, the
linear sketch is non-adaptive.

We focus on a natural class of linear sketches that we call
incidence sketches, in which each row of the sketching matrix

1Note that in a weighted graph, the length of a path is defined as the total
edge weight along the path.

Φ is supported2 on edges incident on a single vertex (which
could be different for different rows). This class captures
all linear sketches that are implementable in a distributed
computing setting, where the edges are stored across n ma-
chines such that machine i has all edges incident on the ith

vertex (a.k.a.simultaneous communication model). Moreover,
it also covers all aforementioned linear sketches used in
previous works for unweighted cut sparsification [2], spectral
sparsification [18], [19], and spanner computation [10].

We now present our results for computing these three
kinds of sparsifiers in weighted graphs. When describing our
results, we use wmax and wmin to denote the largest and
the smallest non-zero edge weights, respectively, and always
assume wmax ≥ 1 ≥ wmin. We also write Õ(·) to hide
polylog(n, ε−1, wmax

wmin
) factors.

a) Weighted cut sparsification.: We design an incidence
sketch with a near-linear number of measurements for com-
puting a (1 + ε)-cut sparsifier of a weighted graph.

Theorem I.1 (Algorithm for weighted cut sparsification). For
any ε ∈ (0, 1), there exists an incidence sketch with random
sketching matrix Φ1 ∈ RN1×(n2) satisfying N1 ≤ Õ(nε−3)

and a recovery algorithm A1, such that for any w ∈ R(
n
2)
≥0 ,

A1(Φ1w) returns, with probability 1− 1
poly(n) , a (1 + ε)-cut

sparsifier of the graph with edge weights w.

Thus, we achieve a similar performance as the linear
sketch for unweighted graphs given in [2], which uses
O(nε−2poly(log n)) measurements. It is well known that even
to detect the connectivity of a graph, Ω(n) linear measure-
ments are needed. Therefore, our upper bound in Theorem I.1
is nearly optimal in n.

Similar to [2], [10], [13], [17], [19], by using Nisan’s well
known pseudorandom number generator [30], we can turn our
linear sketching algorithm to a low space streaming algorithm.

Corollary I.2 (of Theorem I.1). There is a single pass turnstile
streaming algorithm with Õ(nε−3) space that, at any given
point of the stream, recovers a (1 + ε)-cut sparsifier of the
current graph with high probability.

Note that in the turnstile model, the stream consists of
arbitrary edge weight updates.

b) Weighted spectral sparsification.: We design an inci-
dence sketch with about n6/5 measurements for computing a
(1 + ε)-spectral sparsifier of a weighted graph.

Theorem I.3 (Algorithm for weighted spectral sparsification).
For any ε ∈ (0, 1), there exists an incidence sketch with
random sketching matrix Φ2 ∈ RN2×(n2) satisfying N2 ≤
Õ(n6/5ε−4) and a recovery algorithm A2, such that for any

w ∈ R(
n
2)
≥0 , A2(Φ2w) returns, with probability 1 − 1

poly(n) , a
(1 + ε)-spectral sparsifier of the graph with edge weights w.

2Recall that the support of a vector is the set of indices at which it is
non-zero.
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Similar to the cut sparsification case, we have the following
corollary:

Corollary I.4 (of Theorem I.3). There is a single pass turnstile
streaming algorithm with Õ(n6/5ε−4) space that, at any given
point of the stream, recovers a (1 + ε)-spectral sparsifier of
the current graph with high probability.

We complement this result by showing that a superlinear
number of measurements are indeed necessary for any inci-
dence sketch to recover some O(1)-spectral sparsifier.

Theorem I.5 (Lower bound for weighted spectral sparsifi-
cation). There exist constants ε, δ ∈ (0, 1) such that any
incidence sketch of N measurements that computes a (1+ ε)-
spectral sparsifier with probability ≥ 1 − δ on any w must
satisfy N ≥ n21/20−o(1).

Note that this is in sharp contrast to the unweighted case,
where a near-linear number of incidence sketch measurements
are sufficient for computing an O(1)-spectral sparsifier [18],
[19]. Theorem I.5 also draws a distinction between spec-
tral sparsification and cut sparsification, as for the latter a
near-linear number of measurements are enough even in the
weighted case

c) Weighted spanner computation.: We first show that
any o(n2) linear measurements can only recover a spanner
of stretch that in general depends linearly on wmax

wmin
. This

differs fundamentally from the case of cut or spectral sparsifi-
cation, where we can recover an O(1)-sparsifier, whose error
is completely independent of wmax

wmin
, using a sublinear-in-n2

number of measurements. Specifically, we prove the following
proposition.

Proposition I.6. Any linear sketch (not necessarily an inci-
dence sketch) of N measurements that computes an o(wmax

wmin
)-

spanner with probability ≥ .9 on any w must satisfy N ≥
Ω(n2).

This proposition is a consequence of that edge weights are
proportional to the edge lengths. More specifically, consider
a complete graph where we weight a uniformly random edge
by wmin and all other

(n
2

)
−1 edges by wmax. Then, while we

can ignore the wmin-weight edge in an O(1)-cut or spectral
sparsifier, we have to include it in any o(wmax

wmin
)-spanner, since

otherwise the shortest path length between its two endpoints
would have been blown up by at least a factor of 2wmax

wmin
. Now

note that, as the weight of this edge is smaller than all other
edges, in order to find it we have to essentially recover all
entries of the edge weight vector w, which inevitably requires
Ω(n2) linear measurements3.

In light of the above proposition, we turn our focus to graphs
with wmax

wmin
= O(1), and study the stretch’s optimal dependence

on n. On such graphs, the approach in [10] is able to obtain
the following tradeoff between the stretch of the spanner and
the number of linear measurements needed.

3In our actual proof of the proposition, we have to add some random
Gaussian noise to each edge’s weight for the lower bound to carry out.

Theorem I.7 (Algorithm for weighted spanner computa-
tion [10]). For any constant α ∈ [0, 1], there exists an
incidence sketch with random sketching matrix Φ3 ∈ RN3×(n2)

satisfying N3 ≤ Õ(n1+α) and a recovery algorithm A3, such

that for any w ∈ R(
n
2)
≥0 with wmax

wmin
≤ O(1), A3(Φ3w) returns,

with probability 1 − 1
poly(n) , an Õ(n

2
3 (1−α))-spanner of the

graph with edge weights w.

[10] also conjectured that on unweighted graphs, to obtain
a spanner of stretch O(n

2
3−ε) for any constant ε > 0, a

superlinear number of measurements are needed for any linear
sketch (in other words, the tradeoff is optimal at α = 0).
We make progress on this question by showing that this is
indeed true for a natural class of linear sketches (i.e. incidence
sketches) on “almost” unweighted graphs (i.e. those with
wmax
wmin

= O(1)). In fact, we show that in such a setting,
the tradeoff obtained in the above theorem is optimal for all
α < 1/10.

Theorem I.8 (Lower bound for weighted spanner compu-
tation). For any constant α ∈ (0, 1/10), there exist con-
stants C ≥ 1, δ ∈ (0, 1) such that any incidence sketch of
N measurements that computes an o(n

2
3 (1−α))-spanner with

probability ≥ 1 − δ on any w with wmax
wmin

≤ C must satisfy
N ≥ n1+α−o(1).

B. Roadmap
The rest of this paper is structured as follows. Section II

gives an overview of our algorithms for weighted cut and spec-
tral sparsification. Then in Section III, we give an overview
of our lower bound for weighted spectral sparsification. Note
that we do not give a separate overview of our lower bound
for weighted spanner computation, because the ideas are
similar to the ones described in Section III. The proofs of
our main results are omitted here due to space limitation and
are included in the full version.

II. OVERVIEW OF WEIGHTED CUT AND SPECTRAL
SPARSIFICATION ALGORITHMS

A. Overview of the algorithm for weighted cut sparsification
a) Recap of the unweighted cut sparsification algorithm

in [2].: At a high-level, the approach taken is to reduce cut
sparsification to (repeatedly) recovering a spanning forest of
a subgraph of the input graph, obtained by sampling edges
uniformly at some rate p ∈ (0, 1) known beforehand. This
task is then further reduced to the task of sampling an edge
connecting S to S̄ for an arbitrary subset S of vertices, as this
can be used to create a spanning forest by growing connected
components.

Now to implement this latter task, in the sketching phase,
we apply an $0-sampler sketch to the incidence vector of each
vertex u (i.e. each column of the edge-vertex incidence matrix)
in the sub-sampled graph. Then in the recovery phase, in
order to recover an edge going out of a vertex set S, we
add up the sketches of the vertices inside S. By linearity,
this summed sketch is taken over the sum of the incidence
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vectors of vertices inside S, and the latter contains exactly the
edges going out of S, since the edges inside cancel out. As
a result, we can recover an edge going out of S, and create
a spanning forest of the sub-sampled graph. Note that this
approach crucially utilizes the fact that the edges are sampled
uniformly at a rate that is known beforehand. This means that
we can sample all

(n
2

)
edge slots beforehand, and apply the

linear sketch only to the sampled edge slots.
b) Our approach for weighted cut sparsification.: We

also reduce the task to recovering a spanning forest in a sub-
sampled graph. However, the latter graph is now obtained
by sampling edges non-uniformly. Specifically, we need to
recover a spanning forest in a subgraph obtained by sampling
each edge e with probability min {wep, 1} for some parameter
p ∈ (0, 1) that is known beforehand. Therefore, in order to
apply the idea as in the unweighted case, we will now need
to design a variant of $0-sampler that, given a vector x ∈ RN

≥0
and a parameter p ∈ (0, 1), recovers a nonzero entry of x after
each entry i ∈ [N ] is sampled with probability min {xip, 1}.
We call such a sampler “weighted edge sampler”.

Note that the edge weights are not known to us beforehand,
so we cannot sample the edge slots with our desired probabil-
ities as in the unweighted graph case. We instead build such
a weighted edge sampler using a rejection sampling process,
in which we sample edges uniformly at Õ(1) geometric rates,
but use $1-samplers to try recovering edges at each rate, and
only output a recovered edge e if the sampling rate ≈ wep.
We then show that with high probability, we can efficiently
find a desired edge.

Roughly, our analysis involves proving that there exists a
geometric rate q such that, after uniformly sampling edges at
rate q, the total weight of edges e satisfying wep ≈ q accounts
for a large portion of that of all sampled edges. As a result,
by using a few independent $1-samplers, we can find one such
edge with high probability.

B. Overview of the algorithm for weighted spectral sparsifi-
cation

As in previous linear sketches for unweighted graphs [17],
[19], the key task is to recover edges with Ω̃(1) effective
resistances (or in weighted case, Ω̃(1)-leverage scores), which
we refer to as heavy edges. The high-level idea used in
previous works is to (i) compute, for each vertex pair s, t,
a set of vertex potentials xs,t ∈ Rn induced by an electrical
flow from s to t, and then (ii) apply an $2-heavy hitter to
BGxs,t ∈ R(

n
2) to try recovering the edge (s, t), where BG

is the edge-vertex incidence matrix of G. They achieve (i) by
simulating an iterative refinement process in [28]. To achieve
(ii), they make a key observation that

‖BGxs,t‖22 = xT
s,tB

T
GBGxs,t = xT

s,tLGxs,t

is the energy of xs,t, and the entry of BGxs,t indexed by edge
(s, t) is (BGxs,t)(s,t) = bTs,tx = xs − xt. Therefore by the
energy minimization characterization of effective resistances,

whenever the effective resistance between s, t is bTs,tL
†
Gbs,t ≥

Ω̃(1), we have

(BGxs,t)
2
(s,t) ≥ Ω̃(1) ‖BGxs,t‖22 ,

and hence the entry (s, t) is an $2-heavy hitter.
However, when the graph is weighted, we are only allowed

to access the graph through linear measurements on its weight
vector wG. As a result, we can only apply $2-heavy hitters
to WGBGxs,t, whose squared $2-norm is xT

s,tB
T
GW

2
GBGxs,t.

Now notice that BT
GW

2
GBG is the Laplacian matrix of a

“squared” graph (call it Gsq), which has the same edges as
G, but whose edges are weighted by w2

e as opposed to we.
Therefore, we will be recovering edges that are heavy in Gsq

instead of in G if we apply the same approach as in previous
works. Unfortunately, a heavy edge in G is not in general
heavy in Gsq, since the energy on the edges with very large
weights will blow up when we square the edge weights (i.e.
w2

e(xu − xv)2 ( we(xu − xv)2), and hence make the total
energy grow unboundedly.

Sn4/5−1

S0

S1

S2

Sn4/5

2 −1

Sn4/5

2

Sn4/5

2 +1

Sn4/5

2 +2

. . .

. . .

Figure 1. A block cycle graph on n vertices. Each Si represents a block of
n1/5 vertices connected by a clique and each zigzag represents the edges of a
complete bipartite graph between adjacent blocks. The red edge represents the
crossing edge. All edges along the cycle have weights n2/5, and the crossing
edge has weight 1.

To see an intuitive example, suppose G is a “block cycle
graph” on n vertices whose edges are generated as follows
(see also Figure 1):

1) Partition the vertices into n4/5 blocks S0, . . . , Sn4/5−1,
each with n1/5 vertices.

2) For each 0 ≤ i < n4/5, add on Si a complete graph of
n1/5 vertices with edge weights n2/5, i.e. n2/5Kn1/5 .

3) For each 0 ≤ i < n4/5, add on (Si, Si+1) a complete
bipartite graph of 2n1/5 vertices with edge weights n2/5

and bipartition (Si, Si+1)4, i.e. n2/5Kn1/5,n1/5 .

4Note that we consider i+ 1 as 0 when i = n4/5 − 1.
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4) Finally, add a “crossing edge” e∗ of weight 1 between
a randomly chosen vertex pair s, t.

We note that, in this construction, the crossing edge e∗ spans
Ω(n4/5) consecutive blocks, Note that, typically, the crossing
edge e∗ spans Ω(n4/5) consecutive blocks, and therefore has
effective resistance (and also leverage score) Ω(1).

Proposition II.1. If s ∈ Si, t ∈ Sj such that
min

{
|i− j|, n4/5 − |i− j|

}
≥ Ω(n4/5), then the effective

resistance of e∗ satisfies re∗ ≥ Ω(1).

Proof. Let s, t be the endpoints of the crossing edge e∗. By the
energy minimization characterization of effective resistances,
it suffices to show that there is a set of vertex potentials whose
normalized energy with respect to s, t is O(1). Specifically,
consider the set of potentials x ∈ Rn such that xu = i

n4/5 for
all u ∈ Si. Then we have xs−xt = Θ(1), and the total energy
is

∑
e=(u,v) we(xu−xv)2 = n6/5 ·n2/5(Θ(n−4/5))2+Θ(1) =

Θ(1), as desired.

However, in the squared graph Gsq, all edge weights along
the cycle are blown up by a factor of n2/5, and thus e∗

only has leverage score O(n−2/5) in Gsq. To recover in
a vector x every entry with $2-contribution ≥ n−2/5 ‖x‖22,
one will need an Ω(n−2/5) factor blowup in the number of
linear measurements, resulting in a total of n7/5 measurements
needed to recover e∗.

We can in fact improve the number of linear measurements
needed for recovering e∗ to Õ(n6/5) using the vertex sampling
trick, an idea first used in [10] for sketching spanners. Namely,
consider sampling a vertex set C ⊂ V by including each vertex
with probability n−1/5/100, and looking at the vertex-induced
subgraph Gsq[C]. Then one can show that, conditioned on
e∗ ∈ Gsq[C], with constant probability, the two endpoints of
e∗ will be disconnected in Gsq[C]\e∗. As a result, the leverage
score of e∗ becomes 1 in Gsq[C], and we can recover e∗

by recovering heavy edges in Gsq[C], which, as will show,
can be done using Õ(|C|) ≈ Õ(n4/5) measurements. Since
e∗ ∈ G[C] with probability ≈ 1

n2/5 , repeating this sampling
process independently for Õ(n2/5) times allows us to recover
e∗ in at least one vertex induced subgraph. This results in a
linear sketch of Õ(n6/5) measurements.

What if we slightly increase each block’s size to n1/5+δ and
decrease the edge weights along the cycle to n2/5−3δ? While
one can still verify that the crossing edge e∗ has leverage
score Ω(1), applying the same vertex sampling process as
above will not disconnect the endpoints of e∗ with Ω(1)
probability. However, one can alternatively show that, with
constant probability, the number of edges along the cycle
reduces by a factor of n2/5. Since now the energy of each
edge only blows up by a factor smaller than n2/5 in Gsq,
this will also make the leverage score of e∗ become Ω(1)
in Gsq[C], and thus we can apply the same linear sketch of
Õ(n6/5) measurements.

The above warm-up seems to suggest that the sampling rate
of ≈ n−1/5 is a sweet spot for recovering heavy edges in
any graphs with the block cycle structure. Indeed, we prove

a key vertex sampling lemma showing that in any weighted
graph G, a heavy edge e in G is also likely heavy in a vertex-
induced subgraph of Gsq obtained by sampling vertices at rate
≈ n−1/5. This is proved by carefully analyzing the structures
of the edges of different weights after vertex sampling, and
then explicitly constructing a set of vertex potentials with small
total energy in the induced subgraph. Finally, by integrating
this lemma into an iterative refinement process in [28] (as
the authors did in [17], [19]) and a spectral sparsification
algorithm in [21], we are able to recover a spectral sparsifier
of G using Õ(n6/5) linear measurements.

We note that this method of recovering heavy edges by
vertex sampling is inspired by the one used in [17] for
spanners. However, for spectral sparsification, the correctness
of such a method follows from fairly different reasoning, and
the proof is arguably more involved.

III. OVERVIEW OF LOWER BOUND FOR WEIGHTED
SPECTRAL SPARSIFICATION

In this section we give an overview of our lower bound
for weighted spectral sparsification (Theorem I.5). We prove
our lower bound on a family of hard instances that turn out
to have the exact same structure as the one in Figure 1,
which we used to illustrate the difficulty of recovering spectral
sparsifiers in weighted graphs. Specifically, our hard instances
are weighted “block cycle graphs” plus an extra crossing
edge that is included with probability 1/2. In a block cycle
graph, the vertices are partitioned into blocks that are arranged
in a cyclic manner. Each block is a complete graph, and
the vertices of adjacent blocks are connected by a complete
bipartite graph. Here we draw all edge weights from Gaussian
distributions and permute the vertices uniformly at random. On
such graphs, for a suitable choice of edge weights, computing
a spectral sparsifier essentially boils down to detecting the
presence/absence of the crossing edge. We then show that for
the latter task, the success probability of any incidence sketch
can be bounded by the “effective resistance” of the crossing
edge in a matrix-weighted graph, where the matrix weights
are in turn determined by the sketching matrix.

We note that this family of hard instances has a similar
structure to the ones conjectured in [10]. However, instead of
using Bernoulli distributions on the edges as suggested in [10],
we use Gaussian distributions, which makes it easier to build
the connection to effective resistances.

In order to show that the effective resistance is small for
any incidence sketch with a limited number of measurements,
we develop a number of new tools for analyzing such matrix-
weighted graphs. Most importantly, we present (i) a matrix-
weighted analog of the widely used expander decomposition of
ordinary graphs [12], [15], [33], and (ii) a proof that a random
vertex-induced subgraph of a matrix-weighted expander is also
an expander with high probability. We highly recommend
reading Section III-C to get intuition on why these two
techniques are useful, where we use the ordinary graph version
of (i) and (ii) to prove a lower bound for a simple class of
sketches.
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The rest of this section is structured as follows. In Sec-
tion III-A we describe the distribution from which we generate
our hard instances. In Section III-B we explain how we bound
the success probability of an incidence sketch by the effective
resistance in a matrix-weighted graph. In Section III-C we
prove, as a warm-up, a lower bound for a simple class of
sketches, where we only need to analyze the effective resis-
tances in ordinary graphs. Finally in Section III-D we outline
our proof for arbitrary incidence sketches, which requires
analyzing matrix-weighted graphs.

A. The hard distribution

We first state how we generate the input weighted graph
G = (V,E,w). Let n be the number of vertices and define
s

def
= n1/5 and $

def
= n4/5. We choose a random permutation

π : 1..n→ 1..n and construct a block cycle graph as follows.
The i-th block (where 0 ≤ i < $) consists of vertices π(si +
1), . . . ,π(si + s). For simplicity we denote the a-th vertex
in the i-th block (i.e. π(si + a)) as ui,a. The block index i
will always be modulo $ implicitly. We then add a complete
graph to each block, and a complete bipartite graph between
each pair of adjacent blocks. Namely, for each 0 ≤ i < $,
we add a graph Gi with edges connecting ui,a, ui,b for all
a < b ∈ {1, . . . , s}, and add another bipartite graph Gi,i+1

with edges connecting ui,a, ui+1,b for all a, b ∈ {1, . . . , s}.
Finally, with probability 1/2, we add an edge between vertices
π(1) and π(n/2+1) (assume n is even). We refer to this edge
as the crossing edge with respect to π and any other edge in G
as a non-crossing edge with respect to π. We will omit “with
respect to π” when the underlying permutation π is clear.

We next describe how the edge weights are determined. The
weights of all non-crossing edges are drawn independently
from N (8n2/5, n4/5 log−1 n) (the Gaussian distribution with
mean 8n2/5 and variance n4/5 log−1 n). The weight of the
crossing edge is drawn from the standard Gaussian N (0, 1).
If the crossing edge has negative weight, we say the input is
invalid, and accept any sketch as a valid sketch. Our goal will
be to detect the presence/absence of the crossing edge with
high probability.

In the following, we will call the conditional distribution
on the presence of the crossing edge the Yes distribution,
and call the conditional distribution on the absence of the
crossing edge the No distribution. We then show that with
high probability, the effective resistance of the crossing edge
is large, and therefore any linear sketch for computing spectral
sparsifiers must distinguish between the two distributions with
good probability.

Proposition III.1. With probability at least 1− 1/n, all non-
crossing edges have weights in the range [4n2/5, 12n2/5], and
as a result the effective resistance between vertices π(1) and
π(n/2 + 1) is at least 1/48 in a No instance.

Proposition III.2. Any linear sketch that can compute a
1.0001-spectral sparsifier with probability 0.9 can distinguish
between the Yes and No distributions with probability 0.6.

The first proposition follows from an application of the
Chernoff bound. The proof of the second proposition is
deferred to the full version.

In the following, we will assume, for ease of our analysis,
that the sketch will be given the permutation π after computing
the linear sketch. That is, the recovery algorithm A takes
as input both Φw and π. We will show that even with this
extra piece of information, any incidence sketch with n21/20−ε

measurements for constant ε > 0 cannot distinguish between
the Yes and No distributions with high probability.

B. A bound on the success probability via effective resistance
We first show that for our lower bound instance, any inci-

dence sketch can be reduced to a more restricted class of linear
sketches by only increasing the number of measurements by an
O(log n) factor. Specifically, let us fix an arbitrary orientation
of the edges, and consider sketches taken over the weighted
signed edge-vertex incidence matrix Bw ∈ R(

n
2)×n, where the

latter is given by

Bw
eu =






we e ∈ E and u is e’s head
−we e ∈ E and u is e’s tail
0 otherwise.

That is, the algorithm must choose a (random) sketching ma-
trix Φ ∈ Rk×(n2) with the eth column φe ∈ Rk corresponding
to the edge slot e. The sketch obtained is then ΦBw ∈ Rk×n.
Notice that the total number of measurements in ΦBw is kn,
as each vertex applies the sketching matrix Φ to its incident
edges. Let us call this class of sketch signed sketches. By
Yao’s minimax principle [35], to prove a lower bound for
distinguishing the Yes and No distributions, it suffices to focus
on deterministic sketches. The proof of the proposition below
appears in the full version.

Proposition III.3 (Reduction to signed sketches). Consider
any incidence sketch of N measurements with a deterministic
sketching matrix Φ ∈ RN×(n2) and a recovery algorithm A
that, given Φw and π, distinguishes between the Yes and No
distributions with probability at least 0.6. Then there exists
a signed sketch with a sketching matrix Φ′ ∈ Rk×(n2), where
k = O(1) · max{1, N logn

n }, and a recovery algorithm A′
that, given Φ′Bw and π, distinguishes between the Yes and
No distributions with probability at least 0.55.

Let us now fix a sketching matrix Φ ∈ Rk×(n2) and aim
to obtain an upper bound on the success probability of any
signed sketch using Φ. For notational convenience, let us write
(ΦBw)yes to denote ΦBw conditioned on the presence of the
crossing edge and (ΦBw)no to denote ΦBw conditioned on the
absence of the crossing edge. We will also write (ΦBw)π,yes or
(ΦBw)π,no to denote an extra conditioning on the permutation
being π in addition to the presence/absence of the crossing
edge. Then to bound the success probability of any signed
sketch using Φ , it suffices to show that the total variation
distance (TV-distance) between (ΦBw)yes and (ΦBw)no is
small.
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To state our upper bound on the TV-distance, we need to
first introduce some notation. For an edge (u, v), define buv ∈
Rnk by writing it as a block vector (with block size k) as
follows:

buv =









0
...

φuv uth block
0
...

−φuv vth block
0
...

∈ Rnk, (1)

where φuv ∈ Rk is the column of Φ corresponding to
the edge slot (u, v). For a permutation π, we then define
Lπ =

∑
non-crossing (u, v) n

4/5 log−1 n buvbTuv . The following
proposition is essentially a consequence of the result in [8],
which bounds the TV-distance between multivariate Gaussians
with the same mean. We give its proof in the full version.
Note that we use † to denote taking the Moore-Penrose
pseudoinverse of a matrix.

Proposition III.4. For any permutation π such that
bπ(1)π(n/2+1) is in the range5 of Lπ ,

dTV((ΦB
w)π,yes, (ΦB

w)π,no) ≤
O(1) ·min

{
1, bπ(1)π(n/2+1)L

†
πbπ(1)π(n/2+1)

}
.

Our plan is then to show that bπ(1)π(n/2+1)L
†
πbπ(1)π(n/2+1)

is small on average for every choice of a signed sketch with
k = n1/20−ε for constant ε > 0.

Note that if k = 1 and each φuv ∈ {0, 1}, then Lπ

is exactly the Laplacian matrix of the graph (call it Hπ)
that is formed by the non-crossing edges (u, v) such that
φuv = 1, where each edge is weighted by n4/5 log−1 n. There-
fore, bπ(1)π(n/2+1)L

†
πbπ(1)π(n/2+1) is the effective resistance

between π(1) and π(n/2 + 1) in Hπ , if φπ(1)π(n/2+1) += 0
(otherwise bπ(1)π(n/2+1) is the zero vector).

In fact, to get a quick intuition as to why we should expect
the effective resistance between π(1) and π(n/2 + 1) to be
small, let us assume φuv = 1 for all edge slots (u, v). Then,
for any permutation π, Hπ is the graph formed by all non-
crossing edges, each weighted by n4/5 log−1 n. Note that these
weights are about n2/5 times larger than the weights Θ(n2/5)
in the actual input graph (Proposition III.1). As a result, the
effective resistance between π(1) and π(n/2+1) is about n2/5

times smaller than the effective resistance between them in the
input graph (the former roughly equals n−2/5).

When k > 1, we can view L as the Laplacian of a matrix-
weighted graph (again, call it Hπ) formed by the non-crossing
edges, where each edge (u, v) has a k × k matrix weight
n4/5 log−1 nφuvφT

uv . Now bπ(1)π(n/2+1)L
†
πbπ(1)π(n/2+1) can

5Recall that the range of a symmetric matrix is the linear span of its
columns.

be seen as the (generalized) effective resistance between π(1)
and π(n/2 + 1) in Hπ .

C. Warm-up: one-row signed sketches have small TV-distance
As a warm-up, we show that for any signed sketch, in the

case that k = 1 and the sketching matrix Φ has 0/1 entries,
we have, for any constant ε > 0,

Eπ [dTV ((ΦBw)π,yes, (ΦB
w)π,no)] ≤

1

n1/5−O(ε)
. (2)

By Proposition III.4, we know that
dTV ((ΦBw)π,yes, (ΦBw)π,no) can be bounded by the
effective resistance between π(1),π(n/2 + 1) in Hπ if
φπ(1)π(n/2+1) = 1, and is zero otherwise. Here Hπ is formed
by the non-crossing edges whose φuv = 1, where each edge
(u, v) has scalar weight n4/5 log−1 n. We can focus on the
Φ’s whose number of nonzero entries is at least n9/5+ε, since
otherwise

Prπ
[
φπ(1)π(n/2+1) = 1

]
=

nnz(Φ)(n
2

) ≤ 1

n1/5−O(ε)
,

and we would already have our desired result (2).
Our proof of (2) will rely on decomposing Hπ into ex-

panders with large minimum degree. Since Hπ’s edges all
have the same weight n4/5 log−1 n, it is more convenient to
work with the unweighted version of Hπ , which we denote
by Hπ . We now briefly review the definition of unweighted
expanders, as well as state a known expander decomposition
lemma that we will utilize.

Definition III.1 (Expander). An unweighted graph H =
(V,E) is a ζ-expander for some ζ ∈ [0, 1] if its conductance
is at least ζ, namely, for every nonempty S ⊂ V , we have

|E(S, V − S)| ≥ ζ ·min {vol(S), vol(V − S)} ,

where vol(S) is the total degree of vertices in S.

Note that in the lemma below, we slightly abuse the notion
of “regular graphs”. Specifically, we will say a graph is regular
if its minimum vertex degree dmin is not much smaller than
the average degree d.

Lemma III.5 (Almost regular expander decomposition, see
e.g. [16]). Given an unweighted graph H = (V,E) with
average degree d ≥ 16, there exists a subgraph I = (U,F )
where U ⊆ V and F ⊆ E such that I is a 1

16 logn -expander
with minimum degree dmin ≥ d

16 .

We will also need the following lemma, which shows that
a random vertex-induced subgraph of an expander with large
minimum degree is almost certainly an expander. We give the
proof of this lemma in the full version. To the best of our
knowledge, even this result was not known before.

Lemma III.6 (Expanders are preserved under vertex sam-
pling). There exists a θ = θ(n) = no(1) with the fol-
lowing property. Consider an unweighted 1

16 logn -expander
H = (V,E) with minimum degree dmin ≥ 4 · 106 · θ(n).
For any s ≥ 4·106

dmin
·θ(n) ·n, let C ⊆ V be a uniformly random
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vertex subset of size s. Then with probability at least 1−1/n7,
the vertex-induced subgraph H[C] is a 1

no(1) -expander with
minimum degree at least s

2n · dmin.

Proof of (2) using Lemmas III.5,III.6. As argued above we
can assume w.l.o.g. that nnz(Φ) ≥ n9/5+ε. We want to obtain,
for each edge slot e satisfying φe = 1, conditioned on e being
the crossing edge w.r.t. π, an upper bound (call it ue) on the
typical effective resistance between the endpoints of e in the
graph Hπ . In other words, conditioned on e being the crossing
edge, ue should be an upper bound on the effective resistance
between the endpoints of e in Hπ with high probability over
π. Then the total variation distance between (ΦBw)yes and
(ΦBw)no can be bounded by

Eπ [dTV ((ΦBw)π,yes, (ΦB
w)π,no)] ≤ O(1) · 1(n

2

)
∑

e:φe=1

ue.

(3)

To obtain the ue’s, let us define the unweighted graph
Hφ = (V,Eφ) where Eφ contains all edges e whose φe =
1 (including the ones not present in the input graph, i.e.
|Eφ| = nnz(Φ)). Now consider the following process, where
we repeatedly delete an expander subgraph from Hφ and
obtain ue’s for the edges in the expander.

1) While |Eφ| ≥ 109n9/5+ε:

a) Find a subgraph I = (U,F ) of Hφ = (V,Eφ) that
is a 1

16 logn -expander with minimum degree dmin ≥
|Eφ|
8n (existence is guaranteed by Lemma III.5).

b) For each edge f ∈ F , let uf ←
(

109n9/5+ε

|Eφ|

)2
.

c) Delete the edges in F from Hφ by letting Eφ ←
Eφ \ F .

2) Let uf ← 1 for all f in the remaining Eφ.

To show that ue’s are valid upper bounds, let us consider a
fixed iteration of the while loop. For i = 0, . . . , n4/5 − 1, let
Ui denote the vertices in I that are in the ith block of the
input block cycle graph:

Ui
def
= U ∩

{
π(n1/5i+ 1), . . . ,π(n1/5i+ n1/5)

}
.

Then by Chernoff bounds, with probability at least 1− 1/n5

over the random choice of π, we have |Ui| ≥ |U |
2n4/5 ≥ 4·106

dmin
·

|U |1+ε. Then by invoking Lemma III.6, with probability at
least 1−1/n4 over π, all vertex-induced subgraphs I[Ui∪Ui+1]
are 1

no(1) -expanders with minimum degree at least |Eφ|
16n9/5 .

Using this fact, we obtain the following claim, whose proof
appears in the full version.

Claim III.7. For each edge f ∈ F , conditioned on f being
the crossing edge, with probability at least 1 − 1/n2 over π,
the effective resistance between the endpoints of f in Hπ is
at most uf .

Now let us divide the above process for obtaining ue’s into
O(log n) phases, where in phase i ∈ {1, . . . , O(log n)}, we
have |Eφ| ∈ (

(n
2

)
/2i,

(n
2

)
/2i−1]. Then we have

∑

e:φe=1

ue =
∑

e:φe=1

(
109n9/5+ε

|Eφ|

)2

≤nO(ε) ·
O(logn)∑

i=1

(n
2

)

2i
·
(

2i

n1/5

)2

≤n8/5+O(ε)
O(logn)∑

1

2i ≤ n9/5+O(ε)

where in the first line we have used nO(ε) to hide the constant
factors, and the last inequality holds since in the last phase we
have 2i ≤ n1/5. Plugging this into (3) finishes the proof.

D. The general case: proof of Theorem I.5
Note that even though for k = 1, the TV-distance is

Õ(n−1/5), this does not imply that k must be large for the
TV-distance to become Ω(1).

By Proposition III.3, in order to prove Theorem I.5, it
suffices to prove the following:

Theorem III.8. For any fixed sketching matrix Φ ∈ Rk×(n2)

where k ≤ n1/20−ε for some constant ε > 0, we have

Eπ [dTV ((ΦBw)π,yes, (ΦB
w)π,no)] ≤ o(1).

By Proposition III.4, our goal is to bound the “effec-
tive resistance” bπ(1)π(n/2+1)L

†
πbπ(1)π(n/2+1) between ver-

tices π(1),π(n/2 + 1) in the matrix-weighted graph Hπ

consisting of the non-crossing edges, where edge (u, v) has
matrix weight n4/5 log−1 nφuvφT

uv ∈ Rk×k. We will do so
by (significantly) generalizing our previous approach based on
expander decomposition for ordinary graphs in Section III-C.
Our approach for the k = 1 case essentially consists of
two steps: (i) decomposing the graph Hφ into large expander
subgraphs and (ii) proving that a random vertex induced
subgraph of an expander is still an expander.

First note that there does not appear to be a combinatorial
analog of conductance in matrix-weighted graphs, which sug-
gests that we should define expanders in an algebraic way.
Let us first recall the algebraic characterization of expanders
for ordinary, unweighted graphs. The definition is based on
eigenvalues of the normalized Laplacian of the graph, which
is given by N = D−1/2LD−1/2, where D is a diagonal matrix
with Duu equal to the degree du of u.

Definition III.2 (Algebraic definition of ordinary, unweighted
expanders). An unweighted graph H is a ζ-expander for some
ζ ∈ [0, 1] if the smallest nonzero eigenvalue of its normalized
Laplacian matrix N is at least ζ.

By Cheeger’s inequality [3], for ζ ≥ Ω̃(1), this definition
translates to that the graph H is a union of vertex-disjoint
combinatorial expanders, each with conductance Ω̃(1). To
come up with an analogous definition for matrix-weighted
graphs, let us first define their associated matrices formally.
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a) Matrices associated with matrix-weighted graphs.:
We consider a k× k matrix-weighted graph H = (V,E) with
|V | = n. For each edge (u, v) ∈ E, there is a vector φuv ∈ Rk,
indicating that (u, v) is weighted by the k × k rank-1 matrix
φuvφT

uv .

Definition III.3 (Degree matrices). For a vertex u, its gener-
alized degree is given by

Du =
∑

u∼v

φuvφ
T
uv ∈ Rk×k.

We then define the nk × nk degree matrix D as a block
diagonal matrix (with block size k × k), with the uth block
on the diagonal being Duu = Du ∈ Rk×k.

Definition III.4 (Laplacian matrices). The Laplacian matrix
is given by L =

∑
(u,v)∈E buvbTuv , where buv’s are defined

in (1).

We will call buv the incidence vector of edge (u, v).

Definition III.5 (Normalized Laplacian matrices). The nor-
malized Laplacian matrix is given by N

def
= D†/2LD†/2.

Equivalently, we have N =
∑

(u,v)∈E D†/2buvbTuvD
†/2.

We will call D†/2buv the normalized incidence vector of
edge (u, v).

The following proposition says that similar to scalar-
weighted graphs, the eigenvalues of the normalized Laplacian
of a matrix-weighted graph are also between [0, 2]. The proof
this proposition appears in the full version.

Proposition III.9. The eigenvalues of N are between [0, 2].

Now, a first attempt might be to define matrix-weighted
expanders to also be graphs whose normalized Laplacians’
nonzero eigenvalues are large, and then try to decompose
any matrix-weighted graph into large expander subgraphs.
However, we show that the latter goal may not be achievable
in general, by presenting in the full version a hard instance,
for which any large subgraph has a small nonzero eigenvalue.

b) Our approach.: In light of the hard instance, we
loosen the requirement of being an expander by allowing small
eigenvalues, but requiring instead that each edge, compared to
the average, does not have too large “contribution” to the small
eigenvectors. Formally, we want that every edge’s normalized
incidence vector has small (weighted) projection onto the
bottom eigenspace. We will also need an analog of “almost
regularity”, which for ordinary, unweighted graphs says that
the minimum degree is large. We give the formal definition of
an almost regular matrix-weighted expander below.

Definition III.6 (Almost regular matrix-weighted expanders).
For a k × k matrix-weighted graph H , let λ1 ≤ . . . ≤ λnk

be the eigenvalues of its normalized Laplacian N , and let
f1, . . . , fnk ∈ Rnk be a set of corresponding orthonormal
eigenvectors. We say H is a (γ, ζ,ψ)-almost regular expander
if

1) (γ-almost regularity) For every vertex u and every
incident edge (u, v) ∈ E, we have

φT
uvD

†
uφuv ≤

γ · k
n

. (4)

2) ((ζ,ψ)-expander) For every edge (u, v) ∈ E we have

(
D†/2buv

)T




∑

i:λi∈(0,ζ]

1

λi
fif

T
i



D†/2buv ≤
ψ · k2

n2
.

(5)

The LHS of (4) is the so-called leverage score of φuv w.r.t.
Du. It is known that the sum of leverage scores equals the
rank of the matrix:

Proposition III.10. For any fixed vertex u,∑
(u,v)∈E φT

uvD
†
uφuv = rank (Du).

Since Du is a k × k matrix, we have rank (Du) ≤ k.
Therefore, in the case that u has Ω(n) incident edges, (4)
is essentially saying that no incident edge’s leverage score
exceeds the average by too much.

To get intuition for condition (5), we need the following
two results, whose proofs appear in the full version.

Theorem III.11. Let H be a k×k-matrix weighted graph that
is γ-almost regular (in the sense of (4)). Then for any ζ ∈
(0, 1), the number of eigenvalues of its normalized Laplacian
that are between (0, ζ] is at most γ·k2

(1−ζ)2 .

Proposition III.12. Let $ be the number of λi’s that are
between (0, ζ]. Then

∑

(u,v)∈E

(
D†/2buv

)T




∑

i:λi∈(0,ζ]

1

λi
fif

T
i



D†/2buv = $. (6)

Therefore, in the case that |E| = Ω(n2), (5) is essentially
saying that the LHS for every edge (u, v) does not exceed the
average by too much.

We then show that every dense enough matrix-weighted
graph can indeed be made into an expander by downscaling a
small number of edges. To this end, let us define, for a scaling
s : E → [0, 1], the rescaled graph Hs, which is obtained from
H by rescaling each edge (u, v)’s weight to s2uvφuvφT

uv . The
proof of the following theorem appears in the full version.

Theorem III.13. There is an algorithm that, given any k× k
matrix-weighted graph H = (V,E) with |E| ≥ Ω(n2), outputs
a scaling s : E → [0, 1] such that

1) The rescaled graph Hs is a (γ, ζ,ψ)-almost regular
expander for

γ = 8 log n, ζ =
1

log n
, ψ = 16k2 log3 n.

2) The number of edges (u, v) ∈ E with suv < 1 is o(n2).

We next show that almost-regular expanders are preserved
under vertex sampling. However, we will now use a different
notion of “preservation”. To state our specific result, let us
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define some additional notations. For a vertex subset C ⊆ V ,
we write LG[C] to denote the Laplacian of the vertex-induced
subgraph G[C]. We also let DCC be the submatrix of D
(the degree matrix of the original graph H) with rows and
columns restricted to vertices in C, and let (fi)C denote, for
an eigenvector fi, the vector fi with indices restricted to C.
We then have the following theorem, whose proof appears in
the full version.

Theorem III.14. There exists a θ = θ(n) ≤ no(1) with the fol-
lowing property. Let H = (V,E) be a k× k matrix-weighted,
(γ, ζ,ψ)-almost regular expander where ζ ≤ 1/ log n. For an
s ≥ 2 · 106γψζ−1k2θ(n), let C ⊆ V be a uniformly random
vertex subset of size s. Then with probability at least 1−1/n5,
we have that

1) The null space of D†/2
CCLG[C]D

†/2
CC is exactly the linear

span of {(fi)C : λi = 0}.
2) For all vectors x ∈ R|C|k such that xT (fi)C = 0, ∀i :

λi = 0,

xT
(
D†/2

CCLG[C]D
†/2
CC

)†
x ≤

no(1) · xT



n2

s2

∑

i:λi∈(0,ζ]

1

λi
(fi)C(fi)

T
C +

n

s
· 1
ζ
I



x.

(7)
We argue that (7) is roughly saying that the pseudoinverse

of the subgraph G[C] can be bounded by the pseudoinverse
of the original graph that is (i) restricted to indices in C and
(ii) rescaled in a certain way. For technical reasons, on the
LHS of (7) we normalize the Laplacian of the vertex-induced
subgraph using the degree matrix of the original graph H .
As for the RHS, we can see it as a rescaled version of the
pseudoinverse of N restricted to C, by noting that

(
N †)

CC
=

∑

λi>0

1

λi
(fi)C(fi)

T
C .

Thus, on the RHS of (7) we blow up the small eigenvalues
quadratically in 1/(sampling rate), but blow up the large
eigenvalues linearly in 1/(sampling rate).

With these tools, we are finally able to prove Theorem I.5.
1) Techniques for proving Theorems III.11, III.13, III.14:

We now explain, at a very high level, the techniques that
we use to prove these three key theorems, as well as their
connections to previous works. More details can be found in
the subsequent sections.

a) Proof of Theorem III.11.: We consider the “spectral
embedding” induced by the bottom eigenvectors of the nor-
malized Laplacian, which maps each vertex to a rectangular
matrix. Such a spectral embedding may be seen as the matrix-
weighted counterpart of the ones for scalar-weighted graphs,
which map each vertex to a vector. The latter embeddings
were previously used to prove higher-order Cheeger inequali-
ties [24], [29]. We show that, for matrix-weighted graphs that
are almost regular (in the sense of (4)), the spectral embedding
has vertex-wise bounded spectral norm, and as a result the
number of bottom eigenvectors must be small.

b) Proof of Theorem III.13.: Our proof consists of two
steps: (i) decomposing the graph into an almost regular graph,
and (ii) decomposing the graph into an almost regular ex-
pander. In achieving (ii), we actually invoke (i) repeatedly to
maintain the almost regularity of the graph.

As noted above, the almost regularity condition (4) is
essentially saying that no incident edge has leverage score
too large comparing to the average. A similar task to (i)
has in fact been investigated by a previous work [7], where
the authors showed that given a set of vectors, one can, by
downscaling a small number of them, make every vector have
small leverage score comparing to the average. This result is
achieved by an algorithm that iteratively downscales vectors
with large leverage scores, while analyzing how each vector’s
leverage score changes in the process. While it is possible
to directly invoke the result from [7] to get a large almost
regular graph, its guarantee does not suffice for our purpose
of smoothly incorporating (i) into (ii). In particular, since we
will repeatedly invoke (i) in (ii), we need, in addition to that
the number of rescaled edges is small, an extra bound on the
number of completely deleted edges (i.e. those rescaled to 0)
that is proportional to the rank change of the degree matrix D.
As a result, we design a more involved algorithm for obtaining
the scaling as well as carry out a more careful analysis of the
algorithm.

Achieving (ii) turns out to be much more challenging. Al-
though the LHS of (5) may be seen as a leverage score, there is
the intrinsic difficulty that whenever the edge weights change,
so do the eigenvalues and eigenvectors of the normalized
Laplacian, as well as the degree matrix itself (hence also the
normalized incidence vectors). Thus it is not clear how the
LHS of (5) will change. As a result, when trying to obtain
a desired scaling, we have to use some global measure of
progress. This is in contrast to (i), where we can track the
leverage score change of each edge locally. We resolve this
issue by considering, as a potential function, the determinant of
the normalized Laplacian restricted to the bottom eigenspace.
In other words, our potential function is the product of the
eigenvalues of N that are between (0, ζ]6. We show that, by
a delicate global analysis of such a potential function, we are
able to make the graph an expander by only downscaling a
small number of edges.

c) Proof of Theorem III.14.: Our proof is motivated
by the approximate Gaussian elimination of the Laplacian
matrices of scalar-weighted graphs, which was previously used
as an algorithmic tool for solving graph structured linear
systems [22], [23] and building data structures for dynamically
maintaining effective resistances [9], [25], [27]. Our approach
also relies on analyzing matrix-valued martingales which
played a key role in [23]. which have played key roles in
constructing vertex/subspace sparsifiers [11], [23], [26].

Let us first briefly review the Gaussian elimination of
the Laplacian matrix of a scalar-weighted graph. Roughly

6Due to technical reasons, the actual potential function slightly differs from
the one stated here.
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speaking, by eliminating the row and column of L correspond-
ing to a vertex u, we can obtain another Laplacian matrix
L′ supported on V \ {u} whose pseudoinverse equals the
pseudoinverse of the original L restricted to V \ {u} (i.e.
(L′)† = (L†)V \{u}V \{u}). Given a vertex subset C ⊆ V ,
one can also eliminate the vertices outside of C one by one
and get a Laplacian matrix L′′ supported on C with the same
property that (L′′)† = (L†)CC . The matrix L′′ is referred to
as the Schur complement of L onto C. However, the graphs
associated with L′ and L′′ could be dense, which are inefficient
for algorithm design. Therefore [23] showed that one can
perform an approximate Gaussian elimination by, upon each
elimination, implicitly sub-sampling the edges in L′. They then
showed that we eventually get a good approximation to L′′ by
analyzing a matrix-valued martingale induced by this process.

We now explain how to apply this idea to prove Theo-
rem III.14. Since we are considering an induced subgraph
G[C] where C is a uniformly random subset of size s, we can
also view the process for choosing C as deleting a sequence
of n − s vertices from V uniformly at random. Our goal
is to compare the pseudoinverse of G[C] with that of the
original graph, therefore it suffices to compare it with the
Schur complement of L onto C. We will in fact do such a
comparison upon the elimination of every vertex. That is, if
we let Ci be the set of remaining vertices at the ith step,
then we want to compare the Laplacian of G[Ci] with the
Schur complement of L onto Ci. At a high level, we do so
by setting up a matrix-valued martingale, and show that it has
good concentration when G is a matrix-weighted expander (in
the sense of Definition III.6).
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