

Cascading Polymer Macro-Debris Upcycling and Microparticle Removal As An Effective Life Cycle Plastic Pollution Mitigation Strategy

Xiang Zhao¹, Fengqi You^{1,2,*}

¹ Systems Engineering, Cornell University, Ithaca, New York, 14853, USA

² Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA

Abstract

9 Plastic pollution caused by material losses and their subsequent chemical emissions is
10 pervasive in the natural environment and varies with age. Cascading the life cycles of plastic losses
11 with solid waste reclamation via re-manufacturing virgin polymers or producing fuels and energy,
12 may extend resource availability while minimizing waste generation and environmental exposure.
13 Here we systematically investigate this cascaded plastic waste processing over other waste end-
14 of-life management pathways by analyzing the environmental consequences of plastic losses
15 across the entire life cycle. Plastic losses can form volatile organic chemicals via photo-
16 degradation and pose non-negligible global warming, ecotoxicity, and air pollution effects that
17 worsen by at least 189% in the long run. These environmental burdens increase by above 9.96%
18 under high ultraviolet radiation levels and participation rates, which facilitate plastic particulate
19 compartment transport and degradation. Cascaded plastic waste processing aided by fast pyrolysis
20 upcycling technologies can effectively cut environmental losses and outperform landfills and
21 incineration in reducing 23.35% ozone formation and 19.91% air pollution by offsetting the
22 external monomer manufacturing and fuels and energy production while saving at least 25.75%
23 fossil fuels.

24 *Keywords:* plastic losses, cascaded plastic waste processing, microplastic, life cycle assessment,
25 end-of-life management.

26 Synopsis

27 Cascading macroplastic upcycling and microplastic removal reduce material losses and air
28 pollution compared to landfills and incineration and save fossil fuels.

* Corresponding author. Phone: (607) 255-1162; Fax: (607) 255-9166; E-mail: fengqi.you@cornell.edu

29 **Introduction**

30 Plastic, a crucial building block in Anthropocene activities, has soared exponentially in its
31 production since it was invented in 1950¹. High chemical resistance, good physical elasticity, and
32 low production costs make this material versatile in industrial and residential sectors². However,
33 limited reuse before disposal has driven tonnages of polymer wastes to their end-of-life (EoL)
34 treatment sites daily³. Effective waste-recovery technologies, such as incineration and recycling⁴,
35 can provide discarded plastic alternative uses, including fuels and/or energy production, to extend
36 resource availability while minimizing waste generation and environmental exposure. Since
37 waste-recovery processes are not dominant in EoL waste management, most polymer wastes still
38 end in landfills or casual discarding⁵. Once exposed to the natural environment, these solid wastes
39 lose their mass denoted by plastic losses⁶ from hydraulic weathering or photo-degradation and
40 form macro-particles and microplastics (MPs) less than five millimeters in size⁷. These material
41 losses are transported globally and yield wide dispersal into the air, water, and land-based natural
42 systems⁸. Unlike soluble chemicals or sediments, polymer particles cannot run directly into the
43 mineral cycle aided by biogenic degradation, and their degree of intermingling with the natural
44 environment remains an unmet research need⁹.

45 Complex earth compartment transport and degradation phenomena can affect particle mobility
46 and exposure to the natural system¹⁰. Lighter than soil substances, plastic particles are easily blown
47 off from water or ground and suspended in the air as pollutants¹¹. These airborne particulates can
48 also undergo slow degradation to form volatile organic chemicals (VOCs) or fall off to land-based
49 systems¹². Aquatic plastics mostly sourced from the land-based runoffs¹³ can be cracked into
50 micro- or nano-particles under photodegradation¹². Their minute nature allows easy toxic
51 substance adsorption that poses harm to the aqueous organisms by ingestion¹⁴. Therefore, polymer
52 degradation kinetics in earth compartments determine the extent of MP formation across the entire
53 life cycle and chemical releases, which contribute to environmental pollution. These
54 environmental burdens vary with age and require a holistic time-dynamic analysis to reflect the
55 pervasive environmental pollution posed by post-disposal plastic wastes. However, the explicit
56 evaluation of plastic pollution requires assessing the extent of plastic losses measured by their
57 mass flow rates in earth compartments, which are still lacking in existing studies¹⁵.

58 Cutting plastic waste generation and its environmental exposure can reduce their associated
59 environmental burdens. Repurposing these solid wastes for other uses, such as concrete

60 production¹⁶ or waste-to-energy¹⁷, enables economical resource and energy use and limits direct
61 waste release to the ecosystem. In practice, an ideal case to minimize this environmental exposure
62 is to capture and convert the material losses into basic chemicals for plastic remanufacturing¹⁸.
63 Environmental sustainability evaluation of this process requires cascading the macro- and
64 microplastics' life cycles, including macro-plastic reclamation and microplastic removal
65 processes¹⁹. Effective repurposing of discarded polyolefin plastics²⁰, such as polypropylene (PP),
66 can be achieved via pyrolysis-based upcycling²¹ that yields monomeric products under high
67 temperatures²². Pyrolysis is the most commercially viable and technically promising plastic waste
68 upcycling technology that has been implemented in 18 U.S. states²³, while the hydrothermal
69 carbonization process is still operated on a lab scale and embodies a relatively lower technology
70 readiness level²⁴. With more than 20% (wt.%) in total yield²⁵, these monomeric products, including
71 ethylene and propylene, will then be effectively separated and sold as value-added products to
72 enhance economic profitability. Fast pyrolysis operated under anaerobic conditions hinders plastic
73 oxidation and can cut greenhouse gas and toxic chemical emissions compared to incineration and
74 gasification²⁶. Adoption of hydrothermal liquefaction in polyolefin plastic waste conversion
75 requires intensive water use and a higher labor and equipment procurement cost due to the high-
76 pressure operating condition compared to fast-pyrolysis processes²⁷. Relevant plastic waste fast
77 pyrolysis studies identified the environmental advantages of onsite renewable fuel manufacturing
78 from plastic cradle to the factory gate due to undetermined product EoL use²⁸. A more complete
79 "cradle-to-grave" life cycle was recently investigated for plastic mixture fast pyrolysis and
80 downstream fuel and monomeric product use²⁹, but this study did not consider the potential
81 environmental impacts of material losses from the entire life cycle. Existing MP ecotoxicity and
82 human toxicity investigations have proved the potential environmental hazards of plastic
83 particulates from diet ingestion³⁰, dermal contact³¹, and air inhalation³² without providing a basic
84 understanding of the effects and extent of plastic losses, as well as effective removal technologies.
85 All these knowledge gaps can be filled by precise estimates of the plastic losses and their
86 subsequent chemical emissions occurring across the cascaded life cycle involving macroplastic
87 upcycling and microplastic removal. Relevant holistic analysis of cascading macroplastic
88 upcycling and microplastic removal remains a knowledge gap.

89 Previous studies only assessed microplastic's full-spectrum life cycle environmental impacts
90 without evaluating how many microplastics are formed from the whole plastic life cycle³³. This

91 work analyzes the extent of material losses released to the natural environment from the plastic
92 entire life cycle and their derived environmental impacts to help estimate the environmental
93 impacts from the cascaded plastic life cycle. We cascade the life cycles of plastic waste and their
94 material losses treated by pyrolysis upcycling to assess its environmental performance over other
95 EoL waste management pathways in plastic pollution alleviation. We consider cascading the multi-
96 stage monomer recovery and fuel and energy production from plastic wastes and collected marine
97 debris. This cascaded plastic waste processing after EoL waste disposal may benefit from onsite
98 monomer, fuels, energy production, and debris mitigation, but it lacks quantitative understanding
99 in the existing literature. We study the thermoplastic that is most widely produced (57% of total
100 plastic manufactured) in the U.S.³⁴ and specifically focuses on PP in plastic bags because of its
101 similar chemical property to other polyolefins widely used in packagings³⁵ as the major plastic
102 pollution sources³⁶, and identical EoL waste treatment methods to other polymeric materials. The
103 compartment transport and degradation kinetics are accounted for to determine the extent of plastic
104 pollution³⁷, which denotes the full-spectrum environmental burdens of material losses and their
105 derived chemical releases in a certain time frame. Given the long degradation time of plastics in
106 the natural environment, a holistic understanding of their environmental consequences across the
107 entire life cycle requires both short- and long-term quantitative analyses. Through systematic
108 comparisons of these environmental consequences concerning different plastic EoL waste
109 treatment pathways shown in Figure 1, we identify the pros and cons of the cascaded plastic waste
110 processing over other solid waste management processes, shedding light on the technical
111 innovations and relevant policy implications in mitigating pollution.

112 Key novelties of this study are:

- 113 • A novel mass balance-based plastic post-disposal fate model concerning earth compartment
114 transport phenomena and degradation profiles was developed to investigate the life cycle
115 material losses and their derived chemical emissions that help assess the extent of plastic
116 pollution.
- 117 • A systematic evaluation of the time-dynamic environmental performances of cascading
118 (macro)plastic waste upcycling and microplastic removal processes was performed to show
119 their pros and cons over other EoL waste management pathways in plastic pollution mitigation.

120
121 We summarized the key findings as follows:

122 • Over 20 to 500 years, plastic losses posed by MPs and their derived chemical releases from
123 photodegradation can increase 422% in climate change, 2,061% in ecotoxicity, 189% in air
124 pollution, and 2,105% in ozone formation.

125 • Water hydraulics and meteorology can affect the long-term environmental consequences of
126 plastic losses, as illustrated by an above 20% increment under a higher precipitation rate, wind
127 speed, or ultraviolet (UV) radiation levels that enhance the surface degradation rate to facilitate
128 polymer particulate generation and their derived chemical emissions.

129 • In the long run, cascaded plastic waste processing can be environmentally advantageous
130 compared to other EoL waste management pathways composed of sanitary landfills and
131 incineration in declining material losses and reducing 6.74% photochemical ozone formation,
132 4.57% global warming potential (GWP), and 25.75% fossil fuel consumption by offsetting
133 external virgin chemical production.

134

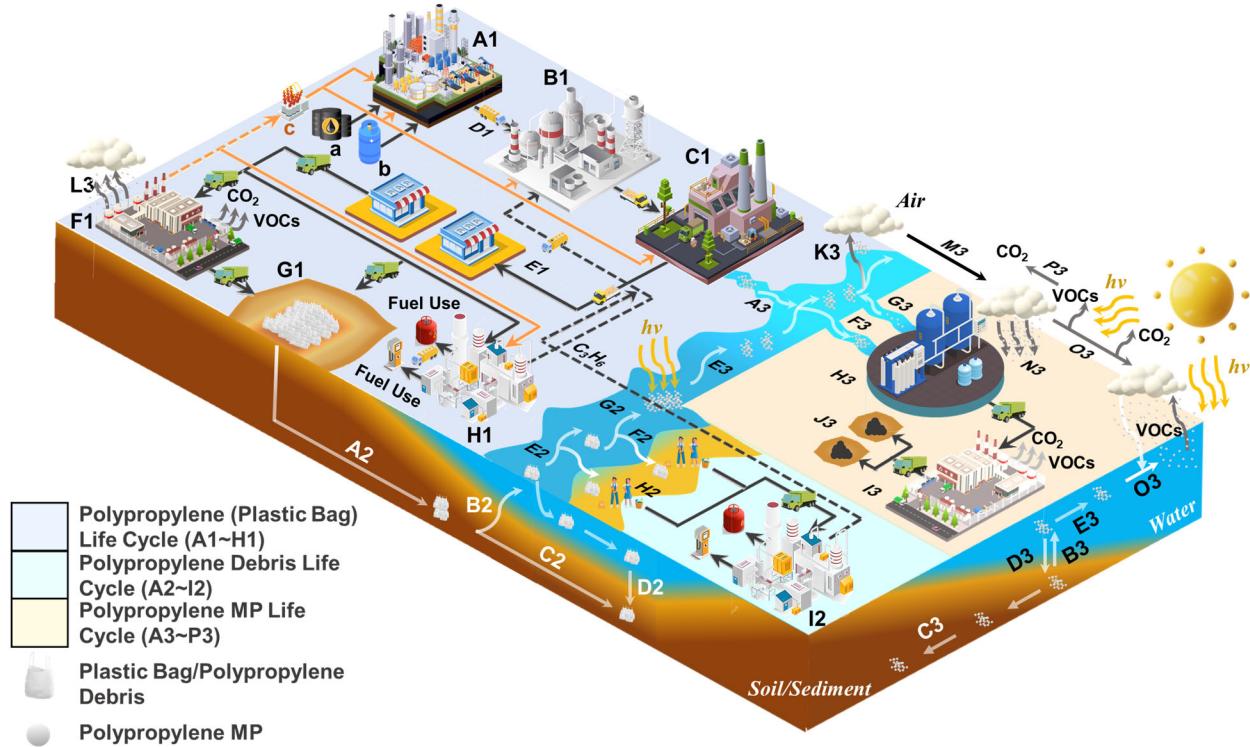
135 This work deciphers the time-dependent environmental consequences of unavoidable plastic
136 losses from existing EoL waste management pathways and demonstrates the benefits of employing
137 cascaded plastic waste processing to achieve the circular economy. Relevant policy implications
138 that help reach this environmental sustainability goal are:

139 • Zero waste policy: Cascaded plastic waste processing aided by fast pyrolysis technologies
140 should be incentivized to reduce material losses by over 99.99% and recover these solid wastes
141 onsite into monomeric products and fuels to offset their external manufacturing and avoid its
142 environmental burdens by at least 4.35%.

143 • Environmental policy: Landfills should be replaced with effective plastic EoL waste
144 management technologies that facilitate cascaded plastic waste processing, such as chemical
145 reclamation, with governmental incentives to promote pollution mitigation and reduce over
146 23.35% life cycle ozone formation and 19.91% air pollution.

147 • Plastic pollution act: Minimizing plastic environmental exposure via galvanizing solid waste
148 collection and meticulous release control or elimination can mitigate short-term environmental
149 consequences and impede over a 422% increment in long-term effects.

150


151 We describe the plastic cascaded use processes and the life cycle assessment methodology in
152 the **Materials and Methods** section by defining the research scope, introducing the key data

153 needed and their derivation, and outlining the impact assessment method applied. The following
154 **Results and Discussion** section examines plastic waste's short and long-term environmental
155 impacts, those from current plastic EoL management, and the pros and cons of cascading plastic
156 use in three subsections. In the **Discussion** subsection, we inform the technological and policy
157 insights associated with cascaded plastic use over other solid waste management processes.
158 Conclusions are drawn in the last section.

159 **Materials and Methods**

160 **Cascaded Plastic Use Overview**

161 Repurposing PP plastic waste for a tandem of multiple reuses can extend resource availability
162 while minimizing waste generation and environmental exposure³⁸. Fast pyrolysis, which enables
163 the efficient conversion of polyolefin plastics to value-added products, can effectively treat
164 complex or contaminated plastic mixtures¹⁹. Utilizing the fast pyrolysis process to break down PP
165 into renewable fuels and monomers for plastic re-manufacturing assists in cascading EoL of plastic
166 wastes and debris. Other EoL options, such as incineration and landfills, are also considered;
167 however, these technologies can result in the formation and transportation of MPs in the air, soil,
168 and water due to natural weathering. All of the aqueous plastic debris collected is then converted
169 into fuels and monomers through fast pyrolysis, enabling material recovery and cascading of
170 plastic use. The drinking water treatment plant and incineration are included in the system to
171 remove the retained MPs from water effectively³⁹.

172

173 Figure 1. The "cradle-to-grave" system boundary of the PP plastic accounting for the material
 174 losses (macro- and MPs) formation from the entire life cycle and cascaded waste processing via
 175 waste-recovery to monomers and polymer re-manufacturing.

176

177 Life Cycle Assessment Methodology Overview

178 The LCA approach is employed to assess the environmental impacts of a product's entire life
 179 cycle, from raw material acquisition to EoL management⁴⁰. This holistic approach provides an
 180 understanding of the associated air, water, soil, and ecosystem pollution, helping to inform
 181 decision-making that supports environmental sustainability⁴¹. We adopted this holistic LCA
 182 approach to identify the pros and cons of cascaded PP plastic waste processing by assessing the
 183 plastic losses and environmental impacts across the entire life cycle shown in Figure 1. Four typical
 184 phases are accounted for in the LCA: Goal and scope definition, inventory analysis, impact
 185 assessment, and interpretation. The assessment goal and its associated system boundary for
 186 investigation are defined in the stage of the Goal and Scope Definition. The Inventory Analysis
 187 stage assesses the life cycle inventories (LCIs), which describe the material and energy flow within
 188 the system boundary. Specifically, the upstream LCIs are built by the mass and energy flows of all
 189 PP pre-disposal life cycle processes, while the downstream data represent the missing mass

190 balances of the plastic losses and their derived chemical emissions. By compiling all collected
191 LCIs with the characterization factors in the Impact Assessment phase, the full-spectrum
192 environmental impacts of cascaded plastic use could be assessed and compared with other EoL
193 waste management options. Finally, the Interpretation phase elucidates the assessment results to
194 meet the LCA goal for decision-making, ultimately leading to effective plastic EoL waste
195 management choices that reduce pollution and promote long-term environmental sustainability.

196 **Goal and Scope Definition**

197 We focused on evaluating the life cycle environmental impacts of PP plastics because they
198 are widely used in packaging materials, of which solid waste releases are well-known as the major
199 (micro)plastic pollution sources. The system boundary covers the upstream and downstream
200 processes corresponding to the life cycle of PP wastes and their environmental losses, respectively.
201 The upstream processes encompass raw material and resource extraction for propylene production,
202 PP manufacturing, use, and EoL waste management pathways composed of incineration, landfill,
203 and PP chemical recycling. The downstream processes involve plastic losses formation,
204 degradation, aquatic waste collection and reclamation by fast pyrolysis-based chemical recycling,
205 MP removals via drinking water treatment (DWTP), and incineration. The functional unit was
206 chosen as one ton waste PP plastic bag treated to align with the mass and energy balance across
207 the entire life cycle. Detailed explanation of the life cycle stages is given in the Supplementary
208 Information.

209

210 **Inventory Analysis**

211 *A. Upstream LCIs*

212 Mass- and energy balance set the basis of LCI data collection. We extracted process-based
213 LCIs from the Ecoinvent V3.8 database and related literature for all PP pre-disposal life cycle
214 stages corresponding to all upstream processes. LCIs of onsite energy and chemical production,
215 including the mid-voltage electricity and process heat co-generation from PP waste incineration
216 and virgin chemicals produced from PP chemical recycling, were modelled as their market
217 processes avoided by their internal production, referring to the avoided burden approach⁴².
218 Chemical yields from PP waste chemical reclamation can be found in relevant plastic fast-
219 pyrolysis LCA studies⁴³.

220 ***B. Problem Statement of Downstream LCI Analysis***

221 Degradation and earth compartment transport govern plastic losses' natural exposure, mobility,
222 and EoL chemical emissions that can interweave with earth compartments or biota and pose
223 environmental effects with age. We developed a mass balance-based EoL fate model to generate
224 the LCIs corresponding to plastic losses and their derived chemical emissions each year to air,
225 water, and land, based on the random sampling methodology, which has shown its more than 95%
226 accuracy represented by less than 5% relative errors⁴⁴ in multimedia transport and exposure dose
227 model.

228 This mass balance-based EoL fate model can calculate the mass flow rate of plastic losses in
229 particles and derived chemical emissions by accounting for various degradation and transport
230 pathways in air, water and land compartments indexed by set K . Set I represents the chemicals
231 yielded from plastic losses by photodegradation, including methane, ethane, peroxide, and acetone.
232 All these mass flow rates are determined by the degradation mechanisms varying across
233 compartments. Compiling these mass flow rates with their specific environmental impact estimates
234 within the time horizon t can assess the overall environmental burdens posed by plastic losses. The
235 general model formulation and equations are outlined as follows, with further details provided in
236 the **Supplementary Information**.

- 237 • Perform random sampling to show a degradation and transport pathway given in Equations
238 (1)–(3).
- 239 • Evaluate the amount of airborne and aquatic plastic particles (losses) generated from the
240 sampled degradation and transport pathway by Equations (4)–(8).
- 241 • Evaluate the mass flow rates of the plastic losses and their derived chemical emissions by
242 Equations (S21)–(S40).

243 ***C. Mass Balance-based EoL Fate Model Formulation***

244 Specifically, we discretized each degradation and transport pathway (T_t) by earth
245 compartments and time with the timestep of one year. The plastic loss T_t comprises a set of binary
246 parameters $TT_{k,n}$ generated from random sampling and shows the microplastic degradation and
247 transport node. $TT_{k,n}$ equals to one, which indicates the microplastic transport to compartment k
248 over time period n in time horizon t , as given in Equation (1). By compiling all these nodes ($TT_{k,n}$)

249 within the time horizon t , as shown in Equation (2)⁴⁵, the plastic loss \mathbf{T}_t can represent a certain
 250 transport trajectory of microplastics,

$$251 \quad \mathbf{T}_t = [TT_{k,n}], \quad \forall n \in \{1, 2, \dots, t\} \quad (1)$$

$$252 \quad \sum_k TT_{k,n} = 1, \quad \forall n \in \{1, 2, \dots, t\} \quad (2)$$

253 where \mathbf{T}_t represents the trajectory of plastic losses determined by time n and compartment k , and
 254 the binary parameter $TT_{k,n}$ equals one when they are transported to compartment k in time n .

255 Photo-oxidizing the airborne ($k = 1$) polymer particles can yield two sizes of particles⁴⁶
 256 represented by binary variables TS_n and TSS_n as shown in Equation (3)⁴⁷. The sizes of particles
 257 from losses can be reduced under photodegradation, and Equation (4) calculates the size of
 258 polymer particulates ($D(\mathbf{T}_t)$) yielded from degradation and earth compartment transport pathway
 259 based on the initial size of particulates (D_0 , 1000 μm) given in Equation (5)⁴⁸. We compiled the
 260 overall degradation rate calculations in a function L and its detailed mathematical formulation can
 261 be found in Equations (S6)–(S8).

$$262 \quad TS_n + TSS_n = TT_{1,n}, \quad \forall n \in \{1, 2, \dots, t\} \quad (3)$$

$$263 \quad D(\mathbf{T}_t) = (L_t \circ L_{t-1} \circ \dots \circ L_1)(D_0) \quad (4)$$

$$264 \quad D(\mathbf{T}_0) = D_0 \quad (5)$$

265 The number of plastic particulates ($N(\mathbf{T}_t)$) yielded from the degradation and transport
 266 pathway \mathbf{T}_t are assessed in Equation (6) based on the initial number of particles in material losses
 267 (N_0), transfer rate $E_{k,n}$ within compartment k in time n , and transport rate $aa_{k,k'}$ from
 268 compartment k to k' ⁴⁹. Detailed mathematical formulation of the transfer rates can be found in
 269 Equations (S10)–(S13)⁴⁷.

$$270 \quad N(\mathbf{T}_t) = N_0 \prod_{n=1}^{t-1} \left(\sum_{k'} \sum_k TT_{k,n} \cdot aa_{k,k'} \cdot TT_{k',n+1} \cdot E_{k',n+1} \right) \quad \forall n \leq t-1 \quad (6)$$

271 The number of MPs formed by marine plastic degradation ($N_2(\mathbf{T}_t)$) is evaluated in Equation
 272 (8) by the MP yield (α) from material losses and their number of particles ($N(\widetilde{\mathbf{T}}_t)$) in degradation
 273 and transport pathway $\widetilde{\mathbf{T}}_t$ ⁴⁷, of which formulation is shown in Equations (7) and (S15)⁴⁹⁻⁵⁰.

274 Detailed mathematical formulation of the transfer rates and the transport ratios of MPs (A_n , B_n ,
275 and C_n) calculated by Equations (S10)–(S13) and (S18)–(S20)⁴⁷, respectively.

276 $\widetilde{\mathbf{T}}_t = [\mathbf{TT}_{1,t} \mid \mathbf{0} \mid \mathbf{TT}_{3,t}]$ (7)

277 $N_2(\mathbf{T}_t) = \sum_{n=1}^t [N(\widetilde{\mathbf{T}}_{t-n}) \cdot \alpha(D(\widetilde{\mathbf{T}}_{t-n})) \cdot A_n \cdot B_n \cdot C_n], \quad \forall n \leq t-1$ (8)

278 Besides mass flow rates of plastic losses and chemical emissions evaluated in Equations
279 (S39)–(S40)^{51–53}, process-based LCIs of current polymer material debris removal practices,
280 including coastal solid waste collection and MP removals via drinking water treatment (DWTP),
281 were also collected from Ecoinvent V3.8 Database and relevant literature. The collected coastal
282 PP wastes and MPs were treated effectively in the fast pyrolysis-based chemical recycling plant
283 and incineration sites⁵⁴. The incineration ashes are then sent to sanitary landfills.

284

285 Impact Assessment

286 MPs and VOCs formed in 100 years do not pose environmental impacts to the same extent as
287 releasing the same amounts in 500 years⁵⁵. Therefore, environmental assessment of plastic losses
288 should not be time-static. This work only considered the time dynamic GWP calculation because
289 other environmental indicators' characterization factors are proven not to change with analysis
290 time horizons⁵⁶. Detailed dynamic GWP calculation can be found in the Supplementary
291 Information.

292 The cascaded waste processing aided by fast pyrolysis processes can reduce the raw material
293 use and its environmental impacts, and these environmental benefits were reflected as the
294 "reduction" of offsite raw materials (natural gas and crude oil) and recovered propylene
295 production⁵⁷. We then evaluated the functional unit-based environmental impacts by the overall
296 environmental effects based on GWP, EF3.0, ReCiPe 2016, and USEtox indicators, which were
297 typically used in plastic processing LCA studies, divided by the total PP manufactured from the
298 cascaded life cycle. Specifically, the proposed fate modelling methodology given the previous
299 work was applied to evaluate the ecotoxicity characterization factors, where the effect factors were
300 assumed to be proportional to the Hazardous Concentration above 20% species (HC20) data and
301 calculated by the dose-response result of polyethylene³³. Since the exposure factor of microplastics
302 was postulated to be one, the ecotoxicity characterization factors were equal to the product of the

303 evaluated fate factor and effect factors. By collating these characterization factors with the
304 investigated LCI data on PP manufacturing, use, EoL waste disposal, and material losses, we can
305 then evaluate the full-spectrum environmental impacts across the complete life cycle. Detailed
306 calculations can be found in (S53).

307

308 **Impact Assessment Elucidation**

309 The elucidation of the environmental assessment results should help reinforce the effective
310 plastic EoL waste management choices for pollution reduction. We first compiled and displayed
311 material losses' temporally dynamic environmental consequences to reflect their time-dependent
312 effects over the material lifetime. Effect factors and their influences on these environmental
313 burdens are unveiled in a comprehensive sensitivity analysis by varying the key parameters
314 corresponding to photo-degradation and earth-compartment transport. We then evaluated and
315 visualized the time-dependent environmental impacts of plastic losses and the results of other life
316 cycle stages to identify the environmental pros and cons of the current EoL waste management
317 pathway. This holistic approach is then applied to evaluate the overall environmental effects and
318 breakdowns of various EoL waste management pathways to show their pros and cons.

319

320 **Techno-economic Assessment**

321 We further analyzed the total cost of treating waste PP by waste management pathway
322 composed of landfill, incineration, and recycling receiving various percentages of domestic PP
323 wastes by referencing the relevant literature²⁵. The total cost (TC) was calculated in Equation (9)
324 by the difference between the total annual expense (TAE) and income (INC) from downstream
325 products. The total annual expense evaluated in Equation (10) equaled the summation of the
326 operating expenses ($OPEX$) and the discounted value of total capital costs ($CAPEX$), which
327 comprised the direct equipment installation (DIC), indirect (IC), and working capital (WC),
328 equipment procurement (PEC), and land costs (LC) given in Equations (11) and (14)–(16). The
329 direct and indirect capital costs of the processing facilities were scaled by their treatment capacities
330 (CAP) and scaling factors (SFF) given in Equations (12)–(13). Equation (17) calculates the OPEX,
331 which denotes the necessary cost for maintaining operations and stable processing, accounting for
332 the operation and maintenance (O&M) costs ($OMCC$), transportation costs ($TRAN$), feedstock

333 (FEC) and utility costs (UC), and property and insurance (PT&I, represented by PTIC). The
334 income from chemical recycling was generated by the onsite production of monomers and fuels,
335 while the income from incineration came from heat and electricity generated onsite. Parameters
336 *DICC* and *PECC* denote the base-case direct equipment installation and procurement costs,
337 respectively. *CAPC*, *CEPCI*, and *CEPCIB* represent the base-case processing capacity and
338 chemical engineering indices of the current year and base-case year, respectively. The coefficients
339 *ICC*, *WCC*, and *LCC* indicate those for calculating indirect capital, working capital, and land costs
340 based on the direct equipment installation and procurement costs.

341 $TC = TAE - INC$ (9)

342 $TAE = CAPEX + OPEX$ (10)

343 $CAPEX = DIC + IC + WC + LC$ (11)

344 $DIC = DICC \cdot \left(\frac{CAP}{CAPC} \right)^{SFF} \cdot \left(\frac{CEPCI}{CEPCIB} \right)$ (12)

345 $PEC = PECC \cdot \left(\frac{CAP}{CAPC} \right)^{SFF} \cdot \left(\frac{CEPCI}{CEPCIB} \right)$ (13)

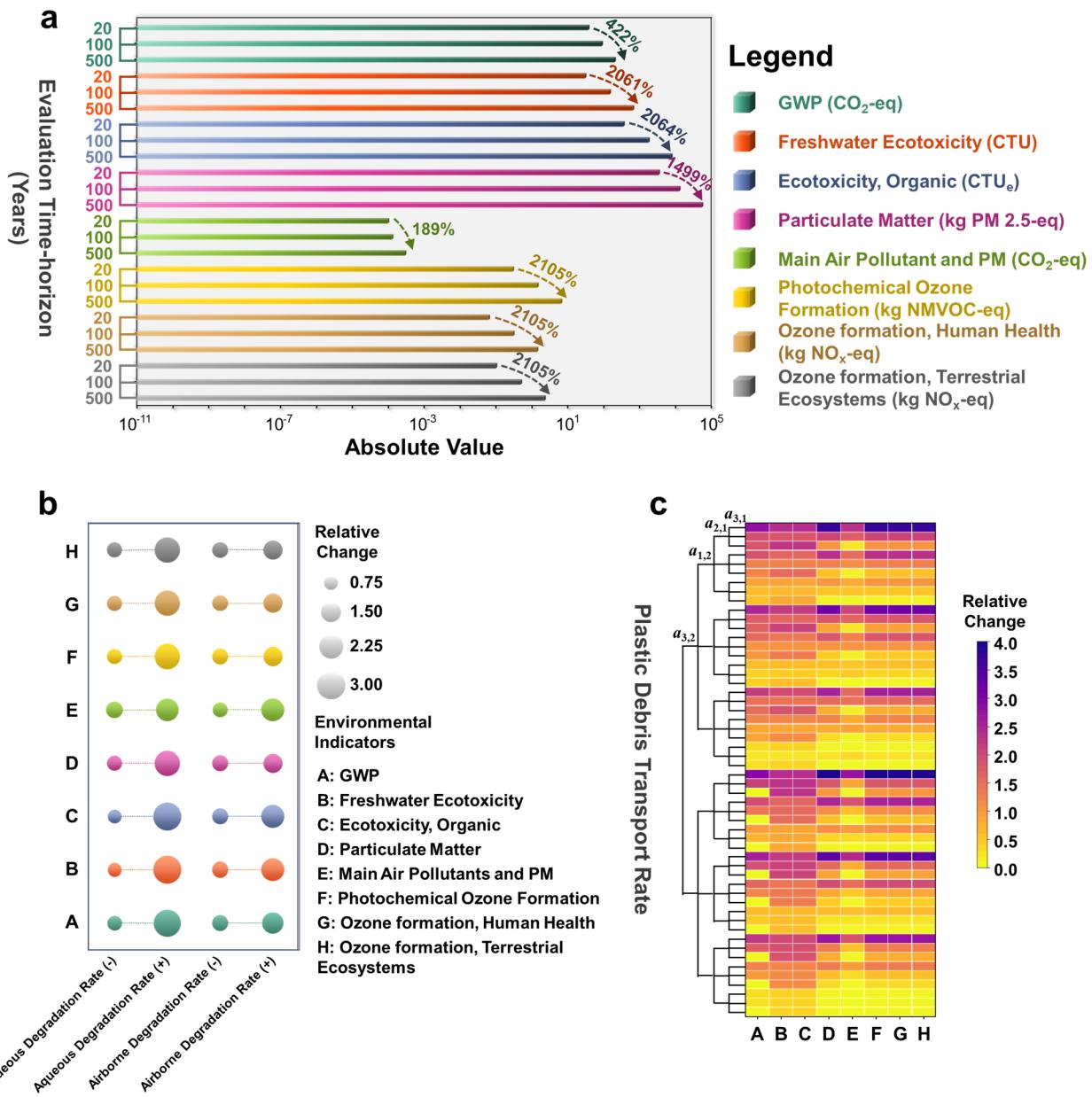
346 $IC = ICC \cdot PEC$ (14)

347 $WC = WCC \cdot DIC$ (15)

348 $LC = LCC \cdot PEC$ (16)

349 $OPEX = OMCC + TRAN + FEC + UC + PTIC$ (17)

350


351 **Results and Discussion**

352 **Short- and Long-term Plastic Waste Environmental Consequences**

353 Previously thought to be chemically inert, plastic waste runoffs from landfills have now
354 proved to be the main source of ecotoxic material losses, which can slowly yield VOCs by photo-
355 oxidation over centuries⁵⁸. The summation of the environmental consequences of these polymer
356 and chemical releases over a certain time scale denotes the extent of plastic pollution during this
357 period. We evaluated these environmental consequences over 20 (short-term), 100, and 500 years
358 (long-term), of which time spans are typically used in assessing the climate change impacts as the
359 environmental hotspot of polymeric material processing across the entire life cycle. The mass flow
360 rates of plastic losses and derived chemical releases are evaluated based on fate modelling and

361 reaction kinetics given in **Materials and Methods**.

362 Overall, global warming, ecotoxicity, air pollution corresponding to particulate matter (PM)
363 formation, and ozone formation corresponding to photochemical ozone formation and its specific
364 effects on human health and terrestrial ecosystems are four major environmental consequences of
365 the chemical and MP releases. In the short run, plastic debris from runoffs is mostly retained on
366 the land and transmitted to water and air with slow transport rates of 0.05 and 0.1 for air and water,
367 respectively. These aquatic and airborne particulates then undergo photo-oxidization to a small
368 extent. Few airborne polymer particulates are downgraded into VOCs, and aquatic polymer debris
369 is mostly converted into large-size MPs ($>100 \mu\text{m}$) with less unit ecotoxicity effect of 1.323×10^4
370 CTU_e per ton PP bag waste compared to small-size polymer particles with 9.2×10^5 CTU_e per ton
371 PP bag waste, resulting in relatively unpronounced climate change, ecotoxicity, and ozone
372 formation consequences as observed in Figure 2a. At length, these particulates break up and reduce
373 their sizes in air and water as the earth compartment transport and photo-degradation proceed.
374 Airborne MPs smaller than 10 and 2.5 μm in diameter can pollute the air analogous to PM 10 and
375 PM 2.5, respectively, and worsen the PM formation and major air pollution effects by 15 times
376 from short- to long terms. VOC emissions from photo-oxidizing these particulates increase as more
377 MPs form with age, shifting the ozone formation impacts that harm human health and the terrestrial
378 ecosystem by 2,105%. On the other hand, respiratory effects posed by PM 2.5 do not
379 monotonically improve with time, as shown in Figure S1. This environmental impact increases as
380 the airborne MP formation predominates over degradation in the first 100 years, and these particles
381 will then undergo degradation over the next 50 years and reduce the PM 2.5 formulation. This
382 environmental burden will continue to grow as the MP particulates accumulate in the air in the
383 long run. Besides air pollution effects, the long-term impact of the ecotoxicity is also aggravating
384 at least four times from incremental aquatic MPs formation and organic chemical emissions,
385 including ketones, peresters, and peroxides formed by photo-degradation. With greater land-based
386 polymer debris input and transmission to air and water, environmental consequences of plastic
387 losses, in the long run, can be foreseen as a monotonic increment observed in Figure 2a.

388

389

390

391

392

393

394

395

396

397

Figure 2. Short- to long-term plastic losses-related environmental impacts and their impact factors. (a) Absolute environmental impacts over 20, 100, and 500 years. (b) Effects of degradation rates on plastic losses' environmental consequence over 500 years. (c) Effects of multimedia transport rates on plastic losses' environmental consequence over 500 years. The environmental indicators used include GWP (CO₂-eq: CO₂ equivalent); Freshwater Ecotoxicity (PAF: Potentially Affected Fraction); Freshwater Ecotoxicity, Organics (CTU_e: The comparative toxic unit for aquatic ecotoxicity impacts); Major Air Pollutants and PM (UBP: Eco-points); PM (PM2.5-eq: Equivalent air pollution effect caused by PM with sizes smaller than 2.5μm); Photochemical Ozone Creation (NMVOC-eq: Non-methane volatile organic chemical equivalent); Ozone Formation,

398 Human Health (NO_x-eq: Nitrogen-oxides equivalent); Ozone Formation, Terrestrial Ecosystems
399 (NO_x-eq: Nitrogen-oxides equivalent). The values near the ticks in Figure 2a represent the relative
400 increment of environmental impacts over 500 years compared to those over 20 years. The bubble
401 diameters given in Figure 2c are proportional to the relative change in environmental impacts
402 under parameter variations. Parameters $a_{i,j}$ represent the plastic transport rate from compartments
403 i to j : 1, 2, and 3 denotes air, water, and land-based compartments, respectively.

404

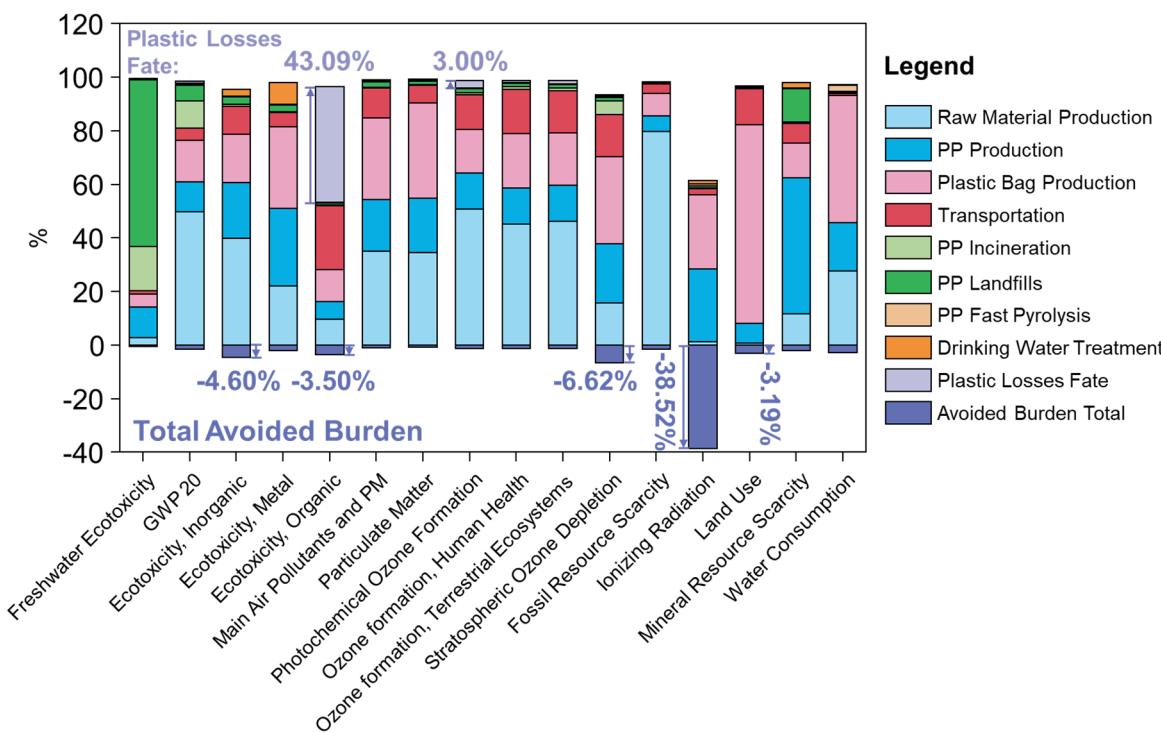
405 Key photodegradation parameters, including temperature and UV radiation dose⁵⁰, can
406 determine plastic losses and their subsequent chemical releases. The plastic debris airborne
407 degradation rate constant is calculated by the product of the ultraviolet irradiation level (lv),
408 quantum yield (yi), and efficiency (ef), as given in Equation (18)⁵⁰, while the water temperature
409 (T) can change both the kinetic rate constant of plastic degradation in water (Equation (19)) and
410 the retention of microplastics, as illustrated by the relevant microplastic multimedia transport
411 studies⁵⁹. Parameters k_{d0} , E_a , T_0 represent the referenced kinetic rate constant, activation energy,
412 and referenced temperature, respectively. Results show that airborne polymer particulates can
413 degrade faster under a two-fold higher UV radiation level in summer, resulting in at least 41.48%
414 increments in full-spectrum environmental impacts, as shown in Figure 2b. These environmental
415 impacts are deterred by over 10.90% when the water temperature drops to near 0 °C in winter and
416 slows down the aquatic polymer photodegradation. Season change can affect plastic degradation
417 rates and the subsequent long-term environmental burdens as the temperature varies.”

418 $kk = yi \cdot ef \cdot lv$ (18)

419 $k_d = k_{d0} \cdot e^{E_a \left(\frac{1}{T_0} - \frac{1}{T} \right)}$ (19)

420 Besides temperature variations, earth compartment transport phenomena can also govern MP
421 formation kinetics and photo-degradation product profiles. Multimedia transport of polymer
422 particles in the air, water, and land driven by water hydraulics and meteorology conditions can
423 redistribute MPs and chemicals to different compartments with specific degradation characteristics
424 and thus influence long-term environmental impacts shown in Figure 2c⁶⁰. High wind speeds that
425 increase transport rates from water and soil to air by 2.90% and 150% can facilitate more plastic
426 particulates blown off land and water. Airborne suspension of these solid particles acts as PM and
427 can form VOCs from photo-degradation, which improves human health and terrestrial ecosystem

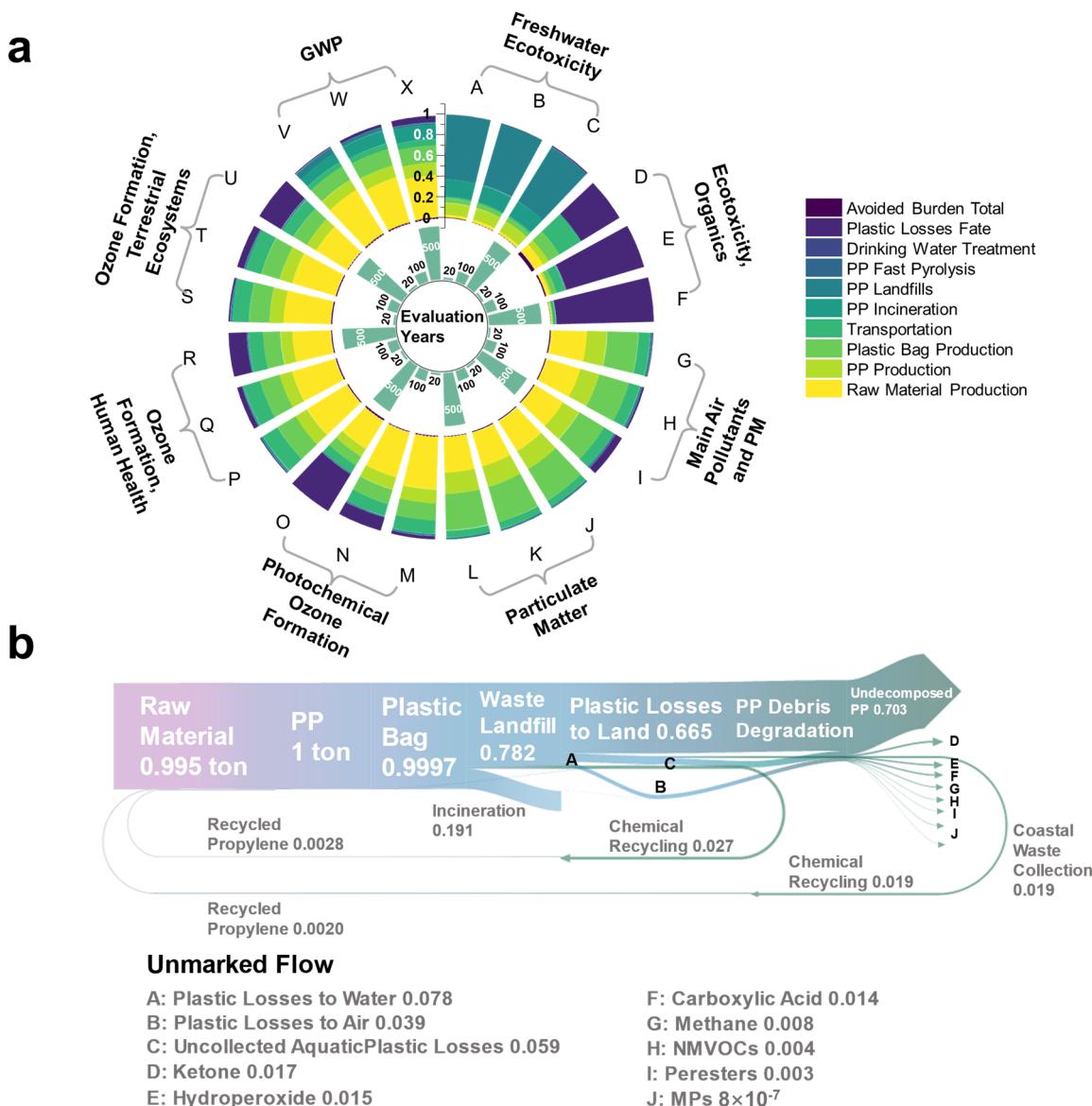
428 hazards by at least 60.03%. High precipitation rates, which can promote airborne particle
429 deposition to land and water by a 36.84% enhancement in transportation rates, can enhance aquatic
430 exposure to ecosystems and ecotoxicities by at least 9.96%. Earth compartment transport between
431 land and water driven by water flow rates can be influenced differently by environmental impact
432 indicators. As more plastic particles are transmitted from soil and held within water compartments,
433 which is represented by the $\alpha_{3,2}$ increment to 0.1, the global warming effect decreases by at least
434 20.3% because fewer particulates will be instantly transported to the air and generate VOCs.
435 However, the more polymer debris stored in water or land facilitated by compartment transports,
436 the higher amount of airborne plastic particles will yield from wind-blown-offs, which can worsen
437 the air pollution corresponding to PM and ozone formation by at least 10.5% and 7.88%,
438 respectively.


439 Our results suggested that the environmental consequences of plastic losses are detectable and
440 can worsen in the long run. Due to the data gap, this conclusion was drawn based on the assumption
441 that the meteorological and hydrological conditions remain consistent across different years by
442 referencing the assumption of existing microplastic fate investigation⁶¹. The temporal variations
443 of these external conditions could tune the multimedia transport of plastic losses and their derived
444 chemical emissions, thus affecting the environmental assessment results. To better account for
445 these impacts, a more comprehensive framework for evaluating plastic material losses should be
446 developed in future studies. This framework should combine real-time meteorological and
447 hydrological monitoring with long-term extrapolated data and analyze these elements using
448 dynamic environmental assessment methodologies.⁶²

449 **Current Plastic End-of-Life Option's Environmental Cost**

450 Currently, the U.S. is one of the world's top plastic polluters, and 78.31% of the domestic PP
451 waste ends in landfills, and only 2.73% is effectively recycled⁶³. As landfilled plastics can runoff
452 into the natural environment and generate material losses with the time-dependent environmental
453 hazards illustrated by Figure 1, the EoL fates and removal of these polymeric materials should also
454 be accounted for within the complete life cycle. Therefore, we evaluated and outlined these
455 environmental impacts across the entire plastic life cycle to stress the environmental consequences
456 of the current EoL waste management pathway.

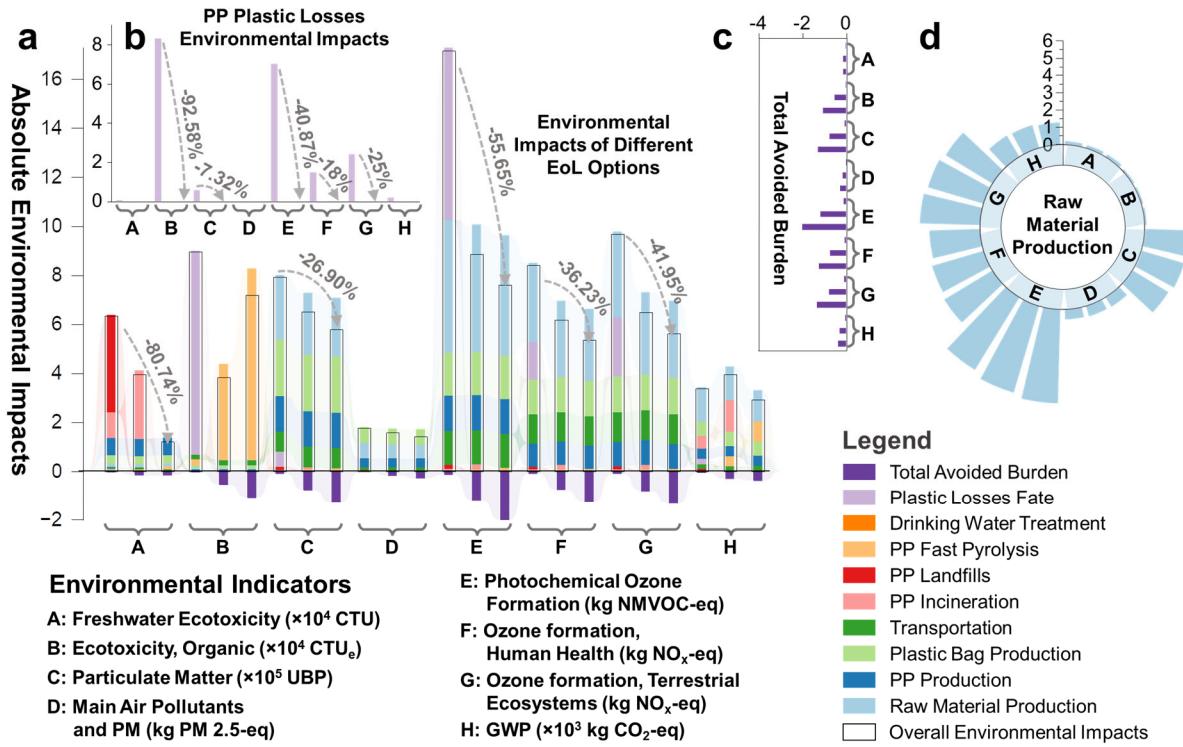
457 In the short run, the plastic losses mainly from the landfills can pose 0.05%, 0.49%, and 3.00%
458 of life cycle ecotoxicity, PM formation, and ozone formation effects from MPs and subsequent


459 chemical emissions, respectively, as shown in Figure 3. These environmental impacts posed by
 460 low flow rates of pollutants shown in the right-end ticks in Figure 4b are relatively unpronounced
 461 in the short run but can be more prominent with age, as illustrated by Figure 4a. In the long run,
 462 the incremental yields of airborne MPs and VOCs from photo-degradation, including methane and
 463 ethylene in the air, of which flow rates are shown in Figure 4b, can exacerbate 94.25% of total
 464 ecotoxicity posed by organic chemical emissions, 41.65% photochemical ozone formation, and
 465 0.0174% PM air pollution. Therefore, these trivial plastic losses from the current EoL waste
 466 management pathway, which were not explicitly reported in existing LCA studies, can pose
 467 conspicuous environmental burdens across the entire life cycle.

468
 469 Figure 3. Full-spectrum environmental results and breakdowns of plastic waste treated by the
 470 current U.S. EoL waste management scenario that accounts for treating 2.73% of wastes (wt.%)
 471 in recycling, 19.96% in incineration, and 78.31% in sanitary landfills.

472
 473 Effective plastic waste reclamation technologies can replace landfills and gain environmental
 474 benefits from secondary use and solid waste runoff reduction. We considered fast pyrolysis
 475 technology in reclamation because it effectively breaks PP carbon backbones under high
 476 temperatures and reverses the waste plastics back into high-yield monomers used for secondary
 477 production⁶⁴. Figure 3 shows the environmental advantages (shown as Avoided Burden Total) of

478 deploying the fast pyrolysis in treating 2.73% of domestic PP wastes by reducing 1.00% main air
 479 pollutant and PM, 1.89% photochemical ozone formation, and 1.50% climate change. The
 480 environmental benefits of plastic reclamation can be further enhanced by improving its use in EoL
 481 waste management. This technology is not environmentally benign because of the intensive fossil
 482 resource use for process heat, water use, and direct greenhouse gas (GHG) emissions in the flue
 483 gas from the incorporated incineration process⁶⁵. Therefore, a systematic comparison between
 484 different EoL waste management pathways is required to determine the plastic EoL waste
 485 treatment method with minimum environmental pollution.

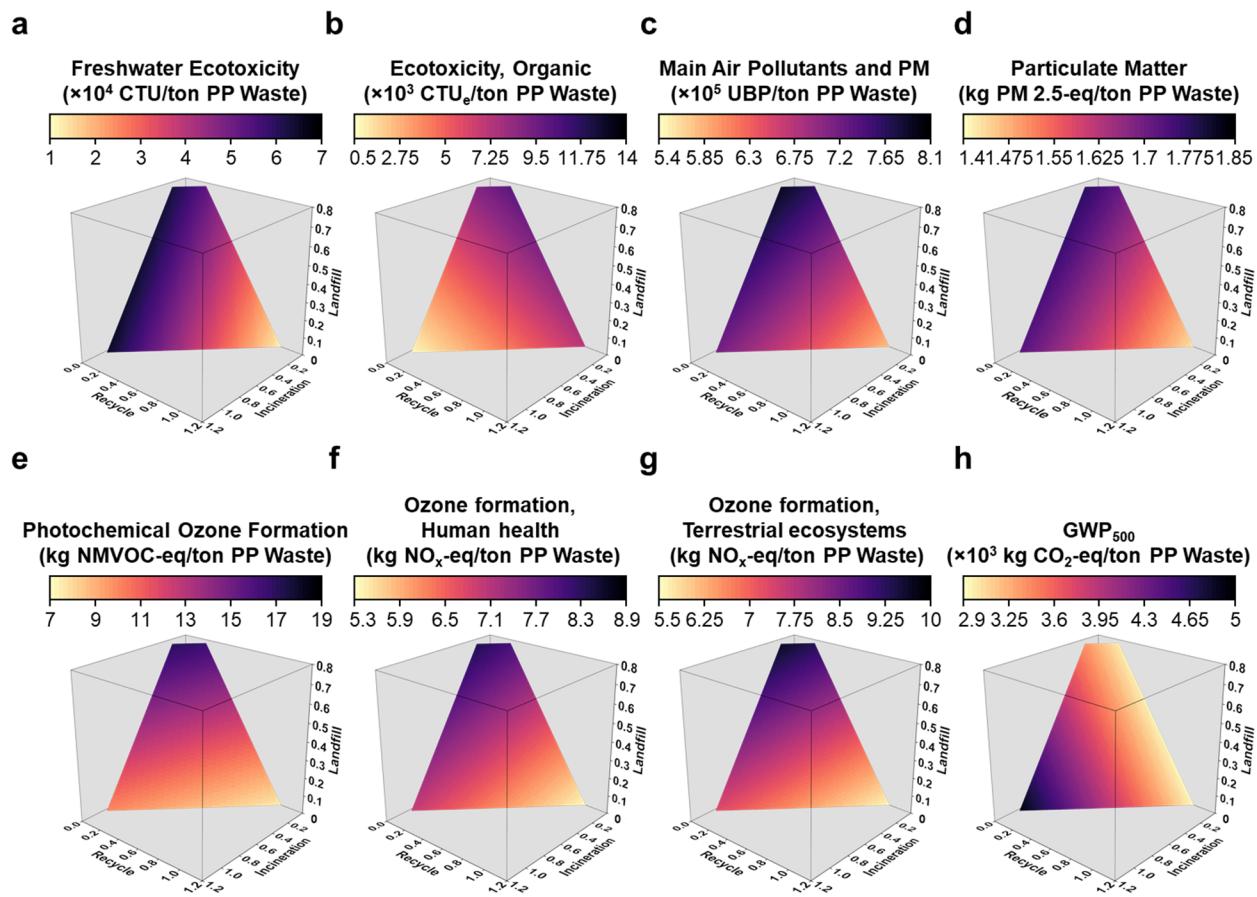


486
 487 Figure 4. Environmental and flow profiles of PP waste treated by the current U.S. EoL waste
 488 management pathway (78.31% landfilled, 19.96% incinerated, and 2.73% recycled⁶³) evaluated in

489 different time horizons. (a) Environmental profile based on various environmental indicators in 20,
490 100, and 500 years. (b) Mass flow distribution across the entire life cycle in 500 years shows the
491 mass flow rates in tons from raw material and resource extraction to the photo-degradation
492 products as graves.

493 **Reducing Environmental Burdens through Cascaded Plastic Waste Processing**

494 We evaluated the overall environmental effects of the plastic EoL waste management pathway
495 composed of major disposal options, including landfill, incineration, and recycling, which receive
496 a specific percentage of domestic PP wastes. The summation of the percentages of all these three
497 EoL waste technology options equaled one. The maximum percentage of total plastic waste
498 received for landfilling (wt.%) was set as 78.3%. We compared the life cycle environmental
499 impacts of three typical plastic EoL waste treatment scenarios named with the **U.S. 2018, 50/50/0**,
500 and **100/0/0**. The **U.S. 2018** scenario refers to the latest U.S. domestic plastic EoL waste
501 management pathway proposed by the U.S. Environmental Protection Agency⁶³, which denotes
502 that 2.73%, 19.96%, and 78.31% of total PP waste are received at recycling, incineration, and
503 landfill sites, respectively. The "**50/50/0**" represents the future EoL waste management pathway in
504 2030, an extrapolation based on the current European Union (EU)⁶⁶ case, that 50% of total solid
505 wastes are recycled while another 50% end in incineration. The "**100/0/0**" denotes an ideal case
506 that plastic waste is fully recycled.


507

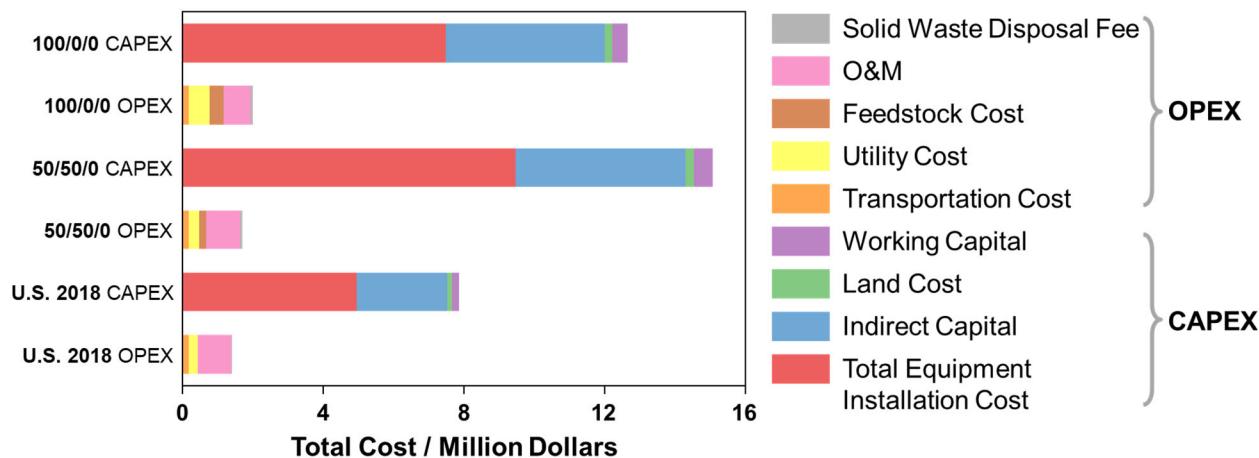
508 Figure 5. Absolute life cycle environmental impacts (over 500 years) and impact assessment
 509 results for specified life cycle stages of plastic waste treated by three different EoL scenarios. (a)
 510 The entire life cycle stages. (b) The fate of PP plastic material losses. (c) Total avoided burden
 511 from onsite monomer and fuels and energy production. (d) Raw material and resource extraction.
 512 The y-axis values for all subfigures represent the absolute environmental impact results. The three
 513 bar charts in subfigures for each impact category indicate the current U.S. EoL waste management
 514 pathway, 50% incineration with 50% recycling, and 100% recycling cases from left to right (Figure
 515 5a and Figure 5b), top to bottom (Figure 5c), and clockwise (Figure 5d).

516

517 Overall, Figure 5a and Figure 6 show that the plastic losses and their environmental impacts
 518 can be significantly reduced if landfilling is replaced by other EoL waste management technology
 519 options, including incineration or recycling. When 50% of solid wastes are treated by incineration
 520 and another half by reclamation, plastic losses are decreased by a minimum of 99.99% and become
 521 environmentally benign. However, PP waste incineration can generate CO₂ intensively and
 522 contributes 32.15% to the life cycle GHG emissions. Compared to onsite incineration, PP fast
 523 pyrolysis-based reclamation processes can allocate the carbons to fuels, such as gasoline and diesel,
 524 and monomer products, including ethylene and propylene, and reduce direct GHG emissions.

525 Figure 6a-6h show that the freshwater ecotoxicity and air pollution impacts associated with PM
 526 formation and ozone formation can reach their minimum when treating the PP waste completely
 527 by chemical recycling. Plastic losses and their environmental impacts are also heavily reduced, as
 528 illustrated in Figure 5b, which shows 92.58%, 40.87%, and 25% decrements in total ecotoxicity
 529 posed by life cycle organic chemical emissions, photochemical ozone formation, and ozone
 530 formation that harms terrestrial ecosystems, respectively. Although high organic solvent use in the
 531 aromatic extraction process within PP chemically recovery processes can increase ecotoxicity from
 532 life cycle organic emissions⁶⁷, this EoL waste management process still outperforms other EoL
 533 options, including incineration and landfills, in terms of the full-spectrum environmental impacts.

534
 535 Figure 6. Absolute life cycle environmental impacts (in 500 years) of PP wastes treated by
 536 various PP waste EoL options. (a) GWP (CO₂-eq: CO₂ equivalent); (b) Freshwater Ecotoxicity
 537 (PAF: Potentially Affected Fraction); (c) Freshwater Ecotoxicity, Organics (CTU_e: The
 538 comparative toxic unit for aquatic ecotoxicity impacts); (d) Major Air Pollutants and PM (UBP:
 539 Eco-points). (e) Particulate Matter (PM2.5-eq: Equivalent air pollution effect caused by particulate
 540 matter with sizes smaller than 2.5 μ m); (f) Photochemical Ozone Creation (NMVOC-eq: Non-


541 methane volatile organic chemical equivalent); (g) Ozone Formation, Human Health (NO_x-eq:
542 Nitrogen-oxides equivalent); (h) Ozone Formation, Terrestrial Ecosystems (NO_x-eq: Nitrogen-
543 oxides equivalent).

544

545 Onsite monomer and fuels and energy production in PP recovery processes can decrease
546 environmental burdens from offsite manufacturing. Figure 5c illustrates this environmental benefit
547 by reducing 19.91% PM formation, 26.49% photochemical ozone formation, and 23.35% ozone
548 formation in the **100/0/0** scenario. The current global plastic waste management practice in 2023
549 is to process plastic wastes by 30%, 24%, and 46% in incineration, chemical recycling, and
550 landfills, respectively. Figure 6h shows that this process can reduce more than 20% of full-
551 spectrum environmental impacts when processing PP wastes compared to the existing U.S.
552 practices. The climate impacts, which are the environmental hotspot in maintaining plastic life
553 cycle sustainability, can reach their minimum when no PP wastes are received and treated by
554 incineration. The propylene produced from PP waste recovery can be re-polymerized into plastics,
555 enabling cascaded waste processing to reduce virgin chemical consumption. Figure 5d shows the
556 full-spectrum environmental advantages of this fast pyrolysis-based cascaded PP waste
557 management on declining 6.74% photochemical ozone formation, 5.70% ozone formation that
558 harms human health, 5.86% ozone formation harming the terrestrial ecosystem, and 4.57% GWP.
559 Applying the cascaded plastic waste processing can mitigate these life cycle environmental
560 impacts via declining environmental losses and reducing 11.25% raw material and 25.75% fossil
561 use via onsite monomer and fuels and energy production, as observed in Figure 5d and Figure S3.
562 However, implementing chemical recycling does not necessarily indicate a full-spectrum
563 environmental impact reduction. Figure 6b indicates that the high energy and solvent consumption
564 over this process can enhance the ecotoxicity impacts associated with organic chemical emissions.
565 Further improving the monomer recovery rate⁶⁸, limiting energy use, and specialized air pollution
566 controls on the exhaust gas can better hinder environmental consequences from plastic losses and
567 reduce fossil resource consumption.

568 We also assessed the total cost of treating waste PP by waste management pathway composed
569 of landfills, incineration, and recycling receiving various percentages of domestic PP wastes. The
570 **50/50/0** scenario presented in Figure 7 shows the highest total costs of the three investigated
571 scenarios owing to the higher capital costs of the incineration plant than the sanitary landfills. Due

572 to the economy of scale, the total equipment installation costs of two processing plants (chemical
 573 recycling and incineration) in the **50/50/0** scenario can be higher than the **100/0/0** scenario with
 574 the same total treatment capacity by cascaded plastic use. Despite having lower costs due to
 575 simpler operations and processes, sanitary landfills cannot offset the high environmental burdens
 576 caused by plastic losses. Therefore, government incentives should be provided for cascaded plastic
 577 use to effectively reduce plastic losses and their derived environmental consequences.

578
 579 Figure 7. Breakdowns of the total costs of the **100/0/0**, **50/50/0**, and **U.S. 2018** scenarios. The
 580 total cost comprises CAPEX and OPEX. CAPEX equals the summation of the total equipment
 581 installation costs, indirect capital, land cost, and working capital, while the OPEX is comprised of
 582 solid waste disposal fee, O&M, and costs of feedstocks, utilities, and transportation.

583

584 Discussion

585 Growing plastic production has benefited our Anthropocene activities, but the prices of
 586 widespread use should be reconciled with its environmental burdens across the entire life cycle⁶⁹.
 587 These environmental consequences from material losses can be evaluated via understanding their
 588 environmental fate, including degradation and transport phenomena and exposure to different earth
 589 compartments (i.e., air, water, and land). Plastic losses can undergo natural photo-degradation and
 590 pose ecotoxicity, climate change, and air pollution that can worsen by at least four times as the
 591 decomposition continues with age. Meteorology and river hydraulics are two key effect factors of
 592 these environmental consequences. A two-fold higher UV radiation levels on sunny days could
 593 increase 41.48% of these environmental consequences, and intensive wind can also drive these
 594 environmental effects by at least 20%. Water temperature dropping to near 0 °C in winter slows

595 the aquatic degradation and reduces by above 10.90% of full-spectrum environmental impacts.
596 Environmental burdens from plastic losses are not negligible and can increase with age.

597 Therefore, previous studies underestimated the environmental burdens of plastics due to the
598 lacking investigation of their environmental losses across the whole life cycle⁷⁰, though they were
599 detected in tonnages from virgin material production, use, and EoL waste disposal⁷¹. For instance,
600 the current domestic PP EoL waste management pathway of the U.S., which is one of the world's
601 top plastic polluters, causes growing environmental pollution with age and can pose a minimum
602 of 41.65% full-spectrum environmental impacts on ecotoxicity (organics) and ozone formation in
603 the long run. Implementing solid waste reclamation technologies can effectively limit waste runoff
604 and alleviate environmental losses to reduce these long-term environmental legacies. When
605 substituting plastic landfills with 50% chemical recycling and 50% incineration, the plastic release
606 to the environment can be reduced by over 99.99%. These environmental benefits can be more
607 pronounced if applying cascaded waste processing to reclaim solid wastes back to virgin materials
608 multiple times and cut raw chemical consumption, polymeric material release, and GHG emissions
609 compared to the widely used incineration process. Environmental benefits of the cascaded PP
610 waste processing can be outlined as reductions in the 19.91% life cycle PM formation, 26.49%
611 photochemical ozone formation, and 23.35% ozone formation compared to the current U.S. EoL
612 waste management pathway. Overall, cascaded waste processing is effective in chronic polymeric
613 material losses and pollution mitigation, which fits and sheds light on the EoL waste management
614 policy implications corresponding to the zero-waste policy, environmentally-specific policies, and
615 the plastic pollution act.

616 Practices in the circular plastic economy³⁵ aided by cascaded waste processing can minimize
617 environmental burdens from waste losses and virgin chemical production via closing the cycle⁷².
618 Specifically, cascaded waste processing can cut the environmental release and exposure to reduce
619 pollution and help achieve zero-waste by reducing over 99.99% material losses. Incentivizing
620 cascade plastic waste processing also supports recovering the solid wastes onsite into monomeric
621 products and fuels to offset their external manufacturing and avoid its environmental consequences
622 by at least 4.35%. Enhancing the monomer recovery rate, which determines plastic reuse time, by
623 advancing the fast pyrolysis catalyst design⁷³, reaction condition optimization⁷⁴, and meticulous
624 control of yield separation¹⁷ enable cascaded waste processing to reduce environmental losses. In
625 practice, these technology innovations should combine with effective solid waste sorting

626 technologies to handle polymer wastes with complex chemical compositions.

627 Plastic wastes can limit their pollution if treated by environmentally sustainable EoL
628 management with minimum toxic release and gas emissions. Landfills should be replaced with
629 other effective EoL waste management technologies that facilitate cascaded plastic waste
630 management, such as chemical reclamation, with governmental incentives to promote pollution
631 mitigation and reduce 23.35% life cycle ozone formation and 19.91% air pollution posed by PM.
632 The environmental benefits of cascade plastic waste processing can be further improved by
633 reducing energy use and effective off-gas emission control and mitigation by integrating carbon
634 capture sequestration or capture technologies.

635 Adopting advanced and sustainable materials like cellulose products can replace fossil
636 alternatives and generate fewer material losses⁷⁵⁻⁷⁶. Existing studies have also supported informing
637 policies for using these materials to substitute plastic with less pollution⁷⁷. Future studies can
638 investigate the pros and cons of displacing polyolefin plastics with advanced or sustainable
639 materials that can be reused multiple times, specifically focusing on the effects of limiting material
640 losses and their derived environmental impacts. However, these technological innovations for
641 achieving high natural compatibility and degradability by referencing the current Green Chemistry
642 framework are not a permanent solution to reducing pollution or other environmental drawbacks⁷⁸,
643 given our findings on high environmental exposure and hazards of plastic losses from improper
644 EoL waste management. Minimizing environmental exposure via integrating effective solid waste
645 collection with meticulous material release control or elimination can mitigate short-term
646 environmental consequences of plastic losses and impede their four-fold increment in long-term
647 effects. Direct MP reclamation methods proposed by existing experimental studies can also cease
648 these environmental exposures and consequences⁷⁹. Improving the technology maturity of these
649 MP recycling processes and incorporating them with cascaded waste processing still requires
650 scale-ups and government incentives for future development.

651 Testing and galvanizing the cascaded plastic use supported by the policy implications is
652 critical, not only for gaining environmental benefits but also for maintaining the potential
653 economic growth and positive societal effects of enhancing plastic circularities. However, practical
654 implementation of this process is currently hindered by technology limitations for treating plastic
655 waste mixtures and contaminated plastics with minimal energy usage and material loss. To address
656 these limitations, government incentives for identifying the best cascaded use method for each

657 type of plastic or mixture are necessary for maximizing reuse and sustainable EoL treatment. On
658 the other hand, future societal impact analyses on the proper solid waste collections and effective
659 conversions, especially cascaded use, can advance our understanding of how and where this
660 technology should go to gain its maximum full-spectrum sustainability benefits. All these
661 technological implications can aid in reaching a global treaty on plastic pollution mitigation by
662 fostering transparent information sharing between scientific and negotiating communities.

663

664 **Supporting Information**

665 Input data and model formulation for the mass-balance based PP post-disposal fate model,
666 time dynamic environmental assessment methodology and results of plastic losses, absolute LCA
667 results of PP plastics treated by waste EoL options, and environmental breakdowns of PP plastics
668 treated by waste EoL options.

669

670 **Acknowledgments**

671 This material is based upon work supported by the National Science Foundation (NSF) under
672 Grant No. 1643244 and 2029327.

673

674 **References**

- 675 (1) Horton, A. A., Plastic pollution: When do we know enough? *Journal of Hazardous Materials*
676 **2022**, 422, 126885.
- 677 (2) Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y.-X., Bio-based polymers
678 with performance-advantaged properties. *Nature Reviews Materials* **2022**, 7 (2), 83-103.
- 679 (3) Thomas, K. V., Understanding the plastics cycle to minimize exposure. *Nature Sustainability*
680 **2022**, 5 (4), 282-284.
- 681 (4) Rahimi, A.; García, J. M., Chemical recycling of waste plastics for new materials production.
682 *Nature Reviews Chemistry* **2017**, 1 (6), 1-11.
- 683 (5) Wen, Z.; Xie, Y.; Chen, M.; Dinga, C. D., China's plastic import ban increases prospects of
684 environmental impact mitigation of plastic waste trade flow worldwide. *Nature communications*
685 **2021**, 12 (1), 1-9.
- 686 (6) Min, K.; Cuiffi, J. D.; Mathers, R. T., Ranking environmental degradation trends of plastic
687 marine debris based on physical properties and molecular structure. *Nature communications* **2020**,
688 11 (1), 1-11.
- 689 (7) Fojt, J.; Denková, P.; Brtnický, M.; Holátko, J.; Řezáčová, V.; Pecina, V.; Kučerík, J., Influence
690 of Poly-3-hydroxybutyrate Micro-Bioplastics and Polyethylene Terephthalate Microplastics on the

691 Soil Organic Matter Structure and Soil Water Properties. *Environmental Science & Technology*
692 **2022**, *56* (15), 10732-10742, DOI: 10.1021/acs.est.2c01970.

693 (8) Galloway, T. S.; Cole, M.; Lewis, C., Interactions of microplastic debris throughout the marine
694 ecosystem. *Nature ecology & evolution* **2017**, *1* (5), 1-8.

695 (9) Allen, D.; Allen, S.; Abbasi, S.; Baker, A.; Bergmann, M.; Brahney, J.; Butler, T.; Duce, R. A.;
696 Eckhardt, S.; Evangelou, N., Microplastics and nanoplastics in the marine-atmosphere
697 environment. *Nature Reviews Earth & Environment* **2022**, 1-13.

698 (10) Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W. J.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y.,
699 Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. *Nature*
700 *Sustainability* **2020**, *3* (11), 929-937.

701 (11) Revell, L. E.; Kuma, P.; Le Ru, E. C.; Somerville, W. R.; Gaw, S., Direct radiative effects of
702 airborne microplastics. *Nature* **2021**, *598* (7881), 462-467.

703 (12) Wu, X.; Chen, X.; Jiang, R.; You, J.; Ouyang, G., New insights into the photo-degraded
704 polystyrene microplastic: Effect on the release of volatile organic compounds. *Journal of*
705 *Hazardous Materials* **2022**, *431*, 128523.

706 (13) Morgado, V.; Palma, C.; Bettencourt da Silva, R. J., Bottom-Up Evaluation of the Uncertainty
707 of the Quantification of Microplastics Contamination in Sediment Samples. *Environmental*
708 *Science & Technology* **2022**, *56* (15), 11080-11090.

709 (14) Pfohl, P.; Wagner, M.; Meyer, L.; Domercq, P.; Praetorius, A.; Hüffer, T.; Hofmann, T.;
710 Wohlleben, W., Environmental degradation of microplastics: how to measure fragmentation rates
711 to secondary micro-and nanoplastic fragments and dissociation into dissolved organics.
712 *Environmental Science & Technology* **2022**, *56* (16), 11323-11334.

713 (15) Schwarz, A. E.; Lighthart, T. N.; Boukris, E.; Van Harmelen, T., Sources, transport, and
714 accumulation of different types of plastic litter in aquatic environments: a review study. *Marine*
715 *Pollution Bulletin* **2019**, *143*, 92-100.

716 (16) Sharma, R.; Bansal, P. P., Use of different forms of waste plastic in concrete—a review.
717 *Journal of Cleaner Production* **2016**, *112*, 473-482.

718 (17) Bora, R. R.; Wang, R.; You, F., Waste polypropylene plastic recycling toward climate change
719 mitigation and circular economy: energy, environmental, and technoeconomic perspectives. *ACS*
720 *Sustainable Chemistry & Engineering* **2020**, *8* (43), 16350-16363.

721 (18) Hahladakis, J. N.; Iacovidou, E., An overview of the challenges and trade-offs in closing the
722 loop of post-consumer plastic waste (PCPW): Focus on recycling. *Journal of Hazardous Materials*
723 **2019**, *380*, 120887.

724 (19) Hu, Q.; Ok, Y. S.; Wang, C.-H., Sustainable and highly efficient recycling of plastic waste
725 into syngas via a chemical looping scheme. *Environmental Science & Technology* **2022**, *56* (12),
726 8953-8963.

727 (20) Ni, B.-J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wei, W.; Xu, Q.; Xia, Z.; Dai, X.; Sun, J.,
728 Microplastics mitigation in sewage sludge through pyrolysis: The role of pyrolysis temperature.
729 *Environmental Science & Technology Letters* **2020**, *7* (12), 961-967.

730 (21) Roosen, M.; Mys, N.; Kusenberg, M.; Billen, P.; Dumoulin, A.; Dewulf, J.; Van Geem, K.
731 M.; Ragaert, K.; De Meester, S., Detailed analysis of the composition of selected plastic packaging
732 waste products and its implications for mechanical and thermochemical recycling. *Environmental*
733 *science & technology* **2020**, *54* (20), 13282-13293.

734 (22) Alston, S. M.; Arnold, J. C., Environmental impact of pyrolysis of mixed WEEE plastics part
735 2: life cycle assessment. *Environmental science & technology* **2011**, *45* (21), 9386-9392.

736 (23) Hogue, C. Chemical recycling of plastic gets a boost in 18 US states—but environmentalists

737 question whether it really is recycling. <https://cen.acs.org/environment/recycling/plastic->
738 [recycling-chemical-advanced-fuel-pyrolysis-state-laws/100/i17](https://cen.acs.org/environment/recycling/chemical-advanced-fuel-pyrolysis-state-laws/100/i17) (accessed May 15, 2022).

739 (24) Munir, M. T.; Mansouri, S. S.; Udagama, I. A.; Baroutian, S.; Gernaey, K. V.; Young, B. R.,
740 Resource recovery from organic solid waste using hydrothermal processing: Opportunities and
741 challenges. *Renewable and Sustainable Energy Reviews* **2018**, *96*, 64-75.

742 (25) Gracida-Alvarez, U. R.; Winjobi, O.; Sacramento-Rivero, J. C.; Shonnard, D. R., System
743 analyses of high-value chemicals and fuels from a waste high-density polyethylene refinery. Part
744 1: conceptual design and techno-economic assessment. *ACS Sustainable Chemistry & Engineering*
745 **2019**, *7* (22), 18254-18266.

746 (26) Dai, L.; Zhou, N.; Lv, Y.; Cheng, Y.; Wang, Y.; Liu, Y.; Cobb, K.; Chen, P.; Lei, H.; Ruan,
747 R., Pyrolysis technology for plastic waste recycling: A state-of-the-art review. *Progress in Energy*
748 and *Combustion Science* **2022**, *93*, 101021.

749 (27) Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P. H.; D'hooge, D. R.; Cuoci, A.;
750 Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K. M., The chemistry of chemical recycling
751 of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future
752 directions. *Progress in Energy and Combustion Science* **2021**, *84*, 100901.

753 (28) Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A., Life
754 cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in
755 comparison with mechanical recycling and energy recovery. *Science of the Total Environment*
756 **2021**, *769*, 144483.

757 (29) Klemeš, J. J.; Fan, Y. V.; Jiang, P., Plastics: friends or foes? The circularity and plastic waste
758 footprint. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects* **2021**, *43* (13),
759 1549-1565.

760 (30) Cox, K. D.; Covernton, G. A.; Davies, H. L.; Dower, J. F.; Juanes, F.; Dudas, S. E., Human
761 consumption of microplastics. *Environmental science & technology* **2019**, *53* (12), 7068-7074.

762 (31) Hale, R. C.; King, A. E.; Ramirez, J. M.; La Guardia, M.; Nidel, C., Durable Plastic Goods:
763 A Source of Microplastics and Chemical Additives in the Built and Natural Environments.
764 *Environmental Science & Technology Letters* **2022**, *9* (10), 798-807.

765 (32) Zhang, Q.; Xu, E. G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E. Y.; Shi, H., A review of microplastics
766 in table salt, drinking water, and air: direct human exposure. *Environmental science & technology*
767 **2020**, *54* (7), 3740-3751.

768 (33) Zhao, X.; You, F., Life Cycle Assessment of Microplastics Reveals Their Greater
769 Environmental Hazards than Mismanaged Polymer Waste Losses. *Environmental Science &*
770 *Technology* **2022**, *56* (16), 11780-11797, DOI: 10.1021/acs.est.2c01549.

771 (34) Rorrer, J. E.; Troyano-Valls, C.; Beckham, G. T.; Román-Leshkov, Y., Hydrogenolysis of
772 polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. *ACS*
773 *Sustainable Chemistry & Engineering* **2021**, *9* (35), 11661-11666.

774 (35) Rosenboom, J.-G.; Langer, R.; Traverso, G., Bioplastics for a circular economy. *Nature*
775 *Reviews Materials* **2022**, *7* (2), 117-137.

776 (36) Zhang, J.; Zou, G.; Wang, X.; Ding, W.; Xu, L.; Liu, B.; Mu, Y.; Zhu, X.; Song, L.; Chen,
777 Y., Exploring the occurrence characteristics of microplastics in typical maize farmland soils with
778 long-term plastic film mulching in northern China. *Frontiers in Marine Science* **2021**, *8*, 800087.

779 (37) Wang, Y.; Levis, J. W.; Barlaz, M. A., An assessment of the dynamic global warming impact
780 associated with long-term emissions from landfills. *Environmental Science & Technology* **2019**,
781 *54* (3), 1304-1313.

782 (38) Gast, L.; Cabrera Serrenho, A.; Allwood, J. M., What contribution could industrial symbiosis

783 make to mitigating industrial greenhouse gas (GHG) emissions in bulk material production?
784 *Environmental science & technology* **2022**, *56* (14), 10269-10278.

785 (39) Faragò, M.; Damgaard, A.; Logar, I.; Rygaard, M., Life Cycle Assessment and Cost-Benefit
786 Analysis of Technologies in Water Resource Recovery Facilities: The Case of Sludge Pyrolysis.
787 *Environmental science & technology* **2022**, *56* (24), 17988-17997.

788 (40) Ji, L.; Wang, Y.; Xie, Y.; Xu, M.; Cai, Y.; Fu, S.; Ma, L.; Su, X., Potential Life-Cycle
789 Environmental Impacts of the COVID-19 Nucleic Acid Test. *Environmental science & technology*
790 **2022**, *56* (18), 13398-13407.

791 (41) Littlefield, J.; Rai, S.; Skone, T. J., Life Cycle GHG Perspective on US Natural Gas Delivery
792 Pathways. *Environmental science & technology* **2022**, *56* (22), 16033-16042.

793 (42) Zhao, X.; You, F., Consequential Life Cycle Assessment and Optimization of High-Density
794 Polyethylene Plastic Waste Chemical Recycling. *ACS Sustainable Chemistry & Engineering* **2021**,
795 *9* (36), 12167-12184, DOI: 10.1021/acssuschemeng.1c03587.

796 (43) Zhao, X.; You, F., Waste high-density polyethylene recycling process systems for mitigating
797 plastic pollution through a sustainable design and synthesis paradigm. *AIChE Journal* **2021**, *67*
798 (4), e17127, DOI: 10.1002/aic.17127.

799 (44) Wang, S.-W.; Georgopoulos, P. G.; Li, G.; Rabitz, H., Random sampling– high dimensional
800 model representation (RS– HDMR) with nonuniformly distributed variables: application to an
801 integrated multimedia/multipathway exposure and dose model for trichloroethylene. *The Journal
802 of Physical Chemistry A* **2003**, *107* (23), 4707-4716.

803 (45) Bronstert, A.; de Araújo, J.-C.; Batalla, R. J.; Costa, A. C.; Delgado, J. M.; Francke, T.;
804 Foerster, S.; Guentner, A.; López-Tarazón, J. A.; Mamede, G. L., Process-based modelling of
805 erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments. *Journal of
806 Soils and Sediments* **2014**, *14* (12), 2001-2018.

807 (46) Lu, T.; Solis-Ramos, E.; Yi, Y.; Kumosa, M., UV degradation model for polymers and
808 polymer matrix composites. *Polymer degradation and stability* **2018**, *154*, 203-210.

809 (47) Maga, D.; Galafton, C.; Blömer, J.; Thonemann, N.; Özdamar, A.; Bertling, J., Methodology
810 to address potential impacts of plastic emissions in life cycle assessment. *The International
811 Journal of Life Cycle Assessment* **2022**, *27* (3), 469-491.

812 (48) Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D. K.; Gun'ko, Y. K.; Boland, J. J.; Wang, J. J.,
813 Microplastic release from the degradation of polypropylene feeding bottles during infant formula
814 preparation. *Nature Food* **2020**, *1* (11), 746-754.

815 (49) Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J. H.; Abu-Omar, M.; Scott,
816 S. L.; Suh, S., Degradation rates of plastics in the environment. *ACS Sustainable Chemistry &
817 Engineering* **2020**, *8* (9), 3494-3511.

818 (50) Vega, G. C.; Gross, A.; Birkved, M., The impacts of plastic products on air pollution-A
819 simulation study for advanced life cycle inventories of plastics covering secondary microplastic
820 production. *Sustainable Production and Consumption* **2021**, *28*, 848-865.

821 (51) Niki, H.; Maker, P.; Savage, C.; Breitenbach, L., A Fourier transform infrared study of the
822 kinetics and mechanism for the reaction hydroxyl+ methyl hydroperoxide. *The Journal of Physical
823 Chemistry* **1983**, *87* (12), 2190-2193.

824 (52) Atkinson, R., Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical
825 with organic compounds under atmospheric conditions. *Chemical Reviews* **1986**, *86* (1), 69-201.

826 (53) Altshuller, A., The production of carbon monoxide by the homogeneous NO x-induced
827 photooxidation of volatile organic compounds in the troposphere. *Journal of atmospheric
828 chemistry* **1991**, *13* (2), 155-182.

829 (54) Fan, Y. V.; Jiang, P.; Tan, R. R.; Aviso, K. B.; You, F.; Zhao, X.; Lee, C. T.; Klemes, J. J.,
830 Forecasting plastic waste generation and interventions for environmental hazard mitigation.
831 *Journal of Hazardous Materials* **2022**, *424*, 127330, DOI: 10.1016/j.jhazmat.2021.127330.

832 (55) Wang, Y.; Levis, J. W.; Barlaz, M. A., Life-Cycle Assessment of a Regulatory Compliant US
833 Municipal Solid Waste Landfill. *Environmental Science & Technology* **2021**, *55* (20), 13583-
834 13592.

835 (56) Huijbregts, M. A.; Steinmann, Z. J.; Elshout, P. M.; Stam, G.; Verones, F.; Vieira, M.;
836 Hollander, A.; Zijp, M.; van Zelm, R., ReCiPe 2016: a harmonized life cycle impact assessment
837 method at midpoint and endpoint level report I: characterization. **2016**.

838 (57) Höglmeier, K.; Weber-Blaschke, G.; Richter, K., Utilization of recovered wood in cascades
839 versus utilization of primary wood—a comparison with life cycle assessment using system
840 expansion. *The International Journal of Life Cycle Assessment* **2014**, *19* (10), 1755-1766.

841 (58) Masry, M.; Rossignol, S.; Gardette, J.-L.; Therias, S.; Bussière, P.-O.; Wong-Wah-Chung, P.,
842 Characteristics, fate, and impact of marine plastic debris exposed to sunlight: A review. *Marine
843 Pollution Bulletin* **2021**, *171*, 112701.

844 (59) Kooi, M.; Besseling, E.; Kroeze, C.; Van Wezel, A. P.; Koelmans, A. A., Modeling the fate
845 and transport of plastic debris in freshwaters: review and guidance. *Freshwater microplastics:
846 Emerging environmental contaminants?* **2018**, 125-152.

847 (60) Ali, M. U.; Lin, S.; Yousaf, B.; Abbas, Q.; Munir, M. A. M.; Ali, M. U.; Rasihd, A.; Zheng,
848 C.; Kuang, X.; Wong, M. H., Environmental emission, fate and transformation of microplastics in
849 biotic and abiotic compartments: Global status, recent advances and future perspectives. *Science
850 of The Total Environment* **2021**, *791*, 148422.

851 (61) Besseling, E.; Quik, J. T.; Sun, M.; Koelmans, A. A., Fate of nano-and microplastic in
852 freshwater systems: A modeling study. *Environmental pollution* **2017**, *220*, 540-548.

853 (62) Brendel, C. E.; Dymond, R. L.; Aguilar, M. F., Integration of quantitative precipitation
854 forecasts with real-time hydrology and hydraulics modeling towards probabilistic forecasting of
855 urban flooding. *Environmental Modelling & Software* **2020**, *134*, 104864.

856 (63) Plastics: Material-Specific Data. [https://www.epa.gov/facts-and-figures-about-materials-
857 waste-and-recycling/plastics-material-specific-data](https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data) (accessed Sep. 10).

858 (64) Ragaert, K.; Delva, L.; Van Geem, K., Mechanical and chemical recycling of solid plastic
859 waste. *Waste management* **2017**, *69*, 24-58.

860 (65) Zhao, X.; You, F., Waste respirator processing system for public health protection and climate
861 change mitigation under COVID-19 pandemic: Novel process design and energy, environmental,
862 and techno-economic perspectives. *Applied Energy* **2021**, *283*, 116129, DOI:
863 10.1016/j.apenergy.2020.116129.

864 (66) Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made.
865 *Science advances* **2017**, *3* (7), e1700782.

866 (67) Zhao, X.; Klemeš, J. J.; You, F., Energy and environmental sustainability of waste personal
867 protective equipment (PPE) treatment under COVID-19. *Renewable and Sustainable Energy
868 Reviews* **2022**, *153*, 111786.

869 (68) Vollmer, I.; Jenks, M. J.; Roelands, M. C.; White, R. J.; van Harmelen, T.; de Wild, P.; van
870 Der Laan, G. P.; Meirer, F.; Keurentjes, J. T.; Weckhuysen, B. M., Beyond mechanical recycling:
871 Giving new life to plastic waste. *Angewandte Chemie International Edition* **2020**, *59* (36), 15402-
872 15423.

873 (69) Mitrano, D. M.; Wagner, M., A sustainable future for plastics considering material safety and
874 preserved value. *Nature Reviews Materials* **2022**, *7* (2), 71-73.

875 (70) Gontard, N.; David, G.; Guilbert, A.; Sohn, J., Recognizing the long-term impacts of plastic
876 particles for preventing distortion in decision-making. *Nature Sustainability* **2022**, 1-7.

877 (71) Peng, Y.; Wu, P.; Schartup, A. T.; Zhang, Y., Plastic waste release caused by COVID-19 and
878 its fate in the global ocean. *Proceedings of the National Academy of Sciences* **2021**, 118 (47),
879 e2111530118.

880 (72) Chin, H. H.; Varbanov, P. S.; You, F.; Sher, F.; Klemes, J. J., Plastic Circular Economy
881 Framework using Hybrid Machine Learning and Pinch Analysis. *Resources, Conservation and*
882 *Recycling* **2022**, 184, 106387, DOI: 10.1016/j.resconrec.2022.106387.

883 (73) Huang, J.; Veksha, A.; Chan, W. P.; Giannis, A.; Lisak, G., Chemical recycling of plastic
884 waste for sustainable material management: A prospective review on catalysts and processes.
885 *Renewable and Sustainable Energy Reviews* **2022**, 154, 111866.

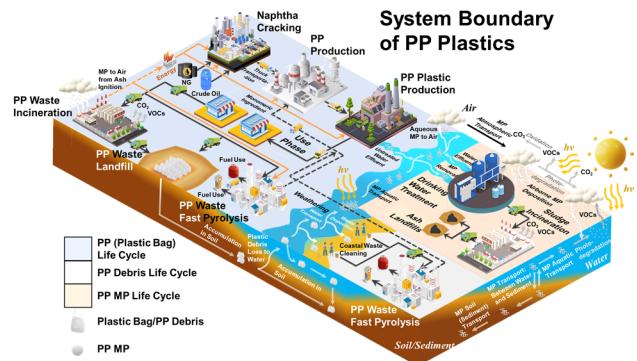
886 (74) Queiroz, A.; Pedroso, G. B.; Kuriyama, S. N.; Fidalgo-Neto, A. A., Subcritical and
887 supercritical water for chemical recycling of plastic waste. *Current Opinion in Green and*
888 *Sustainable Chemistry* **2020**, 25, 100364.

889 (75) Krupp, L. R.; Jewell, W. J., Biodegradability of modified plastic films in controlled biological
890 environments. *Environmental science & technology* **1992**, 26 (1), 193-198.

891 (76) Zhao, X.; Klemeš, J. J.; Saxon, M.; You, F., How sustainable are the biodegradable medical
892 gowns via environmental and social life cycle assessment? *Journal of Cleaner Production* **2022**,
893 380, 135153, DOI: 10.1016/j.jclepro.2022.135153.

894 (77) McDevitt, J. P.; Criddle, C. S.; Morse, M.; Hale, R. C.; Bott, C. B.; Rochman, C. M.,
895 Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act A New
896 Standard Can Facilitate Improved Policy. *Environmental science & technology* **2017**, 51 (12),
897 6611-6617.

898 (78) Mitrano, D. M.; Wohlleben, W., Microplastic regulation should be more precise to incentivize
899 both innovation and environmental safety. *Nature communications* **2020**, 11 (1), 1-12.


900 (79) Arpia, A. A.; Chen, W.-H.; Ubando, A. T.; Naqvi, S. R.; Culaba, A. B., Microplastic
901 degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous
902 environmental effects: a state-of-the-art review. *Journal of Hazardous Materials* **2021**, 418,
903 126381.

904

905

906 For Tables of Contents Use Only

907

908

909 **Description:** Cascading plastic macro debris chemical upcycling and microparticle removal processes to reduce material losses and their derived pollution from incineration and landfills.

910

911