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Abstract— Compute-in-Memory (CIM) implemented with
Resistive-Random-Access-Memory (RRAM) crosshars is a
promising approach for Deep Neural Network (DNN) acceler-
ation. As the DNN size continues to grow, the finite on-chip
weight storage has become a challenge for CIM implementations.
Pruning can reduce network size, but unstructured pruning
is not compatible with CIM, while structured pruning leads
to higher neural network accuracy drop. In this work we
systematically evaluate how structured pruning can be efficiently
implemented in CIM systems. We show that by utilizing the
inherent computational granularity in CIM operations, fine-
grained structured pruning can be supported with improved
accuracy and minimal hardware cost. We discuss the hardware
implementation in a practical system and the expected perfor-
mance in terms of accuracy, energy and effective throughput.
With the proposed approach, compression ratio up to 11.1
(i.e. 9% weights remaining) can be achieved with only 0.6%
accuracy drop with minimal hardware overhead in the hardware
design.

Index Terms— Neural network, pruning, memristor, crossbhar,
compute-in-memory.

I. INTRODUCTION

EEP neural networks have been widely adopted for

Artificial Intelligence (AI) applications [1], [2], [3], [4].
CIM-based DNN accelerators offer advantages over conven-
tional architectures by eliminating data movements of weights
between the memory unit and the computation unit [5].
However, this approach requires all weights need to be stored
on-chip, which becomes increasingly challenging as the size of
state-of-the-art models grow exponentially over time [1], [2],
[6], [7]. Pruning techniques can reduce the storage requirement
by removing less important weights [8], [9], [10] but highly
unstructured sparse operations cannot be efficiently computed
in CIM structures. The ability to efficiently support large
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DNNs through pruning would significantly expand the appeal
of CIM-based DNN accelerators.

One promising method of leveraging sparsity is to prepare
the sparse neural network with the constrains of the targeted
hardware, either through training with predefined sparsity
pattern [11], [12], [13], or structured pruning co-designed
with the CIM architecture. In this work, we systematically
examined how CIM architecture properties can be leveraged
to allow effective pruning and mapping of the network.

We identified opportunities for utilizing the computation
parallelism within one vector-vector multiplication that rises
from weight precision mapping on multiple devices, and
separate signed and unsigned weight mapping. This allows
us to decrease the effective granularity of the sparse neural
network. In addition, we examined the time-multiplexing and
scheduling of ADC computation within CIM architectures
to achieve even finer-grained structured pruning. We demon-
strated that with these techniques applied, minimal neural
network accuracy lost can be achieved at high compression
ratio.

II. BACKGROUND
A. Compute-in-Memory

The majority of DNN computation is made up of multiply-
and-accumulate (MAC) operations in vector and matrix forms,
i.e., Vector-Matrix-Multiplication (VMM) or Matrix-Matrix-
Multiplication (MMM). This property of DNN makes CIM a
promising approach by keeping weights stationary in memory
and performing VMM in place in a highly parallel fashion.
Many CIM architectures based on different memory technolo-
gies such as RRAM and PCM have been proposed for DNN
acceleration [5], [14], [15], [16].

Below we examine DNN operation in CIM systems
and opportunities to implement effective pruning techniques.
A typical CIM operation of a CIM-based Processing Element
(PE) is illustrated in Fig. 1. DNN operation in CIM consists of
three main parts. The first is the off-line mapping of the model.
Before computing, the flattened weights should be stored on
the crossbar follwing a mapping schedule [15]. For inference-
only applications, the weights remained unchanged in the run
time, therefore this process would only be performed once.
To increase inference efficiency, the weights and activations
in a DNN is usually quantized for efficient inference. It has
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Fig. 1. A representative crossbar-based CIM PE design, showing the inputs,
outputs, ADC sharing, and the input/output pipeline stages.

been demonstrated that 8-bit weights and activations can sig-
nificantly reduce computation cost and memory size without
too much DNN performance degradation [17], [18], [19], [20].
However, it is currently unrealistic to store an 8-bit value in
one RRAM cell, and a practical way is to use multiple cells
to represent different bits of the value.

The second step is the application of inputs to the crossbar
array. When computing the VMM, the vector should be
encoded as input voltages (amplitude or pulse width) that will
be applied to the wordlines (WLs) of the crossbar. The current
collected at the end of the bitlines (BLs) will then be the
accumulated, representing the encoded input activation multi-
plied with the conductance that represent the encoded weights.
Bit-serial input voltage encoding is a common practice, that
is, an 8-bit activation will be represented as 8 consecutive
input pulses. Unlike a digital MAC engine, in a crossbar
implementation the input is shared by WLs and is expected
to generate outputs at all BLs, which puts clear constraints on
model mapping, MAC operations and pruning techniques that
it supports.

The third step is the conversion of the analog outputs of the
crossbar to digital values to be sent to the rest of the system.
This is typically achieved via Analog-to-Digital Converters
(ADCs). Due to the large size of ADCs, it is impractical to
design PE with one (high-resolution) ADC for each RRAM
column, and typically several columns will share one ADC
instead. In this case, the analog outputs at the bitline will
first be latched with a Sample-and-Hold (S&H) unit and
sequentially applied to the shared ADC. Afterwards, Shift-and-
Add (S&A) units are used to accumulate the partial outputs
from the different weight bits and inputs bits to produce the
final VMM results (Fig. 1).

B. Sparse Neural Networks

State-of-the-art DNN models are usually very large in size
with large number of weights [1], [2], [3], [4], [21], making
them expensive to fit on a CIM chip. Additionally, as the
models evolve rapidly, it becomes difficult for a CIM chip
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Fig. 2. Various types of pruning methods. In general, finer pruning granularity
leads to better accuracy after pruning.

with fixed on-chip memory to be “future proof™, limiting their
application potential.

DNN pruning has been widely studied and some techniques
have been shown to be effective in reducing the model size
without significant DNN performance drop [8], [9], [10].
Different types of pruning schemes reported are illustrated
in Fig. 2. Simply pruning away individual connections that
are least significant will result in an unstructured sparse DNN
model. This type of model has very fine granularity and can
usually effectively maintain the model accuracy post pruning
[8]. In contrast, structured pruning prunes away groups of
weights that are defined by certain grouping rules. The group-
ing rules usually reflect the targeted hardware for the model
to be computed on. For example, vector-wise pruning prunes
away vectors in the weight kernel and is targeted to run on
hardware accelerators with parallel vector computations [22].
Another example of structured pruning is shape-wise pruning,
where the same pixel locations in different weight kernels
are grouped and pruned together, therefore, the shape of the
sparse kernel would have the same shape across kernels after
pruning [23], [24]. Pruning with larger blocks in kernel level
have also been demonstrated [25], [26], [27]. A unique case
of structured pruning is filter/channel pruning, which prunes
away entire filters (output channels). After filter/channel prun-
ing, the DNN model structure is preserved, the pruned model
will simply be a smaller DNN model instead of a sparse DNN
[28], [29], [30].

Typically, the finer the group granularity during pruning, the
better the post-prune model performance in terms of accuracy.
However, fine granularity pruning typically leads to highly
unstructured models that increases computation overhead due
to sparsity indexing and makes parallel processing difficult.
Therefore, balancing the trade-off between model accuracy and
hardware overhead becomes an important task, particularly
for accelerators such as CIM systems that have very clear
hardware limitations.

C. Pruning Neural Networks for CIM

Prior works on pruning DNNs in CIM falls into two
main categories, mapping schemes and structured pruning,
as illustrated in Fig. 3.

The mapping approach takes an unstructured pruned model
and implements various technique to map the weights on
crossbars to achieve highest crossbar utilization. A simple
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Fig. 3. Implementation of sparse neural networks in crossbar based CIM
architecture with (a) mapping schemes and (b) structured pruning schemes.

way of mapping irregular weights on crossbars is to take
the sparsified matrix and compress it in a chosen direction
by squeezing out the pruned weights in a structured manner
[31], [32]. For example, SNrram splits one sparse matrix
into dense sub-matrices and implements a resource allocation
scheme to re-assemble the sub-matrices with the same shape
into different parts of a crossbar [33]. An indexing register unit
is then used to correctly accumulate the partial results. [34]
proposed a mapping scheme based on k-means clustering,
which shuffles the columns in the weight matrix and eliminates
all-zero crossbars. However, mapping of unstructured weights
to a structured format will inevitably result in underutiliza-
tion of weight storage, especially when the sparsity level is
high (i.e. high compression ratio after pruning). Encoding
and decoding the indices for the unstructured inputs to the
corresponding rows of the crossbar will also add significant
hardware and latency overhead.

In CIM-constrained structured pruning, weights in a
2-Dimensional (2D) flattened matrix can be grouped in
two possible directions, row-wise and column-wise, which
aligns with shape-wise pruning in Fig. 2. Row-wise prun-
ing prunes away the same pixels of multiple filters, while
column-wise pruning prunes away the same pixels of multiple
input channels in the channel-first mapping implementation
[35]1, [36], [37]. In general, the groups could also be 2D,
utilizing both directions. In an extreme case, [35] prunes
entire crossbars, therefore requires no hardware change in the
CIM unit.

In addition, [38] proposed an automatic bit-pruning tech-
nique to achieve structured bit-sparsity in neural networks.

In general, structured pruning achieves higher crossbar uti-
lization than mapping of unstructured-pruned DNN, therefore
would provide better hardware performance and will be the
focus of this study.

II1. FINE-GRAINED CIM CONSTRAINED
STRUCTURED PRUNING

The practical goal of pruning is to produce a compact model
that can be efficiently mapped, while minimizing accuracy
drop and hardware overhead. Here we systemically analyze the
trade-offs between prune grouping type, sparsity, and model
accuracy to find practices that will lead to near-optimal design
points for CIM accelerators.
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A. Pruning Method

We will use the popular network Wide ResNet (WRN)
16 x 8 [39] as an example, but the key characteristics and
findings should be valid for other DNN models. To maintain
a high model accuracy at high compression level, multiple
pruning steps should be taken to gradually prune the model
to a desired compression ratio (number of weights after
pruning/number of weights of the original model). Structured
pruning is achieved by grouping multiple weights together
with a predefined scheme. In the following discussion, we will
refer to the group of weights to be pruned as a prune group
(PG). We evaluate the importance of each PG with their
L, value. At each prune step, a fixed ratio of existing groups
with the smallest Ly will be pruned, followed by fine-tuning
of the weights through re-training to increase the post prune
model accuracy [23]. This process is then repeated until the
desired compression ratio is obtained, e.g. 0.9 with only 10%
of weights remaining. The inserted flow chart in Fig. 4 shows
the iterative prune-and-fine-tune process.

In Fig. 4, we compare four types of pruning schemes on
WRN16x8 trained with the CIFAR-100 dataset [40]. Row-
wise structured pruning is done by grouping the weights at
the same location in all the filters of each layer. Column-wise
pruning is done by grouping all the pixels in different channels
in the same group. Filter/channel prune is done by pruning an
entire filter with the smallest L,, therefore, the entire channel
of the next layer.

B. Pruning and NN Model Performance Degradation

Different structured pruning schemes can be viewed as
pruning with different PG designs. To evaluate the effect of
PG design on model accuracy, a collection of different pruning
schemes with different PG sizes and aspect ratios are selected.
Fig. 5(a) shows an example of the 2D weight sparsity maps
of one layer in WRN, after pruning with the same PG size of
64 but different aspect ratios, where the aspect ratio is defined
as the width of the PG divided by the height of the PG. The
accuracy results shown in Fig. 5(b) are averaged over five
pruning experiments for each case. It can be observed that with
large PG size the aspect ratio can slightly affect the results,

Authonized licensed use limited to: University of Michigan Library. Downloaded on July 17,2023 at 19:53:57 UTC from IEEE Xplore. Restrictions apply.



MENG et al.: EXPLORING CIM ARCHITECTURE GRANULARITY FOR STRUCTURED PRUNING OF NEURAL NETWORKS 861

Width/Height ml6 ®m64 w256

32f2 164 BB 416 232 075
1 1 | | i E:‘
] i i | [ ] |
4

oz o= 64 16 1 14 1/16 1/64
Aspect Ratio (width/height)

600

a00

1000

w

U—
Accuracy

] o = e o

P I T I =

e e

LI T~ R R
e

W Pruned weights
{a) ib)

[ Unpruned weights

Fig. 5. Structured pruning experiment results for different PG sizes and
aspect ratios, showing (a) weights of one WRN layer with fixed PG size and
different aspect ratios, and (b) post-pruning accuracy of models with different
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Fig. 6. (a) Accuracy for models pruned with different PG sizes and different
target compression levels for WRN trained on CIFAR-10 and CIFAR-100.
(b) Accuracy degradation between unstructured pruning (equivalent to group
size=1) and PG size 128 for different compression levels.

i.e. pruning with very narrow or wide PGs tends to suffer
more accuracy lost. However, for smaller group sizes, which
is more relevant since they tend to lead to less accuracy drop,
the results for all aspect ratios between 16:1 to 1:16 are very
similar, suggesting the aspect ratio, i.e, the pruning direction
and shape, is not an important factor. On the other hand, the
PG size has a much more significant effect on the model
accuracy, with smaller PG size leading to higher accuracy after
pruning. As a result, in the following discussion we will focus
on techniques based on row-wise pruning, which could be
directly supported by the CIM hardware in a finer granularity.

Fig. 6 shows the post pruning accuracy of row-wise pruning
under different PG sizes and target compression levels for
CIFAR-100 and CIFAR-10 [40]. Again it could be observed
that the PG size largely affects the post pruning model
accuracy. In addition, the effect of PG size is more significant
at higher compression levels, i.e. when more weights need
to be removed. These results show that the most important
design point for preserving high model performance after
pruning is to increase the pruning granularity, particularly if
high compression ratios are desired.

IV. COMPUTATIONAL GRANULARITY FOR
FINE-GRAINED PRUNING

In row-wise pruning, the parallel computational nature
across different crossbar columns is preserved and the output

would be correctly accumulated. This limits the granularity
during pruning to the whole crossbar row for crossbar-based
CIM implementations, which can cause significant accuracy
drop. To solve such problem, we will exploit the inherit
computational granularity in CIM to improve the pruning
granularity that leads to improved model accuracy and on
hardware performance (latency and throughput).

A. Fine-Grain Row-Wise Sparsity in Crossbars

As illustrated in Fig. 1, the run-time CIM operation consists
of two steps, analog compute, and analog-to-digital conver-
sion. Since the ADC circuits are usually large, it would be
impractical to provide one ADC at each column [15]. There-
fore, sharing schemes between crossbar columns is usually
implemented. In particular, ADC sharing means that only
a subset of columns will be computed and converted at a
given time, offering opportunities for finer grain row-pruning
without additional latency overhead. We call this technique
sub-grouping within a crossbar. Additionally, since nor-
mally multiple devices are used to store one weight value,
additional granularity can be leveraged in the CIM based
implementation.

In the following discussions, we will refer to the group of
columns in a crossbar who can operate on the same input
as the computational group (CG). A CG thus forms the
smallest unit for structured pruning in the CIM system, and
equals to PG if a weight is stored in one device. Without
pruning, the CG equals to the total number of columns in a
crossbar. However, due to ADC sharing, the shared columns
need to be computed serially (Fig. 1), so CG can be made
smaller than the total number of columns. Ideally, all available
ADCs should still be utilized to improve the parallelism,
so the smallest CG size equals to the number of ADCs
per crossbar. Below that, there will be ADCs that cannot
be utilized. Therefore, in theory, smaller number of ADCs
per PE (e.g. more ADC sharing through time-multiplexing)
will create opportunities for finer grained computation. Since
ADCs are typically large, more ADC sharing should also
reduce the area of the PE. On the other hand, latency can
significantly suffer if one ADC is shared between too many
columns. These different factors have to be balanced in the
PE design.

Below we consider how the number of ADC sharing and CG
size will affect latency when designing a fine-grained compu-
tation process. To maximize hardware utilization and reduce
latency, the crossbar read and ADC conversion processes
should be pipelined. After a set of inputs is applied to the
WL of the crossbar, it would take a couple cycles for the
signals to stabilize and be latched with the S&H units [41].
In the next pipeline stage, the ADCs will convert the signals
serially among the shared columns.

A crossbar read and ADC conversion pipeline for the case
of no sub-grouping, (i.e. CG = number of columns) is shown
in Fig. 7(a). Typically, the ADC operates at higher frequency
than the system frequency, but since one ADC needs to convert
outputs from multiple columns, the ADC stage is normally the
pipeline bottleneck. The cycles it takes to for the ADC(s) to
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Fig. 7. Illustration of the crossbar read and ADC pipeline. (a) Case with a
single ADC assigned to the crossbar with with a single CG, (b) two CGs, and
(c) four CGs where the crossbar read stage can stall the pipeline following
Eq. 1. (d) Minimum CG size without performance degradation for different
number of ADCs and different ADC frequency; and (e) normalized throughput
of different CG size and number of ADCs, with ADCs operating at the same
frequency as the crossbar read frequency.

convert all the required samples would be,

f-"eQ'sys x Nsampfe
freqapc x Napc

1)

where freqsys is the system operating frequency, freqapc
is the sampling rate of the ADC(S). Nsampie is the number of
analog signals to be converted, and Napc is the number of
ADC:s available for the conversion stage. Due to ADC sharing,
the ADC needs to serially operate those cycles to convert all
the data stored in the S&H units.

To employ sub-grouping within a crossbar, we turn off the
Source Line (SL) drivers for selected columns, so that only a
sub-group (i.e. CG) of columns receive input at a given time.
As a result, the inputs equation 1 will be scaled by the number
of sub-groups since only a smaller accumulated data need to be
serially processed. However, as long as the ADC conversion
stage is still dominating, the overall latency is not affected,
as the total number of serially converted data remain the same,
while latency due to the increase in inputs is hidden by the
pipeline, as shown in Fig. 7(b). As a result, we can achieve
smaller CG thus finer pruning granularity without latency cost.
However, When the sub-group size becomes too small such
that the crossbar read become the bottleneck, as shown in
Fig. 7(c), the pipeline is stalled, and latency will be increased.

To illustrate the two constrains, consider a typical CIM
case with 128 x 128 crossbars, 50 MHz system frequency.
Typically, ADC sampling rate is higher than the crossbar
read frequency. As shown in Fig. 7(d), the fewer the number
of ADC assigned to each crossbar, the smaller the CG size
can be achieved without throughput degradation. Reducing
the ADC frequency would also result in smaller CG sizes.
When the ADC frequency is the same as the crossbar read
frequency, the theoretical minimum CG size, which equals
to the number of ADCs per PE, can be obtained without
latency overhead. When the CG is further reduced below the
number of ADCs, throughput will be degrated, as shown in
Fig. 7(e). In this example with 16 ADCs per crossbar, the

smallest CG size is thus 16. This matched ADC design with
RRAM read frequency has also been demonstrated to achieve
good performance and cost tradeoff [41], [42], [43].

Another point to note is the factor that multiple RRAM
cells are needed to store one weight value. In the case of
N-bit RRAM cell resolution and 8-bit weights, one weight
will require % RRAM cells to store the value. This means
that the equivalent VMM dimension would be the number of
columns in a crossbar divided by %. In addition, in CIM, two
columns are used to map the positive and negative weights
separately, and their outputs are separately accumulate too.
Since the positive and negative weights share the same input,
the actual PG equals to CG (2 x %). Therefore in an example
of 128 columns in a crossbar, 8 bit weights, 2 bits per cell,
positive and negative weights mapped on same crossbar, the
width of the VMM would be 16, which is 8 times smaller
than the crossbar width, providing another factor to support
finer-grained sparsity in row-wise pruning.

B. Fine-Grained Sparsity Mapping and Indexing

In this section we discuss the implementation of the fine-
grained row-wise pruned NN in CIM. To support sparsified
weights, the packed weights should be stored along with a
set of sparsity index. A straightforward indexing scheme is
the direct indexing, where one bit is assigned to the vector to
represent if the value is zero or not, as illustrated in Fig. 8(a).
Another indexing method, step indexing, shown in Fig. 8(b),
is done by storing the steps between each nonzero value.
If the number of bits is not enough to represent a step, fake
non-zero values need to be padded in between for proper
sparse indexing. The step index scheme has been demonstrated
to provide better performance in terms of area and power [44],
in addition, this indexing scheme will result in a fixed sparsity
index size regardless of the sparsity of the weights. This way
the additional storage overhead for the index could be fully
utilized. The overhead will also be minimal compared to the
weights stored. For example, at 10 compression ratio (i.e. 10%
weights remaining after pruning) and 8-bit weights, the index
would only be 10

To match the correct input activations to the crossbar inputs,
the full input activation vectors need to be fetched and then
the corresponding values need to be selected using the weight
sparsity index and fed to the proper rows. In the example
above, each set of input vectors will take 8 VMM to consume,
as shown in the pipeline stages in Fig. 8(c).

C. Input Buffering

A typical tiled architecture with hierarchical computational
units of Compute Unit (CU)/PE is shown in Fig. 9(a) [41].
In this architecture, one CU contains multiple crossbar-based
PEs. The PEs in the same CU share the same fetch and
distribute logic such as finite state machines (FSMs) which
are used to prepare inputs for the VMM computation and
keep track of the computation progress. The input activations
are buffered in an activation buffer and can be shared by
multiple CUs. If a filter is mapped across different PEs and
CUs, the output of the PEs are the partial sums (Psum) of the
final output and should be accumulated. Psum accumulators

Authonized licensed use limited to: University of Michigan Library. Downloaded on July 17,2023 at 19:53:57 UTC from IEEE Xplore. Restrictions apply.



MENG et al.: EXPLORING CIM ARCHITECTURE GRANULARITY FOR STRUCTURED PRUNING OF NEURAL NETWORKS 863

Sparse

vortor [ I [ [ I I O I D L
Snarse. 5] (1) 0] [0l (D) [ [0 @ @ @ @ @

index

| [a]=) [ [s[=[=[=]s]

between 1 2 [i] 5

Non-zeras
{a) J]_ Add fake non-zeros

Dense input mput | O 2bit OEOEEEEOOE:Om

Crosshar| m= == = = 1 e |
Dread [0 [11 21 (3] (3] (5] | fetch& | [4] Sparse g @ o
Buffer m————— | select 5] index i
[] anc *

3|

Sparse index [D1] [10] [00] -

[ Input fetch and select (PG D)

. frsq,}._r = B(bits) i |
M fredypar

Post processing & Writeback

Fig. 8. (a) Mlustration of direct indexing scheme, and (b) step indexing
scheme. (c) Pipeline stages of input fetch, crossbar read, and ADC conversion
stages.

Tile PEQ PE1
A A
Compute unit {CU) O ol v
R GO 1 0 1
Processing element (PE] O PE1 |
- | =
Sparse index PGO PG1 Sparse index PGO PG1 f— =] - =
T e e -::
s -
il I - )
il R == -
P

| Fetch and distribute unit |

@ @
. Output/
Wrtchack 0 Psum Register s cU1
@
e Psum
Activation buffer
il accumulator aind

{a) )

Fig. 9. (a) Ilustration a tiled architecture with hierarchical computational
units of Compute Unit (CU)/Processing Element (PE) that supports multiple
PG within one PE. (b) A filter mapping example of 4 PGs across 2 PEs.

and output/psum registers shared within one CU are used to
accumulate the final output and a writeback unit is used to
write the output to the designated CU.

A flattened weight mapping example of 4 PGs across 2 PEs
is shown in Fig. 9(b). Because each CG is pruned individually,
therefore the input activation they correspond to will not align,
therefore, the related input required by each CUs will likely
overlap. The FSM in the fetch unit needs to be designed to
be more flexible to account for the arbitrary input activation
range. To make sure the correct inputs are assigned to corre-
sponding PE, the fetch unit will broadcast the inputs in the
dense form to all the PEs, and each PE will encode the inputs
with the weight sparsity index stored within the PE.

To map sparse NN on the CIM-based accelerator, the
activation buffering should also be considered. More layers
would be mapped to the same CU for a pruned model,
potentially resulting in larger required activation buffer size.
However, in actual practice, the increment in required buffer
size is not extreme. Fig. 10(a) shows a tile/CU/PE hierarchy
where there are 8 CUs in one tile and 8 PEs in one CU,
each PE does one 128 x8 VMM. These parameters are opti-
mized based on convolution dimensions of typical NN models.
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Fig. 10. (a) CU hierarchy and dimension. Weight and activation mapping
illustration for (b) shallow layers with wider spatial dimensions and smaller
depth, and (c) deeper layers with smaller spatial dimensions and larger depth.

Typically, in shallower layers, the input activation would have
wider spatial dimensions and smaller depth, while the input
activations of deeper layers have narrower spatial dimensions
and larger depth. The MAC/weight ratio is typically larger in
shallow layers too, therefore, to balance the operation of the
entire NN computation, the weights of the shallower layers
will often be duplicated to increase throughput, as shown in
Fig. 10(b). Therefore, even with a 4-times compression ratio,
number of layers mapped to the same CU will be less than
4 times. In addition, to maintain high accuracy after pruning,
the shallower layers are often not pruned too aggressively.
For deeper layers, the required buffer size for the dense case
is lower, because the weights are mapped onto multiple CUs
split by the depth, as shown in Fig. 10(c). After, pruning, the
entire activation might be mapped to the same CU, but it would
not require a large buffer size.

D. ADC Design Points for Pruned Neural Networks

For a crossbar with Ry, rows, b;, bit input voltage, and
b1 bit weights per cell, the number of bits at each column
output, b,,; would be,

2

To preserve all the bits in the output, the ADC resolution
should theoretically be the same as b,,,. However, in a typical
NN inference hardware, it has been demonstrated that 8-bit
activation quantization is effective for high NN performance
application [17], [18], [19]. Therefore, the ADC resolution
could be designed to be lower than b,,; resulting in some
lost in output precision, without having too much NN model
performance degradation. Since the power and area usually
scales exponentially with ADC bits in many ADC types [45],
a few bits of difference could result in a large performance
difference.

However, high compression ratio could result in changes
in weight distributions after crossbar mapping. After the
pruning process, the lower valued weights are removed and
the remaining higher valued weights are packed into a dense
format and mapped on the crossbar. Therefore, the outputs

bout == logZ(RXbar) + bin 1 bcet'!'
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and the compressed model at 11.1 compression ratio. (b) the range increased in
the compressed model comparing to the original model at various compression
levels.
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representing one weight value.

at each crossbar column would have a wider distribution.
Fig. 11(a) shows the output distribution of a WRN layer under
1000 test input images. The positive and negative weights are
mapped separately on different crossbars for convenience and
both the positive and negative output of the compressed model
(compression ratio = 11.1) has wider distribution than the
distribution of the original model. To quantify the changes,
we define the output range increase as the compressed output
range divided by original output range. It can be observed in
Fig. 11(b) that the range increases more at higher compression
ratio and then lowered at compression level of 8. From the
weights mapped on one crossbar shown in Fig. 12, the weight
values are largest at 8 compression. It is likely that at very
high compression ratio, during the fine-tuning, some weights
need to be lowered to account for lover strength connections.

E. Performance Evaluation

We then examine the performance of the fine-grain pruned
models on CIM systems. We consider a realistic case with
crossbars and ADCs both operating at 50 MHz frequency,
128 x 128 crossbar size, and 16 ADCs per crossbar.

A simulator is built to evaluate performance of the
CIM-based architecture. The performance of the digital com-
ponents is evaluated using parameters extracted from Verilog
simulation with TSMC 22 nm process. The ADC parameters
are extracted from an in-house low power ADC, designed
specifically for NN acceleration [46]. RRAM parameters are
projected from [47].

This work focuses on leveraging the inherent granularity
in typical CIM architectures during the pruning process.
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Fig. 14.  Accuracy and power of the original and pruned WRN 16x8

for different compression ratios trained using the proposed technique, for
(a) CIFAR-10 and (b) CIFAR-100.

Non-ideal RRAM characteristics are not a focus of the study
and was not included for simplicity. We note that effects of
non-ideal device and circuit behaviors have been extensively
discussed in prior publications [48], [49], and may be miti-
gated during training [50]. To account for hardware utilization
in terms of power and throughput, the NN model is manually
mapped on the architecture and the performance is scaled
based on the hardware utilization.

Fig. 13 shows the CIM power profile at different CG
sizes. As discussed earlier, the smallest CG size that can be
supported without lowered ADC utilization is 16. The power
overhead per crossbar for CG size of 16 comparing to CG
size of 128 is 20%, which is mostly due to the additional
activation read and write stages. Fig. 14 examines the trade-off
of power profile (for running the whole model) and NN
accuracy post pruning, It can be observed in Fig. 14(a) that
for CIFAR-10, the structurally pruned model consumes only
13% of the power, with only 0.6% accuracy drop compared
with implementing the original model. For CIFAR-100, 0.8%
accuracy drop can lead to 78% power reduction using the
proposed technique, as shown in Fig. 14(b).

In Fig. 15, we consider the original model and the pruned
models mapped to an accelerator of the same size. Since
the pruned models have fewer weights, higher equivalent
throughput can be obtained as shown in Fig. 15(a). The latency
in Fig. 15(b) is also largely improved in the pruned models.

F. Discussion

To further analyze the area overhead for supporting sparse
NN computation, we conducted area estimation using pro-
jected area numbers from literature, i.e. ISAAC [41] and SRE
[32], along with area reported from Verilog simulation. The
area overhead comes from two parts, the sparse encoder within
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16x8 and pruned NN at different compression levels using the proposed
technique.

each PE, and the registers storing the sparse indexes. The first
do not grow with finer graduality, while the second increase
linearly with the number of prune groups supported in each
PE. Our analysis showed that the area overhead for supporting
a single prune group, i.e., prune group size of 16 is 3.2% for
a single PE, and 8.45% for maximum prune group count of
8 per PE.

Fundamentally, this work aims to identify the smallest
parallel computational unit to implement structurally pruned
models. Therefore, the concept could be applied to other types
of CIM, for example, CIM concepts based on different types of
memory, or digital CIM [51], [52]. Digital CIM architectures
reported typically map different bits of a weight in different
memory cells. In addition, signed and unsigned weights are
also mapped separately. Therefore, these characteristics could
also be used to support fine-grained sparse NN implementation
as discussed earlier. However, since ADCs are not used,
digital CIM may or may not share computing units among the
bitlines, so this level of granularity based on shared computing
units might not be utilized. Using [51] as an example, in this
digital CIM implementation with 64 columns per memory
macro, 4 cells are used to map a 4-bit value, and positive
and negative weights are mapped separately, resulting in a
total of 8 cells for a single 4-bit weight. A prune group size
of 8 could thus be achieved without shared computing units
among bitlines.

The fine-grained pruning technique can be applied to other
DNN models on other datasets to preserve the accuracy at high
compression ratio. For example, we analyzed the effects with
ResNet-18 on ImageNet. We compare fine-grained pruning
with prune group size of 2, and standard row-wise pruning
with prune group size of 32 (128 columns and 4 cell per weight
value) at compression ratio of 10.4. With the proposed fine-
grained pruning, we were able to reduce the accuracy drop
to 1.2% accuracy as compared to 3.9% accuracy drop for the
standard row-wise pruning technique.

V. CONCLUSION

In this work, we demonstrated the importance of granularity
in maintaining high accuracy after pruning. Since ADC takes
up large areas comparing to crossbar arrays, typical CIM
design implements ADC sharing. By taking advantage of
this characteristic along with the fact that multiple cells are
needed to store a single weight value, finer grained row-wise
pruning could be supported with minimum computational

and hardware overhead. Our analysis show the fine-grained
structured pruning allows low-cost indexing of the inputs and
minimizes input buffer size increase. The proposed approach
supports aggressive pruning (over 10 compression ratio) with
minimal accuracy drop, and significant throughput and latency
improvements compared with the original model.
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