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Baroclinic effects on the
distribution of tropical cyclone
eye subsidence
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Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States,
2NOAA Center for Satellite Applications and Research, Colorado State University, Fort Collins, CO,
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Solutions of the secondary (transverse) circulation equation for an
axisymmetric, gradient balanced vortex are used to better understand the
distribution of subsidence in the eye of a tropical cyclone. This secondary
circulation equation is derived using both the physical radius coordinate r and
the potential radius coordinate R. In the R-coordinate version, baroclinic effects
are implicit in the coordinate transformation and are recovered in the final step
of transforming the solution for the streamfunction ¥ back from R-space to r-
space. Two types of elliptic problems for ¥ are formulated: 1) the full secondary
circulation problem, which is formulated on 0 < R < oo, with the diabatic forcing
due to eyewall convection appearing on the right-hand side of the elliptic
equation; 2) the restricted secondary circulation problem, which is formulated
on 0 < R < Rew. Where the constant R, is the potential radius of the inside edge
of the eyewall, with no diabatic forcing but with the streamfunction specified
along R = Rew. The restricted secondary circulation problem can be solved
semi-analytically for the case of vertically sheared, Rankine vortex cores. The
solutions identify the conditions under which large values of radial and vertical
advection of f are located in the lower troposphere at the outer edge of the eye,
thereby producing a warm-ring thermal structure.

KEYWORDS

tropical cyclone, eye subsidence, baroclinic effects, secondary circulation, gradient
balanced vortex

1 Introduction

The concept of hub clouds and eye moats comes from aircraft observations made by
Simpson and Starrett (1955). Figure 1 is adapted from their schematic diagram of
Hurricane Edna (9-10 September 1954). Of particular interest is the hub cloud near
the circulation center and the clear moat at the edge of the eye. In later years, intense
storms like Edna have been found that also possess a warm-ring thermal structure in the
lower troposphere—where the temperature surrounding the center of a tropical cyclone is
greater than the center, which is in contrast to a warm-core thermal structure where
temperature decreases radially outward from the center. A good example is Hurricane
Isabel on 13 September 2003, when it had tangential winds in excess of 70 ms™". Figure 2
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FIGURE 1

Schematic diagram of the eye of Hurricane Edna,

9-10 September 1954, as adapted from Simpson and Starrett
(1955). At this time, Hurricane Edna had a steep corrugated eyewall
on its north side and a sloping (= 45°) eyewall on its south

side. Such variations in eyewall slope are often interpreted as an
effect of environmental vertical shear (see Hazelton and Hart,
2013; Hazelton et al,, 2015; and the recent review by Rogers, 2021).
The stratocumulus “hub cloud” near the circulation center and the
moat near the edge of the eye indicate that in strong hurricanes
the subsidence is not uniform across the eye, but rather is
concentrated near the edge of the eye. Enhanced subsidence in
the lower troposphere near the edge of the eye leads to a lower-
tropospheric warm-ring thermal structure, as shown in Figure 2 for
Hurricane Isabel (2003). A photograph of Isabel's hub cloud is
shown in Figure 3, which indicates that the hub clouds in Isabel and
Edna were of approximately the same height, although Isabel's eye
diameter was somewhat larger than that of Edna.

shows NOAA WP-3D aircraft data for this storm. The two panels
show tangential wind (black curves), temperature (red curves),
and dewpoint temperature (blue curves) for a 2.1 km altitude
radial leg (lower panel) and a 3.7 km altitude radial leg (upper
panel). A warm-ring thermal structure occurs at both levels, with
the warmest and driest air at 25 km radius, which is at the outer
edge of the eye. In temperature, the warm ring is approximately
4.2°C warmer than the vortex center at 3.7 km and 5.0°C warmer
than the vortex center at 2.1km. As can be seen from the
dewpoint depressions, the warm-ring region near 25km
radius is associated with dry, subsiding air at the outer edge
of the eye. Enhanced subsidence at the outer edge of the eye tends
to produce an eye-moat. Note that the center of the eye is
saturated at z = 2.1 km but is not saturated at z = 3.7 km,
which is consistent with the top of the hub cloud being located at
z = 3 km. The tangential wind profiles reveal a vorticity structure
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FIGURE 2

Radial profiles of NOAA WP-3D aircraft data for Hurricane
Isabel on 13 September 2003. The panel (B) is for the z = 2.1 km
flight leg (1922 to 1931 UTC) and the panel (A) for the z = 3.7 km
flight leg (1948 to 1956 UTC). Black curves are for tangential
wind, red curves for temperature, and blue curves for dewpoint
temperature. Adapted from Schubert et al. (2007).

more complicated than the simple structure that will be assumed
in Section 3. This is evident from the kinks that occur near r =
20 km for z = 2.1 km and near r = 27 km for z = 3.7 km. In other
words, Isabel had a somewhat “hollow” vorticity structure
compared to the radially uniform structure that is assumed in
Section 3.

The photograph shown here as Figure 3 was taken from the
WP-3D aircraft near the edge of the eye, looking towards the hub
cloud at the center of the eye. The top of the hub cloud is near
3 km altitude, so the radial leg in the upper panel of Figure 2 is
just above the top of the hub cloud, while the radial leg in the
lower panel is just below the top of the hub cloud, as is evident in
the dewpoint depressions. Since the first internal mode Rossby
length in the eye of Isabel at this time is on the order of 10-15 km,
the eye diameter (~ 60 km) is approximately 5 Rossby lengths,
allowing for the rare opportunity to view balanced dynamical
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Eye of Hurricane Isabel on 13 September 2003

FIGURE 3

Photograph of the eye of Hurricane Isabel on 13 September 2003. The 3 km tall hub cloud at the center of the eye is surrounded by a moat of
clear air or shallow stratocumulus. Beyond the hub cloud and on the opposite side of the eye (at a distance of ~ 60 km) lies eyewall convection

extending up to 12-14 km. Photo courtesy of Sim Aberson.

structure over several Rossby lengths in a single photograph. For
comprehensive discussions of Hurricane Isabel, see Montgomery
et al. (2006), Aberson et al. (2006), Bell and Montgomery (2008),
Nolan et al. (2009b,a), and Stern et al. (2016). The eye-moat and
mesovortex structure of Hurricane Isabel on 12 September
2003 is discussed by Kossin and Schubert (2004) and Rozoff
et al. (2006).

Another common feature of intense tropical cyclones is the
“stadium effect,” caused by the outward slope of the eyewall. An
example of this effect, taken from the CloudSat data archive, is
shown in Figure 4. This vertical cross-section was obtained when
CloudSat’s 94 GHz Cloud Profiling Radar made a fortuitous pass
directly over the eye of Typhoon Choi-Wan on 15 September
2009. In the top panel of Figure 4, the vertical scale is stretched to
highlight the vertical structure of the radar reflectivity. In the
bottom panel, only the region inside a radius of 50 km is shown,
so the aspect ratio is one-to-one, which clearly reveals the
approximate 45° baroclinic tilt of the eyewall updraft. The
incorporation of such baroclinic tilt is an important aspect of
the theoretical analysis presented here in Sections 2 and 3.

An interesting feature of nonhydrostatic, full-physics, tropical
cyclone models is that they can produce intense storms with a
temperature field that has a warm-core structure at upper levels, but
a warm-ring structure at lower levels. The first example of this was
presented by Yamasaki (1983), whose Figure 10A is reproduced here
as Figure 5. The upper tropospheric warm-core anomaly is 17°C and
is centered at a height of 14 km. A warm-ring thermal structure is
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found between heights of 2 and 8km, and at a radius of
approximately 7-8 km. Much of the present paper is devoted to
a balanced dynamical interpretation of the production of such an
overall thermal structure.

For the study of eye subsidence, one can envision using (at least)
four different sets of independent variables in space: radius and log-
pressure, (r, z); potential radius and log-pressure, (R, Z); radius and
potential temperature, (r, 0); or potential radius and potential
temperature, (R, ®). Note that Z = z and © = 6, but the upper
case symbols Z and @ are used because (0/0Z) # (0/0z) and (0/00) +
(0/00). Concerning the use of (R, ®)-coordinates, since the flow in
the eye is inviscid and adiabatic, both R and © are Lagrangian
coordinates, which means that a given parcel in the eye stays on its
original R-surface and its original ®@-surface. In other words, when
the mathematical analysis is performed in (R, ®)-space, there is no
need for a transverse circulation equation, and the dynamics is more
easily understood in the framework of PV and its invertibility
principle, as discussed in a theoretical context by Schubert and
Alworth (1987), Moéller and Smith (1994), and Schubert (2018), and
in an observational context by Martinez et al. (2019). This is in sharp
contrast to the use of (r, z)-coordinates, where neither r nor z is a
Lagrangian coordinate. In this paper, we have analyzed the
transverse circulation problem in (R, Z)-coordinates, a setting in
which one coordinate is Lagrangian and the other is not. There is a
duality between the use of (R, Z)-coordinates and the use of (r, 6)-
coordinates, since in the (r, 6)-formulation, one coordinate is
Lagrangian (recall that 6 = 0 in the eye) and the other is not.
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Typhoon Choi-Wan -- CloudSat Radar Reflectivity 15 SEP 2009 03:53:06 UTC
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FIGURE 4

At 0353 UTC on 15 September 2009, CloudSat’'s 94 GHz Cloud Profiling Radar passed directly over Typhoon Choi-Wan. This figure shows a
north-south vertical cross-section of radar reflectivity for the 65 ms™ storm (north is to the right) when it was located approximately 450 km north of
Guam. In the panel (A), the horizontal scale is compressed to exaggerate the vertical structure. In the panel (B), only the region inside a radius of
50 km is shown (which excludes the secondary eyewall), but the aspect ratio is one-to-one, thus showing the sloping eyewall (or “stadium
effect”) as would be seen by an observer on a research aircraft. Reflectivity values less than — 20 dBZ have been removed for clarity. This figure has
been adapted from Schubert and McNoldy (2010) and is based on radar data made available through the NASA CloudSat Project.
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Thus, the essential results obtained in Section 3 using the (R, Z)-
formulation could also be obtained using the (r, 6)-formulation.
However, some details involved in the two formulations are
different. For example, in the (r, 6)-formulation, a convenient
vertically sheared Rankine core has solid-body rotation on each
isentropic surface rather than on each isobaric surface. Also, in the
elliptic problem (Eq. 16), the outer boundary is the coordinate
surface R = Ry, while in the (r, 6)-formulation a sloping eyewall
outer boundary would not be an r-surface, thereby producing an
additional difficulty in the solution of the elliptic problem. Thus,
while the difficulties of including baroclinic effects in the (r, z)-
formulation can be overcome by using either the (R, Z)-formulation
or the (r, 6)-formulation, the analysis presented in this paper is
indicative of our slight preference for the (R, Z)-formulation.

The paper is organized as follows. Section 2 first presents the
balanced vortex equations in the (r, z)-formulation, and then
transforms to the (R, Z)-formulation. For certain baroclinic
vortices, the (R, Z) formulation of the transverse circulation
equation can be solved semi-analytically using a vertical
3). These
solutions are used to generalize the barotropic vortex results

transform approach (Section semi-analytical
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of Schubert et al. (2007) and to better understand the role of
baroclinicity in the distribution of subsidence in the eye of an
intense tropical cyclone.

2 Gradient balance theory

For simplicity, the analysis presented here considers an
axisymmetric, balanced flow in the inviscid fluid that lies
above the frictional boundary layer. To simplify the primitive
equation model to a balanced vortex model, we assume that the
azimuthal flow remains in a gradient balanced state, i.e., we
discard the exact radial equation of motion and replace it with the
gradient balance condition given below as the first entry in Eq. 1.
A sufficient condition for the validity of this assumption is that
the diabatic forcing effects have slow enough time scales that
significant, azimuthal mean inertia-gravity waves are not excited.
We shall describe this inviscid flow using the log-pressure vertical
coordinate z = HIn(p,/p), where H = RyT/g is the constant scale
height, po and T, are constant reference values of pressure and
temperature, Ry is the gas constant for dry air, and g is the
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FIGURE 5

Vertical cross-section of the temperature anomaly (°C) from

the nonhydrostatic, full-physics model simulation of an intense
tropical cyclone by Yamasaki (1983). A warm-core thermal
structure (17°C anomaly) is found at heights near 14 km, while

a warm-ring thermal structure is found near r = 7-8 km between
heights of 2 and 8 km. As shown in Eqg. 35 the warm-ring thermal
structure is associated with absolute angular momentum surfaces
that are tilted in opposite directions on the two sides of the warm
ring. The upper troposphere/lower stratosphere cold anomaly
produced by this model is similar to that observed by Johnson and
Kriete (1982) for tropical mesoscale systems using radiosonde data
(their Figure 3) and by Rivoire et al. (2016) using COSMIC GPS radio
occultation data. Adapted from Figure 10A of Yamasaki (1983).

acceleration of gravity. Under the balance condition, the

(2

governing equations are

ov ov o(rv)\
E+w$+<f+ rar )u—(),
9% _g
T _JT
0z T(J (1)
o(ru) 9(pw)
—+——==0,
ror  poz
oT oT oT «T Q
—tu—+w—+— )=,
ot or 0z H ¢

where x = Ry/cp, ¢, is the specific heat at constant pressure, f the
constant Coriolis parameter, p(z) = poe™™" the pseudo-density in
the log-pressure coordinate, pg = po/(R4T)) the constant reference
density, ¢ the geopotential, u the radial velocity component, v the
azimuthal velocity component, w the log-pressure vertical
velocity, and Q the diabatic heating. The potential vorticity

a(rv) a0
ror )oz|

(PV) equation, derived from Eq. 1, is
DP_1

ov 06
D ‘;[EE*(” @
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where D/Dt = (0/0t) + u(d/0r) + w(0/0z) is the material derivative,
1 ov ol da(rv)\ o0
p=2|_-== o
[ * (f * ror ) az]

p| 0z or
is the potential vorticity, 0 = T (po/p)* = Te**'H is the potential
temperature, cpé/ 0 = Q/T, and the potential radius R is defined

_ﬁa(R,Q)
- pr 0(r,2)

(©)

in terms of the absolute angular momentum by § fR* =rv +
14,2
Zfr .

Using the mass conservation principle, we define a
streamfunction y such that

L)

ror

4)

For convenience, we shall refer to y as the “streamfunction,”
although it is worth noting that it is actually ry, rather than , that is
the “streamfunction” for the transverse mass flux. This flexibility
with the factor » proves convenient for the analytical solutions
presented in Section 3. Using the gradient balance relation in the
tangential wind equation, and using the hydrostatic relation in the
thermodynamic equation, we can write

0¢,

——pBw + =0,

3 pBw + pCu =0 -
09, gQ

0z p Cp1 0

where ¢, = (0¢/0t) is the geopotential tendency, and where the
static stability A, the baroclinicity B, and the inertial stability C
are given by

>

_9 (9T «T
A_T0<aZ+H

(O __9 0T
PB= <f+r)az_ T, Or’ ©)
2v a(rv)
pC=(f+7)<f+ ror )

Eliminating ¢, between the two equations in Eq. 5, then
expressing u and w in terms of y via Eq. 4, and requiring that w =
0 at the top and bottom boundaries, we obtain the following
transverse circulation problem (Eliassen, 1951).

Secondary Circulation Problem on the Full(r,z) — Domain :

ror 0z 0z ror 0z _CPTOE
for 0<r<oo and 0<z<zr with

{wo,z) =y (n0) =y(rz) =0, @

ry(r,z) -0 as r — 00 .

Note that AC-B?=gT,'p,le"™ " (f +2v/r)P, so that
this problem is elliptic if (f + 2v/r)P > 0, which is typically
the case for the tropical cyclone core region studied in this

paper.
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FIGURE 6

The solid blue curve is the 0 profile in the core of Hurricane Hilda, as described by Hawkins and Rubsam (1968). The dashed blue curve is the
quadratic approximation 0.(z) given by Eq. 18. For reference, the annual mean and hurricane season mean profiles for the West Indies (Jordan, 1958)
and the mean profiles for the Marshall Islands and GATE (Fulton and Schubert, 1985) are shown by the other colored curves. The maximum warm-
core anomaly in 6 occurs at 300 hPa and is approximately 21 K. The horizontal line at z = 16 km denotes the upper boundary used in the

calculations presented in Section 3.

According to Eq. 7, subsidence in the hurricane eye at
a particular time is forced by the (0Q/0r) term and is shaped
by the three spatially varying coefficients A, B, C at that

derivative terms.

from which it follows that

D o0 0 0 0 0
We—=—t+w—. 9)

T T e A P
time. Analytical progress in understanding eye subsidence
can more easily be made if we obtain a transformed Defining U, V, W, and ® by
version of Eq. 7 that contains only two spatially varying " wdV f
coefficients and does not contain any second order mixed U= R4 ? EYA - (m)w’ (10)
The balanced vortex model and the V=%v, @ =¢+%v2,

associated transverse circulation equation take simple
forms when the original independent variables (r, z, t)
are replaced by the new independent variables (R, Z, 1),
where Z = zand 7 =t but 9/0Z and 9/07 imply fixed potential
radius R. This transformation (Schubert and Hack, 1983)
makes use of

9 0 0\ (R0 0RO 0 0RO O
or 92 ot) \or OR’ 9z OR  9Z ot OR Ot
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where { = r'9(rv)/0r is the relative vorticity, the governing
equations (Eq. 1) transform to (see Appendix A for further details)

2O
. V=p a(RU)+a(pW):O’
Y fu=o, ROR poZ
3 OR3 0 T e aT T Q
. ® o9 S ONWw=D, (11)
0Z T, or g Cp
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Rankine Vortex Cores

A  Barotropic case

B  Baroclinic (vertically sheared) case
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FIGURE 7

Structure of the Rankine vortex core, as described by Eq. 17, for both the barotropic case (A) where fo = fT = 64 f and the baroclinic (vertically

sheared) case (B) where fo =144 f and fr = 36 f. The three sets of contours (black, blue, and red) are for vir, z), R(r, z) and 6(r, z) in the eye region, which
is bounded by an eyewall at R = Re,, = 240 km. The physical radius for the eyewall, given by rew (2) = [f/f(z)]“zRoW, has a constant value of 30 km in
the barotropic case but slopes outward between r = 20 km and r = 40 km in the baroclinic case. In panel (A), the black contours for v(r, z) run

from5to 45 ms™inincrements of 5 ms™, the blue contours for R(r, z) run from 15 to 240 km in increments of 15 km, while the red contours for 6(r, z)
run from 305 K to 365 K in increments of 5 K. In panel (B), the black contours for v(r, z) run from 5 to 70 ms™ in increments of 5 ms™, the blue
contours for R(r, z) run from 15 to 240 km in increments of 15 km, while the red contours for 6(r, z) run from 295 K to 365 K in increments of 5 K.

where the effective inertial frequency f and the effective
buoyancy frequency N are defined by

Fe(r+7) =ra=r{r-g)
, (f+0\ g (0T «T
()R )

_ e—xZ/H<f+(>i%=e—Kz/H&P

f )T,z Tof

It follows that r and R are related by 7 = (f/f)"?R and that rv =
RV. Note that the system in Eq. 11 is formally simpler than the

(12)

system in Eq. 1, even though no additional approximations have
been introduced. Also note that the effective buoyancy
frequency N can differ greatly from the usual buoyancy
frequency in the cyclone core, but they are essentially the
same in far-field regions where |{| <« f and the angular
momentum surfaces are nearly vertical, so that (0T/0Z) =
(0T/0z) and (060/0Z) = (00/0z).

Using the fourth entry in Eq. 11, we define the
streamfunction ¥ such that
ov 9(RY)
pU = —i and pW = W (13)

From Egs. 4 and 13, and the transformation relations in Eq. 8, it
can be shown that RY and ry differ only by a constant, which,
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without loss of generality, we can take to be zero, so that RY = ry.
Using the gradient balance relation in the tangential wind

equation, and wusing the hydrostatic relation in the
thermodynamic equation, we can write
oD, -2 oD gQ
"+ fU=0 and *+ N°W = , 14
ar "/ e oz o1ty

where @, = (00/07) = (9¢/0t) is the “geopotential tendency.”
Eliminating @, between these two equations, and then expressing
U and W in terms of ¥ via Eq. 13, we obtain the following
transverse circulation problem.

Secondary Circulation Problem on the Full (R, Z) — Domain :

0 0(RY) 0 [ 22 ;0¥ gp, 0Q

[ N2AHHI 2L Y Z/HY = | _ JFo T

aR< ¢ "RoRr >+ oz (f ¢ %9z) 7 ¢,y 3R
for 0<R<oo and 0<Z<Zp with

(15)

¥(0,2) =¥(R,0) =¥ (R, Zr) =0,
RY(R,Z) >0 as R—> 00.

The boundary conditions on ¥ come from the requirement that the
log-pressure vertical velocity vanishes at the bottom and top
boundaries, that the radial component of the secondary
circulation vanishes at R = 0, and that the secondary circulation
goes to zero as R — co. To summarize, the secondary circulation in
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TABLE 1 Numerical results for the barotropic case (top table) and the baroclinic case (bottom table). The first column lists the vertical mode index ¢,
while the second column lists the corresponding values of the Rossby length p;%, which are determined from the eigenvalues of the
Sturm-—Liouville problem in Eq. 23. Note that the crude approximation y;* = u;*/¢, which can be derived for the special case where N2 and f are
constants, works better for the barotropic case, for which f (z) is a constant. The five corresponding eigenfunctions are shown in the left and right
panels of Figure 8. For the choice R, = 240 km, the third column lists values of y,R.,,, Which can be interpreted as the number of Rossby lengths

(in R-space) between the vortex center R = 0 and the inner edge of the eyewall R = R.,,. The fourth column lists values of lo(¢Rew), Which can be
interpreted as the factor by which (for given ¢€) the subsidence at the center is reduced from that at the edge of the eye. The large value of Io(t,Rew)

for € > 2 indicate the importance of the higher vertical modes in producing a lower-tropospheric warm-ring structure. Columns 5 and 6 tabulate
the projection of ¥,,,(2) onto the first five vertical modes, as computed from Eq. 29.

(A) Barotropic Case: fo = fT =64 f and R, = 240 km

¢ p' (km) HeRew Io(ueRey)
1 133.15 1.80 1.99

2 66.78 3.59 7.98

3 44.46 5.40 38.96

4 3330 7.21 204.10

5 26.62 9.01 1,108.54

(B) Baroclinic Case:

e #e' (km) HeRew Io(pteRey)
1 122.53 1.96 2.22

2 58.44 4.11 12.40

3 38.54 6.23 82.79

4 28.78 8.34 587.22

5 22.98 10.45 4,298.18

the entire region is obtained by solving the elliptic problem in Eq. 15
for specified N(R, Z), f (R, Z), and Q(R, Z). Note that Eq. 15 is
formally simpler than Eq. 7 since it does not contain baroclinic,
second order cross derivative terms. Baroclinic effects are implicit in
Eq. 15 and are recovered when the solution W(R, Z) is transformed
back to the physical space form y(r, z) using y = (R/n)¥.

We can understand several aspects of eye subsidence by
solution of a restricted version of the full elliptic problem in Eq.
15. In this simplified problem, we restrict our attention to the eye
region 0 < R < R, where the eyewall potential radius R,
(i.e., the inner edge of the eyewall) is assumed to be a constant. In
the eye region, we assume that Q = 0, so that the elliptic problem
in Eq. 15 simplifies as follows.

Secondary Circulation Problem on the Restricted (R, Z) — Domain :

3 (o RY)
aR(Ne ROR

0 (22 ,mo¥\ _
+i<fe 37 =0

for 0SR<R,, and 0<Z<Zr with

{‘I’(O,Z)=‘I’(R,O):\I’(R,ZT):O, (16)

Y (Rey> Z) = Ve (2).

To summarize, the secondary circulation in the eye is
obtained by solving the homogeneous, elliptic problem in Eq.
16 with specified N(R, Z), f (R, Z), and ¥,,,(Z). Note that all the
dynamics in the region R.,, < R < 00, described explicitly in Eq.
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fo =144 f, fz =36 f, and Re, = 240 km

08

Ae for Zm/ZT =0.25 Ae for Zm/ZT =0.5

-1,005.32 -1,129.26
—-250.87 304.33
-20.77 —81.47
—-28.60 39.88
-4.07 -17.82

A, for Z,,/Z1 = 0.25 A, for Z,/Zy = 0.5

~765.54 —-899.72
—419.44 —28.88
-109.89 14.81
—-53.50 -7.15
-23.14 3.72

15, has been replaced in Eq. 16 by the specification of ¥(R, Z) at
R = Ry Because the elliptic problem in Eq. 16 is homogeneous,
the solution W(R, Z) has no local maxima or minima in the
interior of the restricted domain (i.e., in the eye). For the
problems considered here, we have chosen V. (Z2) < 0, so that
Y(R, Z) attains its minimum value on the outer boundary R = R,
and its maximum value of zero on the other three boundaries, R =
0 and Z = 0, Zy, where Zy = zy represents the tropopause. By
concentrating attention on the restricted problem (Eq. 16), the
goal is to understand how the spatial structure of eye subsidence
is shaped by N(R, Z), f (R,Z), and W¥y(Z). A semi-analytical
solution of a simplified version of Eq. 16 is given in Section 3,
using vertical transform methods. An alternative approach, not
explored here, is to study solutions of the geopotential tendency
equation (see Appendix B).

3 Subsidence in a vertically sheared,
Rankine vortex core
3.1 The specified vortex

We now solve Eq. 16 semi-analytically for particular

choices of the coefficients f(R, Z) and N(R, Z). For the
example given here, the vortex core is assumed to have
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constant angular velocity (i.e., solid body rotation) on each
isobaric surface, but with the angular velocity varying in the
vertical. In terms of v(r, z) and 6(r, z), the specified vortex for
0 <7 < rew(z) and 0 < z < zp is given by

1,

v(r,2) = (f @) - f)r,

R R R R e—xz/H _ e—KZT/H

f@ =fT+(fo‘fT)<W>» 17)
fo—fr)f (2)r

0(r,z) = 6. (2) - M

4c, (1 - e™=/H)

where, for this vertically sheared Rankine core, the effective

inertial frequency f(z) is also the absolute vorticity in the

eye, the constants fo and fT are the specified values of f(z)

at z = 0 and z = zy respectively, and e, (2) = [f/f(z)]”zRew,

with the constant R.,, denoting the potential radius of the inner

edge of the eyewall. The specified function 6.(2) is the potential

temperature at the vortex center, which is simply taken as a

quadratic function of z varying from 300 K at z = 0 to 370 K at

z =z = 16 km, i.e.,

Bc(z):300K+i|:70K+52K(1—i)]. (18)
z z

T T
This profile, shown by the dashed blue line in Figure 6, has been
constructed to approximate the 6-profile for the center of
Hurricane Hilda, as described by Hawkins and Rubsam
(1968) and shown by the solid blue curve in Figure 6. For
reference, the mean profiles for the West Indies, as given by
Jordan (1958), and the mean profiles for the Marshall Islands and
GATE, as given by Fulton and Schubert (1985), are shown by the
other colored curves, thereby illustrating the warming of the core
of Hilda relative to a far-field environment. In addition to this
profile, we have chosen the following parameters for our analyses
of both the barotropic and baroclinic cases: Rq = 287 Jkg™' K™/,
To =300 K, po = 1000 hPa, g =9.81 ms ™, H = RyTy/g = 8,777 m,
f=5x%10"s", and zp = 16 km.

As is easily confirmed, the v(r, z) and 0(r, z) fields
given in Eq. 17 satisfy the thermal wind relation
f (@vidz) = (g/To) (36/0r)e™H.  The fo=1Ir
corresponds to a barotropic vortex, which is the case
studied by Schubert et al. (2007). The vortex specified in
Eq. 17 is plotted in the left panel of Figure 7 for the barotropic
case fo = fT =64 f and R.,, = 240 km, so that r.,,(z) = 30 km
and v(rew(2), z) = 47.3 ms™'. For barotropic cases such as the

choice

one shown in Figure 7A, the isolines of v and R are vertical,
while the isentropes are parallel to the isobars. The right
panel of Figure 7 is for the baroclinic case fo =144 f,
j‘T =36 f, and R., = 240km, so that %fRew =6 ms},
Tew(0) = 20 km, 7. (2z1r) = 40 km, v(r.(0), 0) = 71.5ms™",
and v(rew(z1), z1) = 35 ms™'. Note that this baroclinic vortex is
warm-core at all levels, with the highest values of 0 on any isobaric
surface occurring at r = 0 and with outward-tilting R-surfaces. The
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maximum values of ¥(r, z) occur on the R, = 240 km surface, which
is consistent with the observation (Stern and Nolan, 2009) that, for
the majority of storms, the radius of maximum wind is closely
approximated by an R-surface.

Written in terms of V(R, Z) and (R, Z), the specified vortex
in Eq. 17 for 0 < R < R,,, and 0 < Z < Zy is given by

V(R Z) = %f(if(z) _f>R,
—kZ/H _

@

R R . . e e—xZT/H

2 :fT+(f0_fT)<1_e_—KZT/H>’ (19)
(]A(o - fT)fRz

4c, (1 - e"‘ZT/H)-

A

O(R,Z) = 6.(Z) -

As is also easily confirmed, the V(R, Z) and O(R, Z) fields
ginen in Eq. 19 satisfy the thermal wind relation
(f1£)(0VIOZ) = (g/Ty) (00/0R)e™#H. A crucial property of
this vertically sheared Rankine-like vortex core is that the O(R, Z)
field, given by the last line in Eq. 19, is the sum of a function of Z
and a function of R. Using the last line of Eq. 19, we find that N
and P take the simplified forms

—kz/H @idec (Z)

N (Z) =¢ T() dz (20)
P = 1 f (0P
T p(2) dz ’

so that both N* and P are functions of z only for the vertically
sheared Rankine core. This allows the solution of Eq. 16 to be
written in separable form, i.e., it allows for the analytical
solution of Eq. 16 using the vertical normal mode transform
method discussed below. The shape of the secondary circulation
in the eye depends on the outward tilt of the R = R, absolute
angular momentum surface and on the ratio of the two variable
coefficients in Eq. 16. It is convenient to multiply this ratio by
the constant scale height H to obtain the local Rossby length
[N (Z)/f (Z)]H ~ [f (2)]72, so that in the typical situation for
which f decreases with height, the local Rossby length is
smallest in the lower troposphere. This leads to the
expectation that the compensating subsidence in the eye
occurs closer to the eyewall in the lower troposphere than in
the upper troposphere. An alternative interpretation of the
dynamics involves the definition of Rossby length via vertical
mode rather than locally. This alternative interpretation is given
in the discussion of the results shown in Table 1.

3.2 Solution via the vertical transform
method

For the vertically sheared Rankine vortex core, the restricted
problem given in Eq. 16 simplifies considerably because N and f”
are functions of Z only. Then, the elliptic partial differential
equation reduces to
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Vertical Structure Functions

B

Baroclinic case

s W=

A Barotropic case
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FIGURE 8
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Barotropic (A) and baroclinic (B) vertical structure functions Z,(2) for ¢ = 1, 2, 3, 4, 5. These are the eigenfunctions of the Sturm-Liouville
problem in Eq. 23, satisfying the orthonormality relation in Eq. 40. The associated eigenvalues are given in the top (barotropic) and bottom

(baroclinic) halves of Table 1.

Y ¥ ¥

—t——— =+
OR? ROR R?

2 0¥
2 z/Hor

0Z 0Z

eZ/H 9
N? _<

):a (21)

We now solve Eq. 21 using the vertical transform method. The
vertical transform pair is

Y(R,Z) = ) ¥ (R) Z,(2),
£=1

(22)

Zr
¥,(R) = NiH J Y (R, Z) Z,(Z) N*(Z) e?/" dzZ,
0

0

where the kernel Z,(Z) of the transform is defined to be the
solution of

et g

N? dz

(Per) siizims

with Ze (0) = Zg (ZT) =0, (23)

which is a second order differential problem of the
Sturm-Liouville type (e.g., Arfken and Weber, 2005,
Chapter  10). this method of the
streamfunction W(R, Z) is represented as an infinite
of Z,(Z) with
eigenvalues u,. The constant surface value of the effective

In solution,

series eigenfunctions corresponding
buoyancy frequency, denoted by Ny, has been introduced
into the weight function [N?(Z)/N2]1[e?M/H] so that, if
Zp(Z) is normalized in such a way that it is
dimensionless, then W(R, Z) and W,(R) will have the

same units. The orthonormality of the vertical structure

Frontiers in Earth Science

10

functions Z,(Z) is discussed in Appendix C, as is the
derivation of the second entry in Eq. 22 using this
orthonormality relation.

To take the vertical transform of Eq. 21, first multiply
it by Z,(2) [NZ(Z)/Né] [e“M/H] and integrate over Z to
obtain

I, oY Y.
OR* ROR Z R? )
T 24
1 3 (2 ¥\ (
0

Integrating by parts twice, making use of the top and bottom
boundary conditions on W(R, Z) and Z,(Z), we obtain
o’Y,
oR®

o, Y.
ROR R?

+

(25)

(fzeZ/H%> dz =0.

] J d
N:H] “dz
0

Making use of Eq. 23, the horizontal structure equation (Eq. 25)
becomes

av,
dRr?

¥,

RZ
dR

+R— - (> +1)¥, =0

(26)
for 0<R<R., with ¥,(0)=0.

The solution of Eq. 26 is a linear combination of the order
one modified Bessel functions I;(4,R) and K;(y,R). Because
K;(ueR) is singular at R = 0, only the I;(4,R) solution is
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Streamfunction Along the Eyewall
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The specified function Wew(2)/¥Yew(Zm), as given by Eq. 33, for

Zm =052y =8kmand Z, = 0.25 Zy = 4 km. In all the results
presented here we have chosen the normalization factor ¥ew(Zn)
such that 2Ry Yew(Zm) = —1.8 X 10° kg s™. According to

Eq. 32, the vertical distribution of the horizontally integrated
downward mass flux in the eye is given by 2nRen¥Yew(2)
Specification of the constant Re,, also specifies ren(2) since

rew (2) = [F/f(2)]Y?Re.,,. Determination of the detailed spatial
distribution of the downward mass flux pw(r, z) = olrylr, 2)1/ror
requires solution of the homogeneous, restricted elliptic problem
givenin Eq. 16 for ¥(R, 2), from which y(r, z) is obtained via y(r, z) =
(RINY(R, 2).

accepted in the region 0 < R < R.y. Thus, the solution of the
horizontal structure problem (Eq. 26) is

Vo (®) = A )

s 27
T, (14,Rew) @

where the A, are constants. Using Eq. 27 in the top entry of Eq.
22, the final solution for the streamfunction becomes

= I, (.“ZR)
Y(R,Z) = A——
2T (o)

for 0SR<R., and 0<Z<Zr,

Z:(2) 28)

where the coefficients A, are computed from the specified
function ¥(Z) via

1
NiH

Am s | YD 2N @ Mz 29)

The solution given in Eq. 28 is valid for vortices with the
vertical profiles of f(Z) and N(Z) given by Egs. 17 and 19.
With these vertical profiles, the first five eigenvalues of the

vertical structure problem (Eq. 23) are given in the top part of
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Table 1 for the barotropic case, and the bottom part of Table 1
for the baroclinic case. The corresponding five eigenfunctions
Z¢(Z) are shown in the left (barotropic) and right (baroclinic)
panels of Figure 8. Note that we have solved the vertical
structure problem (Eq. 23) using the Mathematica package
which the
eigenfunctions of a user-defined linear operator, along with

NDEigensystem, returns eigenvalues and
user-defined boundary conditions. This Mathematica package
returns eigenfunctions with a default normalization, so we
have renormalized the Mathematica output to satisfy the
normalization given in Eq. 40 in Appendix C. There is
general similarity in the appearance of the vertical structure
functions for the barotropic and baroclinic cases. However, the
inclusion of vertical dependence off in the Sturm-Liouville
problem in Eq. 23 does lead to vertical shifts (~ 1 km) in the
nodes and to changes in the upper tropospheric amplitudes of
the Z,(Z) functions.

Using Eq. 28, along with the derivative relation d [RI;(¢,R)]/dR =
ueRIo(4eR), it can be shown that the formula for pW(R, Z) is

#elo (ueR)
W(R,Z)= ) AL Z,(Z
P z ‘I (4, Re) o) (30)
for 0SR<R., and 0<Z<Zq,
and the formula for pw(r, z) is
R 12
i@ A”e10<.“e|:f(z)/f] r>
pw(r,z )—( 7 >2Ae > Z,(2)
o I(M[f(z)/f] rew(z>>
for 0<r<r.(z) and 0<z<zr. (31)

Note that the vertical mass flux pw is related to the vertical p-
velocity by pw = —(1/g9)w and that w(r, z) can have a quite
different vertical dependence than W(R, Z), for example due to
the leading f (2)/f factor, which can have large values in the
lower troposphere.

We now specify V., (Z) in such a way that it vanishes at Z =0,

Zy and has only one local minimum for 0 < Z < Zy. The

specification of Y. (Z) constrains the problem in an
important way. To see this, note that
Tew (2) Rew
ZnJ pwrdr =2nj pW RdR
0 (32)
Rev 9 (RY
=2ﬂj ( ) dR =2nR.\ ¥, (2),
0 " OR

which shows that the specification of 277R.,¥,(Z) is equivalent
to specification of the vertical distribution of the horizontally
integrated vertical mass flux in the eye. However, the details of
the spatial distribution of vertical motion in the eye comes from
the elliptic equation, whose solution yields Egs. 30 and 31. In
order to make the height of the minimum value of W.(2)
adjustable, we have chosen the form
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Isolines of r v (r, z) and 6(r, z)

(A) Barotropic case with Z,,, = 0.5 Z¢

(C) Baroclinic case with Z,,, = 0.5 Z
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FIGURE 10

Isolines of the solution ry(r, z) (navy blue contours) and of 8(r, z) (red contours) for the barotropic case (A,B) and for the baroclinic case (C,D), both

shown for the two eyewall forcing cases Z,, = 0.5 Zr = 8 km (A,C) and Z, = 0.25 Z7 = 4 km (B,D). The specified functions We,(2) for these two eyewall
forcing cases are shown in Figure 9. The isolines of ry have been computed from the solution given in Eq. 28 using the relation ry = RY, with the sum over ¢
truncated at ¢ = 20. The blue contours for ry indicate the direction of fluid flow for the secondary circulation within the eye and have a contour

interval of 2.0 X 107 kg s The red contours for 6(r, z) are identical to those shown in Figure 7 and run from 305 K to 365 K for the barotropic case (left
column) and from 295 K to 365 K for the baroclinic case (right column), both in increments of 5 K. In regions where a small area is enclosed by two
neighboring blue lines and two neighboring red lines, the Jacobian o(ry, 6)/rd(r, z) tends to be large, so that 06/0t tends to be large, as shown in Figure 11.

sin(nZ/Zr)
sin(nZ,,/ Zr)

WY, (Z) = Yoo (Z1n) eXp(n(zm - Z)/ZT>

tan (nZ,,/Zr)

where the specified parameter Z,, is the height of the minimum
value of ¥ .(Z). In all the results presented here, the
normalization factor Y. ,(Z,) has been chosen such that
2RV ew(Zm) = —1.8 x 10°kgs™". Plots of Veo(2)/¥er(Zy)
for the two choices Z,, = 0.5 Zr = 8km (a middle-
tropospheric forcing case) and Z,,, = 0.25 Zt = 4km (a lower-
tropospheric forcing case) are shown in Figure 9. The

normalization factor chosen here results in
horizontally averaged eye subsidence rates, defined by
w(z) = [2/7%, (2)] f; © w(r,z)rdr, of approximately
Frontiers in Earth Science
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! which is consistent with the aircraft observations

1-2ms”
reported by Jorgensen (1984). The projection of these two
Yew(Z) profiles onto the first five vertical modes, as computed
from Eq. 29, is shown in Table 1.

Figure 10 shows isolines of ry(r, z) for the middle-
tropospheric eyewall forcing case Z, = 8km (upper two
panels) and for the lower-tropospheric eyewall forcing case
Zn = 4km (lower two panels). These isolines of ry have been
computed from Eqs. 28 and 29 using the relation 7y = RY. The
sum over ¢ in Eq. 28 has been truncated at € = 20. Also shown in
Figure 10 are isolines of 6(r, z); these isolines are identical to those
shown in Figure 7. Alternative views of the adiabatic temperature
changes in the eye are provided by (00/0t), the tendency at fixed
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Potential Temperature Tendency

(A) Barotropic case with Z,,, = 0.5 Zt

(C) Baroclinic case with Z,,, = 0.5 Z1

z [km]
Eyewall

0t————7 T
(B) Barotropic case with Z,,, = 0.25 Zt

z [km]
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FIGURE 11

r [km]

The potential temperature tendency 06/ot for the barotropic case (A,B) and for the baroclinic case (C,D), both shown for the two eyewall forcing
cases Zy, = 0.5Z1 = 8 km (A,C) and Z,, = 0.25 Z1 = 4 km (B,D). The contour interval for 96/dt is 5.0 K h™* with positive contours shown in red, the zero
contour level shown in black, and negative contours shown in blue. The — w(06/0z) term contributes to positive (06/dt) at all radii and all levels, except
in a small region of the upper troposphere in the baroclinic cases. In the two baroclinic cases the — u(06/0r) term generally opposes the — w(d6/

0z) at upper-tropospheric levels (i.

e., radial advection of colder air), but enhances the — w(06/0z) term at lower-tropospheric levels (i.e., radial

advection of warmer air). This results in a (06/0t) field that is more radially uniform in the upper troposphere, but enhanced near the edge of the eye at

lower-tropospheric levels.

radius 7, and by (00/07), the tendency at fixed potential radius R.
Here, we discuss only the tendency (060/0t), which is governed by

00 00 00  10(ry,0)
E__uﬁ_wi__;ra(r,z) 34
_ 1 0(RY,0) (f_+(> (34)

" PRIRZ)\ f

From the above Jacobian form in (r, z), we conclude that the
formation of lower-tropospheric warm-ring structures, where (00/0t)
is large, tends to occur where small areas are produced by the
intersection of 6-isolines and (ry)-isolines. Figure 11 shows the
corresponding potential temperature tendencies produced by the
secondary circulations shown in Figure 10. The lower-tropospheric
baroclinic case Z,,, = 4 km, shown in Figure 11D, clearly illustrates the

tendency to produce an upper-tropospheric warm-core and a lower-

Frontiers in Earth Science

tropospheric warm-ring structure. For example, at z =~ 10 km, the
values of 00/0t are uniform for 0 < r < 15 km and somewhat smaller
for 15 < r < 28 km. In contrast, at z = 3 km, the values of 06/0t near
r =21 km are approximately five times as large as those at r = 0. These
results indicate that a full-tropospheric warm-core structure such as
that shown in Figure 10D could transform into a lower-tropospheric
warm-ring structure very quickly, perhaps in less than an hour.

4 Concluding remarks

Two problems for the secondary circulation in R-space have
been formulated. The first is the full domain elliptic problem (Eq.

15), which requires knowledge of the coefficients f(R,Z) and
N(R, Z), and the forcing Q(R, Z) over 0 < R < co. The second is
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the restricted domain elliptic problem (Eq. 16), which requires
knowledge of the coefficients f (R,Z)] and N(R, Z) over 0 <R <
R.,, and specification of the lateral boundary values ¥, (Z) at R =
R.,,. For the barotropic vortex core and the vertically sheared
Rankine core, the restricted domain elliptic problem has been
solved semi-analytically in Section 3. The results for the middle-
tropospheric forcing barotropic case shown in the upper left
panels of Figure 10 and Figure 11 are closest to the results shown
in the previous study (Schubert et al., 2007), which were based on
full domain, physical space solutions of the transverse circulation
equation with forcing of the first internal mode only. In the
results for the lower-tropospheric forcing barotropic case shown
in the lower left panels of Figure 10 and Figure 11, the minimum
value of ¥, (Z) has been shifted to a lower level, which has the
effect of producing an enhancement of 00/0t in the lower
troposphere at the edge of the eye. The results for the
vertically sheared (baroclinic) Rankine core, shown in the
right panels of Figure 10 and Figure 11, more realistically
capture the outward tilt of the eyewall and illustrate to a
greater degree the preference for the potential temperature
tendency to be largest in the lower troposphere at the edge of
the eye in baroclinic vortices for which the minimum value of the
below middle-
tropospheric levels. The right two panels of Figure 11 are

eyewall streamfunction W.,(Z) occurs
consistent with the concept of a potential temperature
tendency field that is nearly uniform in radius at upper
tropospheric levels but highly biased toward the edge of the
eye at lower tropospheric levels, i.e., consistent with the
development of a warm core at upper levels and a warm ring
at lower levels, as seen in the full-physics simulations of Figure 5.

It is important to note that the model of eye subsidence used
here is highly idealized, i.e., it is axisymmetric, gradient balanced,
inviscid, adiabatic, and for a restricted domain. The adiabatic
idealization results because, in the formulation of the restricted
problem (Eq. 16), it has been assumed that Q = 0 for R < R..,,. Careful
inspection of the lower panel of Figure 4 indicates that this
assumption might be violated in the upper troposphere near the
edge of the eye, where frozen condensate can be advected inward
and subsequently sublimated, producing a region where Q < 0.
Malkus (1958), Willoughby (1998), and Zhang et al. (2002) have
considered the role that such cooling might play in producing deep,
narrow downdrafts at the edge of the eye. The relative roles of such
diabatic dynamics and the adiabatic dynamics studied here deserve
further study. The idealization of gradient balance filters inertia-
gravity waves, which results in a “slow manifold” view of eye
dynamics. With their mesoscale scanning techniques, the GOES-
R series of geostationary satellites can image a 1000 km x 1000 km
hurricane area with 30 s time resolution. When viewing such rapid-
scan loops of a major hurricane, one is struck by the highly dynamic
nature of the inner core. Some of the high frequency variability of the
inner core is probably due to inertia-gravity wave oscillations that
are not captured by the simplified dynamics of the balanced vortex
model. However, the balanced vortex model does capture the slow-
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manifold dynamics upon which we can crudely imagine the higher
frequency inertia-gravity waves are superposed. To improve this
crude view, much work remains to understand how the inner core
PV dynamics can become frequency matched with the inertia-
gravity wave oscillations, so the two types of dynamics can evolve in
a strongly coupled fashion.

In closing, we comment on the possible effects of lower-
tropospheric warm-ring structure on the stadium effect. General
experience with solutions of the Eliassen transverse circulation
equation supports the notion that baroclinic effects play an
important role in determining the outward tilt of the eyewall, as
seen for example in the CloudSat observations of Figure 4. We have
studied the secondary circulation in the eye when the vortex has a
warm-core structure at all levels, as shown in the right panel of
Figure 7. The results indicate that a lower-tropospheric warm-core
structure can be modified to a lower-tropospheric warm-ring
structure when the subsidence is enhanced in the lower
troposphere at the edge of the eye, as shown in panels D of
Figure 10 and Figure 11. When a lower-tropospheric warm ring
develops in a tropical cyclone, the baroclinic terms acquire a more
complicated spatial structure, which means the absolute angular
momentum surfaces also acquire a correspondingly more
complicated spatial structure. To see this, consider the thermal
wind equation written in the form f(R/r)*(OR/0z) = (¢/To)(0T/0r).
From this form of the thermal wind equation, we can easily deduce
the following general rules.

Radially inward of a warm ring :

= R - surfaces tilt inward with height;
Radially outward of a warm ring :
oT

—<0
or =

OR

—<0

0z

= R - surfaces tilt outward with height.

(35)

Thus, if a tropical cyclone has a warm core at all pressure
levels, the R-surfaces tilt outward with height everywhere.
Since the R-surfaces help shape the secondary circulation, the
eyewall updraft would generally be expected to tilt outward at
all levels. However, if a tropical cyclone has a warm-core
structure in the upper troposphere but a warm-ring structure
in the lower troposphere, the R-surfaces tilt inward with
height in the lower troposphere just inside the radius with
maximum temperature anomaly. The effect is to make the
secondary circulation outward-tilted at upper levels but more
vertical at lower levels—an interesting refinement of the
stadium effect. To better understand such refinements,
additional solutions of Eq. 16 for baroclinic vortices with
warm-ring structure would be helpful and are a topic for
future work since such solutions would require a numerical
approach to Eq. 16. The semi-analytical approach used here is
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restricted to the vertically sheared, Rankine vortex and simply
provides a snapshot in time (rather than a complete time
evolution) that illustrates the tendency for a vortex with a
warm-core structure to transition to a vortex with a lower-

tropospheric warm-ring structure.
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Appendix A: Coordinate
transformation

This appendix provides an outline of the transformation
from the (r, z, t)-version of the gradient balanced model, given in
Eq. 1, to the (R, Z, 7)-version, which is given in Eq. 11.

o To transform the gradient wind formula in Eq. 1, note that
v o¢ o
(re)r=5 = Uror=5

oD

R
= f;V—ﬁ.

Using v = (R/r)V, we then obtain the first entry in Eq. 11.

 To transform the second entry in Eq. 1, we start with the
absolute angular momentum form and write

1 2
D(RV‘FEfT) DV r
— = =0 = —+f=-u=0
Dt Dt R
- a_V+f r an —o
or faZ
oV
= —+fU 0,

where we have made use of (Dr/Dt) = u and the absolute angular
momentum conservation relation DR/Dt = 0. The final form
results from the definition of U, which is given in the first entry of
Eq. 10.

o To transform the hydrostatic formula in Eq. 1, note that

o0 0P OR 0D

9Z 9z 0z oR
Lo (o ROR) 0
“az " Naz roz) 0z

where the second equality results from @ = ¢ +4v* and the
transformed gradient wind equation, while the last equality
follows from cancellation of the terms within the parentheses.
The third entry in Eq. 11 immediately follows. A closely related
formula is

0P 0P OR 0D

9r ot ot oR
o, (o ROR) 20
"ot ot “rot) o

which justifies the use of the term “geopotential tendency
equation” for Eq. 36.
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o Interestingly, a short derivation of the fourth entry in Eq.
11 begins with the vorticity equation and proceeds as
follows:

D( ow ov o (pw)
ga‘(f +0) paz( —)
o(pw

(o028

3( £y

ar\f+¢) " poz

where the second entry follows by combining the twisting
and divergence terms and the third entry follows from the use of
(D/Dt) = (0/01) + w(0/0Z) and the relationship between W and w.
Now start with the tangential wind equation and proceed as follows:

v 9 (0(RV)) _B(RU)
TS0 = $<R6R>+ ROR

9 ( S )_9RY)

or\f+{)  ROR’
where the second entry follows by differentiation of R times the
first entry, and the third entry from f/(f + {) = f — [0(RV)/ROR].

Combining the last entries of the above two results yields the
fourth entry in Eq. 11.

« Finally, the transformation of the thermodynamic equation
in Eq. 1 proceeds as follows:

DT «T Q or (9T T Q
—t—w=— = —+|—=+—|w==
Dt H cp or az H ¢

= a_T+I%w—g

or 00z _cp

oo TONZW—Q

ar ' g o

where the final form results from the definitions of N> and W.

Appendix B: Geopotential tendency
equation

The secondary circulation problems defined in Egs. 15 and 16
were derived by eliminating @, between the two equations in Eq.
14. An alternative approach is to make use of the fourth entry in
Eq. 11 to eliminate U and W between the two equations in Eq. 14,
thereby obtaining the geopotential tendency equation. Then,
translating the Dirichlet boundary conditions on U and W
into Neumann boundary conditions on the normal derivatives
of @, the geopotential tendency problem for the restricted
domain can be written as follows.
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Geopotential Tendency Problem on the Restricted Domain :

0 (R0 2 (efMo0
ROR Jzz oR 0zZ\ N* 9z )"~

for 0<SR<R., and 0<Z<Z;

with

0D,

37 =0 at Z=0,ZT,

0D,

R - 0 at R=0, (36)
aRT given at R = R,,.

All the conclusions reached in Section 3 could also be reached
through an analysis of Eq. 36.

Appendix C: Orthonormality of the
vertical structure functions

The orthonormality of the vertical structure functions is
proved as follows. Let Z,(Z) and Z, (Z) be eigenfunctions
with corresponding eigenvalues y, and p,. Then, multiplying
the equation for Z, by Z,, and the equation for Z, by Z,, we
obtain

d ~2 ng/
2z (f eZ/HTz) AN 2,2, =0,
d dz (37)
~2 P

Zugg (P ) il 2z, =0

The difference of these two equations can be written in the

form
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d |2, i dZy 3
— Z - Zp—dZ
z {f ©\"az "z,

+(12 - )N 2,2, = 0. (38)
Integrating over Z and noting that both Z,(Z) and Z,(Z)
vanish at Z = 0 and Z = Zy, we obtain

Zr
(2 - 1) L Z(2)20 (Z)N*(Z) e dZ =0.  (39)

Thus, in the absence of degenerate eigenvalues and with proper
normalization of Z,(Z), the orthonormality relation for the
vertical structure functions is

NiH ife'=¢,

0 ife' #¢. (40)

JZT Z(2) 2y (Z)N*(Z)eH dZ = {
0

The proof of the second entry in Eq. 22 is as follows. Change
the dummy index £ to €' in the first entry of Eq. 22, multiply the
resulting formula by Z, (2) N*(Z) e?'M and then integrate over
Z to obtain

jZT W(R,Z)Z,(Z)N*(2)e“" dz

0

0 Zr
S| 2@z N @ az a
e'=1

= N2HY,(R),

where the final equality follows from the orthonormality relation
(Eq. 40).
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