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The crisis in modern computing
Since the 1960s, the computing industry has striven 
to build larger numbers of smaller transistors on dig-
ital integrated chips to increase speed and functional 
density. Transistor densities have continued to double 
roughly every 2 years, a trend known as Moore’s law1, 
but improvements in computing speed and capacity 
started saturating around 2006 (ref.2). This issue devel-
oped as chips grew in capacity and the data movement 
across distinct storage and processing units in the von 
Neumann architecture increased. Combined with the 
disproportionate progress in compute versus memory 
performance, this phenomenon, commonly known as 
the memory wall, leads to saturated system performance. 
Another serious impending issue is the end of practical 
size scaling as transistor dimensions approach atomic 
sizes. Hence, further advancements in computing speed 
and capacity face significant challenges.

The exponential progression of Moore’s law over 
half a century has fuelled a proportionally exponential 
demand for, and dependency on, computing resources2,3, 
producing profound technological and societal impacts 
in areas such as medicine, ecological sustenance, logis-
tics and defence4,5. The slowdown of Moore’s law, in turn, 
means innovations will be required in other parts of the 
solution stack, such as software and algorithms6. Yet, 
broad applications, such as genomics and drug research, 
suffer from both data intensity and high dimensionality 
and compel us to go beyond even today’s most powerful 

computers7,8, while niche applications, such as edge arti-
ficial intelligence, suffer from the high costs and high 
power consumption of today’s digital solutions.

Over the next decade, Moore’s law can still be sus-
tained, partly via increased device densities, but mostly 
through effective functional scaling via heterogeneous 
and 3D integration9. To continue this trend of functional 
scaling, advances in computing need to be achieved 
not by increasing device density but by packing more 
functional intelligence per volume of material2,10. Thus, 
the engineering of smart materials and devices, and the 
invention of new architectures to efficiently utilize them, 
will be central to the post-​Moore computing landscape.

The advent of bio-​inspired computing
Since around 2006, there has been a clear realization 
of the urgency for a ‘post-​CMOS (complementary 
metal–oxide–semiconductor)’ computing paradigm —  
one that circumvents the need for shrinking devices, 
dismantles the storage–processing divide (the von 
Neumann bottleneck) and overcomes the limitations 
of digital information processing11–13. As a result, there 
was an explosion of ideas for post-​CMOS computing, 
including some that were studied decades ago14–21 and 
non-​electronic approaches, such as optical, quantum 
and biomolecular computing22–29.

Within this Cambrian era of post-​CMOS comput-
ing, there are strong arguments favouring bio-​inspired 
(or brain-​like/neuromorphic/neural) computing 

Dynamical memristors for 
higher-​complexity neuromorphic 
computing
Suhas Kumar   1 ✉, Xinxin Wang2, John Paul Strachan3,4, Yuchao Yang   5,6 ✉  
and Wei D. Lu   2 ✉

Abstract | Research on electronic devices and materials is currently driven by both the slowing 
down of transistor scaling and the exponential growth of computing needs, which make present 
digital computing increasingly capacity-​limited and power-​limited. A promising alternative 
approach consists in performing computing based on intrinsic device dynamics, such that each 
device functionally replaces elaborate digital circuits, leading to adaptive ‘complex computing’. 
Memristors are a class of devices that naturally embody higher-​order dynamics through their 
internal electrophysical processes. In this Review, we discuss how novel material properties 
enable complex dynamics and define different orders of complexity in memristor devices and 
systems. These native complex dynamics at the device level enable new computing architectures, 
such as brain-​inspired neuromorphic systems, which offer both high energy efficiency and high 
computing capacity.

1Sandia National Laboratories, 
Livermore, CA, USA.
2Electrical Engineering  
and Computer Science 
Department, University of 
Michigan, Ann Arbor, MI, USA.
3Peter Grünberg Institute  
(PGI-14), Forschungszentrum 
Jülich GmbH, Jülich, Germany.
4RWTH Aachen University, 
Aachen, Germany.
5School of Integrated Circuits, 
Center for Brain Inspired 
Chips, Institute for Artificial 
Intelligence, Peking University, 
Beijing, China.
6Center for Brain Inspired 
Intelligence, Chinese Institute 
for Brain Research (CIBR), 
Beijing, China.

✉e-​mail:  
su1@alumni.stanford.edu; 
yuchaoyang@pku.edu.cn; 
wluee@umich.edu

https://doi.org/10.1038/ 
s41578-022-00434-​z

REVIEWS

Nature Reviews | MAtEriAls	  volume 7 | July 2022 | 575

http://orcid.org/0000-0002-6772-7250
http://orcid.org/0000-0003-4674-4059
http://orcid.org/0000-0003-4731-1976
mailto:su1@alumni.stanford.edu
mailto:yuchaoyang@pku.edu.cn
mailto:wluee@umich.edu
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41578-022-00434-z&domain=pdf


0123456789();: 

approaches. High among those arguments is the remark-
able energy efficiency and information-​processing capa-
bilities of all levels of biological organisms, from cells 
to the brain30. Thus, reverse-​engineering biological 
computing may offer the most mature, widely applica-
ble and scalable approach31,32. The 1940s witnessed the 
first efforts to model problem-​solving biological neural 
networks and to mimic them using electrical circuits33,34. 
Since then, there were periodic and consequential 
developments in this area: Hebbian learning14, neuron 
models (such as the Hodgkin–Huxley model)35–37, the 
perceptron15, multilayer networks16,17, backpropagation 
training18,19, the Hopfield network20 and self-​organizing 
maps21, to name just a few. By the late 1980s, bio-​inspired 
computing became a small but independent research 
area38 and gained commercial traction in the early 2010s 
as a set of predominantly algorithmic tools39,40.

Complexity and adaptation
The next frontier in advancing computing performance 
needs to incorporate the dynamical and adaptive 
capabilities of natural and biological systems (Fig. 1a). 
Biological systems at all levels respond to their environ-
ment and history. Simple molecular systems, such as 
nucleic acids, can express adaptive behaviours, including 
replication and self-​repair, triggered by the local envi-
ronment. Neurons, the core information-​processing 
elements in biological systems, express over 20 different 
dynamical behaviours driven by electrochemical stimu-
lation from their history and environment41. Similarly, 
systems with more organizational complexity, such 
as the eye and immune systems, and all the way up to 
organisms, express proportionally higher functional 
complexity and adaptation. By contrast, modern com-
puting systems are built on top of static elements with 
zeroth-​order complexity (see definitions below, Fig. 1b). 

Devices and circuits primarily transform inputs to new 
outputs, following prescribed logic tables, mathemati-
cal functions and conditional branching rules that are 
formulated by a biological system at the top: the human 
programmer. This computing system can show universal 
Turing completeness (assuming unlimited memory and 
time) and, thus, simulate the computational capabilities 
of an idealized Turing machine42. Yet, this system is a 
tool, dependent on the human programmer to wield 
it appropriately, dynamically adapting the instructions 
based on past (possibly mistaken) outputs and new 
demands from the environment.

The first breakthrough away from the above para-
digm has been in the field of artificial neural networks 
(ANNs), particularly deep learning39,40. Training an 
ANN to perform a task, such as image recognition, no 
longer uses traditional programming but is instead based 
on providing labelled examples to the network. Through 
dynamical updates of the network weights, guided by 
training algorithms (such as back-​propagation), a form 
of adaptation and learning occurs. Significantly, this 
approach has brought adaptation and complex dynamics 
to a level below the user, at the algorithmic layer, elimi-
nating explicit instruction programming. This approach 
has led to state-​of-​the-​art capabilities in many comput-
ing tasks. The underlying hardware, however, remains 
static and low in complexity during both the training 
and the learning phases, and in the subsequent deploy-
ment of the ANN in performing inference on inputs. The 
next breakthrough will come from incorporating a capa-
bility for adaptation and complex dynamics within the 
hardware layers themselves. This idea offers an exciting 
path to increased computational parallelism, scalability 
(such as from mobile electronics to supercomputers), 
higher energy efficiency and an increased robustness 
to hardware and environmental variability and defects.

We invoke the concept of complexity throughout 
this discussion. Generally speaking, complexity is a set 
of interacting processes expressing a non-​trivial behav-
iour, which has been defined in many ways across dif-
ferent disciplines43–46. In other words, complexity is a 
measure of the dimensionality of a dynamical system. 
For our purposes, the measure (‘order’) of complexity 
is the number of first-​order differential equations (or 
equivalent) required to describe the system’s behaviour, 
each equation associated with a ‘state variable’ and its 
dynamical evolution46,47. We stress that both the system’s 
observed temporal dynamics and the internal state vari-
ables can be used to describe the system’s adaptability, in 
response to both local stimuli and the system’s history.

Expressions of higher-​order complexity
Complexity appears at many levels from the micro
scale to the macroscale: within biological organisms48,49, 
chemical processes50,51, economic institutions52,53, social 
organizations54,55, ecological processes50 and so on. 
As an illustration of different orders of complexity, a 
simple pendulum (a system with second-​order com-
plexity) exhibiting periodic oscillations can be easily 
modelled, but the weather system, which expresses 
chaos and stochasticity, is much higher in complexity 
and, thus, very difficult to model and predict. There are 
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Fig. 1 | Biological and computational adaptation and complexity. a | Complexity and 
the resulting adaptation appear at all levels of biological organization, illustrated here 
with hierarchical systems and their expressions. b | In the hierarchy of current computer 
stacks, nearly all layers are unintelligent and contain no adaptation or complexity, and 
intelligence is provided by the programmer encoding the software.
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many examples of biomimetic behaviours arising from 
electrophysico-​chemical processes of different orders of 
complexities56–59. Here, we start by reviewing illustrative 
examples of simple electrical and mechanical systems 
of different orders of complexity, before transitioning to 
specific biomimetic examples.

Zeroth-​order systems, which effectively have no com-
plexity, faithfully follow any input variations without 
adding a temporal component (such as a time delay). No 
real-​world system is perfectly zeroth order. A massless 
object subject to finite friction is a zeroth-​order system: 
its velocity temporally follows the applied force. In the 
electrical world, a pure resistor is a zeroth-​order system: 
its current output faithfully follows the voltage input.

First-​order systems are determined by a single 
first-​order differential equation. A finite mass subjected 
to finite friction (state variable: velocity) reacts to an 
applied force with a time delay owing to friction. In the 
electrical world, a circuit with a resistance and capacitance 
reacts with its characteristic time constant (the ‘RC’ time  
constant). A time delay requires first-​order complexity.

Second-​order systems require two distinct and inter-
dependent state variables, represented by two first-​order 
(or an equivalent second-​order) differential equations to 
describe their respective dynamics. A finite mass held 
by a spring (state variables: velocity and displacement) 
reacts to an initial finite displacement with oscillations 
in its displacement. In the electrical world, a circuit with 

a resistance, inductance and capacitance reacts with 
damped oscillations to an input voltage pulse. Oscillatory 
behaviour requires at least second-​order complexity46,60.

A double pendulum is a fourth-​order system (state 
variables: velocity and displacement, for each of the pen-
dula) that produces chaotic dynamics in response to an 
initial displacement. Chaos and multiperiod oscillations 
require third-​order complexity, while hyperchaos requires 
fourth-​order complexity61,62. Intuitively, chaos consists 
of hard-​to-​predict oscillations and, thus, requires an  
order of complexity higher than oscillations, whereas 
hyperchaos is hard-​to-​predict chaos and, thus, requires 
an order of complexity higher than chaos.

Below, we provide selected examples of different 
synaptic and neuronal functions of different orders of 
complexity. At a broad basic level, synapses store weights 
and modulate information transmission, whereas neu-
rons perform non-​linear transformations on their inputs 
(such as thresholding)63 (Fig. 2a). The biological origins 
of these functions (such as ion channel dynamics) and 
their equivalent electrical and mathematical models have 
been extensively discussed in the literature35–37,41,63,64.

Synaptic functions. Synaptic functions are summarized 
in Fig. 2b and include the following.
•	Directional conduction (zeroth order): necessitates 

conductance to be asymmetrical with the polarity of the 
applied voltage. This behaviour requires no complexity.
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•	 Synaptic delay (first order): produces a specific 
time delay between input and output. Recall that  
a time delay requires first-​order complexity.

•	 Excitation and inhibition (first order): in response 
to an input stimulus, the output is either increased 
(excitation) or decreased (inhibition), depending on 
the state of the synapse. Usually, a temporal compo-
nent such as a characteristic timescale is involved, 
invoking first-​order complexity.

•	 Short-​term plasticity (first order): the response to  
a temporal input (such as a spike) persists for a finite 
time before decaying to its pre-​input value. Repeated 
temporal inputs lead to continually increased 
(potentiation) or decreased (depression) response. 
The memory period is determined by a characteristic 
timescale, invoking first-​order complexity, whereas 
potentiation and depression behaviours can be cap-
tured via parameters within the same dynamical 
process, that is, they do not add complexity.

•	 Long-​term plasticity (first order): the response to a 
temporal input (such as a spike) persists for practically 
an infinite time, either via potentiation or depression. 
The temporal persistence of the output requires a 
timescale, thus invoking first-​order complexity.

•	 Spatio-​temporal convergence and summation (first 
order): incoming signals from different channels are 
summed, involving a characteristic timescale, thus 
invoking first-​order complexity.

•	 Synaptic reverberation (second order): in response 
to a stimulus, oscillations may result from feedback- 
enabled synaptic structures. The feedback and the 
time delays create two distinct dynamical processes, 
which together result in second-​order complexity.

Neuronal functions. Neuronal functions are summarized 
in Fig. 2c and include the following.
•	 Integrate and fire (first order): neurons accumulate 

potential from multiple temporal inputs for a finite 
time and, when the accumulated potential exceeds a 
threshold, they produce a temporal output. Similar 
to short-​term potentiation in synapses, this process 
essentially invokes a delay-​like first-​order complexity.

•	 Periodic action potential (second order): in response 
to a constant input, neurons can produce periodic 
spikes, also known as action potentials. Recall that 
any oscillatory behaviour requires second-​order 
complexity.

•	 Spike number adaptation (second order): this pro-
cess is similar to the one producing periodic action 
potentials (second-​order complexity) but with an 
additional parameter that modulates the frequency 
as a function of the input level.

•	 Periodic bursting (third order): in response to a con-
stant input, neurons can produce periodic bursts of 
spikes. Recall that multiperiod oscillations require 
third-​order complexity (such as for a driven simple 
pendulum).

•	 Burst number adaptation (third order): this process 
is similar to the one producing periodic bursting 
(third-​order complexity) but with an additional 
parameter that modulates the number of spikes 
within each burst as a function of the input level.

•	Chaotic oscillations (third order): neurons can pro-
duce chaotic dynamics in response to a constant 
input, which, in simple terms, is a deterministic (non- 
random) behaviour that is hard to track. Recall that 
chaotic dynamics requires third-​order complexity.

•	Hyperchaos (fourth order): technically, hyperchaos 
is a behaviour containing at least two Lyapunov 
exponents, which, in simple terms, means that it is 
much harder to track than chaos. Sometimes, neu-
ral systems produce hyperchaos, which requires 
fourth-​order complexity65.

From these few examples of synaptic and neuronal 
behaviours, it is apparent that neuronal functions are 
often higher in complexity. This agrees with intuition, 
because, from a computing point of view, the main 
function of neurons is to perform temporal processing 
of information, whereas synapses store information. 
Temporal expressions are more complex, by definition.

Memristors and complexity in computing
Most efforts into bio-​inspired computing thus far have 
focused on mimicking primitive lower-​order biological 
complexities. Historically, such complexities are emu-
lated using transistor-​based circuits (such as central and 
graphics processing units, CPUs and GPUs) to simulate 
multiple dynamical equations2,66,67, but recent advances 
in memristors have made this approach easier.

Memristors, predicted in 1971 (ref.68) and connected 
to physical devices in 2008 (ref.69), are electrical cir-
cuit elements that embody at least one state equation  
(differential equation of the state variable with respect  
to time) and, thus, at least first-order complexity (Fig. 2d). 
The incorporation of state equations necessarily leads 
to history-​dependent behaviours in the current–voltage  
plot, in either volatile (memory disappears at zero bias)  
or non-​volatile (memory is retained at zero bias) form. 
Processes such as temperature-​driven Mott transitions70 
and field-​driven defect generation and recombination71 
lead to volatile or sometimes partially volatile memory 
effects72. By contrast, processes such as electrochemical 
defect migration73, spin injection22,74, ferroelectric or 
ferromagnetic switching75,76 and crystalline–amorphous 
phase transitions77 lead to non-​volatile memory effects, 
and are all captured within the memristor framework.

Non-​volatile (or partially non-​volatile) memris-
tors are good candidates as electrical synapses, offer-
ing tunable weight and non-​volatile memory, wherein 
the output current is the conductance-​weighted input 
voltage. Volatile memristors perform a non-​linear 
transformation of the input, such as thresholding, and 
are, thus, excellent candidates for electrical neurons. 
Further, volatile memristors are often capable of gen-
erating neuron-​like temporal dynamics of higher-​order 
complexity, as discussed in the following sections.

Thus, unlike transistor-​based hardware that simu-
lates biomimetic functions using many devices, mem-
ristors naturally embody simple biomimetic functions. 
Therefore, since around 2013, there has been a flurry 
of research into bio-​inspired computing systems based 
on simple (low-​complexity) memristor functions, 
which promise far greater efficiencies than CPUs and 
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GPUs78–98. Although exploration of memristors with 
higher-​order complexity has just begun, it is clear that 
it is indeed possible to engineer qualitatively highly 
complex behaviours (especially biomimetic) from 
interacting electro-​physico-​chemical material pro-
cesses in memristors. As a consequence, a single device 
with such complex behaviours can functionally replace 
hundreds or thousands of transistors, and interactions 

among such devices can lead to higher-​level capabilities 
and energy efficiency (that is, system-​level complexity). 
This idea is the bedrock principle for complexity in 
computing, including higher-​complexity bio-​inspired 
computing.

Memristors of different complexities
In this section, we provide various examples of synaptic 
and neuronal memristors of different orders of com-
plexity and point to their working mechanisms. There 
are many comprehensive recent reviews on simple 
(low-complexity) memristive switching materials, mech-
anisms and device-​level performance90,99–104, including 
special material classes, such as 2D materials85,105,106, Mott 
insulators107, organic materials108,109 and carbon nanoma-
terials110. Here, instead, we focus on higher-complexity 
memristive materials and devices and discuss how com-
plex computing can be achieved by taking advantage 
of the intrinsic device dynamics. A few representative 
examples that illustrate complexity beyond the simple 
(and often static) functions that can be engineered in 
memristive electronic devices are summarized in Fig. 3.

Synaptic devices
First-​order synaptic memristors. The first experimen-
tally identified memristor was a first-​order memristor69 
(Fig. 3a). The switching mechanism was based on the 
movement of oxygen vacancies in TiO2 in an electric 
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Fig. 3 | Examples of memristors of different orders  
of complexity. Examples of synaptic (panels a–c) and 
neuronal (panels d–f) memristive devices with different 
orders of complexity. The switching mechanism, state 
variables and typical device characteristics are indicated.  
a | TiO2 sandwiched between Pt electrodes exhibits 
dynamics in the width (w) of a conducting filament  
in response to a train of voltage pulses (V), resulting in 
temporal non-​volatile changes to its conductance (G).  
b | Two different oxides of Ta sandwiched between  
Pt electrodes exhibit dynamics in the conductance of a 
filament and the local temperature (T) in response to  
a train of voltage pulses, resulting in temporal non-​volatile 
changes to its conductance. c | Ferroelectric HfZrOx 
sandwiched between TiN and Si electrodes exhibits 
dynamics in the built-​in electric field (E) and the frequency 
response of defects (F) in response to a train of voltage 
pulses, resulting in temporal non-​volatile changes to its 
conductance. d | TiO2 sandwiched between Ti/Pt and  
Pt undergoes a non-​linear steady-​state change in internal 
temperature in response to an applied current (I) and 
voltage (V), leading to negative differential resistance  
in the I–V characteristic. e | NbO2 sandwiched between  
Pt electrodes, which contains a built-​in capacitor, exhibits 
self-​oscillations in voltage when under optimally fixed bias 
conditions. f | A special device structure containing NbO2 
as the active material enables coexisting dynamics in  
three state variables, leading to several tunable neuron- 
like behaviours in current (I) dynamics. Periodic spiking  
(in blue) and periodic burst spiking (in red) are displayed.  
t, temperature. Panel a adapted from ref.69, Springer 
Nature Limited. Panel b adapted with permission from 
ref.111, ACS. Panel c adapted with permission from ref.113, 
ACS. Panel e adapted with permission from ref.117, Wiley. 
Panel f adapted from ref.47, Springer Nature Limited.
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field. The width of the TiO2 region occupied by the oxy-
gen defects was the proposed state variable. The device 
exhibited non-​volatile resistance switching.

Most memristors or two-​terminal memory devices 
ever built are first-​order memristors. They all exhibit 
some form of non-​volatile information storage with 
minimal temporal dynamics and invoke one domi-
nant dynamical process that enables storage. Although 
many of them may have additional state variables (for 
instance, temperature dynamics are present in every 
electronic device), for simple information storage — 
the default behaviour explored in most memristors 
— only one dynamical process is required (first-​order 
complexity). Because of that, it is important to note that 
many first-​order memristors exhibit higher-​order func-
tions when the appropriate measurements are used to 
observe the additional dynamics.

Second-​order synaptic memristors. Memristors based 
on TaOx (ref.111) were designed to be sensitive to thermal 
effects (Fig. 3b). Two state variables were identified: the 
radius of a filament of oxygen vacancies (which deter-
mined the resistance) and temperature (the dynamics of 
which depend on the thermal environment of the device 
and its operating conditions). The device exhibited 
dynamical (temporal) memory in addition to the usual 
static non-​volatile resistance switching. Similarly, in 
HfO2 memristors, possible fingerprints of second-​order 
effects were identified112, especially temporal memory.

In ferroelectric memristors, two state variables were 
identified113: built-​in electric fields and the dynamical 
response of the interfacial defects (Fig. 3c). Similar to the 
previous examples, this memristor exhibited temporal 
memory in addition to the usual resistance switching 
behaviour (accompanying the expected polarization 
switching in a ferroelectric material). Besides these 
examples, there have been few confirmed examples of 
second-​order synaptic memristors.

Neuronal devices
First-​order neuronal memristors. First-​order neuronal 
memristors essentially exhibit volatile switching in the 
current–voltage plane and some simple dynamics (such 
as a characteristic response time). In the field of computer 
memory, selector devices, which are essentially volatile 
switches that minimize low-​bias current leakage, have 
been intensely researched for over a decade114,115. Thus, 
most selectors can be considered neuronal memristors 
of at least first-​order complexity. Many mechanisms can 
lead to volatile switching (Mott transition, thermal runa-
way, volatile defect migration, tunnelling and more). For 
example, modelling of threshold switching in TiO2 as a 
first-​order process with internal temperature as the state 
variable116 showed that, as temperature increases due to 
Joule heating, the superlinear temperature dependence of 
the conductance makes the conductance increase, which, 
above a threshold, is a runaway process, leading to vol-
atile (reversible) switching. Interestingly, in this range, 
either the current rapidly increases at a held voltage or 
the voltage drops at a held current (current-​controlled 
negative differential resistance, Fig. 3d). Although it is 
possible that first-​order memristors that exhibit volatile 

memory or hysteresis may exhibit oscillations or other 
higher-​order functions, such measurements were not of 
interest for their intended applications.

Second-​order neuronal memristors. Volatile memris-
tors placed in a relaxation oscillator circuit can exhibit 
self-​sustained oscillations. For example, volatile memris-
tors (exhibiting current-​controlled negative differential 
resistance) with a parallel capacitor can exhibit oscilla-
tions via two alternating dynamical processes: charging– 
discharging of the capacitor and volatile switching of 
the memristor, thus exhibiting second-​order complex-
ity. The electrode structure of a NbO2 volatile-​switching 
memristor was shown to form a built-​in capacitor, which 
was sufficient to create oscillations without the need for 
any external capacitor117 (Fig. 3e). The device was mod-
elled with a Mott-​transition-​driven volatile filament 
(conduction channel) formation process, although later 
models were based on more realistic and general thermal 
runaway processes47. Such oscillatory behaviour from 
a single device has been observed several times since 
then, though it has been identified as a second-​order 
memristive effect very few times.

Third-​order neuronal memristors. The only reported 
third-​order memristor47 was constructed using NbO2 
and modelled with three state variables: temperature 
(representing internal thermal dynamics), charge on the 
built-​in capacitor (representing charge dynamics) and 
the speed of formation of a metallic region (a volatile 
filament resulting from the Mott transition dynamics, 
Fig. 3f). The devices were carefully designed in struc-
ture and material stoichiometry to enable all the above 
dynamics. When powered by a tunable static voltage 
input, a single device could produce 15 different neuronal 
dynamics (including spiking, bursting and chaos).

Although third-​order complexity can produce many 
key neuronal behaviours, a rigorous mathematical 
examination of common neuronal models is needed to 
evaluate whether higher-​order complexity is required  
to faithfully emulate a neuron. For example, the common 
Hodgkin–Huxley neuron model involves fourth-​order 
complexity, but most behaviours of a Hodgkin–Huxley 
neuron can be produced by a third-​order system, as 
discussed above35. Models with fifth-​order complex-
ity have also been utilized to explain certain neuronal 
behaviours, but may be equivalently represented by 
lower-​order dynamics118.

Emulation of higher-​order functions using multiple 
circuit elements
A single memristor that exhibits fourth-​order or 
higher-​order dynamics has not been experimentally 
reported. As in most scientific studies, low-​cost simu-
lations often precede experimental demonstrations. In 
electronic device research, realistic emulations of spe-
cific functions are commonly performed using multi-
component circuits or programmable hardware (such 
as field-​programmable gate arrays). Such research eval-
uates a large parameter space at a reasonable cost, while 
invoking some experimental constraints (unlike in pure 
mathematical models) to allow the resulting parameters 
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to strategically inform materials engineering, which 
eventually leads to the desired higher-​order devices.

A common example of such emulation in neuronal 
memristor research is the generation of second-​order 
neuron-​like oscillations (similar to those discussed in 
the subsection on second-​order neuronal memristors), 
but with distinctly different components (a distinct par-
allel capacitor and a series resistor, for example) instead 
of a single second-​order component119.

A non-​transistor fourth-​order memristive system 
was constructed120 using two volatile first-​order VO2 
memristors to emulate a Hodgkin–Huxley-​like neu-
ron model (Fig. 4a). The state variables were the inter-
nal temperatures of the memristors and the charges on 
their parallel capacitors. The system produced 23 dif-
ferent neuronal functions, such as spiking, bursting and 
integrate-​and-​fire. Although, in principle, a third-​order 
system could have produced all those functions, the 
engineering of the circuit was easier and more flex-
ible (for example, for obtaining the precise bias) with 
fourth-​order complexity.

In another example, a transistor-​based fourth- 
order memristive-​like system was constructed using 
transistor-​based active components (amplifiers) to 

mimic memristors121 (Fig. 4b). The system produced 
hyperchaos, a fourth-​order function.

There are several other higher-​order and fractional- 
order simulations or emulations, including memristor- 
inspired ones, generating complex functions such as 
chaos or hyperchaos122–127. Additional orders of complex-
ity are useful only if they are required to enable a specific 
behaviour or if they clearly make the system design 
easier (as in the previous example). For instance, the 
simulation of ninth-​order circuits capable of producing 
hyperchaos has been reported, demonstrating advanced 
circuit simulation capabilities, although hyperchaos only 
requires fourth-​order complexity128.

Creating complexity in computing using 
memristors
As we discussed, most efforts in memristor-​based 
bio-​inspired computing have, thus far, centred around 
mimicking simple (low-​complexity) synaptic and 
neuronal functions using static memristive properties 
or primitive first-​order dynamics (such as dynamical 
plasticity). Such efforts have been covered in several 
reviews78–98,129,130. In this section, we briefly illustrate 
examples (Fig.  5) of how memristors of different 
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Fig. 4 | Emulation of higher-order complexity using multiple circuit elements. a | Emulation of higher-​order complexity 
using a memristor-​based biomimetic circuit. The structure of a neuron’s membrane on which Na (pink) and K (green) channels 
modulate the flow of Na and K ions (free-​floating pink and bluish-​green spheres, respectively) is illustrated. The behaviour  
of Na and K channels leading to neuronal dynamics is emulated using the illustrated memristor circuit that contains fourth- 
order complexity (the two VO2 memristors and the two capacitors, each supplying one state variable). Twenty-​three neuronal 
dynamics were emulated using this circuit. Four of them are illustrated (periodic action potential, spike number adaptation, 
periodic bursting and burst number adaptation). b | Emulation of fourth-​order complexity using transistor-​based circuit 
elements. The circuit produced hyperchaos, a highly irregular and unpredictable behaviour, as illustrated in the plot of  
voltage (V) against phase (Φ). RC, resistance–capacitance; RLC, resistance–inductance–capacitance; t, time. Panel a adapted 
from ref.120, CC BY 4.0. Panel b adapted with permission from ref.121, World Scientific.
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(especially higher-​order) complexities can solve problems  
that would otherwise require increasingly elaborate  
circuits, depending on the complexity of the problem.

Information processing with static properties
Most current studies on memristor-​based computing 
systems do not invoke any dynamics but merely pro-
gram an array of memristors to target resistances and 

use it as a system of synapses to perform computations. 
An approach widely used over the past 5 years consists of 
programming crossbar arrays of memristors (as in ref.131)  
to represent patterns and make the network perform 
multiplication of an input voltage vector with the 
matrix of memristor conductances to produce a vec-
tor of currents (vector–matrix multiplication, VMM, 
Fig. 5a). VMMs enable convolutions, which lead to the 
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achieve convolution of input voltage vectors with the stored resistance 
values, to achieve classification of the inputs as one of the pre-​stored digits. 
b | Streams of data were fed into an array of memristors made of the 
phase-​change material Ge2Sb2Te5 via an algorithm that converts input data 
into voltage pulses, with temporally correlated streams assigned larger 
amplitudes. The resulting change in conductance (G) in the devices 
encoded the temporal correlations in the input (G↑ represents a small 
increase in G and G↑↑ represents a large increase in G). When the input was 
weather data, the geographical–temporal correlations of the data could be 

identified, as depicted by the similarly coloured points on a US map. c | TaOx 
memristors are sensitive to both electric fields (V) and local temperature (T), 
with the thermal timescales being larger. When binary time-​varying  
video frames were fed as inputs to an array of such memristors, the spatial 
frequency of the resulting resistance pattern across the array, influenced 
by the rate of input excitation and the inherent thermal timescales, 
reflected the speed (frequency) at which the video frames changed. d | NbO2 
oscillators networked similar to thalamocortical neurons align in groups of 
phases that represent a solution to the graph problem that their connections 
represent. When a viral genome sequencing problem was encoded as a 
graph problem and represented by the NbO2 network, the network found 
the maximum cut of the graph, which represents a solution to the 
sequencing problem. t, temperature. Panel a adapted with permission from 
ref.131, IEEE. Panel b adapted from ref.135, CC BY 4.0. Panel c adapted with 
permission from ref.137, IEEE. Panel d adapted from ref.47, Springer Nature 
Limited.

www.nature.com/natrevmats

R e v i e w s

582 | July 2022 | volume 7	

https://creativecommons.org/licenses/by/4.0/


0123456789();: 

identification of closely matching patterns, useful, for 
instance, in object detection and classification, such as 
recognizing handwriting or speech129. Besides convo-
lutional neural networks, many other neural-​network 
architectures, machine-​learning algorithms and scien-
tific computing tasks utilize static properties of memris-
tors, including multilayer perceptrons, recurrent neural 
networks, k-​means clustering and the solution of partial 
differential equations129,130,132.

VMMs typically use static memristor properties, 
but the efficient training of such memristors (that is, 
programming their conductances based on an update 
rule) is far from mature, owing to non-​idealities such 
as device variation, non-​linear and asymmetrical con-
ductance updates and endurance problems. Achieving 
efficient training, especially within the time and energy 
constraints imposed by many applications, may require 
understanding and exploiting the temporal dynam-
ics (first-​order properties) during the switching of a 
memristor’s resistance2,98,133,134.

Computing with first-​order dynamics
Gradual changes in the resistance of GeSbTe were used 
to detect correlations in input data135 (Fig. 5b). GeSbTe 
is a phase-​change material, in which resistance changes 
occur owing to the gradually (and temporally) vary-
ing size of the crystalline structure upon Joule heating 
driven by electrical or optical power: a first-​order pro-
cess. An incoming data stream (such as from an input 
image) can be treated with a simple linear algorithm 
and then used to stimulate a network of phase-​change 
memristors. Temporally correlated signals in the differ-
ent channels of the incoming data stream are added to 
maximize the resistance change in the different mem-
ristors. Thereby, the spatial distribution of the channels 
with temporal correlations can be computed, opening 
up wide applications in pattern recognition and event 
mapping (such as weather mapping). Besides such 
resistance switching, the amorphous phase of GeSbTe 
or its derivatives (such as C-​doped GeSbTe) is relatively 
unstable and can go through spontaneous structural 
relaxations and transform to a more stable glass state, 
which naturally leads to gradual conductance drift to 
lower conductance. This is also a first-​order process 
and has been used as the eligibility trace for efficient  
reinforcement learning136.

Computing with second-​order dynamics
Memristors sensitive to thermal dynamics, similar to 
those reported in ref.111 and discussed in the section on 
second-​order synaptic memristors, were designed using 
TaOx (ref.137) (Fig. 5c). The memristors contained two 
dynamical processes (making them second order): oxy-
gen vacancy migration (which modulated the resistance) 
and temperature decay following an electrical stimulus. 
The idea was to stimulate a network of second-​order 
memristors with a temporally evolving input pattern, 
resulting in a spatial resistance pattern determined 
by the switching and thermal dynamics. The spatial 
frequency of the pattern was proportional to the tem-
poral rate of input evolution (as demonstrated using a 
white pixel moving on a dark background). Thus, the 

temporal dynamics of a spatially distributed input could 
be quantified.

Computing with third-​order dynamics
The third-​order memristor47 discussed in the section 
on third-​order neuronal memristors was used in a 
network with capacitive couplings, laid out in a bio- 
inspired architecture (Fig. 5d). The couplings among the  
third-​order memristors defined a graph problem. 
The couplings resulted in a spatial segregation of the 
phases of the memristors’ oscillatory dynamics, which 
represents the solution to the problem. Solutions 
to small-​scale non-​deterministic polynomial-​time 
(NP)-​hard viral genome sequencing (posed as graph 
problems) were demonstrated. Coupled oscillatory 
networks have clear biological inspirations. The syn-
chronization of clusters of biological neurons is key 
to the generation of crucial rhythms of muscular and 
nervous systems, similar to how clocking works as a 
synchronization scheme in digital electronic chips. 
Coupled oscillatory systems are a more general class of 
computing systems with spatio-​temporal complexity, as 
discussed further in the section on coupled oscillatory  
networks.

Simulations and emulations of higher-​order 
computing systems
Although the manufacturing of higher-​order mem-
ristors is in its infancy, there are many simulations 
and emulations of higher-​order devices or systems and  
explorations of their computing applications. For 
example, there are a series of hyperchaotic fourth-order  
and higher-order systems (often memristor-inspired) 
that is shown, mostly via simulations, to enable data 
encryption (such as images) and secure communi
cation123–126. Polynomial-time (but exponential-resource) 
solutions to NP-hard problems were demonstrated 
via chaotic dynamics in third-order and higher-​order 
systems122.

Thus, low-​cost simulations have favourably estab-
lished the direction and motivation for materials 
research towards higher-​order device complexity and 
computing applications. It is apparent that the theo-
retical exploration of this space is still limited, but we 
expect it to expand and grow alongside more experimen-
tal demonstrations of higher-​order complex devices and 
their computing applications.

Spatio-​temporal complexity
Complexity can be added to a device via new electro- 
physico-​chemical dynamics, but it can also be achieved 
by enabling unique network dynamics via clever spatial 
connections among many devices (Fig. 6). We define this 
idea as spatio-​temporal complexity.

Feedback
The simplest network-​level spatio-​temporal complexity 
is feedback of the outputs to the inputs, which creates 
recurrence and a temporal component, as illustrated 
with the following examples.

Fixed feedback was introduced in a VMM system 
made of a synaptic TaOx memristor crossbar array138 
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(Fig. 6a, left). The feedback implemented an Ising model 
(in the form of a Hopfield network) that converged to 
the minimum of a cost function associated with the pro-
grammed matrix (representing the problem), where the  
minimum represents the solution to the problem.  
The Ising model is a dynamical model that feeds the pre-
vious output into the input of the system. The Hopfield 
network was shown to solve NP-​hard maximum-​cut 
graph problems with efficiencies 10,000 times better 
than the best transistor-​based approaches.

Tunable feedback was introduced in a VMM system 
made of a synaptic TaOx memristor crossbar array132 
(Fig. 6a, right). The system implemented the partial dif-
ference method of solving differential equations. This 
process involves iterative multiplications of intermediate 
solutions from a previous step, which was achieved by 
feeding back the previous VMM results to the input. The 
network was shown to solve the Poisson’s equation and 
simulate fairly complex plasma systems, with the results 
agreeing with digital floating-​point calculations.

Randomized nanowire networks
Several recent efforts have used networks of randomly 
distributed nanowires with memristive properties 
for computing, as illustrated in the examples below. 
Typically, the nanowires are metallic and are coated with 

c  Nanowire network — reservoir computing

b  Nanowire network — temporal associative memory

d  Inter-memristor ionic coupling

e  Coupled oscillatory networks
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Fig. 6 | Computing based on spatio-temporal complexity 
of memristors. a | Computing based on feedback  
dynamics in memristive arrays, where the feedback can  
be fixed (such as in Hopfield networks) or tunable. Both 
types of feedback enforce the minimization of a quantity 
associated with the matrix encoded in the memristive 
array’s resistances, with the global minimum of the quantity 
usually representing the desired solution. Attaining  
such a global minimum, while escaping local minima,  
can be aided by controlled perturbations or noise that are 
inherent in memristors (illustrated as a blue noise signal 
aiding a solid grey circle find the global minimum in the  
red landscape). Such a minimization process can be used 
to solve optimization problems or differential equations.  
An optimization process is illustrated as finding the 
maximum cut of a graph (a cut of the set of vertices  
across the maximum number of edges, dashed curve).  
b | Randomly distributed nanowire network used as 
temporal associative memory, where the system creates 
volatile conduction pathways with an associated timescale 
(upon training with a target pattern), which enables 
matching of input patterns to the closest pattern within  
the training set (via high currents that form due to 
correlations). c | A reservoir computer using a mesh of 
memristive nanowires (blue wires) connecting a set  
of electrodes (red lines). Inputs are transformed into a 
higher-dimensional space, which can be used to perform 
classification tasks. A simple demonstration consists  
of producing signals of different frequencies or shapes 
depending on the input, as shown in the illustration.  
d | A ‘physically evolving network’ that exploits the intrinsic 
dynamics of metal nanoclusters. The network emulates 
biological synapses that interface with neurons, wherein 
ionic migration and clustering can create both cooperative 
and competing changes to the synaptic weights. A similar 
idea can be implemented with ionic memristors, where the 
conductance between two electrodes can be modulated 
(up or down) by a third electrode, which was implemented 
in a multi-​electrode system as illustrated. e | Networks  
of coupled memristor oscillators (spherical nodes in the 
network) based on resistive, capacitive, magnetic or thermal 
coupling (edges in the network). The synchronizaton  
among the phases of the oscillations of the different nodes 
(memristors) occurs based on the connection pattern, 
thereby solving a graph problem. E, electric field; I, current. 
Panel a adapted from ref.138, Springer Nature Limited. 
Panel b adapted from ref.139, CC BY 4.0. Panel c adapted 
with permission from ref.140, IOP. Panel d adapted from 
ref.154, Springer Nature Limited.
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a memristive material, which makes the junction of two 
wires a synaptic switch.

A network of polymer-​coated Ag nanowires was con-
structed, connecting a set of input–output electrodes139 
(Fig. 6b). Thus, when an input–output node pair was elec-
trically stimulated, a unique metallic pathway between 
the node pair was established. The connections persisted 
for varying amounts of time, depending on the program-
ming power and the path length (this creates a temporal 
component and, thus, complexity). This architecture 
enabled the identification of input patterns compared 
with a preprogrammed set of patterns, even when the 
input was slightly corrupted.

In a network of Ag2S-​coated Ag nanowires, Ag2S 
switched in resistance via the movement of Ag ions140 
(Fig. 6c). The system was used to transform a temporally 
varying input to a higher-​dimensional space, where the 
outputs at the different terminals were each a unique 
superposition of the input weighted and time-​delayed 
to different extents (thereby introducing complex-
ity). This system is known as a reservoir computing 
system. The different outputs, via linear combinations, 
could be used to classify previously indistinguishable 
lower-​dimensional states and generate signals of differ-
ent frequencies, a primitive but important signature of 
reservoir computing. Memristor-​based nanowire net-
works have been the subject of several other studies as 
well141–150. Reservoir computing systems have also been 
built with memristor networks that exhibit first-​order 
neuronal dynamics (such as volatile memory), by using 
WOx ionic memristors and spin memristors, for tasks 
such as image recognition, speech recognition and 
long-​term forecasting of time-​series data151–153.

In nanowire networks, it is apparent that not every 
input terminal is directly connected to every output 
terminal but, instead, there are indirect connections. 
Such sparsity in connectivity is an attribute of biological 
neural networks and enables their massive scale2. This 
idea can be adapted from nanowire networks to other 
computing systems.

Memristive devices with internal ionic coupling
Memristors were constructed with multilayered MoS2 
intercalated with Li+ ions, and the resistance switching 
mechanism was the movement of Li+ ions, which were 
otherwise stored in the inert Au electrodes, under an 
electric field. When multiple devices shared a common 
electrode154 (Fig. 6d), this turned into a common source 
of Li+ ions. By using an appropriate sequence of pro-
gramming of the different devices, two important biomi-
metic synaptic network behaviours were demonstrated: 
enhancement (cooperation) and decrease (competition) 
of conductance in multiple devices upon enhancing 
the conduction of one. Cooperative dynamics are an 
essential component of group behaviour, including 
decision-​making and resource allocation. Implementing 
it requires elaborate digital circuits, which, in this 
case, are built into the spatio-​temporal nature of the 
memristors.

A memristive ‘physically evolving network’ was also 
constructed155, consisting of Ag nanoclusters embedded 
in a dielectric, such as amorphous Si or SiO2, accessed 

by multiple metallic electrodes. Under an electric field, 
there were electrochemical reactions and movements of 
the Ag nanoclusters, which behaved as bipolar electrodes 
and self-​organized into conductive filaments. The loca-
tion and strength of the conductive filaments formed by 
the electric field between two electrodes were modulated 
by the electric field applied by a third electrode, thereby 
expressing heterosynaptic plasticity. Heterosynaptic 
plasticity is a biological behaviour in which the synap-
tic strength between a pair of neurons depends on the 
activity at a third and different modulatory terminal. 
In the memristive evolving network, the concept of 
heterosynaptic plasticity via self-​organization of nano-
clusters was demonstrated in four-​terminal memristive  
networks.

Coupled oscillatory networks
Similar to how two mechanically coupled pendula syn-
chronize in phase, electronic oscillators also undergo 
synchronization when coupled. The phases of the 
oscillators map onto the couplings, effectively solving 
a graph-​partitioning problem represented by the cou-
plings. This idea has been developed into several sophis-
ticated oscillator-​based computing systems (Fig. 6e), 
where the oscillatory nodes can be implemented by 
self-​sustained oscillators based on second-​order VO2 
and NbO2 memristors, spin-​torque memristors and so 
on. The couplings are often capacitive (as in the example 
in the section on computing with third-​order dynamics), 
resistive or magnetic; this topic is reviewed in depth in 
ref.156. Thermal couplings are also being explored157.  
In the quantum world, quantum oscillators can be cou-
pled via quantum energy exchange; they are popular 
platforms for scientific exploration, which also have 
strong computing potential158,159.

Many recurrent static VMM networks (such as 
Hopfield networks)138 and coupled oscillatory net-
works156 are conceptually very similar. Remarkably, in 
the oscillatory networks, feedback and feedforward  
(for example, of phase information) are built into the 
same dual-​direction hardware connections, enabled 
by the higher order of complexity. Recurrent VMM 
networks do not invoke device complexity and, thus, 
require an explicit feedback. Both systems operate via 
a ‘search’ process to converge towards the energy mini
mum, which, in the case of an associative memory, 
corresponds to a stored pattern closest to the input pat-
tern and, in the case of optimization, corresponds to an 
optimized configuration of a graph problem (or another 
NP-​hard optimization problem).

Additional physico-​chemical memristor dynamics
In this section, we discuss several possible dynamical 
processes associated with new physics that is still being 
explored and that may add scientifically interesting and 
technologically useful complexities.

Non-​equilibrium states in phase transitions
Although phase transitions have been extensively used 
for computer memories in storage units (such as the 
crystal structure transition in GeSbTe) or selectors (such 
as the Mott transition in NbO2 and VO2), the dynamics 
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of such phase transitions were neglected as long as the 
transition was faster than the circuit timescales, although 
such dynamics have attracted scientific interest for dec-
ades. Given the increased interest in device dynamics 
and complexity, the technological relevance of phase 
transitions is now driving their study.

As an example, it was recently shown160 that the Mott 
transition in VO2 (which includes both an electronic and 
a structural change) takes an identical kinetic pathway 
upon both electrical and optical excitation. Both kinetic 
pathways contain the same starting and ending states 
(that differ in both electrical conductivity and crystal 
structure) and an intermediate state that is transformed 
in electrical conductivity, but not in crystal structure 
(Fig. 7a). However, the two pathways have timescales 
that differ by 12 orders of magnitude (picoseconds 
versus milliseconds). Such studies of intermediate 
non-​equilibrium states and their properties (such as 
timescales, energy barriers and thermal properties)161,162 
can be useful in guiding the design and manufacturing 
of future complex computing chips that employ phase 

transitions. For example, such studies can inform the 
design process of device-​level dynamics, the funda-
mental limits on the timescales, limits on the energy 
to traverse the known kinetics and aid in the choice of 
stimulating signals (electrical versus optical).

Electrochemical gating
Two-​terminal memristors have an inherent fundamental 
limitation: the switching of states, volatile or non-​volatile, 
is, by definition, a non-​equilibrium runaway process. 
Some temporal control over the switching may lead 
to the stabilization and access of non-​equilibrium and 
potentially interesting dynamical states.

Electrochemical gating via another terminal, which 
is the field-​driven injection of dopants (defects or ions) 
near equilibrium, can modulate a material’s resistance, 
crystal structure, stoichiometry and carrier concen-
tration. The idea is not new, but it is now a potential 
means to access multiple dynamical processes, such as in  
phase transitions, which may otherwise be obscured  
in two-​terminal devices within non-​equilibrium inter-
mediate states (Fig. 7b). In fact, it was shown163 that elec-
trochemical gating of TiO2 using oxygen vacancies from 
yttria-​stabilized zirconia enabled both phase coexistence 
(during the phase transition) and linearly programma-
ble intermediate resistance states useful for bio-​inspired 
computing164,165.

Dynamics of filaments
The dynamics of a conduction channel or ‘filament’ 
(such as oxygen vacancy channels in non-​volatile oxide 
memristors and metallic channels in volatile Mott 
memristors) have often been modelled as an order of 
complexity, mostly empirically. The origin of channel 
formation, its dynamics and the factors influencing them 
have not been understood to any appreciable extent. 
Recent postulates suggest that the separation of a hot 
channel region and the cold surrounding region in a 
memristor is thermodynamically favourable under cer-
tain conditions166, which is why channels form, similar 
to how a mixture of oil and water separates via spinodal 
decomposition. This postulate implies an associated 
dynamics (and complexity) of such filament formation, 
but these dynamics are still unexplored.

There is also contention that runaway processes 
due to spatial temperature gradients lead to channels, a 
purely thermal process167. Such models have reproduced 
experimental behaviours. Whether channel dynamics 
are driven by thermal, thermodynamic or any other 
process, they determine the nature of the differential 
equations describing such dynamics, which, in turn, 
inform device design. Thus, this topic is an important 
research avenue.

Local activity in ferromagnetic and ferroelectric 
materials
The concept of local activity (the ability of an otherwise 
passive system to amplify fluctuations to the input) has 
been successfully realized in volatile memristors via neg-
ative differential resistance. In fact, such an amplifica-
tion is why volatile memristors can sustain oscillations 
in a relaxation circuit (as we discussed in the section on 

a  Non-equilibrium phase transition states

b  Accessing non-equilibrium states via electrochemical gating
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second-​order neuronal memristors). Over the past dec-
ade, there have been several reports of negative differ-
ential capacitance168,169, especially in ferroelectric oxides 
of Pb–Zr–Ti. Further, negative differential inductance 
was reported in ferromagnetic materials170. However, it 
is unclear whether such negative differential behaviours 
are associated with an order of complexity of their own. 
Creating self-​sustained oscillations from such a behav-
iour will establish an order of complexity and enable 
the use of ferroelectric and ferromagnetic materials in 
complex systems.

Thermal dynamics
Temperature effects are universal in all of electronics. 
Thermal fluctuations can potentially add complexity by 
externally driving a system that is sensitive to thermal 
changes (especially nanoscale devices, owing to their 
small thermal mass); this was the case in nanoscale NbO2 
memristors driven into chaos by thermal fluctuations119. 
Further, the thermal conductances of Mott insulators 
such as VO2 and NbO2 change in anomalous ways, 
which are not fully understood, during their insulator–
metal phase transitions171. It was argued that anomalous 
thermal changes in NbO2 result in a new form of static 
current–voltage relationship172, and that such current–
voltage behaviour may lead to a new order of complexity, 
resulting in neuron-​like dynamics47. Thermal dynam-
ics, both internal and external to devices, are important 
to understand, not only to enable complexity in com-
puting but to aid design of nearly all future electronic  
devices.

Modelling of complex electronic dynamics
Oscillations (some of the simplest complex dynamics) 
are ubiquitous in electronic circuits. Although there are 
necessary criteria (such as the Barkhausen and Nyquist 
stability criteria), there is no simple formulation of both 
necessary and sufficient criteria to predict oscillations173. 
Likewise for higher-​order dynamics, such as chaos. 
Bridging this gap requires elaborate numerical simula-
tions and highlights the urgent need to develop robust 
predictive models for complex dynamics. Such predic-
tive models will ease the design and integration of nano-
scale and non-​linear components (especially those that 
are prone to complex dynamics, such as memristors) 
onto sophisticated electronic chips. Leon Chua’s theo-
ries of local activity, stability and chaos45,46,60 provide a 
solid, although purely mathematical, foundation, which 
electrical engineers can use to build physically realistic 
predictive models of complex dynamics with measurable 
parameters.

Future perspectives
We have reviewed a variety of complex dynamical prop-
erties, along with some of their potential computing 
applications. This Review has a materials and device 
focus, but any hardware implementation will require 
equal efforts at other levels of the computing stack, 
including architectures and system design, algorithms, 
compilers and other software tools. Although detail-
ing the work in these areas is beyond the scope of this 
Review, we stress that a simultaneous co-​design is critical 

to fully leverage the dynamical and adapting capabilities 
of the core devices and materials. Further development is 
needed of the overlying computing models that leverage, 
and are compatible with, the dynamic evolution of the 
underlying computing and memory elements. In this 
regard, brain-​inspired machine-​learning models, cellular 
neural networks, evolutionary algorithms, Ising models 
and so on174–176 already provide a rich framework. In this 
section, we sidestep the fine details of the computing 
stack and forecast instead the most promising applica-
tions, particularly in comparison with other computing 
approaches.

A natural comparison is to existing mainstream 
digital von Neumann computing architectures, which 
include CPUs and GPUs. These technologies continue to 
progress, especially as new interconnects, 3D integration 
and novel packaging approaches help mitigate some of 
the challenges related to the von Neumann architecture. 
Another comparison is to the emerging area of quan-
tum computing and quantum information processing23. 
Other computing approaches are also emerging, such 
as optical or photonics-​based, carbon-​based and bio-
molecular computing24,25,29,177. We discuss quantum 
computing in particular to offer an illustrative contrast 
in terms of power, form factor and target computing 
applications.

Modern computing hardware excels at highly sequen
tial, high-​precision and low-​memory-bandwidth oper-
ations. Parallelism has been greatly expanded thanks 
to the development of GPUs, but is still challenged by 
high-​memory-​intensity workloads owing to limited 
bandwidth in available hardware platforms178. Over 
the past 70 years, von Neumann-​based hardware has 
been built on scales that go from low-​power embedded  
systems up to exaflop supercomputers, with the power 
envelope spanning similar orders of magnitudes. 
Engineering across such scales is built upon rigid lay-
ers of abstraction between devices and circuits, up to 
software layers. Such a rigid hierarchy requires firm 
guarantees in precision, device yields, device charac-
teristics, material defects and stable behaviour over the 
lifetime of the hardware. A consequence, as noted in 
the introduction, is that hardware primarily transforms 
inputs to new outputs, with learning and adaptation 
occurring primarily above the hardware layers, in the 
algorithms and software. The result is universal Turing 
completeness and the ability to tackle any workload, but 
in a way that is energy-​inefficient and well suited only 
for sequential workloads that demand high precision  
(Fig. 8, yellow).

Quantum computing hopes to achieve exponen-
tial advantages over classical computing in some areas 
through the use of quantum bits that could explore 
an exponentially large Hilbert space through super-
position and novel compute operations enabled by 
entanglement179,180. Maintaining quantum coherence, 
required for such processes, requires the strictest con-
straints on the underlying quantum devices and cryo-
genic temperatures in many potential implementations, 
thereby resulting in high power and large form fac-
tors (Fig. 8, red). Similar to classical computing today, 
no higher-​order dynamics or complex adaptation are 
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targeted in the underlying hardware. The application 
areas driving the most interest are the unwinding of 
today’s RSA (Rivest–Shamir–Adleman) encryption 
schemes and their replacement with truly secure quan-
tum encryption181. The most promising applications are 
likely simulations of arbitrary quantum systems, such 
as in quantum chemistry and highly correlated electron 
systems182,183. There is also ambitious research to develop 
quantum machine learning184 and quantum optimiza-
tion approaches185, but quantifying clear advantages for a 
quantum computer is still work in progress. Additionally, 
the timeline for the engineering of a quantum computer 
with a sufficient number of logical qubits with low errors 
may be over a decade186. An exponential advantage 
would be worth the wait; yet, we believe that the devel-
opment of higher-​complexity neuromorphic hardware 
can offer nearer-​term advantages in complementary 
application areas.

The incorporation of highly complex dynamics and 
adaptation in bio-​inspired computing is not expected to 
replace all forms of computing but, rather, to augment 
and complement them in a powerful way. In particu-
lar, many of the areas where traditional von Neumann 
systems excel, such as inherently serial workloads, will 
not be targeted. Instead, this novel form of computing 
will offer increased parallelism in areas such as pattern 
recognition and graph analytics. The coupling of com-
puting and memory in non-​von Neumann systems will 
allow ultra-​low power and form factors (Fig. 8, blue), 
particularly well suited to the era of mobile and embed-
ded systems. At the same time, this approach is funda-
mentally compatible with scale-​up and scale-​out and, 
thus, can tackle exascale-​level computing workloads. 
Biological brains, similarly, can perform computations 
on scales that span many orders of magnitude30. Key 
differentiators in bio-​inspired computing will be the 
robustness to device and material defects, variability, 
stochasticity and low precision. The ability to adapt to 

the local environment, including to defects and noise, 
is what enables flexibility, in addition to driving con-
tinuous learning and supporting computing applica-
tions requiring real-​time control and decision-​making 
(that is, adaptation). Naturally, bio-​inspired computing 
hardware will be well matched to perform large-​scale 
biological modelling needed in computational neuro
science and medicine. Developing and testing theo-
ries of neurophysiological models is of high interest; 
for example, understanding how neurons commu-
nicate with muscles187 is an important problem to 
resolve in order to address neuromuscular diseases, 
such as amyotrophic lateral sclerosis. Such processes 
are challenging to simulate at large scales and with 
complex neuron models, thereby offering a unique 
niche for the initial deployment of bio-​inspired hard-
ware. Afterwards, the reduced precision, low latency 
and energy efficiency of bio-​inspired hardware will 
make it well matched to accelerate many heuristics- 
based optimization algorithms, offering a path to tack-
ling some of today’s most computationally intractable  
problems176.

Developing higher-​complexity dynamical comput-
ing devices and materials brings together disparate 
areas of research into a single organized theme. This 
field is still young, especially at the architectural and 
algorithmic levels, but has remarkable potential. Over 
the next 10 years, we anticipate significant research  
into the development and applications of memristor 
dynamics of varying complexities, particularly motivated 
by biomimicry. We advocate for coordinated efforts 
among the many communities that have traditionally 
operated at distinct layers of the computing stack. Such 
synergy will be extremely beneficial to researchers in 
materials development, chip design, system integration, 
neuroscience, medicine and software.
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