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Abstract | Research on electronic devices and materials is currently driven by both the slowing
down of transistor scaling and the exponential growth of computing needs, which make present
digital computing increasingly capacity-limited and power-limited. A promising alternative
approach consists in performing computing based on intrinsic device dynamics, such that each
device functionally replaces elaborate digital circuits, leading to adaptive ‘complex computing’.
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computing capacity.

The crisis in modern computing

Since the 1960s, the computing industry has striven
to build larger numbers of smaller transistors on dig-
ital integrated chips to increase speed and functional
density. Transistor densities have continued to double
roughly every 2 years, a trend known as Moore’s law’,
but improvements in computing speed and capacity
started saturating around 2006 (REF?). This issue devel-
oped as chips grew in capacity and the data movement
across distinct storage and processing units in the von
Neumann architecture increased. Combined with the
disproportionate progress in compute versus memory
performance, this phenomenon, commonly known as
the memory wall, leads to saturated system performance.
Another serious impending issue is the end of practical
size scaling as transistor dimensions approach atomic
sizes. Hence, further advancements in computing speed
and capacity face significant challenges.

The exponential progression of Moore’s law over
half a century has fuelled a proportionally exponential
demand for, and dependency on, computing resources™’,
producing profound technological and societal impacts
in areas such as medicine, ecological sustenance, logis-
tics and defence*”. The slowdown of Moore’s law, in turn,
means innovations will be required in other parts of the
solution stack, such as software and algorithms®. Yet,
broad applications, such as genomics and drug research,
suffer from both data intensity and high dimensionality
and compel us to go beyond even today’s most powerful

Memiristors are a class of devices that naturally embody higher-order dynamics through their
internal electrophysical processes. In this Review, we discuss how novel material properties
enable complex dynamics and define different orders of complexity in memristor devices and
systems. These native complex dynamics at the device level enable new computing architectures,
such as brain-inspired neuromorphic systems, which offer both high energy efficiency and high

computers”®, while niche applications, such as edge arti-
ficial intelligence, suffer from the high costs and high
power consumption of today’s digital solutions.

Over the next decade, Moore’s law can still be sus-
tained, partly via increased device densities, but mostly
through effective functional scaling via heterogeneous
and 3D integration’. To continue this trend of functional
scaling, advances in computing need to be achieved
not by increasing device density but by packing more
functional intelligence per volume of material>'. Thus,
the engineering of smart materials and devices, and the
invention of new architectures to efficiently utilize them,
will be central to the post-Moore computing landscape.

The advent of bio-inspired computing
Since around 2006, there has been a clear realization
of the urgency for a ‘post-CMOS (complementary
metal-oxide-semiconductor)’ computing paradigm —
one that circumvents the need for shrinking devices,
dismantles the storage-processing divide (the von
Neumann bottleneck) and overcomes the limitations
of digital information processing''". As a result, there
was an explosion of ideas for post-CMOS computing,
including some that were studied decades ago'**' and
non-electronic approaches, such as optical, quantum
and biomolecular computing®~.

Within this Cambrian era of post-CMOS comput-
ing, there are strong arguments favouring bio-inspired
(or brain-like/neuromorphic/neural) computing
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a Biological systems

Complexity and adaptation at all levels
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approaches. High among those arguments is the remark-
able energy efficiency and information-processing capa-
bilities of all levels of biological organisms, from cells
to the brain®. Thus, reverse-engineering biological
computing may offer the most mature, widely applica-
ble and scalable approach®-**. The 1940s witnessed the
first efforts to model problem-solving biological neural
networks and to mimic them using electrical circuits**.
Since then, there were periodic and consequential
developments in this area: Hebbian learning'*, neuron
models (such as the Hodgkin-Huxley model)**~*, the
perceptron'”, multilayer networks'®'”, backpropagation
training'®"’, the Hopfield network™ and self-organizing
maps?', to name just a few. By the late 1980s, bio-inspired
computing became a small but independent research
area™ and gained commercial traction in the early 2010s
as a set of predominantly algorithmic tools**.

Complexity and adaptation

The next frontier in advancing computing performance
needs to incorporate the dynamical and adaptive
capabilities of natural and biological systems (FIG. 1a).
Biological systems at all levels respond to their environ-
ment and history. Simple molecular systems, such as
nucleic acids, can express adaptive behaviours, including
replication and self-repair, triggered by the local envi-
ronment. Neurons, the core information-processing
elements in biological systems, express over 20 different
dynamical behaviours driven by electrochemical stimu-
lation from their history and environment"'. Similarly,
systems with more organizational complexity, such
as the eye and immune systems, and all the way up to
organisms, express proportionally higher functional
complexity and adaptation. By contrast, modern com-
puting systems are built on top of static elements with
zeroth-order complexity (see definitions below, FIC. 1b).

b Computing systems
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Fig. 1| Biological and computational adaptation and complexity. a| Complexity and
the resulting adaptation appear at all levels of biological organization, illustrated here
with hierarchical systems and their expressions. b | In the hierarchy of current computer
stacks, nearly all layers are unintelligent and contain no adaptation or complexity, and
intelligence is provided by the programmer encoding the software.

Devices and circuits primarily transform inputs to new
outputs, following prescribed logic tables, mathemati-
cal functions and conditional branching rules that are
formulated by a biological system at the top: the human
programmer. This computing system can show universal
Turing completeness (assuming unlimited memory and
time) and, thus, simulate the computational capabilities
of an idealized Turing machine*. Yet, this system is a
tool, dependent on the human programmer to wield
it appropriately, dynamically adapting the instructions
based on past (possibly mistaken) outputs and new
demands from the environment.

The first breakthrough away from the above para-
digm has been in the field of artificial neural networks
(ANNSs), particularly deep learning*. Training an
ANN to perform a task, such as image recognition, no
longer uses traditional programming but is instead based
on providing labelled examples to the network. Through
dynamical updates of the network weights, guided by
training algorithms (such as back-propagation), a form
of adaptation and learning occurs. Significantly, this
approach has brought adaptation and complex dynamics
to a level below the user, at the algorithmic layer, elimi-
nating explicit instruction programming. This approach
has led to state-of-the-art capabilities in many comput-
ing tasks. The underlying hardware, however, remains
static and low in complexity during both the training
and the learning phases, and in the subsequent deploy-
ment of the ANN in performing inference on inputs. The
next breakthrough will come from incorporating a capa-
bility for adaptation and complex dynamics within the
hardware layers themselves. This idea offers an exciting
path to increased computational parallelism, scalability
(such as from mobile electronics to supercomputers),
higher energy efficiency and an increased robustness
to hardware and environmental variability and defects.

We invoke the concept of complexity throughout
this discussion. Generally speaking, complexity is a set
of interacting processes expressing a non-trivial behav-
iour, which has been defined in many ways across dif-
ferent disciplines*~*. In other words, complexity is a
measure of the dimensionality of a dynamical system.
For our purposes, the measure (‘order’) of complexity
is the number of first-order differential equations (or
equivalent) required to describe the system’s behaviour,
each equation associated with a ‘state variable’ and its
dynamical evolution’>*. We stress that both the system’s
observed temporal dynamics and the internal state vari-
ables can be used to describe the system’s adaptability, in
response to both local stimuli and the system’s history.

Expressions of higher-order complexity

Complexity appears at many levels from the micro-
scale to the macroscale: within biological organisms**,
chemical processes™!, economic institutions™*, social
organizations®*, ecological processes™ and so on.
As an illustration of different orders of complexity, a
simple pendulum (a system with second-order com-
plexity) exhibiting periodic oscillations can be easily
modelled, but the weather system, which expresses
chaos and stochasticity, is much higher in complexity
and, thus, very difficult to model and predict. There are
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Fig. 2 | Concept of memristor and memristive behaviours of various complexity. a| lllustrations of a biological neuron
and synapses, along with the current-voltage characteristics of synaptic and neuronal electrical devices. b,c | Examples of
synaptic (panel b) and neuronal (panel c) behaviours that require different orders of complexity. d | lllustration of a memristor
and its basic model, depicting with an example how state variables connect currents and voltages with a temporal history
dependence. At, time delay; G, conductance; gnd, electrical ground; I, current; t, time; V, voltage.

many examples of biomimetic behaviours arising from
electrophysico-chemical processes of different orders of
complexities™ . Here, we start by reviewing illustrative
examples of simple electrical and mechanical systems
of different orders of complexity, before transitioning to
specific biomimetic examples.

Zeroth-order systems, which effectively have no com-
plexity, faithfully follow any input variations without
adding a temporal component (such as a time delay). No
real-world system is perfectly zeroth order. A massless
object subject to finite friction is a zeroth-order system:
its velocity temporally follows the applied force. In the
electrical world, a pure resistor is a zeroth-order system:
its current output faithfully follows the voltage input.

First-order systems are determined by a single
first-order differential equation. A finite mass subjected
to finite friction (state variable: velocity) reacts to an
applied force with a time delay owing to friction. In the
electrical world, a circuit with a resistance and capacitance
reacts with its characteristic time constant (the ‘RC’ time
constant). A time delay requires first-order complexity.

Second-order systems require two distinct and inter-
dependent state variables, represented by two first-order
(or an equivalent second-order) differential equations to
describe their respective dynamics. A finite mass held
by a spring (state variables: velocity and displacement)
reacts to an initial finite displacement with oscillations
in its displacement. In the electrical world, a circuit with

a resistance, inductance and capacitance reacts with
damped oscillations to an input voltage pulse. Oscillatory
behaviour requires at least second-order complexity**®.

A double pendulum is a fourth-order system (state
variables: velocity and displacement, for each of the pen-
dula) that produces chaotic dynamics in response to an
initial displacement. Chaos and multiperiod oscillations
require third-order complexity, while hyperchaos requires
fourth-order complexity®*. Intuitively, chaos consists
of hard-to-predict oscillations and, thus, requires an
order of complexity higher than oscillations, whereas
hyperchaos is hard-to-predict chaos and, thus, requires
an order of complexity higher than chaos.

Below, we provide selected examples of different
synaptic and neuronal functions of different orders of
complexity. At a broad basic level, synapses store weights
and modulate information transmission, whereas neu-
rons perform non-linear transformations on their inputs
(such as thresholding)® (FIC. 2a). The biological origins
of these functions (such as ion channel dynamics) and
their equivalent electrical and mathematical models have
been extensively discussed in the literature®—"*>%,

Synaptic functions. Synaptic functions are summarized
in FIC. 2b and include the following.
e Directional conduction (zeroth order): necessitates
conductance to be asymmetrical with the polarity of the
applied voltage. This behaviour requires no complexity.
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* Synaptic delay (first order): produces a specific
time delay between input and output. Recall that
a time delay requires first-order complexity.
Excitation and inhibition (first order): in response
to an input stimulus, the output is either increased
(excitation) or decreased (inhibition), depending on
the state of the synapse. Usually, a temporal compo-
nent such as a characteristic timescale is involved,
invoking first-order complexity.

Short-term plasticity (first order): the response to
a temporal input (such as a spike) persists for a finite
time before decaying to its pre-input value. Repeated
temporal inputs lead to continually increased
(potentiation) or decreased (depression) response.
The memory period is determined by a characteristic
timescale, invoking first-order complexity, whereas
potentiation and depression behaviours can be cap-
tured via parameters within the same dynamical
process, that is, they do not add complexity.
Long-term plasticity (first order): the response to a
temporal input (such as a spike) persists for practically
an infinite time, either via potentiation or depression.
The temporal persistence of the output requires a
timescale, thus invoking first-order complexity.
Spatio-temporal convergence and summation (first
order): incoming signals from different channels are
summed, involving a characteristic timescale, thus
invoking first-order complexity.

Synaptic reverberation (second order): in response
to a stimulus, oscillations may result from feedback-
enabled synaptic structures. The feedback and the
time delays create two distinct dynamical processes,
which together result in second-order complexity.

Neuronal functions. Neuronal functions are summarized
in FIC. 2¢ and include the following.

e Integrate and fire (first order): neurons accumulate
potential from multiple temporal inputs for a finite
time and, when the accumulated potential exceeds a
threshold, they produce a temporal output. Similar
to short-term potentiation in synapses, this process
essentially invokes a delay-like first-order complexity.
Periodic action potential (second order): in response
to a constant input, neurons can produce periodic
spikes, also known as action potentials. Recall that
any oscillatory behaviour requires second-order
complexity.

Spike number adaptation (second order): this pro-
cess is similar to the one producing periodic action
potentials (second-order complexity) but with an
additional parameter that modulates the frequency
as a function of the input level.

Periodic bursting (third order): in response to a con-
stant input, neurons can produce periodic bursts of
spikes. Recall that multiperiod oscillations require
third-order complexity (such as for a driven simple
pendulum).

Burst number adaptation (third order): this process
is similar to the one producing periodic bursting
(third-order complexity) but with an additional
parameter that modulates the number of spikes
within each burst as a function of the input level.

* Chaotic oscillations (third order): neurons can pro-
duce chaotic dynamics in response to a constant
input, which, in simple terms, is a deterministic (non-
random) behaviour that is hard to track. Recall that
chaotic dynamics requires third-order complexity.
Hyperchaos (fourth order): technically, hyperchaos
is a behaviour containing at least two Lyapunov
exponents, which, in simple terms, means that it is
much harder to track than chaos. Sometimes, neu-
ral systems produce hyperchaos, which requires
fourth-order complexity®.

From these few examples of synaptic and neuronal
behaviours, it is apparent that neuronal functions are
often higher in complexity. This agrees with intuition,
because, from a computing point of view, the main
function of neurons is to perform temporal processing
of information, whereas synapses store information.
Temporal expressions are more complex, by definition.

Memristors and complexity in computing
Most efforts into bio-inspired computing thus far have
focused on mimicking primitive lower-order biological
complexities. Historically, such complexities are emu-
lated using transistor-based circuits (such as central and
graphics processing units, CPUs and GPUs) to simulate
multiple dynamical equations>**”, but recent advances
in memristors have made this approach easier.
Memristors, predicted in 1971 (REF*) and connected
to physical devices in 2008 (REF.%), are electrical cir-
cuit elements that embody at least one state equation
(differential equation of the state variable with respect
to time) and, thus, at least first-order complexity (FIG. 2d).
The incorporation of state equations necessarily leads
to history-dependent behaviours in the current-voltage
plot, in either volatile (memory disappears at zero bias)
or non-volatile (memory is retained at zero bias) form.
Processes such as temperature-driven Mott transitions”
and field-driven defect generation and recombination”
lead to volatile or sometimes partially volatile memory
effects’. By contrast, processes such as electrochemical
defect migration”, spin injection*>”*, ferroelectric or
ferromagnetic switching”>’® and crystalline-amorphous
phase transitions” lead to non-volatile memory effects,
and are all captured within the memristor framework.
Non-volatile (or partially non-volatile) memris-
tors are good candidates as electrical synapses, offer-
ing tunable weight and non-volatile memory, wherein
the output current is the conductance-weighted input
voltage. Volatile memristors perform a non-linear
transformation of the input, such as thresholding, and
are, thus, excellent candidates for electrical neurons.
Further, volatile memristors are often capable of gen-
erating neuron-like temporal dynamics of higher-order
complexity, as discussed in the following sections.
Thus, unlike transistor-based hardware that simu-
lates biomimetic functions using many devices, mem-
ristors naturally embody simple biomimetic functions.
Therefore, since around 2013, there has been a flurry
of research into bio-inspired computing systems based
on simple (low-complexity) memristor functions,
which promise far greater efficiencies than CPUs and
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GPUs’", Although exploration of memristors with
higher-order complexity has just begun, it is clear that
it is indeed possible to engineer qualitatively highly
complex behaviours (especially biomimetic) from
interacting electro-physico-chemical material pro-
cesses in memristors. As a consequence, a single device
with such complex behaviours can functionally replace
hundreds or thousands of transistors, and interactions
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Fig. 3 | Examples of memristors of different orders

of complexity. Examples of synaptic (panels a—c) and
neuronal (panels d—f) memristive devices with different
orders of complexity. The switching mechanism, state
variables and typical device characteristics are indicated.
al TiO, sandwiched between Pt electrodes exhibits
dynamics in the width (w) of a conducting filament

in response to a train of voltage pulses (V), resulting in
temporal non-volatile changes to its conductance (G).

b | Two different oxides of Ta sandwiched between

Pt electrodes exhibit dynamics in the conductance of a
filament and the local temperature (T) in response to

a train of voltage pulses, resulting in temporal non-volatile
changes to its conductance. c | Ferroelectric HfZrO,
sandwiched between TiN and Si electrodes exhibits
dynamics in the built-in electric field (E) and the frequency
response of defects (F) in response to a train of voltage
pulses, resulting in temporal non-volatile changes to its
conductance. d | TiO, sandwiched between Ti/Pt and

Pt undergoes a non-linear steady-state change in internal
temperature in response to an applied current () and
voltage (V), leading to negative differential resistance

in the I-V characteristic. e | NbO, sandwiched between
Pt electrodes, which contains a built-in capacitor, exhibits
self-oscillations in voltage when under optimally fixed bias
conditions. f| A special device structure containing NbO,
as the active material enables coexisting dynamicsin
three state variables, leading to several tunable neuron-
like behaviours in current (I) dynamics. Periodic spiking

(in blue) and periodic burst spiking (in red) are displayed.
t, temperature. Panel a adapted from REF.", Springer
Nature Limited. Panel b adapted with permission from
REF.', ACS. Panel c adapted with permission from REF.'*%,
ACS. Panel e adapted with permission from REF."", Wiley.
Panel f adapted from REF.*/, Springer Nature Limited.

among such devices can lead to higher-level capabilities
and energy efficiency (that is, system-level complexity).
This idea is the bedrock principle for complexity in
computing, including higher-complexity bio-inspired
computing.

Menmristors of different complexities

In this section, we provide various examples of synaptic
and neuronal memristors of different orders of com-
plexity and point to their working mechanisms. There
are many comprehensive recent reviews on simple
(low-complexity) memristive switching materials, mech-
anisms and device-level performance’”*~'", including
special material classes, such as 2D materials®'*>'%, Mott
insulators'”’, organic materials'**'" and carbon nanoma-
terials''. Here, instead, we focus on higher-complexity
memristive materials and devices and discuss how com-
plex computing can be achieved by taking advantage
of the intrinsic device dynamics. A few representative
examples that illustrate complexity beyond the simple
(and often static) functions that can be engineered in
memristive electronic devices are summarized in FIC. 3.

Synaptic devices

First-order synaptic memristors. The first experimen-
tally identified memristor was a first-order memristor®
(FIC. 3a). The switching mechanism was based on the
movement of oxygen vacancies in TiO, in an electric
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field. The width of the TiO, region occupied by the oxy-
gen defects was the proposed state variable. The device
exhibited non-volatile resistance switching.

Most memristors or two-terminal memory devices
ever built are first-order memristors. They all exhibit
some form of non-volatile information storage with
minimal temporal dynamics and invoke one domi-
nant dynamical process that enables storage. Although
many of them may have additional state variables (for
instance, temperature dynamics are present in every
electronic device), for simple information storage —
the default behaviour explored in most memristors
— only one dynamical process is required (first-order
complexity). Because of that, it is important to note that
many first-order memristors exhibit higher-order func-
tions when the appropriate measurements are used to
observe the additional dynamics.

Second-order synaptic memristors. Memristors based
on TaO, (RER'"") were designed to be sensitive to thermal
effects (FIG. 3b). Two state variables were identified: the
radius of a filament of oxygen vacancies (which deter-
mined the resistance) and temperature (the dynamics of
which depend on the thermal environment of the device
and its operating conditions). The device exhibited
dynamical (temporal) memory in addition to the usual
static non-volatile resistance switching. Similarly, in
HfO, memristors, possible fingerprints of second-order
effects were identified'"?, especially temporal memory.

In ferroelectric memristors, two state variables were
identified'"’: built-in electric fields and the dynamical
response of the interfacial defects (FIC. 3¢). Similar to the
previous examples, this memristor exhibited temporal
memory in addition to the usual resistance switching
behaviour (accompanying the expected polarization
switching in a ferroelectric material). Besides these
examples, there have been few confirmed examples of
second-order synaptic memristors.

Neuronal devices

First-order neuronal memristors. First-order neuronal
memristors essentially exhibit volatile switching in the
current-voltage plane and some simple dynamics (such
as a characteristic response time). In the field of computer
memory, selector devices, which are essentially volatile
switches that minimize low-bias current leakage, have
been intensely researched for over a decade''*'"*. Thus,
most selectors can be considered neuronal memristors
of at least first-order complexity. Many mechanisms can
lead to volatile switching (Mott transition, thermal runa-
way, volatile defect migration, tunnelling and more). For
example, modelling of threshold switching in TiO, as a
first-order process with internal temperature as the state
variable''® showed that, as temperature increases due to
Joule heating, the superlinear temperature dependence of
the conductance makes the conductance increase, which,
above a threshold, is a runaway process, leading to vol-
atile (reversible) switching. Interestingly, in this range,
either the current rapidly increases at a held voltage or
the voltage drops at a held current (current-controlled
negative differential resistance, FIG. 3d). Although it is
possible that first-order memristors that exhibit volatile

memory or hysteresis may exhibit oscillations or other
higher-order functions, such measurements were not of
interest for their intended applications.

Second-order neuronal memristors. Volatile memris-
tors placed in a relaxation oscillator circuit can exhibit
self-sustained oscillations. For example, volatile memris-
tors (exhibiting current-controlled negative differential
resistance) with a parallel capacitor can exhibit oscilla-
tions via two alternating dynamical processes: charging—
discharging of the capacitor and volatile switching of
the memristor, thus exhibiting second-order complex-
ity. The electrode structure of a NbO, volatile-switching
memristor was shown to form a built-in capacitor, which
was sufficient to create oscillations without the need for
any external capacitor'” (FIG. 3e). The device was mod-
elled with a Mott-transition-driven volatile filament
(conduction channel) formation process, although later
models were based on more realistic and general thermal
runaway processes’’. Such oscillatory behaviour from
a single device has been observed several times since
then, though it has been identified as a second-order
memristive effect very few times.

Third-order neuronal memristors. The only reported
third-order memristor’” was constructed using NbO,
and modelled with three state variables: temperature
(representing internal thermal dynamics), charge on the
built-in capacitor (representing charge dynamics) and
the speed of formation of a metallic region (a volatile
filament resulting from the Mott transition dynamics,
FIG. 3f). The devices were carefully designed in struc-
ture and material stoichiometry to enable all the above
dynamics. When powered by a tunable static voltage
input, a single device could produce 15 different neuronal
dynamics (including spiking, bursting and chaos).
Although third-order complexity can produce many
key neuronal behaviours, a rigorous mathematical
examination of common neuronal models is needed to
evaluate whether higher-order complexity is required
to faithfully emulate a neuron. For example, the common
Hodgkin-Huxley neuron model involves fourth-order
complexity, but most behaviours of a Hodgkin-Huxley
neuron can be produced by a third-order system, as
discussed above™. Models with fifth-order complex-
ity have also been utilized to explain certain neuronal
behaviours, but may be equivalently represented by

lower-order dynamics'*®.

Emulation of higher-order functions using multiple
circuit elements

A single memristor that exhibits fourth-order or
higher-order dynamics has not been experimentally
reported. As in most scientific studies, low-cost simu-
lations often precede experimental demonstrations. In
electronic device research, realistic emulations of spe-
cific functions are commonly performed using multi-
component circuits or programmable hardware (such
as field-programmable gate arrays). Such research eval-
uates a large parameter space at a reasonable cost, while
invoking some experimental constraints (unlike in pure
mathematical models) to allow the resulting parameters
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to strategically inform materials engineering, which
eventually leads to the desired higher-order devices.

A common example of such emulation in neuronal
memristor research is the generation of second-order
neuron-like oscillations (similar to those discussed in
the subsection on second-order neuronal memristors),
but with distinctly different components (a distinct par-
allel capacitor and a series resistor, for example) instead
of a single second-order component'".

A non-transistor fourth-order memristive system
was constructed'” using two volatile first-order VO,
memristors to emulate a Hodgkin-Huxley-like neu-
ron model (FIG. 4a). The state variables were the inter-
nal temperatures of the memristors and the charges on
their parallel capacitors. The system produced 23 dif-
ferent neuronal functions, such as spiking, bursting and
integrate-and-fire. Although, in principle, a third-order
system could have produced all those functions, the
engineering of the circuit was easier and more flex-
ible (for example, for obtaining the precise bias) with
fourth-order complexity.

In another example, a transistor-based fourth-
order memristive-like system was constructed using
transistor-based active components (amplifiers) to

a Non-transistor fourth-order memristive system
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mimic memristors'?' (FIC. 4b). The system produced
hyperchaos, a fourth-order function.

There are several other higher-order and fractional-
order simulations or emulations, including memristor-
inspired ones, generating complex functions such as
chaos or hyperchaos'**~'". Additional orders of complex-
ity are useful only if they are required to enable a specific
behaviour or if they clearly make the system design
easier (as in the previous example). For instance, the
simulation of ninth-order circuits capable of producing
hyperchaos has been reported, demonstrating advanced
circuit simulation capabilities, although hyperchaos only
requires fourth-order complexity'**.

Creating complexity in computing using
memristors

As we discussed, most efforts in memristor-based
bio-inspired computing have, thus far, centred around
mimicking simple (low-complexity) synaptic and
neuronal functions using static memristive properties
or primitive first-order dynamics (such as dynamical
plasticity). Such efforts have been covered in several
reviews’*%12%130 'In this section, we briefly illustrate
examples (FIG. 5) of how memristors of different

b Transistor-based fourth-order memristive system
simulator

Memristor circuit representation

Active
negative RC —>®
l_ feedback
Analogue
multiplier
Active RLC higher-
negative I order oscillator f—ow5(A) Analogue
conductance | |circuit square

Equivalent system simulator

Key result: hyperchaos

Fig. 4 | Emulation of higher-order complexity using multiple circuit elements. a| Emulation of higher-order complexity
using a memristor-based biomimetic circuit. The structure of a neuron’s membrane on which Na (pink) and K (green) channels
modulate the flow of Na and Kiions (free-floating pink and bluish-green spheres, respectively) is illustrated. The behaviour

of Na and K channels leading to neuronal dynamics is emulated using the illustrated memristor circuit that contains fourth-
order complexity (the two VO, memristors and the two capacitors, each supplying one state variable). Twenty-three neuronal
dynamics were emulated using this circuit. Four of them are illustrated (periodic action potential, spike number adaptation,
periodic bursting and burst number adaptation). b | Emulation of fourth-order complexity using transistor-based circuit
elements. The circuit produced hyperchaos, a highly irregular and unpredictable behaviour, asillustrated in the plot of
voltage (V) against phase (®). RC, resistance—capacitance; RLC, resistance-inductance—capacitance; t, time. Panel a adapted
from REF'?, CC BY 4.0. Panel b adapted with permission from REF.'*, World Scientific.
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(especially higher-order) complexities can solve problems
that would otherwise require increasingly elaborate
circuits, depending on the complexity of the problem.

Information processing with static properties

Most current studies on memristor-based computing
systems do not invoke any dynamics but merely pro-
gram an array of memristors to target resistances and

use it as a system of synapses to perform computations.
An approach widely used over the past 5 years consists of
programming crossbar arrays of memristors (as in REF."*)
to represent patterns and make the network perform
multiplication of an input voltage vector with the
matrix of memristor conductances to produce a vec-
tor of currents (vector-matrix multiplication, VMM,
FIG. 5a). VMMSs enable convolutions, which lead to the

Using memristors with different orders of complexity for computing
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Key result: identification
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Fig. 5 | Computing with memristors of different orders of complexity.
Typical device structures and their corresponding computing systems and
applications for memristive devices with first-order (without dynamics,
panela), first-order (with intrinsic dynamics, panel b), second-order (panel c)
and third-order (panel d) complexity. a | Static resistances (representing
hand-written digits) were programmed into a memristor crossbar array,
which was used to perform single-step vector-matrix multiplications to
achieve convolution of input voltage vectors with the stored resistance
values, to achieve classification of the inputs as one of the pre-stored digits.
b | Streams of data were fed into an array of memristors made of the
phase-change material Ge,Sb,Te, via an algorithm that converts input data
into voltage pulses, with temporally correlated streams assigned larger
amplitudes. The resulting change in conductance (G) in the devices
encoded the temporal correlations in the input (G1 represents a small
increase in G and G11 represents a large increase in G). When the input was
weather data, the geographical-temporal correlations of the data could be
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identified, as depicted by the similarly coloured points on a US map. ¢ | TaO,
memristors are sensitive to both electric fields (V) and local temperature (T),
with the thermal timescales being larger. When binary time-varying
video frames were fed as inputs to an array of such memristors, the spatial
frequency of the resulting resistance pattern across the array, influenced
by the rate of input excitation and the inherent thermal timescales,
reflected the speed (frequency) at which the video frames changed. d | NbO,
oscillators networked similar to thalamocortical neurons align in groups of
phases that represent a solution to the graph problem that their connections
represent. When a viral genome sequencing problem was encoded as a
graph problem and represented by the NbO, network, the network found
the maximum cut of the graph, which represents a solution to the
sequencing problem. t, temperature. Panel a adapted with permission from
REF.*!, IEEE. Panel b adapted from REF."*>, CC BY 4.0. Panel c adapted with
permission from REF.**’, |[EEE. Panel d adapted from REF."/, Springer Nature
Limited.
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identification of closely matching patterns, useful, for
instance, in object detection and classification, such as
recognizing handwriting or speech'”’. Besides convo-
lutional neural networks, many other neural-network
architectures, machine-learning algorithms and scien-
tific computing tasks utilize static properties of memris-
tors, including multilayer perceptrons, recurrent neural
networks, k-means clustering and the solution of partial
differential equations'*"**'*2,

VMMs typically use static memristor properties,
but the efficient training of such memristors (that is,
programming their conductances based on an update
rule) is far from mature, owing to non-idealities such
as device variation, non-linear and asymmetrical con-
ductance updates and endurance problems. Achieving
efficient training, especially within the time and energy
constraints imposed by many applications, may require
understanding and exploiting the temporal dynam-
ics (first-order properties) during the switching of a
memristor’s resistance®’®!3313,

Computing with first-order dynamics

Gradual changes in the resistance of GeSbTe were used
to detect correlations in input data'* (FIG. 5b). GeSbTe
is a phase-change material, in which resistance changes
occur owing to the gradually (and temporally) vary-
ing size of the crystalline structure upon Joule heating
driven by electrical or optical power: a first-order pro-
cess. An incoming data stream (such as from an input
image) can be treated with a simple linear algorithm
and then used to stimulate a network of phase-change
memristors. Temporally correlated signals in the differ-
ent channels of the incoming data stream are added to
maximize the resistance change in the different mem-
ristors. Thereby, the spatial distribution of the channels
with temporal correlations can be computed, opening
up wide applications in pattern recognition and event
mapping (such as weather mapping). Besides such
resistance switching, the amorphous phase of GeSbTe
or its derivatives (such as C-doped GeSbTe) is relatively
unstable and can go through spontaneous structural
relaxations and transform to a more stable glass state,
which naturally leads to gradual conductance drift to
lower conductance. This is also a first-order process
and has been used as the eligibility trace for efficient
reinforcement learning'*.

Computing with second-order dynamics

Memristors sensitive to thermal dynamics, similar to
those reported in REF'!! and discussed in the section on
second-order synaptic memristors, were designed using
TaO, (REF.'¥) (FIC. 5¢). The memristors contained two
dynamical processes (making them second order): oxy-
gen vacancy migration (which modulated the resistance)
and temperature decay following an electrical stimulus.
The idea was to stimulate a network of second-order
memristors with a temporally evolving input pattern,
resulting in a spatial resistance pattern determined
by the switching and thermal dynamics. The spatial
frequency of the pattern was proportional to the tem-
poral rate of input evolution (as demonstrated using a
white pixel moving on a dark background). Thus, the
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temporal dynamics of a spatially distributed input could
be quantified.

Computing with third-order dynamics

The third-order memristor"” discussed in the section
on third-order neuronal memristors was used in a
network with capacitive couplings, laid out in a bio-
inspired architecture (FIG. 5d). The couplings among the
third-order memristors defined a graph problem.
The couplings resulted in a spatial segregation of the
phases of the memristors’ oscillatory dynamics, which
represents the solution to the problem. Solutions
to small-scale non-deterministic polynomial-time
(NP)-hard viral genome sequencing (posed as graph
problems) were demonstrated. Coupled oscillatory
networks have clear biological inspirations. The syn-
chronization of clusters of biological neurons is key
to the generation of crucial rhythms of muscular and
nervous systems, similar to how clocking works as a
synchronization scheme in digital electronic chips.
Coupled oscillatory systems are a more general class of
computing systems with spatio-temporal complexity, as
discussed further in the section on coupled oscillatory
networks.

Simulations and emulations of higher-order
computing systems

Although the manufacturing of higher-order mem-
ristors is in its infancy, there are many simulations
and emulations of higher-order devices or systems and
explorations of their computing applications. For
example, there are a series of hyperchaotic fourth-order
and higher-order systems (often memristor-inspired)
that is shown, mostly via simulations, to enable data
encryption (such as images) and secure communi-
cation'”"'*, Polynomial-time (but exponential-resource)
solutions to NP-hard problems were demonstrated
via chaotic dynamics in third-order and higher-order
systems'”.

Thus, low-cost simulations have favourably estab-
lished the direction and motivation for materials
research towards higher-order device complexity and
computing applications. It is apparent that the theo-
retical exploration of this space is still limited, but we
expect it to expand and grow alongside more experimen-
tal demonstrations of higher-order complex devices and
their computing applications.

Spatio-temporal complexity

Complexity can be added to a device via new electro-
physico-chemical dynamics, but it can also be achieved
by enabling unique network dynamics via clever spatial
connections among many devices (FIC. 6). We define this
idea as spatio-temporal complexity.

Feedback
The simplest network-level spatio-temporal complexity
is feedback of the outputs to the inputs, which creates
recurrence and a temporal component, as illustrated
with the following examples.

Fixed feedback was introduced in a VMM system
made of a synaptic TaO_ memristor crossbar array'*
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(FIC. 63, left). The feedback implemented an Ising model
(in the form of a Hopfield network) that converged to
the minimum of a cost function associated with the pro-
grammed matrix (representing the problem), where the
minimum represents the solution to the problem.
The Ising model is a dynamical model that feeds the pre-
vious output into the input of the system. The Hopfield
network was shown to solve NP-hard maximum-cut
graph problems with efficiencies 10,000 times better
than the best transistor-based approaches.

Fig. 6 | Computing based on spatio-temporal complexity
of memristors. a| Computing based on feedback
dynamics in memristive arrays, where the feedback can

be fixed (such as in Hopfield networks) or tunable. Both
types of feedback enforce the minimization of a quantity
associated with the matrix encoded in the memristive
array’s resistances, with the global minimum of the quantity
usually representing the desired solution. Attaining

such a global minimum, while escaping local minima,

can be aided by controlled perturbations or noise that are
inherent in memristors (illustrated as a blue noise signal
aiding a solid grey circle find the global minimum in the
red landscape). Such a minimization process can be used
to solve optimization problems or differential equations.
An optimization process is illustrated as finding the
maximum cut of a graph (a cut of the set of vertices

across the maximum number of edges, dashed curve).

b | Randomly distributed nanowire network used as
temporal associative memory, where the system creates
volatile conduction pathways with an associated timescale
(upon training with a target pattern), which enables
matching of input patterns to the closest pattern within
the training set (via high currents that form due to
correlations). ¢ | A reservoir computer using a mesh of
memristive nanowires (blue wires) connecting a set

of electrodes (red lines). Inputs are transformed into a
higher-dimensional space, which can be used to perform
classification tasks. A simple demonstration consists

of producing signals of different frequencies or shapes
depending on the input, as shown in the illustration.

d| A ‘physically evolving network’ that exploits the intrinsic
dynamics of metal nanoclusters. The network emulates
biological synapses that interface with neurons, wherein
ionic migration and clustering can create both cooperative
and competing changes to the synaptic weights. A similar
idea can be implemented with ionic memristors, where the
conductance between two electrodes can be modulated
(up or down) by a third electrode, which was implemented
in a multi-electrode system as illustrated. e | Networks

of coupled memristor oscillators (spherical nodes in the
network) based on resistive, capacitive, magnetic or thermal
coupling (edges in the network). The synchronizaton
among the phases of the oscillations of the different nodes
(memristors) occurs based on the connection pattern,
thereby solving a graph problem. E, electric field; I, current.
Panel a adapted from REF**%, Springer Nature Limited.
Panel b adapted from REF.**, CC BY 4.0. Panel c adapted
with permission from REF*°, |OP. Panel d adapted from
REF.***, Springer Nature Limited.

Tunable feedback was introduced in a VMM system
made of a synaptic TaO_ memristor crossbar array'*
(FIC. 6a, right). The system implemented the partial dif-
ference method of solving differential equations. This
process involves iterative multiplications of intermediate
solutions from a previous step, which was achieved by
feeding back the previous VMM results to the input. The
network was shown to solve the Poisson’s equation and
simulate fairly complex plasma systems, with the results
agreeing with digital floating-point calculations.

Randomized nanowire networks

Several recent efforts have used networks of randomly
distributed nanowires with memristive properties
for computing, as illustrated in the examples below.
Typically, the nanowires are metallic and are coated with
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a memristive material, which makes the junction of two
wires a synaptic switch.

A network of polymer-coated Ag nanowires was con-
structed, connecting a set of input—output electrodes'”
(FIG. 6b). Thus, when an input-output node pair was elec-
trically stimulated, a unique metallic pathway between
the node pair was established. The connections persisted
for varying amounts of time, depending on the program-
ming power and the path length (this creates a temporal
component and, thus, complexity). This architecture
enabled the identification of input patterns compared
with a preprogrammed set of patterns, even when the
input was slightly corrupted.

In a network of Ag,S-coated Ag nanowires, Ag,S
switched in resistance via the movement of Ag ions'*’
(FIG. 6¢). The system was used to transform a temporally
varying input to a higher-dimensional space, where the
outputs at the different terminals were each a unique
superposition of the input weighted and time-delayed
to different extents (thereby introducing complex-
ity). This system is known as a reservoir computing
system. The different outputs, via linear combinations,
could be used to classify previously indistinguishable
lower-dimensional states and generate signals of differ-
ent frequencies, a primitive but important signature of
reservoir computing. Memristor-based nanowire net-
works have been the subject of several other studies as
well'*-1%, Reservoir computing systems have also been
built with memristor networks that exhibit first-order
neuronal dynamics (such as volatile memory), by using
WO, ionic memristors and spin memristors, for tasks
such as image recognition, speech recognition and
long-term forecasting of time-series data'*'~'**.

In nanowire networks, it is apparent that not every
input terminal is directly connected to every output
terminal but, instead, there are indirect connections.
Such sparsity in connectivity is an attribute of biological
neural networks and enables their massive scale’. This
idea can be adapted from nanowire networks to other
computing systems.

Memristive devices with internal ionic coupling
Memristors were constructed with multilayered MoS,
intercalated with Li* ions, and the resistance switching
mechanism was the movement of Li* ions, which were
otherwise stored in the inert Au electrodes, under an
electric field. When multiple devices shared a common
electrode'™ (FIC. 6d), this turned into a common source
of Li* ions. By using an appropriate sequence of pro-
gramming of the different devices, two important biomi-
metic synaptic network behaviours were demonstrated:
enhancement (cooperation) and decrease (competition)
of conductance in multiple devices upon enhancing
the conduction of one. Cooperative dynamics are an
essential component of group behaviour, including
decision-making and resource allocation. Implementing
it requires elaborate digital circuits, which, in this
case, are built into the spatio-temporal nature of the
memristors.

A memristive ‘physically evolving network’ was also
constructed'”, consisting of Ag nanoclusters embedded
in a dielectric, such as amorphous Si or SiO,, accessed
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by multiple metallic electrodes. Under an electric field,
there were electrochemical reactions and movements of
the Ag nanoclusters, which behaved as bipolar electrodes
and self-organized into conductive filaments. The loca-
tion and strength of the conductive filaments formed by
the electric field between two electrodes were modulated
by the electric field applied by a third electrode, thereby
expressing heterosynaptic plasticity. Heterosynaptic
plasticity is a biological behaviour in which the synap-
tic strength between a pair of neurons depends on the
activity at a third and different modulatory terminal.
In the memristive evolving network, the concept of
heterosynaptic plasticity via self-organization of nano-
clusters was demonstrated in four-terminal memristive
networks.

Coupled oscillatory networks

Similar to how two mechanically coupled pendula syn-
chronize in phase, electronic oscillators also undergo
synchronization when coupled. The phases of the
oscillators map onto the couplings, effectively solving
a graph-partitioning problem represented by the cou-
plings. This idea has been developed into several sophis-
ticated oscillator-based computing systems (FIG. 6¢),
where the oscillatory nodes can be implemented by
self-sustained oscillators based on second-order VO,
and NbO, memristors, spin-torque memristors and so
on. The couplings are often capacitive (as in the example
in the section on computing with third-order dynamics),
resistive or magnetic; this topic is reviewed in depth in
REF."%. Thermal couplings are also being explored'”.
In the quantum world, quantum oscillators can be cou-
pled via quantum energy exchange; they are popular
platforms for scientific exploration, which also have
strong computing potential'**'¥,

Many recurrent static VMM networks (such as
Hopfield networks)'** and coupled oscillatory net-
works'*® are conceptually very similar. Remarkably, in
the oscillatory networks, feedback and feedforward
(for example, of phase information) are built into the
same dual-direction hardware connections, enabled
by the higher order of complexity. Recurrent VMM
networks do not invoke device complexity and, thus,
require an explicit feedback. Both systems operate via
a ‘search’ process to converge towards the energy mini-
mum, which, in the case of an associative memory,
corresponds to a stored pattern closest to the input pat-
tern and, in the case of optimization, corresponds to an
optimized configuration of a graph problem (or another
NP-hard optimization problem).

Additional physico-chemical memristor dynamics
In this section, we discuss several possible dynamical
processes associated with new physics that is still being
explored and that may add scientifically interesting and
technologically useful complexities.

Non-equilibrium states in phase transitions

Although phase transitions have been extensively used
for computer memories in storage units (such as the
crystal structure transition in GeSbTe) or selectors (such
as the Mott transition in NbO, and VO,), the dynamics
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Fig. 7 | Accessing non-equilibrium phases. a | Non-equilibrium phase transition states
in VO,, where the phase transition involves both an electronic and a crystal structure
change. The kinetic pathway of the phase transition involves an intermediate state that is
transformed in the electronic state but not in the crystal structure (labelled ‘intermediate
non-equilibrium states’). This kinetic pathway is identical upon both electrical and
optical triggering, but the phase transition timescales resulting from the two triggering
mechanisms differ by 12 orders of magnitude'®. b | Electrochemical means of accessing
phase transitions and intermediate states. The illustration depicts a two-terminal device,
similar to the case in panel a, where the intermediate state may be accessed only as a
metastable state. However, using a third terminal and exploiting electrochemical tuning,
it may be possible to access and stabilize intermediate phases, thereby leading to richer
dynamics. gnd, electrical ground; t, temperature.

of such phase transitions were neglected as long as the
transition was faster than the circuit timescales, although
such dynamics have attracted scientific interest for dec-
ades. Given the increased interest in device dynamics
and complexity, the technological relevance of phase
transitions is now driving their study.

As an example, it was recently shown'’ that the Mott
transition in VO, (which includes both an electronic and
a structural change) takes an identical kinetic pathway
upon both electrical and optical excitation. Both kinetic
pathways contain the same starting and ending states
(that differ in both electrical conductivity and crystal
structure) and an intermediate state that is transformed
in electrical conductivity, but not in crystal structure
(FIG. 7a). However, the two pathways have timescales
that differ by 12 orders of magnitude (picoseconds
versus milliseconds). Such studies of intermediate
non-equilibrium states and their properties (such as
timescales, energy barriers and thermal properties)'*"'**
can be useful in guiding the design and manufacturing
of future complex computing chips that employ phase

transitions. For example, such studies can inform the
design process of device-level dynamics, the funda-
mental limits on the timescales, limits on the energy
to traverse the known kinetics and aid in the choice of
stimulating signals (electrical versus optical).

Electrochemical gating
Two-terminal memristors have an inherent fundamental
limitation: the switching of states, volatile or non-volatile,
is, by definition, a non-equilibrium runaway process.
Some temporal control over the switching may lead
to the stabilization and access of non-equilibrium and
potentially interesting dynamical states.
Electrochemical gating via another terminal, which
is the field-driven injection of dopants (defects or ions)
near equilibrium, can modulate a material’s resistance,
crystal structure, stoichiometry and carrier concen-
tration. The idea is not new, but it is now a potential
means to access multiple dynamical processes, such as in
phase transitions, which may otherwise be obscured
in two-terminal devices within non-equilibrium inter-
mediate states (FIC. 7b). In fact, it was shown'®’ that elec-
trochemical gating of TiO, using oxygen vacancies from
yttria-stabilized zirconia enabled both phase coexistence
(during the phase transition) and linearly programma-
ble intermediate resistance states useful for bio-inspired
computing'**'®,

Dynamics of filaments

The dynamics of a conduction channel or ‘filament’
(such as oxygen vacancy channels in non-volatile oxide
memristors and metallic channels in volatile Mott
memristors) have often been modelled as an order of
complexity, mostly empirically. The origin of channel
formation, its dynamics and the factors influencing them
have not been understood to any appreciable extent.
Recent postulates suggest that the separation of a hot
channel region and the cold surrounding region in a
memristor is thermodynamically favourable under cer-
tain conditions'®, which is why channels form, similar
to how a mixture of oil and water separates via spinodal
decomposition. This postulate implies an associated
dynamics (and complexity) of such filament formation,
but these dynamics are still unexplored.

There is also contention that runaway processes
due to spatial temperature gradients lead to channels, a
purely thermal process'”’. Such models have reproduced
experimental behaviours. Whether channel dynamics
are driven by thermal, thermodynamic or any other
process, they determine the nature of the differential
equations describing such dynamics, which, in turn,
inform device design. Thus, this topic is an important
research avenue.

Local activity in ferromagnetic and ferroelectric
materials

The concept of local activity (the ability of an otherwise
passive system to amplify fluctuations to the input) has
been successfully realized in volatile memristors via neg-
ative differential resistance. In fact, such an amplifica-
tion is why volatile memristors can sustain oscillations
in a relaxation circuit (as we discussed in the section on
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second-order neuronal memristors). Over the past dec-
ade, there have been several reports of negative differ-
ential capacitance'®*'%, especially in ferroelectric oxides
of Pb-Zr-Ti. Further, negative differential inductance
was reported in ferromagnetic materials'”’. However, it
is unclear whether such negative differential behaviours
are associated with an order of complexity of their own.
Creating self-sustained oscillations from such a behav-
iour will establish an order of complexity and enable
the use of ferroelectric and ferromagnetic materials in
complex systems.

Thermal dynamics

Temperature effects are universal in all of electronics.
Thermal fluctuations can potentially add complexity by
externally driving a system that is sensitive to thermal
changes (especially nanoscale devices, owing to their
small thermal mass); this was the case in nanoscale NbO,
memristors driven into chaos by thermal fluctuations'".
Further, the thermal conductances of Mott insulators
such as VO, and NbO, change in anomalous ways,
which are not fully understood, during their insulator—
metal phase transitions'”". It was argued that anomalous
thermal changes in NbO, result in a new form of static
current-voltage relationship'”?, and that such current-
voltage behaviour may lead to a new order of complexity,
resulting in neuron-like dynamics*. Thermal dynam-
ics, both internal and external to devices, are important
to understand, not only to enable complexity in com-
puting but to aid design of nearly all future electronic
devices.

Modelling of complex electronic dynamics
Oscillations (some of the simplest complex dynamics)
are ubiquitous in electronic circuits. Although there are
necessary criteria (such as the Barkhausen and Nyquist
stability criteria), there is no simple formulation of both
necessary and sufficient criteria to predict oscillations'”.
Likewise for higher-order dynamics, such as chaos.
Bridging this gap requires elaborate numerical simula-
tions and highlights the urgent need to develop robust
predictive models for complex dynamics. Such predic-
tive models will ease the design and integration of nano-
scale and non-linear components (especially those that
are prone to complex dynamics, such as memristors)
onto sophisticated electronic chips. Leon Chua’s theo-
ries of local activity, stability and chaos*'*° provide a
solid, although purely mathematical, foundation, which
electrical engineers can use to build physically realistic
predictive models of complex dynamics with measurable
parameters.

Future perspectives

We have reviewed a variety of complex dynamical prop-
erties, along with some of their potential computing
applications. This Review has a materials and device
focus, but any hardware implementation will require
equal efforts at other levels of the computing stack,
including architectures and system design, algorithms,
compilers and other software tools. Although detail-
ing the work in these areas is beyond the scope of this
Review, we stress that a simultaneous co-design is critical
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to fully leverage the dynamical and adapting capabilities
of the core devices and materials. Further development is
needed of the overlying computing models that leverage,
and are compatible with, the dynamic evolution of the
underlying computing and memory elements. In this
regard, brain-inspired machine-learning models, cellular
neural networks, evolutionary algorithms, Ising models
and so on'*"""* already provide a rich framework. In this
section, we sidestep the fine details of the computing
stack and forecast instead the most promising applica-
tions, particularly in comparison with other computing
approaches.

A natural comparison is to existing mainstream
digital von Neumann computing architectures, which
include CPUs and GPUs. These technologies continue to
progress, especially as new interconnects, 3D integration
and novel packaging approaches help mitigate some of
the challenges related to the von Neumann architecture.
Another comparison is to the emerging area of quan-
tum computing and quantum information processing™.
Other computing approaches are also emerging, such
as optical or photonics-based, carbon-based and bio-
molecular computing®»*>?*'”7. We discuss quantum
computing in particular to offer an illustrative contrast
in terms of power, form factor and target computing
applications.

Modern computing hardware excels at highly sequen-
tial, high-precision and low-memory-bandwidth oper-
ations. Parallelism has been greatly expanded thanks
to the development of GPUs, but is still challenged by
high-memory-intensity workloads owing to limited
bandwidth in available hardware platforms'’”®. Over
the past 70 years, von Neumann-based hardware has
been built on scales that go from low-power embedded
systems up to exaflop supercomputers, with the power
envelope spanning similar orders of magnitudes.
Engineering across such scales is built upon rigid lay-
ers of abstraction between devices and circuits, up to
software layers. Such a rigid hierarchy requires firm
guarantees in precision, device yields, device charac-
teristics, material defects and stable behaviour over the
lifetime of the hardware. A consequence, as noted in
the introduction, is that hardware primarily transforms
inputs to new outputs, with learning and adaptation
occurring primarily above the hardware layers, in the
algorithms and software. The result is universal Turing
completeness and the ability to tackle any workload, but
in a way that is energy-inefficient and well suited only
for sequential workloads that demand high precision
(FIC. 8, yellow).

Quantum computing hopes to achieve exponen-
tial advantages over classical computing in some areas
through the use of quantum bits that could explore
an exponentially large Hilbert space through super-
position and novel compute operations enabled by
entanglement'”>'®. Maintaining quantum coherence,
required for such processes, requires the strictest con-
straints on the underlying quantum devices and cryo-
genic temperatures in many potential implementations,
thereby resulting in high power and large form fac-
tors (FIC. 8, red). Similar to classical computing today,
no higher-order dynamics or complex adaptation are
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Fig. 8 | Comparison between the future requirements and potential of the main computing technologies. Projection
of the measurable performance and attributes of three different computing technologies — modern digital computing,
quantum computing and neuromorphic computing— for the next three decades and their potential applications.

targeted in the underlying hardware. The application
areas driving the most interest are the unwinding of
today’s RSA (Rivest-Shamir-Adleman) encryption
schemes and their replacement with truly secure quan-
tum encryption'®'. The most promising applications are
likely simulations of arbitrary quantum systems, such
as in quantum chemistry and highly correlated electron
systems'*>'®. There is also ambitious research to develop
quantum machine learning'** and quantum optimiza-
tion approaches'®, but quantifying clear advantages for a
quantum computer is still work in progress. Additionally,
the timeline for the engineering of a quantum computer
with a sufficient number of logical qubits with low errors
may be over a decade'®. An exponential advantage
would be worth the wait; yet, we believe that the devel-
opment of higher-complexity neuromorphic hardware
can offer nearer-term advantages in complementary
application areas.

The incorporation of highly complex dynamics and
adaptation in bio-inspired computing is not expected to
replace all forms of computing but, rather, to augment
and complement them in a powerful way. In particu-
lar, many of the areas where traditional von Neumann
systems excel, such as inherently serial workloads, will
not be targeted. Instead, this novel form of computing
will offer increased parallelism in areas such as pattern
recognition and graph analytics. The coupling of com-
puting and memory in non-von Neumann systems will
allow ultra-low power and form factors (FIG. 8, blue),
particularly well suited to the era of mobile and embed-
ded systems. At the same time, this approach is funda-
mentally compatible with scale-up and scale-out and,
thus, can tackle exascale-level computing workloads.
Biological brains, similarly, can perform computations
on scales that span many orders of magnitude®. Key
differentiators in bio-inspired computing will be the
robustness to device and material defects, variability,
stochasticity and low precision. The ability to adapt to

the local environment, including to defects and noise,
is what enables flexibility, in addition to driving con-
tinuous learning and supporting computing applica-
tions requiring real-time control and decision-making
(that is, adaptation). Naturally, bio-inspired computing
hardware will be well matched to perform large-scale
biological modelling needed in computational neuro-
science and medicine. Developing and testing theo-
ries of neurophysiological models is of high interest;
for example, understanding how neurons commu-
nicate with muscles'’ is an important problem to
resolve in order to address neuromuscular diseases,
such as amyotrophic lateral sclerosis. Such processes
are challenging to simulate at large scales and with
complex neuron models, thereby offering a unique
niche for the initial deployment of bio-inspired hard-
ware. Afterwards, the reduced precision, low latency
and energy efficiency of bio-inspired hardware will
make it well matched to accelerate many heuristics-
based optimization algorithms, offering a path to tack-
ling some of today’s most computationally intractable
problems'”.

Developing higher-complexity dynamical comput-
ing devices and materials brings together disparate
areas of research into a single organized theme. This
field is still young, especially at the architectural and
algorithmic levels, but has remarkable potential. Over
the next 10years, we anticipate significant research
into the development and applications of memristor
dynamics of varying complexities, particularly motivated
by biomimicry. We advocate for coordinated efforts
among the many communities that have traditionally
operated at distinct layers of the computing stack. Such
synergy will be extremely beneficial to researchers in
materials development, chip design, system integration,
neuroscience, medicine and software.
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