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Abstract—Resistive random-access memory (RRAM) offers
high-density non-volatile storage and potential for efficient in-
memory computing (IMC). RRAM-enabled accelerators can
solve the von Neumann bottleneck and meet the ever-growing
computing needs of applications such as Artificial Intelligence
(AD). In this paper, we discuss progress and challenges in
RRAM-based accelerators for Al inference, training and
arithmetic  applications. ~ Architecture  strategies  to
accommodate large neural networks will be introduced.
Alternative computing systems enabled by the devices’
internal dynamics will also be presented.
I. INTRODUCTION

The exponential growth of Al workloads calls for highly
efficient hardware, a task that becomes increasingly
challenging to meet through device scaling alone. IMC
accelerators based on emerging memory devices such as
RRAM offer high compute density, throughput and energy
efficiency, and have generated broad interest for these tasks.

In general, vector-matrix multiplication (VMM), the core
operation in many Al workloads, can be performed directly in
RRAM arrays in a single step. Here we will review recent
implementations of RRAM accelerator prototypes for Al
inference and training applications, along with approaches to
perform efficient logic and high precision arithmetic
operations. We will discuss challenges including ADC
overhead and device nonidealities and introduce a modular
architecture design to accommodate large Al models. Finally,
approaches to perform computing beyond multiply-accumulate
(MAC) by taking advantage of the internal device dynamics,
including synaptic plasticity learning, reservoir computing
(RC) and stochastic computing (SC), will be presented.

II. RESISTIVE SWITCHING DEVICES

RRAM is a type of resistive switching device that exhibits
reversible resistance changes through physical reconfiguration
of the material composition. There are two main types of
RRAM: one based on cation redistribution, called
electrochemical metallization memory (ECM), also known as
conductive bridge random access memory (CBRAM); and one
based on anion redistribution, known as valency change
memory (VCM) or oxide-RRAM, as shown in Fig. 1(a).

In both types, the devices operate based on the formation
and rupture of a conductive filament, through the oxidation,
migration and reduction of metal ions (e.g., Ag or Au) or
oxygen vacancies, respectively. Examples of filaments formed
after the SET progress are shown in Fig. 2 [1, 2]. The filament
growth processes are in turn determined by internal
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thermodynamic and kinetic factors including ionization energy,
barrier height for ion migration, hopping distance, and redox
rates, leading to different filament growth modes [1, 3].

By self-consistently solving the electronic, ionic and
thermal transport equations, the dynamic resistive switching
processes can be accurately modelled (Fig. 3) [4], providing
insights into the internal physical mechanisms for continued
device optimizations and circuit simulations.

III. RRAM-ENABLED Al ACCELERATORS

Through Ohm’s law and Kirchhoff’s current law, an RRAM
array can be used to directly perform MAC, particularly in its
matrix form - VMM, in a single time step, as shown in Fig. 4
[5]. Additionally, by reversing the input and output, the same
array can be used to perform VMM using the output activation
and the transposed weight matrix to produce the reconstruction
of the input. This operation can be used to calculate error during
backpropagation for network training, or to implement lateral
neuron inhibition in algorithms such as sparse coding [6].

A single layer perceptron was first implemented for 3x3
pixel bitmap classification using a 12x12 Al,O3/TiO,-» RRAM
array [7]. Implementations using passive crossbar arrays have
been challenging due to the sneak current issue which affects
the current output during MAC and the programming voltage
delivery during weight update. Recent progress with passive
RRAM arrays includes a 32x32 WOy array for sparse coding
[6], and a fully integrated, reprogrammable chip with a passive
RRAM crossbar array directly fabricated on top of CMOS
circuits for different tasks such as bi-layer networks and sparse
coding, as shown in Fig. 6(e) [8].

ITIR arrays with integrated transistors as selectors allow
larger arrays to be fabricated and have recently been offered
through major foundries. Several groups have developed MAC
circuits based on 1'TIR RRAM arrays. A 128x64 HfO, 1TIR
array with high device yield (99.8%) and high precision (6-bit)
has been used for image processing/classification [9] and
reinforcement learning [10], offering 1.64 TOPS and ~119.7
effective TOPS/W. A system consisting of 8 TaO,/HfOx
RRAM chips with 128x16 ITIR cells per chip has been
developed to support both convolutional and fully-connected
operations across multiple chips [11]. An effective hybrid
training method was proposed to accommodate device
variations and near software-accuracy (1.49% drop) for
CIFAR-10 classification. A 128 TOPS/W neurosynaptic core
with 64k RRAM and 256 integrate-and-fire neurons has been
implemented to support dynamically reconfigurable dataflow,
transpose VMM and probabilistic sampling [13]. An IMC
module integrating binary 1T1R RRAM cells with low power
current mode readout circuits has been designed to achieve



16.95 TOPS/W and 98.8% accuracy for MNIST inference [14].

A 2Mb integrated RRAM based IMC macro was also recently
developed with TSMC 22nm CMOS technology [15]. Binary
neural networks (BNNs) [16], where weights and activations
are quantized to 1-bit precision, offer another promising
approach to use mature binary RRAM devices and low
precision ADCs (or multi-level sense amplifiers). A BNN
system using 128x64 binary RRAM devices has demonstrated
accuracy of 98.5% for MNIST and 83.5% for CIFAR-10
datasets, achieving 158 GOPS and 24 TOPS/W [17].

IV. IN-MEMORY LOGIC AND ARITHMETIC OPERATIONS

Low power, highly parallel and reconfigurable bitwise
logic and arithmetic computing schemes have been studied on
the basis of voltage-divider effects in RRAM arrays. Fig. 7
shows an example of implementing wired-NOR logic. The
NOR gates can be further used as the foundation to build full
adders and other logic and arithmatic operations [18].

A scheme to achieve high-precision computing, beyond the
native precision offered by the device, was proposed in [19].
An example of a high-precision partial differential equation
(PDE) solver is shown in Fig. 8(a). The sparse coefficient
matrix (Fig. 8(b)) in PDE can be divided into slices and
mapped onto RRAM crossbar arrays (Fig. 8(c)). The effective
precision can be extended through ADC quantization at each
crossbar and shifting/add operations, as shown in Fig. 8(d).
This system has been used to solve static and time-evolving
problems, such as Poisson’s equations, damped 2D wave
equations and argon plasma reactor, with precision extending
up to double-precision (64-bits).

V. INTERNAL DYNAMICS-BASED COMPUTING

Internal dynamics of RRAM devices such as temporal
ionic drift/diffusion processes and switching nonlinearity and
stochasticity, can enable highly efficient computing schemes.
The ion drift and Joule heating, driven by the applied field, and
spontaneous ion diffusion and heat dissipation offer an internal
Ca*"-like timing mechanism (Fig. 9), and can be used to
implement biorealistic synaptic plasticity learning including
long term plasticity, short term plasticity and spike timing-
dependent plasticity (STDP). Volatile RRAM devices with
inherent short-term memory effect and nonlinear dynamics can
be utilized to implement RC systems [20, 21], in which a
dynamic reservoir can nonlinearly project temporal inputs onto
a high-dimensional feature space to make them linearly
separable for subsequent processing (Fig. 10). An RC system
designed to perform handwritten digit classification task used
only 88 WOy-based RRAM devices (Fig. 11) [21] and
subsequent studies on these RC systems have achieved tasks
such as long-term time-series forecasting. The stochastic
switching behavior of Cu/Al,O3/Pd CBRAM devices was used
to implement SC systems and emulate simulated annealing of
a spin-glass [22], as shown in Fig. 12.

VI. CHALLENGES AND PERSPECTS

Several challenges remain that may impede further
implementation of RRAM-based Al accelerators. First, high-
precision ADC-based readout circuits are a significant
overhead. ADCs with resolutions higher than 8-bit will
dominate the power and area of the MAC system, while low-
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precision ADCs may degrade the accuracy. Second,
performance can suffer from device non-idealities including c-
¢ variations and finite on/off ratio. Third, the nonlinear and
asymmetric conductance update observed in RRAM devices
can severely degrade training accuracy.

A solution to the first problem is to introduce several ranges
in the ADC design with low area and power overhead [23]. An
alternate method is the use of BNNs, where readout can be
greatly simplified [13]. The device non-ideality issues for the
second and third problems can be mitigated through mixed-
precision training [24], and by using differential RRAM pairs
(Fig. 13) which improves the operation margin and alleviates
the asymmetric weight update problem [25].

The array size used for IMC is typically limited to <IMb
to minimize parasitic capacitance and parasitic resistance
effects. To accommodate state-of-the-art deep neural networks
(DNNs) which usually contain millions of parameters,
modular systems that utilize many arrays integrated together
through digital interface have been proposed [23, 26, 27, 30-
32]. For example, PRIME [30] and ISAAC [31] attempted to
address the ADC overhead by splitting the weights onto
multiple devices and utilizing bit-serial approach to feed in the
input activations. Pipelayer [32] considered the inter- and
intra- layer parallelism, and replaced ADCs with simple spike
drivers. The end-to-end performance of typical DNN models
and the impact of device and circuit nonidealities have been
analyzed in [23, 27]. One example of mapping DNN models
onto the modular architecture is shown in Fig. 14(a).
Performance degradation induced by ADC quantization of the
partial sums (Psum) (Fig. 14(b)) can be minimized through
multi-range quantization (Fig. 14(c)) and architecture-aware
training (Fig. 14(e)), which has also been shown to address
other device non-idealities such as finite on-off ratio and
device variability (Fig. 14(d)).

By using several types of IMC modules to minimize ADC
overhead and balance the latency of different layers in typical
DNNs (Fig. 15(a)), TAICHI [33] was able to map several
classes of DNNs with high throughput and energy efficiency
using a single design. A hierarchical mesh network-on-chip
(HM-NoC) was used for data routing between modules. Power
and area breakdown of the design at different technology nodes
are summarized in Fig. 15(b), where the 8-bit ADC was still
found to be a dominating factor for area and power. By
analyzing the compute-weight ratio, models exceeding the
chip storage capacity can be split carefully to allow the
compute-bound layers to be mapped onto the IMC and
memory-bound layers onto a global co-processor to make the
IMC system “future-proof™, as shown in Fig. 15(c).

VII. CONCLUSION

Significant progress has been made in RRAM-enabled
accelerators, both at the module level and at the system
architecture level. With the recent commercialization of
RRAM and continued improvements in device, architecture
and algorithm, such IMC systems offer great potential to lead
to the implementation of high performance, energy efficient
and scalable hardware systems for Al and other data-intensive
applications in the near future.
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Fig. 2. (a) TEM image showing the formation of a Ag conductive
filament after the forming process. Adapted from [1]. (b) High-
resolution TEM image of a Pt/Ta,Os./TaO,-/Pt structure
(bottom), showing the Ta,Os-, layer before cycling (top left) and
after 10° cycles (top right) that exhibits Ta-rich clusters. Adapted
from [2].
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Fig. 3. (a) Measured and simulated I-V characteristics of tantalum
oxide RRAM. Inset shows the device structure. (b) 2D maps of Vo
concentration (np) obtained in the model, for the forming, first reset
and subsequent switching cycles. Adapted from [4].
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Fig. 4. Schematic of analog VMM
implemented on RRAM-crossbar
array. Adapted from [5].

Fig. 5. Bi-directional RRAM operations. The forward
pass performs VMM using the input vector and the
stored weight matrix, and the backward pass performs
VMM using the neuron activity vector with the transpose
of the weight matrix. Adapted from [6].
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Fig. 7. Wired-NOR logic gate 1mplemented with binary
Cu/AI203/poly-Si RRAM devices with low power
(In<100 nA) and high on/off ratio. Adapted from [18].
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Fig. 8. High-precision PDE solver implemented in RRAM crossbar. Adapted from [19].
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