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Abstract—Resistive random-access memory (RRAM) offers 

high-density non-volatile storage and potential for efficient in-

memory computing (IMC). RRAM-enabled accelerators can 

solve the von Neumann bottleneck and meet the ever-growing 

computing needs of applications such as Artificial Intelligence 

(AI). In this paper, we discuss progress and challenges in 

RRAM-based accelerators for AI inference, training and 

arithmetic applications. Architecture strategies to 

accommodate large neural networks will be introduced. 

Alternative computing systems enabled by the devices’ 

internal dynamics will also be presented.  

I. INTRODUCTION 

The exponential growth of AI workloads calls for highly 

efficient hardware, a task that becomes increasingly 

challenging to meet through device scaling alone. IMC 

accelerators based on emerging memory devices such as 

RRAM offer high compute density, throughput and energy 

efficiency, and have generated broad interest for these tasks.  

In general, vector-matrix multiplication (VMM), the core 

operation in many AI workloads, can be performed directly in 

RRAM arrays in a single step. Here we will review recent 

implementations of RRAM accelerator prototypes for AI 

inference and training applications, along with approaches to 

perform efficient logic and high precision arithmetic 

operations.  We will discuss challenges including ADC 

overhead and device nonidealities and introduce a modular 

architecture design to accommodate large AI models. Finally, 

approaches to perform computing beyond multiply-accumulate 

(MAC) by taking advantage of the internal device dynamics, 

including synaptic plasticity learning, reservoir computing 

(RC) and stochastic computing (SC), will be presented.  

II. RESISTIVE SWITCHING DEVICES 

RRAM is a type of resistive switching device that exhibits 

reversible resistance changes through physical reconfiguration 

of the material composition. There are two main types of 

RRAM: one based on cation redistribution, called 

electrochemical metallization memory (ECM), also known as 

conductive bridge random access memory (CBRAM); and one 

based on anion redistribution, known as valency change 

memory (VCM) or oxide-RRAM, as shown in Fig. 1(a).  

In both types, the devices operate based on the formation 

and rupture of a conductive filament, through the oxidation, 

migration and reduction of metal ions (e.g., Ag or Au) or 

oxygen vacancies, respectively. Examples of filaments formed 

after the SET progress are shown in Fig. 2 [1, 2]. The filament 

growth processes are in turn determined by internal 

thermodynamic and kinetic factors including ionization energy, 

barrier height for ion migration, hopping distance, and redox 

rates, leading to different filament growth modes [1, 3].  

By self-consistently solving the electronic, ionic and 

thermal transport equations, the dynamic resistive switching 

processes can be accurately modelled (Fig. 3) [4], providing 

insights into the internal physical mechanisms for continued 

device optimizations and circuit simulations.   

III. RRAM-ENABLED AI ACCELERATORS 

Through Ohm’s law and Kirchhoff’s current law, an RRAM 

array can be used to directly perform MAC, particularly in its 

matrix form - VMM, in a single time step, as shown in Fig. 4 

[5]. Additionally, by reversing the input and output, the same 

array can be used to perform VMM using the output activation 

and the transposed weight matrix to produce the reconstruction 

of the input. This operation can be used to calculate error during 

backpropagation for network training, or to implement lateral 

neuron inhibition in algorithms such as sparse coding [6].  

A single layer perceptron was first implemented for 3×3 

pixel bitmap classification using a 12×12 Al2O3/TiO2−x RRAM 

array [7]. Implementations using passive crossbar arrays have 

been challenging due to the sneak current issue which affects 

the current output during MAC and the programming voltage 

delivery during weight update. Recent progress with passive 

RRAM arrays includes a 32x32 WOx array for sparse coding 

[6], and a fully integrated, reprogrammable chip with a passive 

RRAM crossbar array directly fabricated on top of CMOS 

circuits for different tasks such as bi-layer networks and sparse 

coding, as shown in Fig. 6(e) [8].  

1T1R arrays with integrated transistors as selectors allow 

larger arrays to be fabricated and have recently been offered 

through major foundries. Several groups have developed MAC 

circuits based on 1T1R RRAM arrays. A 128×64 HfO2 1T1R 

array with high device yield (99.8%) and high precision (6-bit) 

has been used for image processing/classification [9] and 

reinforcement learning [10], offering 1.64 TOPS and ~119.7 

effective TOPS/W. A system consisting of 8 TaOx/HfOx 

RRAM chips with 128×16 1T1R cells per chip has been 

developed to support both convolutional and fully-connected 

operations across multiple chips [11]. An effective hybrid 

training method was proposed to accommodate device 

variations and near software-accuracy (1.49% drop) for 

CIFAR-10 classification. A 128 TOPS/W neurosynaptic core 

with 64k RRAM and 256 integrate-and-fire neurons has been 

implemented to support dynamically reconfigurable dataflow, 

transpose VMM and probabilistic sampling [13]. An IMC 

module integrating binary 1T1R RRAM cells with low power 

current mode readout circuits has been designed to achieve 
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16.95 TOPS/W and 98.8% accuracy for MNIST inference [14]. 

A 2Mb integrated RRAM based IMC macro was also recently 

developed with TSMC 22nm CMOS technology [15]. Binary 

neural networks (BNNs) [16], where weights and activations 

are quantized to 1-bit precision, offer another promising 

approach to use mature binary RRAM devices and low 

precision ADCs (or multi-level sense amplifiers). A BNN 

system using 128×64 binary RRAM devices has demonstrated 

accuracy of 98.5% for MNIST and 83.5% for CIFAR-10 

datasets, achieving 158 GOPS and 24 TOPS/W [17].  

IV. IN-MEMORY LOGIC AND ARITHMETIC OPERATIONS 

Low power, highly parallel and reconfigurable bitwise 

logic and arithmetic computing schemes have been studied on 

the basis of voltage-divider effects in RRAM arrays. Fig. 7 

shows an example of implementing wired-NOR logic. The 

NOR gates can be further used as the foundation to build full 

adders and other logic and arithmatic operations [18].  

A scheme to achieve high-precision computing, beyond the 

native precision offered by the device, was proposed in [19]. 

An example of a high-precision partial differential equation 

(PDE) solver is shown in Fig. 8(a). The sparse coefficient 

matrix (Fig. 8(b)) in PDE can be divided into slices and 

mapped onto RRAM crossbar arrays (Fig. 8(c)). The effective 

precision can be extended through ADC quantization at each 

crossbar and shifting/add operations, as shown in Fig. 8(d). 

This system has been used to solve static and time-evolving 

problems, such as Poisson’s equations, damped 2D wave 

equations and argon plasma reactor, with precision extending 

up to double-precision (64-bits).  

V. INTERNAL DYNAMICS-BASED COMPUTING 

Internal dynamics of RRAM devices such as temporal 

ionic drift/diffusion processes and switching nonlinearity and 

stochasticity, can enable highly efficient computing schemes. 

The ion drift and Joule heating, driven by the applied field, and 

spontaneous ion diffusion and heat dissipation offer an internal 

Ca2+-like timing mechanism (Fig. 9), and can be used to 

implement biorealistic synaptic plasticity learning including 

long term plasticity, short term plasticity and spike timing-

dependent plasticity (STDP). Volatile RRAM devices with 

inherent short-term memory effect and nonlinear dynamics can 

be utilized to implement RC systems [20, 21], in which a 

dynamic reservoir can nonlinearly project temporal inputs onto 

a high-dimensional feature space to make them linearly 

separable for subsequent processing (Fig. 10). An RC system 

designed to perform handwritten digit classification task used 

only 88 WOx-based RRAM devices (Fig. 11) [21] and 

subsequent studies on these RC systems have achieved tasks 

such as long-term time-series forecasting. The stochastic 

switching behavior of Cu/Al2O3/Pd CBRAM devices was used 

to implement SC systems and emulate simulated annealing of 

a spin-glass [22], as shown in Fig. 12. 

VI. CHALLENGES AND PERSPECTS 

Several challenges remain that may impede further 

implementation of RRAM-based AI accelerators. First, high-

precision ADC-based readout circuits are a significant 

overhead. ADCs with resolutions higher than 8-bit will 

dominate the power and area of the MAC system, while low-

precision ADCs may degrade the accuracy. Second, 

performance can suffer from device non-idealities including c-

c variations and finite on/off ratio. Third, the nonlinear and 

asymmetric conductance update observed in RRAM devices 

can severely degrade training accuracy.  

A solution to the first problem is to introduce several ranges 

in the ADC design with low area and power overhead [23]. An 

alternate method is the use of BNNs, where readout can be 

greatly simplified [13]. The device non-ideality issues for the 

second and third problems can be mitigated through mixed-

precision training [24], and by using differential RRAM pairs 

(Fig. 13) which improves the operation margin and alleviates 

the asymmetric weight update problem [25].  

The array size used for IMC is typically limited to <1Mb 

to minimize parasitic capacitance and parasitic resistance 

effects. To accommodate state-of-the-art deep neural networks 

(DNNs) which usually contain millions of parameters, 

modular systems that utilize many arrays integrated together 

through digital interface have been proposed [23, 26, 27, 30-

32]. For example, PRIME [30] and ISAAC [31] attempted to 

address the ADC overhead by splitting the weights onto 

multiple devices and utilizing bit-serial approach to feed in the 

input activations. Pipelayer [32] considered the inter- and 

intra- layer parallelism, and replaced ADCs with simple spike 

drivers. The end-to-end performance of typical DNN models 

and the impact of device and circuit nonidealities have been 

analyzed in [23, 27]. One example of mapping DNN models 

onto the modular architecture is shown in Fig. 14(a). 

Performance degradation induced by ADC quantization of the 

partial sums (Psum) (Fig. 14(b)) can be minimized through 

multi-range quantization (Fig. 14(c)) and architecture-aware 

training (Fig. 14(e)), which has also been shown to address 

other device non-idealities such as finite on-off ratio and 

device variability (Fig. 14(d)).  

By using several types of IMC modules to minimize ADC 

overhead and balance the latency of different layers in typical 

DNNs (Fig. 15(a)), TAICHI [33] was able to map several 

classes of DNNs with high throughput and energy efficiency 

using a single design. A hierarchical mesh network-on-chip 

(HM-NoC) was used for data routing between modules. Power 

and area breakdown of the design at different technology nodes 

are summarized in Fig. 15(b), where the 8-bit ADC was still 

found to be a dominating factor for area and power. By 

analyzing the compute-weight ratio, models exceeding the 

chip storage capacity can be split carefully to allow the 

compute-bound layers to be mapped onto the IMC and 

memory-bound layers onto a global co-processor to make the 

IMC system “future-proof”, as shown in Fig. 15(c).  

VII. CONCLUSION 

Significant progress has been made in RRAM-enabled 

accelerators, both at the module level and at the system 

architecture level. With the recent commercialization of 

RRAM and continued improvements in device, architecture 

and algorithm, such IMC systems offer great potential to lead 

to the implementation of high performance, energy efficient 

and scalable hardware systems for AI and other data-intensive 

applications in the near future. 
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Fig. 7. Wired-NOR logic gate implemented with binary 
Cu/Al2O3/poly-Si RRAM devices with low power 

(Ion<100 nA) and high on/off ratio. Adapted from [18]. 

 

Fig. 6. RRAM-based AI accelerator prototypes.  (a) Adapted from [6]. (b) Adapted from 

[7]. (c) Adapted from [9]. (d) Adapted from [11]. (e) Adapted from [8]. (f) Adapted from 
[12]. (g) Adapted from [13]. (h) Adapted from [15]. (i) Adapted from [17].  

 

 

Fig. 5. Bi-directional RRAM operations. The forward 
pass performs VMM using the input vector and the 

stored weight matrix, and the backward pass performs 

VMM using the neuron activity vector with the transpose 
of the weight matrix. Adapted from [6]. 

 

Fig. 2. (a) TEM image showing the formation of a Ag conductive 

filament after the forming process. Adapted from [1]. (b) High-
resolution TEM image of a Pt/Ta2O5−x/TaO2−x/Pt structure 

(bottom), showing the Ta2O5−x layer before cycling (top left) and 

after 106 cycles (top right) that exhibits Ta-rich clusters. Adapted 
from [2]. 

 

 
Fig. 4. Schematic of analog VMM 
implemented on RRAM-crossbar 

array. Adapted from [5]. 
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Fig. 1. Schematic of resistive 
switching processes in (a) ECM, 

and (b) VCM devices.   

 

 
Fig. 8. High-precision PDE solver implemented in RRAM crossbar. Adapted from [19]. 

Fig. 3. (a) Measured and simulated I-V characteristics of tantalum 

oxide RRAM. Inset shows the device structure. (b) 2D maps of Vo 

concentration (nD) obtained in the model, for the forming, first reset 
and subsequent switching cycles. Adapted from [4]. 
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Fig. 15. (a) Schematic of the hierarchical TAICHI architecture. The HM-NoC handles data 

routing between two levels of clusters. (b) Power and area breakdown of the TAICHI design. (c) 
DNN models that exceed the storage capacity of the IMC system can be mapped onto a hybrid 

IMC+GCP system. (a-b) are adapted from [33]. 

 
Fig. 14. (a) Tiled IMC architecture. (b) ADC quantization errors of 
Psum can be mitigated through (c) multi-range quantization. The 

influence of (d) device conductance variability and finite on-off ration 

can be mitigated through (e) architecture-aware training. (a) and (c)
are adapted from [23].  (d) is adapted from [28]. (e) is adapted from 

[29]. 

 
Fig. 11. (a) Response of a typical WOx RRAM device driven by temporal 

inputs. (b) Handwritten digit classification implemented with an RRAM-
based RC system.  Adapted from [21]. 

 

Fig. 9. (a) Synaptic plasticity can be emulated with RRAM devices 
through (b) internal ionic processes. (c) Coupling of internal

physical processes in RRAM can lead to rich dynamic behaviors. 

Fig. 13. (a) Binary weights implemented 

with a 2T2R differential structure. If 
RBL>RBLb, the weight value is +1, 

otherwise the weight value is -1. (b) 

Learning strategy with weak RESET. (c) 
Learning strategy with weak RESET 

and write-verify. Adapted from [25]. 

 

 

 
Fig. 10. Schematic of (a) an RC system consisting of an input layer, a dynamic reservoir and an 
output layer, and (b) an RRAM-based RC system using the multiple virtual node concept. (a) is 

adapted from [20]. (b) is adapted from [21]. 

Fig. 12. (a) A 2D spin glass with interactions to 

neighboring spins. (b) Implementation of 
simulated annealing based on Ta2O5 RRAM array 

and Cu/ALD Al2O3/Pd CBRAM. (c) Time-

dependent evolution of the spin glass obtained 
from the RRAM system. Adapted from [22]. 
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