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Influence of El Niño on the variability of
global shoreline position

Rafael Almar 1 , Julien Boucharel 1,2 , Marcan Graffin1,

Gregoire Ondoa Abessolo 3, Gregoire Thoumyre 1, Fabrice Papa 1,4,

Roshanka Ranasinghe 5,6,7, Jennifer Montano8, Erwin W. J. Bergsma 9,

Mohamed Wassim Baba10 & Fei-Fei Jin 2

Coastal zones are fragile and complex dynamical systems that are increasingly

under threat from the combined effects of anthropogenic pressure and cli-

mate change. Using global satellite derived shoreline positions from 1993 to

2019 and a variety of reanalysis products, here we show that shorelines are

under the influence of three main drivers: sea-level, ocean waves and river

discharge. While sea level directly affects coastal mobility, waves affect both

erosion/accretion and total water levels, and rivers affect coastal sediment

budgets and salinity-induced water levels. By deriving a conceptual global

model that accounts for the influence of dominantmodes of climate variability

on these drivers, we show that interannual shoreline changes are largely driven

by different ENSO regimes and their complex inter-basin teleconnections. Our

results provide a new framework for understanding and predicting climate-

induced coastal hazards.

Coastal areas host a considerable part of human life and activities,

providing tremendous societal, economic and ecological benefits. The

health of these ecosystems, however, highly depends on the fragile

balance between climate influence and local anthropogenic

constraints1,2. Coastal erosion and flooding, associated with land use

changes have already placed seafront ecosystems and population at

great risk3–8 and this is only expected to worsen in the future9. On a

decadal to centennial time scale, sea level rise and river influences will

dominate, compared to waves, which are expected to show more

contrasting trends globally10. Therefore, understanding and predicting

shoreline evolution is of great importance for coastal zone manage-

ment, to anticipate potential threats well in advance, such that there is

sufficient lead-time to implement effective adaptation measures11,12.

However, it remains extremely challenging to predict medium

(e.g. seasonal and inter-annual) to long- (decadal to century) term

shoreline evolution due to the intrinsic limitations of currentmeans of

coastal observation and coastal research approaches1,13–15. One of the

main obstacles impairing a worldwide assessment of coastal mor-

phological change originates from the lack of long-term observational

data at a global scale. The advent of earth observation from space has

greatly increased the availability of optical satellite data at global

scale16,17, which in combination with the computational power offered

by cloud-based platforms18,19, have recently enabled global scale

assessments of shoreline evolution20,21 over the past three decades or

so. Within this line of research, the linkages between observed shore-

line changes and their potential dynamic drivers have yet to be ana-

lyzed in a comprehensive way to provide reliable projections of how

the world’s shorelines may evolve in response to climate change22–24. A

comprehensive physics-based approach has yet to be developed

globally. This is currently impossible due to the different scales at play
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at global and local scales (i.e., having an effect on the shoreline, such as

wave breaking). A global application of existing oceanmodels coupled

with waves-sea level-rivers-sediment (e.g., CROCO25, Delft3D26) is cur-

rently out of reach. Thus, physically simplified shoreline models (e.g.,

CASCADE27,28, COSMOS17, ShorelineS29, LX-Shore30,31) have a bright

future aspotential tools for investigating drivers of shoreline change at

regional to global scales.

Coastal and shoreline management increasingly needs to take

into account morphological changes that occur on interannual

timescales (i.e. few years to a few decades), especially those related

to climate variability32. It is therefore of paramount importance to

determine the dominant factor influencing these changes at these

scales33,34. At interannual timescales, the focus of global coastal

studies has historically been on assessing the response of the

shoreline to regional sea-level changes35,36. However, while wind-

generated ocean surface waves are known to dominate the impact

on beaches at short event to sub-annual scales (e.g37,38.), recent

studies have highlighted the contribution of waves to longer-term

interannual coastal water levels5,39,40 and erosion (e.g21,41,42.). In

addition, the often neglected rainfall/river discharge variability has

been shown to play a major role on shoreline evolution through

sediment43–45 but also changes in freshwater river discharge have

also been reported to influence coastal sea level46–49.

The massive re-organizations of the atmospheric and oceanic

circulation induced by the El Niño Southern Oscillation (ENSO), argu-

ably the most prominent interannual global climate fluctuation50, has

long been known to cause major shifts in weather patterns and

therefore produce interannual variations in global sea-level, waves,

rainfall and continental freshwater flux to the ocean51–54, even far from

its dominant region of influence55,56. While ENSO is known to be

unambiguously dominant in the Pacific with strong impacts on the

shoreline and coastal ecosystems41,42,51,57–64, the possible linkages

between ENSO and the key drivers of shoreline change at global scale

have not yet been fully explored. In particular, the recent rejuvenation

of ENSO research has led to many theoretical breakthroughs in

understanding its complex and diverse regimes65. On a global basis,

other climate modes can also significantly modulate coastal drivers in

other ocean basins. Despite its strong dependence on ENSO66, the

Indian Ocean Dipole (IOD) can strongly influence climate variability in

the IndianOcean, especially in its western part, which is less influenced

by the Pacific Ocean67, but also beyond the Indian basin68. The

Southern Annular Mode (SAM, e.g.69–71,) plays a major role in the cli-

mate of the high and mid-latitudes of the Southern Hemisphere. Its

signature on ocean surface waves also extends beyond local wind-

generated forcing in the Southern Ocean to distant forcing of wave

activity and induced changes in coastal sea level in all tropical basins

and, to a lesser extent, even in the Northern Hemisphere72–75. In the

North Atlantic, climate variability is influenced by the North Atlantic

Oscillation (NAO), a large-scale atmospheric circulation pattern pro-

duced by the difference between the Icelandic Low and Azores High

pressure systems strength76,77. Overall, the NAO is known to pre-

dominantly control the interannual variability of coastal drivers in the

North Atlantic at seasonal to interannual time scales76,78–81 but can,

similarly to the SAM, also affect tropical regions in this basin through

the propagation of swell remotely generated at high latitudes75. While

other regional modes of climate variability may also influence shore-

line changes, we have deliberately limited our focus here to the most

dominant basin-wide climate modes, the two dominant modes of

extratropical variability in each hemisphere, SAM and NAO, as well as

the dominant modes of tropical interannual climate variability in the

IndianOcean, IOD, and in the Pacific, ENSO, considered in all its spatial

diversity and temporal complexity to account for the effect of ENSO

seasonal pacing on the interannual pantropical climate variability82,83.

However, it is still unclear to what extent the combined and individual

variability of these climate modes can explain the overall year-to-year

evolution of global coastal drivers and their subsequent effect on

shoreline variability.

Here, we aim to address this knowledge gap by combining a new

global dataset of satellite-derived monthly shorelines spanning nearly

three decades (1993 to 2019) with global data sets of historical coastal

sea-level, waves and fluvial inputs (see the conceptual diagram

depicting the adopted methodological approach in Fig. S1). Through

this analysis, we gain unprecedented insights on the relative con-

tributions of climate-driven variations in these three forcing to

observed interannual shoreline change globally, and on how these

contributions vary regionally.

Results and discussion
Drivers of shoreline change
The complex phenomenon of shoreline evolution results from the

combined influence of several oceanic and terrestrial hydro-

sedimentary factors, acting and interplaying at various temporal and

spatial scales.Herewe consider threemain drivers of shoreline change:

(i) regional sea level, (ii) oceanwaves, and (iii) fluvial inputs.We use the

waterline as a proxy for shoreline. Since our focus here is on the

interannual variability of climate-driven variability at the global scale,

we consider the variability of the monthly drivers smoothed with an

8-month window runningmean (to remove sub-annual dynamics from

our analysis) and through simplified expressions of their dominant

contributors. The influence of regional sea level changes on the water

line is straightforward: any change in sea level is a change in the

mobility of the water line. The regional sea level anomalies (SLA)

considered here incorporate contributions from sterodynamic and

manometric sea level changes (due to land icemass loss and terrestrial

water storage changes), as well as atmospheric surge—also known as

storm surge, which integrates the influence of both wind setup and

surface atmospheric pressure effects (corresponding to the so-called

Dynamical Atmospheric Correction). Ocean surface waves affect the

waterline in two ways, through morphological changes and the sedi-

ment budget (erosion/accretion—widely documented by the coastal

scientific community, with reference papers such as Yates et al.84 but

also Splinter et al.85, among many others) but also through their con-

tribution to the coastal water level via the runup (or setup for the time-

averaged component;86 see Melet et al.39 for a global assessment on

interannual timescales). Here, waves are parameterized as the incom-

ing deep-water wave energy flux (cf. Data and Methods). Similarly, we

consider the river flows as a proxy representing the continental influ-

ence of fluvial inputs. River discharge also has a dual influence on the

waterline. The first effect of rivers on a global scale is sedimentary,

through the input of solid sediment45, which strongly determines the

sediment budget of coastal cells: decreasing or increasing, for exam-

ple, is linked to climate-induced variability in precipitation and is

responsible for shoreline retreat or advance44. Rivers and their changes

in freshwater river flow are also known to affect the waterline through

changes in coastal water levels (see review49) by affecting the density

content of the water column (process and observations49). It should be

noted that our interest here is not in the precise magnitude of the

influence of these drivers, which may be influenced by local and

complex nonlinear processes (e.g., complex wave transformation on

continental shelves87 and induced coastal morphodynamics and

setup), but only in the expression of their interannual variability. It is

also likely that such local effects are damped at the spatio-temporal

scales considered here. With these assumptions, the 8-months

detrended monthly shoreline interannual anomaly (cleared from the

monthly mean climatology) S is then formulated as

S x, tð Þ =α xð ÞSea Level x, tð Þ+ β xð ÞWaveEnergyðx, tÞ+ γðxÞRiverflowðx, tÞ ð1Þ

where x and t represent the along-shore and temporal dimensions,

respectively, with 0.5° alongshore and monthly resolution,
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respectively. For more robustness, the coefficients are calculated

based on randomized hindcasts of varying lengths from 10 to 27 years.

Figure 1a shows local correlations between interannual anomalies

of shoreline positions S satellite-derived and computed from themulti-

linear regressionmodel (Eq. (1). This comparison yields relatively good

model/data correlations that are statistically significant along 91% of

the shorelines derived by satellites and 52% of the global world’s

shorelines (within 60°N–60°S), with a globally averaged correlation of

0.49 (significant at 95% confidence level). Figure 1b shows where each

driver dominates the interannual shoreline variability (dominance is

assumed when the contribution of a given driver is >40%), calculated

with respect to the total variance explained. The individual contribu-

tions are calculated separately and reduced to the total variance

explained by our model, which allows us to accommodate variables

that may be partially dependent. While about 50% of the global

shoreline (within 60°N-60°S) exhibits a clear dominance of one of the

forcing, SLA emerges as the dominant driver of shoreline evolution

alongmostof the global shorelines. However, significant contributions

fromwave activity is observed along the open west-facing shores such

as Western Africa, Western Europe, and Western South America. A

notable exception is along the western North American coastline,

where SLA fluctuations associatedwith zonal oscillations of ENSO over

the Pacific Basin dominate interannual variability of the shoreline.

Conversely, in enclosed seas such as the Gulf of Mexico, Arabian Sea,

the Bay of Bengal or East Sea, average wave action is weaker and the

influence of SLA predominates. Unsurprisingly, the influence of fluvial

inputs emerge as the dominant driver of shoreline variability near large

rivermouths (e.g., the Amazon, Niger, Zambezi, Indus and Red Rivers).

This is particularly true in the intertropical zone, where, for example,

river basins in South Asia (e.g. the Bay of Bengal), South East Asia or

North East Australia generally experience strong monsoon-related

interannual rainfall variability with significant impacts on continental

river flows88,89. Another notable exception is the maritime continent

(islands, peninsulas and shallow seas of Southeast Asia), where again

ENSO-related SLA variability and waves from the strong Northwest

Pacific Tropical Cyclone activity90 appear to dominate shoreline evo-

lution. In the following, we focus on establishing linkages between

dominant modes of tropical and extratropical climate variability and

the three main drivers of shoreline change considered in our regres-

sion model (sea level change, waves, fluvial inputs).

The influence of ENSO on shoreline driver’s climate variability
Assessment of the ENSO teleconnection pathways to these drivers is

inherently complicated by the spatial diversity of ENSO in particular

related to its two dominant modes of expression, namely the Eastern

andCentral Pacific ElNiño flavors (EP andCP91,92), aswell as its irregular

temporal behavior. The different environmental drivers of shoreline

evolution can all be seen as fast transients of the climate system that

are constrained by the seasonal and ENSO variability (cf. Data and

Methods and Fig S2). Therefore, it is possible to extend the mathe-

matical ENSO-based model of Pacific coastal wave evolution93 and

apply the analytical solution therein to represent the evolution of SLA,

wave energy flux and fluvial input globally (Eq. 2). Following the

mathematical derivation of the 2nd order solution94, these relation-

ships canbe expressed as the independentmulti-linear combinationof

two indices of ENSO activity, i.e. Emode and Cmode that represent the EP

and CP El Niño variability, respectively95, as well as their non-linear

interaction with the seasonal cycle (represented by a cosine function

with a 12 months period and a phase ϕ with a boreal winter peak in

January96), i.e. the ENSO-annual combination modes Ecomb-mode and

Ccomb-mode, known to generate adeterministic variability at near annual

time scales as

In order to evaluate the contribution of these distinct ENSO

regimes within a more holistic view of global climate variability, we

extend this model for each driver to also account for the influence of

the dominant modes of extratropical climate variability, namely SAM,

IOD and NAO, as

Sea level x, tð Þ= f 1 ENSOð Þ+φ1 xð ÞNAO+ δ1 xð ÞSAM+ ρ1ðxÞIOD

Wave energyðx, tÞ= f 2ðENSOÞ+φ2ðxÞNAO+ δ2ðxÞSAM+ ρ2ðxÞIOD

River flowðx, tÞ= f 3ðENSOÞ+φ3ðxÞNAO+ δ3ðxÞSAM+ ρ3ðxÞIOD

8

>

<

>

:

ð3Þ

The distributions of correlation coefficients between observed

and simulated (using Eq. 3) interannual anomalies of sea level, wave

Fig. 1 | Shoreline change as a linear function of hydrodynamic drivers. a Global

distribution of correlations between interannual anomalies of observed (from

Landsat satellite) shoreline position and the multi-linear regression model for

shoreline change anomaly (S) as a function of SLA, wave energy flux and river

discharge anomalies over the period 1993-2019; only portions of shoreline where

correlations are above the 95% confidence threshold are shown. The inset in the

bottom left corner shows the globally averaged correlation coefficient. b Global

distribution of the dominant drivers of modeled Shoreline; a dominant contribu-

tion is taken as when > 40% of variance of Shoreline is explained by the variance of

one individual driver. The inset in the bottom left corner shows the globally aver-

aged contribution of each driver. For more robustness, whiskers in each inset

delineate the range of one standard deviation among all randomized hindcasts of

varying lengths from 10 to 27 years.

Sea levelðx, tÞ= f 1ðENSOÞ= a1ðxÞEmode +a2ðxÞCmode + a3ðxÞEmode +a4ðxÞCmode

� �

� cos 2πðt�ϕÞ
12

� �

Wave energyðx, tÞ= f 2ðENSOÞ= b1ðxÞEmode +b2ðxÞCmode + b3ðxÞEmode +b4ðxÞCmode

� �

� cos 2πðt�ϕÞ
12

� �

River flowðx, tÞ= f 3ðENSOÞ= c1ðxÞEmode + c2ðxÞCmode + c3ðxÞEmode + c4ðxÞCmode

� �

� cos 2πðt�ϕÞ
12

� �
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energy flux and river flows are shown in Fig. 2a, b and c, respectively.

The model that accounts for the effect of the four climate modes

(ENSO, IOD, NAO, and SAM) produces an overall correlation of 0.72,

0.64, and 0.61 with the reanalysis products of SLA, wave energy, and

river flows, respectively (cf. Table 1 of supplementary material), and

exhibits statistically significant correlation at the 95% level along the

world’s shorelines. Figure 2d–f breakdown the respective contribution

of NAO, IOD, SAM, and ENSO to the model’s globally averaged total

variance. With an average contribution of ~65%, ENSO, in all its diver-

sity and complexity (i.e. Total ENSO in black contour bar), emerges as

the predominant driver of global climate-driven interannual variability

of the four climatemodes considered. This theoretical framework also

allows disentangling the respective contributions to the drivers of

shoreline change from (i) the two types of ENSO linear forcing, the

Emode and Cmode and (ii) their non-linear interactions with the seasonal

cycle (the combination modes, E Comb-mode and C Comb-mode, i.e.

the last two terms of Eqs. (2)97). Over the study period, several El Niño

events were recorded: a major CP (2009/2010), and several small CP

(2002/03, 2005/06). The linear ENSO effect appears to dominate the

interannual anomalies of all shorelinedrivers (orange bars in Fig. 2d–f).

Because the Emode is mostly related to the extreme El Niño occurring in

the far eastern Pacific (e.g., the 1997/98, 2015/16 El Niño), the Cmode

(prevailing during the study period) overshadows the Emode contribu-

tion. Nevertheless, ENSO’s non-linear influence is far from negligible,

with the EComb-mode andCComb-mode contributing together ~25% to

the total variance (cf. yellow and purple bars on Fig. 2d–f).

The contributions from the extratropical climate patterns to the

drivers of shoreline change associated with NAO (green bars in

Fig. 2d–f) and SAM (light blue bars in Fig. 2d–f) reach on average 15 and

8% globally, respectively. The IOD contribution (burgundy bars in

Fig. 2d–f) is also around 15%. Figure 2g–i shows the gain in correlation

between observed and simulated interannual anomalies of sea level,

wave energy flux and river flows, respectively, associated with the

inclusion ofNAO, IOD, andSAM into the set of Eqs. (2). The influenceof

NAO on all three drivers is strongest in the northern Atlantic and

Mediterranean basins. This is due to its strong effect on thermosteric

variations79,98,99, as well as the atmospheric pressure field and mer-

idional gradient anomalies that force the zonal wind field and lead to

dynamical sea level and precipitation changes100,101 as well as increased

wave activity in the North and tropical Atlantic102. A substantial

increase in correlation can also be observed in the Southern Hemi-

sphere (e.g., Indonesia, South Africa, South America), particular in

wave energy (Fig. 2h), owing to the influenceof SAMon the interannual

variability of ocean wave activity south of 30°S, whereas we can

hypothesize that the increase in wave energy correlation along the

Eastern African façade is due to effects from the IOD.

Overall, our analysis reveals that accounting for the full con-

tinuumof ENSOeffects ondrivers of shoreline change explainsmostof

their variability with a substantial gain compared to when only its

canonical influence is considered as commonly done (measured by a

simple linear regression of the shoreline drivers onto the classic Niño3

index, i.e., theusualbenchmark in ENSOstudies, seeTable S1). Our new

framework indeed allows considering the wide spatial diversity and

temporal irregularity of ENSO teleconnections operating towards

higher latitudes (Figs. S3b, e, h) and other oceanic basins (Figs S3c, f, i)

whereas the canonical variability tends to limit such atmospheric and

Fig. 2 | Climate influence on drivers of shoreline change. Global distribution of

correlation coefficients between observed and climate modes-based simulated

(Eq. 3) interannual anomalies of sea level (a.), wave energy (b.) and river discharges

(c.). Respective percentageof global contributions of thedifferent linear (Emodeand

Cmode), non-linear (i.e. combination modes, E Comb-mode and C Comb-mode)

ENSO terms, NAO, IOD and SAM to the total model solution for sea level (d.), wave

energy (e.) and river discharges (f.). Gain in correlation between observed and

simulated interannual anomalies of sea level (g.), wave energy flux (h.) and river

flows (i.) respectively associated with the inclusion of NAO, IOD, and SAM into the

set of Eqs. (2). Whiskers in each inset delineate the range of one standard deviation

among all randomized hindcasts of varying lengths from 10 to 27 years. In panels

(a), (b) and (c) only portions of shoreline where correlations are above the 95%

confidence threshold are shown.
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oceanic bridges essentially to the tropical Pacific. It is also noteworthy

that the inclusion of SAM, IOD andNAO as predictors leads to a similar

improvement in the variance explained globally, i.e. +12% for SLA, +16%

forwave energy and +11% for river flow for a total variance explained of

52%, 41 and 37%, respectively, with the improvementsmainly restricted

in term of spatial influence to the shorelines located in the high lati-

tudes of the North Atlantic and Southern Hemisphere with the

exception of the eastern tropical African coasts (Table S1).

ENSO-based model to compute shoreline evolution
The dominant El Niño influence on the key drivers of shoreline evo-

lution over the last three decades highlighted above suggests that

ENSO has a very substantial influence on shoreline variability at

interannual timescales along most of the world’s shoreline. From

Eq. (1) and Eq. (2), our mathematical expression can thus be applied

directly to compute shoreline change anomalies using only ENSO

characteristics as input (Eq. 4):

Sðx, tÞ= FðENSOÞ= AðxÞEmode +BðxÞCmode + CðxÞEmode +DðxÞCmode

� �

� cos
2πðt � ϕÞ

12

� �

ð4Þ

This simplified ENSO-based model, which integrates the essential

environmental factors impacting shoreline variability, simulates the

global shoreline anomalies (Fig. 3) relatively well, with a globally

averaged correlation of 0.43 (significant at the 95% level). This

demonstrates that the ENSO state, when represented in all its spatial

diversity and temporal complexity (as compared to only its canonical

expression as commonly done) may be a reasonable predictor of the

main processes affecting shoreline changes even outside the Pacific

basin and the tropics (see the regional and global gain from the

canonical to complex ENSO model formulation on the different inset

bar plots of Fig. 3 and Table S1). However, while ENSO’s influence is

significant (at 95% significanceormore) along about 83%of theworld’s

shoreline estimated by satellite (47% of the world’s total shoreline),

there remain several stretches where correlations are below the 95%

significance threshold. The inclusion of SAM, IOD and NAO into Eq. (4)

results as a new Eq. (5):

Sðx, tÞ= FðENSOÞ+ εðxÞNAO+ ζ ðxÞSAM+ηðxÞIOD ð5Þ

This leads to a notable increase in global average correlation,

which then reaches 0.62, and in particular along most European and

Southern Hemisphere’s shorelines. This can be explained by the con-

sideration of atmospheric factors associated with NAO78,98,103,104 and

SAM and their induced effects on SLA and waves on extratropical

shorelines in both hemispheres. The increase in variance seen in the

Indian Basin is likely related to the inclusion of the IOD and to some

Fig. 3 | ENSO-basedmodelof interannual normalized shoreline change. aGlobal

distribution of correlation coefficients between observed (from Landsat satellite)

and ENSO-based (Eq. 4) simulated interannual anomalies of shoreline change. Only

portions of shoreline where correlations are above the 95% confidence threshold

are shown. b Gain in correlation between observed and simulated interannual

shoreline anomalies associatedwith the inclusionofNAO, IODand SAM into Eq. (4).

Panels (c) to (n): Observed and simulated time series of yearly averaged interannual

shoreline monthly anomalies averaged over the corresponding regions delineated

by the black boxes on the left map when the model considers all climate modes or

the complex ENSO only. Inserted bar plots in each time series plots indicate the

shoreline change variance explained (in %) by the complex ENSO model (orange

bars), by the simple linear regression model onto the canonical ENSO mode

(represented by the classicNiño3 index, graybars) andby themodel considering all

climate modes (yellow bars). Whiskers in each inset delineate the range of one

standard.
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extent the SAM, which can generate waves strong enough to travel to

these regions (e.g., Indonesia, northwest Australia, India).

NAO and SAM, whose expressions are predominantly atmo-

spheric, offer little seasonal predictability other than that linked to

ENSO itself105. Similarly, the IOD variability unrelated to ENSO ismostly

stochastic66 and therefore of little value for improving seasonal climate

predictions. On the other hand, ENSO, as a slower mode of variability

characterized by a strong subsurface oceanic signature, remains the

most reliable predictor for climate forecasts at time scales beyond the

seasonal horizon106. Our results show that reasonably skillful predic-

tions can be obtained from computationally cheap statistical models

approximating the evolution of the diverse ENSO regimesby linear and

nonlinear dynamics. We believe the results and methods presented in

this study provide a solid conceptual framework to evaluate complex

connections between large-scale climate variability and regional

coastal hazards and could form the basis for developing regional

physics-based projections of shoreline change to feed into effective

coastal adaptation strategies around the world.

Limitations
Several simplifications were necessary to perform this study at glo-

bal scale, as is the case with any large-scale analysis. We have

excluded very high-latitude coasts where the seasonality of envir-

onmental variables is perturbed by ice107. We have used the global,

and necessarily coarse, publicly available ERA5 wave reanalysis

product that has nevertheless been widely used and validated in the

literature. Additionally, we did not consider the transformation of

wave energy from offshore deep waters to the continental shelves

and farther into coastal zones, a process that can be substantial in

areas with wide shelves37,87. Instead, we focused directly on offshore

waves and considered only regional patterns of variability under the

influence of the synoptic climate environment. Small-scale (spatio-

temporal) coastal dynamical processes are complex and out of reach

of the large scales covered by this interannual regional to global

study. Their physical influence on shorelines is also multifaceted.

For instance, the influence of rivers on coastal sea levels46,47 and

sediment discharges45,108,109 depends on several socio-environmental

aspects and such information is still unavailable worldwide despite

an urgent need. Our approach is focused on the interannual varia-

bility of the influence of shoreline drivers, and not on the precise

magnitude of these influences, which can be substantially locally

modulated by several processes operating at shorter time scales. We

believe the year-to-year assessment in this study dampens such

small-scale, non-linear and complex interactions and helps the dis-

tillation of large scale, statistical links between shoreline drivers and

climate signals such as ENSO. Overall, the correlations obtained

between our proxies and the observed/modeled shoreline changes

provide reasonable confidence in our approach (Fig. 1).

Here we examine the influence of interannual climate variability

on the world’s coastlines, excluding longer-term trends from our

analysis. This long-term, decadal to centennial, shoreline evolution

is influenced by a variety of factors, including trends in our con-

sidered drivers (waves, sea level rise and river discharge), but also

other factors such as vertical land motion, also called subsidence,

due to natural (such as Glacial Isostatic Adjustment (GIA) - or post-

glacial rebound) and local human influence. High rates of relative

sea-level rise due to subsidence in urban areas such as Jakarta, have

been reported to reach tens of centimeters per year, andmost deltas

are sinking due to oil exploitation and agriculture110, by far exceed-

ing natural variability and even all projected worst-case scenarios of

mean sea level rise over the 21st century111,112. Changes in the coastal

sediment budget due to terrestrial inputs, climate change and

human infrastructure (river damming, coastal protection and deep-

water harbors) also play a dominant role in the long ter. On a long-

term basis, current wave trends are not expected to continue in the

future unlike sea level10, which is predicted to rise steadily or even

accelerate.

Furthermore, our methodology considers natural stretches of

coasts influenced by natural climate variability. However, shorelines

have been actually modified in various ways by human activities, par-

ticularly in urbanized areas where, for example harbors have been

constructed, land reclaimed from the ocean20, seawalls built to combat

shoreline recession, cliffs stabilized, beaches nourished, and groins

placed in an attempt to retain a beach fringe and maintain dunes. For

example, in the US alone, 14% of national shoreline is estimated to be

hardened with engineering structures (e.g. seawalls, dikes113), and this

percentage is expected to intensify globally over the 21 s century114,115.

Human intervention is particularly high in tropical developing coun-

tries, where dramatic changes in land use are occurring, due to, for

instance, deforestation and urbanization, at a higher rate than any-

where else in the world116,117. In particular, unplanned or poorly

designed coastal structures are a major issue transforming the coastal

landscape in these countries. The regional aggregation of our data at

synoptical scale (8 transects, ~400 km) aims at damping these local

and human-induced influences to enhance and capture larger scales

climate-driven patterns.

Satellite-derived shorelines can be prone to many sources of

uncertainties or systematic biases that can confound analyses such as

those presented here. Therefore, it remains challenging to assess

whether the absence of a relationship with potential drivers (e.g.,

ENSO) is due to a true lack of relationship, or simply due to poor

quality shoreline data. The monthly median NDWI shoreline mapping

approach used here is likely to be more susceptible to potential data

issues than other approaches that use longer annual composites20,118,

particularly in regions of the world with either high persistent cloud

cover, or relatively low satellite observation densities119,120. This can

make it challenging to obtain even clean annual median shorelines in

many of these low data environments, let alone high-quality monthly

shorelines. Similarly to a former global study20 and unlike Vos et al.,

(2019)19 who used advanced trained convolutional neural network

coefficients to distinguish between land and marine pixels, here we

used the more basic NDWI waterline proxy for this global application.

Our shorelines are smoothed in the same way as the drivers over an

8-month period to eliminate sub-annual shoreline dynamics, which

also smooths out some of the problems associated with getting good

monthly shorelines. The correlations obtained between our indepen-

dent drivers/climate modes and the observed/modeled shoreline

changes provide a reasonable level of confidence in our satellite-based

global shoreline dataset that admittedly can be further improved, but

paves the way for more future detailed studies and technological

developments.

Methods
Our methodological approach is summarized in the Supplementary

material Fig. S1 and detailed in the following.

Shorelines from satellite images
Here we use the water line as shoreline definition121, i.e., the water line

at the time of data collection. Due to the continuous influence of tides,

storm surges and waves on the shoreline, the water line is subject to a

combination of sediment and hydrodynamic variabilities that do not

directly represent the evolution of the “geological” shoreline, such as

the retreat ofmeanhigh-water line, the vegetation line, the erosion of a

cliff, or the erosion of a coastal settlement. Different portions of the

shoreface profile are likely to have contrasting responses to drivers of

change, even potentially exhibiting contrasting trends through time

and space122,123. Nevertheless, the water line adequately reflects the

shoreline position that is relevant for vulnerability and risk associated

with erosion and flooding118 and is thus used a shoreline proxy in

this study.
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The global dataset used in this study is re-sampled with transects

spaced at 0.5o intervals (~50 km), along the same 14,410 points vector

as in Almar et al.40 spanning approximately 1.5 million kilometers. The

initial shoreline dataset used is Global Self-consistent Hierarchical

High-resolution Geography (GSHHG version 2.3.6124) to define loca-

tions along the world shorelines. The world was divided into compu-

tational regions using a series of GSHHG shoreline polygons. This

positions our study not at the local scale (<50 km, ~ specific bay, beach,

community seafront), but to capture the regional to global picture.

The local coastline has its own complexities (e.g., wave transformation

on unknown changing bathymetry, impact of infrastructure and

human intervention), which are beyond the scope of this study.

Instead, the individual data are more regionally aggregated (along 8

consecutive data points, ~400 km of coastline), showing similar

regional behavior rather than distinguishing local diversity (see

Fig. S4). The monthly composites of shoreline positions were derived

from 1993 to 2019 usingmultiple satellite acquisitions provided by the

Landsat missions 5, 7, and 8. The extraction of these data was per-

formed on the Google Earth Engine (GEE) platform125. The GEE was

calculated over 30 regions of interest of varying size, covering coastal

areas worldwide (and 60% of the globe). Since we used T1_8DAY_NDWI

30m collections from Landsat 5, 7 and 8 satellites, which represent

monthly median composites of 10.5 images (i.e., 3 or 4 images per

monthdepending on themonth × 3 satellites) of size 0.70 × global area

at a 30m resolution, about 400 Megapixels were processed, which

amounts to approximately three petaoctets of satellite data and

required 7200h of computation. Normal Difference Water Index

(NDWI) maps were derived from satellite images and the NDWI

threshold used was 0126. The identified pixels correspond to ocean for

NDWI >0, and to land surfaces for NDWI <0. The shoreline is then

identified as the interface between the land and sea surfaces127. We

acknowledge that the selection of water index thresholds can have a

significant impact on the quality and distribution of satellite-derived

shorelines. The constant NDWI threshold used here contrasts with the

use ofmore complexdynamicmethods to optimize thresholds to local

conditions (e.g., the commonly used Otsumethod128), but remains the

most commonly used approach to obtain a primary estimate and gives

reasonable results at the validation sites.

Issues due to wave breaking or water turbidity during extremes

are smoothed out usingmonthlymedian composites in addition to the

post 8-month smoothing to remove event-related and sub-annual

dynamic. Also, our study focuses on interannual evolution, which

dampens the complexity of this short-term link between drivers and

shoreline evolution (with potential lags129,130). To illustrate the ability

but also the limitations of our method to observe shoreline variability

from satellite, Fig. S6 shows a comparison between the closest satellite

transects and various ground measurements of some of the longest

shoreline datasets around the world: Truc Vert131 (South West France,

Fig. S6a), Torrey Pines132 (West Coast USA, Fig. S6b), Duck (East coast

USA, Fig. S6c, data provided by the U.S. Army Engineer Research &

Development Centre, Coast & Hydraulics Laboratory, Field Research

Facility) and Narrabeen133 (East Coast Australia, Fig. S6d). The in-situ

data are based on regular monthly topo-bathymetry measurements

averaged along the coast (typically one kilometre), and the compara-

tive shoreline proxy used here is the high tide upper beach contour

above mean sea level. For all sites, the ground truth data are inter-

polated to a regularmonthly resolution, and comparisons aremade for

periods where no significant gaps were present in the in-situ data.

Despite the coarse resolution of our dataset (transects every 0.5o), our

regional comparison with local measurements shows good overall

agreement, increasing from short, seasonal, to longer interannual time

scales. The local behavior of the beaches such as a nourishment at

Torrey Pines cannot be captured and is beyond the scope of our

regional to global analysis. Here, we are after the variability of the

shoreline for which the correlation is the most appropriate quality

proxy. The correlation is used to assess the quality of our dataset

compared to in-situ data. It should be emphasized that we aim here to

resolve only the regional to global scales of interannual variability of

the coastal shoreline, not the amplitude of the subsequent numerous

anddiverseprocesses thatmay includenon-linearities and interactions

within the coastal system37,134. These correlation coefficients between

our satellite-derived shorelines representative of the regional scale,

and in-situ local shorelines range from 0.38 to 0.61 at these sites,

despite distances of up to tens of kilometers between our closest

transects and the sites. The differences may come from the difference

in the shoreline approximation used; thus, all sea level variations, such

as regional sea level, wave contribution to sea level at the coast (i.e.,

setup and run-up) but also river discharge have amore direct effect on

the position of the waterline than the surveyed shoreline proxy using

mean sea level as a reference. Nevertheless, this demonstrates the

regional common behavior of shorelines at interannual scales, already

identified42,57,104.

Sea level, waves and river flow
Sea level was computed at the coastal points situated along the open

coasts of the world. Regional sea level anomaly (SLA) was derived at

each computational profile fromsatellite altimetry sea level time series

using the SSALTO/DUACSmulti-mission data135. In addition, Dynamical

Atmospheric Corrections (DAC, or storm surge) were taken from a

global application of the hourly MOG2D-G non-structured grid model

outputs136, forced by surfacewinds and atmospheric pressure from the

ERA-interim reanalysis137. The offshore wave energy flux, proportional

to and here directly taken as Hs
2xTp where Hs is the significant wave

height and Tp the swell peak period138 was extracted from ERA5139,

developed by the European Centre for Medium-Range Weather Fore-

castsmodel (ECMWF), at 0.25° × 0.25° and hourly temporal resolution.

The ERA5 reanalysis uses a coupled ocean wind-wave and atmospheric

model, which has been extensively validated137,140,141. For continental

freshwater river flowdata, used here as a proxy for annual variability of

fluvial inputs, we rely on daily runoffs from the up-to-date ISBA-CTRIP

(Interactions between Soil, Biosphere and Atmosphere-Total Runoff

Integrating Pathways, from the Centre National de Recherches

Météorologiques—CNRM) land surface model simulations142. ISBA-

CTRIP is a “state-of-the-art” hydrological numerical system that simu-

lates continental hydrology and freshwater river flow at the coast

globally. It is basedona two-way coupling between the ISBA andCTRIP

models, where the ISBA solves the land surface energy and water

budgets at any time step, while the CTRIP river routing model simu-

lates natural river discharges up to the ocean from the total runoff

computed by the ISBA land surface model. Here, we use the global

offline simulation at 0.5° resolution driven at a 3-hourly timescale by

the ERA-Interim (ECMWF Reanalysis) reanalysis available over the

1979–2019 period. At each time step, ISBA-CTRIP provides the varia-

tions of continental freshwater flux to the ocean from which we use

here yearly average for 1993-2019. Note that ISBA-CTRIP does not

include anthropogenic effects on water storages and river discharges

since it does not include representations of flow regulation and irri-

gation water needs which can have a profound impact45,143,144. Never-

theless, modeled daily runoff has been extensively validated against

several database of in-situ daily measurements for large rivers in dif-

ferent environments142, showing good accuracy and agreement in

terms of seasonal and interannual variations.

All these data were interpolated on to the shoreline transect

locations using the nearest neighbor method and computations were

performed at all 14,140 shoreline transect locations. In order to elim-

inate local effects and to focus on variability at regional scales, all sea

level components were spatially smoothed such that all calculations

usedmedian valueswithin a radius of 100 kmalongshore. All datawere

linearly detrended, the seasonal cycle removed using a monthly mean

seasonal climatology and to focus on the interannual variability
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smoothed using a running mean with an 8-month window over the

period 1993–2019.

Toward an ENSO-based shoreline prediction
Here, to construct a model of shoreline change drivers, we follow

Boucharel and Jin’s95 approach, based on the stochastically forced

model of fast climate variability145,146. We consider the variations of

coastal wave energy flux, sea level and river inputs as fast transients of

the climate system that respond to slow climate forcing, i.e., the two

different types of ENSO and their seasonally modulated influence on

tropical and extra-tropical storm activity, precipitation and SLA

regional patterns. The seasonal connections between ENSO and these

drivers of shoreline evolution are evidenced by the regression patterns

between interannual anomalies of precipitation, sea surface tempera-

ture (SST), wind speed and direction and the Emode and Cmode in boreal

winters and summers (Fig. S2). Emode and Cmode are two uncorrelated

and independent ENSO indices, calculated as the first two rotated

Principal Components of the EOF decomposition of SST interannual

anomalies94 and accounting for the variability of the two different

types of ENSO, respectively, the extreme warm events in the Eastern

(i.e. EP ElNiño) andmoderatewarmevents in theCentral Pacific (i.e. CP

El Niño). Note that the two classical ENSO indices Niño3 (monthly sea

surface temperature anomalies averaged in the region boundedby 5°N

to 5°S, from 170°W to 120 °W) and Niño4 (monthly sea surface tem-

perature anomalies averaged in the region bounded by 5°N to 5°S,

from 150°W to 90°W) are almost identical to the Emode and Cmode

indices, respectively, andprovide a similar but simpler andmoredirect

measure of ENSO spatial diversity, although not quite orthogonal.

Nevertheless, we re-ran all the main calculations and figures using

these simple indices, which gave similar results (see Figs. S5, S6). Both

types of El Niño events are associated with strong zonal swings in SST

anomalies across the tropical Indian and Pacific basins, which have

massive repercussions in terms of coastal sea level variability in the

tropical band through thermosteric effects. This well-known ENSO

zonal redistribution of ocean heat can also induce, via atmospheric

teleconnections55, a strengthening of the North Pacific jet-stream that

can even extend to the North Atlantic basin at the peak of EP El Niño

events (Fig. S2a). Thiswill increase the coastal wave activity alongwest-

facing shorelines via the intensification of the Aleutian (Icelandic) low-

pressure systems in the North Pacific (Atlantic) basins. This strength-

ening of surface winds will also affect coastal sea level along the

NorthernHemisphere west-facing shorelines through dynamic effects.

Because ENSO-driven changes in SST also affect theWalker circulation,

which induce significant redistribution of deep atmospheric convec-

tion, ENSO has a strong influence on large-scale precipitation patterns

and in particular on the intensity of monsoonal regimes. The onset of

El Niño is associated with drier conditions over South Africa, the

Maritime continent and theMiddle East, which extends over the entire

tropical Atlantic during CP events (Fig. S2c, d). At their peak, the East

Asian, North American and West African monsoons are significantly

strengthened while the South American monsoon is weakened. These

changes in rainfall patterns are generally translated to the amount of

freshwater discharged by rivers to the ocean. Overall, this analysis

confirms that, similarly to wave variability in the Pacific, ENSO has a

substantial seasonally-modulated influence on SLA and river discharge

variability as well, particularly in the Pacific and the tropics. Therefore,

we can use the same hypothesis and expand the model presented by

Boucharel et al.93 and Boucharel and Jin95 for coastal wave activity also

for SLA and river flow. The analytical solution of low-frequency waves,

SLA and river discharge amplitude changes (Z) can be then written in a

general form as

Z = 1 + k1mðtÞ+ k2m
2ðtÞ+ ::: ð6Þ

with m tð Þ= γAcos
2π t�ϕð Þ

TA

� �

+ γCCmode + γEEmode representing the cli-

mate forcing (first term being the seasonal cycle with a period

TA = 12 months and a phase similar to that of ENSO peaking in

December–February, ϕ = 1 (i.e. January) and the last two terms the CP

and EP El Niño forcing, respectively).

At the 2ndorder, the interannual evolutionof the amplitudeof the

driver Z can then be expanded (Eq. 6) as in Eq. (2) or Eq. (4). Since our

model resembles Linear InverseModels, we can obtain the coefficients

of the different terms, and therefore, the full analytical solution

through a local multi-linear regression147,148.

We compare thismodel that integrates the spatial diversity aswell

as the time scales associated with the different ENSO-annual cycle

combination modes to what is commonly known as the canonical

ENSO effect, the current state-art-of-the-art or benchmark in studies of

coastal impacts of ENSO; a simple regression model onto the classic

Niño3 index.

Other climate modes
To differentiate between ENSO and other climate modes, we use the

Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) in the

Southern hemisphere and the North Atlantic Oscillation (NAO) in the

Northern hemisphere. The SAM index is calculated as the zonal pres-

sure difference between mid-latitudes (40°S) and higher latitudes

(65°S) of the Southern Hemisphere. The NAO index ismeasured as the

difference in atmospheric pressure at the surface sea level between the

subpolar low pressure in Iceland and the subtropical high pressure in

the Azores. The IOD is represented by anomalous SST gradient

between the western equatorial Indian Ocean (50E–70E and 10S–10N)

and the south eastern equatorial Indian Ocean (90°E–110°E and

10°S–0°N). All climate indices were linearly detrended, and the sea-

sonal cycle was removed using a monthly mean seasonal climatology,

allowing us to focus on the interannual variability, which was here

smoothed using a running mean with a 8-month window over the

period 1993-2019.

Statistical significance of correlations and intervals of
confidence
Here,we consider a totalperiod analysis spanning 324months butwith

a temporal smoothing using an 8-month window runningmean, which

leads to 324/8 = 40 independent time steps. In Fig. S5, we estimated

the slope of the best linearfit to the autocorrelation logarithm for each

driver and the shoreline, or in other terms, an e-folding timeequivalent

to their interannual memory. While such memory times vary differ-

ently for the drivers and the shoreline position along the different

global shorelines, they remain below a maximum of ~24 months. In

addition, because our estimation of the shoreline from space is based

on the waterline position, we expect an instantaneous response of

shoreline to SLA variation. Studies in Australia149 and in France129 show

with high frequency observations that the memory of shoreline with

respect to the wave forcing does not exceed two weeks. Although the

time scales of the shoreline’s response to the input of sediments from

river discharge remains somewhat uncertain, a local lead-lag correla-

tion analysis between the shoreline variability and its dominant driver’s

shows that the maximum coherency always occurs at a lag below

12 months (Fig. S8). Since we explore the interannual variability of the

shoreline, this implies an in-phase relationship between its position

and all hydrodynamic forcing.

This leads to a total number of independent observations for

shoreline and drivers ofN = 40 – (24/8) = 37. Thus, the total number of

degrees of freedomd.o.f for amultiple linear regression analysis with k

predictors is d.o.f =N-k-1. For instance, this gives a d.o.f = 37-3-1 = 33

and correlation coefficient thresholds of 0.32 and 0.44 at the 95 and

99% significance level, respectively, according to a Student t test for

Fig. 1. For Fig. 2, d.o.f = 37-7-1 = 29 and correlation coefficient thresh-

olds are 0.36 and 0.46, respectively.
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To provide intervals of statistical confidence, we compute coef-

ficients of the multi-linear regression hindcast model at each coastal

point over various sub-periods ranging between 10 and 27 years

(depending on available data series lengths) from the total 1993–2019

period. For instance, for a hindcast of a given length of n months, we

realize 324� n� 1ð Þ randomized hindcasts.

The variance explained by different contributors (i.e., driver or

climatemode components) to the total regressionmodel is calculated

as (Eq. 7):

explained variance= 100 � 1�
varðtotalmodel� contributorÞ

varðtotalmodelÞ

� �

ð7Þ

Data availability
The raw climate data that support the findings of this study are already

available online. AVISO (https://www.aviso.altimetry.fr/en/data/

products/auxiliary-products/dynamic-atmospheric-correction/

description-atmospheric-corrections.html), ERA5 (https://cds.climate.

copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=

overview), NOAA climate indices (https://psl.noaa.gov/data/

climateindices/list). ISBA-CTRIP (http://www.umr-cnrm.fr/spip.php?

article1092).

Code availability
Matlab codes and processed data are made available upon request.
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