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Abstract. Ribonucleic acid (RNA) is a fundamental biological molecule that is essential to
all living organisms, performing a versatile array of cellular tasks. The function of many
RNA molecules is strongly related to the structure it adopts. As a result, great effort is
being dedicated to the design of efficient algorithms that solve the “folding problem”—
given a sequence of nucleotides, return a probable list of base pairs, referred to as the sec-
ondary structure prediction. Early algorithms largely rely on finding the structure with
minimum free energy. However, the predictions rely on effective simplified free energy
models that may not correctly identify the correct structure as the one with the lowest free
energy. In light of this, new, data-driven approaches that not only consider free energy, but
also use machine learning techniques to learn motifs are also investigated and recently
been shown to outperform free energy-based algorithms on several experimental data
sets. In this work, we introduce the new ExpertRNA algorithm that provides a modular
framework that can easily incorporate an arbitrary number of rewards (free energy or non-
parametric/data driven) and secondary structure prediction algorithms. We argue that
this capability of ExpertRNA has the potential to balance out different strengths and
weaknesses of state-of-the-art folding tools. We test ExpertRNA on several RNA
sequence-structure data sets, and we compare the performance of ExpertRNA against a
state-of-the-art folding algorithm. We find that ExpertRNA produces, on average, more
accurate predictions of nonpseudoknotted secondary structures than the structure pre-
diction algorithm used, thus validating the promise of the approach.

Summary of Contribution: ExpertRNA is a new algorithm inspired by a biological problem.
It is applied to solve the problem of secondary structure prediction for RNA molecules given
an input sequence. The computational contribution is given by the design of a multibranch,
multiexpert rollout algorithm that enables the use of several state-of-the-art approaches as
base heuristics and allowing several experts to evaluate partial candidate solutions generated,
thus avoiding assuming the reward being optimized by an RNA molecule when folding. Our
implementation allows for the effective use of parallel computational resources as well as to
control the size of the rollout tree as the algorithm progresses. The problem of RNA secondary
structure prediction is of primary importance within the biology field because the molecule
structure is strongly related to its functionality. Whereas the contribution of the paper is
in the algorithm, the importance of the application makes ExpertRNA a showcase of the
relevance of computationally efficient algorithms in supporting scientific discovery.

History: Accepted by Paul Brooks, Area Editor for Applications in Biology, Medicine, & Healthcare.
Funding: The research presented in this paper was partially supported by the National Science Founda-
tion [Grant 2007861] to principal investigator Dr. Pedrielli.
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1. Introduction

and Ladomery 2017). RNA has recently emerged as a

Ribonucleic acid (RNA) is a fundamental biological = promising drug target with new therapeutic approaches
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including information transfer, enzymatic function, in the rapidly growing fields of synthetic biology and
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immunotherapy, drug delivery, and realization of logi-
cal operations inside cells (Guo 2010, Hochrein et al.
2013, Geary et al. 2014, Green et al. 2014, Han et al. 2017,
Qi et al. 2020). In this paper, we propose a new frame-
work, ExpertRNA, for the automatic folding of non-
pseudoknotted secondary structures for RNA molecular
compounds. ExpertRNA builds upon the fortified roll-
out algorithm and generalizes the architecture to allow
for the consideration of multiple experts that can evalu-
ate, at each iteration, the solutions generated by the base
heuristic.

Each RNA molecule is made up of a sequence of
individual units, nucleotides (bases), which are of
four common types: A, U, G, and C. Individual RNA
sequences range in length from tens (tRNAs, siRNAs)
to tens of thousands (viral genomes, long noncoding
RNAs), and many contain further chemical modifica-
tions of the individual bases (Carell et al. 2012).
Whereas identity is defined by sequence, the function
of an RNA molecule is determined by its structure,
that is, the way nucleotides interact in space. Bio-
chemists often break down RNA structure into four
categories: Primary structure refers to the sequence.
Secondary structure makes up the majority of the
bonds in the structure and includes the “canonical base
pairs” by which A pairs with U and G pairs with C and
the “wobble base pair” by which G pairs with U. This
provides a 2-D representation of the structure of the
molecule and is the most commonly used level. Terti-
ary structure defines 3-D contacts via weaker, nonconi-
cal interactions. Finally, quaternary structure includes
intermolecular interactions with other RNA molecules.
Given the impact of structure on RNA functionality,
the accurate computational prediction of the secondary
and tertiary structure of RNA is an ongoing area of
great interest in the computational biology community
(Cruz et al. 2012, Calonaci et al. 2020, Wayment-Steele
et al. 2020).

1.1. Secondary Structure Prediction

Most tools for secondary structure prediction (Zuker
and Stiegler 1981, Hofacker 2003, Reuter and Mathews
2010, Zadeh et al. 2011) attempt to identify the struc-
ture that minimizes the free energy (FE) associated
with the RNA molecule upon pairing a subset of the
nucleotides, that is, the energy released by folding a
completely unfolded RNA sequence. The underlying
assumption is that the structure with the lowest free
energy is also the most likely structure the RNA will
adopt. Equivalently, this family of approaches relies
on the basic idea that the lower the FE, the more stable
the RNA structure. A first challenge for this family of
approaches is that it is not possible to exactly calculate
the free energy because of the (i) incomplete under-
standing of the RNA molecular interactions and (ii)

the impractical computational cost of detailed kinetic
simulation tools. As a result, several approximate
models are proposed in the literature (Xia et al. 1998;
Mathews et al. 1999; Andronescu et al. 2007, 2010) to
estimate the free energy associated with a given sec-
ondary structure. Most of the computational savings
are a result of ignoring tertiary interactions. A second
and possibly deeper challenge is that this model
assumes that an “optimal” structure is one that pairs
nucleotides in a way that minimizes the free energy
(MFE). However, RNA is known to fold cotranscrip-
tionally (Yu et al. 2021), and equivalently, RNA mole-
cules might adopt a kinetically preferred structure
different from the global free energy minima.

In light of these challenges, alternative approaches to
structure prediction are proposed. Stochastic kinetic
folding algorithms (Isambert and Siggia 2000, Sun et al.
2018) approximate the folding kinetics of RNA mole-
cules as they are transcribed. Data-driven approaches
also started to become popular, and they use machine
learning to evaluate structures rather than FE or kinetic
models. These include ContraFold, DMfold, and struc-
ture prediction with neural networks (Do et al. 2006,
Wang et al. 2019, Calonaci et al. 2020). Furthermore, in
the attempt to achieve advantages of model- or data-
driven approaches, methods are proposed that attempt
to aggregate multiple information sources to get more
accurate secondary structure prediction. Within the
data-driven category, some examples of information
sources are the experimentally determined SHAPE
data (Low and Weeks 2010, Lucks et al. 2011) and evo-
lutionary covariation information (Calonaci et al. 2020).
On the model-driven side, statistical ensemble appro-
aches are used to boost the solutions obtained by the
different FE-driven folding algorithms. To the knowl-
edge of the authors, ensemble methods allow mixing
solutions from different algorithms only upon comple-
tion; that is, they do not enable interaction among
the algorithms whereas they are running (Aghaeepour
and Hoos 2013). A recent survey on a set of secondary
structure-prediction tools reports mixed results with
data-driven approaches generally outperforming the
ones based on nearest neighbor free energy models and
with model-based ensemble approaches showing com-
petitive results (Wayment-Steele et al. 2020).

1.2. Tertiary Structure Prediction

Concerning the tertiary structure prediction problem,
fewer approaches can be found in the literature (West-
hof and Auffinger 2006, Tan and Chen 2010, Seetin
and Mathews 2011, Miao et al. 2017, Watkins et al.
2020). In fact, the prediction of tertiary structures is
particularly challenging, and most prediction methods
only work for short RNA sequences (tens of nucleoti-
des). Data-driven approaches also attract attention for
tertiary structure prediction. However, their accuracy
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remains limited because of the small number of 3-D
RNA structure data sets available for model training
and verification.

Stemming from the observation that several folding
algorithms are proposed in the literature for secondary
and, even if fewer, for tertiary structure prediction with-
out any approach dominating the other, we propose the
idea to build a framework that can exploit several fold-
ing tools and criteria to evaluate the quality of a folded
sequence during the algorithm execution. The aim of our
approach is to achieve a better RNA structure prediction
quality. The result of our work is ExpertRNA, which
combines multiple secondary structure prediction algo-
rithms (equivalently referred to as folding algorithms or
folders), whose predictions are sequentially evaluated
by a set of experts that score the quality of the predicted
structures based upon their own scoring criteria.
ExpertRNA is based on rollout (Bertsekas 2020), an
approximate dynamic programming technique, which
given an algorithm called the base policy (or base heuris-
tic), generates an improved algorithm, called the rollout
policy, as evaluated by one or more experts. Rollout also
allows the use of multiple base policies, and it provably
improves (relative to the expert score) on the perform-
ance of each of them.

We argue that ExpertRNA has the potential to exploit
the strengths of the folding tool being used by the algo-
rithm itself as a base heuristic by improving on the solu-
tion by using several experts. In this manuscript, we
focus on pseudoknot-free secondary structure predic-
tion, and we use RNAfold (a free energy-based folder;

Figure 1. (Color online) Example of an RNA Secondary
Structure Representation with Highlighted Structural Motifs
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Notes. (a) Two-dimensional planar structure representation. (b) Dot—
bracket notation. This notation only represents the base pairing and
does not provide the type of nucleotide.

Lorenz et al. 2011) as the base heuristic (Section 2), and
as the expert, we use two different implementations of
the state-of-the-art tool ENTRNA (a classifier that evalu-
ates the quality of a sequence-structure pair; Su et al.
2019) to judge sequence-structure pairs generated by a
folding algorithm (Section 2).

We test ExpertRNA against two popular RNA
sequence-structure data sets: Rfam (Burge et al. 2013)
and the Mathews data set (Ward et al. 2017). We com-
pare the performance of ExpertRNA against RNAfold
when used in isolation. We find that, in the sequences
taken from Rfam, ExpertRNA produces, on average,
more accurate predictions of secondary structure, and
performs, on average, the same on the Mathews data
set.

2. Relevant Literature

With respect to our work, we distinguish two main
branches of research within the rich literature in RNA
secondary structure prediction: (i) model-driven and (ii)
data-driven approaches. As mentioned in Section 1,
most model-driven approaches use the FE as reference
reward function to be minimized. Algorithms differ in
the model used to approximate the FE and the mecha-
nisms to explore the space of possible structures in the
attempt to find the MFE. Data-driven approaches use
machine learning techniques to evaluate the quality of
the structure as a replacement or possibly in addition
to FE. In this case, FE is interpreted as a feature
instead of the reward.

2.1. Model-Driven Folding

The most common approach for evaluating RNA
structures is its free energy, which can be thought of
as the energy released by folding a completely
unfolded RNA sequence. It can also be interpreted as
the amount of energy that must be added in order to
unfold a folded molecule. As a result, a sequence is
most likely found in a minimum free energy structure.
No closed form is available for the exact free energy
calculation, and algorithms differ in the way they ap-
proximate such computation and the way they search
in the space of secondary structures attempting to
find the one(s) with associated minimum (approxi-
mated) free energy (Lorenz et al. 2011). An example of
minimum free energy approximation relies on the
nearest neighbor model (NNM) (Xia et al. 1998). The
NNM relies on the assumption that each base pair
contributes to the overall free energy independently
from one another, and a base pair is only influenced
by the immediately adjacent base pairs. As a result of
these assumptions, the total free energy is the sum of
all the base pair free energies along with additional
terms that account for the free energy contribution of
motifs, such as hairpin loops, internal loops, and
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bulges and junctions (Mathews et al. 1999) (Figure 1).
Using the free energy minimization criteria, any pre-
dicted optimal secondary structure for an RNA mole-
cule depends on the model of folding and the specific
folding energies used to calculate that structure. A
consequence of this is that different optimal structures
may be obtained if the folding energies are changed
even slightly.

An example of algorithm relying on FE is RNAfold, a
de facto standard tool for RNA secondary structure pre-
diction. The RNAfold software (Lorenz et al. 2011)
makes use of the NNM to sequentially assign nucleoti-
des to the partially folded sequence. Importantly, RNA-
fold allows constrained folding, that is, users can input
information concerning pairings between nucleotides
that they wish to fix and/or just constraining nucleotides
to be paired without defining the nucleotide with which
to pair it. This second type of constraint is not generally
implementable by folding packages and led us to choose
RNAfold as the base heuristic for this first version of
ExpertRNA. Further examples of model-based RNA-
folding approaches are stochastic kinetic folding algo-
rithms. Rather than using dynamic programming, base
pairings are randomly sampled, biasing toward bonds
with high energy. Energy is estimated using kinetic
models, and for computational efficiency, the kinetic
model is called only to evaluate the partially folded
structure (Isambert and Siggia 2000, Zadeh et al. 2011,
Sun et al. 2018). Another approach is AveRNA, an
ensemble-based prediction method for RNA secondary
structure (Aghaeepour and Hoos 2013). AveRNA com-
bines a set of existing MFE-based secondary structure
prediction procedures into an ensemble-based method
aiming to achieve higher prediction accuracy. The
underlying algorithms use different models for free
energy. These models, first presented in Andronescu
et al. (2007, 2010), use the constraint-generation method
to sequentially produce constraints that enforce known
structures to have energies lower than other structures
for the same molecule. Such a method results in several
FE approximation variants.

It is important to, again, highlight that one of the
main drawbacks of model-driven methods is that
energy models are approximations of the not fully
known complex physical interactions and folding con-
ditions that determine the folded structure of the mol-
ecule in natural or laboratory settings. Because of
uncertainties in the folding model and the folding
energies, the “true” folding may not be the optimal
folding determined by the algorithm. In fact, several
and suboptimal structures may exist within a few per-
cent of the minimum energy.

2.2. Data-Driven Folding
Approaches utilizing statistical learning have recently
received increasing attention. Different folding algorithms

may use different statistical methods and different fea-
tures to generate base pairing decisions. The CONTRA-
fold algorithm falls into this category of approaches (Do
et al. 2006). CONTRAfold applies stochastic context-free
grammars for representing RNA structures as random
objects that are modified within a fully automated
statistical learning procedure that sequentially biases
the sampling distribution responsible for the making
and breaking of base pairs within the sequentially
formed RNA structure. In particular, CONTRAfold
sequentially forms and breaks base pairs, updating the
probability associated with the several bonding alterna-
tives, which is formulated using conditional log-linear
models (CLLMs). The hyperparameters of the CLLMs
are estimated using several features of RNA sequence-
structure pairs. The model determines the likelihood of
a base pairing (or a set of pairings) to be selected by the
algorithm (Do et al. 2006). The algorithm CycleFold
(Sloma and Mathews 2017) differs from ContraFold
because it uses sets of RNA bases as building blocks for
the search instead of the individual nucleotides. Each
of these sets has a detailed energetic characterization,
thus improving the accuracy of the energy prediction
patterns. The building blocks are subsequently folded
in a way similar to other data-driven approaches (Die-
ckmann et al. 1996). LearnToFold (Chowdhury et al.
2019) uses an approximate folding tool (LinearFold) as
an inference engine for search and a structured support
vector machine to bias the sampling toward more
favorable pairings. SPOT-RNA (Singh et al. 2019) uses
deep contextual learning for base pair prediction, and it
is one of the few to include tertiary interactions even if
approximated. Deep and transfer learning (Hanson
et al. 2020) are trained in order to calculate the likeli-
hood of each nucleotide to be paired with any other
nucleotide in a sequence. ENTRNA (Su et al. 2019) is a
supervised learning algorithm that uses a support vec-
tor machine to produce an evaluation of the quality of
a RNA secondary structure. In particular, ENTRNA
receives as input a sequence-structure pair, and it
returns a measure of the likelihood that such a pair
folds, and it is stable. Such likelihood measure is
defined by the authors as foldability. The higher the
foldability, the more likely the sequence-structure pair
is to exist and be stable. Alternatively, the more likely
that sequence is to fold into that structure. ENTRNA,
as any data-driven approach, needs to be trained by
examples of existing sequence-structure pairs, each
associated with a set of features (sequence-segment
entropy (SSE), free energy, relative number of nucleoti-
des of type G and C, relative number of paired nucleo-
tides). In particular, the SSE metric is proposed in (Su
et al. 2019) to give a measure of diversity of the nucleo-
tide segments within the RNA sequence. However, to
be trained, ENTRNA also requires failed examples (i.e.,
sequence-structure pairs that cannot fold in a stable
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manner). This is a challenge because of the unavailability
of “failed” experiments, which the authors tackle by
using the positive-unlabeled learning method to fill in
the failed examples (Li et al. 2009). Nevertheless, this
remains a source of inaccuracy for the approach. Similar
to ENTRNA, RNAStructure (Reuter and Mathews 2010)
uses both data-driven features and free energy models to
evaluate sequence-structure pairs. RNAstructure first
contained a method to predict the lowest free energy
structure; it was subsequently expanded to include bimo-
lecular folding, hybridization thermodynamics, and sto-
chastic sampling of structures. It provides methods for
constraining structures based on empirical characteristics
of similar sequences. Finally, recent extensions calculate
partition functions for secondary structures common to
two sequences and can perform stochastic sampling of
common structures.

2.3. Contributions

The contribution of this paper is both algorithmic and
applied: (i) We extend the rollout approach to be used
with multiple heuristics and multiple experts whereas
controlling the number of branches active at each iter-
ation of the algorithm, thus allowing control of the
computational expense. We allow the different experts
to interact, which leads to better solutions than allow-
ing experts to only judge the branches dedicated to
them (Bertsekas 2020). (if) We exploit this algorithmic
capability to maintain multiple parallel rollout branches
allowing the several experts and, potentially, folding
algorithms to maintain multiple solutions. To our knowl-
edge, unlike all the previously published algorithms,
ExpertRNA is the only approach allowing the different
folding algorithms to interact whereas the structure is
being folded. We believe that this capability is the key
to overcome the different challenges from the several
secondary structure prediction approaches (model-
and data-driven).

3. Proposed Approach

The main idea underlying ExpertRNA is to formulate
secondary structure prediction (folding) as a sequen-
tial assignment problem. Based on the description in
Section 2, we assume a sequence of nucleotides is

Figure 2. (Color online) Example of Assignment
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given as input, together with a set of physical con-
straints that define possible nucleotide-to-nucleotide
interactions (base pairing) that can be translated into
feasible actions. It is important to formalize the way
we model RNA sequences and the related structures
before introducing actions and constraints.

Specifically, our work makes use of the dot-bracket
notation to represent RNA structures (Antczak et al.
2018). According to this formalism, each nucleotide is
represented by a letter, symbolizing the type of base
(A, C, G, U) and a “dot” (.) if the nucleotide is
unpaired, that is, it does not establish a bond with any
other nucleotide in the sequence, or a “bracket” other-
wise. If a nucleotide pairs with another, it can either
be the origin of the pairing, in which case we repre-
sent it using an open bracket “(”, or the sink, in which
case we use a close bracket “)” (Figure 1). Figure 1
shows an example of an RNA sequence-structure
(Figure 1(a)) and the corresponding dot bracket nota-
tion (Figure 1(b)). In the following, we define the main
components of ExpertRNA.

3.1. State and Action Modeling in ExpertRNA

As previously mentioned, ExpertRNA sequentially
attaches bases to a partially formed structure deciding
whether to pair a base (open or closed bracket) or not.
Given the same sequence, a different dot-bracket
assignment results in a different structure.

More specifically, when we select the next element
from the input sequence x € {A, U, C, G}, we connect it
to the rest of the structure by means of three alterna-
tive actions (represented as the top, bottom, and right
arcs from each node in Figure 2). The right arc, used
in isolation, corresponds to a dot (.) in the dot-bracket
notation and establishes a sequential link between
bases (i.e., no base pair), whereas the up/down
(open/closed) arcs establish a base pair type of con-
nection, thus corresponding to a bracket. The number
of links that can be activated at iteration k is a function
of the partial structure formed by the k nucleotides
already assigned as well as the remaining N — k nucleo-
tides in the sequence that have not been assigned yet.
Figure 2 reports an illustrative example of the sequen-
tial folding of the RNA molecule. We start selecting a
nucleotide (A in the example in Figure 2(a)), and we

(b)

Us Ug

@@@@@é

Notes. (a) Example of sequential assignment. At each iteration k, the state is represented by the assigned nucleotides and the corresponding
bonds (i.e., sequential or base pair type of connection). (b) Corresponding set of controls.
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activate the right link, corresponding to a “.”. At
the second iteration, we select C, the next nucleotide in
the sequence, and we activate the downward link
(open bracket “(”) and the right link, thus electing C as
part of a base pair. Note that, at this point, the sink of
the base pair is not established, but we have only
decided that C will be part of a base pair as origin. This
means that, further in the path generation, we need to
elect one of the candidates to be paired with C. The
third to fifth actions are identical, and they result in
three C-type bases with the right link activated, corre-
sponding to three dots (.). At this point, we select G as
the next base with the upward link active (closed
bracket “(”), thus electing G as the base pair, and we
connect it to the only feasible origin C.

3.1.1. Actions. Generalizing the example in Figure 2,
the possible actions that we can implement at each
iteration are to sequence, open base pair, and close
base pair with the associated dot-bracket notation “.”,
“(”, and “)”, respectively. ExpertRNA proceeds to
form a structure starting from the unpaired 5’ extreme
(the first nucleotide in the sequence, Figure 1) and
completed once all the elements are assigned; that is,
the 3’ extreme of the sequence has been reached (the
“last” nucleotide in the sequence, Figure 1). Also, we
assume that bases assigned and links activated at iter-
ation /1 cannot be changed at any iteration k > h. Let us
consider a sequence of actions {uy, ..., 1} correspond-
ing to the assignment of the first k nucleotides out of
an N-nucleotide-long sequence with k < N. Equiva-
lently, {u1,...,u} is a partial assignment. Our objec-
tive is to sequentially perform sequence-structure

Figure 3. (Color online) Overview of the Proposed ExpertRNA

assignments using a set of well-defined elementary
actions. A structure is complete when k = N.

3.1.2. Feasibility Determination. As previously men-
tioned, at each iteration of the algorithm, we can
either execute a (i) “null” action (sequencing) or (ii)
base pairing the nucleotide. When evaluating the fea-
sibility of an action, the following items need to
be considered:

e Nucleotides of type A can only form a base pair
with U

e Nucleotides of type G can only form a base pair
with Cor U

e Nucleotides of type U only form a base pair with A
orG

e Nucleotides of type C only form a base pair with G

e To be paired, i and j need to satisfy |i — j| > 4, where
i and j are the location indexes of the two nucleotides

Hence, at each iteration, the set of feasible actions
depends on the partial sequence iiy, ..., generated
by the procedure up to iteration k as well as the
nucleotides k+1,..., N that remain to be sequenced.

3.2. ExpertRNA Algorithm

The proposed ExpertRNA tackles the problem of
RNA secondary structure prediction as a sequential
assignment of (known) nucleotides.

Figure 3 shows the structure of our ExpertRNA
approach with its two main algorithmic components:
(i) the partial folding and the (ii) expert software. The
algorithm sequentially adds elements to the incom-
plete structure (“current partial folding” in Figure 3),
which we initialize to be the empty set. The first
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nucleotide is chosen as the first element of the input
sequence provided by the user. At each step, the sub-
sequent nucleotide is selected, and we can choose
whether to simply sequence it to the last assigned
nucleotide (“null” action in Figure 3) or pair it with
any nucleotide in the existing structure (“close” in
Figure 3) or pair it with an element still to be assigned
(“open” in Figure 3). The definition of these actions
is motivated by the physical laws that govern
molecular bonding (as previously specified in feasi-
bility determination).

3.2.1. Rollout Method. The rollout method was first
introduced for the solution of discrete optimization
problems in Bertsekas et al. (1997) and Bertsekas and
Tsitsiklis (1996). Rollout aims to find a solution of the
general problem of minimizing a function F(u) over
all u = (uq,...,uyN), satisfying certain constraints. The
components uy, ..., Uy can take a finite number of val-
ues, so this is a difficult discrete optimization. Rollout
aims to find a suboptimal solution that improves over
the solution produced by a given algorithm called the
base heuristic (in our case, the base heuristic is RNA-
fold, but any other folding software can be used). In
particular, in our case, the solution is suboptimal with
respect to the true reward (i.e., the reward optimized
by the actual, unknown structure into which the RNA
folds). Such reward is unknown and, therefore,
replaced by the expert reward. This is accomplished
by a sequence of minimizations of cost functions that
are defined by F(u) and by partial solutions produced
by the base heuristic.

Our assumption is that, given any partial sequence
(it1,...,1k-1), and any feasible value uy, the base heu-
ristic produces a feasible complete solution of the form

(i‘ll,...,flk_l,Uk,i\lk.'_l,...,ﬁN), (1)

by constructing the complementary sequence (fly.1,
...,1ly) based on the knowledge of (i1, ..., k-1, ux).
We also assume that the base heuristic can be applied
to generate a feasible solution

(tty,...,0N), (2)

starting from the “empty” partial sequence. Initially,
the rollout algorithm uses the base heuristic to gener-
ate, for each feasible value u;, the complementary
sequence (ily,...,ily), and computes the initial solu-
tion component i1 as

il] € arg ngl? F(uq,ity,...,0N).
el

Where U is the set of feasible solutions at the first
iteration. Then, sequentially for every iteration k> 2,

given the partial solution (ii1, ..., k1), the rollout algo-
rithm considers all feasible values of 1 and applies the

base heuristic to generate the complete solution
(ﬁll .. 'Iﬁk—llukl ﬁk-%—l/ cee /ﬁN)/

cf. Equation (1). It then computes the value of uy that
minimizes the cost function over all these complete
solutions:

ﬂk € argntbinp(all s /ﬂk—lr Uy, ﬁk+1/ s /ﬁN)/
k

and fixes uy at the computed value iiy. It then repeats
with (iiq,...,71) replaced by (iiy,...,ix). After N
steps, the rollout algorithm produces the complete
sequence

U= (il1,...,il]\]),

which is called the rollout solution. The fundamental
result underlying the rollout algorithm is that, under
certain assumptions, we have cost improvement, that is,

F(iiy, ..., un) S F(i, ..., iin), ®)

where (ii1,...,7y) is the solution produced by the
base heuristic starting with the empty partial solution
(cf. Equation (3)). Even when the assumptions needed
for cost improvement are not satisfied, a simple modifi-
cation, the so-called fortified rollout algorithm, produces a
modified sequence that satisfies the cost improvement
property in Equation (3).

In addition to the fortified, several other versions of
the rollout algorithm are proposed in the literature;
we refer to the reinforcement learning textbook by
Bertsekas (2019) and the monograph by Bertsekas
(2020) for a detailed account, which includes discus-
sions of rollout algorithms that incorporate con-
straints. Another version that is relevant to this work
is rollout with an expert, which applies to problems for
which we do not know the cost function F of the prob-
lem, but instead, we have access to an expert that can
rank any two feasible solutions u' = (u{,...,u}) and
u?=(u?,...,u3) by comparing their values F(u') and
F(u?) (see Bertsekas 2019, section 2.4.3, and Bertsekas
2020, section 2.3.6). Still another version that is rele-
vant to this work is rollout with multiple heuristics,
which allows one to use multiple base policies simul-
taneously, and also a variant that maintains multiple
partial solutions simultaneously and selectively en-
larges some of these partial solutions.

3.2.2. ExpertRNA Detailed Description. In this paper,
we use several algorithmic variants involving fortified
rollout with multiple heuristics and multiple partial
solutions. The expert that can rank two solutions is
provided by the software package ENTRNA. The base
heuristics are provided by the software package RNA-
fold (Section 2). It is important to note, however, that
any expert software and base heuristic software are
allowed within our algorithmic framework subject to
relatively weak restrictions (see Bertsekas 2019, 2020).
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In the current formulation of the rollout algorithm, we
require the folder to be able to start from a partially
formed structure and, furthermore, impose that dur-
ing the folding, a selected base has to end up base
paired. Currently, only RNAfold allows for such a
specific formulation of constraints. In the future ver-
sion of our algorithm, we will modify the action defi-
nition so that it can work with folders that require
specifying which base pairs are to be formed.

3.2.2.1. ExpertRNA Main Procedure. In the follow-
ing, we provide the detailed iterations of ExpertRNA
as a special implementation of a multibranch fortified
rollout algorithm.

Step 0. Initialization: Provide the sequence of nucleo-
tides s =(sx),k=1,2,...,N to be folded; initialize the
current partial folding to be empty uy = (). Provide a
folding software that, given a partial folding, returns a
complete structure. Provide an expert software with
associated score function §°: S — [0,1], where S is the
set of all feasible complete structures. Initialize the for-
tified solution u} = (). Set k «— 1.

Step 1. Move generation: Given the partial solution
(u1,...,ux), generate all feasible next assignments
Ui, ..., m<3 that satisfy the feasibility condi-
tions (Section 3).

For each feasible move uf . €Uy, g=1,...,m,where Uy
is the set of feasible actions at iteration k for the kth
nucleotide in the sequence:

Step 2. Structure completion: Use the heuristic H to
generate the complete solution for the gth feasible action:

u§+1 = Hk(ull MR Z/lk_ll ui) = (ull M4 uk/ u§+1l MR M?\])I

and RNAfold (Section 2; Lorenz et al. 2011) in its con-
strained version is used such that, considering the cur-
rent state (i.e., the sequence of performed assignments
up to the kth iteration) and the next assignment u;
completes the structure based on minimum free
energy (Zuker et al. 1999).

Step 3. Structure evaluation: Score the candidate
structures {uf,,},g=1,...m using the expert scoring

1

1i1, Where

system S°(uf, ;) and save the top solution u

(h _ (h)
w = (U, Uy,

be interpreted as order index.
Step 4. Update the fortified solution: Update the forti-
fied solution for the expert e: if S"(u,(:gl) > S(uy),

* (1) 1) _ (1) (1)
u, —u; ), wherew,/, = (ug, ..., u /..., uy |

ke—k+1.
Step 5. Stopping condition: If k == N, STOP. Else go
tostep 1.

, ug})), and the superscript (-) is to

3.2.2.2. ExpertRNA Extensions. A first extension to
this basic algorithm we implemented is to maintain a

set of B active branches. More specifically, the top-B
branches are maintained at each point in time in the
algorithm execution. Given that we have a maximum
of By -3 feasible actions at each iteration k, where By, is
the number of branches being maintained at iteration
k, in general B < B. In particular, the set U} of feasible
actions from a single branch b satisfies ILI,?I <3. A sec-
ond extension we implemented, with respect to the
basic algorithm with multiple branches, was to allow
for multiple experts. ExpertRNA is such that B is set
to be a multiple of the number of experts. This choice
is justified by the fact that no prior information is
available that can help us choosing for which expert
we should maintain more branches. Finally, in case
multiple experts are adopted, a number of fortified
solutions bounded by the number of experts is main-
tained at each iteration. The fortified solution(s) is
updated at iteration k if a structure with higher reward
is identified for any of the experts. Then, at each itera-
tion, a solution generated by a feasible action is com-
pared with the fortified solution. If no action achieves a
better score, the fortified action is chosen instead.

3.2.2.3. ExpertRNA Move Generation. A focal aspect
of ExpertRNA is the generation of the set of feasible
actions at iteration k, U (step 1, move generation in
the general ExpertRNA algorithm). In the following,
we detail the procedure for the generation of the feasi-
ble actions.

Step 0. Initialization: Iteration index k, partially
folded structure uy, ..., u;, and the unfolded nucleotide
sequence Si1.N = (sl)fik 1,51 €{A,U,C,G}. Initialize the
set of feasible actions to the empty set Uy1 = 0.

Step 1. Action generation: A feasible action repre-
sents the pair of nucleotides and the modality used to
attach the nucleotide to the rest of the sequence. There
are three possible actions: (i) open base pair, which we
refer to as uj_,; (i) close base pair, which we refer to as
ug,; (ii) and the null action (i.e., simple sequencing),
which we refer to as u,, .

Step 2. Feasibility certification: We verify whether the
actions are feasible.

Open base pairing (Figure 4, (a) and (d))._(ofondition
1: Given the incomplete structure uy, derive /i, that is,
the number of open base pairs that have not been
closed. If the size of the remaining sequence satisfies
N—k>h'+4+ 1, then condition 1 is satisfied, and we
generate the set of candidate paired bases for the (k +
1) st base.

Condition 2: If, among the nucleotides to pair, there
exist at least one nucleotide that can physically pair
with 1}, then condition 2 is satisfied.

Condition 3: If all the bases with open brackets
up,h=1,...,k can close if the (k+1) st base is not a
closed bracket, then condition 3 is satisfied.
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Figure 4. (Color online) Examples of Feasible and Infeasible Conditions for Action as uj, ,, uf,,, and u},,

©

®

N ae=s e

Notes. The light grey circles are the bases within the folded partial chain (the last light grey circle is the position we are currently assigning), and
the dark grey part is the unfolded part. The black arcs are implemented pairings, whereas the blue arcs are being tested for feasibility. (a) The
action u_, is feasible. (b) Simple sequencing uj , is feasible. (c) Closing a base pair u_, at the position is feasible. (d) Opening a base pair u{,, at
the position is infeasible because open base pairing condition 1 is violated. (e) Sequencing uj’ at the position is infeasible because null pairing con-
dition 1 is violated. (f) Closing the base pair uj at the position is infeasible because close base pairing condition 2 is violated.

If all conditions are satisfied U1 ¢— Ujq U g, ;-

Close base pairing (Figure 4, (c) and (f)). Condltlon
1: Given the incomplete structure uy,;, derive h that
is, the number of open base pairs that have not been
closed if i°. If i’ > 0, condition 1 is satisfied.

Condition 2: If there is an open base uj,h <k—-4 and
the nucleotide is compliant with the current base, con-
dition 2 is satisfied.

If all conditions are satisfied, Uy < Uge Uug, -

Null pairing (Figure 4, (b) and (e)). Condztzon 1:
Given the incomplete structure uy, derive h that is,
the number of open base pairs that have not been
closed if i’ < N — k — 1; then, condition 1 satisfied.

Condition 2: Calculate the number of nucleotides of
the whole chain minus the position of the last closed
nucleotide, and denote this number as 1. If
I +4> 1’ condition 2 is satisfied.

Condition 3: If the (k+1) th nucleotide is unpaired,
check whether the whole chain can be completed com-
plying with feasibility constraints, which means all

remaining incomplete open base pairs within the par-
tial chain uy can be paired using nucleotides that have
not yet been assigned (A, U, C, G pairing constraints
considered). If so, condition 3 is satisfied.

If all conditions are satisfied, Uy < U U uj.

4. Numerical Results

In this section, we compare the performance of
ExpertRNA and RNAfold used in isolation. We high-
light that judging the quality of a proposed structure
is generally not a trivial problem, and this is the main
motivation at the basis of data-driven approaches that
allow us to consider rewards different from free energy.
In this analysis, we consider the sequence-structure
pairs in the data sets as the “ground truth.” Under this
working assumption, the better method is the one that
produces a sequence-structure pair that is more similar
to the one in the database. Similarity measures are
discussed.

Figure 5. (Color online) Distribution of RNA Length in (a) RNASTRAND, (b) Mathews, and (c) Rfam
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Table 1. Aggregate MCC Results Produced by ExpertRNA
for the Rfam Data Set

Table 2. Aggregate Statistics on Prediction Quality by
ExpertRNA for the Mathews Data Set

Branch MCC Mcct Awice o(Amce) p-value Branch MCC mcct Awce o(Amce) p-value
1 0.1135 0.1552 0.0566 0.1536 0.0579 1 0.4274 0.4960 0.0058 0.1891 0.7077
2 0.1247 0.1751 0.0679 0.1481 0.0243 2 0.4182 0.4902 —0.0034 0.1918 0.8211
3 0.1327 0.1659 0.0651 0.1459 0.0267 3 0.4234 0.4950 —0.0050 0.1943 0.7430
4 0.1378 0.1637 0.0703 0.1497 0.0196 4 0.4216 0.4875 —0.0074 0.1951 0.6235

4.1. Implementation and Package Usage Details
Experiments were executed on the Agave HPC struc-
ture at Arizona State University (https://cores.research.
asu.edu/research-computing /user-guide), equipped with
800 FP64 CPU Teraflops, 498 Compute Nodes, and 128-
256GB RAM on most CPU nodes.

The ExpertRNA package that we used for the experi-
ments can be downloaded at https://github.com/
MenghanLiu212/RL-RNA. We included the data sets
used for testing and training with a detailed explanation

available at https://github.com/Menghan Liu212/RL-
RNA /blob/master/README.md. ExpertRNA is written
in Python 3.7, and the code has three main components:

1. ExpertRNA.py is the entry point to run the code
and generates final rewards for the results.

2.ExpertRNA main.py contains the main algorithm.

3. ExpertRNA toolbox.py includes the feasible
action-generation function and RNA structure
transforming functions.

Figure 6. (Color online) Performance of ExpertRNA Compared with RNAfold on the Two Data Sets Broken Down by RNA
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Notes. (a) and (c) MCC scores for the structures generated from sequences in the Rfam database and Mathews database, respectively. (b) and (d)
Distribution of MCC scores for the Rfam and Mathews database, respectively. In the scatterplots, the line of equal scores is also plotted (thin

black line) as a reference.
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Figure 7. (Color online) Performance of ExpertRNA Compared with SPOT-RNA on the Mathews Data Set Broken Down by
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Notes. (a) MCC scores for the structures generated from sequences in the Mathews database. In the scatterplots, the line of equal scores is also
plotted (thin black line) as a reference (b) Distribution of MCC scores for the Mathews database.

In order to run the code, the user needs to down-
load or clone the Github repository and provide the
following information:

1. Execution mode: ExpertRNA can be executed by
the user in two modalities: test mode (-t) and run
mode (default). In both cases, the input is a path to a
folder containing files with the sequences to fold. There
should be one file per sequence. When running in test
mode, both the sequences and secondary structures of
the target RNAs need to be provided to ExpertRNA as
input following the dot-bracket notation and stored in
a .dbn file (same as a fasta with an additional line con-
taining the structure). If run mode is selected instead,

the user only needs to provide sequence information in
.fasta files.

2. Folding software name and type (-£): Currently,
the only available options are “RNAfold” and
“nonspecific,” which instantiate the version of RNA-
Fold that accepts “open constraints”—that is, when a
base pair is opened or closed, we do not need to specify
the corresponding nucleotide pair involved.

3. Expert name and number of branches for that
expert (-e): At the moment, we have two Expert
options in the current packet: (a) “ENTRNA_MFE,”
corresponding to the version of ENTRNA with MFE,
and (b) “ENTRNA_NFE,” corresponding to the version
of ENTRNA without MFE. These can also be com-
bined, for example, to have two branches for each
expert.

4. Minimum distance requirement for base pairing
(-m): The default value is four because this is the
requirement for RNAFold, which is our folding tool.
RNA structures exist with spacing of three; however,

we find that RN AFold does not always produce an out-
put when the spacing of three is allowed.

As an example, to execute in testing mode ExpertRNA
using RNAfold as a folding tool and ENTRNA_NEFE as
Expert with four branches, the command from terminal
is
$python expertRNA.py path_to_input_folder

-e ENTRNA_NFE 4 -f RNAfoldnonspecific-m4 -t.

In testing mode, the results are saved as a .csv for-
matted file containing structure prediction(s) pro-
duced by the folding software alone as well as
ExertRNA along with metrics that characterize the
RNA structure (e.g., GC percentage, BP number). The
detailed description of the output can be found within
the package repository at https://github.com/
MenghanLiu212/RL-RNA. In run mode, the output is
a modified .dbn file, in which each sequence has a
number of potential structures based on the number
of branches requested and the score for the structure
generated by the expert for each branch.

4.2. Experimental Settings

4.2.1. Data Set for Training. When training ENTRNA,
we adopted 1,024 pseudoknot-free RNA molecules
from the RNASTRAND database (Andronescu et al.
2008). The length of the sequences within the database
ranges from 4 to 1,192 nucleotides (Figure 5(a) shows
the distribution of the sequence length).

4.2.2. Data Set for Testing. ExpertRNA was tested on
two data sets. The first data set was obtained from the
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Figure 8. (Color online) FE per Nucleotide Scores of Structures from the Rfam Data Set as Calculated by RNAfold for the Actual

Structure, the Predictions from ExpertRNA, and RNAfold
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Notes. In each graph, input sequences are broken down by sequence type. Sequences in which ExpertRNA did particularly well (MCC > 0.9) are
highlighted with dark grey pips; there were no structures in this data set in which RNAfold performed well. The line of equal scores is also plot-
ted (thin black line) as a reference. (a) ExpertRNA-predicted structures compared with the actual structure. (b) RNAfold-predicted structures
compared with the actual structure. (c) ExpertRNA-predicted structures compared with RNAfold-predicted structures.

Rfam/revdatabase (Burge et al. 2013) by randomly
selecting a subset of seed structures from distinct
ncRNA families. Specifically, we used 147 sequences
of length ranging from 71 to 408 nucleotides (Figure 5(c)).
The second data set is the benchmark data set of the
RNAStructure tool (Reuter and Mathews 2010) as
populated by Mathews’ laboratory (Ward et al. 2017),
which consists of natural RNA sequences with known
secondary structures, comprising 1,559 sequences of
lengths ranging from 28 to 338 nucleotides (Figure 5(b)).
Each data set was culled to remove structures with
greater than 80% sequence identity with structures in
the ENTRNA training data set using CD-HIT-EST-2D
(Huang et al. 2010).

4.2.3. Metrics. As previously mentioned, in this anal-
ysis, we consider better the algorithm that produces a
structure that is close to the one in the database. More
specifically, to evaluate the quality of the produced
structures, we look into three indicators:

e FE: FE is a standard metric to evaluate the quality
of an RNA structure. RNAfold is an FE minimizer.
Hence, the ExpertRNA solution may have higher asso-
ciated FE. The free energy calculation used here is from
the ViennaRNA package and is the same one used by
RNAfold (Lorenz et al. 2011).

e Matthews correlation coefficient (MCC): MCC
(Matthews 1975) is a popular metric in the RNA struc-
ture prediction field used to score the confusion matrix
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Figure 9. (Color online) FE of Structures from the Mathews Database as Calculated by RNAfold Calculated for the Actual Struc-

ture and the Predictions from ExpertRNA and RNAfold
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Notes. In each graph, input sequences are broken down by sequence type. Sequences in which ExpertRNA and RNAfold did particularly well
(MCC > 0.9) are highlighted with smaller cyan and dark grey pips, respectively. The line of equal scores is also plotted (thin black line) as a refer-
ence. (a) ExpertRNA-predicted structures compared with the actual structure. (b) RNAfold-predicted structures compared with the actual struc-
ture. (c) ExpertRNA-predicted structures compared with RNAfold-predicted structures.

of a binary prediction. It takes into account the number
of correctly and incorrectly predicted paired/unpaired
bases and returns a score between —1 and 1, where —1
is a totally incorrect structure, 0 is the expected value of
random assignment, and 1 is a totally correct structure.
The formal definition is

~ TP-TN - FP-FN
~ (TP+FP)- (TP +FN)- (IN + FP) - (TN + EN)’
4)

McCC

where TP, TN are the correctly identified paired and
unpaired bases, respectively. FP, EN are the incor-
rectly paired and unpaired bases, respectively.

e Poldability: This metric is a score in the interval
[0,1] quantified by ENTRNA. The higher the foldabil-
ity, the more likely the sequence-structure pair is to
fold (Section 2).

4.2.4. ExpertBNA Settings. We created an extension
of ENTRNA for this work, namely, the No Free Energy
ENTRNA (ENTRNA-NFE). Specifically, we retrained
the ENTRNA classifier, removing the free energy
from the set of features used to train the support vec-
tor machine at the basis of the expert. The rationale
behind this modification was to allow us to search for
solutions (structures) that do not necessarily have low
free energy. ENTRNA-NFE was a better performing
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Figure 10. (Color online) Foldability Scores for Structure Predictions from the Rfam Data Set as Calculated by the Expert,
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Notes. In each graph, input sequences are broken down by sequence type. Sequences in which ExpertRNA did particularly well (MCC > 0.9) are
highlighted with dark grey pips; there were no structures in this data set in which RNAfold performed well. The line of equal scores is also plot-
ted (thin black line) as a reference. (a) ExpertRNA-predicted structures compared with the actual structure. (b) RNAfold-predicted structures
compared with the actual structure. (c) ExpertRNA-predicted structures compared with RNAfold-predicted structures.

expert than the original ENTRNA as well as the
ExpertRNA using both ENTRNA and ENTRNA-NFE
simultaneously. We ran these several variants of
ExpertRNA, maintaining four branches at each itera-
tion. In the case in which we used both experts, we
allowed each expert to maintain its two highest scor-
ing branches at each iteration. As a result, at each iter-
ation k of ExpertRNA, we have a number B = 4 of
active branches, and B = 4 structure foldings are per-
formed. To reduce the computational demand, the
foldings can be parallelized. All results reported were
obtained from ExpertRNA with the ENTRNA-NFE
expert. Nonetheless, similar performances were obtained
with the ENTRNA expert and when using both
experts together.

4.3. Performance Analysis

In the following, we analyze first the MCC as the main
discerning metric to individuate the characteristics of
the proposed algorithm against the state-of-the-art
RNAfold. We then look into free energy and foldabil-
ity to provide additional insights on the difference
between the two approaches.

4.3.1. MCC Analysis. Tables 1 and 2 show the aggre-
gate results in terms of the returned MCC. In particular,
for each instance within the database, we ranked the
four resulting branches by foldability (best to worst)
and report the average and median MCC (MCC, MCC)
across the data set for each branch: the average improve-
ment in MCC over the RNAfold prediction (ZMCC), the
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Figure 11. (Color online) Foldability Scores for Structure Predictions from the Mathews Data Set as Calculated by the Expert,
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Notes. In each graph, input sequences are broken down by sequence type. Sequences in which ExpertRNA did particularly well (MCC > 0.9) are
highlighted with smaller cyan and dark grey pips, respectively. The line of equal scores is also plotted (thin black line) as a reference. (a)
ExpertRNA-predicted structures compared with the actual structure. (b) RNAfold-predicted structures compared with the actual structure. (c)
ExpertRNA-predicted structures compared with RN Afold-predicted structures.

standard deviation of the improvement (6(Amcc)), and
the p-value associated to the hypothesis Awicc # 0 com-
puted with a two-sided t-test. Here, Aycc =MCC
(ExpertRNA) - MCC(RNAfold), and we want this to
be positive. Two main observations can be drawn
from the analysis of the aggregate data. First, the first
branch solutions are always showing positive Aucc;
second, it is apparent that ExpertRNA has a better
performance over RNAfold in the Rfam data set as
compared with the results from the Mathews data set.

Figure 6 shows the disaggregated MCC results. Two
interesting observations emerge from the MCC distribu-
tions. First, for the Rfam data set (Figure 6, (a) and (b)),
RNAfold never correctly identifies the correct structure,
whereas ExpertRNA gets the complete or almost com-
plete structure in a couple of cases. In Figure 6(b), for the

Rfam data set, the distribution of scores is shifted toward
the right for ExpertRNA compared with RNAfold alone
with ExpertRNA performing worse in very few cases,
indicating a better performance for ExpertRNA. The
results are less clear-cut for the Mathews data set (Figure
6, (c) and (d)), with which ExpertRNA does generally
better on structures on which RNAfold does very
poorly. However, there is also a significant population
of structures that RNAfold gets correct or almost correct,
whereas ExpertRNA misses. These two features balance
each other out, resulting in no substantial improvement
for ExpertRNA. In general, both ExpertRNA and RNA-
fold perform better on the Mathews data set compared
with the Rfam data set.

It is important to notice the role played by the
Expert software in the performance of the proposed
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Figure 12. (Color online) Example Structure from the Rfam Data Set with the Best Performance Improvement Between

ExpertRNA and RNAfold
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Notes. Each row contains the actual structure ((a), (d), (g)), the RNAfold-generated structure ((b), (e), (h)), and the ExpertRNA-generated struc-
ture ((c), (f), (i)). In the second and third columns, the nucleotides whose pairing was predicted incorrectly are shown in dark grey, whereas
correct pairings are light grey; also, the numbers in parenthesis are foldability of the structure as evaluated by ENTRNA-NEFE, free energy as
evaluated by RNAfold, and MCC compared with the actual structure (in bold). The RNA in (a) is a phenylalanine tRNA from Archaeoglobus
fulgidis; in (d), we find a 5s rRNA from Bacillus Thurigiensis; in (g), we find arginine tRNA from Treponema denticola.

algorithm. Whereas the design of a new expert is not
in the scope of this paper, Figure 7(b) shows the
potential in performance improvement when neural
network models are used to evaluate the sequence-
structure pair. Nonetheless, as SPOT-RNA is heavily
trained on tRNA examples, the advantage is mainly
because of this class of RNAs (Figure 7(a)), and gener-
alizing this result to other RNA classes is a challenge.

4.3.1.1. Minimum Free Energy Analysis. Figures 8,
(a) and (b), and 9, (a) and (b), show how both ExpertRNA

and RNAfold-generated structures generally have lower
FE as calculated by RNAfold than the actual structure.
Figures 8(c) and 9(c) show that RNAfold returns a struc-
ture with equal or lower free energy than the one re-
turned by ExpertRNA.

This is expected as RNAfold finds the lowest FE
structure as defined by the Turner model, and it also
reflects the result that ExpertRNA is able to predict
non-MFE structures that are often more accurate by
leveraging other measures of structure quality: in this
case, the knowledge-based metrics used by ENTRNA,
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Figure 13. (Color online) Example Structures from the Mathews Data Set with the Best Performance Improvement Between

ExpertRNA and RNAfold
(a)

(d)

()

Notes. Each row contains the actual structure ((a), (d), (g)), the RNAfold-generated structure ((b), (), (h)), and the ExpertRNA-generated struc-
ture ((c), (f), (i)). In the second and third columns, the nucleotides whose pairing was predicted incorrectly are shown in dark grey, whereas
correct pairings are light grey; also, the numbers in parenthesis are foldability of the structure as evaluated by ENTRNA-NEFE, free energy as
evaluated by RNAfold, and MCC compared with the actual structure (in bold). The RNA in (a) is an agrinine tRNA from Brucella suis; in (d), we
find a 5s rRNA from Schizosaccharomyces pombe; in (g), we have a 5s rRNA from Photobacterium profundum.

which may help correct deficiencies in the Turner
model or reflect tertiary contacts and chemical modifi-
cation present in the training data that RNAfold does
not take into account.

4.3.1.2. Impact of the Expert Score. An important
element of ExpertRNA is the expert adopted. Whereas,
in principle, the algorithm can make use of any expert,
it is important to understand the impact of the adopted
expert on the solution. As detailed in Section 2, in this
implementation, the adopted expert is a machine learn-
ing algorithm that, given a set of sequence-structure
pairs, returns a score for each of them based on how

“likely” the pairs are, and such likelihood is referred to
as foldability in the original paper (Su et al. 2019). As
shown in Figures 10 and 11, as expected, ExpertRNA
predictions have the higher foldability. The fact that
ExpertRNA performed better on the Rfam data set sug-
gests that ENTRNA foldability is a slightly better expert
than RNAfold’s MFE measure. However, the many
incorrect structures with higher foldability than the
actual structures points to the need for more research
in developing better performing expert software.

4.3.1.3. Predicted Structures. We show a sample of
the structures generated by ExpertRNA and compare
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Figure 14. (Color online) Example Structures from the Mathews Data Set with the Worst Performance Degradation Between

ExpertRNA and RNAfold
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Notes. Each row contains the actual structure ((a), (d), (g)), the RNAfold-generated structure ((b), (e), (h)), and the ExpertRNA-generated structure
((0), (), (1)). Nucleotides whose pairing was predicted incorrectly are shown in dark grey in the second and third columns, whereas correct pairings
are light grey. Also, in the second and third columns, the numbers in parenthesis are foldability of the structure as evaluated by ENTRNA-NFE,
free energy as evaluated by RNAfold, and MCC compared with the actual structure (in bold). The RNA in (a) is a threonine tRNA from Clostri-
dium felsineum; in (d), we have a leucine tRNA from a Frankia; the RNA in (g) is a leucine tRNA from Mycobacterium tuberculosis.

them to the prediction of the RNAfold algorithm alone
as well as the actual structure. In particular, we look
into cases in which the predicted structure generated
by RNAfold significantly differs from the known struc-
ture. Visualizations were generated using the publicly
available Forna software (Kerpedjiev et al. 2015). Figure 12
shows the structures for which RNAfold is particu-
larly underperforming in the Rfam database.

Figure 13 shows the structures for which RNAfold
is particularly underperforming in the Mathews data
set, whereas Figure 14 shows structures for which

ExpertRNA evaluated correct predictions from RNA-
fold as incorrect.

4.4. Computational Complexity

Another important aspect of structure folding is asso-
ciated to the complexity of the algorithm. For the cur-
rent implementation, ExpertRNA has a complexity
O(zN, (N —i)*), where (N —i)* is the RNAfold com-
plexity for a sequence of size (N —i). Such quadratic
behavior is evident in Figure 15 (the results are for the
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Figure 15. (Color online) Computational Effort for
ExpertRNA Across the Mathews Data Set with Quadratic Fit
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Mathews data set, and similar results were obtained for
the Rfam data set). Whereas computational efficiency is
a known challenge in secondary structure prediction, a
promising avenue is to investigate multiagent rollout
(Bertsekas 2020) as a way to boost the efficiency.

4.5. Summary

Compared with the RNAfold tool, ExpertRNA per-
forms better on the data set of known structures from
Rfam and approximately equivalently on the data set
from the Mathews laboratory. By construction, the
ExpertRNA structures had higher free energy (com-
pared with RNAfold) according to the nearest neighbor
model. However, they are closer to the actual known
structure. Structures predicted by both ExpertRNA and
RNAfold almost always have lower free energy than
the actual structure, further indicating the limitations of
free energy approximations in identifying correctly
folded structures. In most cases, when ExpertRNA
found a structure in better agreement with the actual
known structure, the FE of that structure was only
slightly higher than the FE of RNAfold. However, in a
few cases (e.g., Figure 13, (a)-(c) and (g)—(i)), the solu-
tions in which ExpertRNA had much better agreement
with the correct structure, the RNAfold solution had
much lower free energy. ExpertRNA, hence, shows the
ability to identify the correct structure even if its pre-
dicted FE is quite higher than the MFE prediction by
integrating other experts that may implicitly or explic-
itly account tertiary contact and kinetic information.

5. Conclusions

In this paper, we propose a new framework, ExpertRNA,
for the automatic folding of nonpseudoknotted secondary
structures for RNA molecular compounds. ExpertRNA
builds upon the fortified rollout algorithm and general-
izes the architecture to allow for the consideration of
multiple experts that can evaluate, at each iteration, the
solutions generated by the base heuristic. ExpertRNA

allows one to control the growth of the rollout branches
by enabling only a fixed number of alternatives at each
iteration to be maintained. This differs from the tradi-
tional parallel expert implementation in which each
expert is responsible for independent branches leading
to the exponential growth of the maintained branches.
Differently, ExpertRNA allows the folding algorithms
to interact and the experts to evaluate all the solutions
generated by all the folders at each iteration. This fea-
ture of ExpertRNA balances out different strengths and
weaknesses of folding tools and experts. Numerical
results show the advantage of the proposed approach
especially over the data set in which the heuristic
alone does not perform well. We show that, for sev-
eral natural sequences, ExpertRNA is able to correctly
predict secondary structures whose free energy is
much higher than the MFE structure predicted by
RNAfold.

Further investigation is being carried out to employ
multiple different folding algorithms. We argue that,
in the process of generating the solution, perhaps one
of the folders will be performing very well, but after
some iterations, a different folder may produce supe-
rior results. In some sense, ExpertRNA tracks the best
folder, online, as the sequence is being constructed.
Also, we are investigating the opportunity to use
more/different experts. In light of this, a possible future
direction is to include more features in ENTRNA train-
ing or a combination with additional expert scoring
(e.g., based on covariation information of homologous
sequences and SHAPE experimental data) would
improve the prediction accuracy.

Finally, the introduced framework is not limited to
RNA secondary structure and can be extended to de
novo predictions of RNA tertiary or protein struc-
tures. Most of the currently used models for structure
prediction allow specifying contact constraints that
denote pairs of residues that are in contact. They are,
hence, amenable to be used in ExpertRNA, which
requires each folding tool to start from a partially
formed structure. There are currently more than 200
different methods that participate in the critical
assessment of structure prediction challenge that com-
pares different folding algorithms of protein structure
prediction (Moult et al. 2018) and more than 10 differ-
ent methods in its RNA counterpart, RNA-puzzle
(Cruz et al. 2012), and these algorithms can be used as
folders in the ExpertRNA framework. The experts in
such implementation can correspond to the system
energy calculated, for example, with Rosetta (Rohl
et al. 2004) and other knowledge-based potentials.
The ExpertRNA tool is freely available at https://
github.com/Menghanliu212/RL-RNA. The scripts
used to process the output of ExpertRNA into Figures
6 and 7 are freely available in the “analysis_scripts”
directory of the repository.


https://github.com/MenghanLiu212/RL-RNA
https://github.com/MenghanLiu212/RL-RNA
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