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Abstract— Manufacturing, aerospace, energy and several
other industries have witnessed a steep growth of increasingly
complex, information rich, devices and systems of devices
requiring simulation-based approaches. In fact, most modern
systems have such complex behavior that their performance can
only be evaluated through, usually computationally expensive,
simulations. In such settings, it is of paramount importance to
provide solutions with quality guarantees. In this manuscript,
we focus on algorithms capable of identifying a level set of
solutions in proximity of the global optimum, and specifically
on the Probabilistic Branch and Bound (PBnB) method. We
propose a new way to automate branching decisions by coupling
this method with Gaussian process (GP) estimation. The result
is PBnB-GP, where, at each iteration a collection of GPs is used
to decide how to branch the input space. PBnB-GP not only
returns an estimate of the regions with near-optimal reward
(using the power of PBnB), but also a “collection of Gaussian
processes” that can produce point estimations for any location
in the input space, thus harnessing the power of model-based
black-box optimization. We present PBnB-GP for the first time
together with preliminary numerical results.

I. INTRODUCTION AND BACKGROUND

With the increasing complexity of devices within the man-
ufacturing, aerospace, energy and other industries, complex
simulations have become key for the design, evaluation,
certification and control of devices and systems in these
areas. In this work, we are particularly interested in the
identification of close-to-optimal conditions, i.e., we focus
on optimization tasks. More specifically, we are interested
in identifying regions where the inputs or design variables
achieve close-to-optimal behavior, rather than returning a
single solution to the user.

Oftentimes, such simulators are computationally demand-
ing, and it is important for optimization methods that make
use of those, to be able to perform as few evaluations as
possible. In this arena, we have seen a proliferation of black-
box optimization methods. Two main families of black-box
methods have been used in the literature: (i) direct search
methods; (ii) model based methods. For the algorithms in
class (i), methods differ in the way they balance the explo-
ration/exploitation trade-off, but only “local” information is
used, i.e., only the current point informs the decision and
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no model of the response is built. Examples are the Greedy
Randomized Adaptive Search Procedure (GRASP) [1], and
Improving Hit-and-run (IHR) [2]. A potential challenge
arising from this family of algorithms is their sample effi-
ciency. An alternative is a meta-model based search, which,
different from direct methods, uses previous samples to build
a meta-model (surrogate) of the objective function (reward)
at locations that have not been previously evaluated. The
Efficient Global Optimization (EGO) [3], for deterministic
black-box settings, is a reference algorithm in this category.

In this work, we look into the specific problem of iden-
tifying the level set of solutions in proximity of the global
minimum, and to do so we couple Gaussian processes with
Probabilistic Branch and Bound (PBnB), that uses a directed
random search to approximate a target level set associated
with a target quantile of the global solutions [4], [5], [6]. An
advantage to PBnB is that it partitions the space iteratively,
and performs more function evaluations in the promising
regions as it refines its approximation of the target level set.
In addition, there is a probabilistic bound on the error of the
approximation.

A. Relevant State of the Art

Bayesian optimization represents a practical response to
several optimization problems requiring the simulation of
complex systems, which usually lead to rewards that are
multi-modal and non-differentiable [7], [8], [9]. Bayesian
optimization is a general terms that is now associated to
a large number of algorithms. The basic ides is to use
an a priori random process to represent the reward and
iteratively update the posterior of such random process using
the (conditional) distribution of the objective function as a
means to sequentially sample locations in the input space (the
interested reader can refer to [10] for more details). While
Gaussian processes are prevalent in the implementation of
Bayesian optimization, several approaches have been pro-
posed using different models, such as radial basis functions
which have shown an important level of success [11]. In
the context of Bayesian optimization in high dimensions,
additive forms have been investigated [12], [13], as well as
embeddings, both with the purpose of tackling the scalability
of model-based approaches [14], [15].

Within the statistics literature, partitioning and Gaussian
processes have received increasing attention, particularly,
within the context of machine learning in large data sets
with goals such as classification and level set estimation.
We generally differ in two main aspects from this literature:
(i) rather than estimating a level set for a given reference
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function value, we estimate the reference function value
that achieves a target 1− α quantile of the function; (ii)
rather than specifying the sampling and branching mecha-
nisms as inputs to the statistical method, we sample and
branch adaptively and intelligently to efficiently identify the
target region.An example of this related literature in level
set estimation is [16], where the authors use partitions,
and a unique Gaussian process to decide, based on the
predicted model variance, whether to add sampling budget
and/or branch the subregions. Conformal regression [17] has
also been proposed as a statistical approach (in contrast to
Gaussian processes). The issue of level set identification
using conformal regression is that predictions can only be
made at a region level and no point estimates are returned by
the method [18]. Another approach in the statistical literature
are “treed” Gaussian processes, a learning method that solves
challenges such as nonstationarity, and the large size of the
data set based on the idea of Bayesian partition models [19],
[20], [21]. As an example [21] couples stationary Gaussian
processes with partitioning. An extension to this method has
been proposed that partitions the subregions using nonsta-
tionary Bayesian Gaussian processes [22]. Both methods fix
the branching scheme and only allow a single cut on each
iteration. In our proposed method, we allow variable cuts
and decide which dimension to cut based on the results of
the Gaussian process.

B. Contribution

In this paper, we combine Probabilistic Branch and
Bound with Gaussian processes, and use the statistical
power to strategically branch the input space and use fewer
computationally-expensive function evaluations while pre-
serving the theoretical features of PBnB. The new approach
uses the subregions identified by PBnB and learns a different
model in each of them. The models are necessary to estimate,
for each branching decision, the so-called probability of clas-
sification, which quantifies the ability at a specific iteration
to prune (the subregion is unlikely to contain the global
minimum) or maintain (the subregion is likely to contain the
global minimum). The branching with the associated highest
probability of classification is pursued.

II. PROPOSED FRAMEWORK

We consider an optimization problem with an unknown
reward function f (x):

min
x

f (x) (1)

subject to x ∈ S

where S ⊂ ℜd is the feasible region of inputs or design
variables, and f : S → ℜ. We also consider a collection
of Gaussian process models, Gi : Si,k → ℜ, where Si,k is
subregion i generated on the kth iteration of PBnB. On
iteration k, subregions Si,k for all i are mutually exclusive
subsets of S. It is important to highlight that we can quickly
generate observations from Gi (x), i.e., the computational cost

of generating predictions from a Gaussian process is orders
of magnitude lower than evaluating f (x), a costly simulation.

We are interested in determining the set of the best δ -
quantile solutions, which can be defined as a level set
bounded by a quantile y(δ ,S), for 0 < δ < 1,

y(δ ,S) = argmin
f
{P( f (X)≤ y|x ∈ S)≥ δ}, (2)

where X is uniformly distributed over S. Using y(δ ,S), the
target level set is defined as

L(δ ,S) = {x ∈ S : f (x)≤ y(δ ,S)}, for 0 < δ < 1. (3)

We note that for quantile level δ , δ = ν(L(δ ,S))
ν(S) , where ν(·)

is the d-dimensional volume (i.e., Lebesgue measure) of a
set. Similarly, we define yGi(δ ,S) and LGi(δ ,S) as quantile
and target set associated with the Gaussian prediction model
Gi (x), respectively.

The goal of the algorithm introduced in this paper is to
approximate the target level set L(δ ,S) using relatively few
f (x) function evaluations and allow many more evaluations
of the Gaussian processes.

A. Algorithm Overview

We propose the Gaussian process-driven Probabilistic
Branch and Bound (PBnB-GP), to efficiently branch the
input space and approximate L(δ ,S). Given a fixed overall
sampling budget, we conjecture efficient partitioning helps
to reduce the prediction error associated with a Gaussian
prediction model in highly promising regions, by eliminating
poor performing regions from the prediction.

Fig. 1. Proof of Concept for PBnB-GP.

Figure 1 shows the basic architecture of PBnB-GP with
its main components: (i) Initialization; (ii) Sampling and
function quantile estimation of y(δ ,S) using available data
and a frequentist argument; (iii) Subregions update (maintain
or prune), where sampling is directed to a subset of regions in
order to statistically determine whether a subregion should
be eliminated from future consideration, either the region
is deemed part of the target level set (maintained), or the
region is determined to be outside the target level set in
which case it is pruned; (iv) Update of the Gaussian process
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Gi in each active subregion (not pruned or maintained)
Si,k at each iteration k of the algorithm, resulting in a
collection of statistical learning models {Gi}; (v) For each
active subregion Si,k at each iteration k, determine the best
dimension to branch based on the Gaussian process Gi (x).

PBnB-GP uses the Gaussian processes predicted for each
active subregion to establish the location of the cutting hyper-
planes (we consider orthogonal cutting planes in this work).
This is different from common partitioning approaches that
uniformly cut along each dimension in the active subregions.
We argue that, if the metamodel captures the function behav-
ior, the resulting partitions will increase the algorithm ability
to separate promising subregions from poor performing ar-
eas, and enable faster pruning and maintaining decisions.
The approach has deep roots in kernel learning, where
mixture, additive, and graph-based models can be thought
of as relevant alternatives to PBnB-GP [23], [24], [25], [26],
[27], [28], [29]. However, their challenge is how to combine
optimization and prediction needs, when learning the large
number of model parameters needed to capture separable
components of the model and their relation [30], [31], [32].
We argue that the proposed approach will rival state-of-the-
art structured kernels. In fact, PBnB-GP uses simpler models
coupled with partitioning to learn promising subregions.

The numerical results in Section III illustrate the perfor-
mance of PBnB-GP when used to identify a target level set.

B. Gaussian Processes for Subregion Reward Estimation

A Gaussian process (GP) is a statistical learning model
used to build predictions for non-linear, possibly non-convex
smooth functions [30]. The basic idea is to interpret the true,
unknown function f (x) as a realization from a stochastic
process, the Gaussian process. If we can measure the function
without noise, then the Gaussian process will interpolate the
true function values at the evaluated points, and, conditional
on the sampled locations x1, . . . ,xn, produce the conditional
probability density. In particular, we are interested in the pro-
cess Y (x) = µ +Z(x), where µ is the constant process mean,
and Z(x) ∼ GP(0,τ2R), with τ2 being the constant process
variance and R the correlation matrix. Under the Gaussian
correlation assumption, Ri j =∏

d
l=1 exp

(
−θl

(
xil− x jl

)2
)

, for
i, j,= 1, . . . ,n. The d-dimensional vector of hyperparameters
θ controls the smoothing intensity of the predictor in the
different dimensions. The parameters µ and τ2 are estimated
through maximum likelihood [30]: µ̂ = 1T

n R−1 f (Xn)

1T
n R−11n

, τ̂2 =

( f (Xn)−1n µ̂g)
T R−1(( f (Xn)−1n µ̂g)

n . The best linear unbiased pre-
dictor form is [30]:

f̂ (x) = µ̂ + rT R−1( f (Xn)−1nµ̂) (4)

where Xn is a set of n sampled locations, and f (Xn) is the
n-dimensional vector having as elements the function value
at the sampled locations. The model variance associated to
the predictor is:

s2(x) = τ
2
(

1− rT R−1r+
(1−1T

n R−1r)2

1T
n R−11n

)
(5)

where r is the n-dimensional vector having as elements
the Gaussian correlation between location x ∈ X and the n
elements of Xn, i.e., ri(x) = ∏

d
l=1 exp

(
−θl(xl− xil)

2
)
, i =

1, . . . ,n.

C. Probabilistic Branch and Bound
Probabilistic Branch and Bound is a partitioning-based

random search global optimization algorithm that approx-
imates a target level set with statistical confidence. For
example, a user may desire to capture a set of the best
10% solutions, instead of a single estimate of a global
optimum [33], [4], [5], [34], [6].

PBnB iteratively maintains, prunes or branches subregions
of a bounded solution space based on an updated confidence
interval of a target quantile see [6]. PBnB maintains a
subregion when there is statistical confidence that it is
contained in the target level set, and similarly, prunes a
subregion when there is statistical confidence that it does
not intersect the target level set. Order statistics are used
to determine the quality of each subregion for pruning,
maintaining, and branching decisions. Finite time probability
bounds are derived on the maximum volume of incorrectly
maintained or incorrectly pruned regions, as stated below.

Let ΣP
k be the union of all of the subregions that have

been pruned on the k-th iteration, and let ΣM
k be union of

all of the subregions that have been maintained on the k-
th iteration. A main result provides a probability bound on
the volume of incorrectly pruned regions, and incorrectly
maintained regions, as stated below.

Theorem 1 (cf. [6]): The pruned subregions ΣP
k on the k-

th iteration of PBnB contain at most ε > 0 volume of the
target δ -quantile level set L(δ ,S) with probability at least
(1−α)4, and similarly, the maintained subregions ΣM

k on the
k-th iteration of PBnB contain at most ε > 0 volume outside
the target δ -quantile level set L(δ ,S) with probability at least
(1−α)4,

P
(
v(L(δ ,S)\Σ

P
k
)
≤ ε) ≥ (1−α)4 (6)

P
(
v(ΣM

k \L(δ ,S)
)
≤ ε) ≥ (1−α)4. (7)

Here, ε is the volume that we are willing to tolerate
making an error, for example, we may be willing to tolerate
a region that is 2% of the volume of S that is pruned or
maintained incorrectly.

The branching decision in PBnB is straight-forward; the
longest dimension of a subregion is branched into B equal
sized subregions, where B is a user-defined parameter. The
active subregions on any iteration are all of the same size. We
are convinced that Gaussian processes can provide valuable
information to branch more effectively.

D. Partitioning to Maximize the Classified Volume
The main idea of the algorithm is to make use of a number

of Gaussian process predictors available at the kth iteration
of the algorithm in order to make a determination of the best
partitioning scheme within a finite set. Such a determination
is not made based on evaluation using simulation, but simply
generating observations from the Gaussian process (which is
largely cheaper than simulating the original function).
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At each iteration k, we have a set of statistically un-
decided, active subregions Σ̃k = S1,k ∪ . . .∪ Si,k ∪ . . .∪ Srk,k,
each associated with the Gaussian process Gi, i = 1, . . . ,rk.
Given a specified number of cuts B, we decide the cutting
dimension d, from d = 1, . . . ,D, that maximizes the number
of “classified” regions according to the Gaussian process
prediction. We define the likelihood that a subregion is likely-
to-be-pruned, as

pp
i (d) = inf

x∈Si,k(d)
P(Gi (x)> y(δ ,S)+δ

u) , ∀i (8)

and is likely-to-be-maintained, as

pm
i (d) = inf

x∈Si,k(d)
P
(

Gi (x)< y(δ ,S)−δ
`
)
, ∀i (9)

where δ ` and δ u are arbitrary non negative real values, and
each subregion Si,k(d) is a function of the cutting dimension
d selected, hence the notation Si,k (d). In this work, we
generate points from the Gaussian processes in order to have
a frequentist estimation of the “classified volume”.

From the definitions, it is apparent that we want to achieve
a high probability of classifying a region. The worst case is
when the two likelihoods are equal, i.e.,

pp
i (d) = pm

i (d) = 1/2

Hence, for each subregion, the classification probability is

pc
i (d) = |p

p
i (d)− pm

i (d)| (10)

This probability is non-negative and it is at its minimum
when the two likelihoods are identical. Given a cutting
dimension d, we have that the probability of classification
for Σ̃k is

p̄c (d) =
1

|Σ̃k (d) |

|Σ̃k(d)|

∑
i=1

[pc
i (d)] (11)

and the dimension is chosen such that:

d∗k ∈ arg max
d=1,...,D

p̄c (d) . (12)

It is important to notice that, the sample average
1
|Σ̃k|

∑
|Σ̃k|
i=1 [p

c
i ] can be generalized using subregion volume-

dependent weights:

p̄c (d) =
|Σ̃k|

∑
i=1

v
(
Si,k

)
v
(
Σ̃k
) [pc

i (d)] . (13)

This allows us to apply our classification-based criteria to
branching algorithms that allow subregions of different sizes.

E. PBnB-GP

In this section, we present the main steps for PBnB-GP.
Step 1. Sample points in the current subregions:
Generate additional sample points in each subregion Si,k for
all i = 1, . . . , I, and Si,k ∈ Σk so there is at least one point
in each subregion for output evaluations. Update the set of
sampled points. While the number of samples is important
for cross validating the statistical models, the idea is that the
number of simulation runs is much lower than the number

of predictions from the Gaussian processes obtained up to
iteration k.

Using the expensive function evaluations, build, for each
subregion, the Gaussian process Gi (x;θ i), where θ i is the
vector of hyperparameters for the model.
Step 2. Test classification capability of the set of partitioning
schemes:
Given a set of cutting dimensions d ∈ {1, . . . ,D}, we produce
the associated subregions within the current set of subregions
Σk into B new subregions, denoted S1,k(d), . . . ,SB,k(d), where
the new subregions are mutually exclusive. Update Σk with
the newly branched subregions.

For each subregion calculate the classification probability,
as in (10). Calculate the summary classification probability
associated with the cutting dimension d, as in (11). Choose
the best cutting direction:

d∗k ∈ argmax
d

p̄c (d)

Generate iteration k+1 partitions.
Step 3. Make pruning decision:
For each subregion Si,k in Σk, i = 1, . . . , I, uniformly and

independently sample Nk =

⌈
lnαk

ln(1− ε

v(S) )

⌉
points x̃Si,k,n for n =

1, . . . ,Nk. Within each subregion Si,k, order these sampled
points by their values fi and denote them x̃Si,k,(1), . . . , x̃Si,k,(Nk),
where

ŷi(x̃Si,k,(1))≤ ŷi(x̃Si,k,(2))≤ ·· · ≤ ŷi(x̃Si,k,(Nk)).

For each subregion Si,k perform the maintaining and
pruning test,

ŷi

(
x̃Si,k,(Nk)

)
− z αk

2
si(x̃Si,k,(Nk))< ŷk

(
x̃Σk,(r)

)
+ z αk

2
sk(xΣk,(r))

(14)

ŷi

(
x̃Si,k,(1)

)
+ z αk

2
si(x̃Si,k,(1))> ŷk

(
x̃Σk,(s)

)
− z αk

2
sk(xΣk,(s))

(15)

where r and s satisfies,

maxr :
r−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i ≤ αk

2
. (16)

mins :
s−1

∑
i=0

(
Nk

i

)
(δk)

i(1−δk)
Nk−i ≥ 1− αk

2
. (17)

The test in (15) compares the best value in a subregion
with the s-best value overall, accounting for an error term
with confidence αk.

If (15) is satisfied, prune Si,k. If (15) is not satisfied, keep
Si,k. Update Σk+1 with the subregions in Σk that have not
been pruned.

Update αk+1 = αk/B and

δk+1 =
δkv(Σk)

v(Σk)− v(Σk \Σk+1)
. (18)

Step 4. Continue? Check a stopping criterion and either
stop and return the current set of subregions in Σk+1 to
provide an approximation to the target level set, or increment
the iteration counter k← k+1 and go back to Step 1.
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III. NUMERICAL RESULTS

Stochastic algorithms similar to PBnB-GP have been ap-
plied in the context of verification of cyber-physical sys-
tems [35], [36], and it has been highlighted how approaches
that provide guarantees on the lower bound of the objective
function are necessary in the field. In this study, rather than
looking at the engineering application, where the shape of the
level set is typically unknown, we examine the performance
of PBnB-GP on three test functions and compare different
criteria to explore branching directions. In fact, our experi-
mental objective is to verify the correctness and efficiency
of the proposed automation. In order to graphically illustrate
the results, all test functions are set to be two-dimensional.
The test functions are as follows.
• Three-hump camel function (−5≤ x1,x2 ≤ 5)

g0(x) = 2x2
1−1.05x4

1 +
x6

1
6
+ x1x2 + x2

2

The global optimum is located at x∗ = (0,0) with
g0(x∗) = 0.

• Rosenbrock’s function (−2≤ xi ≤ 2, i = 1, . . . ,n, n = 2)

g1(x) =
n−1

∑
i=1

[(1− xi)
2 +100(xi+1− x2

i )
2].

The global optimum is located at x∗ = (1,1) with
g1(x∗) = 0.

• Shifted sinusoidal function (0 ≤ xi ≤ 180, i = 1, . . . ,n,
n = 2)

g2(x) =−2.5
n

∏
i=1

sin
(

π(xi +60)
180

)
−

n

∏
i=1

sin
(

π(xi +60)
36

)
.

The global optimum is located at x∗ = (30,30) with
g2(x∗) =−3.5.

For PBnB-GP, we set the confidence level at α = 0.1 and the
target level set as δ = 0.3,0.1,0.1 for the three test functions,
respectively. The branching parameter B is set to four.

For the Three-hump camel function, PBnB-GP approaches
the 0.3-quantile level set iteratively in Figure 2, showing the
second to fifth iteration. The curves in Figure 2 show the
contours of 0.1, 0.3, 0.5, and 0.7 quantiles. Hence, the second
inner curve is the target level set we wish to approximate.
As shown in the legend, the white area represents the pruned
subregions, the red area is the maintained subregions, and the
blue region is the currently undecided.

Figure 2(a) and 2(b) demonstrate that PBnB-GP quickly
selects branch directions and prunes a decent amount of
solution space, where more samples are concentrated to
maintain the level set in Figure 2(c) and 2(d). PBnB-GP
quickly branches x1 and identifies its border.

Table I shows the detail performances of PBnB-GP on
the Three-hump camel, Rosenbrock’s, and Shifted sinusoidal
functions, and compares the two criteria of branching direc-
tions, using (10) for absolute value (abbreviated Abs in Ta-
ble I), and using the maximum pc

i (d) = max{pp
i (d), pm

i (d)}
(abbreviated as Max in Table I). For the volume pruned and

(a) Iteration 2 (b) Iteration 3

(c) Iteration 4 (d) Iteration 5

Fig. 2. Iterations of solution space from PBnB-GP on Three-hump camel
function

(a) Iteration 2 (b) Iteration 3

(c) Iteration 4 (d) Iteration 5

Fig. 3. Iterations of solution space from PBnB-GP on Rosenbrock’s
function

maintained, the max criterion seems to slightly out-perform
the abs on three-hump camel function, where the shifted
sinusoidal function shows the reverse. For Rosenbrock’s
function, they perform similarly, where the domain space
of one run is shown in Figure 3. The pruned and maintained
volume also leads to the same comparison of the sample size.
Since the Three-hump camel function has a more extreme
shape on different dimensions, the abs and max criterion
prune more subregions than PBnB, as shown in the bottom
of Table I.

IV. CONCLUSIONS

In this paper, we present for the first time the PBnB-GP
algorithm with the objective to automate and intelligently
choose the branching dimension at each iteration. In order
to make this branching decision, we use a collection of Gaus-
sian processes (one for each of the subregions generated by
the partitioning at each iteration). Specifically, each Gaussian
process is used to estimate the probability that a subregion
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TABLE I
COMPARISON OF PBNB-GP PERFORMANCE ON FUNCTIONS

Metrics Three-hump camel Rosenbrock Shifted sinusoidal
Abs Mean SE Mean SE Mean SE

Vol P 57.73 2.67 10.57 0.48 25,515 813
Vol M 14.69 3.71 0.05 0.05 1,038 349
Best f 0.0013 0.001 0.004 0.004 -3.49 0.001

#Sample 32,227 5,707 27,475 2,548 19,949 3,023
Max Mean SE Mean SE Mean SE
Vol P 54.69 3.22 10.6 0.260 25,768 1,239
Vol M 17.42 1.87 0.063 0.108 734 315
Best f 0.0014 0.001 0.007 0.011 -3.49 0.001

#Sample 35,021 5,624 27,753 1,641 16,586 2,785
PBnB Mean SE Mean SE Mean SE
Vol P 51.59 6.99 11.93 0.128 25,717 1,218
Vol M 20 6.10 0.075 0.103 1,102 310
Best f 0.0089 0.112 0.116 0.115 -3.39 0.139

#Sample 27,122 3,454 26,002 795 19,765 1,716

will be classified as pruned or maintained. A subregion is
classified if either the maximum prediction is above the
current function level estimation or below. Results show how
the PBnB-GP algorithm preserves the performance of the
original PBnB while being able to specialize the cutting
decision for the different subregions.

Current and future work focus on several aspects: (i)
allowing the algorithm to stop branching a region based on
the classification probability; (ii) choosing the number of cuts
together with cutting dimension; and (iii) using Gaussian
processes to decide the sampling effort in each subregion.
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