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A B S T R A C T

A theoretical framework is developed for mechanics of the diaphragm. The diaphragm is modeled as an
anisotropic elastic material surface with activation functionality. A constitutive function is formulated that
relates the stresses in the diaphragm to the surface deformation gradient, the anisotropy vector, and the muscle
activation parameter. The equilibrium equations for the diaphragm are derived to determine the deformed
shape of the diaphragm in the process of respiration with the associated transdiaphragmatic pressures. A
numerical solution is presented, that demonstrates the capability of the model to recover the experimental
observations and to predict the shape and stresses of the diaphragm.
1. Introduction

The diaphragm, which is the main muscle of inspiration, consists
of a curved thin muscular sheet that separates the abdominal cavity
from the thoracic cavity. As for other living tissues (see Fung (1981)),
he principles of mechanics can be used to study the diaphragm shape,
he diaphragm stress, the transdiaphragmatic pressure, the diaphragm
uscle shortening, the volume displacement, and their relations.
There have been considerable in vitro and in vivo experimental

fforts to study the constitutive relations of the diaphragm, as well as
he dynamic behavior of the diaphragm during spontaneous ventilation.
Kim et al. (1976) studied the diaphragmatic force–length relation

nd estimated the diaphragmatic tension from the transdiaphragmatic
ressure. They found that the diaphragm’s effective radius of curva-
ure changes little at large lung volumes. Strumpt, Humphrey, and
in (Strumpt et al., 1993) studied biaxial stress–strain relations of
canine diaphragm in the passive state and during tetanic contraction.
They reported highly nonlinear stress–strain relations, limits of extensi-
bility, and marked anisotropy in the passive state. They concluded that
‘‘the different passive and tetanized stress–strain relations imply that
different forms of constitutive laws must be used to describe passive
and active muscle.’’ Boriek et al. (2000) studied biaxial stress–strain
relations of the passive canine diaphragm for different combinations of
strains in the directions along and perpendicular to the muscle fibers.
They found that the compliance in the transverse direction is larger
than previously believed.

Boriek et al. (2005) studied the shape and tension distribution of
the active canine diaphragm, by measuring transdiaphragmatic pres-
sure and the in vivo diaphragm shape, and computing the tension

∗ Corresponding author.
E-mail address: chen@uh.edu (Y.-c. Chen).

distribution in the diaphragm using a finite element program. They
showed that the tensions were non-uniform in the diaphragm. Greybeck
et al. (2011) studied the diaphragm curvature, muscle shortening,
and volume displacement during spontaneous breathing and during
phrenic nerve stimulation. They reported that at maximum stimulation
the muscle shortening causes a nonlinear increase in diaphragm vol-
ume displacement, concomitant with a nonlinear change in diaphragm
curvature.

Much research efforts are needed to acquire a complete understand-
ing of the mechanical properties of the diaphragm, and to develop
mechanical models to analyze and predict the shape and motion of the
diaphragm in the respiration process.

• The existing investigations of the mechanical properties of the
diaphragm have been based on biaxial experiments in which the
principal stresses are in the direction and the transverse direction
of the muscle fibers. Such experiments, while providing important
information, are not sufficient to determine the constitutive func-
tion of an anisotropic material surface by which the diaphragm is
modeled.

• Diaphragm muscle contraction is essential for its inspiratory ac-
tion on the rib cage. The current understanding of the muscle
contraction in relation to the constitutive behavior of the di-
aphragm is limited. The existing investigations are confined to
the constitutive function of the passive diaphragm or to a sep-
arate constitutive function of the fully activated diaphragm. A
comprehensive and unified constitutive function that would give
the stress–strain relations in the entire range of muscle activation
is currently unavailable.
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• The power of a theoretical model for diaphragm lies in its ability
to predict both the shape changes and stress distribution in the
diaphragm in response to normal respiration as well as higher
level of ventilatory demand. While there are some isolated efforts
to use finite element analysis to compute the stresses in the
diaphragm from the measured diaphragm shapes, such efforts did
not solve the equilibrium equations and did not fully utilize the
prediction power of the mechanics theory.

This work is to fill these gaps by developing a theoretical framework
or mechanics of the diaphragm. We establish a constitutive theory for
he diaphragm by modeling it as an active anisotropic elastic material
urface with an activation parameter and a unit vector along the muscle
ibers. The diaphragm can be activated by motor units within the
keletal muscle fibers, which induces the fiber contraction, as well
s alternations of stresses when the diaphragm is constrained. Based
n this physical model, an elastic energy function is derived which
epends on the deformation gradient and the activation parameter.
t leads to the stress–strain relations from the passive to the maxi-
um activation of the diaphragm muscles, including intermediate and
ubmaximal activations.
The equilibrium equations are derived for general material surfaces,

nd are specialized to the diaphragm. The solutions of the equilibrium
quations lead to the shape and stresses of diaphragm for given values
f the activation parameter and the transdiaphragmatic pressure. The
quations of equilibrium, which are nonlinear partial differential equa-
ions in two dimensions, can reduce to ordinary differential equations
or axisymmetric deformations. Analytical/numerical solutions of the
quilibrium equations are obtained to give complete descriptions of the
eformation and stresses in the diaphragm for various values of the
ctivation parameter and the transdiaphragmatic pressure.

. Basic formulae

.1. Kinematics

In continuum mechanics, a three-dimensional continuum that is
mall in one dimension is modeled as a material surface — a two-
imensional body that at any instant occupies a geometric surface
n Euclidean space of dimension three. In this work, we model the
iaphragm as a material surface which, in a reference configuration,
ccupies a domed-shaped surface . This should be regarded as an
dealization, since the diaphragm has a finite thickness and is embodied
ith a complex structure, consisting of muscle fibers, blood vessels,
onnective tissues, and collagenous membranes on both the abdominal
nd thoracic surfaces. The idealization of material surface makes it
ossible to develop a concise and mathematically amenable theory for
he diaphragm.
The material surface can change its shape under the actions of

orces and certain activation mechanisms. This change of shape is
ully described by the deformations of the material particles in the
urface, which can be expressed by a mapping 𝒙̂ from  to the three-
imensional space. Let the position vector of a material particle in the
eference configuration  be denoted by 𝑿. The position vector 𝒙 of
he material particle after deformation is

= 𝒙̂(𝑿). (1)

e denote by  the deformed surface:

= 𝒙̂(). (2)

The local deformations of the material particles within a material
urface element can be described by the surface deformation gradient
of 𝒙̂:

̂

2

= Grad𝒙. (3) d
he deformation gradient as defined in (3) is a linear transformation
(tensor) from the tangent space of the reference surface  to the
tangent space of the deformed surface , and can be represented by
a 2 × 2 matrix with respect to appropriate coordinate systems in the
tangent spaces of  and .

2.2. Stresses

The internal distributed forces within the material surface is de-
scribed by a stress vector field. Consider a cross section (an incision) of
the surface . The stress vector 𝒕 is the force per unit length over the
cross section. There is a stress tensor field 𝑻 (𝒙), also called the Cauchy
stress tensor field, such that the stress vector 𝒕(𝒙) at the material particle
𝒙 on the cross section is given by

𝒕(𝒙) = 𝑻 (𝒙)𝒏(𝒙), (4)

where 𝒏(𝒙) is the unit outward vector that is normal to the cross section
at 𝒙 and is tangent to the deformed surface.

It is often convenient to use the Piola–Kirchhoff stress tensor 𝑺,
which is related to the Cauchy stress tensor 𝑻 through

𝑺 = (det 𝑭 )𝑻𝑭 −𝑇 . (5)

Corresponding to a cross section of the deformed surface  is a cross
section of the reference surface . Let 𝑵(𝑿) be the unit outward vector
normal to the cross section of . The vector

𝒔 = 𝑺𝑵 (6)

gives the force over the cross section of  per unit length of the cross
section of . That is,

𝒔 𝑑𝐿 = 𝒕 𝑑𝑙, (7)

where 𝑑𝐿 is a line element over the cross section of , and 𝑑𝑙 the
corresponding line element over the cross section of . Vector 𝒔 is
called traction vector, or engineering stress vector.

2.3. Constitutive relations

A constitutive function relates the stress in the material surface to
its deformation and other state variables. For a pure elastic material
surface, the Piola–Kirchhoff stress tensor is given by

𝑺 =
𝜕𝑊 (𝑭 )
𝜕𝑭

, (8)

where 𝑊 (𝑭 ) is an elastic energy function whose value gives the elastic
energy in the surface per unit reference area. The form of the elas-
tic energy function can be obtained from experiments in which the
deformation gradient 𝑭 and the work of the stress are measured.

For an active elastic material surface, by which the diaphragm
is modeled in this work, the elastic energy function depends on an
additional variable 𝜂, called activation parameter:

𝑊 = 𝑊̃ (𝑭 , 𝜂). (9)

The activation parameter 𝜂, taking values between 0 and 1, describes
he degree of activation. The diaphragm is in passive state when 𝜂 = 0,
nd is fully activated when 𝜂 = 1.
While the elastic energy function (9) represents the most general

onstitutive function for an active elastic material surface, determi-
ation of 𝑊̃ (𝑭 , 𝜂) for diaphragm through experiments is prohibitively
ifficult. On one hand, to determine the dependence of 𝑊̃ on the de-
ormation gradient 𝑭 requires well-controlled experiments that subject
he diaphragm to all possible deformations, which can be achieved only
n vitro. On the other hand, to determine the dependence of 𝑊̃ on the
ctivation parameter 𝜂 requires experiments for the diaphragm to be
n various stages of activation, which can be achieved only in vivo. To
etermine 𝑊̃ (𝑭 , 𝜂) in the entire product space of 𝑭 and 𝜂 is much more

ifficult.
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Toward overcoming these difficulties, we propose a special form
of elastic energy function, which is based on the basic mechanisms of
activation for skeletal muscle fibers. A major advantage of the proposed
form of the elastic energy is that 𝑊̃ (𝑭 , 𝜂) can be determined from
̃ (𝑭 , 0). That is, the constitutive function of the activated diaphragm
an be determined from its constitutive function in the passive state.
A basic functional unit of skeletal muscle, called motor unit, consists

f a motor neuron and a group of skeletal muscle fibers. Each muscle
iber is composed of hundreds of myofibrils containing the proteins
ctin and myosin. An individual myofibril is comprised of small regions
alled sarcomeres, each about 2 μm long in the passive state, which
ontain parallel-running myosin filaments and actin filaments. During
he activation process, impulses are generated by the motor neuron
nd travel to each sarcomere, causing two opposing actin filaments to
lide toward each other over the myosin, shortening the sarcomere,
nd therefore shortening the whole myofibril and muscle fiber. This
ctivation mechanism suggests a decomposition of the deformation
radient 𝑭 as

= 𝑭 𝑒𝑨(𝜂), (10)

here 𝑨(𝜂) is an activation tensor that gives the change of diaphragm
eometry due to activation, and 𝑭 𝑒 is elastic deformation gradient of
he activated diaphragm. Upon activation, an unconstrained diaphragm
ndergoes a deformation characterized by 𝑨(𝜂). Based on the acti-
ation mechanism of the skeletal muscles, we propose the following
onstitutive relation for the diaphragm:

(𝑭 , 𝜂) =
𝜕𝑊 (𝑭 𝑒)
𝜕𝑭 𝑒

|

|

|

|𝑭 𝑒=𝑭𝑨−1(𝜂)
, (11)

here 𝑊 is the elastic energy function of the diaphragm in its passive
tate, that is, 𝑊 (𝑭 ) = 𝑊̃ (𝑭 , 0). The basic premise of the constitutive
elations (11) is that in various activated states, the intrinsic mechan-
cal properties of the material surface remain unchanged. Specifically,
uring the activation process of skeletal muscle fibers, the length of a
arcomere decreases due to the sliding of actin filaments while the com-
osition of the sarcomere remains unaltered. The effect of activation
mounts to shifting the reference configuration of the material surface
o a new configuration described by 𝑨(𝜂).
An immediate observation is that the constitutive relation (11)

llows one to determine the stress–strain relation of the diaphragm
t any activated state from the stress–strain relation of the passive
iaphragm, which can be obtained from an in vitro experiment, and
herefore eliminates the need of conducting in vivo experiments to
ind the stress–strain relation of the active diaphragm. The form of the
ctivation tensor 𝑨(𝜂) can be either postulated from the mechanisms
f the muscle fiber activation, or deduced from the experiments of
he unconstrained diaphragm in various activation states via tetanic
timulations.

.4. Anisotropy

Since the diaphragm is composed of skeletal muscle fibers, the
echanical response of the diaphragm to loads is orientation depen-
ent. Such an anisotropy leads to a reduced form of the elastic energy
unction, which depends on the deformation gradient through certain
nvariants under the material symmetry group actions. The theory of
aterial symmetry for three-dimensional (bulk) materials is well devel-
ped, with the reduced elastic energy functions for various anisotropies
eing reported in the literature (See, for example, Ogden (1984)).
owever, the theory of material symmetry and reduced elastic en-
rgy functions for two-dimensional material surfaces, especially for
ctive material surfaces, seem unavailable in the open literature. Here,
e present the relevant results for diaphragm which possesses the
nisotropy induced by one family of muscle fibers.
Let 𝑴(𝑿) be a unit vector that represents the direction of a muscle
3

iber at the point 𝑿 in the reference configuration. The direction of
he muscle fiber after an unconstrained activation is given by the unit
ector

=
𝑨(𝜂)𝑴
|𝑨(𝜂)𝑴|

. (12)

For the anisotropic material surface after which the diaphragm is
modeled, the elastic energy function 𝑊 (𝑭 𝑒) can be written as a func-
tion of three scalar variables associated with the elastic deformation
gradient:

𝑊 (𝑭 𝑒) = 𝑊̂ (𝐼1(𝑭 𝑒), 𝐼2(𝑭 𝑒), 𝐼3(𝑭 𝑒)), (13)

where

𝐼1(𝑭 𝑒) = 𝑭 𝑒 ⋅ 𝑭 𝑒, 𝐼2(𝑭 𝑒) = (det 𝑭 𝑒)2, 𝐼3(𝑭 𝑒) = |𝑭 𝑒𝒎|

2. (14)

y (13) and (14), the derivative of the elastic energy with respect to
he elastic deformation gradient 𝑭 𝑒 is found to be
𝜕𝑊 (𝑭 𝑒)
𝜕𝑭 𝑒

= 2𝑊̂1𝑭 𝑒 + 2𝐼2𝑊̂2𝑭 −𝑇
𝑒 + 2𝑊̂3𝑭 𝑒𝒎⊗𝒎, (15)

here

̂ 𝑖 =
𝜕𝑊̂
𝜕𝐼𝑖

, 𝑖 = 1, 2, 3. (16)

Substituting (15) into (11) gives the Piola–Kirchhoff stress tensor
for the active, anisotropic material surface

𝑺(𝑭 , 𝜂) = 2(𝑊̂1𝑭𝑨−1 + 𝐼2𝑊̂2𝑭 −𝑇𝑨𝑇 + 𝑊̂3𝑭𝑨−1𝒎⊗𝒎), (17)

the derivatives of 𝑊̂ are evaluated at

𝐼1 = |𝑭𝑨−1
|

2, 𝐼2 = (det 𝑭 )2(det𝑨)−2, 𝐼3 = |𝑭𝑨−1𝒎|

2. (18)

Consistent with the activation mechanism and the particular
anisotropy of the diaphragm, we propose the following form of the
activation tensor:

𝑨(𝜂) = 𝑰 − 𝜖𝜂𝑴 ⊗𝑴 , (19)

where 𝑰 is the identity tensor in the tangent space of , and 𝜖 is a
constant corresponding to the contraction strain in the fiber direction at
the maximum activation under zero stress.1 The form of the activation
tensor (19) is based on the premise that during the activation, the
unconstrained material surface contracts in the direction of fiber, with
no deformation in the transverse direction of the fiber. Indeed, the
activation tensor (19) represents a strain −𝜖𝜂 in the fiber direction, and
zero strain in the transverse direction.

2.5. Determination of the constitutive functions. Biaxial experiments

The theory developed in the present work enables us to determine
and predict the shape, stresses, and other important characteristics of
the diaphragm during the respiration process by solving an appropri-
ate boundary value problem of the equilibrium equations. Doing so
requires the form of the constitutive functions, specifically, the elastic
energy function 𝑊̂ in (13). To our knowledge, currently there are not
complete experimental data, either for animal diaphragm or for human
diaphragm, to determine the elastic energy function 𝑊̂ . However, there
is considerable amount of data acquired from biaxial experiments with
loadings in and perpendicular to the muscle fiber directions. Such
experiments provide partial and useful information for the constitutive
function.

In the biaxial experiments of the diaphragm reported in Strumpt
et al. (1993) and Boriek et al. (2000), a square diaphragm sample
was excised along and transverse the muscle fibers. The sample was
subjected to two sets of orthogonal forces, and the corresponding

1 Since diaphragm in vivo is always constrained, the maximum contraction
train 𝜖 can be measured in an in vitro experiment with a stress-free diaphragm
sample activated through tetanic stimulations.
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stretches were measured. In a Cartesian coordinate system of which
the 𝑥1-axis is in the direction of the fiber and 𝑥2-axis in the transverse
direction, the deformation gradient 𝑭 and the anisotropy vector𝑴 can
be written in the component form

𝑭 =
[

𝜆1 0
0 𝜆2

]

, 𝑴 =
[

1
0

]

, (20)

where 𝜆1 and 𝜆2 are the principal stretches, respectively, in the direc-
ion and the transverse direction of the fibers. Substituting (12) and
20) into (17) gives the Piola–Kirchhoff stress in the passive diaphragm
n the biaxial experiment:

(𝑭 , 0) = 2(𝑊̂1𝑭 + 𝐼2𝑊̂2𝑭 −𝑇 + 𝑊̂3𝑭𝑴 ⊗𝑴)

=
[

2(𝜆1𝑊̂1 + 𝜆1𝜆22𝑊̂2 + 𝜆1𝑊̂3) 0
0 2(𝜆2𝑊̂1 + 𝜆21𝜆2𝑊̂2)

]

, (21)

here the derivatives of 𝑊̂ are evaluated at

𝐼1, 𝐼2, 𝐼3) = (𝜆21 + 𝜆22, 𝜆
2
1𝜆

2
2, 𝜆

2
1). (22)

n the biaxial experiment, the principal stresses, denoted by 𝑆1 and 𝑆2,
re obtained by dividing the force over an edge by the length of the
dge before deformation. It follows from (21) that 𝑆1 and 𝑆2 are related
o the constitutive function 𝑊̂ by

1(𝜆1, 𝜆2) = 2[𝜆1𝑊̂1(𝜆21 + 𝜆22, 𝜆
2
1𝜆

2
2, 𝜆

2
1) + 𝜆1𝜆

2
2𝑊̂2(𝜆21 + 𝜆22, 𝜆

2
1𝜆

2
2, 𝜆

2
1)

+ 𝜆1𝑊̂3(𝜆21 + 𝜆22, 𝜆
2
1𝜆

2
2, 𝜆

2
1)] (23)

nd

2(𝜆1, 𝜆2) = 2[𝜆2𝑊̂1(𝜆21 + 𝜆22, 𝜆
2
1𝜆

2
2, 𝜆

2
1) + 𝜆21𝜆2𝑊̂2(𝜆21 + 𝜆22, 𝜆

2
1𝜆

2
2, 𝜆

2
1)]. (24)

nce 𝑆1 and 𝑆2 are obtained from the experiment, Eqs. (23) and (24)
an be integrated to determine the energy function 𝑊̂ on a subset of
ts domain defined by (22). To find 𝑊̂ in its entire domain, additional
xperiments are needed, such as a shear experiment, or a biaxial
xperiment in which the edges of the square sample are not in the
irection and transverse direction of the muscle fibers.
Although the biaxial experiments reported in the literature are

ot sufficient to determine the elastic energy function 𝑊̂ for the
iaphragm, they provide partial and important information for the
onstitutive relation of the diaphragm. As we shall see, the principal
tress–principal stretch relations 𝑆1(𝜆1, 𝜆2) and 𝑆2(𝜆1, 𝜆2) obtained from
he biaxial experiments are sufficient for finding the axisymmetric
olutions of the equilibrium equations.

.6. Equations of equilibrium

A problem of great theoretical and practical importance in the
iaphragm mechanics is to analytically determine and predict the
hape and motion of the diaphragm and the stress distribution in the
iaphragm during the process of respiration. This problem is unsolved
o date, and is one of the primary motivations of the present work.
The problem can be solved by finding the solution of the equilibrium

quations, which for a material surface can be written as

iv𝑻 + 𝒃 = 𝟎, (25)

here div is the surface divergence operator in the deformed surface,
nd 𝒃 is the body force per unit area on the deformed surface. The
ransdiaphragmatic pressures across the diaphragm can be treated as a
art of the body force.
By (5), the equations of equilibrium can be written in terms of the

iola–Kirchhoff stress tensor 𝑺 as

iv𝑺 + (det𝑭 )𝒃 = 𝟎, (26)

here Div is the surface divergence operator in the reference configu-
ation . The equations of equilibrium (26) are a system of nonlinear
artial differential equations for the deformation vector 𝒙(𝑿). The
olution of the system gives the deformation vector, and therefore
he shape of the diaphragm. Moreover, substituting the gradient of
he deformation vector into (11) gives the stress distribution in the
4

iaphragm.
. Axisymmetric deformations. Reduced equations of equilibrium

The solution of the full equations of equilibrium (26) requires the
onstitutive function 𝑊̂ which is currently unavailable. Moreover, solv-
ng nonlinear partial differential equations (26) is a difficult task. In this
ection, we present an analysis for axisymmetric deformations, which
ffectively reduce (26) to a system of ordinary differential equations,
nd require only partial information of 𝑊̂ , which is obtainable from
he existing biaxial experiments.
Consider a diaphragm that is axisymmetric in the reference config-

ration , which can be generated by rotating a planar curve about
n axis. We employ the standard cylindrical coordinate system (𝑟, 𝜃, 𝑧)
ith unit base vectors 𝒆𝑟, 𝒆𝜃 , and 𝒆𝑧. The reference configuration  can
e represented by

(𝑠, 𝜃) = 𝑓 (𝑠)𝒆𝑟(𝜃) + 𝑔̄(𝑠)𝒆𝑧, 0 ≤ 𝑠 ≤ 𝐿, 0 ≤ 𝜃 < 2𝜋, (27)

here 𝑓 and 𝑔̄ are the parametric form of the generating curve, 𝑠 is
he arc-length parameter, and 𝐿 is the length of the generating curve.
f the generating curve corresponds to a muscle fiber in the diaphragm,
is the length of the muscle fiber. The tangent space of  is spanned
y two orthonormal vectors

1 =
𝜕𝑿
𝜕𝑠

/

|

|

|

𝜕𝑿
𝜕𝑠

|

|

|

= 𝑓 ′𝒆𝑟 + 𝑔̄′𝒆𝑧 and 𝑬2 =
𝜕𝑿
𝜕𝜃

/

|

|

|

𝜕𝑿
𝜕𝜃

|

|

|

= 𝒆𝜃 . (28)

Here and henceforth, a prime denotes the derivative with respect to the
parameter 𝑠.

We assume that the muscle fibers in the diaphragm are in the
meridian direction. The unit vector 𝑴 in the fiber direction is given
by

𝑴 = 𝜕𝑿
𝜕𝑠

/

|

|

|

𝜕𝑿
𝜕𝑠

|

|

|

= 𝑬1. (29)

By (19) and (29), the activation tensor is

𝑨 = (1 − 𝜖𝜂)𝑬1 ⊗ 𝑬1 + 𝑬2 ⊗ 𝑬2. (30)

If the diaphragm is bonded on a circular frame and is subjected
to the transdiaphragmatic pressures, a material particle moves in the
plane spanned by 𝒆𝑟 and 𝒆𝑧. These actions give rise to axisymmetric
deformations of the diaphragm, which can be expressed by

𝒙(𝑠, 𝜃) = 𝑓 (𝑠)𝒆𝑟(𝜃) + 𝑔(𝑠)𝒆𝑧. (31)

he functions 𝑓 and 𝑔 in (31) give the generating curve of the deformed
urface , and hence the shape of the deformed diaphragm.
The tangent space of the deformed surface  is spanned by two

rthonormal vectors

1 =
𝜕𝒙
𝜕𝑠

/

|

|

|

𝜕𝒙
𝜕𝑠

|

|

|

=
𝑓 ′𝒆𝑟 + 𝑔′𝒆𝑧
√

𝑓 ′2 + 𝑔′2
and 𝒆2 =

𝜕𝒙
𝜕𝜃

/

|

|

|

𝜕𝒙
𝜕𝜃

|

|

|

= 𝒆𝜃 . (32)

The deformation gradient is given by

𝑭 = 𝜕𝒙
𝜕𝑠

⊗𝜕𝑿
𝜕𝑠

/

|

|

|

𝜕𝑿
𝜕𝑠

|

|

|

2
+ 𝜕𝒙
𝜕𝜃

⊗𝜕𝑿
𝜕𝜃

/

|

|

|

𝜕𝑿
𝜕𝜃

|

|

|

2
=
√

𝑓 ′2 + 𝑔′2𝒆1⊗𝑬1+
𝑓
𝑓
𝒆2⊗𝑬2.

(33)

It follows from (10), (30), and (33) that

𝑭 𝑒 = 𝑭𝑨−1 =

√

𝑓 ′2 + 𝑔′2

1 − 𝜖𝜂
𝒆1 ⊗ 𝑬1 +

𝑓
𝑓
𝒆2 ⊗ 𝑬2. (34)

Also, (12) and (19) give

𝒎 =
(𝑰 − 𝜖𝜂𝑴 ⊗𝑴)𝑴
|(𝑰 − 𝜖𝜂𝑴 ⊗𝑴)𝑴|

= 𝑴 . (35)

Substituting (19), (29), (34), and (35) into (14) gives

𝐼1 =
𝑓 ′2 + 𝑔′2

(1 − 𝜖𝜂)2
+

𝑓 2

𝑓 2
, 𝐼2 =

𝑓 2(𝑓 ′2 + 𝑔′2)
𝑓 2(1 − 𝜖𝜂)2

, 𝐼3 =
𝑓 ′2 + 𝑔′2

(1 − 𝜖𝜂)2
. (36)

Furthermore, substituting (29), (34), (35), and (36) into (17) gives the
Piola–Kirchhoff stress tensor

𝑺 = 𝑆 𝒆 ⊗ 𝑬 + 𝑆 𝒆 ⊗ 𝑬 , (37)
11 1 1 22 2 2
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s

where

𝑆11 =
2
√

𝑓 ′2 + 𝑔′2

1 − 𝜖𝜂

(

𝑊̂1 +
𝑓 2

𝑓 2
𝑊̂2 + 𝑊̂3

)

, 𝑆22 =
2𝑓
𝑓

[

𝑊̂1 +
𝑓 ′2 + 𝑔′2

(1 − 𝜖𝜂)2
𝑊̂2

]

.

(38)

y (28), (32), (37), and (38), the surface divergence of the Piola–
irchhoff stress tensor 𝑺 is found to be

iv𝑺 = 𝜕𝑺
𝜕𝑠

𝜕𝑿
𝜕𝑠

/

|

|

|

𝜕𝑿
𝜕𝑠

|

|

|

2
+ 𝜕𝑺

𝜕𝜃
𝜕𝑿
𝜕𝜃

/

|

|

|

𝜕𝑿
𝜕𝜃

|

|

|

2

= 1
𝑓

[𝑓𝑆11(𝑓 ′𝒆𝑟 + 𝑔′𝒆𝑧)
√

𝑓 ′2 + 𝑔′2

]′
−

𝑆22

𝑓
𝒆𝑟. (39)

The diaphragm is subjected to esophageal pressure 𝑃𝑒𝑠 on the up-
per surface and to gastric pressure 𝑃𝑔𝑎 on the lower surface. The
transdiaphragmatic pressure 𝑃 is defined by

𝑃 = 𝑃𝑔𝑎 − 𝑃𝑒𝑠. (40)

The transdiaphragmatic pressure can be treated as a body force applied
on the diaphragm:

𝒃 = 𝑃 𝒆2 × 𝒆1. (41)

By (32), (33), (39), and (41), the equilibrium equations (26) become

1
𝑓

[𝑓𝑆11(𝑓 ′𝒆𝑟 + 𝑔′𝒆𝑧)
√

𝑓 ′2 + 𝑔′2

]′
−

𝑆22

𝑓
𝒆𝑟 −

𝑃𝑓
𝑓

(𝑓 ′𝒆𝑧 − 𝑔′𝒆𝑟) = 𝟎, (42)

hich give two ordinary differential equations for 𝑓 and 𝑔:

𝑓𝑓 ′𝑆11
√

𝑓 ′2 + 𝑔′2

)′
− 𝑆22 + 𝑃𝑓𝑔′ = 0,

( 𝑓𝑔′𝑆11
√

𝑓 ′2 + 𝑔′2

)′
− 𝑃𝑓𝑓 ′ = 0. (43)

ntegrating (43)2 yields

𝑓𝑔′𝑆11
√

𝑓 ′2 + 𝑔′2
− 1

2
𝑃𝑓 2 = 𝑐, (44)

here the constant of integration 𝑐 can be determined by appropriate
oundary conditions. By (44), Eq. (43)1 can be written as

[ (𝑐 + 1
2𝑃𝑓

2)𝑓 ′

𝑔′
]′
− 𝑆22 + 𝑃𝑓𝑔′ = 0. (45)

Since the stress components 𝑆11 and 𝑆22 given by (38) involve
he constitutive function 𝑊̂ , it may seem that solving the equilibrium
quations (44) and (45) would require the function form of 𝑊̂ , which
s currently unavailable in the literature. However, by comparing (23)
and (24) to (38), as well as (22) to (36), we find that 𝑆11 and 𝑆22 in
44) and (45) are identical, respectively, to the principal stresses 𝑆1 and
2 in (23) and (24), that are obtained from a biaxial experiment. Thus,
the equilibrium equations can be rewritten as

[ (𝑐 + 1
2𝑃𝑓

2)𝑓 ′

𝑔′
]′
−𝑆2(𝜆1, 𝜆2)+𝑃𝑓𝑔′ = 0,

𝑓𝑔′𝑆1(𝜆1, 𝜆2)
√

𝑓 ′2 + 𝑔′2
− 1
2
𝑃𝑓 2 = 𝑐,

(46)

here

1 =

√

𝑓 ′2 + 𝑔′2

1 − 𝜖𝜂
and 𝜆2 =

𝑓
𝑓
. (47)

The axisymmetric deformations (31) have effectively reduced the equi-
librium equations (26) to ordinary differential equations, which greatly
facilitates the numerical or analytical solutions. Moreover, only the
principal stress–principal stretch relations from the existing biaxial
experiments are needed for the reduced equilibrium equations.
5

Fig. 1. Schematic of the reference shape of diaphragm.

4. Equilibrium solutions based on a geometric model of diaphragm

In this section, we present a numerical solution of equilibrium equa-
tions. The main purpose is to demonstrate the utility of the theoretical
model in predicting the shapes and stresses of the diaphragm during
inspiration. We choose several values of 𝜂 and 𝑃 , and compute the
corresponding muscle fiber shortenings and alterations in diaphragm
shape and stresses.

4.1. A geometric model

The boundary value problem is based on a geometric model from
Amancharla et al. (2001), in which a passive and stress free canine
iaphragm is assumed to have an axisymmetric shape, generated by a
lane circular curve rotating about the cranial axis. The plane curve
orresponds to a muscle fiber from the chest wall insertion to the
uscle–tendon junction. The diaphragm in the reference configuration
s a hemispherical surface with a central hole, whose dimensions are
aken from Amancharla et al. (2001).
We thus take functions 𝑓 and 𝑔̄, which define the shape of the

passive diaphragm, to be of the form

𝑓 (𝑠) = 𝑅 cos 𝑠
𝑅
, 𝑔̄(𝑠) = 𝑅 sin 𝑠

𝑅
, 0 ≤ 𝑠 ≤ 𝐿, (48)

where 𝑅 is the radius of the circular arc that represents the muscle
fiber, which is also the radius of the chest wall into which the muscle
fiber is inserted. The central tendon, which is known to be essentially
isotropic and inextensible (see Boriek and Rodarte (1997)), is taken as
rigid spherical cap with base radius 𝑅𝑡 given by

𝑡 = 𝑅 cos 𝐿
𝑅
. (49)

schematic of the passive and stress-free diaphragm is depicted in
ig. 1.

.2. A boundary value problem

The deformed diaphragm is described by functions 𝑓 and 𝑔 which
atisfy the equilibrium equations (46) and the kinematic boundary
conditions

𝑓 (0) = 𝑅, 𝑓 (𝐿) = 𝑅𝑡, 𝑔(0) = 0. (50)

The boundary conditions (50)1,3 state that the chest wall has no dis-
placement, and (50)2 states that the central tendon has no deformation.
Moreover, 𝑓 and 𝑔 must also satisfy a traction boundary condition

2𝑔′(𝐿)𝑆1|𝑠=𝐿
√

= 𝑃 , (51)

𝑅𝑡 𝑓 ′2(𝐿) + 𝑔′2(𝐿)
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Fig. 2. Stress–strain data under various transverse loads for the passive canine
diaphragm in a biaxial experiment by Boriek et al. (2000).

hich follows from the force balance of the central tendon. Although
he central tendon cannot deform, it can move along the cranial axis
𝑧, with its displacement given by 𝑔(𝐿) − 𝑔̄(𝐿).
The constant 𝑐 in the equilibrium equations (46) can be determined

by evaluating the left-hand side of (46)2 at 𝑠 = 𝐿 and using (51), (48)1,
(49), and (50)2, yielding

𝑐 =
𝑓 (𝐿)𝑔′(𝐿)𝑆1|𝑠=𝐿
√

𝑓 ′2(𝐿) + 𝑔′2(𝐿)
− 1

2
𝑃𝑓 2(𝐿) = 0. (52)

Therefore, the equilibrium equations (46) reduce to
(𝑃𝑓 2𝑓 ′

2𝑔′
)′

− 𝑆2(𝜆1, 𝜆2) + 𝑃𝑓𝑔′ = 0,
𝑓𝑔′𝑆1(𝜆1, 𝜆2)
√

𝑓 ′2 + 𝑔′2
− 1

2
𝑃𝑓 2 = 0. (53)

t is noted that when 𝑃 = 0, the equilibrium equations (53) become
lgebraic equations

2(𝜆1, 𝜆2) = 0, 𝑔′𝑆1(𝜆1, 𝜆2) = 0, (54)

f which the analytical solutions are immediately available. Hence-
orth, we consider the case where 𝑃 ≠ 0.

.3. Principal stress–principal stretch relations

To find the solutions of the boundary value problem (50) and (53),
e utilize the principal stress–principal stretch relations 𝑆1(𝜆1, 𝜆2) and
2(𝜆1, 𝜆2) obtained from curve-fitting the biaxial experimental measure-
ents by Boriek et al. (2000), as shown in Fig. 2. We take the principal
tresses to be polynomials of degree 1 in stretches:

1(𝜆1, 𝜆2) = 𝑎11(𝜆1−1)+𝑎12(𝜆2−1), 𝑆2(𝜆1, 𝜆2) = 𝑎21(𝜆1−1)+𝑎22(𝜆2−1),

(55)

where 𝑎𝑖𝑗 are constants, which are obtained by fitting the data in Boriek
et al. (2000) as

𝑎11 = 42 g/cm, 𝑎12 = 𝑎21 = 22 g/cm, 𝑎22 = 73 g/cm. (56)

It is commonly believed that the maximum muscle fiber shortening
is about 50%. We thus take 𝜖 = 0.5.

4.4. Solution methods and the results

Our solution strategy is to first covert the equilibrium equations (53)
to a system of two nonlinear first-order ordinary differential equa-
tions and a nonlinear algebraic equation, and then to use appropriate
numerical iteration schemes to solve the system. We introduce two
intermediate variables 𝐹 and 𝐺 by

𝐹 (𝑠) =
𝑓 ′(𝑠)

, 𝐺(𝑠) = 𝑔′(𝑠). (57)
6

𝑔′(𝑠)
Fig. 3. The shape of diaphragm at various values of the transdiaphragmatic pressure
𝑃 and the activation parameter 𝜂.

Eq. (53)2 can be written as

𝑓𝑆1(𝜆1, 𝜆2)
√

𝐹 2 + 1
− 1

2
𝑃𝑓 2 = 0, (58)

nd Eqs. (47) written as

𝜆1 =
𝐺
√

𝐹 2 + 1
1 − 𝜖𝜂

and 𝜆2 =
𝑓
𝑓
. (59)

Eq. (58) is an algebraic equation for 𝐺 and can be solved explicitly to
yield

𝐺 =
1 − 𝜖𝜂

√

𝐹 2 + 1

[

1 −
𝑎12
𝑎11

(
𝑓
𝑓

− 1) +
𝑃𝑓 2

√

𝐹 2 + 1
2𝑎11𝑓

]

. (60)

Here, we have used (55)1. By (60), (59), and (55)2, we can write
Eq. (53)1 as a system of two first-order ordinary differential equations

𝑓 ′ =
(1 − 𝜖𝜂)𝐹
√

𝐹 2 + 1

[

1 −
𝑎12
𝑎11

(𝑓
𝑓

− 1
)

+
𝑃𝑓 2

√

𝐹 2 + 1
2𝑎11𝑓

]

,

𝐹 ′ =
2(𝑎11𝑎22 − 𝑎12𝑎21)

𝑎11𝑃𝑓 2

(𝑓
𝑓

− 1
)

+
𝑎21

√

𝐹 2 + 1
𝑎11𝑓

−
2(1 − 𝜖𝜂)

√

𝐹 2 + 1
𝑓

[

1 −
𝑎12
𝑎11

(𝑓
𝑓

− 1
)

+
𝑃𝑓 2

√

𝐹 2 + 1
2𝑎11𝑓

]

.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(61)

The system (61), along with the boundary conditions (50)1,2, are solved
numerically. Substituting the resulting solution 𝑓 and 𝐹 into (60) gives
𝐺, which, with (57)2 and the boundary condition (50)3, leads to 𝑔.

Functions 𝑓 and 𝑔 represent the shape of the diaphragm for pre-
scribed values of the activation parameter 𝜂 and the transdiaphragmatic
pressure 𝑃 . In Fig. 3, the shapes of the diaphragm are plotted for four
combinations of the values of 𝜂 and 𝑃 . The thicker portion of each curve
corresponds to the central tendon. The reference shape, represented
by the dashed curve, corresponds to 𝜂 = 0 and 𝑃 = 0. The curve
with 𝜂 = 0 and 𝑃 = 1 cmH2O is the shape of the diaphragm at the
beginning of inspiration when the diaphragm is passive and is subject to
a baseline transdiaphragmatic pressure. The diaphragm moves up from
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Fig. 4. The distributions of the meridional stress 𝑆1 and the circumferential stress 𝑆2 along the muscle fiber at various values of the transdiaphragmatic pressure 𝑃 and the
activation parameter 𝜂.
the reference shape under the action of a positive transdiaphragmatic
pressure from the lower side of the diaphragm. The curve with 𝜂 = 0.35
and 𝑃 = 3 cmH2O is the shape of the diaphragm in an intermediate
state of the inspiration. The increasing transphragmatic pressure tends
to move the diaphragm upward, while the activation (shortening) of
the muscle fibers tends to move the diaphragm downward. Finally, the
curve with 𝜂 = 0.7 and 𝑃 = 6 cmH2O is the shape of the diaphragm at a
high level of spontaneous muscle activation. The value of the activation
parameter 0.7 gives rise to 35% shortening (= 𝜖𝜂) of the muscle fibers,
which agrees with that reported in Amancharla et al. (2001). This
muscle fiber shortening causes the diaphragm to move downward, the
volume of the thoracic cavity to increase, and the transdiaphragmatic
pressure to increase.

For the axisymmetric deformations, the meridional stress 𝑆11 in the
direction of muscle fiber and the circumferential stress 𝑆22 are identical
to 𝑆1(𝜆1, 𝜆2) and 𝑆2(𝜆1, 𝜆2), which can be obtained by substituting
functions 𝑓 and 𝑔 into (47). In Fig. 4, the stresses 𝑆1 and 𝑆2 are
plotted along the muscle fiber length 𝑠, with 𝑠 = 0 corresponding to the
chest wall insertion and 𝑠 = 6 cm corresponding to the muscle–tendon
junction. The meridional stress 𝑆1 in the muscle fiber direction is seen
to increase in the activation parameter 𝜂 and the transdiaphragmatic
pressure 𝑃 . The stress distribution of 𝑆1 is non-uniform for large values
of 𝜂 and 𝑃 . At the end of inspiration, the stress at the muscle–tendon
junction is about 50% larger than the stress at the chest wall insertion.
The value of circumferential stress 𝑆2, transverse the muscle fiber, is
less than the value of 𝑆1, but also increases in 𝜂 and 𝑃 . The stress
distribution of 𝑆2 is again non-uniform. However, the transdiaphrag-
matic pressure 𝑃 is seen to have an effect of increasing 𝑆2 in the middle
portion of the muscle fibers, while the activation parameter 𝜂 has an
effect of increasing 𝑆2 near the muscle–tendon junction.

We note that in these simulations, the value of the transdiaphrag-
matic pressure 𝑃 is taken as input of the boundary value problem.
The baseline transdiaphragmatic pressure (1 cmH2O), the intermediate-
state pressure (3 cmH2O), and the high-activation pressure (6 cmH2O)
are estimated from the experimental measurements. In future work, it
will be desirable to consider a larger respiratory system that includes
the diaphragm, rib cage, lungs, bronchial tubes, throat, nose, and
7

mouth, and to determine the transdiaphragmatic pressure as a part of
the solution to a large system of governing equations for the respiratory
system.

5. Summary

A theoretical framework for mechanics of diaphragm is developed.
The salient features include:

• The diaphragm is modeled as an active anisotropic elastic ma-
terial surface. This material surface model allows for analytical
determination of the diaphragm shape and the stress distributions
with high accuracies and minimum computational efforts.

• A constitutive theory for diaphragm is developed which incorpo-
rates the activation mechanism of the skeletal muscle fibers. The
resulting constitutive function gives the stress–strain relations of
the diaphragm in the entire range of activations, from the passive
state to the maximum activation state.

• The anisotropy due to the muscle fibers is fully embodied in the
constitutive theory.

• The equilibrium equations are derived that are partial differential
equations for the deformation of the diaphragm.

• The equilibrium equations reduce to ordinary differential equa-
tions for axisymmetric deformations, which can be readily solved
numerically. Furthermore, only partial information of the consti-
tutive functions, which can be obtained from the existing biaxial
experiments, is needed for such solutions.

• A complete boundary value problem is formulated. The solutions
enable determinations and predictions of the diaphragm shapes,
stress distributions, and volume displacements in the full range of
the respiration process.

Future investigations may include refinements of the constitutive
models, development of new experiments to determine the complete
constitutive function and the activation function, and development of
the solution methods for more realistic geometric models and non-
axisymmetric deformations. A fully developed model will provide the
researchers and clinicians with powerful analytic tools to conduct
patient-specific studies of the respiratory system, and thus empowers

them to undertake the tasks that are not previously possible.
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