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AssTrACT. We define and prove the existence of unique solutions of an asymptotic Plateau
problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature (2, 1): the
boundary data is given by loops on the boundary at infinity of the pseudo-hyperbolic space
which are limits of positive curves. We also discuss a compact Plateau problem. The required
compactness arguments rely on an analysis of the pseudo-holomorphic curves defined by the
Gaus lifts of the maximal surfaces.

AsstrACT. Nous définissons un probleme de Plateau asymptotique pour les surfaces maxi-
males de type espace dans 'espace pseudo-hyperbolique de signature (2,7) dont le bord a
I'infini est donné par des courbes, dites semi—positives, et qui sont limites de courbes positives.
Nous montrons l'existence et 1'unicité des solutions correspondantes et discutons le probleme
de Plateau compact correspondant. Les arguments de compacité utilisés requierent ’analyse
de courbes pseudo-holomorphes définies par le relevé de Gaufs de surfaces maximales.
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1. INTRODUCTION

Our goal is to study Plateau problems in the pseudo-hyperbolic space H*", which can be
quickly described as the space of negative definite lines in a vector space of signature (2,71 +1).
As such H*" is a complete homogeneous pseudo-Riemannian manifold of signature (2, 1)
and curvature —1.

Quite naturally, H>" bears many resemblances to the hyperbolic plane, which corresponds
to the case n = 0. In particular, generalising the Klein model, H>" may be described as one
of the connected components of the complement to a quadric in the projective space of
dimension n + 2.

This quadric is classically called the Einstein universe and we shall denote it by dH>" [5].
Analogously to the hyperbolic case, the space doH>" carries a conformal metric of signature
(1,n) and we will consider it as a boundary at infinity of H>". Topologically, dH?*" is the
quotient of S' X §” by an involution.

From the Lie group perspective, the space H>" has PSO(2, 1 + 1) as a group of isometries
and the Einstein space do,H*" is the Shilov boundary of this rank two Hermitian group, that
is the unique closed PSO(2, n + 1)-orbit in the boundary of the symmetric domain.

Positive triples and positivity in the Shilov boundary [20] play an important role in the
theory of Hermitian symmetric spaces; of notable importance are the positive loops. Important
examples of these are spacelike curves homotopic to S! and specifically the positive circles
which are boundaries at infinity in our compactification to totally geodesic embeddings of
hyperbolic planes. Then semi-positive loops are limits of positive loops in some natural sense
(see paragraph 2.5.2 for precise definitions).

Surfaces in a pseudo-Riemannian space may have induced metrics of variable signatures.
We are interested in this paper in spacelike surfaces in which the induced metric is positive
everywhere. Among these are the maximal surfaces which are critical points of the area
functional, for variations with compact support, see paragraph 3.3.3 for details. These
maximal surfaces are the analogues of minimal surfaces in the Riemannian setting. An
important case of those maximal surfaces in H>" are, again, the totally geodesic surfaces
which are isometric to hyperbolic planes.

We refer to the first two sections of this paper for precise definitions of what we have
above described only roughly.

Our main Theorem is the following.

Theorem A (AsymproTic PLATEAU PROBLEM). Any semi-positive loop in dH>" bounds a unique
complete maximal surface in H>".

In this paper, a semi-positive loop is not necessarily smooth. Also note that a properly
embedded surface might not be complete and so the completeness condition is not vacuous.

On the other hand, we will show in section 3 that complete spacelike surfaces limit
on semi-positive loops in duH?>", and so Theorem A may be understood as identifying
semi-positivity as the condition on curves in do, H>" that corresponds to complete maximality
for surfaces in H>".

The uniqueness part of the theorem is strikingly different from the corresponding setting
in hyperbolic space where the uniqueness of solutions of the asymptotic Plateau problem
fails in general for some quasi-symmetric curves as shown by Anderson, Wang and Huang
[3, 46, 29].

As a tool in the theorem above, we also prove the following result, of independent interest,
on the Plateau problem with boundary in H?". The relevant notion for curves is that of
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strongly positive curves, and among those the connected set of deformable ones which are
defined in paragraph 3.2.

Theorem B (PLaTEAU PROBLEM). Any deformable strongly positive closed curve in H*" bounds a
unique compact complete maximal surface in H>".

One of the original motivations for this paper comes from the “equivariant situation”.
Recall that G := PSO(2, n + 1) is the isometry group of a Hermitian symmetric space M: the
maximal compact subgroup of G has an SO(2) factor which is associated to a line bundle L
over M. Thus a representation p of the fundamental group of a closed orientable surface S
in G carries a Toledo invariant: the Chern class of the pull back of L by any map equivariant
under p from the universal cover of S to M [45]. The maximal representations are those for
which the integral of the Toledo invariant achieves its maximal value. These maximal
representations have been extensively studied, from the point of view of Higgs bundles, by
Bradlow, Garcia-Prada and Gothen [14] and from the perspective of bounded cohomology,
by Burger, lozzi and Wienhard [16]. In particular, a representation is maximal if and only if
it preserves a positive continuous curve [15, 16]. Then Collier, Tholozan and Toulisse have
shown that there exists a unique equivariant maximal surface with respect to a maximal
representation in PSO(2, n + 1) [21]. This last result, an inspiration for our work, is now a
consequence of Theorem A.

We note that maximal surfaces in H>" were also considered in a work by Ishihara [31] -
see also Mealy [37]- and that Yang Li has obtained results for the finite Plateau problems
in the Lorentzian case [38], while the codimension one Lorentzian case was studied by
Bartnik and Simon in [7]. Yang Li’s paper contains many references pertinent to the flat case.
Neither paper restricts to two spacelike dimensions.

Another motivation comes from the contemplation of two other rank two groups: SL(3, R)
and SL(2, R) x SL(2, R), where we notice the latter group is isogenic to PSO(2,2).

Affine spheres and SL(3, R): While maximal surfaces are the natural conformal variational
problem for SO(2, 1), the analogous problem in the setting of SL(3, IR) is that of affine spheres.
Cheng and Yau [18], confirming a conjecture due to Calabi, proved that given any properly
convex curve in the real projective space, there exists a unique affine sphere in R* asymptotic
to it. That result has consequences for the equivariant situation as well, due independently
to Loftin and Labourie [39, 34]. Our main Theorem A may be regarded as an analogue of the
Cheng—Yau Theorem: both affine spheres and maximal surfaces (for SO(2, 3)) are lifted as
holomorphic curves — known as cyclic surfaces in [35] — in G/K;, where G is SL(3, R) in the
first case and SO(2, 3) in the second, and K is a compact torus. Moreover these holomorphic
curves finally project as minimal surfaces in the symmetric space of G.

The case n = 1: The case of SL(2,R) x SL(2,R) and maximal surfaces in H>! has been
extensively studied by Bonsante and Schlenker [11] and written only in the specific case of
quasi-symmetric boundaries values — see also Tamburelli [42, 43] for further extensions. Our
main Theorem A is thus a generalization in higher dimension of one of their main results.
Also in the case of H>!, we note that Bonsante and Seppi [12] have shown the existence, for
any K < —1, of a unique K-surface extending a semi-positive loop in deoH>?.

Lorentzian asymptotic Plateau problem: There is also an interesting analogy with the work
of Bonsante, Seppi and Smillie [13] in which they prove that, for every H > 0, any regular
domain D in the (n + 1)-dimensional Minkowski space contains a unique entire spacelike
surface of constant mean curvature H whose domain of dependence is D. Their work
corresponds to the non-semisimple Lie group SO(n,1) < R™!. The similarities between
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the asymptotic behavior of their regular domains and our notion of semi-positive loops in
dH?" are striking, in that both only require a non-degeneracy over 2 or 3 points.

In a subsequent paper [36], the first two authors study the analogue of the Benoist-Hulin
result [8] for convex geometry and study quasisymmetric positive curves and the relation
with the associated maximal surface . In contrast, Tamburelli and Wolf study the case of
“polygonal curves” in the H>? case, whose group of isometries is SO(2, 3) which is isogenic to
Sp(4, R) [44]; there they prove results analogous to Dumas-Wolf [23]. One goal in that work
is to identify local limiting behavior of degenerating cocompact families of representations.

The proof of Theorem A follows a natural outline. We prove the uniqueness portion by
relying on a version of the Omori maximum principle; the bulk of the proof is on the existence
question. To that end, we approximate a semi-positive loop on d,H*" by semi-positive
graphs in H2"; as maximal surfaces in our setting are stable, we solve the Plateau problem
for these with a continuity method, proving compactness theorems relevant to that situation.
We then need to show that these finite approximations converge, limiting on a maximal
surface with the required boundary values. Thus, much of our argument comes down to
obtaining compactness theorems with control on the boundary values. Some careful analysis
of this setting allows us to restrict the scope of our study to disks and semi-disks. Then, the
main new idea here is to use the Gaufs lift of the surfaces, to an appropriate Grassmannian,
which are shown to be pseudo-holomorphic curves. We can then use Schwarz lemmas to
obtain

(i) first a compactness theorem under a bound on the second fundamental form,
(i) then after a rescaling argument using a Bernstein-type theorem in the rescaled limit
E2" of H?>", a uniform bound on the second fundamental form.

We would like to thank specifically Andrea Tamburelli for pointing out the use of Omori
Theorem in this setting, Alex Moriani, Enrico Trebeschi, Fanny Kassel and the referee for
pointing out various mistakes in an earlier version, as well as useful comments by Dominique
Hulin, Fanny Kassel, Qiongling Li, John Loftin, Raffe Mazzeo, Anna Wienhard and Tengren
Zhang. Helmut Hofer provided crucial references for the pseudo-holomorphic appendix
and we would like to especially thank him here.

1.1. Structure of this article.

(i) In section 2, we describe the geometry of the pseudo-hyperbolic space H>", and
its boundary at infinity, the Einstein universe dH?". There we carefully define
positive and semi-positive curves in dH>".

(ii) In section 3, we discuss curves and surfaces in H>". In particular we introduce
maximal surfaces and show that they may be interpreted as holomorphic curves.
We also discuss spacelike curves and various notions related to them.

(iii) In section 4, we prove the uniqueness part of our two main theorems.

(iv) In section 5, we prove, using the holomorphic curve interpretation, a crucial
compactness theorem for maximal surfaces. We feel this is of some independent
interest.

(v) In section 6, we describe different consequences of our main compactness Theorem,
whose formulations we will use in the proof of Theorem A.

(vi) In section 7, we prove the Plateau Theorem B by the continuity method, relying on
the both the stability of the maximal surface and a compactness consequence from
section 6.
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(vii) Insection 8 we prove the Asymptotic Plateau Theorem A using the Plateau Theorem
B, an exhaustion procedure, and the results in section 6.

(viii) In the Appendices A and C, we describe the notion of bounded geometry and prove
the relevant results needed for the holomorphic curve interpretation. We expect
that last appendix has some independent interest.

2. PSEUDO-HYPERBOLIC GEOMETRY

In this section, we describe the basic geometry of the pseudo-hyperbolic space and its
boundary, the Einstein universe. Part of the material covered here can be found in [5, 21, 22].
This section consists mainly of definitions.

2.1. The pseudo-hyperbolic space. In this paper, we will denote by E a vector space
equipped with a non-degenerate quadratic form q of signature (2, n + 1). The group O(E)
of linear transformations of E preserving q has four connected components, and we will
denote by G := SOy (E) the connected component of the identity. The group G is isomorphic
to SOp(2,n + 1).

Definition 2.1. The pseudo-hyperbolic space H>" is the space of negative definite lines in E,
namely

H*" :=P({x€ E| q(x) <0}) C P(E) .

The pseudo-hyperbolic space H>" is naturally equipped with a signature (2, n) pseudo-
Riemannian metric g of curvature —1. The group G acts by isometries on H>" and the
stabilizer of a point contains a group isomorphic to SOy(2, 1) as an index two subgroup. In
particular, H>" is a (pseudo-Riemannian) symmetric space of G.

2.1.1. Geodesics and acausal sets. Complete geodesics are intersections of projective lines with
H2". Any two distinct points (x, y) lie on a unique complete geodesic. We parametrize a
geodesic by parallel tangent vectors.

A geodesic y, which is the intersection of the projective line P(F) with H2", can be of three

types:
(i) Spacelike geodesics, when F has signature (1, 1), or equivalently q(y) is positive.
(ii) Timelike geodesics, when F has signature (0,2), or equivalently q(y) is negative.
(iii) Lightlike geodesics, when F is degenerate, or equivalently q(y) = 0.

A geodesic segment is the restriction of a parametrized complete geodesic to the segment
[0, 1]. Two distinct points (x, y) are extremities of a geodesic segment, which is unique unless
the corresponding complete geodesic is timelike (in which case there are exactly two such
geodesic segment).

We say the pair of points (x, y) is acausal if they are the extremities of a spacelike geodesic
segment y. We then define its spatial distance as

o(x,y) = j: mdt.

A subset U of H>" is acausal if every pair of distinct points in U is acausal.



6 F. LABOURIE, J. TOULISSE, AND M. WOLF

2.1.2. Hyperbolic planes. A hyperbolic plane H in H>" is the intersection of H>" with a projective
plane P(F) where F is a three-dimensional linear subspace of signature (2,1). The spatial
distance 0 restricts to the hyperbolic distance on any hyperbolic plane.

A pointed hyperbolic plane P is a pair (g, H) where H is a hyperbolic plane and q € H.
A pointed hyperbolic plane is equivalent to the datum of an orthogonal decomposition
E = LeU®V where L is a negative definite line, U a positive definite 2-plane and V = (L& U)*.

2.1.3. The double cover. In the sequel, we will often work with the space
HY" = {x € E, q(x) = -1} .

The natural projection P : E \ {0} — P(E) restricts to a double cover Hi’" — H?",

The tangent space T,H>" is canonically identified with x*. The restriction of q to
T, H2" equips H" with the signature (2, 11) pseudo-Riemannian metric such that the cover
H>" — H>" is a local isometry. We still denote this metric by g.

Complete geodesics in H3" are connected components of lifts of complete geodesics
in H>". As in H*>", we parametrize complete geodesics with parallel tangent vectors. A
geodesic segment in HY" is the restriction of a (parametrized) complete geodesic to the
segment [0,1]. A pair of distinct points (x,y) in H>" is acausal if x and y are joined by a
spacelike geodesic segment, and a subset U of H>" is acausal if any pairwise distinct points
of U are acausal.

The incidence geometry of H>" is more subtle than that of H>". To describe it, first
observe that the preimage of a complete geodesic [y] in H>" has one connected component
if v is timelike and two connected components otherwise. Given two distinct points x and y
in HY", we denote by [x] and [y] their respective image image in H>".

We distinguish the following cases:

Case 1: when [x] = [y], that is if x = —y. Then any complete timelike geodesic in H>"
passing through [x] lifts to two geodesic segments between x and y. In particular,
there are infinitely many geodesic segments between x and y.

Case 2: when [x] # [y] and the complete geodesic passing through them is timelike. Then
there is a unique geodesic segment between [x] and [y] having a lift with extremities
are x and y. In particular, there is a unique geodesic segment between x and y.

Case 3: If [x] # [y] and the geodesic y passing through them is spacelike. Then either x and
y lie on the same connected component of the preimage of y, in which case there
is a unique geodesic segment between x and y, or they lie in different connected
components in which case there is no geodesic segment between x and y.

Case 4: If [x] # [y] and the geodesic y passing through them is lightlike. Then either x and
y lie on the same connected component of the preimage of y, in which case there
is a unique geodesic segment between x and y, or they lie in different connected
components in which case there is no geodesic segment between x and y.

The different situations are easily described using the scalar product (x, y) of the points x
and y associated to the quadratic form q.

Lemma 2.2. Consider two distinct points x and y in HY".

(i) There is a spacelike geodesic segment between x and y (that is, the pair (x, y) is acausal) if
and only if (x,y) < —1.
(ii) There is a unique timelike geodesic segment between x and y if and only if |{x, y)| < 1.
(iii) There is a lightlike geodesic segment between x and y if and only if (x,y) = —1.
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Three points (x1, X2, x3) lies in a hyperbolic plane if and only if for any i # j we have (x;, x;) < =1 and
2(x1, x2)(x1, X3)(x, X3) + (X1, X2)” + (X1, X3)” + (X2, x3)" < 1. ey

Proof. Items (i), (ii) and (iii) correspond to cases different from Case 1 described above. In
particular, the set {x, y} spans a 2-plane F in which the matrix of the quadratic form is given

by
( -1 <X, y> )
xy -1 ’
whose determinant is equal to 6 := 1 — [(x, 2.

Item (ii) corresponds to Case 2 described above. In particular, this happens if and only
if the plane F has signature (0, 2), that is if and only if 6 > 0 (the case of signature (2,0) is
impossible since F contains negative definite vectors).

Item (i) is a particular situation in Case 3, thus a necessary condition is to have 6 < 0,
meaning that [(x, y)| > 1. The two different connected components of the preimage of the
geodesic between [x] and [y] are distinguished by the sign of the function (x, .). This sign is
negative on the connected component containing x.

Item (iii) is a particular situation in Case 4, thus a necessary condition is to have 6 = 0,
meaning that [{x, y)| = 1. Similarly to item (i), the connected component of the preimage of
the geodesic between [x] and [y] are distinguished by the sign of the function (x, .).

For the last statement, observe that (x1, X2, x3) lie in a hyperbolic plane if and only if for
any i # j the points x; and x; are joined by a spacelike geodesic segment and the 3-plane P
spanned by x1, x, and x3 has signature (2, 1). Since the subspace of P spanned by x; and x;

has signature (1, 1), then P has signature (2, 1) if and only if det ((<x1',x]'>1<i/]<3) < 0 which is
equivalent to the condition (1). O

Similarly, a (pointed) hyperbolic plane in H>" is a connected component of a lift of a
(pointed) hyperbolic plane in H>". A pointed hyperbolic plane in H>" thus corresponds to
an orthogonal decomposition E = L & U @ V where L is an oriented negative definite line, U
is a positive definite plane and V = (L ® U)".

2.2. Pseudo-spheres and horospheres. We describe here the geometry of pseudo-spheres,
and (pseudo)-horospheres which are counterparts in pseudo-hyperbolic space of the
corresponding hyperbolic notions.

2.2.1. Pseudo-sphere. Let F be an (n + 2)-dimensional real vector space equipped with a
quadratic form q; of signature (2, n1). The pseudo-sphere is

S :={xeF qx)=1} .

The pseudo-sphere S! is equipped with a pseudo-Riemannian metric g, of curvature +1
and signature (1,7). This metric is invariant under the action of the group SOy(F) which is
isomorphic to SOy(2, n).

2.2.2. Horosphere. Let us return to the basic case where E is equipped with a signature
(2,1 + 1) quadratic form q. The null-cone of E is

N(E) = {o € E\ {0}, q(v) = 0} .

Given a point v € N(E), the set P, = {x € E, (x,v) = =1} is a (degenerate) affine hyperplane
whose direction is v*. The corresponding horosphere is

H(v) = P,nH" .
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We also refer to the projection of H(v) in H>" as a horosphere (and denote it the same way).
Given a point u € H(v), denote by F the linear subspace of E orthogonal to u and v. The
restriction q;p of the quadratic form q to F has signature (1,1). Consider the map

F — E,
f: X — u+x——q“rz(x)-v

One easily checks that f is a difffomorphism between F and H(v).
Moreover, since Dy f(h) = h — (x, h) - v and v is isotropic, the pull-back by f of the induced
metric on H(v) (which is induced by q) is equal to q. Thus H(v) is isometric to the

pseudo-Euclidean space E" of signature (1, n).

2.2.3. Horospheres as limits of pseudo-spheres. Let x be a point in H>" (the picture is similar in
H>"). Let

TIHY = {oe THY, q() =1} .

Since the restriction of q to T,H>" has signature (2, 1), the space TH>" is isometric to S
and its metric is Stabg(x) invariant. We will thus denote it by ggi,.

For p positive, the exponential map exp, (p.) restricts to a diffeomorphism between TIHY"
and the hypersurface

B p) = {y € B, 3x,y) = p}

Because the restriction of g to f(x, p) is also Stabg(x)-invariant, there exists a positive number
A(p) such that exp(p.)'g = A(p)gg... Using the same calculation as in classical hyperbolic
geometry, one sees that A(p) = sinh(p). As a result, f(x, p) is an umbilical hypersurface of
signature (1, n) whose induced metric has sectional curvature sinh_z(p).

Let {pr}ren be a sequence of positive numbers tending to infinity, and for any k, let x;
be a point in Hy := B(x, pr). Observe that H, being a non-degenerate hypersurface, has a
canonical normal framing, as in definition A.1. Let gx in G map T, Hy to a fixed vector space
Vo in T,,H?>". Then gx(Hy) converges to the horosphere passing through xy and tangent to
Vo. We will need in Proposition 8.2 the fact that this convergence is in the sense of Appendix
A12).

2.3. Grassmannians.

2.3.1. Riemannian symmetric space. We summarize some of the properties of the Riemannian
symmetric space of G.

Proposition 2.3. The Riemannian symmetric space of G is isometric to the Grassmannian Gry (E)
of oriented 2-planes in E of signature (2,0).

Proof. The group G acts transitively on Gry (E) and the stabilizer of a point is isomorphic to
SO(2) x SO(n + 1) which is a maximal compact subgroup of G. This realizes Gr, (E) as the
Riemannian symmetric space of G. |

Since the maximal compact subgroup of G contains SO(2) as a factor, Gro (E) is a
Hermitian symmetric space.

The corresponding Kahler structure may be described this way. Let P be a point in
Grap (E):
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o the tangent space Tp Grpp (E) at P is identified with Hom(P, P*). The Riemannian
metric hp(-,-) at P is defined for ¢ € Hom(P, P+) by

hp(p, @) = —tr(p*p) ,

where ¢* : P+ — P is the adjoint of ¢ using q. Note that since q is negative definite
on P+, we have tr(p*p) < 0.
o Since the plane P is oriented, it carries a canonical complex structure J: the rotation
by angle 7t/2. Precomposition by ] defines a complex structure on Hom(P, P*) =
Tp Gra (E), hence a G-invariant almost complex structure on Gr, (E). This almost
complex structure is the complex structure associated to the Hermitian symmetric
space Gry (E).
By a theorem of Harish-Chandra (see for instance [20]), Gry (E) is biholomorphic to a
bounded symmetric domain in C"*!.
Note that a point P in Gr, (E) gives rise to an orthogonal splitting E = P& P+. We denote
by 7tp the orthogonal projection from E to P. The following lemma is straightforward.

Lemma 2.4. Given a compact set K in Gr, (E), there exists a constant C, with C > 1 such that for
any Qand Pin Kand v € Q,

ClImp@)Il < lloll < limp@)I]

Proof. The inequality on the right comes from the fact that P+ is negative definite, so 7p is
length non decreasing. The inequality on the left comes from the compactness of K. m]

2.3.2. Grassmannian of a pseudo-Riemannian space. In this paragraph (M, g) will be a pseudo-
Riemannian manifold of signature (2, n).
The Grassmannian G(M) of positive definite 2-planes in M is the fiber bundle = : G(M) - M
whose fiber over a point x € M is the Riemannian symmetric space Gry o (T, M).
Observe that, © : G(M) — M has a horizontal distribution given by the parallel transport,
giving a splitting
TepGM) = T:M ® Hom(P, P*) = P& P* ® Hom(P, P*) .

This splitting allows us to define the canonical Riemannian metric g on G(M) given at a
point (x, P) € G(M) by

8= (80 lp, —8" |PJ-/hP) ;

where hp is the Riemannian metric on the fiber described above, and go is the metric on
T.M. Let us also define for all positive A, the renormalized metric

1 1
gr = (Xgo |P/—Xgo |P¢/hP) .

2.3.3. The Grassmannian of H*". When M = H?", we have already remarked in para-
graph 2.1.2 that a point in G(H*") is identified with an orthogonal splitting E=Le U & V
where L is a negative definite line, U a positive definite plane and V = (L ® U)*. The
exponential map thus naturally identifies G(H*>") with the space of pointed hyperbolic
planes in H>". We will later on freely use this identification.

Up to an index two subgroup, the stabilizer of a point (g, P) in G(H*") is isomorphic to
SO(2) x SO(n). The projection

G(H>") — Gryp(E),
LoeUsdV — U.
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is a G-equivariant proper Riemannian submersion when G(H>") is equipped with the
canonical Riemannian metric.
Similarly, a point in G(H>") corresponds to a pointed hyperbolic plane in H>".

2.3.4. A geometric transition. Let A be a positive number. We denote by Hi’” the space H>"
equipped with the metric g, = 1g where g is the metric on H>". Then we have

Proposition 2.5. (i) The Riemaniann manifold Q(Hi’") is isometric to G(H>") equipped with
the normalized metric g,.
(if) When A tends to O the Riemaniann manifold Q(Hi’”) converges in the sense of Appendix
A.1.2 to G(E*") where E*" is pseudo-Euclidean space of signature (2,1).

Observe that, even if the notion of convergence of Riemannian manifolds described in
Appendix A.1.2 requires the choice of a point, since the manifolds Q(Hi’”) and G(E*") are
homogeneous, this choice is not needed here. We might write the first item in terms of
our notation as stating that the two metric spaces (G(H>", g,),g) and (G(H*", g), 1) are
isometric.

Proof. The first statement comes from the fact that the metric on Hom(P, P*) is a conformal
invariant. The second statement is standard. O

We will call Q(Hi’”) the renormalized Grassmannian.

2.4. Einstein universe. The Einstein universe is the boundary of H>" in P(E):
dH>" =[x € P(E), q(x) =0} .
Associated is a compactification:
H>" := H*" U d. H*".

The group G acts transitively on d,H>" and the stabilizer of a point in doH>" is a maximal
parabolic subgroup. As for H>", we will often discuss the double cover of the boundary at
infinity as well as the associated compactification

dHY" = {xePu(E), q@) =0},
H>" = H*Ud.H>",

where P_.(E) = (E \ {0})/IR, is the set of rays in E. We will consider &x,Hi'" as the boundary
of HY".

2.4.1. Photons, circles and lightcone. Let us first define some subsets of doH2",

(i) A photon or lightlike line in d-H>" is the projectivization of an isotropic 2-plane in E.

(ii) A spacelike circle (respectively timelike) is the intersection of dH*" with the pro-
jectivisation of a subspace of signature (2,1) (respectively (1,2)). Equivalently, a
spacelike circle is the boundary of a hyperbolic plane in H>".

Observe that two distinct points in dH?" lie either on a photon or span a non-degenerate
2-plane in E. In the second case, we say that x and y are transverse.
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2.4.2. Conformal structure. Thetangentspace T,dH?" isidentified with the space Hom (x, x* /x).
The vector space x*/x inherits a signature (1, 1) quadratic form from q and E, providing
T:0H>" with a conformal class of quadratic form. As a result, d..H>" is naturally equipped
with a conformal structure [ggin] of signature (1, n).

The conformal structure then allows for the definition of timelike and lightlike vectors
and curves in d,H?". For instance, photons are lightlike curves, while the spacelike and
timelike circles are respectively spacelike and timelike curves in d,H>*" in terms of the
conformal structure.

2.4.3. Product structure. Let P be a pointed hyperbolic plane in H3", which as usual
corresponds to an orthogonal splitting E = L @ U ® V where U is a positive definite 2-
plane, V is definite negative and L an oriented negative definite line. Let W = L® V and
denote by (., )iy and (., .)w the positive definite scalar product induced by +q on U and W
respectively. Then any isotropic ray x € dH>" contains a unique point (1, w) € U ® W with
(u,upy = (w, w)w = 1. This gives a diffeomorphism

duHY" = 8! x 8",

where S' ¢ U and S"” C W are the unit spheres. In this coordinate system, the conformal
metric of dH>" is given by

[gEin] = [gs1 ® —gs],

where ggi is the canonical metric on S’ of curvature 1 (see [24, Section 2.1]).

2.5. Positivity. We now discuss the important notion of positivity in the pseudo-hyperbolic
setting.

2.5.1. Positive triples. Let T be a triple of pairwise distinct points in the compactification H>"
(or in H2"). We call 7 a positive triple if it spans a space of signature (2,1). It will be called a
negative triple if it spans a space of signature (1,2). The positive triple is at infinity if all three
points belong to d H>" (or in de HY").

Positive triples are (possibly ideal) vertices of hyperbolic triangles in H>". Given a
positive triple 7, we will denote by b, the barycenter of the hyperbolic triangle spanned by 7.

We warn the reader that the terminology positive triples, though standard, may be
confusing: being a positive triple is invariant under all permutations of the elements.

2.5.2. Semi—positive loops. We now define the notion of (semi-)positive loops in the compacti-
fication H>". The definition for HY" is similar.

Definition 2.6. Let A be a subset of H*" homeomorphic to a circle.
(i) Ais a positive loop if any triple of points in A is positive.

(if) A is a semi-positive loop if it does not contain any negative triple, and if A contains at
least one positive triple.

The next lemma concerns the special case of semi-positive loops in do, H>". Recall that
photons and transverse points are defined in Paragraph 2.4.1.

Lemma 2.7. Let A be a topological circle in d H>" that does not contain any negative triple. Then
A is a semi-positive loop if and only if it is different from a photon.



12 F. LABOURIE, J. TOULISSE, AND M. WOLF

Proof. If A is a photon, it does not contain any positive triple and so is not a semi-positive
loop.

Conversely, let us assume that A does not contain any positive triple. We want to show
that A is a photon. If A is not a photon, then we can find two transverse points x, y in A.
Denote by U, and U, the open set of points in A that are transverse to x and to y respectively.
Observe that U, is contained in a photon, and the same is true for y. In fact, if not, we could
find 2 points z,t € U, such that x, z, t are pairwise transverse. In particular the triple (x, z, t)
is positive.

We now claim that A\ (U, U U,) contains at most 2 points. In fact, the complement
of U, U U, is contained in (x ® y)* which has signature (1,7). So any triple of pairwise
distinct points in (x @ y)* must be negative (R does not contain any isotropic 2-plane), so
A\ (Uy U U,) cannot contain more than two points.

This implies that A is contained in the union of two non disjoint photons ¢; U ¢,. Since
two photons intersect at most in one point, ¢; U ¢, is homeomorphic to the wedge sum of
two circles. The only topological circle embedded in the wedge sum of two circles is one of
the circles. This implies that A is equal to ¢ or ¢, contradicting the existence of a pair of
transverse points. O

We have the following

Lemma 2.8. Let A be a semi-positive loop in H>", T a positive triple in A and b a point in the
interior of the hyperbolic triangle with vertices T. Then b* is disjoint from A. In particular, the
pre-image of A in H>" has two connected components.

Proof. Consider 7 = (z1,22,23) and b as in the proposition. Choose a lift of b in Hi’", and lift

21,27 and z3 to vectors in the affine hyperplane {x € E, (x,b) = —1} (we denote the lift with
the same letters). Since b is in the interior of the triangle with vertices z;,z, and z3, there
exists t1,tr, t3 > O such that b = Z?zl tiz;.

First observe that we have (z;, z;) < 0 for any i # j. In fact, the 3-plane P = span{zy, 25, z3}
splits as P = R - b @ b* with b* positive definite. Since z; € F we can write z; = b + x; with
x; € b* and the condition (z;, z;) < 0 gives (x;, x;) < 1. The fact that (z;, z;) < 0 then follows
from Cauchy-Schwarz inequality together with the fact that z; # z;.

Consider now a vector x € E which lifts a point in A. We first claim that there exists at
least one z; such that (x, z;) # 0. In fact, if not, x would belong to the space H orthogonal to
span{zi, zy, z3}. Since H has signature (0, n), x would be negative definite and so the space
spanned by z1,z, and x would have signature (1,2). This is impossible by semi-positivity.

Then we claim that there is no pair (i, j) such that (x, z;) < 0 and (x, z;) > 0. In fact, if this
were the case, the matrix of q in the basis (z;, z;, x) would have the form

-& —a B
-a -& oy |,
B v &

where ¢; > 0 and &, 5, > 0. The determinant of such matrix is
A = —¢g1e083 + 2afy + e3a® + szﬁz + 617/2 .

Since span{zi, zp} has signature (1,1), we have €&, — a? < 0. In particular A > 0 and
span{zy, zo, x} has signature (1, 2), contradicting semi-positivity.

We thus find (x, b) = ) ti(x,z;) # 0 and A is disjoint from b*. As a result, A is contained
in the affine chart P(E) \ P(b*) and its preimage in P, (E) has two connected components,
determined by the sign of the linear form (b, .). o
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Lemma 2.9. Let A be a semi-positive loop in H>". Then

(i) If Ais contained in H*" and x is a point in A, then A is disjoint from x*.
(i) If A is contained in dH>", then any point in A is contained in a positive triple of A.

Proof. The first item is obvious: if y € A is orthogonal to x, then since in this case we restrict
to y € H>", we see that x @ y has signature (0, 2) contradicting semi-positivity.

From the second item, observe that a triple (x,y,z) in A C dwH?" is not positive if and
only if (x, y){x, z){y, z) = 0. Denote by U, the set of points y in A transverse to x, that is so
that (x, y) # 0. The set U, is open and non-empty since from the previous lemma, (z;, x) # 0
for a positive triple (z1, 22, z3). We just have to find a pair of points y and z in U, which are
transverse to each other (as well as to x). This can always be done unless U, is contained in
a photon ¢.

We claim that this is not possible. In fact, if Uy is different from A \ {x}, then its boundary
in A would contain at least two points, and these points would be in ¢ N x* which is a single
point. If U, = A\ {x}, then {x} = ¢ Nx* and A = ¢, which does not contain any positive
triple. O

This lemma has the following corollary.

Corollary 2.10. Let A be a semi-positive loop contained either in d-H*" or in H*" and A, be a
connected component of its preimage in HY". For any two points x and y in A, we have (x, y) < 0.

Proof. If A is contained in H>?", the first item of the previous lemma implies that if x € A4,
the linear function (x, .) never vanishes. By connectedness of A, the sign of (x, .) is constant
and must be negative because (x, x) = —1.

Now assume that A is contained in dH%" and let z1, z, and z3 be vectors in E lifting a
positive triple 7 in A, whose barycenter lifts to b = z; + z, + z3. As remarked in the proof
of Lemma 2.8, (z;,z;) < 0 for i # j and for any x € A, the sign of (x, z;) is independent of
i among those z; with (x,z;) # 0. Because (b, x) = )z, x) < 0, this sign must be negative.
This prove the result when x is contained in a positive triple, and then for every x by the
second item of the previous lemma. m]

We now consider the special case of semi-positive loops in doH>". Observe that a loop in
dH>" is semi-positive if and only if its projection to doH?" is semi-positive.

The two-to-one cover doH>" — d H?>" is nontrivial on each photon in d,H>". In
particular, any photon in doH>" lifts to a photon segment between two antipodal points in
doHZ". We call a biphoton in d..H>" a topological circle consisting of two photon segments
between antipodal points and whose projection to do, H*>" consists of different photons (in
particular, a biphoton is not semi-positive).

We call a map f between metric spaces strictly contracting whenever d(f(x), f(y)) < d(x,v)
for x, y distinct.

Proposition 2.11. Let A be a loop in dH>" and consider a splitting dH>" = S' x S" associated
to a pointed hyperbolic plane.
(i) The loop A is semi-positive if and only if it is the graph of a 1-Lipschitz map from S to S"
and not a biphoton, nor a photon.
(ii) The loop A is positive if and only if it is the graph of a strictly contracting map from S! to
s".

The proposition will follow from the following
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Lemma 2.12. Let T = (21,22,23) be a triple in BmHi'" and consider a splitting 500H3’” =~ Sl x §"
associated to a pointed hyperbolic plane. Write z; = (u;, w;) in this splitting.
(i) We have (z;,z;) < 0 for all pairs (i, j) if and only if T is not negative and dg: (u;, u;) >
dsn(w;, w;) for every pair (i, j).
(ii) We have (z;,z;) < 0 for every i # j if and only if T is positive and dgi (u;, u;) > ds:(w;, w;)
forany i # j.

Proof. The determinant of the matrix with coefficients (z;, z;) is given by 2(z1, z2){z1, z3){22, 23),
so the condition on the sign of (z;, z;) implies the positivity or the the non-negativity of 7.
For the condition on the distances, we use the same notation as in Subsection 2.4.3. In
particular
(zi,zj) = Wi, uj)u — (Wi, WHw -

For item (i), the condition (z;, z;) < 0 is thus equivalent to

(ui, uppu < {w;, wpw < 1.
Using the formula (x, y) = cos (dsr(x, y)), the previous equation holds if and only if

dgi (11, u2) > dsi(wy, ws) ,

and item (i) follows. For item (ii), we replace the non-strict inequalities with strict inequalities.
O

Proof of Proposition 2.11. By Corollary 2.10, if A is semi-positive, then (x, y) < 0 for any pair
of points in A. In fact, A is a component of the pre-image of its projection to P(E).

By the previous Lemma, the projection of A to the first factor in dH>" = S! x §" must
be injective and A is the graph of a 1-Lipschitz map from S' — S". Conversely, if f is a
1-Lipschitz map, by lemma 2.12 then the image of f does not contain negative triple: if we
had a negative triple (z1, 22, z3) then at least one of the product (z;, z;) is positive. The result
then follows from Lemma 2.7. The second item follows from Lemma 2.12 (ii). O

We now give three important corollaries.

Corollary 2.13. Let A be a semi-positive loop in dH>". If A contains two points x and y on a
photon, then it contains the segment of a photon between x and y.

Proof. The semi-positive loop A is the graph of a 1-Lipschitz map f : S' — S" by
Proposition 2.11. The points x and y correspond to points (u, f(u)) and (v, f(v)) with
AL (1,0) = dr (f(1), £(0)).

We first observe that x and y cannot be antipodal: in fact, the pair (x, y) is antipodal if and
only if the pairs (u,v) and (f(u), f(v)) are. Since f is 1-Lipschitz, it must map the two arcs
between 1 and v to two geodesic arcs between f(u) and f(v). The graph of such a map is
either a photon or a biphoton and is thus not semi-positive.

In particular, there is a unique shortest arc segment [u, v] between u and v in S! and f
maps [u, v] isometrically to an arc of geodesic in S”. The graph of fl, ] is the segment of a
photon between x and y. o

Proposition 2.11 also provides for a nice topology on the set of semi-positive loops in
dH>" : we say that a sequence {Ax}ren converges to Ay if for any splitting BmHi’” =Sl x§s",
the sequence { fy}xenw converges CY to fo where Ay = graph(fi) and A = graph(f).

We have the following

Corollary 2.14. Every semi-positive loop is a limit of smooth spacelike positive loops.
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Proof. Fix a splitting dH>" = 8! x S". By Proposition 2.11, the loop A is the graph of a
1-Lipschitz map f : S' — S", and so its image is contained in a closed hemisphere H of S".

For t € [0,2], consider the geodesic isotopy ¢; : H — H with the property that for any x,
the path (¢¢(x))sefo,2] is the (constant speed) geodesic starting at x and ending at the center of
the hemisphere. Such an isotopy is contracting for t > 0 and ds-(x, ¢(x)) < t (because H has
radius § < 2).

Thus for any positive ¢, there is a positive 6, such that the map f, := ¢, o f is (1 — 20)-
Lipschitz and is at a distance at most ¢ from f. Thus, by density, there is a (1 — 6)-Lipschitz
smooth map g at a distance at most 2¢ from f.. Hence g is at distance at most ¢ from f and
its graph is a smooth positive loop. ]

2.5.3. Convex hulls. We want to define the convex hull of a semi-positive loop in H>". Note
that the convex hull of a subset A of P(E) is in general not well-defined: one first needs to
lift A to P.(E), define the convex hull of the lifted cone as the intersection of all the closed
half-spaces containing it, and then project down. The drawback of this construction is that it
will in general depend on the lifted cone.

In our case, Lemma 2.8 implies that the convex hull of a semi-positive loop A in H>" is
well-defined and will be denoted by CH(A). It has the following properties:

Proposition 2.15. Let A be a semi-positive loop contained either in doH>" or in H>", and let A, a
connected component of its pre-image in P,.(E). Then

(i) The convex hull CH(A) is contained in H>".

(ii) Let p be in the interior of CH(A+) and q in CH(A), then (p,q) < 0.

(iii) Assume A is a positive loop in d H>". If p is a point of HY" lying in CH(A,) and q is a
point in A4, then (p,q) < 0.

(iv) Let p be in the interior of CH(A), then the set A is disjoint from p*.

(v) If A is contained in d-H>" and p is in the interior of CH(A), then any geodesic ray from p
to a point in A is spacelike.

(vi) If A is contained in doH>", then the intersection of CH(A) with d-H>*" is equal to A.

Proof of (i) Any p € CH(A) can be lifted to a vector in E of the form py = Y.5_; t;x; where t; > 0
and the x; are lifts of points in A, (actually, from a classical result of Carathéodory [17], one
can take k = dim(E) + 2). From Corollary 2.10 we get that q(po) < 0.

Proof of (ii) For any vector x lifting a point in A4, the linear form (x, .) is non-positive on A,
by Corollary 2.10. Since p is in the interior of CH(A), we have (x, p) < 0. Finally, any point
g € CH(A) lifts to a vector of the form Zle tix;witht; > 0and x; € A,.

Proof of (iii) The vector p has the form p = Y77, t;x; with x; (lift of rays) in A, and t; > 0. For
any vector ¢ lifting a point in A, we have (p,q) = X.i; ti(x;, q) < 0 with equality if and only
if (x;,q) = 0 for each i. But since A is positive, the only vector in A whose scalar product
with g is 0 is g itself. Since p lies in HY", we get (p,q) < 0.

Proof of (iv) As Ay € CH(A.), this follows from item (ii).

Proof of (v) Let x be a vector in E lifting a point in A,. By item (ii), the linear form (x,.) is
negative on A, and so strictly negative on the interior of CH(A.). The result follows.

Proof of (vi) Let p be a vector in E lifting a point in CH(A) N dwH?". Then p can be written
Z;‘zl tix; with t; > 0 and x; € A.. The condition (p, p) = 0 thus implies that, either k = 1 and
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p = x3, or that all the x; lie on a common photon. In this case p lies on a segment of a photon
which must be contained in A by Corollary 2.13.

3. GRAPHS, CURVES AND SURFACES

In this section, we study the differential geometric aspects of curves and surfaces in H>".
We define the notion of maximal surface and prove some important properties.

3.1. Spacelike submanifolds in pseudo-hyperbolic spaces. Recall that g denotes the
pseudo-Riemannian metric of H>".

Definition 3.1 (SPACELIKE AND ACAUSAL).

(i) A submanifold M of H*" is spacelike if the restriction of g to M is Riemannian. Such
a submanifold is either a curve or a surface.

(ii) A spacelike submanifold M of H>" is acausal, if every pair of distinct points in M is
acausal.

3.1.1. Warped-product structure. Let P = (g, H) in H" be a pointed hyperbolic plane, associ-
ated to the orthogonal decomposition E = ¢ @ U @ V where

(i) gis an oriented negative definite line,
(if) U is a positive definite plane, with induced norm ||.||, so that ¢ ® U defines H.

Let D? C U be the unit (open) disk and S” ¢ W := g + V be the unit sphere. The following
is proved in [21, Proposition 3.5].

Proposition 3.2. The map

{ DxS" — H",

(w) — ( 2 1+Hu||2w), 2

Tl 2 Tl

is a diffeomorphism. Moreover, if g is the metric on Hy", then
2
" 4 1+ IIuIIZ)
W = - S, (3)
S ™ (1 ~lulF) ¢

where gp and gg» are respectively the flat Euclidean metric on the disk and the round metric on the
sphere.

Observe that the parametrization H>" = D x S” extends smoothly to a parametrization of
H2" UdH>" by D x S".

The diffeomorphism W is called the warped diffeomorphism and said to define the warped
product structure on Hi’".

If the preimage of g under W is (0, v), the preimage of H is D X {v}.

For any w in S", the image of ((0, w), D x {w}) is a pointed hyperbolic plane that we call
parallel to P. These pointed disks correspond exactly to the set of pointed hyperbolic planes
whose projection to Gr, (E) is U.

The following nice fact was pointed out to us by the referee:

Lemma 3.3. Let W be as in Proposition 3.2. Identifying D with an hemisphere of S? using the
stereographic projection, the metric W*g is conformal to the metric gs: — gsn.



MAXIMAL SURFACES IN H?" 17

2
Proof. Consider the function f from D X S" to R sending (1, v) to (1;”3”2) . We obtain that
the metric f - Vg is equal to

4
L+ P>~ 8
The result then follows from the fact that m g is the expression of the spherical metric
on an hemisphere of S? in a chart given by the stereographic projection. ]
Definition 3.4 (WARPED PROJECTION). The warped projection is the map
Tp : Hi’" — H,
corresponding (via W) to the projection from D x S§" to D X {v} and mapping (1, w) to (i, v).

A timelike sphere is the fiber of p above g, for some pointed hyperbolic plane P = (g, H).
It is the intersection of H>" with the subspace W of E of signature (0, + 1).

Note that, given a pointed hyperbolic plane P = (g, H) with warped projection np, the
preimage by mp of a point different from g is not totally gedesic, since its induced metric
does not have curvature —1.

We then have a fundamental property of H>":

Lemma 3.5 (PROJECTION INCREASES LENGTH). The warped projection increases the length of
spacelike curves. Moreover if x1 and x, are two distinct points in the same fiber, then (x1,x) > —1.

Proof. The fact that the warped projection is length-increasing is a direct consequence of
equation (3).

If x; and x, project onto the same point, then W~(x;) = (1, w;) € D X S" for i = 1,2. Using
the expression of W, we see that

Aul? (1 + ull”
(1 = [luf)>  \1 = lul?
where (., .)w is the positive definite scalar product induced by —q on W = g @ V. Since
w; € S", we have (wy, wy)w < 1, thus

2
(xX1,%2) = ) (w1, w2)w , 4)

(x1,x2) >

2
4Ju)? _(1 +||u||2) _ (5)

(1= fluy” A1 =l
This concludes the proof. m]
3.1.2. Spacelike graphs. From now on, all our surfaces are assumed to be connected and
smooth up to their boundaries.

Definition 3.6. We define

(i) A spacelike submanifold M of H>" is a graph if for any pointed hyperbolic plane,
the restriction of the corresponding warped projection is a diffeomorphism onto its
image.

(ii) If moreover this diffeomorphism is surjective, M is an entire graph.

Observe that a spacelike graph is always embedded. We now use the definitions of
paragraph 2.1.1. As in Lemma 3.3, we identify D with an hemisphere B of S? using the
stereographical projection.

Proposition 3.7. Let M be a connected spacelike submanifold of H>".
(i) If M is acausal then it is a graph.
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(ii) If M is a graph, then it is the graph of a 1-Lipschitz map from a subset U of B to S", in any
warped product.

Proof of (i) Given a pointed hyperbolic plane P, the corresponding warped projection mtp
restricts to a local diffeomorphism on M. It follows from Lemma 2.2 that, since M is acausal,
we have (x, y) > —1 for any pair x, y € M. Lemma 3.5 then implies that the restriction of mtp
to M is injective and thus a diffeomorphism on its image.

Proof of (ii) Tangent vectors to the graph of f at (x, f(x)) have the form (1, Dfy(u)), where
u € T,D. Using Lemma 3.3, one sees that (1, Df,(1)) is spacelike if and only if

l[ul® = IDA@I? >0,
where the norms are computed using the sperical metrics on B and S”. It implies
IDfill <1. (6)
O

Lemma 3.8. Let S be a connected spacelike acausal surface and P a pointed hyperbolic plane with
associated warped projection tp. The restriction of mtp from S to mp(S) increases the induced path
distances.

Proof. Let a = mp(a) and p = mp(b) be points in 7tp(S) with a, b € S. For any path y between «
and g in tp(S), its preimage by mp in S is a curve between a and b whose length is less than
that of the one of y by Lemma 3.5. Taking the infimum over all path between a and f yields
the result. m|

We have several different notions of boundary:

Definition 3.9 (BOUNDARIES OF ACAUSAL SURFACES). Let S be an acausal surface in H>".

(i) The total boundary A of S is S\ int(S), where S is the closure of S in H?" and int(S) is
its interior.
(ii) The finite boundary of S, denoted by d5, is the intersection of A with S.
(iii) The asymptotic boundary of S, denoted by dw.S, is the intersection of A with d.H*".
(iv) The free boundary of S (or frontier), denoted by Fr(S) is the complement of 95 U 9 S
in A.

We will use the same notation for the corresponding objects in H>". Note that if the
induced metric on S is metrically complete, then Fr(S) = 0. If moreover S is a manifold
without boundary, then A = dyS.

Given a acausal surface S with induced metric dj, for any point x in S, define d;(x, Fr(S))
as the supremum over all R so that the closed ball of radius R and center x is complete. We
also define the pseudo-distance to the frontier as

o(x, Fr(U)) := inf{d(x, z) | z € Fr(U)} .

Proposition 3.10 (BOUNDARY OF ACAUSAL SURFACES). Let S be a closed spacelike surface with
boundary in Hy". Assume that S is connected and is a a graph, then S is a graph.

Proof. Let m be a warped projection on a hyperbolic plane H. By assumption 7(dS) is
a circle y embedded in H. By compactness of S, f(x) := f(r"}(x)) is locally constant on
each of the connected component of H \ y. It follows (by compactness) that f = 0 on the
unbounded component of H \ y. This implies that 7!y = dS. Hence that f = 1 in the
(interior) neighborhood of y. Thus f =1 in the bounded connected component of H\ . O
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Finally, we describe entire spacelike graphs.

Proposition 3.11 (ENTIRE SPACELIKE GRAPH). Let S be a simply connected spacelike surface without
boundary.

(i) If S is properly immersed or if its induced metric is complete, then S is an entire graph.
(i) If S is an entire graph, then it is acausal.
(iii) If S is an entire graph, then it intersects any timelike sphere exactly once.
(iv) If S is an entire graph, then its asymptotic boundary d«S is a semi-positive loop.

Proof of (i) When the induced metric g on S is geodesically complete, the argument comes
from [21, Proposition 3.15]. In that case, the warped projection 7tp on a pointed hyperbolic
plane P is length-increasing. In particular we have

T[};gHZ > 81 -
It follows that m;, gy is also complete. As a result, the restriction of 7p to S is a proper
immersion, hence a covering, and so a diffeomorphism since S is simply connected.
If S is properly immersed, the result follows from the fact that the warped projection is
propet, so its restriction to S is a covering.

Proof of (ii) This was proved in [21, Lemma 3.7].

Proof of (iii) Given a timelike sphere ¥ in H5" and a point g € £, the orthogonal of X at g
defines a pointed hyperbolic plane P such that £ = 75! (g). S is then the graph of a map f
and so ZN S = (0, £(0)).

Proof of (iv) From Proposition 3.7, S is the graph of a 1-Lipschitz map from an hemisphere B in
S? to S". Such a map extends to a 1-Lipschitz map from the equator S! to S”. By Proposition
2.11, its graph d.S is semi-positive unless it is a photon or a biphoton.

To prove that d..S is not a photon nor a biphoton, observe that from item (ii) the geodesic
from any point x in S to any point y in d..S is spacelike. In particular, d«S is disjoint from
the hyperplane x*. Given ¢ a photon or a biphoton, ¢ contains a pair of antipodal points
(a,b). Either a and b are contained in x* or they lie in different connected components of
E \ x*. In both cases, ¢ intersect x*. Thus d«S is semi-positive. o

Remark 3.12. We return briefly to Definition 3.6. If for a spacelike submanifold of H>", there
is at least one pointed hyperbolic plane for which the warped projection is a diffeomorphism
onto its image, then the proof of (ii) above shows that the submanifold is acausal. Then
Proposition 3.7 implies that the submanifold is a graph over every pointed hyperbolic plane
and is thus, by Definition 3.6, a spacelike graph.

Recall that T, f denotes the tangent map of f at x.

Proposition 3.13. Let Q = (9,Q) and P = (p, P) be pointed hyperbolic planes. Let @p be the
restriction of the warped projection Tp to Q. Assume that

dg(T,P, T,Q) <R.
Then
(i) For each such positive constant R, there exists a positive constant c so that
ITapell <c,
(if) For any b larger than 1, there exists such a positive constant R so that

b < IITyppll <b.
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Proof. Since hyperbolic planes have complete induced metrics, for any P and Q as in the
proposition, @p is a global diffeomorphism and so ||T,¢p|| > 0. The result then follows from
the fact that G(H>") is locally compact and that ¢p = Id when P = Q. o

3.2. Strongly positive curves. Recall from 2.3.4 that Hi’” is the space H*" equipped with
the metric g, = %g.

For a curve y and x € y, the osculating plane, denoted T;z)y is (given a parametrization
of y so that y(t;) = x) the vector space generated by y and V)-,y;. The osculating plane is

independent of the parametrization. We introduce the following properties of curves in H>"
which are further refinements of being spacelike and positive.

Definition 3.14 (STRONGLY POSITIVE CURVES). A smooth curve y in Hi’” is strongly positive if

(i) the curve y positive,
(ii) for every point x in y, the osculating plane T?y has dimension 2 and is spacelike.
(iii) for any pair of disjoint points x and y in y, the totally geodesic space containing x, y
and the tangent vectors in T,y is spacelike.

It is important to remark that since the lift of a connected positive curve to H>" has two
connected components, we can use any of these to make sense of warped projection, graphs
and so on. This fact will be used in the sequel.

3.2.1. Unpinched curves. Given an acausal curve y in H?", we can define two distances on
y: the (extrinsic) spatial distance 0 (see paragraph 2.1.1) and the distance d,, along y. The
following notion is a comparison between those two.

Definition 3.15 (UNPINCHED CURVES). An acausal curve y is called unpinched (or o-unpinched)
if there exists 6 > 0 such that for all x, y in ,
(x, y) < 1

., y) <3 = 0(x,y)>06.

A sequence {yilken is uniformly unpinched if there is a 6 > 0 such that any y is 6-unpinched.

Observe also that if y is 6-unpinched in Hﬁ’”, it is also 6 unpinched for Hi’" for u < A.

3.2.2. Angular width. Given a curve y, we denote by y® the set of pairwise distinct triples
of points in y and by Gr,1(E) the set of hyperbolic planes in H>". Assume y is strongly
positive and consider the map

) { y® —  Grp(E)

7

(X yz) — xOydz
Since y is smooth, we have

. . 2
x}}é‘lx("l ox)=xoT,y, N J}2156121%(361 Ox, ®xs)=x0Ty.
x’1 #X2 X{ #3’62 FX3

In particular, o, extends to a continuous map 5), : y3 — Gry,1(E) where for x # y we have

5y(x, vy =xeyeT,y, 5y(x,x,x) = xEBchz)y .
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Let y be a strongly positive curve in H>". Let xy be a point in y. Consider the codimension
2 subspace F = (xg @ Ty,))* of E. Observe that F has signature (1, n). The projectivization of
the orthogonal projection from E to F defines a map
9 : P(E) \ P(F*) - P(F) .
We have

Proposition 3.16. Let y, xo, and 1ty be as above, and let y be a point in H>". If V := xg @ y & Ty, y
has signature (2,1), then mo(y) is a spacelike line in F.

Proof. The vector my(y) is in the orthogonal in V of the space W generated by x¢ and T,,y;
but W has signature (1, 1), thus mo(y) is spacelike. O

According to this proposition, 7y maps points in y \ {xo} to positive definite lines in F. If
we identify the set of positive definite lines in F with the n-dimensional hyperbolic space
H", we obtain a curve 7y, (y) € H" that we call the angular projection of y at xo.

Definition 3.17 (ANGuLAR wiDTH). The angular width of a compact strongly positive curve y
is
w(y) = sup {diam(my, () | xo € ¥},
where the diameter is computed in H".
Proposition 3.18 (ANGULAR WIDTH AND SPACELIKE SURFACES). Let ) be strongly positive curve in

H>". Let S be a spacelike surface with S C y. Assume that S is included in the convex hull of .
Then for all points y in dS, we have

A(T,S,TPy) <w(y) .

Proof. Let v, xo, and 7y be as above. Since 7y is a linear map and thus preserves convex
hulls, 110(S) is included in the convex hull of 7y(y). Let ¢ be a curve in S starting from xy that
is orthogonal to dS. We parametrize ¢ by arc length so that c(0) = xg. Observe first that

lim 770(c(s)) = 7o(¢(0)) -
It follows that c¢(0) belongs to the convex hull (in H>") of 7t9(y). Similarly
£i_r)r& 0(y(s)) = mo(no) -
where 1y and T,y generates T®y. It follows that
dg(Tx,S, T2y) = du (6(0), o) < w(y) .
This concludes the proof. ]

3.2.3. Deformation of strongly positive curves. We now introduce the class of curves for which
we prove a finite Plateau problem.

Definition 3.19. A deformation of a strongly positive curve y in H>" is an isotopy {yt}se[0,1]
with y = 1 such that

(i) every curve y; is strongly positive,
(i) the curve yq lies in a hyperbolic plane.
A strongly positive curve admitting a deformation is called deformable.

Observe that by compactness of the isotopy, if {y:}sejo,1] is a deformation, the angular
width w(y;) is uniformly bounded.
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3.3. Maximal surfaces.

3.3.1. Second fundamental form. Consider a spacelike embedding u : S < M, where (M, g) is
a pseudo-Riemannian manifold of signature (2,1) and S a surface. The pull-back bundle
u*TM splits orthogonally as

wTM=TS®NS,

where the normal bundle NS is the orthogonal of the tangent bundle TS. We denote their
induced metric by g1 and gy respectively. Observe that g is positive definite, while gy is
negative definite.

We recall that second fundamental form II, which is a symmetric 2-tensor on S with values in
N, and the shape operator B which is a 1-form on S with values in Hom(NS, TS) are given by

g1 (Y, B(X)¢) = gn (X, Y), &) = g (VxY, &) ,

where X and Y are vector fields along S, & is a section of the normal bundle and V the
Levi-Civita connection on M. For instance the second fundamental II, form on T,H%", where
we see H>" locally isometrically embedded in E is given by

Ho(u, u) = g(u,u) x .

Thus if y is a geodesicin £ C H2" c E, we have

2
— | () =1, u) +gu,u)x. (7)
dt t=s
The norm of the second fundamental form II is
o2 = - (v, ¢;), (v, ¢;
| rlr;lglxi;zg( (0,e),11(0,)) , (®)

where (e1, €2) is an orthonormal basis of T,S.
If M5 denotes the manifold M equipped with the metric g, = }g, we have the following:

Lemma 3.20. Let S be a spacelike surface in M, with fundamental form 11. The second fundamental
form 10 of S in M, satisfies |[I,||* = AL

Proof. Observe that a unit vector with respect to g, has the form Vv, where v is a unit
vector for g. The result then follows from tracking the effect of the subsequent substitutions
in (8), after observing that the Levi-Civita connection is a conformal invariant. O

Definition 3.21. The mean curvature is the normal vector field
H = tr,, (I) = I(ey, e1) + I(ez, €2)

3.3.2. Variation of the area. Given a spacelike embedding u : S < M, one can define the area
functional, associating to any compact set K in S the number

Ax(u) = f‘dvolgI ,
K

where dvoly, is the volume form of g1. The following is classical, but we include the proof
for the sake of notation.

Lemma 3.22. A spacelike surface ug : S < M is a critical point of the area functional if and only if
H=0.



MAXIMAL SURFACES IN H?" 23

Proof. Let & be a normal vector field with compact support. Let {u}e(—c) be a smooth
deformation of ug so that t — u,(x) are geodesics with initial tangent vector &. For ¢ small
enough, the image u;(S) is spacelike. We respectively denote by g;, B; and II; the induced
metric, shape operator and second fundamental form of u;.

Let G and V be respectively the pull-back of the metric and connection of M by U : (t,x) —
u(x). The metric G restricts to g; on S X {t}. We have

diG(X,Y) = G(VeX Y) + G(X, VeY) = G(VxE, Y) + G(X, Vy &) .

Thus, restricting to S x {0}, we obtain

. d

8o(X Y) = i 81X, Y) = =280 (Bo(X)&, Y) = —2gn (In(X, Y), &) 9)
In particular, if (e1, e;) is an orthonormal framing of (TS, o), and (¢!, ¢?) its dual, we have

dvol,, = det (Id =2t (gN (IIo(ei, ej), é))i,j:l,z + 0(1?))@1 Aer.
It follows that .
dvolg, = —2¢gn(H, &)dvolg, . (10)
Thus L?.IK(uO) =-2 f[( gn(H, &)dvolg, and the result follows. a
We now compute the second variation of the area functional.

Proposition 3.23. Given a spacelike surface ug : S < Mwith H = 0, a non-zero normal deformation
along & € Q°S,NS) and K C S a compact subset, we have

) = [ W) dvol,,,
K
where W(E) = 2trg, (Qe) for the symmetric tensor Qg given by

Q:(X,Y) = o((Ro(&, X)E, Y) = go(Bo(X)E, Bo(Y)E) + gn (VXE, VYE) .
Here Ry is the Riemann curvature tensor of uyD and D the Levi-Civita connection of M.
Proof. We use the same notation as the previous proof. By equation (10) when H = 0, we
have dvoly, = —2gn(VeH, &)dvoly, = W(E)dvoly, ,
where W(&) = 2 trg, (Qc) for the symmetric tensor Q¢ defined by
Qe(X,Y) = =80 (VeBo(X)E, Y) .
Our goal is to compute Qs (X, Y).

One the one hand, we have
diG(VxE,Y) = G(VeVE YY)+ G(VxE, VeY)
= G(VeVxEY) + G(VxE, VyE)
= GR(EX)EY)+G(VxVeE, Y) + G (Vigxié, Y) + G(VxE, Vyé)
= G(R(&X)E YY) +G(VxE Vye)

where R(Ll, b)C = VaVbc - V;,Vac - V[a,b]C.
Restricting to S x {0}, we obtain

d
31, 8BS Y) = Ro(&, X, &, Y) + 20 (Bo(X)E, o)) + g (VX Vi)
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On the other hand, using equation (9), we thus get

%lfgt(‘Bf(X)@Y) = go(-Bo(X)E, Y) + go(—VeBo(X)E, Y)
290(Bo(X)E, Bo(Y)E) + Qe(X, ) .

This gives

Q:(X,Y) = Ro(&, X, &, Y) = go (Bo(X)E, Bo(Y)E) + gn (VXE, V) . (11)
O

Corollary 3.24. Ifu : S < H>" is a spacelike surface with H = 0, and let & be a non-zero normal
deformation supported on a compact K C S. Then the second variation of the area satisfies

Ax(u) <4 f gn(&, E)dvolg, < 0.
K

Proof. Because H*" has curvature —1, we have

80 (Ro(&, X)E,Y) = gn(E,&)go(X, Y) .
Thus, we obtain
trg,(Qs) = 2gn(5, &) + R,
where R = trg, ( — 90(Bo()&, Bo()&) + gn(VNE, VN&)) < 0. This concludes the proof. o

3.3.3. Maximal surfaces. Corollary 3.24 motivates the following definition
Definition 3.25. A spacelike immersion from a surface S to M is a maximal surface if H = 0.

In the sequel, we will denote by X a maximal surface, and S any surface.
Corollary 3.24 implies the stability of maximal surfaces in H>" and H>": given a maximal

surface u, there is no non-zero compactly supported normal deformation with ?“I(u) =0.
Calculating the tangential part of the curvature tensor of V, one obtains the following

Proposition 3.26. If ¥ is a maximal surface in M and P is a tangent plane to ¥ equipped with an
orthonormal frame (e1, e2), then we have

Kz (P) = Km(P) — gn(Il(er, e1)) — gn(Il(ey, €2)) ,

where Ky, and Ky are the sectional curvatures of © and M, respectively, and q is the (negative
definite) quadratic form on N.
In particular if M = H*", since qy is negative definite, Ky > —1.

3.3.4. Convex hull. Recall from paragraph 2.5.3 that any semi-positive loop in H*" has
a well-defined convex hull. The following was proved in [21, Proposition 3.26] for the
asymptotic boundary case. The proof is the same in our case, but we include it for the sake
of completness.

Proposition 3.27. If ¥ is a maximal surface in H>" whose total boundary A (see Definition 3.9) is a
semi-positive loop, then L is contained in the convex hull of A.

Proof. Consider a connected component I of the preimage of T in H>", and let ¢, be a
linear form on E which is positive on A and denote by ¢ its restriction to . Now, let y be a
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geodesic on ¥ that we consider as a curve in E, with y(0) = u, then using equation (7) in the
last equality
2

2 d
Hessy p(u,u) = —|  @(y() = @o(@

V(f))) = q(u) p(x) + o(Il(u, u)) ,

t=0 =0
where Il is the second fundamental form of X and Hess, ¢ is the Hessian of ¢ at x. Taking
the trace yields

Ap =2¢.
The classical maximum principle thus implies that ¢ is positive on L and so X is contained
in the convex hull of A. O

3.4. Gaus8 lift and holomorphic curves. Recall from Subsection 2.3 that the Grassmannian

G(M) of positive definite 2-planes in M is the fiber bundle over M whose fiber over x is the

Riemannian symmetric space Gry (T:M). The tangent space of G(M) at (x, P) splits as
TepGM) = T:M ® Hom(P, P*) = P& P* @ Hom(P, P*) .

Furthermore, the canonical Riemannian metric ¢ on G(M) is given by

g = (g, =&+, hp) ,
where hp is the Riemannian metric on the fiber defined in paragraph 2.3.1.
Given a spacelike surface u : S — M, we define its Gaufs lift by

r.{ s — G6M
’ x +—  (ux), Tu(T,S)) .

One easily checks that in the splitting describe above, TI' = (Tu, II) where I € Q'(S, Hom(TS, NS))
is the second fundamental form.
We denote by gir and dj; the induced metric and distance respectively on S by I'.

Proposition 3.28. For any spacelike surface we have

gn=g1+ Q< (1+|g ,
where Q(xr y) == trgl (gN (H(xr ')/ H(?// )))
Proof. As noted above, TI' = (Tu,Il) € Q! (S, TS ® Hom(Ts,NS)). The first term in the
expression of I ¢ is clear, so we just have to explain the second one. We recall from subsection
2.3.1 the bilinear form hp(@, Y) = — tr(p*y) where ¢, ¥ € Tp Grop (E) and ¢* : P+ — P is the

adjoint of ¢ using the induced scalar product. In particular, the second term is given by
hp (I(x, )I(y, .)) = —try, (IT°(x, )II(y, .)).
Using II" = B, and taking an orthonormal framing (e;, e;) of (TS, g1), the second term may
then be written as
=Y s (B e),e) = Y —gw (11(x, ), 1L(y, e)) = Qx, ) -
i=T2 i=12
This proves the result. ]

Given a point x on a spacelike acausal surface X in H>", we can define three Riemannian
metrics on X: the metric gy induced by the metric on H2", the metric g induced by the Gaufs
lift and the metric g7, := 7;gn where 7, is the warped projection on the pointed hyperbolic
plane (x, H) tangent to X at x, and gy is the hyperbolic Riemannian metric on H.

Corollary 3.29. Let S be a spacelike surface whose second fundamental form is uniformly bounded
by M,
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(i) the Riemannian tensors g1, gu are uniformly equivalent, with a constant only depending
on M.

(ii) Forany R, the metrics g1 and gy, are uniformly equivalent on the ball of center x and radius
R with respect to g1 with a constant only depending on M and R. Moreover the projection
Tty from S equipped with dy and dy is Lipschitz.

Proof. By the previous proposition, the bound on the norm of Ily implies that g; and gy; are
biLipschitz. Moreover, the Gaus lift of a ball Bz with respect to g; in Q(Hi’") is contained in
the closed ball of center T,S and radius R(1 + M). In particular, the restriction of the warped
projection 7, to By is infinitesimally biLipschitz by Proposition 3.13. This shows that gr and
g3, are uniformly equivalent. ]

Corollary 3.30. If S is a properly immersed spacelike surface without boundary whose second
fundamental form is uniformly bounded, then (S, g1) is complete.

Proof. 1f S is properly immersed, it is thus a global graph over each of its tangent planes.
Thus by the previous corollary, for each x in S, the ball of radius 1 with center x with respect
to g1 is complete, since the ball of radius 1 with center x with respect to gl’; is complete. This
shows that (S, g1) is complete. O

3.4.1. Holonomic distribution. Using the splitting

TernGM) = TM & Hom(P,P"), (12)
where T, M is the horizontal distribution we define the holonomic distribution  on G(M) by
Di,p) := P @®Hom(P, P*). (13)

The following is straightforward.
Lemma 3.31. The Gauf$ lift of a spacelike surface in M is tangent to the holonomic distribution.

3.4.2. Almost complex structure and holomorphic Gaufs lift. The holonomic distribution D
carries a natural almost-complex structure | defined by taking the rotation i of angle 7 on P
and the pre-composition by i on Hom(P, P*):

J(u, A) = (iu, A o). (14)
The following is classical (see [32]).

Proposition 3.32. A spacelike surface u : S — M is maximal if and only if its GaufS lift
I': S — G(M) is J-holomorphic when S is equipped with the complex structure j induced by gi.

Proof. Considering the splitting u*TM = TS @ NS, we get "D = TS @ Hom(TS, NS), where
D is the distribution on G(M) defined in (13). In particular, TT € Q! (S, TS ® Hom(TS, NS))
is identified with (Tu, II).

The first factor is clearly J-holomorphic. For the second factor, it follows from the
observation that a map ¢ : T,S — Hom(T,S, N,S) satisfies ¢ o j = | o ¢ if and only if ¢ is
symmetric and trace-less. ]
Definition 3.33 (BounpaRry conDpITION). Let y be a strongly positive curve (Definition 3.14).

(i) The boundary condition associated to y is the immersed submanifold

W) = {(x,P) e GH>") |x €y, Ty c P} (15)
(ii) For any positive number K, the local boundary condition, is the open subset of W(y)

Wi(y) = {(x,P) e W) | d(P, TDy) < K} (16)
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We have

Proposition 3.34. Let y be a strongly positive curve of reqularity Cr.
(i) W(y) is a submanifold of reqularity C*=1 tangent to the holonomic distribution.
(ii) TW(y) is a totally real subspace of half the dimension of the holonomic distribution.
(iii) Finally, let w be the orthogonal projection from TG(H>") to the horizontal distribution,
then if (x, P) belongs to W(y), we have w(TpW(y)) = Tyy.
Proof. The first item is obvious. The last item follows from the definition of W(y). Let (x, P)
be in W(y). Using the splitting (12),
TarnW(y) = Ty @ {A € Hom(P, P*) | Tyy C ker(A)} .

It follows from the definition (13), that T(,p)W(y) C D(,p). Moreover the definition (14) of
the almost complex structure ] implies that

TanW() @ JTan W) = Dep) -
This completes the proof. O

4. UNIQUENESS

This section is devoted to the proof of the following result.

Theorem 4.1 (UN1QUENEsS). Let T be a complete maximal surface in H*" whose total boundary A
is either finite and positive or asymptotic (see Definition 3.9). Then L is the unique complete maximal
surface bounded by A.

This statement was proved in [21, Theorem 3.21] in the case of a cocompact group action
on L, and the proof relies on a maximum principle. We will adapt this maximum principle
here to the non-compact case using a weak version of Omori’s maximum principle. Such an
adaptation was made in the case of H?? for polygonal surfaces in [44] and suggested to us
by the first author of that work.

We work by contradiction. Suppose there exists two maximal surfaces X; and ¥, sharing
a common boundary, denoted by A. By Proposition 3.27, both surfaces are contained in the
convex hull CH(A) of A. Lift of CH(A) to Hi’” and recall that the scalar product of any pair
of points in this lift is negative by Proposition 2.15, item (ii). This defines a lift of £; and X,
in H>" that we denote the same way.

Consider the function
5. { XX — R,

xy = Ly
We remark that since B is negative everywhere, B is bounded from above.

4.1. Lower bound on the Hessian. We prove the following estimate.

Lemma 4.2. Let p = (x, y) be a point in L1 X Ly. Then there exists two unit vectors uy and vy in
T.X1 and T, X, respectively such that, for wy = (o, vo), we have

Hess, B(wo, wo) > 2B(p) + 2. 17)
We first compute the Hessian of B.
Lemma4.3. The Hessian of Bata point p = (x, y) in 21 XX in the directionw = (u,v) € T, X1 XT,Xp
is given by
Hess,, B(w, w) = (q(u) + q(v))B(p) + 2(u, v) + (I (1, u), y) + (x,1L>(v, v)).
Here 11; is the second fundamental form of ¥;.
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Proof. Let y1 be a geodesic in £1 with 7, (0) = u, while y, is a geodesic in £, with 7,(0) = o,
then, using equation (7) in the last equality

2
Hess, B(w,w) = —| (yi(t),r2()
d” |1
d? d?
= (— b, y)+2u,v) +{(x, — t
<dt2 B y1(t), y) + 2w, v) +< i y2(t)
= (qu)x + 1w, u), y) + 2(u,v) +{(x,q(v) y + (v, 0)) ,
and the result follows. O

Proof of Lemma 4.2. Since the surfaces X1 and L, are maximal, the quadratic forms (II;(., .), )
and (x,II(.,.)) have opposite eigenvalues +1; and +A, respectively. Thus at a given point
p = (x,y) € 1 X Iy, up to switching X; and X,, we may assume A; > A, > 0. Observe then
that for any unit vector vin v € T, X, we have

(x,y(v,0)) =2 —Ay = —Aq .

Now let us choose a unit vector uy € T,Z; such that (II; (ug, up), y) = A1. Let w = (u,v), then
we obtain from lemma 4.3 that for any unit vin T, X,

Hess, B((uo,v), (10, v)) = 2B(p) + 2{ug, vy + {1 (1o, to), y) + {x,112(v, v) = 2B(p) + 2(uo, v).

It is now enough in order to conclude the proof of the lemma to find a unit vector vy such
that (ug, vg) > 1.

Let 7 be the orthogonal projection from E to T,X;. Since the kernel of n is negative
definite, we have q(a) < q(nt(a)) for any a € E. Because T,X; is positive definite, it follows
that the restriction of 7 to T, X, is a linear isomorphism. Let v; to be the unique vector such
that 7(v1) = 1 and observe that 0 < q(v1) < q(up) = 1. Finally, let vy the unit vector defined

by vp = 4/q(v1)'v1. Then
(uo, vo) = yq(01) (g, v1) = /q(v1) (o, m(v1)) = /q(w1) ' > 1.

The result now follows. m|

42. A maximum principle. The following is a weaker version of Omori’s maximum
principle [41].

Proposition 4.4 (Maximum PrincipL). Let M be a complete Riemannian manifold without
boundary whose sectional curvature is bounded from below. Let f be a function of M satisfying the
following:
(i) The function f is of class C.
(ii) There are positive constants A, A so that, if f(x) > A, then there is a non-zero vector v in
T.M such that
Hess, f(v,v) > Allo|l*.

Then either f is bounded by A, or f is unbounded.

We will denote by B(xo, r) the ball in M of center xy and radius r, and d,, the function
distance to xg. Recall the classical Hessian comparison theorem (see for instance [9, Chapter

1]).
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Proposition 4.5 (HEss1AN COMPARISON PRINCIPLE). Let M be a complete Riemannian manifold
whose sectional curvature is bounded below. There exists positive constants € and A such that for
every point xq in M, and any vector v € T,M with x in B(x, €), we have

Hess, d3 (v,0) < Allv|P*,

Proof of Proposition 4.4. Let ¢ be as in Proposition 4.5 and A and A as in the statement of the
proposition. Let k¥ > 0 be chosen so that for every x, we have the following inequality: for
every z in B(x, €),

A
x Hess, d;(v, v) < EIIvII2 .
To prove the proposition, it is enough to show that if there exists x, with f(xp) > A, then

there exists y with f(y) > f(xo) + xe. Choose xg so that f(xp) > A. Let now y achieve the
maximum of § := f — kd,, on the ball B(x, €). Observe that at this maximum, the inequality

3(y) > glxo) reads
fy) > f(xo) + xd(xo, y) - (18)
In particular, f(y) > f(xo) > A. Thus there exists v so that Hess,, f(v,v) > Allv|I?, hence

A
Hess, g(v,v) = Hess, f(v,v) — k Hess, d (0,v) > Ellvll2 >0.

Hence y cannnot be a point in the interior of B(xy, €). Thus d(xo, y) = €. The inequality (18)
now reads

fy) > flxo) + xe?.
This concludes the proof. m]

4.3. Proof of Theorem 4.1. We will combine two lemmas.

Lemma 4.6. For any x in L1, the supremum M, of B on {x} X L, is greater or equal to —1, with
equality if and only if x belongs to X.

Proof. Consider a pointed hyperbolic plane P = (x, H) tangent to Z; at a point x in the interior
of ;. In the non-compact case, both surfaces are graphs above the entire P while in the
compact case, they are graphs above the compact domain bounded by the image of the
warped projection of their common boundary.

In particular, the fiber above x of the warped projection on P is a totally geodesic timelike
sphere that intersects ¥ in a unique point y; furthermore, the geodesic passing through x
and y is timelike. This gives

B(x,y) = %((x,x)+(y,y)—(x—y,x—y)) >-1.

with equality if and only if y = x.
Assume conversely that x belongs to both X and Z,. . Then, for all y in ¥, the arc [x, y]
is spacelike since X is achronal. Thus

1
Bl y) =5 () +{yy) —(x—y,x—y) < -1 =Bx,x).
This concludes the proof. O

We now prove

Lemma 4.7. The supremum M of B on L1 X X, is equal to —1.
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Proof. We first consider the compact case. Let m be the point where the function B achieves
its maximum M on Xq X Y.

(i) Assume first that m = (x,y) where x and y belong to the interior of ¥; and X,
respectively. At such a point m, the Hessian of B is non-positive. Then Lemma 4.2
says

M =B(m)<-1.
(ii) Assume now that m = (x, y) where (say) x belongs to dZ; (the case where y belongs
to dX, is treated in a symmetric fashion). Since x then also belongs to X, by Lemma
4.6
~1=M,=M.

In both situations M < —1.

In the non-compact case, we follow a similar argument using the weak version of the
Omori maximum principle Proposition 4.4. First, note that the Riemannian manifold
X1 X X has sectional curvature larger than —1 by Proposition 3.26. For any x = (x1, xp) with
B(x) > =1 + 6 with 0 > 0, Lemma 4.2 implies that there exists w tangent to x with

Hess, B(w, w) > (2B(x) + 2) [|w||* > 26 |Jw||* .

Since we noted after its definition that B is bounded from above, Proposition 4.4 then implies
that B is bounded by —1 + 6. Since this is true for all 0, the function B is bounded by —1.
Thus M < —1 in the non-compact case as well. ]

We can now conclude the proof of the Uniqueness Theorem 4.1. Combining the two
Lemmas 4.6 and 4.7, we obtain that for all x in X1, we have M, = —1. Thus, using the equality
case in the same Lemma 4.6, we obtain that x belongs to X,. Thus X is equal to X,. This
concludes the proof.

5. MAIN COMPACTNESS THEOREM

The main result of this section is the following compactness theorem concerning complete
surfaces.
We start with a definition.

Definition 5.1. A sequence of complete acausal surfaces {Zi}ren With boundary converges
as a graph over an open subset V of a pointed hyperbolic plane Py associated to the warped
projection 7, if, denoting &/ := I N 75 (V)
o the sequence {Uilken, with Uy == no(Z,‘(/ ) converges smoothly as open sets with
smooth boundary in V to an open set with smooth boundary U,
e there exists a smooth complete acausal surface Xy over 7t L(Uy), so that Z;{l * converges
to Zo.

We will mainly use this definition of the convergence of complete acausal surfaces X in
settings where the projections Uy are fixed, i.e. not varying with the parameter k. Recall the
Gaut lift I'(S) ¢ G(M), described in section 3.4, of a surface in S € M into its Grassmannian

GM).

Theorem 5.2 (CoMPACTNESS THEOREM). Let {X}ren be a sequence of connected complete acausal
maximal surfaces in H>", and let yy := Xy be the finite boundary of £y. Assume that we have the
following boundary conditions:

(i) The sequence {yi}ken is strongly positive and uniformly unpinched.
(ii) There is a positive constant A so that for all k, for all x in 'y, we have d (Txk Iy, Tg)yk) <A



MAXIMAL SURFACES IN H?" 31

(iii) The sequence {yi}kew has C* bounded geometry.
(iv) There is a pointed hyperbolic plane P within a uniformly bounded distance of the Gauf$ lift
I'(Zg).

Then, the sequence of surfaces {Z}ren converges as a graph on every bounded ball of P.

The definition of bounded geometry and convergence for spacelike surfaces and strongly
positive curves is given in Appendix A, the definition of uniformly unpinched is given in
Definition 3.14, and the definition of finite boundary is given in Definition 3.9, while the
definition of the Gau# lift is given in section 3.4.

The first three hypotheses can be thought of as a C! bound along the boundary, while the
fourth one is an interior C° bound.

This theorem implies readily a uniform bound on the second fundamental form of
complete acausal surfaces without boundary. Such a result is also a consequence of a result
by Ishihara [31]. However the Ishihara bound is not optimal and we will improve upon it in
our setting in a subsequent paper [36].

We next describe a bound on the second fundamental form in the non-complete case.

If an acausal maximal surface L is not complete, we define its frontier Fr(X) and the
distance d(x, Fr(X)) to the frontier as in paragraph 2.1.1 and Definition 3.9. We may refer to
the non-complete case as the free boundary case. In this setting, we will have two results: we
will have a both a local bound on the geometry as well as a local compactness theorem.

Theorem 5.3. Let {Xi}en be a sequence of connected acausal maximal surfaces in H?", and let
Vi = dLy be the finite boundary of Ly. Let also {xi}ren be a sequence of points so that x; belongs to
Yk
Assume that we have the following boundary conditions:
(i) The sequence {yi}ken is strongly positive and uniformly unpinched,
(i) There is a positive constant A so that for all k, for all x in vy, we have d (Tkak, T;i)yk) < A.
(iii) The sequence {Yilken has C* bounded geometry.

Assume furthermore that 8(xy, Fr(Xy)) is bounded from below by a positive constant R. Then there
exists a positive constant ¢ less than R so that for all k we have that

o the second fundamental form of Xy is uniformly bounded on the ball X (with respect to d;)
on Xy of center xy and radius &.
o the sequence {xy, Zi}keN subconverges smoothly.

In Section 6, we will describe three avatars of our compactness theorem.

5.1. Structure of the proof. The structure of the proof is as follows:

(i) In Paragraph 5.2, we describe how to construct "good "neighborhoods of points on
acausal surfaces: see Proposition 5.4.

(ii) In Paragraph 5.3, we use this good neighborhood together with results on holomor-
phic curves to show local subconvergence under a uniform bound on the second
fundamental form.

(iii) In Paragraph 5.4, we extend this subconvergence globally, again under a uniform
bound on the second fundamental form.

(iv) In Paragraph 5.5, we prove a Bernstein type theorem: complete maximal surfaces
without boundary in the pseudo-Euclidean space B*" are spacelike planes; we also prove a
boundary version.

(v) in Paragraph 5.6 we use the subconvergence, a renormalisation and the Bernstein
type theorem to prove a uniform bound on the second fundamental form.
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(vi) We conclude the proof of the main compactness Theorem 5.2 in paragraph 5.7, also
proving Theorem 5.3. .

5.2. Preliminary : constructing “good” neighborhoods. This paragraph is devoted to the
proof of Proposition 5.4 below.

In order to apply the theory of holomorphic curves to prove our main compactness theo-
rems, we want to find neighborhoods of points in an acausal surface that are homeomorphic
to disks with at most one connected arc in the boundary. We also want to control the size of
these neighborhoods: they should not be too small (with respect to the warped projection),
and their Gaus lift should be uniformly bounded.

Let X be a spacelike surface in Hi’”. We denote by

(i) d the induced metric on X from the metric on Hi’”, and area; the corresponding
area form,
i) I': X — Q(Hi’”) the Gaufs lift, di; the induced metric and areay the corresponding
area,
(iii) dg the metric on G(H?*").
Given a point x in Z, let
(i) Py = (x,Hy) be the pointed hyperbolic plane tangent to X at x (that is such that
TxHx = sz)/
(ii) dp be the metric induced on H, by Hi’", and Ug be the disk of center x and radius R
in H,, and
(iii) 7, the warped projection from X to Hy defined by P,

Proposition 5.4. There exist constants A and & so that for any 6 less than O, we have the following.
Let X be an acausal surface in Hi’” with A <1,

(i) whose finite boundary d%. is 6-unpinched, and

(if) whose second fundamental form has norm bounded by 1.
) Then for all positive x less than 1456, any x in £ with dy(x, Fr(X)) > & admits an open neighborhood
Y., in ¥ homeomorphic to the disk with:

(i) %x N JL has at most one connected component,

(i) for all y in %, we have dg(T, %, T,X) < Ax,
(iii) the subset Yyisa graph over a subset V. of the disk U, in Hy, and
(iv) we have d(x, t,(Fr(X)) > £

5.2.1. The construction: controlling projections of arcs. We assume throughout this paragraph
that

L is a spacelike acausal surface with second fundamental form of norm bounded by 1 and non-empty
o-unpinched boundary.

Assuming that Ug N 1t,(dX) is non-empty, we choose w to be a closest point in Ug N 11,(JX)
to x:

dy(x, w) = inf{(du(x, y) | y € Ug N m,(dT)) .

Let w the preimage of w.

Let cr = cr(x, L) be the connected component of Ug N 71,(dX) containing w, and yr be the
preimage of cg. The point w and the arc cg are not uniquely chosen, and when Uy, is disjoint
from 7,(JX), they do not exist.
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We begin our approach to Proposition 5.4 by showing, under the background assumption
that x is relatively distant to the image of the frontier of X, that short geodesic arcs in Hy
may be lifted to arcs in ¥, assuming the geodesic arcs in H, are near x.

Lemma 5.5 (LirTING AReS). For any positive constants 6 and e, with e < 6, and point x in ©
with di(x, Fr(X)) > 6 the following holds. Let c : [0, €] — H, be a geodesic arc (parametrized by
arclength) not intersecting 1,(dX) except possibly at its extremities and such that

dl(EOr x) e ’ ﬂx(éo) = C(O) s
then c is contained in 1t(L). Moreover, if 1,(E1) = c(e), then
d;(él,x) < 2¢e ’ dg(Télz, TXZ) < 4e . (19)

Proof. Let
Ip:={tel|V¥s<t c(s) € mu(X)}.

The set Iy is open and non-empty. Let & : [y — X be the lift of ¢ starting from &o. Since 7, is
length-increasing, for all t in Iy,

dl(é(t), x) < dl(é(t)/ 50) + dI(EOI X) <2e¢. (20)

Hence we get,
di(E(t), Fr(X)) > di(x, Fr(Z)) — di(&(t), x) > %5 :

It follows that I is closed, so Iy = [0, €] and thus c lies in 71,(X). The inequality (19) follows
directly from the inequality (20), and the bound on the second fundamental form applied to
Proposition 3.28. O

Our final ingredient for the proof of Proposition 5.4 is a statement that, still assuming
that x is reasonably distant from the frontier of ¥, that if the nearest component of the image
of the boundary of L comes very near x, then that component is unique.

Lemma 5.6. For any positive constant 6, there exists a constant K > 1 so that for any R < 7550, the
following holds.
Choose x in L so that cr(x, X) is not empty. Assume that di(x, Fr(Z)) > 6, we have

(i) If the arc cg intersects Ug/k, then cr is the unique connected component of 1(dL) N Ug
intersecting Ug/k.
(ii) for all Cin yg,

d(C,x) <K-R. 1)

Proof. Let us prove the first assertion. Let R” = & where we choose K in the sequel of the
proof.

Assume that 71,(dX) intersects Uy . It follows that cg intersects Uk . Let w be a closest
point to x in cg. Thus w belongs to Ug. Let w be the preimage of w in £. Consider the
geodesic arc from x to w whose length is less that R’ and so less that 6. Applying the
inequality (19), we obtain that

,_ 0
di(w, x) < 2R’ < %0
We now prove

Assertion A: if C € X and dyy(C, w) < 4R’, then C € yg.
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Ficure 1. Lemma 5.6

Since dyx(C, w) is finite, C and w are by definition in the same connected component of JX.
Let I be the arc along dX. from C to w that we order from w to . Let F be the closed subset of
I defined by

F:{geuveel, 0<é — dH(nx(G),x)<§}.

Obviously F C yg, as elements in F have projections to H that are within % of x, while
elements of yr have projections within R of x. The assertion will then follow from the fact
that C belongs to F. We will thus show that F = I using a connectedness argument.
e Fisnon-empty: since dy(w,x) < R’ < %, F contains w. (Here we demand K > 4.)
e Fisopen: assume & belongs to F with £ < C. By continuity, and because elements of
F project to within the smaller £ ball of x, while elements of yg project to the larger
R-ball around x, we can find 1 in I, with C > 1 > £ so that the interval | joining 7 to
& lies in yg. By Lemma 3.29 there exists a constant k only depending on R, so that
foroin]J,
dn(m(w), mx(0)) < k- di(w,0)
< k-dyz(w,0)
< k-dpr(w,C) <4k-R'.
Thus dp(x, mx(0)) < R’(1 + 4k). If we now choose K > 2(1 + 4k), it follows that 1
belongs to F. This shows that F is open.
e Finally F is obviously closed.
We conclude that F = I and so C € F C Vg, which implies that C € yg. This completes the
proof of Assertion A.

Now, let C be in the intersection dX. N 77! (U ). The geodesic (in H*") between w and C
is spacelike, and so contained in some hyperbolic plane. Since by Lemma 3.8 the warped
projection increases the distance, we find

d(w, C) < du(my(w), mx(0)) < 2R’ <6 .
By the 6-unpinched condition
dyz(w, C) < 20(w,C) < 4R’ .
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Using Assertion A, we can now conclude that C belongs to yx. This proves item (i).
For item (ii), consider C in yg. As above

0(w, C) < du(x(@), m(C)) S 2R < 5.
Thus by the unpinched condition
dor(w, C) < 20(w, () < 4R. (22)

It follows that
di(C, x) < di(w,x) +dyz(C,w) < R" +4R < 5R.

This concludes the proof. m]

5.2.2. Proof of Proposition 5.4. If a curve is 6-unpinched it is also xk-unpinched for all x < 6.
Thus it is enough to prove the proposition for k¥ = 6 and we will do so to avoid burdening
the notation.

We choose R < ﬁc‘i as in Lemma 5.6. Let K, Ug, yr and cg be as in the conclusion of this
lemma and the paragraph above it.

We may choose R so that the projection of X with Ugsa intersects transversally. We
apply Lemma 5.6 by choosing A > K so that cg is the unique component of m,(dZ) N Ug
intersecting Ug;4. We now apply Lemma B.1, to ¥ = cg. We thus obtain a topological disk U
in Ug, whose boundary is dU = ap U a1, where a is a subarc of cg, a; a subarc of dUg/4, and
so that U is contained in Uy (see Figure 2).

Ficure 2. Good neighborhoods

Now let ¥ be the preimage of U.

We first want to show that U is a subset of 7t,(Z). Or in other words that any y in U has a
preimage in X. First taking the closest point z in cg to y, the hyperbolic geodesic arc I := [y, z]
lies in U. Let C be the preimage of z.

By Lemma 5.6, di(C, x) < K- R where K is the constant of that lemma. Applying Lemma
5.5 with e = K- R, for
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we obtain that y = 71,(&) with £ in ¥ and
di(&,x) 2K R, dg(T:X, T,X) <4K-R. (23)

We have just shown that ¥ is a graph over U, that U is a topological disk, inequality (23)
holds and the boundary of ¥ is connected. We have thus proven that the first three items in
the proposition.

The last item follows from the fact that . (Fr(X)) = a; and thus d(x, 7t.(Fr(X))) is equal to
R;. O

5.3. Local control. Let us consider the following situation.

(i) Let {Ax}ren be a sequence of strictly positive numbers converging to As, > 0
(ii) Let Xx be an acausal maximal surface (possibly with boundary) in Hik”
(iii) Let x4 be a point in X.
(iv) Let Hy be the totally geodesic plane containing xx, so that T, Hy = T, X, and 7y the
corresponding warped projection.

By convention, if Ao, = 0, we let Hj: to be E>", the flat pseudo-Euclidean space of
signature (2, 1).

Definition 5.7 (LocaL ConTrOL HYPOTHESIS (*)). The sequence {Zy, x, Arlren satisfies the
local control hypothesis (+) , if there exist positive constants B and « so that

(i) Ly is a maximal surface in H " which is a graph over Uy, where
(a) theset Uy is a cormected submamfold of B(xx, k), the open ball of center x; and
radius «x in H ;
(b) the diameter of I'(X) is bounded by Bx ;
(c) we have d(xi, Fr(Uy)) > kB! ;
(d) the boundary of U is connected.
(if) We have the bound ||IIy, || < 1
(iii) Finally let y, = dLj be the finite boundary of ¥;. Assume that y is strongly positive,
and that
(a) The sequence of arcs {yi}ren converges smoothly (in the sense of Appendix A)
to a strongly positive curve Y.
(b) For any point y in yx, we have dg(T, X, T(yZ)yk) <B

Strongly positive curves in Hi’” with A > 0 are defined in Definition 3.14. For A = 0, that
is for the pseudo-Euclidean space E>", we apply the same definition, replacing hyperbolic
plane by euclidean plane in the phrasing.

The goal of this paragraph is to show the following:

Proposition 5.8 (CONVERGENCE WITH LOCAL CONTROL). For x small enough, assuming the local
control hypothesis (+) and the notation therein, then, after extracting a subsequence, the sequence
{xk, 2k, H }keN converges in the sense of Appendix A t0 {Xeo, Lo, HZ”} where Lo, is a maximal
surface wzth boundary .

We prove this proposition in paragraph 5.3.3.

5.3.1. Distance and area estimates. Let My = TX; be the Gauf8 lift of X; in Q(Hi’:’), and let
Yk = Ty Xk be the lift of xx. Then set dg to be the Riemannian distance in Q(Hi’k”).
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Lemma 5.9. We have the following estimates. For k small enough, and assuming the local control
hypothesis (+), there exist positive constants A, b and a depending only on x and B so that

area(My) < A, (24)
forallwin Xy, dg(Te X, ToXe) < bx, (25)
for all win Fr(My), dg(yr, u) > a. (26)

Proof. The second inequality is a direct consequence of ((i)b) with b = B. It then follows
from Corollary 3.29, that for « small enough, the projection from M, (equipped with dy;) to
Uy is infinitesimally biLipschitz for some constant only depending on B. The first inequality
follows.

The third estimate follows from the fact that Fr(My) C Z, where Z is the closed subset
of Q(Hi’”) of points (y, P) with m(y) € Fr(Uy). So a = inf,cz d(Hy,z) is positive and only
depends on k and A. m]

5.3.2. The holomorphic translation. Let us consider the two possible cases:

Case 1: There exists some positive ¢ so that dg(dMy, yx) > ¢ for all k in IN.
Case 2: There exist wy € dMy, with limy_,« dg(wi, yx) = 0.

We refer to the notation of Appendix C: D denotes the open unit disk in C, while S = {z €
D, R(z) > 0} is the semi-disk. Corresponding to these two cases, we consider the following
holomophic maps
(i) in Case 1, we consider the uniformization f; : D — My \ dM, so that fi(0) = yy.
(ii) in Case 2, we consider the uniformization f; : S — M so that f,(0) = wy.
To lighten the notation, we will write U = D or S. Our hypotheses implies the following.

Lemma 5.10. The maps fi are holomorphic immersions. Moreover, for k small enough we have the
following bounds

area(fi(U)) < A, (27)
forallwin U, d(f(0), fi(w)) < bx, (28)
forall win Fr(U), d(f(0), fi(w)) > a, (29)

where A, b and a only depends on .

Proof. This lemma is an immediate consequence of the holomorphic translation described in
proposition 3.32 as well as of the bounds on M obtained in Lemma 5.9. ]

If g is a map from U to a space X, we define as in appendix C, g(Fr(U)) to be the set of
those points x in X so that there exists a sequence {zi}ren tending to Fr(U) with

lim (g(0) = .

Corollary 5.11. For k small enough, the following holds. After extracting a subsequence,the family
{filkew converges to a non-constant holomorphic map f. so that,

folEr(U) € lim fi(Fr(UD))

Proof. The Lemma 5.10 guarantees that we can apply the results on pseudoholomorphic
cuves obtained in appendix C. More precisely, we split the discussion in the two cases
described in the beginning of this paragraph:

Case 1: We are in the free boundary case and we apply Theorem C.7 to get the result.



38 F. LABOURIE, J. TOULISSE, AND M. WOLF

Case 2: In this case, let us consider Wy = Wx(yx) defined in Definition 3.33. By the
hypotheses (iii)a and (iii)b, the totally real submanifold W converges smoothly to a totally
real submanifold. We can now apply Theorem C.8 to get the result.

O

With the notation above, we have:

Lemma 5.12. The holomorphic map f« is an immersion at 0. Moreover, foo(U) is the Gaufs lift of a
maximal surface.

Proof. We have the orthogonal splitting
TpnGH>") = P& P+ ® Hom(P, P*) . (30)

Let us consider the complex line subbundle V of TG over G(H*") so that, in the splitting
above, we have V|, p) = P. The orthogonal projection from T, pG(H>") to P is a complex
morphism, and thus gives rise to a form « in Q}: G, V).

By construction, if M is the lift of a maximal surface, then « restricted to TM is injective.
Conversely, if a is non-zero restricted to a holomorphic curve M, then M is the lift of a
maximal surface.

For any k, we now choose a real line bundle L; in V so that along W(y,), we have
Ly = w(TW(yx)) (see Proposition 3.34).

Let v be a tangent to My, and u = w(v). By Proposition 3.28,

llol? = gu(u, u) < (1 + IP)gr(u, u) < 2 lla(@)IP,

where in the last inequality we have used the assumption that the norm of the second
fundamental form of X is bounded by 1. Thus it follows that

ITAl < V21ifall.

According to Proposition C.20, this last inequality is enough to imply that the hypotheses of
Theorem C.19 are all satisfied. Thus f;,« is non-zero, and in particular f..(U) is the lift of a
maximal surface. o

5.3.3. Proof of Proposition 5.5. The proposition is a consequence of Lemma 5.11 and 5.12.

5.4. Global control. Our goal in this subsection is to prove a global compactness result
under assumptions that we make now precise:

(i) Let {Ax}xen be a bounded sequence of positive numbers.
(ii) Let {Ri}kew be a sequence of positive number so that limy_,. Ry = 0.
(iii) Let {Zx}kew be a sequence of connected complete acausal maximal surfaces in Hik”
Let xx € Ly and let

Bi(R) = {z € Zx | di(z, xx) < R},
and let Hy be the totally geodesic plane tangent to Iy at x;.
Definition 5.13 (GLoBAL CONTROL HYPOTHESIS (*+)). The sequence {X, Ai}ren satisfies the
global control hypothesis (++) , if there exist positive constants A, My and 6 so that

(i) The sequence {xx, H, Hi’k”}keN converges (in the sense of Definition A.3).
(if) We have the bound ||y, || < Mo on Bi(Rg).
(iii) The 1-dimensional manifold y; = dX is strongly positive and d-unpinched,
(a) The sequence {yi}ren has bounded geometry, and
(b) For any point y in yx, we have dg (Tka, Ti,z))/k) <A
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Our goal is now to show the

Proposition 5.14 (CONVERGENCE WITH GLOBAL CONTROL). Assuming the global control hypothesis
(*).

(i) Then for any positive R, there exists €, only depending on 6, A and {yi}ken 50 that if {xi}ken
is a sequence of points with xi in Ly, with the property that 8(xy, Fr(Zy)) is bounded from
below by R we have: the sequence of pointed surfaces {(xx, Z;)}ken Subconverges smoothly
on the ball r in Ly, where L, has center xy and dy-radius ¢.

(if) Assume now that Xy is complete, so that in particular Fr(Xy) is empty. Let 1o be the warped
projection on some pointed hyperbolic plane Py = (Hy, xo). Assume that dg(Po, I'(Xy)) is
. 2,
uniformly bounded. Then {Z;, H /\kn}kEN subconverges as a graph on every compact set of
Hy (see Definition 5.1).

We remark that by rescaling, that is replacing Ax by AtM;? in the hypothesis and reversing
in the conclusion, we can always assume that My = 1. We will do so in the next paragraph.

5.4.1. Getting a local control. Let us first prove the following lemma.

Lemma 5.15. Assume that {Ly, Axlken satisfies the global control hypothesis (++) with My = 1.
Then for any positive R, there exists k and B only depending on R, A, 6 and {yi}ken S0 that the
following is true. Let {xi}ren with xy in Ly and 0(xy, Fr(Xy)) bounded below by R, then there exists a
sequence of maximal surfaces (4 ke S0 that

(i) We have the inclusions ¥ C Xy, and 9% C 0Xy.
(ii) the sequence {Lx, Xk, Arlken satisfies the local control hypothesis (+) for x and B.

Proof. Let us use Proposition 5.4 to construct, given « small enough, a ¥4 and an open set
Uy which will satisfy items (i)a, (i)b, (i)c, and (i)d of the local control hypothesis (+) (cf.
see Definition 5.7), and thus the general item (i) is satisfied. Since all the other items are
consequences of the global control hypothesis (++) (cf. see Definition 5.13), it follows that the
local control hypothesis (+) is satisfied for . This concludes the proof. ]

5.4.2. Proof of the Global Control Proposition 5.14. Let {Zk, AxJren be a sequence satisfying the
global control hypothesis (++) (cf. see Definition 5.13).
Let {x¢}ren be a sequence of points with x; € Iy with 8(xx, Fr(Xx)) bounded from below by
a positive constant. Let { i hen sequence of maximal surface obtained by Lemma 5.15.
Since by Proposition 5.8, the sequence {x, ¥, Hi’kn}keN subconverges, it follows that

there exists a constant ¢, depending on the sequence {Zj, Ak, Xi}ren sO that {x, ii, Hi’k”}keN
subconverges smoothly. However, since we can choose our sequence {x}ren arbitrarily,
provided &(xx, Fr(Sx)) is bounded from below, it follows that we can choose ¢ to depend only
on 6, A and the sequence {yi}ken-

This concludes the proof of the first item of the proposition.

Let us show the second item. Let Py be as in the proposition and 7y the warped projection
on Py. Recall that the warped projection is a dilation.

Consider y in Py, so that y = 7o(xx) with x; € Iy and dg(Po, Ty, Zx) uniformly bounded.
The first item guarantees that X; converges as a graph over the ball B,(y) of center y and
radius ¢ in Py.

Let now U be the subset of Py, consisting of those points z so that {X;}ren converges as
a graph over B.(z). We focus on one such particular zy € U; in particular, if {xi}ren is a
sequence of points, with x; in Xy so that {mo(x)}ken converges to an element w in B, »(2o),
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then dg(T,, L, Po) stays uniformly bounded. Thus, by the previous argument, and using
that the Fr(Z) is empty,w belongs to U.

It follows that U contains the § neighborhood of itself. Thus, if U is non-empty, then
u= P().

The hypothesis guarantees the existence of a sequence {zi}xen of points so that dg (T, L, Po)
stays bounded. It follows that my(z) is a bounded sequence, hence subconverges to a point
y which belongs to U. Hence U is not empty.

This concludes the proof of the proposition.

5.5. Bernstein type theorem. In this paragraph, we prove the following.

Theorem 5.16 (BERNSTEIN FOR MAXIMAL SURFACES). (i) Let X be a complete maximal sur-
face without boundary in E*". Then ¥ is a totally geodesic 2-plane.
(ii) Let T be a complete maximal surface in E>" whose boundary 0% is a geodesic. Then ¥ is a
half-plane.

The first part of this result was proved by Ishihara in [31] for p-dimensional entire graphs
in the signature (p, q) pseudo-Euclidean space EP1. Here, for completeness, we give a more
direct proof for the case E*". The reader may wish to compare the analogous proof of Chern
[19] in the classical setting.

Proof. Observe first that G(E>") is isomorphic to E*" X Grp (TXEZ'”) where x is any point in
E>". By the proof of Proposition 3.32, the projection of the Gauf8 map I' : £ — G(E*") to the
second factor of the decomposition above yields a holomorphic map ¢ : £ — Gryg (Tsz'”).

Observe now that Gry (E2'”) = SOy(2,1)/(SO(2) x SO(n)) is the symmetric space of
SO(2,n) and, by a theorem of Harish-Chandra (see again [20]), is biholomorphic to a
bounded domain in C".

We remark that ¥ is conformal to C: by Gauf’ equation, the induced metric on £ has
non-negative curvature (see Proposition 3.26): by a result of Blanc and Fiala [10] (see also
[30]), we see that ¥ uniformizes as the complex plane C. By Liouville theorem ¢ is constant.
Hence u(X) is a spacelike plane.

Let us now consider the boundary case. Let us construct ¢ as above. Let L be a spacelike
line in E>" and

Wy = {P € Gryo (T.E*") |[LC P} .

Then W is totally real, and totally geodesic: the geodesic between two 2-planes with a
common line L, consists of planes containing L. It follows that J¥ is totally geodesic for the
induced metric on X by ¢, and thus the same argument applied to the doubling shows that
S is unifomized by the half-plane.

In the corresponding symmetric domain picture we can assume that the image of Wy is
a contained in real vector subspace in C". Thus, again, the Liouville theorem allows us to
conclude that ¢ is constant. m]

5.6. Bounds on the second fundamental form. Let {Z;}en be a sequence of acausal maximal
surfaces which are complete with respect to di. Let yi := dZi be the finite boundary of Z;.
Assume that we have the following boundary conditions:
(i) The sequence {yk}ren is strongly positive and uniformly unpinched.
(ii) Thereisa positive constant A so that for all k, for all x in y4, we have d (Txk Xk, Tgi) yk) <
A.
(iii) The sequence {yk}ken has bounded geometry.
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Our main result is now:

Proposition 5.17. For every ¢, there exists some constant M, such that if {xi}xen is a sequence with
Xk € L so that di(x, Fr(Xy)) > ¢, then the second fundamental form of Iy at xy has norm uniformly
bounded by M.

This proposition concludes the proof of the first item of Theorem 5.3.

Proof. We first recall without proof the following folkloric result (see for instance Paragraph
1.D in [27] for a proof).

Lemma 5.18 (A-maximum LEMMA). Let (X, d) be a metric space. Let 1 be a positive number and
assume that the ball B,(n) of radius 1 centered at y is complete. Then there exists a constant A > 1
only depending on 1, such that every positive locally bounded function f on X with f(y) > 1 admits
a A-maximum on B, (1), that is a point x so that

f(x) = sup {f(y) , %f(z) | Yz such that d(x, z) <

1
: 31
v B

We now argue by contradiction. For each k, let us define the function f; := [[II]| on X.
Assume that the second fundamental form of the sequence X is unbounded. Let then
{Vi}ken so that yx € Iy and

lim fi(y) = +eo.

For each k, we apply the A-Maximum Lemma 5.18 to f; and y;, taking n = 1, and thus
obtaining a A-maximum x; of fi in B(yx, 1). Let Ay := (A Fr(x%)) ™2 so in particular we have

1
i = im Ay = <—.
lim fi(xe) = oo, im A =0, fi(2) n
for all z, with d;(xy,z) < AE A~%. We renormalize the metric of H2" by Ax — following
paragraph 2.3.4. We shall denote, by I, the surface I seen as a surface in Hik" and denote

all the geometric objects associated to I, with a superscript 1. Then by Lemma 3.20, I < 1
for all the points z in I, so that

di(z,x) < Ry = /\;%A’%.

Moreover ||IIl(xk)|| =1/A.

We can now apply the first item of the Global Control Proposition 5.14, to obtain that, after
extracting a subsequence, the sequence {xy, le, Hi’k"}keN converges smoothly to (xo, 2o, R>"M),
and in particular the norm of the second fundamental form of X at x; is A™L.

Observe now that since {yi}ren has bounded geometry and is 5-unpinched, then {Yi}kelN
converges to a geodesic: more precisely, for every sequence {z}ien so that z; € y}, then
{z, y;, Hi’kn}keN converges to (zo, Yo, R2") where zg € )y, and yq is a spacelike geodesic — see
the definition A.3 and the observations thereafter. Thus the boundary of ¥ is either empty
or a geodesic. Thus by our Bernstein Theorem, the surface L is totally geodesic. We have
obtained our contradiction.

This concludes the proof of Proposition 5.17. o
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5.7. Proof of Theorem 5.2 and 5.3 . The theorems now follows from the successive use of

e Proposition 5.17 which guarantees that under the assumptions of the theorems the
second fundamental form is uniformly bounded.
e Proposition 5.14 then ensures the conclusions of the theorems.

6. THREE SPECIFIC COMPACTNESS THEOREMS

Theorems 5.2 and 5.3 are quite general. They incarnate in three specific versions whose
hypotheses are easier to handle.

6.0.1. Boundary-free version. The boundary-free version is of special interest and will be
proved in Paragraph 6.3. Int the next theorem, we explain three different compactness
results that will be useful in this paper and its sequel.

Theorem 6.1 (COMPACTNESS THEOREM-BOUNDARY FREE). Let {Xi}ren be a sequence of connected
complete acausal maximal surfaces without boundary. For each k, let xy be a point in Ly, let Ay be the

asymptotic boundary of Ty (see definition 3.9) and Ty = T U Ay.

(i) Assume that the sequence {Ty, Xlren converges, then the sequence of pointed maximal
surfaces {(xx, L) lkew Stbconverges.

(if) Assume that {Arlren converges to a semi-positive loop Ag. Then the sequence {Li}ken
subconverges smoothly as a graph on every pointed hyperbolic plane to a complete maximal
surface Ly whose asymptotic boundary is Ay.

(iii) Assume that {(xx, Zi)}ren converges to (xo, Lo) then any sequence {yixen so that yy belongs
to Ty subconverges to a point in Loy U Ag where A is a semi-positive loop which is the
asymptotic boundary of o

6.0.2. Boundary vanishing at infinity.

Theorem 6.2 (VANISHING BOUNDARY). Let Ag be a positive loop in . H*" and {Zy}xen be a sequence
of connected complete acausal maximal surfaces.
Assume that vy = dLy is compact. Assume furthermore that

() {yxlken converges to Ay,
(ii) the sequence {yilkeN is a sequence of strongly positive curves of bounded geometry which
are also uniformly unpinched,
(iii) the angular width of yy is uniformly bounded.

Then {Lxlxen converges as a graph on any pointed hyperbolic plane to maximal surface with asymptotic
boundary Ag.

This will be proved in Paragraph 6.3.

6.0.3. Finite boundary version. We also have a finite boundary version that will be proved in
Paragraph 6.4.

Theorem 6.3 (CoMPACT SURFACES). Let {LijrenN be a sequence of compact acausal maximal surfaces
in H?". Let yy be the 1-dimensional manifold yi = dLy. Assume that {y}en are topological
circles that converge smoothly to a topological circle y which is strongly positive. Then {Zy}ken
subconverges smoothly to a maximal surface whose boundary is y.
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6.1. Proximality of the action of G on P(E). In the first subsection, we study the dynamics
on P(E) of a divergent sequence in G. These dynamics will be helpful when proving the
convergence of a sequence of maximal surfaces.

The main result of this section is the following;:

Proposition 6.4 (ProximALITY). Let (g} jen be an unbounded sequence in the subgroup of G fixing
a point x in H>". Then there exists a hyperplane H of degenerate signature (1,n) through x, such
that for any compact set C in P(E) not intersecting H, the orbit of C under {g;}jen accumulates to a
point in dH>" orthogonal to x.

6.1.1. Cartan decomposition. We call a Barbot crown a semi-positive loop C in dH*" made
of 4 segments of photons (those objects appeared in the work of Barbot in [6] under the
name crown). Denote the vertices of C by {c,,d,d_,c_}, where the planes y = c, ® c_ and
6 = d, @ d_ are non-degenerate, thus giving rise to space-like geodesics in H>". In particular,
y is a subset of 0*. In particular, F := span{C} is a non-degenerate subspace of signature
(2,2).

The group A which fixes {c;,d.,d_,c_} and F* pointwise is a Cartan subgroup of G. By
construction every element of Ag, the component of the identity of A, is characterised by its
restriction on F which, in the basis given by (c4,d+,d_, c_) is a diagonal matrix

A0 0 0
0 0 0 .

a(A, u) = 0 g Yy 0 , withA, u>0.
0 0 0 1/A

Given K a maximal compact subgroup of G, the corresponding Cartan decomposition of
G states that any element g in G may be written as g = k'ak where k', k € Kand a = a(A, )
is in Ag. Note that this decomposition is not unique; however, if we impose the condition
A > u > 1, the pair (A, ) is uniquely defined. We call (log(A), log(u)) the Cartan projection of

8.

6.1.2. Asymptotics of the action of G. Let {g;}jen an unbounded sequence in G, let g; = Kaik;

be the Cartan decomposition of g;, and (log(A;), log(u})) the Cartan projection of g;. We
distinguish two cases:

(i) The sequence {g;}jen is called Pq-divergent when the sequence {A;/u}jen is un-
bounded.

(ii) The sequence {gj}jen is called non Pi-divergent when the sequence {A;/uj}jen is
bounded.

Here P; refers to the parabolic subgroup in G stabilizing a point in d-H*" and the
terminology is inspired from [25].

Lemma 6.5 (P1-DIVERGENT SEQUENCE). Let {g;}jen be a Py-divergent sequence in G. Then, up to
extracting a subsequence, there exist two points p and q in dH>" such that for any compact set C in
P(E) and not intersecting P(q"), the sequence {g;}jen converges uniformly to p on C.

Proof. Let V = c, and W = ct. The group A preserves the splitting E = V & W. Moreover,
the element a; acts by A; on V and has spectral radius yj on W.

Let y be in P(E) but not in P(W), so that y = [(v,w)] € P(V & W) with v # 0. Since A;/u; is
unbounded, up to extracting a subsequence, we have that {4, - y} e converges to [(v, 0)].
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Now since K is compact, the sequences {k;} jen and {k;}jen subconverge to kj and ko

respectively. It follows that for any point y in P(E) and not in P(k;' W), the sequence {g;- y} jen
subconverges to P(k) V). Setting g = (k;'W)* and p = k{}V yields the result. ]

Lemma 6.6 (NoN P;-DIVERGENT SEQUENCE). Let {g;}jen be a Non Pi-divergent sequence in G.
Then up to extracting a subsequence, there exist photons ¢ and v such that for any compact set C in
P(E) and not intersecting P(i*), the sequence {g;}jen converges uniformly to a point in P(¢).

Proof. SetV =c, ®d, and W = (c- ®d_)*. Note that V and W+ are isotropic planes (that is
photons) preserved by A and such that E = V & W. The spectral radius of a; on V is A; and is
less or equal to 1 on W.
Since {g/}jen is unbounded , there is a subsequence of {1} cn that tends to infinity.
Again, for any y in P(E) not in P(W), the sequence {a; - y}jen subconverges to a point in
P(V). Setting ¢ := k;'W* and ¢ := kj)V yields the result. O

6.1.3. Proof of Proposition 6.4. First assume that n > 2, so the group Fix(x) = Stab(x*) =
SO(2, 1) has rank 2. We can thus take a Barbot crown C with vertices {c;,d,,d_,c_} in x*,
which implies that the corresponding Cartan subgroup A is in Fix(x). We consider the
Cartan decomposition (in Fix(x)) g = k}a jk;, with k;. and k; as elements in a maximal compact
subgroup Kr of Fix(x). Observe that Kr preserves the orthogonal to x.

In the P;-divergent case, we apply Lemma 6.5, observing that the points p and g are in
P(x*), and the result follows with H := P(g+).

In the non P;-divergent case, we apply Lemma 6.6 and observe that ¢ and i are contained
in x*. We take any point g in ¢, and then H := g+ so that ¢* is a subset of H.

Finally, if n = 1, the stabilizer of point is isogenic SO(2,1) and has rank 1. Thus the
sequence {g;}jen is Pi-divergent and we apply Lemma 6.5.

6.2. A priori C’- estimates. Both Theorems 6.1 and 6.2 will follow from some a priori
estimate that we now state:

Proposition 6.7. Let {Xi}ren be a sequence of complete maximal surfaces and Ay a semi-positive
curve in do H>" satisfying either the hypotheses of Theorem 6.1 or those of Theorem 6.2.

Then for any pointed hyperbolic plane P = (g, H), if xx in Ly is the preimage of q for the warped
projection, then the sequence {dg(Ty, Xk, TyH)}rew is bounded.

Proof of proposition 6.7. Suppose the result is false. Then there exists a pointed hyperbolic
plane P = (g, H) so that {dg(T,;H, T, Z)}tew is unbounded where m(x;) = g.

Since the time-like sphere

S = n;'(g),

is compact, the sequence {x;}ren Subconverges to a point xg. The point xy belongs to CH(Ao)
since x is in the convex hull of the boundary of Z;.

Let {t¢}ren be a sequence of elements of Stab(S) converging to the identity and so that
T(xk) = Xo, and let us write X/ = 74(Xy).

Let Hy be a hyperbolic plane through xy and let g, in G be such that gx(Tx, X¢) = Ty,Ho,
and let X = ¢¢(Xx). Then by construction dg(Ty,Ho, TZ;) = 0. Observe now

e in the context of Theorem 6.1 the boundary of {¥; }ren is empty and all hypothesis
of Theorem 5.3 are de facto satisfied,

e in the context of Theorem 6.2, the second hypothesis of this theorem, implies the
first and third hypothesis of Theorem 5.3, moreover Proposition 3.18 and the third
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hypothesis of Theorem 6.2 gives that the second hypothesis of Theorem 5.3 is
satisfied.

Thus, in both cases, we can apply Theorem 5.3. Hence the sequence {Z; }ten subconverges
on any compact to a maximal surface Xj. Here we invoke the hypotheses of Theorem 6.2
and Proposition 3.18 if the conditions on the boundary in Theorem 5.3 are not vacuously
satisfied. By construction observe that gx(xx) = xo, hence that X passes through x.

Let finally Iy = 74 - g,:l. The sequence {h}ren belongs to Stab(xp), is unbounded by

hypothesis, and
(X)) =2 .
By Proposition 6.4, there exists

o Ahyperplane H* of degenerate signature (1, n) passing through x; such that for any
compact set C in H2" but not intersecting H*, the sequence {/(C)}ren accumulates
to a point in dH>" N P(x7).

e Ahyperplane H™ of degenerate signature (1, n) passing through x; such that for any
compact set C in H?" but not intersecting H™, the sequence {h,:l(C)}kE]N accumulates
to a point in dH>" N P(x7).

We can now prove the proposition.

(i) Let us first treat the case of the boundary free Theorem 6.1.

By definition a semi-positive curve contains a positive triple. Thus Ag is not
included in H~, there exists a sequence {yi}en in doo ¥} converging to a point Y
in Ag \ H™. Then z; =: h;l(yk) converges to a point z, which is orthogonal to x.
On the other hand, since y; belongs to 80021’(’, zx belongs t0 de ZI’(. Thus z., belongs
to A{. This contradicts [21, Lemma 3.7 (c)] which asserts that if x is a point in a
complete maximal surface S and y a point in the asymptotic boundary of S, then x
and y are not orthogonal.

(if) Let us now treat the case of Theorem 6.2, where we assume the limit A is a positive
curve.

Observe that H* does not contain any positive definite 2-plane, and thus does not
contain Y. Thus, there exists z in L, converging to zo in Xj such that if vy := he(z),
then {yihew subconverges to a point ¥, in doH?>" N P(xé), which is in particular
orthogonal to xg.

Since yx belongs to L/, it follows that y, converges to y. which belongs to Ao.
We obtain a contradiction with item (iii) of Proposition 2.15.

O

6.3. Boundary-free and boundary-vanishing case. The first item of Theorem 6.3 is a direct
consequence of the Compactness Theorem 5.3. Indeed in that case, the finite boundary yi
of X is empty and the first and third hypotheses of Theorem 5.3 are fulfilled. The second
hypothesis is a conequence of the hypothesis of this first item.

We now move to the proof of the second item of 6.3 In order to apply the Compactness
Theorem 5.3, we first need to find a pointed hyperbolic plane at finite distance from TX.
This is achieved by Proposition 6.7. This completes the proof of Theorem 6.1.

The proof of Theorem 6.2 is also immediate: we notice from Proposition 3.18 that for all x
in yg

dg(T<Ze, T i) < w(y)
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Thus the uniform bounds on the angular width for yx guarantees that the second item in the
hypothesis of Theorem 5.3 is satisfied.

Finally, let us prove the third item in Theorem 6.3 using the notation therein. Let us
realize the surfaces X as graphs over a fixed pointed hyperbolic disk P and let 7 be the
warped projection. We separately treat two cases.

(i) In the case the sequence of points {(yk)}ken stays bounded, then the sequence
{Yilkenw subconverges since {Xi}ren Subconverges as a graph over P

(if) Otherwise we can assume that {7(yx)}ren converges to a point z,, in the boundary
at infinity in P. Recall that X is included in the convex hull Q; of A and that Ay is
the graph of a 1-Lipschitz map f; over the boundary at infinity of P. We may thus
extract a subsequence so that {fi}ren converges to some 1-Lipschitz map fo. It then
follows that {Ag}ren converges in the Hausdorff topology to some semipositive loop
A and thus that {Q}ren converges in the Hausdorff topology to the convex hull of
Aw. Then {yi}ren converges to the element fo(zo) in Aw. This concludes the proof.

6.4. Proof of the compact boundary case: Theorem 6.3. Let us prove that the hypotheses
of Theorem 5.3 are satisfied.

We first remark that the first and third boundary conditions of Theorem 5.3 are satisfied
by the compactness and strong positivity of y. Finally the second condition is satisfied due
to proposition 3.18 and the fact that a maximal surface lies in the convex hull of its boundary
by Proposition 3.27.

7. FINITE PLATEAU PROBLEM
In this section, we prove the following finite Plateau problem.

Theorem 7.1. If y is a deformable strongly positive closed curve in H>", there exists a unique
complete acausal maximal spacelike surface X whose total boundary is y.

Strongly positive curves are defined in Definition 3.14, deformable ones in Definition 3.19
and total boundary in Definition 3.9. Observe also that by Proposition 3.10, such a maximal
surface is a graph.

The uniqueness of L has been proved in Theorem 4.1, so it only remains to prove the
existence.

7.1. Existence by the continuity method. Consider a deformation {y}[o,1] of ¥ (see Defini-
tion 3.19). By Lemma 2.8, we can lift those curves continuously to H".

Let M be the space of Ct* complete compact spacelike surfaces whose boundary is both
smooth and strongly positive, which are graphs over a disk. Define

A ={te[0,1] | thereisa complete maximal acausal surface . € M with dX = y,} .

We already know that A is non empty since it contains ¢ = 0; we also know that A is
closed by Theorem 6.3.

Thus a connectedness argument shows that Theorem 7.1 follows from the following
proposition.
Proposition 7.2. The set A is open.

The proof is a consequence of Corollary 3.24 and standard techniques of which we now
give some details.

We need some preliminaries. Let Hy be the hyperbolic plane containing yy, fix a point g¢
in Hy and consider the pointed hyperbolic plane Py = (30, Ho) (see Paragraph 3.1.1).
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Fix tg in A. The image of y;, by the warped projection on Py is a smooth simple closed
curve bounding a domain €. Similarly, for any ¢ close to ty, we denote by €; the domain in
Hj bounded by the warped projection of y;. Let Xy be a maximal surface with boundary y,,
we want to prove that for all ¢ close to ty, the curve y; bounds a maximal surface.

The next two lemmas describe coordinates on the space of (some) surfaces, and trivialisa-
tion of the associated normal bundles. These technicalities are made necessary by the non
linear nature of H>".

Lemma 7.3 (Cuarrts). There exists some n-dimensional vector spaces E1, a neighbourhood U of
(to, 0) in I x C**(Qy, E1), a map
(PZ(L[XQO —)H_Z'_’n,
such that for any (t, G) in neighbourhood of (to, 0) in U the map
Qo) + x> P, G x),
is a smooth parametrisation of a surface Sy, ) such that
(i) S¢c) is a graph over (),
(11) S(to,O) = 2(), and
(iii) if G vanishes on the boundary, then dS¢ ) = y+.

Proof. After possibly taking a smaller I, let us choose an immersion
F:IxQy— H> =HyxS",
so that 7(F(tp, x)) = x and for every ¢, the map from 9Q) to H>" given by
x F(t,x),

is a parametrisation of y;. Then for every t small enough, the map x — F(t,x) is a
parametrisation of a spacelike surface S; whose boundary is y;.

Let us now consider a trivialisation of the bundle F*(TS") as I X )y X Ej, and finally
consider the map

o(t, G, x) = eXpF(t,x)(G(x)) ,
where we have considered G(x) as a vector in Tr(,S" using the above trivialisation. The
result follows from this construction, writing S ¢ as the image of x — ¢(¢, G, x). a

We have a similar result for the normal bundle

Lemma 7.4 (TRIVIALISATION OF THE NORMAL BUNDLE). Similarly, there exists an n-dimensional
vector space Ey, and a smooth map

@ : U x C2%(Qp, E2) x Qy — TH",
above ¢, such that fixing (t, G) in U, the map
Nic : CF2%(Ey) x Qy — TH>"
is a linear isomorphism with the space of C*-2%-section of the normal bundle to S ).

Proof. Let us consider the bundle
N - Ux Qo,

whose fiber at the point ¢(t, G, x) is the normal bundle of the surface Sy ) at the point
P(t, G, x).

We now trivialize this bundle as
U x QO X E,,
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and the result follows O

Proof of Proposition 7.2. Let (t,G) in U. We denote by H(t, G) the mean curvature (vector) of
the surface L ). Using the identification in Lemma 7.4, we identify H(t, G) — with the same
notation — to an element of C<-2%(Qy, E»). Thus we consider the map

H : Uu - Ckiz,a(QO/ EZ) ’
1 ¢, G) — H(,G).

et V a neigbourhood of 0 in C o, E1) so that {fo} X V is included in U. Consider the
LetV igh hdfO'C’(;“(QE) hat {fo} X V is included in U. Consider th
restricted map
HO . Vv — Ck_2’a(QO/ Ez) ’
"1 G +— H(t,G).

Similarly to the setting of Plateau problems in Euclidean spaces, as shown in White [47,
Proposition 1.4] the map DyoH" is Fredholm of index zero (to adapt the proof of this fact to
the present setting, we need only observe that the map DoH? is strongly elliptic at a spacelike
surface).

By Corollary 3.24, DyH? has zero kernel and spectrum bounded away from 0, so it is
invertible with continuous inverse.

To conclude the proof, we will use an Implicit Function Theorem. Fix an extension
operator ¢ : Ck(9Qy, E1) — CH*(Qy, E;) such that €(0)lyq, = 0 for any 6. This gives an
isomorphism

[ (Ix R0, E1) x CE*(Qo, E1) —> Ix C5(Qo, E1),
(t,0,G) —  (t,e(0)+G).
By restricting the domain of ¢ to an open set O containing ((fo, 0), 0), we can further assume ¢

takes value in U.
Finally define

W:=Hor: O — C2%Qy,E,).
The differential of W at ((f, 0), 0) in the second factor — namely Cg’“(Qo, E;) —is just the
operator DoH? which, as we noted, is an isomorphism. By the Implicit Function Theorem,

we obtain an application 0 from a neighbourhood W of (t,0) in I x C**(dQy, E1) to a
neighborhood of 0 in CS’“(QO, E1) such that for G close to 0 in C’é’“(Qo, Ey)and (f, f) in W,

Y((t, f),G) =0ifand only if G = O(t, f) . (32)
Observe that i((t,0), f) = (¢, f) and let
L = Sow0) -

By equation (32), L; is maximal. Observe that since O(t, f) belongs to Cg’“(Qo, E1), by the
item (iii) of lemma 7.3, we have

&Zt = 851‘ =Vt
Since (t, 6(t,0)) is well defined and in U for t in some neighborhood of t;, we get that

A contains a neighbourhood of ¢y. The uniqueness part comes from equation (32) with
f=o. O
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8. AsymrroTiC PLATEAU PROBLEM: THEOREM A

In this section, we prove Theorem A, namely, that any semi-positive loop in doH>" is the
total boundary of a unique complete maximal surface in H>".
In particular, in light of our previous results, what remains to prove is

Theorem 8.1. Any (smooth) spacelike positive loop in d-H>*" is the total boundary of a complete
maximal surface in H>".

Once this case of Theorem A is established for smooth boundary loops A, the full theorem
follows by approximation of continuous loops A by smooth ones, using Corollary 2.14 and
Theorem 6.1.

8.1. Exhaustion. We construct here an exhaustion of a spacelike positive loop by using
radial curves.
More precisely we prove

Proposition 8.2 (ExuausTioN). Let A be a spacelike positive loop in d-H>". Then, there exists a
sequence {yxlken of closed curves in H2" converging to A satisfying the following:

(i) For k large enough, the curve yy is strongly positive (Definition 3.14).
(if) For k large enough, the strongly positive curve yy is deformable (Definition 3.19).
(iii) The sequence {yi}ken is uniformly unpinched (Definition 3.15).
(iv) The sequence {Yilken has bounded geometry (Appendix A).
(v) The angular width of yy is uniformly bounded (Definition 3.17).

We first give the construction, then prove Proposition 8.2 in paragraph 8.1.2.

8.1.1. Construction of an exhaustion. Given a point p in H>", recall from Subsection 2.2 that
the set

TIH>" = {v € T,H", q(v) = 1}

is isometric to the signature (1, 1) pseudo-sphere S!”". We denote by gg. its metric. Fix a
sequence {pilren Of positive real numbers tending to infinity, and for any k, set

' T;HZ,n SN H2,n ,
ZE v —  exp(pxv) .

The map ¢y is a diffeomorphism onto the pseudosphere My, := B(p, pi) = {x € H>", d(p, x) =
Pk}. We have

$r&m; = sinh(pi)ggu - (33)
Taking the limit as k goes to infinity, we obtain a map

P T;Hz’” — J HZ"
which is a conformal diffeomorphism onto d, H>" \ P(p*).

Let us return to our situation. If A is a spacelike positive curve in d..H>", fix a point p in
the interior of the convex hull CH(A). By Proposition 2.15, the set A is disjoint from p*. We
can thus define the smooth closed curves y, in T;HZ’” and i in My respectively by

Y0 = O (A, Yk = k(o) -

In other words, yy is the intersection of the cone over A with the pseudosphere M;.
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8.1.2. Proof of proposition 8.2. We prove that there is a subsequence of the previously
constructed sequence {yi}ren that satisfies the conditions of the proposition.

Proof of (i). Lift each y; and A to the hyperplane {x € E, (p, x) = —1}. We denote those lifts
with the same notation.

Consider a smooth spacelike loop y in E.

We may now choose an auxiliary euclidean metric & on E and let us use the arc length
parametrisation with respect to this metric.

Define as in paragraph 3.2.2, the map

DA —  Gr3(E),
VU (x1,x2,x3) b= x1©x @3 .

where Gr3(E) is the Grassmannian manifold of 3-spaces in E.

Since y is smooth, using y and y’ := VV-];, the map @, extends to a continuous map, also

denoted @, on ). Observe that if q(y) < 0, then the projection of y in H>" is strongly
positive if and only if ®, takes values in Gry,1(E).

We also observe that ®, is Lipschitz — with respect to the induced metric by & on Gr3(E)
with a Lipschitz constant that depends on the third derivatives of y.

Take an arclength parametrization — with respect to 1 — of A. Then {®,, };cen converges
uniformly to @, by Arzela—Ascoli.

To conclude the proof of this first item we just need to prove that ®, takes values in
Gry,1(E). Let us consider for three vectors x1, x; and x3 in E

A(x1, x2,x3) = det({xi, x;))ij -

Observe also that the map ®, does not depend on the choice of a parametrisation; we
therefore choose a parametrisation of A so that q(A(t)) = 1. Observe then that taking the

derivatives of q(A(t)) = 0 and q(A(#)) = 1 yield the following equations
(AW, AWB) =0, (A(t), A®) =0, (AWM, A®) = 1.
To simply the notation let us write
V(t,s,1) = OACA(E), AE), A(s)) -

(i) Since A is postive, V(t,s, u) takes values in Gr,(E) for pairwise distinct (s, t, u).
(if) For distincts and ¢, V(t,t,5) is the space

AH) ® A(H) @ As) .

Thus, or s # t, the above equations give, letting a = (A(t), A(s)) and b = (/.\(t), A(s))

. 0 a b
A(A(S), A(t), A(t) = det[ a 0 0 J: -a* <0,
b 0 1

Thus V(t, t,s) is non degenerate, hence of type (2, 1) by continuity.
(iii) Finally, V(¢,1,t) is the space

Al ® At) ® A(t) .



MAXIMAL SURFACES IN H?" 51

Letting c = (A(f), /.\.(t)> we have

. . 0 0 -1
A(A(L), At), At) = det( 01 0 ] =-1<0.
-1 0 c

Hence V(t,t,t) is non degenerate, hence of type (2, 1) by continuity.

We have proved that @, takes values in Gr(E) and so does ®,, for k large enough by
uniform convergence. Thus yy is strongly positive for k large enough.

Proof of (ii). Lift p to p, in H>" and let P = (p,, H) be a pointed hyperbolic plane containing
ps+. This gives a decomposition dH>" = S!' x S” in which the boundary of H has the
form S' x {v}. Since A is disjoint from p*, it admits a connected lift A, to dooH>" such that
{p+, A+) < 0. This implies that in the splitting S! x S, the positive loop A, is the graph of a
smooth contracting map f : S! — S" (see Proposition 2.11) whose image is contained in the
hemisphere B = {x € §", {(x,v) > 0}.

Consider the family of maps {¢;}cjo,1] from B to itself given by

_ tx+(1-tp
) = T a =l

Observe that each ¢; is smooth and contracting for t < 1. Thus, the maps f; == ¢; o f are
smooth and contracting and so the projection A; of their graph to dH>" define an isotopy
{At}tepo] such that Ay = A, the loop A is the boundary of H and for each A; is a smooth
positive loop.

Because p belongs to the convex hull of every A;, we can apply the construction on
the proof of item (i). This gives an isotopy {y}}io,1) for every k. By compactness of the
isotopy {At}eefo,1], it follows that for k large enough, every y} is strongly positive and so yy is
deformable.

Proof of (iii). Denote respectively by di and dj the length along yx and yy. Given two points
Xk, Yk € Yk, we denote by x}, i the points in yg such that xx = ¢r(x}) and yix = Pi(y}). We thus
have by equation (33)

dy(xx, yx) = sinh(py) - do(x}, yp) - (34)

Since p lies in the convex hull of A, Item (v) of Proposition 2.15 implies that the geodesics
between p and x; and between p and y; are spacelike: here we use that the points x; and
Yk are constructed to lie on geodesics connecting p to A. Since yy is strongly positive by
the first item, the geodesic between x; and v is also spacelike and so the triple (p, xx, yi) is
positive (unless p belongs to the geodesic between x; and y; in which case the following still
holds). Hence p, xx and y are the vertices of an isosceles hyperbolic triangle Tj. Classical
hyperbolic trigonometry implies that

sinh(é(xkzl i) (35)

a(x,
) = sinh(py)- sin( ( k2]/k)) ,
where a(xx, yx) is the angle at p in the triangle T. In particular, a(xx, yx) is equal to the
extrinsic distance between x? and y? in T,H>".
Consider a sequence {(xx, yk)}xew Where xx, Y are distinct points of y; such that 0(x, yx)
tends to 0, and let ay == a(xx, y).
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By equation (35), I}im 3(xk,yi)

oo M sinh(pk)

= 1. Together with equation (34), we obtain

8k y) . o
k—o0 dk(xk, yk) k%oodo(xz, yi)
where for the last equality we used the fact that y is smooth, spacelike and that ay is equal

to the extrinsic distance between x] and y.
As a result, there exists a 6 > 0 such that for any pair of distinct points xx, yx on yx with

7

O(xk, yx) < 6, then ;f&"k’,yy"k)) > 1. So the sequence {)}ren is uniformly unpinched.

Proof of (iv). In this portion of the argument, we will use some definitions and results from
Appendix A. Now, the curve y; C M is obtained from yy C Tsz'" =~ gln by rescaling the
metric by a factor sinh(py). In particular, the curvature of My and yx converges uniformly to
0, and so for any sequence {xi}xen With xi € Yk, the sequence {xx, Yk, Mi}kenw converges in the
sense of Appendix A to {x, A, E"};cn where A is a spacelike line in the pseudo-Euclidean
space El" and x € A. In other words, the sequence {yx, Mi}ken has bounded geometry.

On the other hand, the sequence {M, H?"};cn has bounded geometry since, up to shifting
the center of the pseudosphere, {My}ren converges to an horosphere (see Subsection 2.2). It
follows from Lemma A 4 that {9, H*"};cn has bounded geometry when yy is equipped (see
Definition A.1) with the normal framing )} given by Pi(x) = Tyyx @ NyMy, where N,M is
the normal to My at x. The bounded geometry of {yy, H?>"}en, when yy is equipped with its
canonical normal framing given by T®y;, will follow from a lemma.

Lemma 8.3. Using the same notation as above, the sequence dg(T(z))/k, Pk) converges uniformly to
0.
Proof. Parametrize y by arc length and define }, = V; 7. Then by definition, T®y; =

span{y,, V).
For a point x in yy, let ni(x) be the unit vector normal to My pointing outward, so

Py = span{y;k, ng}. Since the planes Pi(x) and Tiz)yk intersect along T,)k, we have
dg(TPy1, Pe(x)) = dian (mi(%), (%)) ,
where ni(x) and )7k(x) are considered as elements in the space of positive definite lines in the
signature (1, n) space (x @ T,yx)*, which is identified with H". In particular,
(n(x), 7(2))
Vel

Let us write )'/'k =: Ux + v where . belongs to Pr(x) and vy to P,f(x). So

k
cosh (dg(Tf)yk, Pk(x))) = \/%
e T Vi

By definition, x; := gm, (i, vk) is the geodesic curvature of y seen as a curve in M;.
Similarly, uxnx = IIk(y;k, );k) where II; is the second fundamental form of M;. Since My is
umbilical with induced curvature sinh_z(pk), we have

(X, Y) = coth(pr)gm, (X, Y)ny.

cosh (dg(TPyy, Pe(x))) =

Now, the curve qb;l(yk) = yy is fixed independently of k. Moreover, by equation (33),
the induced arclength parametrization of this curve grows without bound in k, and so the
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geodesic curvature «; of y, in My converges uniformly to zero. The result follows from the
fact that {u ke converges to 1. O

Proof of (v). For each k, let x; be a point in y; such that w(yx) = diam(my, (%)) where
Ty : E = (X ® Ty, yk)* is the orthogonal projection (see Definition 3.17). We want to prove
that the limit of diam(my, (yx)), when k tends to infinity, is finite.

Denote by Hi the hyperbolic plane containing p and T,, . Since there is a subsequence
of {x¢Jren that converges to a point x € A, the sequence of pointed hyperbolic planes
Pr = (p, Hx) subconverges to P = (p, H) where H, is the hyperbolic plane containing p
and T,_A, here using the smoothness of A.

Fix a spacelike line L C T,H., and take g € G such that gx(T,yx) = L, and g(Hj) = He.
Denote by y; = gk(yx), M = §(My) and p; = gk(p). From Subsection 2.2, the sequence {M; }ren
converges to the horosphere H tangent to p., := limp; and passing through p. Denote by

0 = 0 U {pw} the closure in H*" of the horocycle 0 = H N He.

Lemma 8.4. Using the same notation as above, for any sequence {yilkew with yi € yi, there is a
subsequence of {gx(yk)}kew converging to a point in o.

Proof. Let {yilten be such a sequence. Up to extracting a subsequence, we can assume one
of the following:
(i) For any k we have yx = x,
(ii) For any k, we have y; # x; but lim y; = ¥ ,
(iii) The limit of {yi}ken is different from x .
We will prove that in any case, the sequence {gk(vx)}ken subconverges to a point in o.

Case (i) is obvious since gx(yx) = p € 0.

For case (ii), observe that the hyperbolic plane Vi containing p, x; and y; converges to
the hyperbolic plane Hs containing p and T, A. In fact, if x} and y are the points in
yo C T'H?" such that x = ¢r(x}) and yx = ¢i(yy), then Vi is also the hyperbolic plane such
that T,V contains x{ and y}. By the smoothness of )y, the sequence of lines through x{ and
Y converges to Ty Yo, where ¢oo(x2,) = Xeo.

In particular, gx(yx) belongs to gx(Vi) N gk(Mi) and so accumulates to a point in the closure
of the intersection H N H,, thatisin o.

For case (iii), we will use a proximality argument in the spirit of Section 6.1. For each k,
write g = g; - hx where hi(p, Hy) = (p, H) is such that /i converges to the identity. Then the
sequence g, is a sequence in Stab(H) = Isom(H?) which by construction satisfies:

Hmgi(P) = pe fim()7 ) = e

The sequence {g}kei, is such that it approximates the sequence {g; }ten Which have distinct
fixed points on Hy, is thus Pi-divergent and by Lemma 6.5 maps any point in P(E) that are
not in P(xg) to a sequence converging to pe. The result then follows from the fact that A is
positive, so P(x5) N A = Xe. O

Now the proof of item (v) follows. For each k, let y; and z in yj be such that w(yy) =
diam(7ty, (k) = due (70, (Yk), Tx, (21)). Since the angular width is invariant under the action
of G, we have w(y;) = diam(m,(y;)) where 7, : E — L*. By the previous lemma, the
sequence {gx(yx)} and {gk(zx)} subconverge to a point in G. Since 71,(0) is a point, the sequence
{w(yr)lken subconverges to 0. O
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8.2. Proof of Theorem 8.1. Consider {yi}ren the sequence constructed in Proposition 8.2.
By Theorem 7.1, there exists a sequence {Zi}xen of complete acausal maximal surfaces with
azk = Vk-

Since {yi}ren satisfies the hypothesis of Theorem 6.2, we obtain a maximal surface whose
asymptotic boundary is A.

APPENDIX A. BOUNDED GEOMETRY IN THE PSEUDO-RIEMANNIAN SETTING

A.l. Convergence of Riemannian and pseudo-Riemannian manifolds.

A.1.1. The Riemannian setting. We say that a sequence {(xx, M)}kew of pointed Riemannian
manifolds converges C" to a pointed Riemannian manifold (x, M) if for every compact set K
in M, there exists an integer ko such that, for any k > ko there is a an open set U containing K
in M, a diffeomorphism ¢ from U onto an open set in M, so that when k tends to infinity,
we have that {(j),:l(xk)}keN converges to x and the metric ¢; gx converge C" to ¢ in U, where
gk and g are respectively the metrics on My and M.
Similarly, given a sequence {(xx, Nx, Mi)}ken such that N is a submanifold of My and
Xx € N, we say that {(xx, Nr, My)}kenw converges C" to (x, N, M) if for every compact set K
there exists an integer ky and an open set U containg K, such that for k > ko, there is a
diffeomorphism ¢ from the U to an open set Uj in M containing x;, so that
i) oe(NNU) =N N Uy,
(i) {¢,"(xx)}ken converges to x,
(iii) when k tends to infinity, the sequence {¢; gx}en of metrics converge C" to g in U.
We say an estimate only depends on the local geometry of a Riemannian manifold (M, x)
if such an estimate holds uniformly for any sequence of pointed Riemaniann manifolds
converging to (M, x).

A.1.2. The pseudo-Riemannian setting. The definitions in this setting require additional data.
Let M be a pseudo-Riemannian manifold of signature (p, q), and N a submanifold of
non-degenerate signature (p’, 9').

Definition A.1. A normal framing of N is a smooth choice, for every x in N, of a positive
definite (p — p’)-plane of the normal space (T,N)*. We will denote N° the submanifold N
together with a normal framing.

Remark that if N reduces to a point x, then a normal framing x° is the choice of a positive
definite p-plane of T,M.

We denote by G,(M) the Grassmannian of positive definite p-dimensional subspaces of M.
By definition, G,(M) is a bundle over M whose fiber over x is the Grassmannian Gry,o(T,M)
of positive definite p-planes in T,M (thus the fiber is identified the symmetric space of
SO(p, 9)). The tangent space of G,(M) at (x, P) splits as

TenGp(M) = T.M ® Hom(P, P*) = P® P* ® Hom(P, P*) .
The Riemannian metric ¢ on G,(M) is given by
g(x,P) = gxlp @ (_gx“;L) @I’lp ’

where hp is the Killing metric on the symmetric space Gry,o(T,M) evaluated at P and g the
metric on M.

A normal framing of a submanifold N gives an embedding of G, (N) into G,(M) whose
image we denote by Q;, (N). Given a triple (x, N, M) where N is a submanifold of M with



MAXIMAL SURFACES IN H?" 55

non-degenerate induced metric and x belongs to N, we say that the normal framing (x°, N°, M)
is compatible if the normal framing of x contains the normal framing of N at x.

We can thus define the notion of convergence of framed pseudo-Riemannian submanifolds
by using the Riemannian metric on the Grassmannian bundle:

Definition A.2. We say that the sequence {(xi, Ny, M)} ken, where xpisa compatibly normally
framed point of Ni, and N} is a normally framed submanifold of (non-degenerate) signature
(p’,q’) of the pseudo-Riemanniann manifold M of signature (p,q) converges C", if the
corresponding sequence of pointed Riemannian submanifolds {x;,g;, (Ni), Gy (Mi)hken
converges C".

Note that this notion of convergence highly depends on the choice of normal framing.
This choice of normal framing of N is either vacuous or natural in two important cases that
are used in this paper: in the case that N is a spacelike surface in a pseudo-Riemannian
manifolds of signature (2, 1), then the framing is trivial, and it is similarly trivial for spacelike
curves equipped with a (spacelike) osculating plane. Accordingly we will not explicitly
describe the normal framing in our definitions below that describe the convergence in these
cases.

Recall that strongly positive curves in H>" is in particular 2-spacelike: that is the osculating
plane T®y = span(y, V;y} is spacelike everywhere.

Definition A.3 (SPACELIKE SURFACES AND STRONGLY POSITIVE CURVES). Let {M}ren be a sequence
of pseudo-Riemannian manifolds of signature (2, 1),

(i) Let N be spacelike surfaces in M. In that case, we say that
{xr, Ni, Michkew converges t0 {Xoo, Noo, Moo}
if {T N, TNy, G(My)}pen converges to {Tr Neo, TNo, G(Moo)}.
(ii) Let yx be a spacelike curve in My whose osculating plane T®@y; is spacelike
everywhere. In that case again we say that
{xx, Vi, MiJkew converges to {x,y, M}

if {Tﬁj)yk, Ty, Q(Mk)}keN converges to {Tiz)y, T®y, Q(M)}.

Observe that the limits are always spacelike. More precisely in the first item, since by
definition Ty N is in G(Mw), Tx. N is spacelike. The same holds for the curves in the
second item: by the same argument T2y is spacelike, hence Ty is spacelike.

As for the Riemannian setting, we can use this notion of convergence to define the notion
of bounded geometry.

A.2. Bounded Geometry. A sequence of Riemaniann manifolds {My}ren has C" bounded
geometry if for every sequence of points {xi}reny With x; € M, then every subsequence of
{(Mk, x¢)}kew subconverges C" to a pointed Riemannian manifold.

A sequence {(Ny, Mi)}ken Where My is a Riemannian manifold and Ni a submanifold
in My has C" bounded geometry if for every sequence of points {x}reny With x¢ € Ny, every
subsequence of {(xy, Nx, Mi)lken subconverges C".

In the pseudo-Riemannian setting, we say a sequence {My}ien of pseudo-Riemannian
manifolds has C" bounded geometry if the sequence of Riemannian manifolds {G, (M) }xen
has bounded geometry.

For pseudo-Riemannian submanifolds, we use a normal framing: a sequence {(N}, Mi)}xen
where N; is a submanifold of M with normal framing N7, has C" bounded geometry if for
any sequence {x}}ten Where i is a point of Ny with compatible normal framing x;, every

k
subsequence of {x{, N}, Mi}en subconverges C".
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Accordingly, using Definition A.3, we extend this definition to say that {(Ny, M)}ken has
bounded geometry when N is a spacelike surface , or a 2-spacelike curve, in a pseudo-
Riemaniann submanifold M of signature (2, n).

The following is a direct consequence of the previous definitions:

Lemma A.4. For each k, consider Ny a normally framed submanifold of My, and let 'y} be a normally
framed submanfiold of Ni. Then if {y}, Nihkew and {N}, Milken have bounded geometry, then so
does {)}, Mi}kew, where y{° is the submanifold 'yy of My equipped with the normal framing induced
by y; and Nj.

APPENDIX B. A LEMMA IN PLANE TOPOLOGY

Lemma B.1. Let Dy and Dy be two smoothly embedded closed disks in the plane so that Dy is
embedded in the interior of Dy. Let x1 be a point in Dy. Let y : [0,1] — Dy be an arc smoothly
embedded in Dy with y{0,1} € dDg and y transverse to dD;. Then there exists a disk U embedded in
the interior of Dy, so that ,

(i) U contains the connected component of x1 in D1\ p,
(i) U = y1 U n, where y1 is a connected sub arc of y, and 1 a connected sub arc of dD,

The smoothness and transversality hypothesis are quite possibly not necessary but are
enough for our purpose and simplify the argument.

Ficure 3. Lemma B.1

Proof. Let U; be the connected component of x1 in D1 \ y. If U; = D; then we take U = U
and the proof is over. Otherwise, let

to == inf{t | y(t) € U3} .

Let yo := p(to), then Dy \ (D7 U y) intersects a small enough disk neighbourhood of vy, in
four connected components. Only one of these connected components, say V), is included
in Uj. Let 1 be the connected component of dD; \ y so that a subarc of 7 lies in the boundary
of Vo. Let y1 = y(so) be the other extremity of 1.

By construction y[ty, s9] U 1 is an embedded arc, bounding a embedded disk U,. Since
Vo NU, is non-empty by construction, it follows that U; C U,. We can therefore take U = Uy,
and this concludes the proof. |
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AprreEnDIX C. HOLOMORPHIC CURVES AND GROMOV’S SCHWARZ LEMMA

We recall the basis of the theory of holomorphic curves and some results from [26] for the
convergence portion and [32] for the part concerning the area. We give an improvement of
these results as well as considerations of when a limit of immersions is an immersion.

C.1. Preliminaries. Recall that an almost-complex structure on a even dimensional manifold
M is a section | of the bundle of endomorphisms of TM such that J?> = —Id. When the real
dimension of M is equal to 2, an almost complex structure is always integrable (that is,
comes from an holomorphic atlas), and we call such a manifold M a Riemann surface.

Definition C.1. Given an almost complex manifold (¥, J), a holomorphic curve is a smooth
map f : (X, j) = (M, ]) where (X, j) is a Riemann surface, and satisfying Tf o j = Jo Tf.
In this paper, we will be mostly interested in the case where X = D defined by
D={z€eC(, |z <1}.
The frontier of D is
Fr(D)=D\D={z€C, |z| =1}.

Definition C.2. A totally real submanifold of an almost-complex manifold (M, ]) (possibly
with boundary) is a submanifold W ¢ M of half the dimension and such that for any x in W,
we have T,M =T, W & J(T,W).

Our main focus is the semi-disk S defined by
S={zeD, R(z) >0}.
We denote by
dS =S\ int(S) = {z€ D, R(z) =0},
Fr(S) =S\ S = {z € Fr(D), R(z) > 0}.
In this case, dS is a totally real submanifold of S.

Definition C.3. A holomorphic curve with boundary in an almost complex manifold M with
totally real submanifold W is a holomorphic curve f from S to M mapping dS to W.

Definition C.4. Let (M, ]) be a almost complex manifold equipped with a Riemannian metric
(.].). An open set U in M is K-calibrated if there exists a 1-form f so that

Yu e TU, ﬁ(u)2 <K% (ulu), (uluy <K-dp(u, Ju) . (36)
If W is a totally real, totally geodesic submanifold, we furthermore assume that § vanishes
along Wn U.

Then we have the following lemma

Lemma C.5 (LocAL cALIBRATION). There exists positive constants € and K, only depending on the
geometry of (M, x) so that the ball B of radius € in M of center x is K-calibrated.

We sketch a proof since the extension incorporating the totally real submanifold W is not
in the original paper [40].

Proof. Let exp : TyM — M be the exponential map. Observe that Ty exp is holomorphic. We
choose 8 = exp, A, where A € Q!(T,M) is defined by A,(v) = (u | Jv). Since the preimage by
exp of W is T,W since W is totally geodesic, and T,W is a totally real submanifold (actually
linear) of T,.M since W is, it follows that A vanishes on T,W and thus f vanishes on W. The
result follows. o
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Remark C.6. The notion of holomorphic curve can be extended to the following case. The
(not necessarily even-dimensional) manifold M carries a distribution D c TM equipped
with an almost complex structure | : D — D. We then ask that a holomorphic curve is a
map f such that Tf takes values in D and intertwines the almost complex structures.
In this framework, a totally real submanifold is a submanifold W of M of half the
dimension of the distribution 9 and such that for any x in W we have D, = T,W & J(T,WV).
All of the results described in the sequel canonically extend to this case.

C.2. Schwarz lemmas and convergence of holomorphic curves. In this subsection, we state
and sketch the proofs of two of our main goals for this appendix. After a few definitions, we
state the results, then collect some preliminaries before concluding with a description of the
arguments.

To begin, let f be a map from D or S to M. If Z is a subset of Fr(D) or respectively Fr(S),
we denote by f(Z) the accumulation set of sequences { f(yk)}xenw Where {yi}ren is a sequence
converging to a point in Z.

Let {Mi}renw be a sequence of complete almost complex Riemannian manifolds with
bounded geometry, let {x;}ren be a sequence of points. We assume that x; € M; and that
{(x%, M) lkew converges CP* as almost complex Riemannian manifolds.

Theorem C.7 (FREE BOUNDARY). Let {Ulren be a sequence, where Uy is an open set in M,
uniformly calibrated and with bounded geometry. Let {filken be a sequence of holomorphic maps
from D with values in Uy. Then {fi}ren subconverges CP* on every compact set to fy. Assume
furthermore that

sup {area(fi(D)), k € N} < o0 . (37)
Then for every non-empty open subset Z of Fr(D),

fo(2) € lim £4(2).

Assume now that W is a totally real submanifold and totally geodesic submanifold of
M containing x; and that {(xr, Wi, Mi)lkew converges CP* to {(xo, Wo, Mo)}, with W totally
real. In the boundary case, the following is an extension of [33].

Theorem C.8 (BounpARryY). Let {Uklren be a sequence of open sets in My, uniformly calibrated and
with bounded geometry. Let {filren be a sequence of holomorphic maps from S with values in Uy.
Then { fi}kew subconverges CP* on every compact set to fy. Assume furthermore that

sup {area(fi(S)), k € N} < oo (38)
Then for every non-empty open subset Z of Fr(S), we have

fo(z) € lim £,(2) .

Both these theorems represent an improvement over the corresponding earlier results
which only considered the case Z = Fr(D) or Z = JS.

C.2.1. Quadrangles and extremal length. We prepare for the proof by recalling a classical
construction.

A quadrangle Q = (U, x1,x2,x2,%3) in C equipped with the complex structure | is a
topological disk U with four marked points (x1,x2,x3,x4) in cyclic order in JU. The a-
rectangle is the rectangle R, := (R,a,a +i,i,0) of vertices (0,a,a + i,i). Two quadrangles
(U, x1, %2, %2, x3) and (V, y1, Y2, Y2, y3) are conformally equivalent if we can find a conformal
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mapping @ sending U to V so that ¢(x;) = y;. Every quadrangle is conformally equivalent
to a unique a-rectangle.

Let Q be a quadrangle and T'g be the set of arcs in U joining a point in the interval between
x1 to xp on Fr(U) to a point in the interval between x3 to x4 on Fr(U). The extremal length of Q
is £(Q) where for a metric g

inf {lengthfz(y) |y e FQ}
L0 = W) (39)
L(Q) sup {Lg(Q) | ¢ conformal to ]} , (40)

where length, and area, denotes respectively the length and area with respect to . By
construction £(Q) is a conformal invariant. A classical result asserts

Proposition C.9. We have L(R,) = a.

Let Z be the standard quarter in S1, that is the subarc of S; between 1 and i. Let Qg be the
standard sector

Qo=1{zeD|R(z) >0, 3(z)>0,lzl < 1},
so that Fr(Qy) = Zo.

Let £(R) be the Euclidean distance from 0 to a point x in D at hyperbolic distance R from 0.
(Of course, it is classical that €(R) = tanh(R), but the precise formula is not important for our
discussion.) We define the R-corner quadrangle to be the quadrangle Qr = (U, i¢(R), {(R), 1, 1)
where U = {z€ C | {(R) < |z| <1, R(z) > 0,I(z) > 0}.

One then checks, for example by applying the conformal map z +— log z to the domain
Qg, that
Proposition C.10. The map K : R — L(QR), is a decreasing homeomorphism from (0, o0) to (0, o).

The following lemma is a consequence of the previous discussion and is used in the
sequel.

Lemma C.11. For any positive A and ¢, there exists a positive constant p, with the following
property. Assume f is a holomorphic map from Qo to an almost complex manifold M. Assume
that area(f(Qo)) < A and |[Tf]| is bounded by % on the ball of radius p (in Qo) (with respect to the

hyperbolic metric on D). Then d(f(0), f(Zo)) < 2e.

Proof. We choose p so that A - £(Q,) < €. Let g be the induced metric by f from M. Observe
that for any curve yinI'g,,

length, (y) d(f(y(0), f(y(1)) = d(f(0), f(Zo)) = d(f(0), f(y(0))

d(f(o)/ f(ZO)) —-&,
where the last inequality uses the fact that ||T || is bounded by % on B(0, p). Thus

e? > L(Qp)- areag(Qy) > (d(f(0), f(Zo)) - &)’

The result follows. O

C.2.2. Sketch of the proof of the first part of Theorem C.7. Without the hypothesis on the area,
the subconvergence is consequence of the celebrated Gromov’s Schwarz Lemma [26, 40]
which states that the derivatives of f; are uniformly bounded. We sketch the argument,
since we are going to sketch a modification of it. We need three preliminary lemmas. In the
first two, M is a manifold equipped with an almost complex structure | and a compatible
metric (. | .) (that is a metric for which ] is an isometry). First we have (see [40])

VvV Vv
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Lemma C.12 (WEINGARTEN LEMMA). Let I be a holomorphic curve in M, and let x € L. Then there
is a bound K only depending on the geometry of (M, x) so that the curvature of X at x is less than K.

Our second lemma from [40] is

Lemma C.13 (GrRoMoOV's SCHWARZ LEMMA). Let g be a conformal metric on the disk. Let g be
the hyperbolic metric and h the conformal factor so that § = hgo Assume that the curvature of g is
bounded from above by K, and that g satisfies a linear isoperimetric inequality, that is for any disk A
embedded in D, we have

areag(A) < Klengthg(Fr(A)) . (41)
Then there exists a bound Ky only depending on K so that h < K.
Combining these two lemmas gives the celebrated

Lemma C.14 (Gromov’s HoLoMoORPHIC SCHWARZ LEMMA). Let Kj be a positive constant. There
exists a positive constant Ko, only depending on the local geometry of (M, x) and K; so that if ¢ is a
holomorphic map from the hyperbolic disk D to a Ky-calibrated open set with bounded curvature then

ITell < Ko

Proof. By replacing ¢ by the graph map ¢’ = (¢,1d) : D — M x D we may assume that ¢ is
an immersion.

We consider the induced metric g by ¢. By the Weingarten Lemma C.12 the curvature of
g is bounded from above. From the definition of calibration, the metric g satisfies a linear
isoperimetric inequality:

area(A) < Ky L dpg =K, fa ) B < K% length(Fr(A)) .

Thus the result follows by Gromov’s Schwarz lemma C.13. ]

The strengthening of the first conclusion of Theorem C.7 with the hypothesis on the area
is an extension of [32, Lemme 6.8]. This will be proved in the last paragraph of this section.

C.2.3. Sketch of the proof of the first part of Theorem C.8. We proceed as in [33, Lemme 9.1]. We
have

Proposition C.15. Let ¢ be a holomorphic immersion from S to a Riemannian almost complex
manifold M equipped with a compatible metric, so that f(dS) lies in a totally real totally geodesic
submanifold W. Then d8S is totally geodesic for the metric induced by ¢.

Proof. Let ] be the complex structure of M and (. | .) the compatible metric. Let y be an arc
length parametrisation of f(dS). The geodesic curvature of y is (V);); | J). Since y = f(dS) is

embedded in a totally geodesic submanifold W, V}-,); and y lie in TW. Since W is totally real,
for all u and v in TW, we have (u | Jv) = 0, and the result now follows. O

Combining this lemma with the previous arguments, we obtain

Lemma C.16 (HoLoMORPHIC SCHWARZ LEMMA WITH BOUNDARY). There exists positive constants &
and Ky, only depending on the geometry of (M, x) so that if ¢ is a holomorphic map from the semi-disk
S into the ball of radius € centred at x, then

ITell < Ko .
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Proof. Afterreplacing ¢ by the graphmap ¢’ = (¢, 1d) from S to MxD and Wby W’ = WxdS,
we may assume that ¢ is an immersion.

Let go be the hyperbolic metric on S and g = hgy the metric induced by ¢. By the
Weingarten Lemma, the curvature of g is bounded from above. Since dS is totally geodesic
for g, we can double g to obtain a C° metric g» on D. By the doubling argument and since
dS is totally geodesic, the curvature of g, is also bounded from below.

To conclude the proof using Gromov’s Schwarz Lemma one needs to show that g, satisfies
a linear isoperimetric inequality. Let us use the form f obtained from the Local Calibration
Lemma C.5. Let A be a disk in D, write A = Ay U A;, where A; = AN S. Then by Stokes
formula

area(A;) < Kf dp = Kf B= Kf B < K?length(Fr(A)),
A Fr(A)) Fr(A)nA;

where the first equality follows from the fact that = 0 on W, hence on dS. Repeating the
argument for Ag leads the desired linear isoperimetric inequality for g». o

C.2.4. Improving regularity. Gromov’s Schwarz Lemma gives uniform C!-bounds on the
sequence {fi}ren. We need to improve this and proves the CP* convergence to obtain the
first part of Theorems C.7 and Theorem C.8.

This is done in two steps. As a preliminary, we choose C*“ local coordinates on M so that
M is identified with C" and W, with R”. Thanks to our C' bounds, we reduce to the case
(by possibly shrinking the source) to bounded maps f; with values in C*. The holomorphic
curve condition then reduces to the equation

Iy fe = Jk(f)Ixfic » (42)

where x and y are the coordinates on D or S and {Ji}xen converges in CP~12 When present,
the boundary condition is

fi(@S) cR".
The two steps of our regularity improvement are as follows.

Uniform C2-bounds: we consider the 1-jet map gx = (fi, 9y f¢) with values in C*" satisfying the
boundary condition

2 (@S) C R .

A derivation of (42) gives that g is holomorphic for a certain complex structure J; on C*".
Indeed, erasing for a moment the index k to have readable formulas, we claim:

dy8 =](9)0xg,
where for (s, t) in C" x C",
J (s, )(u,0) = (J(s)u, J(s)v + A(s, t)(u)) ,

where A(s, t) := (D;])(t) is the derivative of | atsin the direction of ¢. Since A(s, ) anticommutes
with J(s), we see that

J2(u,v) = (=u, —v + JA@) + AJ(w)) = —(u, ) .

Gromov’s holomorphic Schwarz Lemma then gives a uniform C'-bound on gy, hence the
desired C?>-bound on f;.

CPe-convergence: Now that we have C? bounds we can return to the equation (42) with the
information that f; is in C? and in particular in C, knowing that J; converges in CP~14.
The proposition is then
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Proposition C.17. Assume that u is in C'* and satisfies the equation
dyu = J(u)ou, (43)

with possibly the boundary condition u(dS) C R®, where | is in CY*. Then u is in C>*. More
precisely, for every positive constant A, there exist positive constants C and ¢ so that if the C'* norm
of u is less than A, then the C** norm of u is less than C on a ball of radius e.

Proof. We reproduce and adapt the proof of Theorem A.2.1 in [1] in two ways, first by using
C bounds rather than W*# Sobolev norms, and second in assuming lower regularity of J.

In this proof, the quantities C; will be positive constants. We may as well assume that
u(0) = 0 and J(0) = i and restate equation (43) as

2idu = —i(i — (1)), (44)
We use the difference quotient technique and introduce for small
1
u'(x, y) = %(u(x, y+h)—u(x,y) = fo dyu(x, y + th) dt . (45)
Moreover
0 = ayuh - (](u)axu)h
Iyu" — J()oxu" — J(u)' dxu(x, y + h)
= 2i0u" + i(J(u) - i)dyu" — J()'Iulx, y +h) . (46)
Let also § be a bell function in R with g[0,1/2] = 1, B[1, +oo[= 0, #’(s) < 0. We define
2 112
Be(x, y) =ﬁ( - ' ) :

We now obtain, from (46) and the Leibniz rule .9, (u") = 9, (B:u") — 9, (B)ut",

20"y = =i(J(u) = )y (Beu") + i) = )9y )u"
+ BeJW)'oyu(x, y +h) + (9Bu") . (47)
Let us denote by |[0]|, 4, the CP* norm on the ball of radius ¢ while using the shorthand

1ollp,e = ll0llp,a,1-
Let us makes a series of estimates

(i) In the equation above, let us consider the term

B = 2i(@Bu" + i(J(u) — )@y

We have a constant C, depending only on ¢ and §3, so that

||B”0,a < Cs”uhllo,a,e . (48)
(ii) Restricting € so that ¢ + 1 < 1, we have
G = ) @yBeMlowe < Callilloae - 1B’ e - (49)
(iii) Since J is in C'* and in particular uniformly Lipschitz, we have a uniform constant
Cp so that
J(w)"| < Colu| .
Thus

IBeJ ) Ayulx + h, Pllowe < Calltllae - 14" lloae - (50)
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Combining the estimates (48), (49) and (50) with our original equation (47), we obtain
that

0Bt lowe < Cellullo + Calltally,aelldllo,ae
h h
+C3l|u||0,a,s < |u ||1,a + Cl”””l,a,s : ”,Bsu ||O,a . (51)

Recall also that from the Cauchy-Pompeiu formula (see [4, Theorem 4.7.1] for a model)
we have the estimates

B ha < CalldBe|,,, -
We now fix ¢, so that C3Cyllulo,0,e < % Then for some constant D = D, depending on u and
independent of /1, we find
1 1
a5 < SlBet"lle < Dlu|loa -
2 272

Observe that the same methods also yield that for all < & we have
1
Sllhns < DIl

Let us write gbh =yl — dyu and M = [|ul|; . Using the integral form for u" in equation (45),
we observe that " satisfies |[/"||o,, < 2M and [¢/"(x)| < 2Mh*.
This implies that for all 7 < @, we have
Y (z) — "' (w)| < 2M- min{h?, |z — w|*} < 4M - Bz — w|" .

Thus ||1/Jh||0,q < 4Mh*". Thus u" converges to d,u in C%1 for all ) < a, and then
1
E”ayu”l,qﬁi < D”ayullo,q .
Then taking the limit when 7 goes to @, and using that d,u € C*, we find
1
E”ayunl,a,% < D“&yullo,a .
Thus u is in C>? in the ball of radius &/2. O

Bootstrap and reqularity: We can now conclude the argument by showing that if {uy}ren is a
sequence of solutions in CP*1* satisfying

dyux = Jx(ur)dx(ux) ,
where

o {Jilren converges in CP“ to Jy for which IR" is totally real,
e {it}ken has uniform C'-bounds and converges CY to uy,
then {uylten converges in CPLa,
This is obtained via the bootstrap described in the first step, or equivalently as in [1,
Theorem A.2.1] which immediately leads, using proposition C.17 to

Proposition C.18. Assume that u is in C¥* satisfies the equation (42)
dyu = J(u)oyu,

with possibly the boundary condition u(dS) C R®, where | is in CP?, then u is in CP*1*. More
precisely, for every positive constant A, there exist positive constants C and ¢ so that if the CP* norm
of u is less than A, then the C¥*1 norm of u is less than C on a ball of radius ¢.
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C.2.5. Using the hypothesis on the area. We now show the second part of Theorem C.7 and
Theorem C.8.

Proof. Using the Schwarz Lemma, we can extract in both cases a subsequence so that { fi}ren
subconverges to fj.
Observe that we have a constant A so that for all subsets U of D, or S, then

area(fo(U)) <A. (52)

Let {yilken be a sequence in D or S converging to a point y in an interval Z in Fr(D).
We want to show that there exists a sequence {f,, }xen for which we have

B @ (w0, fu(2) = 0.
From the bound on the area of fy(D), we have that for all R
I}i_)rg(area(fo(B(yk, R)) =0.

where B(y, R) is the ball of radius R in the hyperbolic metric.
Using the fact that { fi}ren converges on every compact to fo, we can choose a subsequence
{futken, so that

. (53)

==

arealfy, (Bl D) < 11 Ao, (i) <

Let uy be a conformal mapping of D that sends 0 to y.

Since {yx}kew converges to an interior point of Z, the sequence {u,;1 (Z2)}ken converges to
the full boundary of D. We can thus choose for each k, a subinterval Z; in Z so that the
preimage of Z; by u is a quarter of circle Zy.

After precomposing uy with a rotation, we may furthermore assume that the preimage of
Zy is the standard quarter of circle.

Let then Qy (as defined in the beginning of paragraph C.2.1) be the standard sector. We
furthermore choose Zj so that Qy is a subset of u;l(S) in the boundary case.

To conclude the theorem it will be enough to prove

lim d(fy, (), f (Z6)) = 0. (54)
Let then gx = f,, o ux. Assertion (54) is now restated as
I}gg d(gk(0), 8x(Zo)) = 0. (55)

Applying Schwarz Lemma again, {gx}ren Subconverges to some go. By inequality (53), the
area of go(B(0, 1)) is equal to 0, thus g is constant.

Let us choose a positive €. Let A be the bound of the area defined in inequality (52) and p
as in Lemma C.11. Since {gk}ken converges uniformly on every compact to the constant map
o, it follows that for k large enough ||Tg|| is bounded above by % on B(0, p). We can thus
conclude from Lemma C.11 that for k large enough

d(¢x(0), gk(Zo)) < 2¢ .

The assertion (55) follows, hence the theorem. O
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C.3. Immersions. A non-constant limit of holomorphic immersions may not be immersed.
We describe here certain situations in which a limit of immersions is an immersion. This
result is a generalization of the case when the target is C: roughly speaking the role of the
2-dimensional target is played by a complex line bundle L¢, together with a never vanishing
1-form a with values in L. Our "immersion in C" is now replaced by a holomorphic map f
so that f*a is uniformly non-vanishing.

Let us be more precise about our hypothesis: let M be an almost complex manifold, L be
a real line bundle over M, L¢ the complexification of L and & € Q!(M, L¢) a never vanishing
1-form with values in Lc.

We also choose a Hermitian metric & on L¢ as well as a unitary connection V% on L¢ for
which L is parallel.

When we have a boundary problem defined by a totally real submanifold W we further-
more assume that a(TW) = L. The result is the following version of a claim that a sequence
of maps that are strongly immersed, in terms of the existence of one-form « which they all
pull back in a non-degenerate way, limit on a map with the same immersivity property.

Theorem C.19. Let {filrew be either (free boundary case) a sequence of holomorphic maps from
D, or (boundary case) a sequence of holomorphic maps from S to M so that fi(dS) is included in W.
Equip (M, W) with a real line bundle L and a one-form o with values in its complexification L¢ as
above, together with the chosen Hermitian metric h and parallel unitary connection V°.

Assume that

(i) the sequence {filren converges to fo,
(ii) forallk, f,:a never vanishes,
(iii) we have a constant Ky so that for all k and

Iffd"all < Kollfial?, (56)

using the metric h and some auxiliary metric on M.
(iv) assume finally that fja is not identically zero.

Then f;a never vanishes.
We remark
Proposition C.20. Condition (560) is satisfied in the following two cases
d"a=0, or |Tfl<Kilfal.

Proof. The first case in Proposition C.20 is obvious. The second case follows form the remark
that if g € QX(V), then [Ig*ll < I[Tgll*- 18Il - o

The first case is satisfied when o = dm, where 7t is a submersion in C which maps W to a
line, in which case the setting reduces to simply maps from D (or S) to C.

C.3.1. Preliminary controls. Let f be a holomorphic map from D to M satisfying inequality
(56), and g the quadratic form defined by

8(X,Y) = ha(T£(X)), a(T£(Y)),
Let O be the open set in D on which g is a metric, and let u be the continuous vector fields of
norm 1 (defined up to sign) on O so that a(T f(u)) € L.

Lemma C.21. Let 8 be the connection form for u defined by
,B(X) = g(VXu, ]Ll) ’
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where V is the Levi-Civita connection of g. Then
IBEOIP < Kig(X, X).
where Ky only depends on Ko, e and V°.
Proof. Let us consider the induced bundle Ly := f*L, as well as the pull-back metric hy,
induced forms C = f*a € QY(D, Ly), and induced connection D = f*V°. In the proof k; will be

constants only depending on a and V°. The classical formula for the Levi Civita connection
tells us that

2¢(Vxu, Ju)
= u-g(X, Ju) - Ju- g(X,u)+ X - g(u, Ju)
=8(u, [X, Jul) — g(X, [u, Jul) + g(Ju, [X, u])
= u-ho (CUX)), C(Ju)) — Ju - ho (T(X)), C(w)) + X - ho(C(w), C(Ju))
—ho (C(w)), C([X, Jul)) = ho (C(X), C([u, Jul)) + ho (C(Ju)), C([X, ul))
= 2ho(Dx(C(u)), C(Ju))
+ho(C(u), AP T(X, Ju)) — ho(C(Ju), AP (X, w)) + ho(T(X), d°C(u, Ju)) -

Here of course d°((X, Y) = (DxC)(Y) — (DyO)(X) — C([X, YD).
Since L is parallel for VY, it follows that ho(Dx(C(w)), C(Ju)) = 0. Observe now that the
hypothesis (56) and the Cauchy-Schwarz inequality implies that

Iho(C(X), dPC(Y, 2)F < K3g(X, X) - g(V, Y) - 8(Z, Z) .

Thus, from the above inequality applied to the final three terms of the computation above of
2B(X) = 2g(Vxu, Ju) and using that g(u, u) = g(Ju, Ju) = 1, we see that

8OO < SKo V3T ).

This concludes the proof. O

Lemma C.22. Let ¢ = A2go, and let By be the connection form of the vector ug proportional to u and
of norm 1 for go. Then

—(dlogA)o ] =B-Po,
Proof. The connection of § = A2g is given by
V=D+(dlogl)®Id—(dlogAo)®],
where D is the connection of gy. Thus, if u is the vector field of norm 1 for g, then
B(X) = g(Vxu, Ju) = g(Dxu, Ju) — dlog A(JX)

Observe now that Av = vy where vy has norm 1 for gy, thus

8(Dxv, Ju) = %g(Dx?Jo, Juo) = go(Dxvo, Jvo) = Bo(X) .

The result follows.

Corollary C.23. Assuming f is an immersion, let y be either

(i) (Free boundary case) an embedded circle y in D, or
(ii) (Boundary case) or an embedded half circle so that dy C JS.
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< K2 f Ads ,
’)/
Proof. Let us consider first the free boundary case: from Lemma C.22,

fy(dIOg?\)OFIVﬁ—Lﬁo=fyﬁ—fudﬁo=fyﬁr

where U is the disk of boundary y in the boundary free case, and boundary y LI I, where
I € 98 in the boundary case. Observe that we have used here that

[ﬁ0=0,

which follows from the fact that 1 is tangent to JS, so that its covariant derivative in the
tangential direction is also tangential and hence orthogonal to Jug. Thus the inequality
follows from the bounds in Lemma C.21. For the boundary case, we first have to remark
that if X € TdS, then obviously o(X) = 0. Moreover, f(dS) is a curve in a totally real and
totally geodesic manifold W. Thus VXu belongs to TW and Ju is orthogonal to TW. Thus

BX) = g(Vxu, Ju) = 0.

The fact that g and fy are zero when restricted to dS allows us to conclude the argument. O

Then
(dlogA)o ]

v
7

where ds is the arc length of v with respect to go.

C.3.2. Proof of Theorem C.19. The proof in both cases follow the same scheme. We will point
out where the difference occurs. It is enough to prove that fja does not vanish at 0. Let gi
be the conformal metric on D given by

8k(u, v) = h (a(T fi(w)), (T fi(w))) ,
and A be the function on D so that gx = )\i g0 where g is the Euclidean metric on D.
To prove the theorem, it is enough is to find a positive p so that, for all k € N

Ax(0) > p-

Let D(R) be the disk of radius R centered at 0 with respect to go and y(R) its boundary. In
the boundary case, we let D(R) be the half disk centered at 0 and denote by y(R) the half
circle which is part of Fr(D(R)). We denote by (1, 0) the polar coordinates on C \ 0. Let wg is
the closed form on C \ {0} given by

_ xdy —ydx
we = 21 yz .
(Of course, wy is usually denoted by d6 but the notation d6 —disliked by the first author —
suggests that wg is exact) Observe that for any 1-form «

aAw a(d,) dr A wg,

f ao] f a(Jdg) we = —f’f a(dy) we -
S(r) S(r) S(r)

For k € IN, let G be the function R, given by

Gk(R) = f IOg(Ak) *wg.
dD(R)
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Observe that, because Ay does not vanish, we map apply Stokes theorem to the annulus
{n <r R}, and let  — 0 to obtain

R
Gk(R) = f dlog(Ay) A wg + Gi(0) = f ( f dlog(/\k)(a,)-we)dr+Gk(0).
D(R) o \Jyo

After taking the derivatives with respect to R, we get

Gr= [ (R)dlogmk)(a»wﬁ—% [  dlogie.
V4 V4

Since fy is an immersion, it follows from Corollary C.23 that

. K
IGK(R)| < =2 f Aids
R Y(R)

where ds is the length with respect to gg. By the Schwarz lemma, we see that Ay is uniformly
bounded from above and thus |G;(R)| < C,. It follows that for all Ry

emt|log Ax(0)] = |Gx(0)] < |Gk(Ro)l + C2Ro ,

where € = 2 in the free boundary case, and ¢ = 1 in the boundary case. Thus

M0 > exp (- (GHRy)l + CoRo))-

Then, since A has isolated zeroes (See the similarity principle Theorem A.5.2 and Proposition
A.5.3in [1]), there exists some Ry so that y(Rg) does not contain any zeroes of A, thus there
exists a positive a so that

f log(Ae) - wo > —a > —00..

ID(Ro)

Thus for k large enough, Gi(Ro) > —2a. In particular, for k large enough
A0) > 1= exp (—i(Za n CORO)) >0.

The result follows.
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