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Abstract. We define and prove the existence of unique solutions of an asymptotic Plateau
problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature (2,n): the
boundary data is given by loops on the boundary at infinity of the pseudo-hyperbolic space
which are limits of positive curves. We also discuss a compact Plateau problem. The required
compactness arguments rely on an analysis of the pseudo-holomorphic curves defined by the
Gauû lifts of the maximal surfaces.

Abstract. Nous définissons un problème de Plateau asymptotique pour les surfaces maxi-
males de type espace dans l’espace pseudo-hyperbolique de signature (2,n) dont le bord à
l’infini est donné par des courbes, dites semi±positives, et qui sont limites de courbes positives.
Nous montrons l’existence et l’unicité des solutions correspondantes et discutons le problème
de Plateau compact correspondant. Les arguments de compacité utilisés requièrent l’analyse
de courbes pseudo-holomorphes définies par le relevé de Gauû de surfaces maximales.
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1. Introduction

Our goal is to study Plateau problems in the pseudo-hyperbolic space H2,n, which can be
quickly described as the space of negative definite lines in a vector space of signature (2,n+1).
As such H2,n is a complete homogeneous pseudo-Riemannian manifold of signature (2,n)
and curvature −1.

Quite naturally, H2,n bears many resemblances to the hyperbolic plane, which corresponds
to the case n = 0. In particular, generalising the Klein model, H2,n may be described as one
of the connected components of the complement to a quadric in the projective space of
dimension n + 2.

This quadric is classically called the Einstein universe and we shall denote it by ∂∞H2,n [5].
Analogously to the hyperbolic case, the space ∂∞H2,n carries a conformal metric of signature
(1,n) and we will consider it as a boundary at infinity of H2,n. Topologically, ∂∞H2,n is the
quotient of S1 × Sn by an involution.

From the Lie group perspective, the space H2,n has PSO(2,n + 1) as a group of isometries
and the Einstein space ∂∞H2,n is the Shilov boundary of this rank two Hermitian group, that
is the unique closed PSO(2,n + 1)-orbit in the boundary of the symmetric domain.

Positive triples and positivity in the Shilov boundary [20] play an important role in the
theory of Hermitian symmetric spaces; of notable importance are the positive loops. Important
examples of these are spacelike curves homotopic to S1 and specifically the positive circles
which are boundaries at infinity in our compactification to totally geodesic embeddings of
hyperbolic planes. Then semi-positive loops are limits of positive loops in some natural sense
(see paragraph 2.5.2 for precise definitions).

Surfaces in a pseudo-Riemannian space may have induced metrics of variable signatures.
We are interested in this paper in spacelike surfaces in which the induced metric is positive
everywhere. Among these are the maximal surfaces which are critical points of the area
functional, for variations with compact support, see paragraph 3.3.3 for details. These
maximal surfaces are the analogues of minimal surfaces in the Riemannian setting. An
important case of those maximal surfaces in H2,n are, again, the totally geodesic surfaces
which are isometric to hyperbolic planes.

We refer to the first two sections of this paper for precise definitions of what we have
above described only roughly.

Our main Theorem is the following.

Theorem A (Asymptotic Plateau problem). Any semi-positive loop in ∂∞H2,n bounds a unique
complete maximal surface in H2,n.

In this paper, a semi-positive loop is not necessarily smooth. Also note that a properly
embedded surface might not be complete and so the completeness condition is not vacuous.

On the other hand, we will show in section 3 that complete spacelike surfaces limit
on semi-positive loops in ∂∞H2,n, and so Theorem A may be understood as identifying
semi-positivity as the condition on curves in ∂∞H2,n that corresponds to complete maximality
for surfaces in H2,n.

The uniqueness part of the theorem is strikingly different from the corresponding setting
in hyperbolic space where the uniqueness of solutions of the asymptotic Plateau problem
fails in general for some quasi-symmetric curves as shown by Anderson, Wang and Huang
[3, 46, 29].

As a tool in the theorem above, we also prove the following result, of independent interest,
on the Plateau problem with boundary in H2,n. The relevant notion for curves is that of
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strongly positive curves, and among those the connected set of deformable ones which are
defined in paragraph 3.2.

Theorem B (Plateau problem). Any deformable strongly positive closed curve in H2,n bounds a
unique compact complete maximal surface in H2,n.

One of the original motivations for this paper comes from the ªequivariant situationº.
Recall that G B PSO(2,n + 1) is the isometry group of a Hermitian symmetric space M: the
maximal compact subgroup of G has an SO(2) factor which is associated to a line bundle L
over M. Thus a representation ρ of the fundamental group of a closed orientable surface S
in G carries a Toledo invariant: the Chern class of the pull back of L by any map equivariant
under ρ from the universal cover of S to M [45]. The maximal representations are those for
which the integral of the Toledo invariant achieves its maximal value. These maximal
representations have been extensively studied, from the point of view of Higgs bundles, by
Bradlow, García-Prada and Gothen [14] and from the perspective of bounded cohomology,
by Burger, Iozzi and Wienhard [16]. In particular, a representation is maximal if and only if
it preserves a positive continuous curve [15, 16]. Then Collier, Tholozan and Toulisse have
shown that there exists a unique equivariant maximal surface with respect to a maximal
representation in PSO(2,n + 1) [21]. This last result, an inspiration for our work, is now a
consequence of Theorem A.

We note that maximal surfaces in H2,n were also considered in a work by Ishihara [31] ±
see also Mealy [37]± and that Yang Li has obtained results for the finite Plateau problems
in the Lorentzian case [38], while the codimension one Lorentzian case was studied by
Bartnik and Simon in [7]. Yang Li’s paper contains many references pertinent to the flat case.
Neither paper restricts to two spacelike dimensions.

Another motivation comes from the contemplation of two other rank two groups: SL(3,R)
and SL(2,R) × SL(2,R), where we notice the latter group is isogenic to PSO(2, 2).

Affine spheres and SL(3,R): While maximal surfaces are the natural conformal variational
problem for SO(2,n), the analogous problem in the setting of SL(3,R) is that of affine spheres.
Cheng and Yau [18], confirming a conjecture due to Calabi, proved that given any properly
convex curve in the real projective space, there exists a unique affine sphere inR3 asymptotic
to it. That result has consequences for the equivariant situation as well, due independently
to Loftin and Labourie [39, 34]. Our main Theorem A may be regarded as an analogue of the
Cheng±Yau Theorem: both affine spheres and maximal surfaces (for SO(2, 3)) are lifted as
holomorphic curves ± known as cyclic surfaces in [35] ± in G/K1, where G is SL(3,R) in the
first case and SO(2, 3) in the second, and K1 is a compact torus. Moreover these holomorphic
curves finally project as minimal surfaces in the symmetric space of G.

The case n = 1: The case of SL(2,R) × SL(2,R) and maximal surfaces in H2,1 has been
extensively studied by Bonsante and Schlenker [11] and written only in the specific case of
quasi-symmetric boundaries values ± see also Tamburelli [42, 43] for further extensions. Our
main Theorem A is thus a generalization in higher dimension of one of their main results.
Also in the case of H2,1, we note that Bonsante and Seppi [12] have shown the existence, for
any K < −1, of a unique K-surface extending a semi-positive loop in ∂∞H2,1.

Lorentzian asymptotic Plateau problem: There is also an interesting analogy with the work
of Bonsante, Seppi and Smillie [13] in which they prove that, for every H > 0, any regular
domain D in the (n + 1)-dimensional Minkowski space contains a unique entire spacelike
surface of constant mean curvature H whose domain of dependence is D. Their work
corresponds to the non-semisimple Lie group SO(n, 1) ⋉ Rn,1. The similarities between
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the asymptotic behavior of their regular domains and our notion of semi-positive loops in
∂∞H2,n are striking, in that both only require a non-degeneracy over 2 or 3 points.

In a subsequent paper [36], the first two authors study the analogue of the Benoist±Hulin
result [8] for convex geometry and study quasisymmetric positive curves and the relation
with the associated maximal surface . In contrast, Tamburelli and Wolf study the case of
ªpolygonal curvesº in the H2,2 case, whose group of isometries is SO(2, 3) which is isogenic to
Sp(4,R) [44]; there they prove results analogous to Dumas±Wolf [23]. One goal in that work
is to identify local limiting behavior of degenerating cocompact families of representations.

The proof of Theorem A follows a natural outline. We prove the uniqueness portion by
relying on a version of the Omori maximum principle; the bulk of the proof is on the existence
question. To that end, we approximate a semi-positive loop on ∂∞H2,n by semi-positive
graphs in H2,n; as maximal surfaces in our setting are stable, we solve the Plateau problem
for these with a continuity method, proving compactness theorems relevant to that situation.
We then need to show that these finite approximations converge, limiting on a maximal
surface with the required boundary values. Thus, much of our argument comes down to
obtaining compactness theorems with control on the boundary values. Some careful analysis
of this setting allows us to restrict the scope of our study to disks and semi-disks. Then, the
main new idea here is to use the Gauû lift of the surfaces, to an appropriate Grassmannian,
which are shown to be pseudo-holomorphic curves. We can then use Schwarz lemmas to
obtain

(i) first a compactness theorem under a bound on the second fundamental form,
(ii) then after a rescaling argument using a Bernstein-type theorem in the rescaled limit

E2,n of H2,n, a uniform bound on the second fundamental form.

We would like to thank specifically Andrea Tamburelli for pointing out the use of Omori
Theorem in this setting, Alex Moriani, Enrico Trebeschi, Fanny Kassel and the referee for
pointing out various mistakes in an earlier version, as well as useful comments by Dominique
Hulin, Fanny Kassel, Qiongling Li, John Loftin, Raffe Mazzeo, Anna Wienhard and Tengren
Zhang. Helmut Hofer provided crucial references for the pseudo-holomorphic appendix
and we would like to especially thank him here.

1.1. Structure of this article.

(i) In section 2, we describe the geometry of the pseudo-hyperbolic space H2,n, and
its boundary at infinity, the Einstein universe ∂∞H2,n. There we carefully define
positive and semi-positive curves in ∂∞H2,n.

(ii) In section 3, we discuss curves and surfaces in H2,n. In particular we introduce
maximal surfaces and show that they may be interpreted as holomorphic curves.
We also discuss spacelike curves and various notions related to them.

(iii) In section 4, we prove the uniqueness part of our two main theorems.
(iv) In section 5, we prove, using the holomorphic curve interpretation, a crucial

compactness theorem for maximal surfaces. We feel this is of some independent
interest.

(v) In section 6, we describe different consequences of our main compactness Theorem,
whose formulations we will use in the proof of Theorem A.

(vi) In section 7, we prove the Plateau Theorem B by the continuity method, relying on
the both the stability of the maximal surface and a compactness consequence from
section 6.
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(vii) In section 8 we prove the Asymptotic Plateau Theorem A using the Plateau Theorem
B, an exhaustion procedure, and the results in section 6.

(viii) In the Appendices A and C, we describe the notion of bounded geometry and prove
the relevant results needed for the holomorphic curve interpretation. We expect
that last appendix has some independent interest.

2. Pseudo-hyperbolic geometry

In this section, we describe the basic geometry of the pseudo-hyperbolic space and its
boundary, the Einstein universe. Part of the material covered here can be found in [5, 21, 22].
This section consists mainly of definitions.

2.1. The pseudo-hyperbolic space. In this paper, we will denote by E a vector space
equipped with a non-degenerate quadratic form q of signature (2,n + 1). The group O(E)
of linear transformations of E preserving q has four connected components, and we will
denote by G := SO0(E) the connected component of the identity. The group G is isomorphic
to SO0(2,n + 1).

Definition 2.1. The pseudo-hyperbolic space H2,n is the space of negative definite lines in E,
namely

H2,n
B P

({x ∈ E | q(x) < 0}) ⊂ P(E) .

The pseudo-hyperbolic space H2,n is naturally equipped with a signature (2,n) pseudo-
Riemannian metric g of curvature −1. The group G acts by isometries on H2,n and the
stabilizer of a point contains a group isomorphic to SO0(2,n) as an index two subgroup. In
particular, H2,n is a (pseudo-Riemannian) symmetric space of G.

2.1.1. Geodesics and acausal sets. Complete geodesics are intersections of projective lines with
H2,n. Any two distinct points (x, y) lie on a unique complete geodesic. We parametrize a
geodesic by parallel tangent vectors.

A geodesic γ, which is the intersection of the projective line P(F) with H2,n, can be of three
types:

(i) Spacelike geodesics, when F has signature (1, 1), or equivalently q(
q

γ) is positive.
(ii) Timelike geodesics, when F has signature (0, 2), or equivalently q(

q

γ) is negative.
(iii) Lightlike geodesics, when F is degenerate, or equivalently q(

q

γ) = 0.

A geodesic segment is the restriction of a parametrized complete geodesic to the segment
[0, 1]. Two distinct points (x, y) are extremities of a geodesic segment, which is unique unless
the corresponding complete geodesic is timelike (in which case there are exactly two such
geodesic segment).

We say the pair of points (x, y) is acausal if they are the extremities of a spacelike geodesic
segment γ. We then define its spatial distance as

ð(x, y) B
∫ 1

0

√

q
(

q

γ
)

dt .

A subset U of H2,n is acausal if every pair of distinct points in U is acausal.
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2.1.2. Hyperbolic planes. A hyperbolic plane H in H2,n is the intersection of H2,n with a projective
plane P(F) where F is a three-dimensional linear subspace of signature (2, 1). The spatial
distance ð restricts to the hyperbolic distance on any hyperbolic plane.

A pointed hyperbolic plane P is a pair (q,H) where H is a hyperbolic plane and q ∈ H.
A pointed hyperbolic plane is equivalent to the datum of an orthogonal decomposition
E = L⊕U⊕V where L is a negative definite line, U a positive definite 2-plane and V = (L⊕U)⊥.

2.1.3. The double cover. In the sequel, we will often work with the space

H2,n
+ = {x ∈ E, q(x) = −1} .

The natural projection P : E \ {0} → P(E) restricts to a double cover H2,n
+ → H2,n.

The tangent space TxH2,n
+ is canonically identified with x⊥. The restriction of q to

TxH2,n
+ equips H2,n

+ with the signature (2,n) pseudo-Riemannian metric such that the cover
H2,n
+ → H2,n is a local isometry. We still denote this metric by g.
Complete geodesics in H2,n

+ are connected components of lifts of complete geodesics
in H2,n. As in H2,n, we parametrize complete geodesics with parallel tangent vectors. A
geodesic segment in H2,n

+ is the restriction of a (parametrized) complete geodesic to the
segment [0, 1]. A pair of distinct points (x, y) in H2,n

+ is acausal if x and y are joined by a
spacelike geodesic segment, and a subset U of H2,n

+ is acausal if any pairwise distinct points
of U are acausal.

The incidence geometry of H2,n
+ is more subtle than that of H2,n. To describe it, first

observe that the preimage of a complete geodesic [γ] in H2,n has one connected component
if γ is timelike and two connected components otherwise. Given two distinct points x and y
in H2,n

+ , we denote by [x] and [y] their respective image image in H2,n.
We distinguish the following cases:

Case 1: when [x] = [y], that is if x = −y. Then any complete timelike geodesic in H2,n

passing through [x] lifts to two geodesic segments between x and y. In particular,
there are infinitely many geodesic segments between x and y.

Case 2: when [x] , [y] and the complete geodesic passing through them is timelike. Then
there is a unique geodesic segment between [x] and [y] having a lift with extremities
are x and y. In particular, there is a unique geodesic segment between x and y.

Case 3: If [x] , [y] and the geodesic γ passing through them is spacelike. Then either x and
y lie on the same connected component of the preimage of γ, in which case there
is a unique geodesic segment between x and y, or they lie in different connected
components in which case there is no geodesic segment between x and y.

Case 4: If [x] , [y] and the geodesic γ passing through them is lightlike. Then either x and
y lie on the same connected component of the preimage of γ, in which case there
is a unique geodesic segment between x and y, or they lie in different connected
components in which case there is no geodesic segment between x and y.

The different situations are easily described using the scalar product ⟨x, y⟩ of the points x
and y associated to the quadratic form q.

Lemma 2.2. Consider two distinct points x and y in H2,n
+ .

(i) There is a spacelike geodesic segment between x and y (that is, the pair (x, y) is acausal) if
and only if ⟨x, y⟩ < −1 .

(ii) There is a unique timelike geodesic segment between x and y if and only if |⟨x, y⟩| < 1 .
(iii) There is a lightlike geodesic segment between x and y if and only if ⟨x, y⟩ = −1 .
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Three points (x1, x2, x3) lies in a hyperbolic plane if and only if for any i , j we have ⟨xi, x j⟩ < −1 and

2⟨x1, x2⟩⟨x1, x3⟩⟨x2, x3⟩ + ⟨x1, x2⟩2 + ⟨x1, x3⟩2 + ⟨x2, x3⟩2 < 1 . (1)

Proof. Items (i), (ii) and (iii) correspond to cases different from Case 1 described above. In
particular, the set {x, y} spans a 2-plane F in which the matrix of the quadratic form is given
by

(

−1 ⟨x, y⟩
⟨x, y⟩ −1

)

,

whose determinant is equal to δ B 1 − |⟨x, y⟩|2.
Item (ii) corresponds to Case 2 described above. In particular, this happens if and only

if the plane F has signature (0, 2), that is if and only if δ > 0 (the case of signature (2, 0) is
impossible since F contains negative definite vectors).

Item (i) is a particular situation in Case 3, thus a necessary condition is to have δ < 0,
meaning that |⟨x, y⟩| > 1. The two different connected components of the preimage of the
geodesic between [x] and [y] are distinguished by the sign of the function ⟨x, .⟩. This sign is
negative on the connected component containing x.

Item (iii) is a particular situation in Case 4, thus a necessary condition is to have δ = 0,
meaning that |⟨x, y⟩| = 1. Similarly to item (i), the connected component of the preimage of
the geodesic between [x] and [y] are distinguished by the sign of the function ⟨x, .⟩.

For the last statement, observe that (x1, x2, x3) lie in a hyperbolic plane if and only if for
any i , j the points xi and x j are joined by a spacelike geodesic segment and the 3-plane P
spanned by x1, x2 and x3 has signature (2, 1). Since the subspace of P spanned by x1 and x2

has signature (1, 1), then P has signature (2, 1) if and only if det
(

(⟨xi, x j⟩1⩽i, j⩽3

)

< 0 which is
equivalent to the condition (1). □

Similarly, a (pointed) hyperbolic plane in H2,n
+ is a connected component of a lift of a

(pointed) hyperbolic plane in H2,n. A pointed hyperbolic plane in H2,n
+ thus corresponds to

an orthogonal decomposition E = L ⊕U ⊕ V where L is an oriented negative definite line, U
is a positive definite plane and V = (L ⊕U)⊥.

2.2. Pseudo-spheres and horospheres. We describe here the geometry of pseudo-spheres,
and (pseudo)-horospheres which are counterparts in pseudo-hyperbolic space of the
corresponding hyperbolic notions.

2.2.1. Pseudo-sphere. Let F be an (n + 2)-dimensional real vector space equipped with a
quadratic form qF of signature (2,n). The pseudo-sphere is

S1,n
B {x ∈ F, qF(x) = 1} .

The pseudo-sphere S1,n is equipped with a pseudo-Riemannian metric gS1,n of curvature +1
and signature (1,n). This metric is invariant under the action of the group SO0(F) which is
isomorphic to SO0(2,n).

2.2.2. Horosphere. Let us return to the basic case where E is equipped with a signature
(2,n + 1) quadratic form q. The null-cone of E is

N(E) =
{

v ∈ E \ {0}, q(v) = 0
}

.

Given a point v ∈ N(E), the set Pv = {x ∈ E, ⟨x, v⟩ = −1} is a (degenerate) affine hyperplane
whose direction is v⊥. The corresponding horosphere is

H(v) = Pv ∩H2,n
+ .
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We also refer to the projection ofH(v) in H2,n as a horosphere (and denote it the same way).
Given a point u ∈ H(v), denote by F the linear subspace of E orthogonal to u and v. The

restriction q|F of the quadratic form q to F has signature (1,n). Consider the map

f :
{

F 7−→ E ,

x 7−→ u + x − q|F(x)
2 · v .

One easily checks that f is a diffeomorphism between F andH(v).
Moreover, since Dx f (h) = h − ⟨x, h⟩ · v and v is isotropic, the pull-back by f of the induced

metric on H(v) (which is induced by q) is equal to q|F. Thus H(v) is isometric to the
pseudo-Euclidean space E1,n of signature (1,n).

2.2.3. Horospheres as limits of pseudo-spheres. Let x be a point in H2,n
+ (the picture is similar in

H2,n). Let

T1
xH2,n
+ B

{

v ∈ TxH2,n
+ , q(v) = 1

}

.

Since the restriction of q to TxH2,n
+ has signature (2,n), the space T1

xH2,n
+ is isometric to S1,n

and its metric is StabG(x) invariant. We will thus denote it by gS1,n .
For ρ positive, the exponential map expx(ρ.) restricts to a diffeomorphism between T1

xH2,n
+

and the hypersurface

β(x, ρ) :=
{

y ∈ H2,n
+ , ð(x, y) = ρ

}

.

Because the restriction of g to β(x, ρ) is also StabG(x)-invariant, there exists a positive number
λ(ρ) such that exp(ρ.)∗g = λ(ρ)gS1,n . Using the same calculation as in classical hyperbolic
geometry, one sees that λ(ρ) = sinh(ρ). As a result, β(x, ρ) is an umbilical hypersurface of
signature (1,n) whose induced metric has sectional curvature sinh−2(ρ).

Let {ρk}k∈N be a sequence of positive numbers tending to infinity, and for any k, let xk

be a point in Hk B β(x, ρk). Observe that Hk, being a non-degenerate hypersurface, has a
canonical normal framing, as in definition A.1. Let gk in G map Txk Hk to a fixed vector space
V0 in Tx0 H2,n. Then gk(Hk) converges to the horosphere passing through x0 and tangent to
V0. We will need in Proposition 8.2 the fact that this convergence is in the sense of Appendix
A.1.2).

2.3. Grassmannians.

2.3.1. Riemannian symmetric space. We summarize some of the properties of the Riemannian
symmetric space of G.

Proposition 2.3. The Riemannian symmetric space of G is isometric to the Grassmannian Gr2,0 (E)
of oriented 2-planes in E of signature (2, 0).

Proof. The group G acts transitively on Gr2,0 (E) and the stabilizer of a point is isomorphic to
SO(2) × SO(n + 1) which is a maximal compact subgroup of G. This realizes Gr2,0 (E) as the
Riemannian symmetric space of G. □

Since the maximal compact subgroup of G contains SO(2) as a factor, Gr2,0 (E) is a
Hermitian symmetric space.

The corresponding Kähler structure may be described this way. Let P be a point in
Gr2,0 (E):
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• the tangent space TP Gr2,0 (E) at P is identified with Hom(P,P⊥). The Riemannian
metric hP(·, ·) at P is defined for φ ∈ Hom(P,P⊥) by

hP(φ,φ) B − tr(φ∗φ) ,

where φ∗ : P⊥ → P is the adjoint of φ using q. Note that since q is negative definite
on P⊥, we have tr(φ∗φ) ⩽ 0.

• Since the plane P is oriented, it carries a canonical complex structure J: the rotation
by angle π/2. Precomposition by J defines a complex structure on Hom(P,P⊥) =
TP Gr2,0 (E), hence a G-invariant almost complex structure on Gr2,0 (E). This almost
complex structure is the complex structure associated to the Hermitian symmetric
space Gr2,0 (E).

By a theorem of Harish-Chandra (see for instance [20]), Gr2,0 (E) is biholomorphic to a
bounded symmetric domain in Cn+1.

Note that a point P in Gr2,0 (E) gives rise to an orthogonal splitting E = P⊕P⊥. We denote
by πP the orthogonal projection from E to P. The following lemma is straightforward.

Lemma 2.4. Given a compact set K in Gr2,0 (E), there exists a constant C, with C ⩾ 1 such that for
any Q and P in K and v ∈ Q,

C−1∥πP(v)∥ ⩽ ∥v∥ ⩽ ∥πP(v)∥ .
Proof. The inequality on the right comes from the fact that P⊥ is negative definite, so πP is
length non decreasing. The inequality on the left comes from the compactness of K. □

2.3.2. Grassmannian of a pseudo-Riemannian space. In this paragraph (M, g) will be a pseudo-
Riemannian manifold of signature (2,n).

The Grassmannian G(M) of positive definite 2-planes in M is the fiber bundle π : G(M)→M
whose fiber over a point x ∈M is the Riemannian symmetric space Gr2,0 (TxM).

Observe that, π : G(M)→M has a horizontal distribution given by the parallel transport,
giving a splitting

T(x,P)G(M) = TxM ⊕Hom(P,P⊥) = P ⊕ P⊥ ⊕Hom(P,P⊥) .

This splitting allows us to define the canonical Riemannian metric g on G(M) given at a
point (x,P) ∈ G(M) by

g B
(

g0 |P,−g0 |P⊥ , hP

)

,

where hP is the Riemannian metric on the fiber described above, and g0 is the metric on
TxM. Let us also define for all positive λ, the renormalized metric

gλ B
( 1
λ

g0 |P,−
1
λ

g0 |P⊥ , hP

)

.

2.3.3. The Grassmannian of H2,n. When M = H2,n, we have already remarked in para-
graph 2.1.2 that a point in G(H2,n) is identified with an orthogonal splitting E = L ⊕U ⊕ V
where L is a negative definite line, U a positive definite plane and V = (L ⊕ U)⊥. The
exponential map thus naturally identifies G(H2,n) with the space of pointed hyperbolic
planes in H2,n. We will later on freely use this identification.

Up to an index two subgroup, the stabilizer of a point (q,P) in G(H2,n) is isomorphic to
SO(2) × SO(n). The projection

{

G(H2,n) −→ Gr2,0 (E) ,
L ⊕U ⊕ V 7−→ U .
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is a G-equivariant proper Riemannian submersion when G(H2,n) is equipped with the
canonical Riemannian metric.

Similarly, a point in G(H2,n
+ ) corresponds to a pointed hyperbolic plane in H2,n

+ .

2.3.4. A geometric transition. Let λ be a positive number. We denote by H2,n
λ the space H2,n

equipped with the metric gλ =
1
λg where g is the metric on H2,n. Then we have

Proposition 2.5. (i) The Riemaniann manifoldG(H2,n
λ ) is isometric toG(H2,n) equipped with

the normalized metric gλ.
(ii) When λ tends to 0 the Riemaniann manifold G(H2,n

λ ) converges in the sense of Appendix
A.1.2 to G(E2,n) where E2,n is pseudo-Euclidean space of signature (2,n).

Observe that, even if the notion of convergence of Riemannian manifolds described in
Appendix A.1.2 requires the choice of a point, since the manifolds G(H2,n

λ ) and G(E2,n) are
homogeneous, this choice is not needed here. We might write the first item in terms of
our notation as stating that the two metric spaces (G(H2,n,gλ), g) and (G(H2,n,g), gλ) are
isometric.

Proof. The first statement comes from the fact that the metric on Hom(P,P⊥) is a conformal
invariant. The second statement is standard. □

We will call G(H2,n
λ ) the renormalized Grassmannian.

2.4. Einstein universe. The Einstein universe is the boundary of H2,n in P(E):

∂∞H2,n
B

{

x ∈ P(E) , q(x) = 0
}

.

Associated is a compactification:

ÅH2,n
B H2,n ∪ ∂∞H2,n.

The group G acts transitively on ∂∞H2,n and the stabilizer of a point in ∂∞H2,n is a maximal
parabolic subgroup. As for H2,n, we will often discuss the double cover of the boundary at
infinity as well as the associated compactification

∂∞H2,n
+ B

{

x ∈ P+(E) , q(x) = 0
}

,

ÅH2,n
+ B H2,n

+ ∪ ∂∞H2,n
+ ,

where P+(E) = (E \ {0})/R+ is the set of rays in E. We will consider ∂∞H2,n
+ as the boundary

of H2,n
+ .

2.4.1. Photons, circles and lightcone. Let us first define some subsets of ∂∞H2,n.

(i) A photon or lightlike line in ∂∞H2,n is the projectivization of an isotropic 2-plane in E.
(ii) A spacelike circle (respectively timelike) is the intersection of ∂∞H2,n with the pro-

jectivisation of a subspace of signature (2, 1) (respectively (1, 2)). Equivalently, a
spacelike circle is the boundary of a hyperbolic plane in H2,n.

Observe that two distinct points in ∂∞H2,n lie either on a photon or span a non-degenerate
2-plane in E. In the second case, we say that x and y are transverse.
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2.4.2. Conformal structure. The tangent space Tx∂∞H2,n is identified with the space Hom (x, x⊥/x).
The vector space x⊥/x inherits a signature (1,n) quadratic form from q and E, providing
Tx∂∞H2,n with a conformal class of quadratic form. As a result, ∂∞H2,n is naturally equipped
with a conformal structure [gEin] of signature (1,n).

The conformal structure then allows for the definition of timelike and lightlike vectors
and curves in ∂∞H2,n. For instance, photons are lightlike curves, while the spacelike and
timelike circles are respectively spacelike and timelike curves in ∂∞H2,n in terms of the
conformal structure.

2.4.3. Product structure. Let P be a pointed hyperbolic plane in H2,n
+ , which as usual

corresponds to an orthogonal splitting E = L ⊕ U ⊕ V where U is a positive definite 2-
plane, V is definite negative and L an oriented negative definite line. Let W = L ⊕ V and
denote by ⟨., .⟩U and ⟨., .⟩W the positive definite scalar product induced by ±q on U and W
respectively. Then any isotropic ray x ∈ ∂∞H2,n

+ contains a unique point (u,w) ∈ U ⊕W with
⟨u,u⟩U = ⟨w,w⟩W = 1. This gives a diffeomorphism

∂∞H2,n
+ � S1 × Sn ,

where S1 ⊂ U and Sn ⊂ W are the unit spheres. In this coordinate system, the conformal
metric of ∂∞H2,n

+ is given by

[gEin] = [gS1 ⊕ −gSn ] ,

where gSi is the canonical metric on Si of curvature 1 (see [24, Section 2.1]).

2.5. Positivity. We now discuss the important notion of positivity in the pseudo-hyperbolic
setting.

2.5.1. Positive triples. Let τ be a triple of pairwise distinct points in the compactification ÅH2,n

(or in ÅH2,n
+ ). We call τ a positive triple if it spans a space of signature (2, 1). It will be called a

negative triple if it spans a space of signature (1, 2). The positive triple is at infinity if all three
points belong to ∂∞H2,n (or in ∂∞H2,n

+ ).
Positive triples are (possibly ideal) vertices of hyperbolic triangles in H2,n. Given a

positive triple τ, we will denote by bτ the barycenter of the hyperbolic triangle spanned by τ.
We warn the reader that the terminology positive triples, though standard, may be

confusing: being a positive triple is invariant under all permutations of the elements.

2.5.2. Semi±positive loops. We now define the notion of (semi-)positive loops in the compacti-
fication ÅH2,n. The definition for ÅH2,n

+ is similar.

Definition 2.6. Let Λ be a subset of ÅH2,n homeomorphic to a circle.

(i) Λ is a positive loop if any triple of points in Λ is positive.
(ii) Λ is a semi-positive loop if it does not contain any negative triple, and if Λ contains at

least one positive triple.

The next lemma concerns the special case of semi-positive loops in ∂∞H2,n. Recall that
photons and transverse points are defined in Paragraph 2.4.1.

Lemma 2.7. Let Λ be a topological circle in ∂∞H2,n that does not contain any negative triple. Then
Λ is a semi-positive loop if and only if it is different from a photon.
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Proof. If Λ is a photon, it does not contain any positive triple and so is not a semi-positive
loop.

Conversely, let us assume that Λ does not contain any positive triple. We want to show
that Λ is a photon. If Λ is not a photon, then we can find two transverse points x, y in Λ.
Denote by Ux and Uy the open set of points in Λ that are transverse to x and to y respectively.
Observe that Ux is contained in a photon, and the same is true for y. In fact, if not, we could
find 2 points z, t ∈ Ux such that x, z, t are pairwise transverse. In particular the triple (x, z, t)
is positive.

We now claim that Λ \ (Ux ∪ Uy) contains at most 2 points. In fact, the complement
of Ux ∪ Uy is contained in (x ⊕ y)⊥ which has signature (1,n). So any triple of pairwise
distinct points in (x ⊕ y)⊥ must be negative (R1,n does not contain any isotropic 2-plane), so
Λ \ (Ux ∪Uy) cannot contain more than two points.

This implies that Λ is contained in the union of two non disjoint photons ϕ1 ∪ ϕ2. Since
two photons intersect at most in one point, ϕ1 ∪ ϕ2 is homeomorphic to the wedge sum of
two circles. The only topological circle embedded in the wedge sum of two circles is one of
the circles. This implies that Λ is equal to ϕ1 or ϕ2 contradicting the existence of a pair of
transverse points. □

We have the following

Lemma 2.8. Let Λ be a semi-positive loop in ÅH2,n, τ a positive triple in Λ and b a point in the
interior of the hyperbolic triangle with vertices τ. Then b⊥ is disjoint from Λ. In particular, the
pre-image of Λ in ÅH2,n

+ has two connected components.

Proof. Consider τ = (z1, z2, z3) and b as in the proposition. Choose a lift of b in H2,n
+ , and lift

z1, z2 and z3 to vectors in the affine hyperplane {x ∈ E , ⟨x, b⟩ = −1} (we denote the lift with
the same letters). Since b is in the interior of the triangle with vertices z1, z2 and z3, there
exists t1, t2, t3 > 0 such that b =

∑3
i=1 tizi.

First observe that we have ⟨zi, z j⟩ < 0 for any i , j. In fact, the 3-plane P = span{z1, z2, z3}
splits as P = R · b ⊕ b⊥ with b⊥ positive definite. Since zi ∈ F we can write zi = b + xi with
xi ∈ b⊥ and the condition ⟨zi, zi⟩ ⩽ 0 gives ⟨xi, xi⟩ ⩽ 1. The fact that ⟨zi, z j⟩ < 0 then follows
from Cauchy-Schwarz inequality together with the fact that zi , z j.

Consider now a vector x ∈ E which lifts a point in Λ. We first claim that there exists at
least one zi such that ⟨x, zi⟩ , 0. In fact, if not, x would belong to the space H orthogonal to
span{z1, z2, z3}. Since H has signature (0,n), x would be negative definite and so the space
spanned by z1, z2 and x would have signature (1, 2). This is impossible by semi-positivity.

Then we claim that there is no pair (i, j) such that ⟨x, zi⟩ < 0 and ⟨x, z j⟩ > 0. In fact, if this
were the case, the matrix of q in the basis (zi, z j, x) would have the form

















−ε1 −α −β
−α −ε2 γ
−β γ −ε3

















,

where εi ⩾ 0 and α, β, γ > 0. The determinant of such matrix is

∆ = −ε1ε2ε3 + 2αβγ + ε3α
2 + ε2β

2 + ε1γ
2 .

Since span{z1, z2} has signature (1, 1), we have ε1ε2 − α2 < 0. In particular ∆ > 0 and
span{z1, z2, x} has signature (1, 2), contradicting semi-positivity.

We thus find ⟨x, b⟩ = ∑

ti⟨x, zi⟩ , 0 and Λ is disjoint from b⊥. As a result, Λ is contained
in the affine chart P(E) \ P(b⊥) and its preimage in P+(E) has two connected components,
determined by the sign of the linear form ⟨b, .⟩. □
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Lemma 2.9. Let Λ be a semi-positive loop in ÅH2,n. Then

(i) If Λ is contained in H2,n and x is a point in Λ, then Λ is disjoint from x⊥.
(ii) If Λ is contained in ∂∞H2,n, then any point in Λ is contained in a positive triple of Λ.

Proof. The first item is obvious: if y ∈ Λ is orthogonal to x, then since in this case we restrict
to y ∈ H2,n, we see that x ⊕ y has signature (0, 2) contradicting semi-positivity.

From the second item, observe that a triple (x, y, z) in Λ ⊂ ∂∞H2,n is not positive if and
only if ⟨x, y⟩⟨x, z⟩⟨y, z⟩ = 0. Denote by Ux the set of points y in Λ transverse to x, that is so
that ⟨x, y⟩ , 0. The set Ux is open and non-empty since from the previous lemma, ⟨zi, x⟩ , 0
for a positive triple (z1, z2, z3). We just have to find a pair of points y and z in Ux which are
transverse to each other (as well as to x). This can always be done unless Ux is contained in
a photon ϕ.

We claim that this is not possible. In fact, if Ux is different from Λ \ {x}, then its boundary
in Λwould contain at least two points, and these points would be in ϕ∩ x⊥ which is a single
point. If Ux = Λ \ {x}, then {x} = ϕ ∩ x⊥ and Λ = ϕ, which does not contain any positive
triple. □

This lemma has the following corollary.

Corollary 2.10. Let Λ be a semi-positive loop contained either in ∂∞H2,n or in H2,n and Λ+ be a
connected component of its preimage in ÅH2,n

+ . For any two points x and y in Λ+, we have ⟨x, y⟩ ⩽ 0.

Proof. If Λ is contained in H2,n, the first item of the previous lemma implies that if x ∈ Λ+,
the linear function ⟨x, .⟩ never vanishes. By connectedness of Λ, the sign of ⟨x, .⟩ is constant
and must be negative because ⟨x, x⟩ = −1.

Now assume that Λ is contained in ∂∞H2,n and let z1, z2 and z3 be vectors in E lifting a
positive triple τ in Λ+ whose barycenter lifts to b = z1 + z2 + z3. As remarked in the proof
of Lemma 2.8, ⟨zi, z j⟩ < 0 for i , j and for any x ∈ Λ+ the sign of ⟨x, zi⟩ is independent of
i among those zi with ⟨x, zi⟩ , 0. Because ⟨b, x⟩ = ∑

i⟨zi, x⟩ < 0, this sign must be negative.
This prove the result when x is contained in a positive triple, and then for every x by the
second item of the previous lemma. □

We now consider the special case of semi-positive loops in ∂∞H2,n
+ . Observe that a loop in

∂∞H2,n
+ is semi-positive if and only if its projection to ∂∞H2,n is semi-positive.

The two-to-one cover ∂∞H2,n
+ → ∂∞H2,n is nontrivial on each photon in ∂∞H2,n. In

particular, any photon in ∂∞H2,n lifts to a photon segment between two antipodal points in
∂∞H2,n

+ . We call a biphoton in ∂∞H2,n
+ a topological circle consisting of two photon segments

between antipodal points and whose projection to ∂∞H2,n consists of different photons (in
particular, a biphoton is not semi-positive).

We call a map f between metric spaces strictly contracting whenever d( f (x), f (y)) < d(x, y)
for x, y distinct.

Proposition 2.11. Let Λ be a loop in ∂∞H2,n
+ and consider a splitting ∂∞H2,n

+ � S1 × Sn associated
to a pointed hyperbolic plane.

(i) The loop Λ is semi-positive if and only if it is the graph of a 1-Lipschitz map from S1 to Sn

and not a biphoton, nor a photon.
(ii) The loop Λ is positive if and only if it is the graph of a strictly contracting map from S1 to

Sn.

The proposition will follow from the following
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Lemma 2.12. Let τ = (z1, z2, z3) be a triple in ∂∞H2,n
+ and consider a splitting ∂∞H2,n

+ � S1 × Sn

associated to a pointed hyperbolic plane. Write zi = (ui,wi) in this splitting.

(i) We have ⟨zi, z j⟩ ⩽ 0 for all pairs (i, j) if and only if τ is not negative and dS1 (ui,u j) ⩾
dSn (wi,w j) for every pair (i, j).

(ii) We have ⟨zi, z j⟩ < 0 for every i , j if and only if τ is positive and dS1 (ui,u j) > dSn (wi,w j)
for any i , j.

Proof. The determinant of the matrix with coefficients ⟨zi, z j⟩ is given by 2⟨z1, z2⟩⟨z1, z3⟩⟨z2, z3⟩,
so the condition on the sign of ⟨zi, z j⟩ implies the positivity or the the non-negativity of τ.

For the condition on the distances, we use the same notation as in Subsection 2.4.3. In
particular

⟨zi, z j⟩ = ⟨ui,u j⟩U − ⟨wi,w j⟩W .

For item (i), the condition ⟨zi, z j⟩ ⩽ 0 is thus equivalent to

⟨ui,u j⟩U ⩽ ⟨wi,w j⟩W ⩽ 1 .

Using the formula ⟨x, y⟩ = cos
(

dSk (x, y)
)

, the previous equation holds if and only if

dS1 (u1,u2) ⩾ dSn (w1,w2) ,

and item (i) follows. For item (ii), we replace the non-strict inequalities with strict inequalities.
□

Proof of Proposition 2.11. By Corollary 2.10, if Λ is semi-positive, then ⟨x, y⟩ ⩽ 0 for any pair
of points in Λ. In fact, Λ is a component of the pre-image of its projection to P(E).

By the previous Lemma, the projection of Λ to the first factor in ∂∞H2,n
+ � S1 × Sn must

be injective and Λ is the graph of a 1-Lipschitz map from S1 → Sn. Conversely, if f is a
1-Lipschitz map, by lemma 2.12 then the image of f does not contain negative triple: if we
had a negative triple (z1, z2, z3) then at least one of the product ⟨zi, z j⟩ is positive. The result
then follows from Lemma 2.7. The second item follows from Lemma 2.12 (ii). □

We now give three important corollaries.

Corollary 2.13. Let Λ be a semi-positive loop in ∂∞H2,n
+ . If Λ contains two points x and y on a

photon, then it contains the segment of a photon between x and y.

Proof. The semi-positive loop Λ is the graph of a 1-Lipschitz map f : S1 → Sn by
Proposition 2.11. The points x and y correspond to points (u, f (u)) and (v, f (v)) with
d1

S(u, v) = dSn ( f (u), f (v)).
We first observe that x and y cannot be antipodal: in fact, the pair (x, y) is antipodal if and

only if the pairs (u, v) and ( f (u), f (v)) are. Since f is 1-Lipschitz, it must map the two arcs
between u and v to two geodesic arcs between f (u) and f (v). The graph of such a map is
either a photon or a biphoton and is thus not semi-positive.

In particular, there is a unique shortest arc segment [u, v] between u and v in S1 and f
maps [u, v] isometrically to an arc of geodesic in Sn. The graph of f |[u,v] is the segment of a
photon between x and y. □

Proposition 2.11 also provides for a nice topology on the set of semi-positive loops in
∂∞H2,n : we say that a sequence {Λk}k∈N converges to Λ0 if for any splitting ∂∞H2,n

+ � S1 × Sn,
the sequence { fk}k∈N converges C0 to f0 where Λk = graph( fk) and Λ0 = graph( f0).

We have the following

Corollary 2.14. Every semi-positive loop is a limit of smooth spacelike positive loops.
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Proof. Fix a splitting ∂∞H2,n
+ � S1 × Sn. By Proposition 2.11, the loop Λ is the graph of a

1-Lipschitz map f : S1 → Sn, and so its image is contained in a closed hemisphere H of Sn.
For t ∈ [0, 2], consider the geodesic isotopy ϕt : H→ H with the property that for any x,

the path (ϕt(x))t∈[0,2] is the (constant speed) geodesic starting at x and ending at the center of
the hemisphere. Such an isotopy is contracting for t > 0 and dSn (x, ϕt(x)) ⩽ t (because H has
radius π

2 < 2).
Thus for any positive ε, there is a positive δ, such that the map fε B ϕε ◦ f is (1 − 2δ)-

Lipschitz and is at a distance at most ε from f . Thus, by density, there is a (1 − δ)-Lipschitz
smooth map g at a distance at most 2ε from fε. Hence g is at distance at most ε from f and
its graph is a smooth positive loop. □

2.5.3. Convex hulls. We want to define the convex hull of a semi-positive loop in ÅH2,n. Note
that the convex hull of a subset Λ of P(E) is in general not well-defined: one first needs to
lift Λ to P+(E), define the convex hull of the lifted cone as the intersection of all the closed
half-spaces containing it, and then project down. The drawback of this construction is that it
will in general depend on the lifted cone.

In our case, Lemma 2.8 implies that the convex hull of a semi-positive loop Λ in ÅH2,n is
well-defined and will be denoted by CH(Λ). It has the following properties:

Proposition 2.15. Let Λ be a semi-positive loop contained either in ∂∞H2,n or in H2,n, and let Λ+ a
connected component of its pre-image in P+(E). Then

(i) The convex hull CH(Λ) is contained in ÅH2,n.
(ii) Let p be in the interior of CH(Λ+) and q in CH(Λ+), then ⟨p, q⟩ < 0.

(iii) Assume Λ is a positive loop in ∂∞H2,n. If p is a point of H2,n
+ lying in CH(Λ+) and q is a

point in Λ+, then ⟨p, q⟩ < 0.
(iv) Let p be in the interior of CH(Λ), then the set Λ is disjoint from p⊥.
(v) If Λ is contained in ∂∞H2,n and p is in the interior of CH(Λ), then any geodesic ray from p

to a point in Λ is spacelike.
(vi) If Λ is contained in ∂∞H2,n, then the intersection of CH(Λ) with ∂∞H2,n is equal to Λ.

Proof of (i) Any p ∈ CH(Λ) can be lifted to a vector in E of the form p0 =
∑k

i=1 tixi where ti > 0
and the xi are lifts of points in Λ+ (actually, from a classical result of Carathéodory [17], one
can take k = dim(E) + 2). From Corollary 2.10 we get that q(p0) ⩽ 0.

Proof of (ii) For any vector x lifting a point in Λ+, the linear form ⟨x, .⟩ is non-positive on Λ+
by Corollary 2.10. Since p is in the interior of CH(Λ), we have ⟨x, p⟩ < 0. Finally, any point
q ∈ CH(Λ+) lifts to a vector of the form

∑k
i=1 tixi with ti > 0 and xi ∈ Λ+.

Proof of (iii) The vector p has the form p =
∑m

i=1 tixi with xi (lift of rays) in Λ+ and ti > 0. For
any vector q lifting a point in Λ+, we have ⟨p, q⟩ = ∑m

i=1 ti⟨xi, q⟩ ⩽ 0 with equality if and only
if ⟨xi, q⟩ = 0 for each i. But since Λ is positive, the only vector in Λ whose scalar product
with q is 0 is q itself. Since p lies in H2,n

+ , we get ⟨p, q⟩ < 0.

Proof of (iv) As Λ+ ⊂ CH(Λ+), this follows from item (ii).

Proof of (v) Let x be a vector in E lifting a point in Λ+. By item (ii), the linear form ⟨x, .⟩ is
negative on Λ+ and so strictly negative on the interior of CH(Λ+). The result follows.

Proof of (vi) Let p be a vector in E lifting a point in CH(Λ) ∩ ∂∞H2,n. Then p can be written
∑k

i=1 tixi with ti > 0 and xi ∈ Λ+. The condition ⟨p, p⟩ = 0 thus implies that, either k = 1 and
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p = x1, or that all the xi lie on a common photon. In this case p lies on a segment of a photon
which must be contained in Λ by Corollary 2.13.

3. Graphs, curves and surfaces

In this section, we study the differential geometric aspects of curves and surfaces in H2,n.
We define the notion of maximal surface and prove some important properties.

3.1. Spacelike submanifolds in pseudo-hyperbolic spaces. Recall that g denotes the
pseudo-Riemannian metric of H2,n.

Definition 3.1 (Spacelike and acausal).

(i) A submanifold M of H2,n is spacelike if the restriction of g to M is Riemannian. Such
a submanifold is either a curve or a surface.

(ii) A spacelike submanifold M of H2,n is acausal, if every pair of distinct points in M is
acausal.

3.1.1. Warped-product structure. Let P = (q,H) in H2,n
+ be a pointed hyperbolic plane, associ-

ated to the orthogonal decomposition E = q ⊕U ⊕ V where

(i) q is an oriented negative definite line,
(ii) U is a positive definite plane, with induced norm ∥.∥, so that q ⊕U defines H.

Let D2 ⊂ U be the unit (open) disk and Sn ⊂W B q+V be the unit sphere. The following
is proved in [21, Proposition 3.5].

Proposition 3.2. The map

Ψ :











D × Sn −→ H2,n
+ ,

(u,w) 7−→
(

2
1−∥u∥2 u, 1+∥u∥2

1−∥u∥2 w
)

,
(2)

is a diffeomorphism. Moreover, if g is the metric on H2,n
+ , then

Ψ∗g =
4

(1 − ∥u∥2)2 gD −
(

1 + ∥u∥2
1 − ∥u∥2

)2

gSn , (3)

where gD and gSn are respectively the flat Euclidean metric on the disk and the round metric on the
sphere.

Observe that the parametrization H2,n
+ � D× Sn extends smoothly to a parametrization of

H2,n
+ ∪ ∂∞H2,n

+ by D × Sn.
The diffeomorphismΨ is called the warped diffeomorphism and said to define the warped

product structure on H2,n
+ .

If the preimage of q underΨ is (0, v), the preimage of H is D × {v}.
For any w in Sn, the image of

(

(0,w),D × {w}
)

is a pointed hyperbolic plane that we call
parallel to P. These pointed disks correspond exactly to the set of pointed hyperbolic planes
whose projection to Gr2,0 (E) is U.

The following nice fact was pointed out to us by the referee:

Lemma 3.3. Let Ψ be as in Proposition 3.2. Identifying D with an hemisphere of S2 using the
stereographic projection, the metricΨ∗g is conformal to the metric gS2 − gSn .
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Proof. Consider the function f from D × Sn to R sending (u, v) to
(

1−∥u∥2
1+∥u∥2

)2
. We obtain that

the metric f ·Ψ∗g is equal to
4

(1 + ∥u∥2)2 gD − gSn .

The result then follows from the fact that 4
(1+∥u∥2)2 gD is the expression of the spherical metric

on an hemisphere of S2 in a chart given by the stereographic projection. □

Definition 3.4 (Warped projection). The warped projection is the map

πP : H2,n
+ −→ H ,

corresponding (viaΨ) to the projection from D × Sn to D × {v} and mapping (u,w) to (u, v).
A timelike sphere is the fiber of πP above q, for some pointed hyperbolic plane P = (q,H).

It is the intersection of H2,n
+ with the subspace W of E of signature (0,n + 1).

Note that, given a pointed hyperbolic plane P = (q,H) with warped projection πP, the
preimage by πP of a point different from q is not totally gedesic, since its induced metric
does not have curvature −1.

We then have a fundamental property of H2,n
+ :

Lemma 3.5 (Projection increases length). The warped projection increases the length of
spacelike curves. Moreover if x1 and x2 are two distinct points in the same fiber, then ⟨x1, x2⟩ > −1.

Proof. The fact that the warped projection is length-increasing is a direct consequence of
equation (3).

If x1 and x2 project onto the same point, thenΨ−1(xi) = (u,wi) ∈ D × Sn for i = 1, 2. Using
the expression ofΨ, we see that

⟨x1, x2⟩ =
4∥u∥2

(1 − ∥u∥2)2 −
(

1 + ∥u∥2
1 − ∥u∥2

)2

⟨w1,w2⟩W , (4)

where ⟨., .⟩W is the positive definite scalar product induced by −q on W = q ⊕ V. Since
wi ∈ Sn, we have ⟨w1,w2⟩W < 1, thus

⟨x1, x2⟩ >
4∥u∥2

(1 − ∥u∥2)2 −
(

1 + ∥u∥2
1 − ∥u∥2

)2

= −1 . (5)

This concludes the proof. □

3.1.2. Spacelike graphs. From now on, all our surfaces are assumed to be connected and
smooth up to their boundaries.

Definition 3.6. We define
(i) A spacelike submanifold M of H2,n

+ is a graph if for any pointed hyperbolic plane,
the restriction of the corresponding warped projection is a diffeomorphism onto its
image.

(ii) If moreover this diffeomorphism is surjective, M is an entire graph.

Observe that a spacelike graph is always embedded. We now use the definitions of
paragraph 2.1.1. As in Lemma 3.3, we identify D with an hemisphere B of S2 using the
stereographical projection.

Proposition 3.7. Let M be a connected spacelike submanifold of H2,n
+ .

(i) If M is acausal then it is a graph.
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(ii) If M is a graph, then it is the graph of a 1-Lipschitz map from a subset U of B to Sn, in any
warped product.

Proof of (i) Given a pointed hyperbolic plane P, the corresponding warped projection πP

restricts to a local diffeomorphism on M. It follows from Lemma 2.2 that, since M is acausal,
we have ⟨x, y⟩ ⩾ −1 for any pair x, y ∈M. Lemma 3.5 then implies that the restriction of πP

to M is injective and thus a diffeomorphism on its image.

Proof of (ii) Tangent vectors to the graph of f at (x, f (x)) have the form (u,D fx(u)), where
u ∈ TxD. Using Lemma 3.3, one sees that (u,D fx(u)) is spacelike if and only if

∥u∥2 − ∥D fx(u)∥2 > 0 ,

where the norms are computed using the sperical metrics on B and Sn. It implies

∥D fx∥ < 1 . (6)

□

Lemma 3.8. Let S be a connected spacelike acausal surface and P a pointed hyperbolic plane with
associated warped projection πP. The restriction of πP from S to πP(S) increases the induced path
distances.

Proof. Let α = πP(a) and β = πP(b) be points in πP(S) with a, b ∈ S. For any path γ between α
and β in πP(S), its preimage by πP in S is a curve between a and b whose length is less than
that of the one of γ by Lemma 3.5. Taking the infimum over all path between α and β yields
the result. □

We have several different notions of boundary:

Definition 3.9 (Boundaries of acausal surfaces). Let S be an acausal surface in H2,n.

(i) The total boundary Λ of S is S \ int(S), where S is the closure of S in ÅH2,n and int(S) is
its interior.

(ii) The finite boundary of S, denoted by ∂S, is the intersection of Λwith S.
(iii) The asymptotic boundary of S, denoted by ∂∞S, is the intersection of Λwith ∂∞H2,n.
(iv) The free boundary of S (or frontier), denoted by Fr(S) is the complement of ∂S ∪ ∂∞S

in Λ.

We will use the same notation for the corresponding objects in H2,n
+ . Note that if the

induced metric on S is metrically complete, then Fr(S) = ∅. If moreover S is a manifold
without boundary, then Λ = ∂∞S.

Given a acausal surface S with induced metric dI, for any point x in S, define dI(x,Fr(S))
as the supremum over all R so that the closed ball of radius R and center x is complete. We
also define the pseudo-distance to the frontier as

ð(x,Fr(U)) B inf{ð(x, z) | z ∈ Fr(U)} .
Proposition 3.10 (Boundary of acausal surfaces). Let S be a closed spacelike surface with
boundary in H2,n

+ . Assume that ∂S is connected and is a a graph, then S is a graph.

Proof. Let π be a warped projection on a hyperbolic plane H. By assumption π(∂S) is
a circle γ embedded in H. By compactness of S, f (x) B ♯(π−1(x)) is locally constant on
each of the connected component of H \ γ. It follows (by compactness) that f = 0 on the
unbounded component of H \ γ. This implies that π−1γ = ∂S. Hence that f = 1 in the
(interior) neighborhood of γ. Thus f = 1 in the bounded connected component of H \ γ. □
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Finally, we describe entire spacelike graphs.

Proposition 3.11 (Entire spacelike graph). Let S be a simply connected spacelike surface without
boundary.

(i) If S is properly immersed or if its induced metric is complete, then S is an entire graph.
(ii) If S is an entire graph, then it is acausal.

(iii) If S is an entire graph, then it intersects any timelike sphere exactly once.
(iv) If S is an entire graph, then its asymptotic boundary ∂∞S is a semi-positive loop.

Proof of (i) When the induced metric gI on S is geodesically complete, the argument comes
from [21, Proposition 3.15]. In that case, the warped projection πP on a pointed hyperbolic
plane P is length-increasing. In particular we have

π∗PgH2 ⩾ gI .

It follows that π∗
P

gH2 is also complete. As a result, the restriction of πP to S is a proper
immersion, hence a covering, and so a diffeomorphism since S is simply connected.

If S is properly immersed, the result follows from the fact that the warped projection is
proper, so its restriction to S is a covering.

Proof of (ii) This was proved in [21, Lemma 3.7].

Proof of (iii) Given a timelike sphere Σ in H2,n
+ and a point q ∈ Σ, the orthogonal of Σ at q

defines a pointed hyperbolic plane P such that Σ = π−1
P

(q). S is then the graph of a map f
and so Σ ∩ S = (0, f (0)).

Proof of (iv) From Proposition 3.7, S is the graph of a 1-Lipschitz map from an hemisphere B in
S2 to Sn. Such a map extends to a 1-Lipschitz map from the equator S1 to Sn. By Proposition
2.11, its graph ∂∞S is semi-positive unless it is a photon or a biphoton.

To prove that ∂∞S is not a photon nor a biphoton, observe that from item (ii) the geodesic
from any point x in S to any point y in ∂∞S is spacelike. In particular, ∂∞S is disjoint from
the hyperplane x⊥. Given ϕ a photon or a biphoton, ϕ contains a pair of antipodal points
(a, b). Either a and b are contained in x⊥ or they lie in different connected components of
E \ x⊥. In both cases, ϕ intersect x⊥. Thus ∂∞S is semi-positive. □

Remark 3.12. We return briefly to Definition 3.6. If for a spacelike submanifold of H2,n
+ , there

is at least one pointed hyperbolic plane for which the warped projection is a diffeomorphism
onto its image, then the proof of (ii) above shows that the submanifold is acausal. Then
Proposition 3.7 implies that the submanifold is a graph over every pointed hyperbolic plane
and is thus, by Definition 3.6, a spacelike graph.

Recall that Tx f denotes the tangent map of f at x.

Proposition 3.13. Let Q = (q,Q) and P = (p,P) be pointed hyperbolic planes. Let φP be the
restriction of the warped projection πP to Q. Assume that

dG(TpP,TqQ) < R .

Then

(i) For each such positive constant R, there exists a positive constant c so that

∥TqφP∥ ⩽ c ,

(ii) For any b larger than 1, there exists such a positive constant R so that

b−1
⩽ ∥TqφP∥ ⩽ b .
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Proof. Since hyperbolic planes have complete induced metrics, for any P and Q as in the
proposition, φP is a global diffeomorphism and so ∥TqφP∥ > 0. The result then follows from
the fact that G(H2,n) is locally compact and that φP = Id when P = Q. □

3.2. Strongly positive curves. Recall from 2.3.4 that H2,n
λ is the space H2,n equipped with

the metric gλ =
1
λg.

For a curve γ and x ∈ γ, the osculating plane, denoted T
(2)
x γ is (given a parametrization

of γ so that γ(t0) = x) the vector space generated by
q

γ and ∇ q

γ

q

γ. The osculating plane is
independent of the parametrization. We introduce the following properties of curves in H2,n

which are further refinements of being spacelike and positive.

Definition 3.14 (Strongly positive curves). A smooth curve γ in H2,n
λ is strongly positive if

(i) the curve γ positive,
(ii) for every point x in γ, the osculating plane T

(2)
x γ has dimension 2 and is spacelike.

(iii) for any pair of disjoint points x and y in γ, the totally geodesic space containing x, y
and the tangent vectors in Tyγ is spacelike.

It is important to remark that since the lift of a connected positive curve to H2,n
+ has two

connected components, we can use any of these to make sense of warped projection, graphs
and so on. This fact will be used in the sequel.

3.2.1. Unpinched curves. Given an acausal curve γ in H2,n, we can define two distances on
γ: the (extrinsic) spatial distance ð (see paragraph 2.1.1) and the distance dγ along γ. The
following notion is a comparison between those two.

Definition 3.15 (Unpinched curves). An acausal curve γ is called unpinched (or δ-unpinched)
if there exists δ > 0 such that for all x, y in γ,

ð(x, y)
dγ(x, y)

⩽
1
2
=⇒ ð(x, y) > δ .

A sequence {γk}k∈N is uniformly unpinched if there is a δ > 0 such that any γk is δ-unpinched.

Observe also that if γ is δ-unpinched in H2,n
λ , it is also δ unpinched for H2,n

µ for µ ⩽ λ.

3.2.2. Angular width. Given a curve γ, we denote by γ(3) the set of pairwise distinct triples
of points in γ and by Gr2,1(E) the set of hyperbolic planes in H2,n. Assume γ is strongly
positive and consider the map

Φγ :
{

γ(3) −→ Gr2,1(E)
(x, y, z) 7−→ x ⊕ y ⊕ z

,

Since γ is smooth, we have

lim
x1,x2→x

x1,x2

(x1 ⊕ x2) = x ⊕ Txγ , lim
x1,x2,x3→x
x1,x2,x3

(x1 ⊕ x2 ⊕ x3) = x ⊕ T
(2)
x γ .

In particular, Φγ extends to a continuous map Φγ : γ3 → Gr2,1(E) where for x , y we have

Φγ(x, y, y) = x ⊕ y ⊕ Tyγ , Φγ(x, x, x) = x ⊕ T
(2)
x γ .
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Let γ be a strongly positive curve in H2,n. Let x0 be a point in γ. Consider the codimension
2 subspace F B (x0 ⊕ Tx0γ)⊥ of E. Observe that F has signature (1,n). The projectivization of
the orthogonal projection from E to F defines a map

π0 : P(E) \ P(F⊥)→ P(F) .

We have

Proposition 3.16. Let γ, x0, and π0 be as above, and let y be a point in ÅH2,n. If V B x0 ⊕ y ⊕ Tx0γ
has signature (2, 1), then π0(y) is a spacelike line in F.

Proof. The vector π0(y) is in the orthogonal in V of the space W generated by x0 and Tx0γ;
but W has signature (1, 1), thus π0(y) is spacelike. □

According to this proposition, π0 maps points in γ \ {x0} to positive definite lines in F. If
we identify the set of positive definite lines in F with the n-dimensional hyperbolic space
Hn, we obtain a curve πx0 (γ) ⊂ Hn that we call the angular projection of γ at x0.

Definition 3.17 (Angular width). The angular width of a compact strongly positive curve γ
is

w(γ) B sup
{

diam(πx0 (γ)) | x0 ∈ γ
}

,

where the diameter is computed in Hn.

Proposition 3.18 (Angular width and spacelike surfaces). Let γ be strongly positive curve in
H2,n
+ . Let S be a spacelike surface with ∂S ⊂ γ. Assume that S is included in the convex hull of γ.

Then for all points y in ∂S, we have

d(TyS,T(2)
y γ) ⩽ w(γ) .

Proof. Let γ, x0, and π0 be as above. Since π0 is a linear map and thus preserves convex
hulls, π0(S) is included in the convex hull of π0(γ). Let c be a curve in S starting from x0 that
is orthogonal to ∂S. We parametrize c by arc length so that c(0) = x0. Observe first that

lim
s→0

π0(c(s)) = π0(
q

c(0)) .

It follows that
q

c(0) belongs to the convex hull (in H2,n) of π0(γ). Similarly

lim
s→0

π0(γ(s)) = π0(n0) .

where n0 and Tx0γ generates T(2)γ. It follows that

dG(Tx0 S,T(2)
x0
γ) = dHn (

q

c(0),n0) ⩽ w(γ) .

This concludes the proof. □

3.2.3. Deformation of strongly positive curves. We now introduce the class of curves for which
we prove a finite Plateau problem.

Definition 3.19. A deformation of a strongly positive curve γ in H2,n is an isotopy {γt}t∈[0,1]

with γ = γ1 such that
(i) every curve γt is strongly positive,

(ii) the curve γ0 lies in a hyperbolic plane.
A strongly positive curve admitting a deformation is called deformable.

Observe that by compactness of the isotopy, if {γt}t∈[0,1] is a deformation, the angular
width w(γt) is uniformly bounded.
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3.3. Maximal surfaces.

3.3.1. Second fundamental form. Consider a spacelike embedding u : S ↪→M, where (M,g) is
a pseudo-Riemannian manifold of signature (2,n) and S a surface. The pull-back bundle
u∗TM splits orthogonally as

u∗TM = TS ⊕ NS ,

where the normal bundle NS is the orthogonal of the tangent bundle TS. We denote their
induced metric by gI and gN respectively. Observe that gI is positive definite, while gN is
negative definite.

We recall that second fundamental form II, which is a symmetric 2-tensor on S with values in
N, and the shape operator B which is a 1-form on S with values in Hom(NS,TS) are given by

gI (Y,B(X)ξ) = gN (II(X,Y), ξ) = g (∇XY, ξ) ,

where X and Y are vector fields along S, ξ is a section of the normal bundle and ∇ the
Levi-Civita connection on M. For instance the second fundamental II0 form on TxH2,n, where
we see H2,n locally isometrically embedded in E is given by

II0(u,u) = g(u,u) x .

Thus if γ is a geodesic in Σ ⊂ H2,n ⊂ E, we have

d2

dt2

∣

∣

∣

∣

∣

∣

t=s

γ(t) = II(u,u) + g(u,u) x . (7)

The norm of the second fundamental form II is

∥II∥2 B −max
|v|=1

∑

i=1,2

g (II(v, ei), II(v, ei)) , (8)

where (e1, e2) is an orthonormal basis of TxS.
If MΛ denotes the manifold M equipped with the metric gλ =

1
λg, we have the following:

Lemma 3.20. Let S be a spacelike surface in M, with fundamental form II. The second fundamental
form IIλ of S in Mλ satisfies ∥IIλ∥2 = λ∥II∥2.

Proof. Observe that a unit vector with respect to gλ has the form
√
λv, where v is a unit

vector for g. The result then follows from tracking the effect of the subsequent substitutions
in (8), after observing that the Levi-Civita connection is a conformal invariant. □

Definition 3.21. The mean curvature is the normal vector field

H B trgI (II) = II(e1, e1) + II(e2, e2) .

3.3.2. Variation of the area. Given a spacelike embedding u : S ↪→M, one can define the area
functional, associating to any compact set K in S the number

AK(u) B
∫

K
dvolgI ,

where dvolgI is the volume form of gI. The following is classical, but we include the proof
for the sake of notation.

Lemma 3.22. A spacelike surface u0 : S ↪→M is a critical point of the area functional if and only if
H = 0.
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Proof. Let ξ be a normal vector field with compact support. Let {ut}t∈(−ε,ε) be a smooth
deformation of u0 so that t→ ut(x) are geodesics with initial tangent vector ξ. For ε small
enough, the image ut(S) is spacelike. We respectively denote by gt,Bt and IIt the induced
metric, shape operator and second fundamental form of ut.

Let G and ∇ be respectively the pull-back of the metric and connection of M by U : (t, x)→
ut(x). The metric G restricts to gt on S × {t}. We have

∂tG(X,Y) = G(∇ξX,Y) + G(X,∇ξY) = G(∇Xξ,Y) + G(X,∇Yξ) .

Thus, restricting to S × {0}, we obtain
q

g0(X,Y) :=
d
dt |t=0

gt(X,Y) = −2g0 (B0(X)ξ,Y) = −2gN (II0(X,Y), ξ) . (9)

In particular, if (e1, e2) is an orthonormal framing of (TS, g0), and (e1, e2) its dual, we have

dvolgt = det
(

Id−2t
(

gN

(

II0(ei, e j), ξ
))

i, j=1,2
+ o(t)

)

e1 ∧ e2 .

It follows that
q

dvolgt = −2gN(H, ξ)dvolg0 . (10)

Thus
q

AK(u0) = −2
∫

K
gN(H, ξ)dvolg0 and the result follows. □

We now compute the second variation of the area functional.

Proposition 3.23. Given a spacelike surface u0 : S ↪→M with H = 0, a non-zero normal deformation
along ξ ∈ Ω0(S,NS) and K ⊂ S a compact subset, we have

q q

AK(u0) =
∫

K
W(ξ) dvolg0 ,

where W(ξ) = 2 trg0 (Qξ) for the symmetric tensor Qξ given by

Qξ(X,Y) = g0((R0(ξ,X)ξ,Y) − g0(B0(X)ξ,B0(Y)ξ) + gN

(

∇N
Xξ,∇N

Yξ
)

.

Here R0 is the Riemann curvature tensor of u∗0D and D the Levi-Civita connection of M.

Proof. We use the same notation as the previous proof. By equation (10) when H = 0, we
have

q q

dvolg0 = −2gN(∇ξH, ξ)dvolg0 =W(ξ)dvolg0 ,

where W(ξ) = 2 trg0 (Qξ) for the symmetric tensor Qξ defined by

Qξ(X,Y) = −g0
(∇ξB0(X)ξ,Y

)

.

Our goal is to compute Qξ(X,Y).

One the one hand, we have

∂tG(∇Xξ,Y) = G(∇ξ∇Xξ,Y) + G(∇Xξ,∇ξY)

= G(∇ξ∇Xξ,Y) + G(∇Xξ,∇Yξ)

= G (R(ξ,X)ξ,Y) + G
(∇X∇ξξ,Y

)

+ G
(∇[ξ,X]ξ,Y

)

+ G(∇Xξ,∇Yξ)

= G (R(ξ,X)ξ,Y) + G (∇Xξ,∇Yξ) ,

where R(a, b)c = ∇a∇bc − ∇b∇ac − ∇[a,b]c.
Restricting to S × {0}, we obtain

d
dt |t=0

gt(−Bt(X)ξ,Y) = R0(ξ,X, ξ,Y) + g0 (B0(X)ξ,B0(Y)ξ) + gN

(

∇N
Xξ,∇N

Yξ
)

.
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On the other hand, using equation (9), we thus get

d
dt |t=0

gt(−Bt(X)ξ,Y) =
q

g0(−B0(X)ξ,Y) + g0(−∇ξB0(X)ξ,Y)

= 2g0(B0(X)ξ,B0(Y)ξ) +Qξ(X,Y) .

This gives

Qξ(X,Y) = R0(ξ,X, ξ,Y) − g0 (B0(X)ξ,B0(Y)ξ) + gN

(

∇N
Xξ,∇N

Yξ
)

. (11)

□

Corollary 3.24. If u : S ↪→ H2,n is a spacelike surface with H = 0, and let ξ be a non-zero normal
deformation supported on a compact K ⊂ S. Then the second variation of the area satisfies

q q

AK(u) ⩽ 4
∫

K
gN(ξ, ξ)dvolg0 < 0 .

Proof. Because H2,n has curvature −1, we have

g0 (R0(ξ,X)ξ,Y) = gN(ξ, ξ)g0(X,Y) .

Thus, we obtain
trg0 (Qξ) = 2gN(ξ, ξ) + R ,

where R = trg0

(

− g0(B0(.)ξ,B0(.)ξ) + gN(∇N
. ξ,∇N

. ξ)
)

⩽ 0. This concludes the proof. □

3.3.3. Maximal surfaces. Corollary 3.24 motivates the following definition

Definition 3.25. A spacelike immersion from a surface S to M is a maximal surface if H = 0.

In the sequel, we will denote by Σ a maximal surface, and S any surface.
Corollary 3.24 implies the stability of maximal surfaces in H2,n and H2,n

+ : given a maximal
surface u, there is no non-zero compactly supported normal deformation with

q q

A(u) = 0.
Calculating the tangential part of the curvature tensor of ∇, one obtains the following

Proposition 3.26. If Σ is a maximal surface in M and P is a tangent plane to Σ equipped with an
orthonormal frame (e1, e2), then we have

KΣ(P) = KM(P) − qN(II(e1, e1)) − qN(II(e1, e2)) ,

where KΣ and KM are the sectional curvatures of Σ and M, respectively, and qN is the (negative
definite) quadratic form on N.

In particular if M = H2,n, since qN is negative definite, KΣ ⩾ −1.

3.3.4. Convex hull. Recall from paragraph 2.5.3 that any semi-positive loop in ÅH2,n has
a well-defined convex hull. The following was proved in [21, Proposition 3.26] for the
asymptotic boundary case. The proof is the same in our case, but we include it for the sake
of completness.

Proposition 3.27. If Σ is a maximal surface in H2,n whose total boundary Λ (see Definition 3.9) is a
semi-positive loop, then Σ is contained in the convex hull of Λ.

Proof. Consider a connected component Σ0 of the preimage of Σ in H2,n
+ , and let φ0 be a

linear form on E which is positive on Λ and denote by φ its restriction to Σ. Now, let γ be a
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geodesic on Σ that we consider as a curve in E, with
q

γ(0) = u, then using equation (7) in the
last equality

Hessx φ(u,u) =
d2

dt2

∣

∣

∣

∣

∣

∣

t=0

φ(γ(t)) = φ0

(

d2

dt2

∣

∣

∣

∣

∣

∣

t=0

γ(t))
)

= q(u) φ(x) + φ0(II(u,u)) ,

where II is the second fundamental form of Σ and Hessx ϕ is the Hessian of φ at x. Taking
the trace yields

∆φ = 2φ .
The classical maximum principle thus implies that φ is positive on Σ and so Σ is contained
in the convex hull of Λ. □

3.4. Gauû lift and holomorphic curves. Recall from Subsection 2.3 that the Grassmannian
G(M) of positive definite 2-planes in M is the fiber bundle over M whose fiber over x is the
Riemannian symmetric space Gr2,0 (TxM). The tangent space of G(M) at (x,P) splits as

T(x,P)G(M) = TxM ⊕Hom(P,P⊥) = P ⊕ P⊥ ⊕Hom(P,P⊥) .

Furthermore, the canonical Riemannian metric g on G(M) is given by

g =
(

g|P,−g|P⊥ , hP
)

,

where hP is the Riemannian metric on the fiber defined in paragraph 2.3.1.
Given a spacelike surface u : S ↪→M, we define its Gauû lift by

Γ :
{

S −→ G(M)
x 7−→ (u(x),Tu(TxS)) .

One easily checks that in the splitting describe above, TΓ = (Tu, II) where II ∈ Ω1(S,Hom(TS,NS))
is the second fundamental form.

We denote by gII and dII the induced metric and distance respectively on S by Γ.

Proposition 3.28. For any spacelike surface we have

gII = gI +Q ⩽ (1 + ∥II∥2)gI ,

where Q(x, y) = − trgI

(

gN
(

II(x, .), II(y, .)
))

Proof. As noted above, TΓ = (Tu, II) ∈ Ω1 (S,TS ⊕Hom(Ts,NS)). The first term in the
expression of Γ∗g is clear, so we just have to explain the second one. We recall from subsection
2.3.1 the bilinear form hP(φ,ψ) = − tr(φ∗ψ) where φ,ψ ∈ TP Gr2,0 (E) and φ∗ : P⊥ → P is the
adjoint of φ using the induced scalar product. In particular, the second term is given by
hP

(

II(x, .)II(y, .)
)

= − trgI

(

II∗(x, .)II(y, .)
)

.
Using II∗ = B, and taking an orthonormal framing (e1, e2) of (TS, gI), the second term may

then be written as

−
∑

i=1,2

gI
(

B(x)II(y, ei), ei
)

=
∑

i=1,2

−gN
(

II(x, ei), II(y, ei)
)

= Q(x, y) .

This proves the result. □

Given a point x on a spacelike acausal surface Σ in H2,n, we can define three Riemannian
metrics on Σ: the metric gI induced by the metric on H2,n, the metric gII induced by the Gauû
lift and the metric gx

H B π∗xgH where πx is the warped projection on the pointed hyperbolic
plane (x,H) tangent to Σ at x, and gH is the hyperbolic Riemannian metric on H.

Corollary 3.29. Let S be a spacelike surface whose second fundamental form is uniformly bounded
by M,
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(i) the Riemannian tensors gI, gII are uniformly equivalent, with a constant only depending
on M.

(ii) For any R, the metrics gI and gx
H are uniformly equivalent on the ball of center x and radius

R with respect to gI with a constant only depending on M and R. Moreover the projection
πx from S equipped with dI and dII is Lipschitz.

Proof. By the previous proposition, the bound on the norm of IIΣ implies that gI and gII are
biLipschitz. Moreover, the Gauû lift of a ball BR with respect to gI in G(H2,n

+ ) is contained in
the closed ball of center TxS and radius R(1 +M). In particular, the restriction of the warped
projection πx to BR is infinitesimally biLipschitz by Proposition 3.13. This shows that gI and
gx

H are uniformly equivalent. □

Corollary 3.30. If S is a properly immersed spacelike surface without boundary whose second
fundamental form is uniformly bounded, then (S, gI) is complete.

Proof. If S is properly immersed, it is thus a global graph over each of its tangent planes.
Thus by the previous corollary, for each x in S, the ball of radius 1 with center x with respect
to gI is complete, since the ball of radius 1 with center x with respect to gx

H is complete. This
shows that (S, gI) is complete. □

3.4.1. Holonomic distribution. Using the splitting

T(x,P)G(M) = TxM ⊕Hom(P,P⊥) , (12)

where TxM is the horizontal distribution we define the holonomic distributionD on G(M) by

D(x,P) := P ⊕Hom(P,P⊥) . (13)

The following is straightforward.

Lemma 3.31. The Gauû lift of a spacelike surface in M is tangent to the holonomic distribution.

3.4.2. Almost complex structure and holomorphic Gauû lift. The holonomic distribution D
carries a natural almost-complex structure J defined by taking the rotation i of angle π

2 on P
and the pre-composition by i on Hom(P,P⊥):

J(u,A) = (iu,A ◦ i) . (14)

The following is classical (see [32]).

Proposition 3.32. A spacelike surface u : S ↪→ M is maximal if and only if its Gauû lift
Γ : S→ G(M) is J-holomorphic when S is equipped with the complex structure j induced by gI.

Proof. Considering the splitting u∗TM = TS ⊕ NS, we get Γ∗D = TS ⊕Hom(TS,NS), where
D is the distribution on G(M) defined in (13). In particular, TΓ ∈ Ω1 (S,TS ⊕Hom(TS,NS))
is identified with (Tu, II).

The first factor is clearly J-holomorphic. For the second factor, it follows from the
observation that a map φ : TxS → Hom(TxS,NxS) satisfies φ ◦ j = J ◦ φ if and only if φ is
symmetric and trace-less. □

Definition 3.33 (Boundary condition). Let γ be a strongly positive curve (Definition 3.14).
(i) The boundary condition associated to γ is the immersed submanifold

W(γ) B
{

(x,P) ∈ G(H2,n) | x ∈ γ, Txγ ⊂ P
}

. (15)

(ii) For any positive number K, the local boundary condition, is the open subset of W(γ)

WK(γ) B
{

(x,P) ∈W(γ) | d(P,T(2)
x γ) < K

}

. (16)
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We have

Proposition 3.34. Let γ be a strongly positive curve of regularity Ck,α.

(i) W(γ) is a submanifold of regularity Ck−1,α tangent to the holonomic distribution.
(ii) TW(γ) is a totally real subspace of half the dimension of the holonomic distribution.

(iii) Finally, let ω be the orthogonal projection from TG(H2,n) to the horizontal distribution,
then if (x,P) belongs to W(γ), we have ω(TPW(γ)) = Txγ.

Proof. The first item is obvious. The last item follows from the definition of W(γ). Let (x,P)
be in W(γ). Using the splitting (12),

T(x,P)W(γ) = Txγ ⊕ {A ∈ Hom(P,P⊥) | Txγ ⊂ ker(A)} .
It follows from the definition (13), that T(x,P)W(γ) ⊂ D(x,P). Moreover the definition (14) of
the almost complex structure J implies that

T(x,P)W(γ) ⊕ JT(x,P)W(γ) = D(x,P) .

This completes the proof. □

4. Uniqueness

This section is devoted to the proof of the following result.

Theorem 4.1 (Uniqueness). Let Σ be a complete maximal surface in H2,n whose total boundary Λ
is either finite and positive or asymptotic (see Definition 3.9). Then Σ is the unique complete maximal
surface bounded by Λ.

This statement was proved in [21, Theorem 3.21] in the case of a cocompact group action
on Σ, and the proof relies on a maximum principle. We will adapt this maximum principle
here to the non-compact case using a weak version of Omori’s maximum principle. Such an
adaptation was made in the case of H2,2 for polygonal surfaces in [44] and suggested to us
by the first author of that work.

We work by contradiction. Suppose there exists two maximal surfaces Σ1 and Σ2 sharing
a common boundary, denoted by Λ. By Proposition 3.27, both surfaces are contained in the
convex hull CH(Λ) of Λ. Lift of CH(Λ) to H2,n

+ and recall that the scalar product of any pair
of points in this lift is negative by Proposition 2.15, item (ii). This defines a lift of Σ1 and Σ2

in H2,n
+ that we denote the same way.

Consider the function

B :
{

Σ1 × Σ2 −→ R ,
(x, y) 7−→ ⟨x, y⟩ .

We remark that since B is negative everywhere, B is bounded from above.

4.1. Lower bound on the Hessian. We prove the following estimate.

Lemma 4.2. Let p = (x, y) be a point in Σ1 × Σ2. Then there exists two unit vectors u0 and v0 in
TxΣ1 and TyΣ2 respectively such that, for w0 = (u0, v0), we have

Hessp B(w0,w0) ⩾ 2B(p) + 2 . (17)

We first compute the Hessian of B.

Lemma 4.3. The Hessian of B at a point p = (x, y) inΣ1×Σ2 in the direction w = (u, v) ∈ TxΣ1×TyΣ2

is given by

Hessp B(w,w) = (q(u) + q(v))B(p) + 2⟨u, v⟩ + ⟨II1(u,u), y⟩ + ⟨x, II2(v, v)⟩.
Here IIi is the second fundamental form of Σi.
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Proof. Let γ1 be a geodesic in Σ1 with
q

γ1(0) = u, while γ2 is a geodesic in Σ2 with
q

γ2(0) = v,
then, using equation (7) in the last equality

Hessp B(w,w) =
d2

dt2

∣

∣

∣

∣

∣

∣

t=0

⟨γ1(t), γ2(t)⟩

= ⟨ d2

dt2

∣

∣

∣

∣

∣

∣

t=0

γ1(t), y⟩ + 2⟨u, v⟩ + ⟨x, d2

dt2

∣

∣

∣

∣

∣

∣

t=0

γ2(t)⟩
= ⟨q(u) x + II1(u,u), y⟩ + 2⟨u, v⟩ + ⟨x,q(v) y + II2(v, v)⟩ ,

and the result follows. □

Proof of Lemma 4.2. Since the surfaces Σ1 and Σ2 are maximal, the quadratic forms ⟨II1(., .), y⟩
and ⟨x, II2(., .)⟩ have opposite eigenvalues ±λ1 and ±λ2 respectively. Thus at a given point
p = (x, y) ∈ Σ1 × Σ2, up to switching Σ1 and Σ2, we may assume λ1 ⩾ λ2 ⩾ 0. Observe then
that for any unit vector v in v ∈ TyΣ2 we have

⟨x, II2(v, v)⟩ ⩾ −λ2 ⩾ −λ1 .

Now let us choose a unit vector u0 ∈ TxΣ1 such that ⟨II1(u0,u0), y⟩ = λ1. Let w = (u, v), then
we obtain from lemma 4.3 that for any unit v in TyΣ2,

Hessp B((u0, v), (u0, v)) = 2B(p) + 2⟨u0, v⟩ + ⟨II1(u0,u0), y⟩ + ⟨x, II2(v, v) ⩾ 2B(p) + 2⟨u0, v⟩.

It is now enough in order to conclude the proof of the lemma to find a unit vector v0 such
that ⟨u0, v0⟩ ⩾ 1.

Let π be the orthogonal projection from E to TxΣ1. Since the kernel of π is negative
definite, we have q(a) ⩽ q(π(a)) for any a ∈ E. Because TyΣ2 is positive definite, it follows
that the restriction of π to TyΣ2 is a linear isomorphism. Let v1 to be the unique vector such
that π(v1) = u0 and observe that 0 < q(v1) ⩽ q(u0) = 1. Finally, let v0 the unit vector defined
by v0 =

√

q(v1)−1v1. Then

⟨u0, v0⟩ =
√

q(v1)−1⟨u0, v1⟩ =
√

q(v1)−1⟨u0, π(v1)⟩ =
√

q(v1)−1
⩾ 1 .

The result now follows. □

4.2. A maximum principle. The following is a weaker version of Omori’s maximum
principle [41].

Proposition 4.4 (Maximum Principle). Let M be a complete Riemannian manifold without
boundary whose sectional curvature is bounded from below. Let f be a function of M satisfying the
following:

(i) The function f is of class C2.
(ii) There are positive constants A,Λ so that, if f (x) > A, then there is a non-zero vector v in

TxM such that

Hessx f (v, v) ⩾ Λ∥v∥2.
Then either f is bounded by A, or f is unbounded.

We will denote by B(x0, r) the ball in M of center x0 and radius r, and dx0 the function
distance to x0. Recall the classical Hessian comparison theorem (see for instance [9, Chapter
1]).
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Proposition 4.5 (Hessian comparison principle). Let M be a complete Riemannian manifold
whose sectional curvature is bounded below. There exists positive constants ε and λ such that for
every point x0 in M, and any vector v ∈ TxM with x in B(x0, ε), we have

Hessx d2
x0

(v, v) ⩽ λ∥v∥2 ,
Proof of Proposition 4.4. Let ε be as in Proposition 4.5 and A and Λ as in the statement of the
proposition. Let κ > 0 be chosen so that for every x, we have the following inequality: for
every z in B(x, ε),

κHessz d2
y(v, v) ⩽

Λ

2
∥v∥2 .

To prove the proposition, it is enough to show that if there exists x0, with f (x0) > A, then
there exists y with f (y) ⩾ f (x0) + κε. Choose x0 so that f (x0) > A. Let now y achieve the
maximum of g B f − κdx0 on the ball B(x0, ε). Observe that at this maximum, the inequality
g(y) ⩾ g(x0) reads

f (y) ⩾ f (x0) + κd2(x0, y) . (18)

In particular, f (y) ⩾ f (x0) > A. Thus there exists v so that Hessy f (v, v) > Λ∥v∥2, hence

Hessy g(v, v) = Hessy f (v, v) − κHessy d2
x0

(v, v) ⩾
Λ

2
∥v∥2 > 0 .

Hence y cannnot be a point in the interior of B(x0, ε). Thus d(x0, y) = ε. The inequality (18)
now reads

f (y) ⩾ f (x0) + κε2 .

This concludes the proof. □

4.3. Proof of Theorem 4.1. We will combine two lemmas.

Lemma 4.6. For any x in Σ1, the supremum Mx of B on {x} × Σ2 is greater or equal to −1, with
equality if and only if x belongs to Σ2.

Proof. Consider a pointed hyperbolic plane P = (x,H) tangent to Σ1 at a point x in the interior
of Σ1. In the non-compact case, both surfaces are graphs above the entire P while in the
compact case, they are graphs above the compact domain bounded by the image of the
warped projection of their common boundary.

In particular, the fiber above x of the warped projection on P is a totally geodesic timelike
sphere that intersects Σ2 in a unique point y; furthermore, the geodesic passing through x
and y is timelike. This gives

B(x, y) =
1
2
(⟨x, x⟩ + ⟨y, y⟩ − ⟨x − y, x − y⟩) ⩾ −1 .

with equality if and only if y = x.
Assume conversely that x belongs to both Σ1 and Σ2. . Then, for all y in Σ2, the arc [x, y]

is spacelike since Σ2 is achronal. Thus

B(x, y) =
1
2
(⟨x, x⟩ + ⟨y, y⟩ − ⟨x − y, x − y⟩) ⩽ −1 = B(x, x) .

This concludes the proof. □

We now prove

Lemma 4.7. The supremum M of B on Σ1 × Σ2 is equal to −1.



30 F. LABOURIE, J. TOULISSE, AND M. WOLF

Proof. We first consider the compact case. Let m be the point where the function B achieves
its maximum M on Σ1 × Σ2.

(i) Assume first that m = (x, y) where x and y belong to the interior of Σ1 and Σ2

respectively. At such a point m, the Hessian of B is non-positive. Then Lemma 4.2
says

M = B(m) ⩽ −1 .
(ii) Assume now that m = (x, y) where (say) x belongs to ∂Σ1 (the case where y belongs

to ∂Σ2 is treated in a symmetric fashion). Since x then also belongs to Σ2, by Lemma
4.6

−1 =Mx =M .

In both situations M ⩽ −1.
In the non-compact case, we follow a similar argument using the weak version of the

Omori maximum principle Proposition 4.4. First, note that the Riemannian manifold
Σ1 × Σ2 has sectional curvature larger than −1 by Proposition 3.26. For any x = (x1, x2) with
B(x) > −1 + δ with δ > 0, Lemma 4.2 implies that there exists w tangent to x with

Hessx B(w,w) ⩾ (2B(x) + 2) ∥w∥2 ⩾ 2δ ∥w∥2 .
Since we noted after its definition that B is bounded from above, Proposition 4.4 then implies
that B is bounded by −1 + δ. Since this is true for all δ, the function B is bounded by −1.
Thus M ⩽ −1 in the non-compact case as well. □

We can now conclude the proof of the Uniqueness Theorem 4.1. Combining the two
Lemmas 4.6 and 4.7, we obtain that for all x in Σ1, we have Mx = −1. Thus, using the equality
case in the same Lemma 4.6, we obtain that x belongs to Σ2. Thus Σ1 is equal to Σ2. This
concludes the proof.

5. Main compactness theorem

The main result of this section is the following compactness theorem concerning complete
surfaces.

We start with a definition.

Definition 5.1. A sequence of complete acausal surfaces {Σk}k∈N with boundary converges
as a graph over an open subset V of a pointed hyperbolic plane P0 associated to the warped
projection π0, if, denoting ΣV

k B Σk ∩ π−1
0 (V)

• the sequence {Uk}k∈N, with Uk B π0(ΣV
k ) converges smoothly as open sets with

smooth boundary in V to an open set with smooth boundary U0,
• there exists a smooth complete acausal surfaceΣ0 overπ−1

0 (U0), so thatΣUk

k
converges

to Σ0.

We will mainly use this definition of the convergence of complete acausal surfaces Σk in
settings where the projections Uk are fixed, i.e. not varying with the parameter k. Recall the
Gauû lift Γ(S) ⊂ G(M), described in section 3.4, of a surface in S ⊂M into its Grassmannian
G(M).

Theorem 5.2 (Compactness theorem). Let {Σk}k∈N be a sequence of connected complete acausal
maximal surfaces in H2,n, and let γk B ∂Σk be the finite boundary of Σk. Assume that we have the
following boundary conditions:

(i) The sequence {γk}k∈N is strongly positive and uniformly unpinched.

(ii) There is a positive constant A so that for all k, for all x in γk, we have d
(

TxkΣk,T
(2)
xk
γk

)

⩽ A.
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(iii) The sequence {γk}k∈N has C∞ bounded geometry.
(iv) There is a pointed hyperbolic plane P within a uniformly bounded distance of the Gauû lift

Γ(Σk).
Then, the sequence of surfaces {Σk}k∈N converges as a graph on every bounded ball of P.

The definition of bounded geometry and convergence for spacelike surfaces and strongly
positive curves is given in Appendix A, the definition of uniformly unpinched is given in
Definition 3.14, and the definition of finite boundary is given in Definition 3.9, while the
definition of the Gauû lift is given in section 3.4.

The first three hypotheses can be thought of as a C1 bound along the boundary, while the
fourth one is an interior C0 bound.

This theorem implies readily a uniform bound on the second fundamental form of
complete acausal surfaces without boundary. Such a result is also a consequence of a result
by Ishihara [31]. However the Ishihara bound is not optimal and we will improve upon it in
our setting in a subsequent paper [36].

We next describe a bound on the second fundamental form in the non-complete case.
If an acausal maximal surface Σ is not complete, we define its frontier Fr(Σ) and the

distance ð(x,Fr(Σ)) to the frontier as in paragraph 2.1.1 and Definition 3.9. We may refer to
the non-complete case as the free boundary case. In this setting, we will have two results: we
will have a both a local bound on the geometry as well as a local compactness theorem.

Theorem 5.3. Let {Σk}k∈N be a sequence of connected acausal maximal surfaces in H2,n, and let
γk B ∂Σk be the finite boundary of Σk. Let also {xk}k∈N be a sequence of points so that xk belongs to
Σk.

Assume that we have the following boundary conditions:

(i) The sequence {γk}k∈N is strongly positive and uniformly unpinched,

(ii) There is a positive constant A so that for all k, for all x in γk, we have d
(

TxkΣk,T
(2)
xk
γk

)

⩽ A.
(iii) The sequence {γk}k∈N has C∞ bounded geometry.

Assume furthermore that ð(xk,Fr(Σk)) is bounded from below by a positive constant R. Then there
exists a positive constant ε less than R so that for all k we have that

• the second fundamental form of Σk is uniformly bounded on the ball Σε
k

(with respect to dI)
on Σk of center xk and radius ε.

• the sequence {xk,Σεk}k∈N subconverges smoothly.

In Section 6, we will describe three avatars of our compactness theorem.

5.1. Structure of the proof. The structure of the proof is as follows:
(i) In Paragraph 5.2, we describe how to construct "good"neighborhoods of points on

acausal surfaces: see Proposition 5.4.
(ii) In Paragraph 5.3, we use this good neighborhood together with results on holomor-

phic curves to show local subconvergence under a uniform bound on the second
fundamental form.

(iii) In Paragraph 5.4, we extend this subconvergence globally, again under a uniform
bound on the second fundamental form.

(iv) In Paragraph 5.5, we prove a Bernstein type theorem: complete maximal surfaces
without boundary in the pseudo-Euclidean space E2,n are spacelike planes; we also prove a
boundary version.

(v) in Paragraph 5.6 we use the subconvergence, a renormalisation and the Bernstein
type theorem to prove a uniform bound on the second fundamental form.
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(vi) We conclude the proof of the main compactness Theorem 5.2 in paragraph 5.7, also
proving Theorem 5.3. .

5.2. Preliminary : constructing ªgoodº neighborhoods. This paragraph is devoted to the
proof of Proposition 5.4 below.

In order to apply the theory of holomorphic curves to prove our main compactness theo-
rems, we want to find neighborhoods of points in an acausal surface that are homeomorphic
to disks with at most one connected arc in the boundary. We also want to control the size of
these neighborhoods: they should not be too small (with respect to the warped projection),
and their Gauû lift should be uniformly bounded.

Let Σ be a spacelike surface in H2,n
λ . We denote by

(i) dI the induced metric on Σ from the metric on H2,n
λ , and areaI the corresponding

area form,
(ii) Γ : Σ→ G(H2,n

λ ) the Gauû lift, dII the induced metric and areaII the corresponding
area,

(iii) dG the metric on G(H2,n).

Given a point x in Σ, let

(i) Px = (x,Hx) be the pointed hyperbolic plane tangent to Σ at x (that is such that
TxHx = TxΣ),

(ii) dH be the metric induced on Hx by H2,n
λ , and UR be the disk of center x and radius R

in Hx, and
(iii) πx the warped projection from Σ to Hx defined by Px,

Proposition 5.4. There exist constants A and δ0 so that for any δ less than δ0, we have the following.
Let Σ be an acausal surface in H2,n

λ with λ ⩽ 1,

(i) whose finite boundary ∂Σ is δ-unpinched, and
(ii) whose second fundamental form has norm bounded by 1.

Then for all positive κ less than 1
100δ, any x inΣwith dI(x,Fr(Σ)) ⩾ δ admits an open neighborhood

Σ̊x in Σ homeomorphic to the disk with:

(i) Σ̊x ∩ ∂Σ has at most one connected component,
(ii) for all y in Σ̊x, we have dG(TyΣ,TxΣ) ⩽ Aκ,

(iii) the subset Σ̊x is a graph over a subset Vx of the disk Uκ in Hx, and
(iv) we have d(x, πx(Fr(Σ̊)) ⩾ κ

A .

5.2.1. The construction: controlling projections of arcs. We assume throughout this paragraph
that

Σ is a spacelike acausal surface with second fundamental form of norm bounded by 1 and non-empty
δ-unpinched boundary.

Assuming that UR ∩πx(∂Σ) is non-empty, we choose w to be a closest point in UR ∩πx(∂Σ)
to x:

dH(x,w) = inf{(dH(x, y) | y ∈ UR ∩ πx(∂Σ)} .
Let ω the preimage of w.

Let cR = cR(x,Σ) be the connected component of UR ∩ πx(∂Σ) containing w, and γR be the
preimage of cR. The point w and the arc cR are not uniquely chosen, and when UR is disjoint
from πx(∂Σ), they do not exist.
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We begin our approach to Proposition 5.4 by showing, under the background assumption
that x is relatively distant to the image of the frontier of Σ, that short geodesic arcs in Hx

may be lifted to arcs in Σ, assuming the geodesic arcs in Hx are near x.

Lemma 5.5 (Lifting arcs). For any positive constants δ and ε, with ε ⩽ 1
4δ, and point x in Σ

with dI(x,Fr(Σ)) ⩾ δ the following holds. Let c : [0, ε] → Hx be a geodesic arc (parametrized by
arclength) not intersecting πx(∂Σ) except possibly at its extremities and such that

dI(ξ0, x) ⩽ ε , πx(ξ0) = c(0) ,

then c is contained in πx(Σ). Moreover, if πx(ξ1) = c(ε), then

dI(ξ1, x) ⩽ 2ε , dG(Tξ1Σ,TxΣ) ⩽ 4ε . (19)

Proof. Let
I0 B {t ∈ I | ∀s ⩽ t, c(s) ∈ πx(Σ)}.

The set I0 is open and non-empty. Let ξ : I0 → Σ be the lift of c starting from ξ0. Since πx is
length-increasing, for all t in I0,

dI(ξ(t), x) ⩽ dI(ξ(t), ξ0) + dI(ξ0, x) ⩽ 2ε . (20)

Hence we get,

dI(ξ(t),Fr(Σ)) ⩾ dI(x,Fr(Σ)) − dI(ξ(t), x) ⩾
1
2
δ .

It follows that I0 is closed, so I0 = [0, ε] and thus c lies in πx(Σ). The inequality (19) follows
directly from the inequality (20), and the bound on the second fundamental form applied to
Proposition 3.28. □

Our final ingredient for the proof of Proposition 5.4 is a statement that, still assuming
that x is reasonably distant from the frontier of Σ, that if the nearest component of the image
of the boundary of Σ comes very near x, then that component is unique.

Lemma 5.6. For any positive constant δ, there exists a constant K ⩾ 1 so that for any R < 1
100δ, the

following holds.
Choose x in Σ so that cR(x,Σ) is not empty. Assume that dI(x,Fr(Σ)) > δ, we have

(i) If the arc cR intersects UR/K, then cR is the unique connected component of π(∂Σ) ∩ UR

intersecting UR/K.
(ii) for all ζ in γR,

dI(ζ, x) ⩽ K · R . (21)

Proof. Let us prove the first assertion. Let R′ = R
K where we choose K in the sequel of the

proof.
Assume that πx(∂Σ) intersects UR′ . It follows that cR intersects UR′ . Let w be a closest

point to x in cR. Thus w belongs to UR′ . Let ω be the preimage of w in Σ. Consider the
geodesic arc from x to w whose length is less that R′ and so less that 1

4δ. Applying the
inequality (19), we obtain that

dI(ω, x) ⩽ 2R′ ⩽
δ

50
.

We now prove

Assertion A: if ζ ∈ ∂Σ and d∂Σ(ζ, ω) ⩽ 4R′, then ζ ∈ γR.
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we obtain that y = πx(ξ) with ξ in Σ̊ and

dI(ξ, x) ⩽ 2K · R , dG(TξΣ,TxΣ) ⩽ 4K · R . (23)

We have just shown that Σ̊ is a graph over U, that U is a topological disk, inequality (23)
holds and the boundary of Σ̊ is connected. We have thus proven that the first three items in
the proposition.

The last item follows from the fact that πx(Fr(Σ̊)) = α1 and thus d(x, πx(Fr(Σ̊))) is equal to
R1. □

5.3. Local control. Let us consider the following situation.

(i) Let {λk}k∈N be a sequence of strictly positive numbers converging to λ∞ ⩾ 0.
(ii) Let Σk be an acausal maximal surface (possibly with boundary) in H2,n

λk
.

(iii) Let xk be a point in Σk.
(iv) Let Hk be the totally geodesic plane containing xk, so that Txk Hk = TxkΣk, and πk the

corresponding warped projection.

By convention, if λ∞ = 0, we let H2,n
λ∞

to be E2,n, the flat pseudo-Euclidean space of
signature (2,n).

Definition 5.7 (Local Control Hypothesis (∗)). The sequence {Σk, xk, λk}k∈N satisfies the
local control hypothesis (∗) , if there exist positive constants B and κ so that

(i) Σk is a maximal surface in H2,n
λk

which is a graph over Uk, where
(a) the set Uk is a connected submanifold of B(xk, κ), the open ball of center xk and

radius κ in Hk ;
(b) the diameter of Γ(Σk) is bounded by Bκ ;
(c) we have dH(xk,Fr(Uk)) > κB−1 ;
(d) the boundary of Uk is connected.

(ii) We have the bound ∥IIΣk∥ ⩽ 1 .
(iii) Finally let γk = ∂Σk be the finite boundary of Σk. Assume that γk is strongly positive,

and that
(a) The sequence of arcs {γk}k∈N converges smoothly (in the sense of Appendix A)

to a strongly positive curve γ∞.
(b) For any point y in γk, we have dG(TyΣk,T

(2)
y γk) ⩽ B.

Strongly positive curves in H2,n
λ with λ > 0 are defined in Definition 3.14. For λ = 0, that

is for the pseudo-Euclidean space E2,n, we apply the same definition, replacing hyperbolic
plane by euclidean plane in the phrasing.

The goal of this paragraph is to show the following:

Proposition 5.8 (Convergence with local control). For κ small enough, assuming the local
control hypothesis (∗) and the notation therein, then, after extracting a subsequence, the sequence
{xk,Σk,H

2,n
λk
}k∈N converges in the sense of Appendix A to {x∞,Σ∞,H2,n

λ∞
} where Σ∞ is a maximal

surface with boundary γ∞.

We prove this proposition in paragraph 5.3.3.

5.3.1. Distance and area estimates. Let Mk = TΣk be the Gauû lift of Σk in G(H2,n
λk

), and let

yk = TxkΣk be the lift of xk. Then set dG to be the Riemannian distance in G(H2,n
λk

).
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Lemma 5.9. We have the following estimates. For κ small enough, and assuming the local control
hypothesis (∗), there exist positive constants A, b and a depending only on κ and B so that

area(Mk) ⩽ A , (24)

for all w in Σk, dG(TxkΣk,TwΣk) < bκ , (25)

for all u in Fr(Mk), dG(yk,u) > a . (26)

Proof. The second inequality is a direct consequence of ((i)b) with b = B. It then follows
from Corollary 3.29, that for κ small enough, the projection from Mk (equipped with dII) to
Uk is infinitesimally biLipschitz for some constant only depending on B. The first inequality
follows.

The third estimate follows from the fact that Fr(Mk) ⊂ Z, where Z is the closed subset
of G(H2,n

λ ) of points (y,P) with πk(y) ∈ Fr(Uk). So a = infz∈Z d(H0, z) is positive and only
depends on κ and A. □

5.3.2. The holomorphic translation. Let us consider the two possible cases:

Case 1: There exists some positive ε so that dG(∂Mk, yk) ⩾ ε for all k inN.
Case 2: There exist wk ∈ ∂Mk, with limk→∞ dG(wk, yk) = 0.

We refer to the notation of Appendix C: D denotes the open unit disk in C, while S = {z ∈
D, ℜ(z) ⩾ 0} is the semi-disk. Corresponding to these two cases, we consider the following
holomophic maps

(i) in Case 1, we consider the uniformization fk : D→Mk \ ∂Mk, so that fk(0) = yk.
(ii) in Case 2, we consider the uniformization fk : S→Mk so that fk(0) = wk.

To lighten the notation, we will write U = D or S. Our hypotheses implies the following.

Lemma 5.10. The maps fk are holomorphic immersions. Moreover, for κ small enough we have the
following bounds

area( fk(U)) ⩽ A , (27)

for all w in U, d( fk(0), fk(w)) < bκ , (28)

for all w in Fr(U), d( fk(0), fk(w)) > a , (29)

where A, b and a only depends on κ.

Proof. This lemma is an immediate consequence of the holomorphic translation described in
proposition 3.32 as well as of the bounds on Mk obtained in Lemma 5.9. □

If g is a map from U to a space X, we define as in appendix C, g(Fr(U)) to be the set of
those points x in X so that there exists a sequence {zk}k∈N tending to Fr(U) with

lim
k→∞

(g(zk)) = x.

Corollary 5.11. For κ small enough, the following holds. After extracting a subsequence,the family
{ fk}k∈N converges to a non-constant holomorphic map f∞ so that,

f∞(Fr(U)) ⊂ lim
k→∞

fk(Fr(U)) .

Proof. The Lemma 5.10 guarantees that we can apply the results on pseudoholomorphic
cuves obtained in appendix C. More precisely, we split the discussion in the two cases
described in the beginning of this paragraph:
Case 1: We are in the free boundary case and we apply Theorem C.7 to get the result.
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Case 2: In this case, let us consider Wk = WA(γk) defined in Definition 3.33. By the
hypotheses (iii)a and (iii)b, the totally real submanifold Wk converges smoothly to a totally
real submanifold. We can now apply Theorem C.8 to get the result.

□

With the notation above, we have:

Lemma 5.12. The holomorphic map f∞ is an immersion at 0. Moreover, f∞(U) is the Gauû lift of a
maximal surface.

Proof. We have the orthogonal splitting

T(x,P)G(H2,n) = P ⊕ P⊥ ⊕Hom(P,P⊥) . (30)

Let us consider the complex line subbundle V of TG over G(H2,n) so that, in the splitting
above, we have V(x,P) = P. The orthogonal projection from T(x,P)G(H2,n) to P is a complex
morphism, and thus gives rise to a form α in Ω1

C
(G,V).

By construction, if M is the lift of a maximal surface, then α restricted to TM is injective.
Conversely, if α is non-zero restricted to a holomorphic curve M, then M is the lift of a
maximal surface.

For any k, we now choose a real line bundle Lk in V so that along W(γk), we have
Lk = ω(TW(γk)) (see Proposition 3.34).

Let v be a tangent to Mk, and u = ω(v). By Proposition 3.28,

∥v∥2 = gII(u,u) ⩽ (1 + ∥II∥2)gI(u,u) ⩽ 2 ∥α(v)∥2 ,
where in the last inequality we have used the assumption that the norm of the second
fundamental form of Σk is bounded by 1. Thus it follows that

∥T fk∥ ⩽
√

2 ∥ f ∗kα∥ .
According to Proposition C.20, this last inequality is enough to imply that the hypotheses of
Theorem C.19 are all satisfied. Thus f ∗∞α is non-zero, and in particular f∞(U) is the lift of a
maximal surface. □

5.3.3. Proof of Proposition 5.8. The proposition is a consequence of Lemma 5.11 and 5.12.

5.4. Global control. Our goal in this subsection is to prove a global compactness result
under assumptions that we make now precise:

(i) Let {λk}k∈N be a bounded sequence of positive numbers.
(ii) Let {Rk}k∈N be a sequence of positive number so that limk→∞ Rk = ∞.

(iii) Let {Σk}k∈N be a sequence of connected complete acausal maximal surfaces in H2,n
λk

.
Let xk ∈ Σk and let

Bk(R) B {z ∈ Σk | dI(z, xk) ⩽ R},
and let Hk be the totally geodesic plane tangent to Σk at xk.

Definition 5.13 (Global control hypothesis (∗∗)). The sequence {Σk, λk}k∈N satisfies the
global control hypothesis (∗∗) , if there exist positive constants A, M0 and δ so that

(i) The sequence {xk,Hk,H
2,n
λk
}k∈N converges (in the sense of Definition A.3).

(ii) We have the bound ∥IIΣk∥ ⩽M0 on Bk(Rk).
(iii) The 1-dimensional manifold γk B ∂Σk is strongly positive and δ-unpinched,

(a) The sequence {γk}k∈N has bounded geometry, and
(b) For any point y in γk, we have dG

(

TyΣk,T
(2)
y γk

)

⩽ A.
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Our goal is now to show the

Proposition 5.14 (Convergence with global control). Assuming the global control hypothesis
(∗∗).

(i) Then for any positive R, there exists ε, only depending on δ, A and {γk}k∈N so that if {xk}k∈N
is a sequence of points with xk in Σk, with the property that ð(xk,Fr(Σk)) is bounded from
below by R we have: the sequence of pointed surfaces {(xk,Σεk)}k∈N subconverges smoothly
on the ball Σε

k
in Σk, where Σε

k
has center xk and dI-radius ε.

(ii) Assume now that Σk is complete, so that in particular Fr(Σk) is empty. Let π0 be the warped
projection on some pointed hyperbolic plane P0 = (H0, x0). Assume that dG(P0,Γ(Σk)) is
uniformly bounded. Then {Σk,H

2,n
λk
}k∈N subconverges as a graph on every compact set of

H0 (see Definition 5.1).

We remark that by rescaling, that is replacing λk by λkM−2
0 in the hypothesis and reversing

in the conclusion, we can always assume that M0 = 1. We will do so in the next paragraph.

5.4.1. Getting a local control. Let us first prove the following lemma.

Lemma 5.15. Assume that {Σk, λk}k∈N satisfies the global control hypothesis (∗∗) with M0 = 1.
Then for any positive R, there exists κ and B only depending on R, A, δ and {γk}k∈N so that the
following is true. Let {xk}k∈N with xk in Σk and ð(xk,Fr(Σk)) bounded below by R, then there exists a
sequence of maximal surfaces {Σ̊k}k∈N so that

(i) We have the inclusions Σ̊k ⊂ Σk, and ∂Σ̊k ⊂ ∂Σk.
(ii) the sequence {Σ̊k, xk, λk}k∈N satisfies the local control hypothesis (∗) for κ and B.

Proof. Let us use Proposition 5.4 to construct, given κ small enough, a Σ̊k and an open set
Uk which will satisfy items (i)a, (i)b, (i)c, and (i)d of the local control hypothesis (∗) (cf.
see Definition 5.7), and thus the general item (i) is satisfied. Since all the other items are
consequences of the global control hypothesis (∗∗) (cf. see Definition 5.13), it follows that the
local control hypothesis (∗) is satisfied for Σ̊k. This concludes the proof. □

5.4.2. Proof of the Global Control Proposition 5.14. Let {Σk, λk}k∈N be a sequence satisfying the
global control hypothesis (∗∗) (cf. see Definition 5.13).

Let {xk}k∈N be a sequence of points with xk ∈ Σk with ð(xk,Fr(Σk)) bounded from below by
a positive constant. Let {Σ̊k}k∈N sequence of maximal surface obtained by Lemma 5.15.

Since by Proposition 5.8, the sequence {xk, Σ̊k,H
2,n
λk
}k∈N subconverges, it follows that

there exists a constant ε, depending on the sequence {Σk, λk, xk}k∈N so that {xk, Σ̊εk ,H
2,n
λk
}k∈N

subconverges smoothly. However, since we can choose our sequence {xk}k∈N arbitrarily,
provided ð(xk,Fr(Sk)) is bounded from below, it follows that we can choose ε to depend only
on δ, A and the sequence {γk}k∈N.

This concludes the proof of the first item of the proposition.
Let us show the second item. Let P0 be as in the proposition and π0 the warped projection

on P0. Recall that the warped projection is a dilation.
Consider y in P0, so that y = π0(xk) with xk ∈ Σk and dG(P0,TxkΣk) uniformly bounded.

The first item guarantees that Σk converges as a graph over the ball Bε(y) of center y and
radius ε in P0.

Let now U be the subset of P0, consisting of those points z so that {Σk}k∈N converges as
a graph over Bε(z). We focus on one such particular z0 ∈ U; in particular, if {xk}k∈N is a
sequence of points, with xk in Σk so that {π0(xk)}k∈N converges to an element w in Bε/2(z0),
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then dG(TxkΣk,P0) stays uniformly bounded. Thus, by the previous argument, and using
that the Fr(Σk) is empty,w belongs to U.

It follows that U contains the ε
2 neighborhood of itself. Thus, if U is non-empty, then

U = P0.
The hypothesis guarantees the existence of a sequence {zk}k∈N of points so that dG(TzkΣk,P0)

stays bounded. It follows that π0(zk) is a bounded sequence, hence subconverges to a point
y which belongs to U. Hence U is not empty.

This concludes the proof of the proposition.

5.5. Bernstein type theorem. In this paragraph, we prove the following.

Theorem 5.16 (Bernstein for maximal surfaces). (i) Let Σ be a complete maximal sur-
face without boundary in E2,n. Then Σ is a totally geodesic 2-plane.

(ii) Let Σ be a complete maximal surface in E2,n whose boundary ∂Σ is a geodesic. Then Σ is a
half-plane.

The first part of this result was proved by Ishihara in [31] for p-dimensional entire graphs
in the signature (p, q) pseudo-Euclidean space Ep,q. Here, for completeness, we give a more
direct proof for the case E2,n. The reader may wish to compare the analogous proof of Chern
[19] in the classical setting.

Proof. Observe first that G(E2,n) is isomorphic to E2,n ×Gr2,0

(

TxE2,n
)

where x is any point in
E2,n. By the proof of Proposition 3.32, the projection of the Gauû map Γ : Σ→ G(E2,n) to the
second factor of the decomposition above yields a holomorphic map φ : Σ→ Gr2,0

(

TxE2,n
)

.

Observe now that Gr2,0

(

E2,n
)

= SO0(2,n)/(SO(2) × SO(n)) is the symmetric space of
SO(2,n) and, by a theorem of Harish-Chandra (see again [20]), is biholomorphic to a
bounded domain in Cn.

We remark that Σ is conformal to C: by Gauû’ equation, the induced metric on Σ has
non-negative curvature (see Proposition 3.26): by a result of Blanc and Fiala [10] (see also
[30]), we see that Σ uniformizes as the complex plane C. By Liouville theorem φ is constant.
Hence u(Σ) is a spacelike plane.

Let us now consider the boundary case. Let us construct φ as above. Let L be a spacelike
line in E2,n and

WL B
{

P ∈ Gr2,0

(

TxE2,n
)

| L ⊂ P
}

.

Then WL is totally real, and totally geodesic: the geodesic between two 2-planes with a
common line L, consists of planes containing L. It follows that ∂Σ is totally geodesic for the
induced metric on Σ by φ, and thus the same argument applied to the doubling shows that
S is unifomized by the half-plane.

In the corresponding symmetric domain picture we can assume that the image of WL is
a contained in real vector subspace in Cn. Thus, again, the Liouville theorem allows us to
conclude that φ is constant. □

5.6. Bounds on the second fundamental form. Let {Σk}k∈N be a sequence of acausal maximal
surfaces which are complete with respect to dI. Let γk B ∂Σk be the finite boundary of Σk.
Assume that we have the following boundary conditions:

(i) The sequence {γk}k∈N is strongly positive and uniformly unpinched.
(ii) There is a positive constant A so that for all k, for all x inγk, we have d

(

TxkΣk,T
(2)
xk
γk

)

⩽

A.
(iii) The sequence {γk}k∈N has bounded geometry.
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Our main result is now:

Proposition 5.17. For every ε, there exists some constant M, such that if {xk}k∈N is a sequence with
xk ∈ Σk so that dI(x,Fr(Σk)) > ε, then the second fundamental form of Σk at xk has norm uniformly
bounded by M.

This proposition concludes the proof of the first item of Theorem 5.3.

Proof. We first recall without proof the following folkloric result (see for instance Paragraph
1.D in [27] for a proof).

Lemma 5.18 (Λ-maximum lemma). Let (X, d) be a metric space. Let η be a positive number and
assume that the ball By(η) of radius η centered at y is complete. Then there exists a constant Λ ⩾ 1
only depending on η, such that every positive locally bounded function f on X with f (y) ⩾ 1 admits
a Λ-maximum on By(η), that is a point x so that

f (x) ⩾ sup















f (y) ,
1
Λ

f (z) | ∀z such that d(x, z) <
1

Λ
√

f (x)















. (31)

We now argue by contradiction. For each k, let us define the function fk := ∥IIk∥ on Σk.
Assume that the second fundamental form of the sequence Σk is unbounded. Let then
{yk}k∈N so that yk ∈ Σk and

lim
k→∞

fk(yk) = +∞ .

For each k, we apply the Λ-Maximum Lemma 5.18 to fk and yk, taking η = 1, and thus
obtaining a Λ-maximum xk of fk in B(yk, 1). Let λk B (Λ fk(xk))−2 so in particular we have

lim
k→∞

fk(xk) = ∞ , lim
k→∞

λk = 0 , fk(z) ⩽
1√
λk

.

for all z, with dI(xk, z) ⩽ λ
1
4

k
Λ−

1
2 . We renormalize the metric of H2,n by λk ± following

paragraph 2.3.4. We shall denote, by Σ1
k , the surface Σk seen as a surface in H2,n

λk
and denote

all the geometric objects associated to Σ1
k with a superscript 1. Then by Lemma 3.20, ∥II1

k∥ ⩽ 1
for all the points z in Σ1

k so that

d1
I (z, xk) ⩽ Rk B λ

− 1
4

k
Λ−

1
2 .

Moreover ∥II1(xk)∥ = 1/Λ.
We can now apply the first item of the Global Control Proposition 5.14, to obtain that, after

extracting a subsequence, the sequence {xk,Σ1
k ,H

2,n
λk
}k∈N converges smoothly to (x0,Σ0,R2,n),

and in particular the norm of the second fundamental form of Σ0 at x0 is Λ−1.
Observe now that since {γk}k∈N has bounded geometry and is δ-unpinched, then {γ1

k}k∈N
converges to a geodesic: more precisely, for every sequence {zk}k∈N so that zk ∈ γ1

k , then
{zk, γ1

k ,H
2,n
λk
}k∈N converges to (z0, γ0,R2,n) where z0 ∈ γ0, and γ0 is a spacelike geodesic ± see

the definition A.3 and the observations thereafter. Thus the boundary of Σ0 is either empty
or a geodesic. Thus by our Bernstein Theorem, the surface Σ0 is totally geodesic. We have
obtained our contradiction.

This concludes the proof of Proposition 5.17. □
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5.7. Proof of Theorem 5.2 and 5.3 . The theorems now follows from the successive use of

• Proposition 5.17 which guarantees that under the assumptions of the theorems the
second fundamental form is uniformly bounded.

• Proposition 5.14 then ensures the conclusions of the theorems.

6. Three specific compactness theorems

Theorems 5.2 and 5.3 are quite general. They incarnate in three specific versions whose
hypotheses are easier to handle.

6.0.1. Boundary-free version. The boundary-free version is of special interest and will be
proved in Paragraph 6.3. Int the next theorem, we explain three different compactness
results that will be useful in this paper and its sequel.

Theorem 6.1 (Compactness theorem-boundary free). Let {Σk}k∈N be a sequence of connected
complete acausal maximal surfaces without boundary. For each k, let xk be a point in Σk, let Λk be the
asymptotic boundary of Σk (see definition 3.9) and Σk B ΣK ∪Λk.

(i) Assume that the sequence {TxkΣk}k∈N converges, then the sequence of pointed maximal
surfaces {(xk,Σk)}k∈N subconverges.

(ii) Assume that {Λk}k∈N converges to a semi-positive loop Λ0. Then the sequence {Σk}k∈N
subconverges smoothly as a graph on every pointed hyperbolic plane to a complete maximal
surface Σ0 whose asymptotic boundary is Λ0.

(iii) Assume that {(xk,Σk)}k∈N converges to (x0,Σ0) then any sequence {yk}k∈N so that yk belongs
to Σk subconverges to a point in Σ0 ∪ Λ0 where Λ0 is a semi-positive loop which is the
asymptotic boundary of Σ0

6.0.2. Boundary vanishing at infinity.

Theorem 6.2 (Vanishing boundary). LetΛ0 be a positive loop in ∂∞H2,n and {Σk}k∈N be a sequence
of connected complete acausal maximal surfaces.

Assume that γk = ∂Σk is compact. Assume furthermore that

(i) {γk}k∈N converges to Λ0,
(ii) the sequence {γk}k∈N is a sequence of strongly positive curves of bounded geometry which

are also uniformly unpinched,
(iii) the angular width of γk is uniformly bounded.

Then {Σk}k∈N converges as a graph on any pointed hyperbolic plane to maximal surface with asymptotic
boundary Λ0.

This will be proved in Paragraph 6.3.

6.0.3. Finite boundary version. We also have a finite boundary version that will be proved in
Paragraph 6.4.

Theorem 6.3 (Compact surfaces). Let {Σk}k∈N be a sequence of compact acausal maximal surfaces
in H2,n. Let γk be the 1-dimensional manifold γk B ∂Σk. Assume that {γk}k∈N are topological
circles that converge smoothly to a topological circle γ which is strongly positive. Then {Σk}k∈N
subconverges smoothly to a maximal surface whose boundary is γ.
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6.1. Proximality of the action of G on P(E). In the first subsection, we study the dynamics
on P(E) of a divergent sequence in G. These dynamics will be helpful when proving the
convergence of a sequence of maximal surfaces.

The main result of this section is the following:

Proposition 6.4 (Proximality). Let {g j} j∈N be an unbounded sequence in the subgroup of G fixing
a point x in H2,n. Then there exists a hyperplane H of degenerate signature (1,n) through x, such
that for any compact set C in P(E) not intersecting H, the orbit of C under {g j} j∈N accumulates to a
point in ∂∞H2,n orthogonal to x.

6.1.1. Cartan decomposition. We call a Barbot crown a semi-positive loop C in ∂∞H2,n made
of 4 segments of photons (those objects appeared in the work of Barbot in [6] under the
name crown). Denote the vertices of C by {c+, d+, d−, c−}, where the planes γ = c+ ⊕ c− and
δ = d+ ⊕ d− are non-degenerate, thus giving rise to space-like geodesics in H2,n. In particular,
γ is a subset of δ⊥. In particular, F B span{C} is a non-degenerate subspace of signature
(2, 2).

The group A which fixes {c+, d+, d−, c−} and F⊥ pointwise is a Cartan subgroup of G. By
construction every element of A0, the component of the identity of A, is characterised by its
restriction on F which, in the basis given by (c+, d+, d−, c−) is a diagonal matrix

a(λ, µ) B

























λ 0 0 0
0 µ 0 0
0 0 1/µ 0
0 0 0 1/λ

























, with λ, µ > 0 .

Given K a maximal compact subgroup of G, the corresponding Cartan decomposition of
G states that any element g in G may be written as g = k′ak where k′, k ∈ K and a = a(λ, µ)
is in A0. Note that this decomposition is not unique; however, if we impose the condition
λ ⩾ µ ⩾ 1, the pair (λ, µ) is uniquely defined. We call (log(λ), log(µ)) the Cartan projection of
g.

6.1.2. Asymptotics of the action of G. Let {g j} j∈N an unbounded sequence in G, let g j = k′ja jk j

be the Cartan decomposition of g j, and (log(λ j), log(µ j)) the Cartan projection of g j. We
distinguish two cases:

(i) The sequence {g j} j∈N is called P1-divergent when the sequence {λ j/µ j} j∈N is un-
bounded.

(ii) The sequence {g j} j∈N is called non P1-divergent when the sequence {λ j/µ j} j∈N is
bounded.

Here P1 refers to the parabolic subgroup in G stabilizing a point in ∂∞H2,n and the
terminology is inspired from [25].

Lemma 6.5 (P1-divergent sequence). Let {g j} j∈N be a P1-divergent sequence in G. Then, up to
extracting a subsequence, there exist two points p and q in ∂∞H2,n such that for any compact set C in
P(E) and not intersecting P(q⊥), the sequence {g j} j∈N converges uniformly to p on C.

Proof. Let V = c+ and W = c⊥− . The group A preserves the splitting E = V ⊕W. Moreover,
the element a j acts by λ j on V and has spectral radius µ j on W.

Let y be in P(E) but not in P(W), so that y = [(v,w)] ∈ P(V ⊕W) with v , 0. Since λ j/µ j is
unbounded, up to extracting a subsequence, we have that {a j · y} j∈N converges to [(v, 0)].
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Now since K is compact, the sequences {k′j} j∈N and {k j} j∈N subconverge to k′0 and k0

respectively. It follows that for any point y in P(E) and not in P(k−1
0 W), the sequence {g j · y} j∈N

subconverges to P(k′0V). Setting q = (k−1
0 W)⊥ and p = k′0V yields the result. □

Lemma 6.6 (Non P1-divergent sequence). Let {g j} j∈N be a Non P1-divergent sequence in G.
Then up to extracting a subsequence, there exist photons φ and ψ such that for any compact set C in
P(E) and not intersecting P(ψ⊥), the sequence {g j} j∈N converges uniformly to a point in P(φ).

Proof. Set V = c+ ⊕ d+ and W = (c− ⊕ d−)⊥. Note that V and W⊥ are isotropic planes (that is
photons) preserved by A and such that E = V ⊕W. The spectral radius of a j on V is λ j and is
less or equal to 1 on W.

Since {g j} j∈N is unbounded , there is a subsequence of {λ j} j∈N that tends to infinity.
Again, for any y in P(E) not in P(W), the sequence {a j · y} j∈N subconverges to a point in

P(V). Setting ψ B k−1
0 W⊥ and φ B k′0V yields the result. □

6.1.3. Proof of Proposition 6.4. First assume that n ⩾ 2, so the group Fix(x) = Stab(x⊥) �
SO(2,n) has rank 2. We can thus take a Barbot crown C with vertices {c+, d+, d−, c−} in x⊥,
which implies that the corresponding Cartan subgroup A is in Fix(x). We consider the
Cartan decomposition (in Fix(x)) g j = k′ja jk j, with k′j and k j as elements in a maximal compact
subgroup KF of Fix(x). Observe that KF preserves the orthogonal to x.

In the P1-divergent case, we apply Lemma 6.5, observing that the points p and q are in
P(x⊥), and the result follows with H B P(q⊥).

In the non P1-divergent case, we apply Lemma 6.6 and observe that φ andψ are contained
in x⊥. We take any point q in ψ, and then H B q⊥ so that ψ⊥ is a subset of H.

Finally, if n = 1, the stabilizer of point is isogenic SO(2, 1) and has rank 1. Thus the
sequence {g j} j∈N is P1-divergent and we apply Lemma 6.5.

6.2. A priori C0- estimates. Both Theorems 6.1 and 6.2 will follow from some a priori
estimate that we now state:

Proposition 6.7. Let {Σk}k∈N be a sequence of complete maximal surfaces and Λ0 a semi-positive
curve in ∂∞H2,n satisfying either the hypotheses of Theorem 6.1 or those of Theorem 6.2.

Then for any pointed hyperbolic plane P = (q,H), if xk in Σk is the preimage of q for the warped
projection, then the sequence {dG(TxkΣk,TqH)}k∈N is bounded.

Proof of proposition 6.7. Suppose the result is false. Then there exists a pointed hyperbolic
plane P = (q,H) so that {dG(TqH,TxkΣk)}k∈N is unbounded where π(xk) = q.

Since the time-like sphere
S C π−1

P (q),

is compact, the sequence {xk}k∈N subconverges to a point x0. The point x0 belongs to CH(Λ0)
since xk is in the convex hull of the boundary of Σk.

Let {τk}k∈N be a sequence of elements of Stab(S) converging to the identity and so that
τk(xk) = x0, and let us write Σ′′k C τk(Σk).

Let H0 be a hyperbolic plane through x0 and let gk in G be such that gk(TxkΣk) = Tx0 H0,
and let Σ′k = gk(Σk). Then by construction dG(Tx0 H0,TΣ′k) = 0. Observe now

• in the context of Theorem 6.1 the boundary of {Σ′k}k∈N is empty and all hypothesis
of Theorem 5.3 are de facto satisfied,

• in the context of Theorem 6.2, the second hypothesis of this theorem, implies the
first and third hypothesis of Theorem 5.3, moreover Proposition 3.18 and the third
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hypothesis of Theorem 6.2 gives that the second hypothesis of Theorem 5.3 is
satisfied.

Thus, in both cases, we can apply Theorem 5.3. Hence the sequence {Σ′k}k∈N subconverges
on any compact to a maximal surface Σ′0. Here we invoke the hypotheses of Theorem 6.2
and Proposition 3.18 if the conditions on the boundary in Theorem 5.3 are not vacuously
satisfied. By construction observe that gk(xk) = x0, hence that Σ′0 passes through x0.

Let finally hk = τk · g−1
k . The sequence {hk}k∈N belongs to Stab(x0), is unbounded by

hypothesis, and

hk(Σ′k) = Σ′′k .

By Proposition 6.4, there exists

• A hyperplane H+ of degenerate signature (1,n) passing through x0 such that for any
compact set C in ÅH2,n but not intersecting H+, the sequence {hk(C)}k∈N accumulates
to a point in ∂∞H2,n ∩ P(x⊥0 ).

• A hyperplane H− of degenerate signature (1,n) passing through x0 such that for any
compact set C in ÅH2,n but not intersecting H−, the sequence {h−1

k (C)}k∈N accumulates
to a point in ∂∞H2,n ∩ P(x⊥0 ).

We can now prove the proposition.

(i) Let us first treat the case of the boundary free Theorem 6.1.
By definition a semi-positive curve contains a positive triple. Thus Λ0 is not

included in H−, there exists a sequence {yk}k∈N in ∂∞Σ′′k converging to a point y∞
in Λ0 \ H−. Then zk C h−1

k (yk) converges to a point z∞ which is orthogonal to x0.
On the other hand, since yk belongs to ∂∞Σ′′k , zk belongs to ∂∞Σ′k. Thus z∞ belongs
to Λ′0. This contradicts [21, Lemma 3.7 (c)] which asserts that if x is a point in a
complete maximal surface S and y a point in the asymptotic boundary of S, then x
and y are not orthogonal.

(ii) Let us now treat the case of Theorem 6.2, where we assume the limit Λ0 is a positive
curve.

Observe that H+ does not contain any positive definite 2-plane, and thus does not
contain Σ′0. Thus, there exists zk in Σ′k converging to z0 in Σ′0 such that if yk B hk(zk),
then {yk}k∈N subconverges to a point y∞ in ∂∞H2,n ∩ P(x⊥0 ), which is in particular
orthogonal to x0.

Since yk belongs to Σ′′k , it follows that yk converges to y∞ which belongs to Λ0.
We obtain a contradiction with item (iii) of Proposition 2.15.

□

6.3. Boundary-free and boundary-vanishing case. The first item of Theorem 6.3 is a direct
consequence of the Compactness Theorem 5.3. Indeed in that case, the finite boundary γk

of Σk is empty and the first and third hypotheses of Theorem 5.3 are fulfilled. The second
hypothesis is a conequence of the hypothesis of this first item.

We now move to the proof of the second item of 6.3 In order to apply the Compactness
Theorem 5.3, we first need to find a pointed hyperbolic plane at finite distance from TΣk.
This is achieved by Proposition 6.7. This completes the proof of Theorem 6.1.

The proof of Theorem 6.2 is also immediate: we notice from Proposition 3.18 that for all x
in γk

dG(TxΣk,T
(2)
x γk) ⩽ w(γk) .
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Thus the uniform bounds on the angular width for γk guarantees that the second item in the
hypothesis of Theorem 5.3 is satisfied.

Finally, let us prove the third item in Theorem 6.3 using the notation therein. Let us
realize the surfaces Σk as graphs over a fixed pointed hyperbolic disk P and let π be the
warped projection. We separately treat two cases.

(i) In the case the sequence of points {π(yk)}k∈N stays bounded, then the sequence
{yk}k∈N subconverges since {Σk}k∈N subconverges as a graph over P

(ii) Otherwise we can assume that {π(yk)}k∈N converges to a point z∞ in the boundary
at infinity in P. Recall that Σk is included in the convex hull Ωk of Λk and that Λk is
the graph of a 1-Lipschitz map fk over the boundary at infinity of P. We may thus
extract a subsequence so that { fk}k∈N converges to some 1-Lipschitz map f∞. It then
follows that {Λk}k∈N converges in the Hausdorff topology to some semipositive loop
Λ∞ and thus that {Ωk}k∈N converges in the Hausdorff topology to the convex hull of
Λ∞. Then {yk}k∈N converges to the element f∞(z∞) in Λ∞. This concludes the proof.

6.4. Proof of the compact boundary case: Theorem 6.3. Let us prove that the hypotheses
of Theorem 5.3 are satisfied.

We first remark that the first and third boundary conditions of Theorem 5.3 are satisfied
by the compactness and strong positivity of γ. Finally the second condition is satisfied due
to proposition 3.18 and the fact that a maximal surface lies in the convex hull of its boundary
by Proposition 3.27.

7. Finite Plateau problem

In this section, we prove the following finite Plateau problem.

Theorem 7.1. If γ is a deformable strongly positive closed curve in H2,n
+ , there exists a unique

complete acausal maximal spacelike surface Σ whose total boundary is γ.

Strongly positive curves are defined in Definition 3.14, deformable ones in Definition 3.19
and total boundary in Definition 3.9. Observe also that by Proposition 3.10, such a maximal
surface is a graph.

The uniqueness of Σ has been proved in Theorem 4.1, so it only remains to prove the
existence.

7.1. Existence by the continuity method. Consider a deformation {γt}t∈[0,1] of γ (see Defini-
tion 3.19). By Lemma 2.8, we can lift those curves continuously to H2,n

+ .
LetM be the space of Ck,α complete compact spacelike surfaces whose boundary is both

smooth and strongly positive, which are graphs over a disk. Define

A = {t ∈ [0, 1] | there is a complete maximal acausal surface Σ ∈ Mwith ∂Σ = γt} .
We already know that A is non empty since it contains t = 0; we also know that A is

closed by Theorem 6.3.
Thus a connectedness argument shows that Theorem 7.1 follows from the following

proposition.

Proposition 7.2. The setA is open.

The proof is a consequence of Corollary 3.24 and standard techniques of which we now
give some details.

We need some preliminaries. Let H0 be the hyperbolic plane containing γ0, fix a point q0

in H0 and consider the pointed hyperbolic plane P0 = (q0,H0) (see Paragraph 3.1.1).
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Fix t0 inA. The image of γt0 by the warped projection on P0 is a smooth simple closed
curve bounding a domain Ω0. Similarly, for any t close to t0, we denote by Ωt the domain in
H0 bounded by the warped projection of γt. Let Σ0 be a maximal surface with boundary γt0 ,
we want to prove that for all t close to t0, the curve γt bounds a maximal surface.

The next two lemmas describe coordinates on the space of (some) surfaces, and trivialisa-
tion of the associated normal bundles. These technicalities are made necessary by the non
linear nature of H2,n

+ .

Lemma 7.3 (Charts). There exists some n-dimensional vector spaces E1, a neighbourhoodU of
(t0, 0) in I × Ck,α(Ω0,E1), a map

ϕ :U ×Ω0 −→ H2,n
+ ,

such that for any (t,G) in neighbourhood of (t0, 0) inU the map

ϕ(t,G) : x 7→ ϕ(t,G, x) ,

is a smooth parametrisation of a surface S(t,G) such that

(i) S(t,G) is a graph over Ωt,
(ii) S(t0,0) = Σ0, and

(iii) if G vanishes on the boundary, then ∂S(t,G) = γt.

Proof. After possibly taking a smaller I, let us choose an immersion

F : I ×Ω0 → H2,n
+ = H0 × Sn,

so that π(F(t0, x)) = x and for every t, the map from ∂Ω0 to H2,n given by

x 7→ F(t, x) ,

is a parametrisation of γt. Then for every t small enough, the map x → F(t, x) is a
parametrisation of a spacelike surface St whose boundary is γt.

Let us now consider a trivialisation of the bundle F∗(TSn) as I × Ω0 × E1, and finally
consider the map

ϕ(t,G, x) = expF(t,x)(G(x)) ,

where we have considered G(x) as a vector in TF(t,x)Sn using the above trivialisation. The
result follows from this construction, writing S(t,G) as the image of x 7→ ϕ(t,G, x). □

We have a similar result for the normal bundle

Lemma 7.4 (Trivialisation of the normal bundle). Similarly, there exists an n-dimensional
vector space E2, and a smooth map

Φ :U × Ck−2,α(Ω0,E2) ×Ω0 → TH2,n
+ ,

above ϕ, such that fixing (t,G) inU, the map

Nt,G : Ck−2,α(E2) ×Ω0 → TH2,n
+

is a linear isomorphism with the space of Ck−2,α-section of the normal bundle to S(t,G).

Proof. Let us consider the bundle
N→U ×Ω0 ,

whose fiber at the point ϕ(t,G, x) is the normal bundle of the surface S(t,G) at the point
ϕ(t,G, x).

We now trivialize this bundle as

U ×Ω0 × E2 ,
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and the result follows □

Proof of Proposition 7.2. Let (t,G) inU. We denote by H(t,G) the mean curvature (vector) of
the surface Σ(t,G). Using the identification in Lemma 7.4, we identify H(t,G) ± with the same
notation ± to an element of Ck−2,α(Ω0,E2). Thus we consider the map

H :
{

U −→ Ck−2,α(Ω0,E2) ,
(t,G) 7−→ H(t,G) .

LetV a neigbourhood of 0 in Ck,α
0 (Ω0,E1) so that {t0} × V is included inU. Consider the

restricted map

H0 :
{

V −→ Ck−2,α(Ω0,E2) ,
G 7−→ H(t0,G) .

Similarly to the setting of Plateau problems in Euclidean spaces, as shown in White [47,
Proposition 1.4] the map D0H0 is Fredholm of index zero (to adapt the proof of this fact to
the present setting, we need only observe that the map D0H0 is strongly elliptic at a spacelike
surface).

By Corollary 3.24, D0H0 has zero kernel and spectrum bounded away from 0, so it is
invertible with continuous inverse.

To conclude the proof, we will use an Implicit Function Theorem. Fix an extension
operator ε : Ck,α(∂Ω0,E1) → Ck,α(Ω0,E1) such that ε(δ)|∂Ω0

= δ for any δ. This gives an
isomorphism

ι :
{

(

I × Ck,α(∂Ω0,E1)
)

× Ck,α
0 (Ω0,E1) −→ I × Ck,α(Ω0,E1) ,

(t, δ,G) 7−→ (t, ε(δ) + G) .

By restricting the domain of ι to an open set O containing ((t0, 0), 0), we can further assume ι
takes value inU.

Finally define

Ψ := H ◦ ι : O −→ Ck−2,α(Ω0,E2) .

The differential of Ψ at ((t0, 0), 0) in the second factor Ð namely Ck,α
0 (Ω0,E1) Ð is just the

operator D0H0 which, as we noted, is an isomorphism. By the Implicit Function Theorem,
we obtain an application θ from a neighbourhood W of (t0, 0) in I × Ck,α(∂Ω0,E1) to a
neighborhood of 0 in Ck,α

0 (Ω0,E1) such that for G close to 0 in Ck,α
0 (Ω0,E1) and (t, f ) in W,

Ψ((t, f ),G) = 0 if and only if G = θ(t, f ) . (32)

Observe that ι((t, 0), f ) = (t, f ) and let

Σt = S(t,θ(t,0)) .

By equation (32), Σt is maximal. Observe that since θ(t, f ) belongs to Ck,α
0 (Ω0,E1), by the

item (iii) of lemma 7.3, we have

∂Σt = ∂St = γt .

Since (t, θ(t, 0)) is well defined and in U for t in some neighborhood of t0, we get that
A contains a neighbourhood of t0. The uniqueness part comes from equation (32) with
f = 0. □
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8. Asymptotic Plateau problem: Theorem A

In this section, we prove Theorem A, namely, that any semi-positive loop in ∂∞H2,n is the
total boundary of a unique complete maximal surface in H2,n.

In particular, in light of our previous results, what remains to prove is

Theorem 8.1. Any (smooth) spacelike positive loop in ∂∞H2,n is the total boundary of a complete
maximal surface in H2,n.

Once this case of Theorem A is established for smooth boundary loopsΛ, the full theorem
follows by approximation of continuous loops Λ by smooth ones, using Corollary 2.14 and
Theorem 6.1.

8.1. Exhaustion. We construct here an exhaustion of a spacelike positive loop by using
radial curves.

More precisely we prove

Proposition 8.2 (Exhaustion). Let Λ be a spacelike positive loop in ∂∞H2,n. Then, there exists a
sequence {γk}k∈N of closed curves in H2,n converging to Λ satisfying the following:

(i) For k large enough, the curve γk is strongly positive (Definition 3.14).
(ii) For k large enough, the strongly positive curve γk is deformable (Definition 3.19).

(iii) The sequence {γk}k∈N is uniformly unpinched (Definition 3.15).
(iv) The sequence {γk}k∈N has bounded geometry (Appendix A).
(v) The angular width of γk is uniformly bounded (Definition 3.17).

We first give the construction, then prove Proposition 8.2 in paragraph 8.1.2.

8.1.1. Construction of an exhaustion. Given a point p in H2,n, recall from Subsection 2.2 that
the set

T1
pH2,n =

{

v ∈ TpH2,n, q(v) = 1
}

is isometric to the signature (1,n) pseudo-sphere S1,n. We denote by gS1,n its metric. Fix a
sequence {ρk}k∈N of positive real numbers tending to infinity, and for any k, set

ϕk :
{

T1
pH2,n −→ H2,n ,

v 7−→ exp(ρkv) .

The mapϕk is a diffeomorphism onto the pseudosphere Mk B β(p, ρk) = {x ∈ H2,n, ð(p, x) =
ρk}. We have

ϕ∗kgMk = sinh(ρk)gS1,n . (33)

Taking the limit as k goes to infinity, we obtain a map

ϕ∞ : T1
pH2,n −→ ∂∞H2,n

which is a conformal diffeomorphism onto ∂∞H2,n \ P(p⊥).

Let us return to our situation. If Λ is a spacelike positive curve in ∂∞H2,n, fix a point p in
the interior of the convex hull CH(Λ). By Proposition 2.15, the set Λ is disjoint from p⊥. We
can thus define the smooth closed curves γ0 in T1

pH2,n and γk in Mk respectively by

γ0 B ϕ−1
∞ (Λ) , γk B ϕk(γ0) .

In other words, γk is the intersection of the cone over Λwith the pseudosphere Mk.
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8.1.2. Proof of proposition 8.2. We prove that there is a subsequence of the previously
constructed sequence {γk}k∈N that satisfies the conditions of the proposition.

Proof of (i). Lift each γk and Λ to the hyperplane {x ∈ E, ⟨p, x⟩ = −1}. We denote those lifts
with the same notation.

Consider a smooth spacelike loop γ in E.
We may now choose an auxiliary euclidean metric h on E and let us use the arc length

parametrisation with respect to this metric.
Define as in paragraph 3.2.2, the map

Φγ :
{

γ(3) −→ Gr3(E) ,
(x1, x2, x3) 7−→ x1 ⊕ x2 ⊕ x3 .

where Gr3(E) is the Grassmannian manifold of 3-spaces in E.
Since γ is smooth, using

q

γ and
q q

γ B ∇ q

γ

q

γ, the map Φγ extends to a continuous map, also
denoted Φγ on γ3. Observe that if q(γ) < 0, then the projection of γ in H2,n is strongly
positive if and only if Φγ takes values in Gr2,1(E).

We also observe that Φγ is Lipschitz ± with respect to the induced metric by h on Gr3(E)
with a Lipschitz constant that depends on the third derivatives of γ.

Take an arclength parametrization Ð with respect to h Ð of Λ. Then {Φγk }k∈N converges
uniformly to ΦΛ by Arzela±Ascoli.

To conclude the proof of this first item we just need to prove that ΦΛ takes values in
Gr2,1(E). Let us consider for three vectors x1, x2 and x3 in E

∆(x1, x2, x3) = det(⟨xi, x j⟩)i, j .

Observe also that the map ΦΛ does not depend on the choice of a parametrisation; we
therefore choose a parametrisation of Λ so that q(Λ(t)) = 1. Observe then that taking the
derivatives of q(Λ(t)) = 0 and q(

q

Λ(t)) = 1 yield the following equations

⟨
q

Λ(t),Λ(t)⟩ = 0 , ⟨
q q

Λ(t),
q

Λ(t)⟩ = 0 , ⟨
q q

Λ(t),Λ(t)⟩ = −1 .

To simply the notation let us write

V(t, s,u) B ΦΛ(Λ(t),Λ(t),Λ(s)) .

(i) Since Λ is postive, V(t, s,u) takes values in Gr2,1(E) for pairwise distinct (s, t,u).
(ii) For distinct s and t, V(t, t, s) is the space

Λ(t) ⊕
q

Λ(t) ⊕Λ(s) .

Thus, or s , t, the above equations give, letting a = ⟨Λ(t),Λ(s)⟩ and b = ⟨
q

Λ(t),Λ(s)⟩

∆(Λ(s),Λ(t),
q

Λ(t)) = det

















0 a b
a 0 0
b 0 1

















= −a2 < 0,

Thus V(t, t, s) is non degenerate, hence of type (2, 1) by continuity.
(iii) Finally, V(t, t, t) is the space

Λ(t) ⊕
q

Λ(t) ⊕
q q

Λ(t) .
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Letting c = ⟨Λ(t),
q q

Λ(t)⟩we have

∆(Λ(t),
q

Λ(t),
q q

Λ(t)) = det

















0 0 −1
0 1 0
−1 0 c

















= −1 < 0 .

Hence V(t, t, t) is non degenerate, hence of type (2, 1) by continuity.

We have proved that ΦΛ takes values in Gr2,1(E) and so does Φγk for k large enough by
uniform convergence. Thus γk is strongly positive for k large enough.

Proof of (ii). Lift p to p+ in H2,n
+ and let P = (p+,H) be a pointed hyperbolic plane containing

p+. This gives a decomposition ∂∞H2,n
+ = S1 × Sn in which the boundary of H has the

form S1 × {v}. Since Λ is disjoint from p⊥, it admits a connected lift Λ+ to ∂∞H2,n
+ such that

⟨p+,Λ+⟩ < 0. This implies that in the splitting S1 × Sn, the positive loop Λ+ is the graph of a
smooth contracting map f : S1 → Sn (see Proposition 2.11) whose image is contained in the
hemisphere B = {x ∈ Sn , ⟨x, v⟩ > 0}.

Consider the family of maps {ϕt}t∈[0,1] from B to itself given by

ϕt(x) =
tx + (1 − t)v
∥tx + (1 − t)v∥ .

Observe that each ϕt is smooth and contracting for t < 1. Thus, the maps ft B ϕt ◦ f are
smooth and contracting and so the projection Λt of their graph to ∂∞H2,n define an isotopy
{Λt}t∈[0,1] such that Λ1 = Λ, the loop Λ0 is the boundary of H and for each Λt is a smooth
positive loop.

Because p belongs to the convex hull of every Λt, we can apply the construction on
the proof of item (i). This gives an isotopy {γt

k}t∈[0,1] for every k. By compactness of the
isotopy {Λt}t∈[0,1], it follows that for k large enough, every γt

k is strongly positive and so γk is
deformable.

Proof of (iii). Denote respectively by dk and d0 the length along γk and γ0. Given two points
xk, yk ∈ γk, we denote by xo

k, y
o
k the points in γ0 such that xk = ϕk(xo

k) and yk = ϕk(yo
k). We thus

have by equation (33)

dk(xk, yk) = sinh(ρk) · d0(xo
k, y

o
k) . (34)

Since p lies in the convex hull of Λ, Item (v) of Proposition 2.15 implies that the geodesics
between p and xk and between p and yk are spacelike: here we use that the points xk and
yk are constructed to lie on geodesics connecting p to Λ. Since γk is strongly positive by
the first item, the geodesic between xk and yk is also spacelike and so the triple (p, xk, yk) is
positive (unless p belongs to the geodesic between xk and yk in which case the following still
holds). Hence p, xk and yk are the vertices of an isosceles hyperbolic triangle Tk. Classical
hyperbolic trigonometry implies that

sinh
(

ð(xk, yk)
2

)

= sinh(ρk)· sin
(

α(xk, yk)
2

)

, (35)

where α(xk, yk) is the angle at p in the triangle Tk. In particular, α(xk, yk) is equal to the
extrinsic distance between xo

k and yo
k in T1

pH2,n.
Consider a sequence {(xk, yk)}k∈N where xk, yk are distinct points of γk such that ð(xk, yk)

tends to 0, and let αk B α(xk, yk).
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By equation (35), lim
k→∞

ð(xk,yk)
αk sinh(ρk) = 1. Together with equation (34), we obtain

lim
k→∞

ð(xk, yk)
dk(xk, yk)

= lim
k→∞

αk

d0(xo
k
, yo

k
)
= 1 ,

where for the last equality we used the fact that γ0 is smooth, spacelike and that αk is equal
to the extrinsic distance between xo

k and yo
k.

As a result, there exists a δ > 0 such that for any pair of distinct points xk, yk on γk with
ð(xk, yk) ⩽ δ, then ð(xk,yk)

dk(xk ,yk) >
1
2 . So the sequence {γk}k∈N is uniformly unpinched.

Proof of (iv). In this portion of the argument, we will use some definitions and results from
Appendix A. Now, the curve γk ⊂Mk is obtained from γ0 ⊂ TpH2,n

� S1,n by rescaling the
metric by a factor sinh(ρk). In particular, the curvature of Mk and γk converges uniformly to
0, and so for any sequence {xk}k∈N with xk ∈ γk, the sequence {xk, γk,Mk}k∈N converges in the
sense of Appendix A to {x,∆,E1,n}k∈N where ∆ is a spacelike line in the pseudo-Euclidean
space E1,n and x ∈ ∆. In other words, the sequence {γk,Mk}k∈N has bounded geometry.

On the other hand, the sequence {Mk,H2,n}k∈N has bounded geometry since, up to shifting
the center of the pseudosphere, {Mk}k∈N converges to an horosphere (see Subsection 2.2). It
follows from Lemma A.4 that {γo

k,H
2,n}k∈N has bounded geometry when γk is equipped (see

Definition A.1) with the normal framing γo
k given by Pk(x) B Txγk ⊕NxMk, where NxMk is

the normal to Mk at x. The bounded geometry of {γk,H2,n}k∈N, when γk is equipped with its
canonical normal framing given by T(2)γk, will follow from a lemma.

Lemma 8.3. Using the same notation as above, the sequence dG
(

T(2)γk,Pk

)

converges uniformly to
0.

Proof. Parametrize γk by arc length and define
q q

γk B ∇ q

γk

q

γk. Then by definition, T(2)γk =

span{ qγk,
q q

γk}.
For a point x in γk, let nk(x) be the unit vector normal to Mk pointing outward, so

Pk = span{ qγk,nk}. Since the planes Pk(x) and T
(2)
x γk intersect along Txγk, we have

dG(T(2)
x γk,Pk(x)) = dHn (nk(x),

q q

γk(x)) ,

where nk(x) and
q q

γk(x) are considered as elements in the space of positive definite lines in the
signature (1,n) space (x ⊕ Txγk)⊥, which is identified with Hn. In particular,

cosh
(

dG(T(2)
x γk,Pk(x))

)

=
⟨nk(x),

q q

γk(x)⟩
∥ q qγk(x)∥

.

Let us write
q q

γk C µk + νk where µk belongs to Pk(x) and νk to P⊥k (x). So

cosh
(

dG(T(2)
x γk,Pk(x))

)

=
µk

√

µ2
k
+ ν2

k

.

By definition, κk B gMk (νk, νk) is the geodesic curvature of γk seen as a curve in Mk.
Similarly, µknk = IIk(

q

γk,
q

γk) where IIk is the second fundamental form of Mk. Since Mk is
umbilical with induced curvature sinh−2(ρk), we have

IIk(X,Y) = coth(ρk)gMk (X,Y)nk.

Now, the curve ϕ−1
k (γk) = γ0 is fixed independently of k. Moreover, by equation (33),

the induced arclength parametrization of this curve grows without bound in k, and so the



MAXIMAL SURFACES IN H2,n 53

geodesic curvature κk of γk in Mk converges uniformly to zero. The result follows from the
fact that {µk}k∈N converges to 1. □

Proof of (v). For each k, let xk be a point in γk such that w(γk) = diam(πxk (γk)) where
πxk : E→ (xk ⊕ Txkγk)⊥ is the orthogonal projection (see Definition 3.17). We want to prove
that the limit of diam(πxk (γk)), when k tends to infinity, is finite.

Denote by Hk the hyperbolic plane containing p and Txkγk. Since there is a subsequence
of {xk}k∈N that converges to a point x∞ ∈ Λ, the sequence of pointed hyperbolic planes
Pk = (p,Hk) subconverges to P∞ = (p,H∞) where H∞ is the hyperbolic plane containing p
and Tx∞Λ, here using the smoothness of Λ.

Fix a spacelike line L ⊂ TpH∞ and take gk ∈ G such that gk(Txkγk) = L, and gk(Hk) = H∞.
Denote by γ′k = gk(γk), M′

k = g(Mk) and p′k = gk(p). From Subsection 2.2, the sequence {M′
k}k∈N

converges to the horosphereH tangent to p∞ B lim p′k and passing through p. Denote by
σ = σ ∪ {p∞} the closure in ÅH2,n of the horocycle σ = H ∩H∞.

Lemma 8.4. Using the same notation as above, for any sequence {yk}k∈N with yk ∈ γk, there is a
subsequence of {gk(yk)}k∈N converging to a point in σ.

Proof. Let {yk}k∈N be such a sequence. Up to extracting a subsequence, we can assume one
of the following:

(i) For any k we have yk = xk ,
(ii) For any k, we have yk , xk but lim yk = x∞ ,

(iii) The limit of {yk}k∈N is different from x∞ .
We will prove that in any case, the sequence {gk(yk)}k∈N subconverges to a point in σ.

Case (i) is obvious since gk(yk) = p ∈ σ.

For case (ii), observe that the hyperbolic plane Vk containing p, xk and yk converges to
the hyperbolic plane H∞ containing p and Tx∞Λ. In fact, if xo

k and yo
k are the points in

γ0 ⊂ T1H2,n such that xk = ϕk(xo
k) and yk = ϕk(yo

k), then Vk is also the hyperbolic plane such
that TpVk contains xo

k and yo
k. By the smoothness of γ0, the sequence of lines through xo

k and
yo

k converges to Txo
∞γ0, where ϕ∞(x0

∞) = x∞.
In particular, gk(yk) belongs to gk(Vk)∩ gk(Mk) and so accumulates to a point in the closure

of the intersectionH ∩H∞, that is in σ.

For case (iii), we will use a proximality argument in the spirit of Section 6.1. For each k,
write gk = g′k · hk where hk(p,Hk) = (p,H∞) is such that hk converges to the identity. Then the
sequence g′k is a sequence in Stab(H∞) � Isom(H2) which by construction satisfies:

lim
k→∞

g′k(p) = p∞ , lim
k→∞

(g′k)−1(p) = x∞ .

The sequence {gk}k∈N, is such that it approximates the sequence {g′k}k∈N which have distinct
fixed points on H∞, is thus P1-divergent and by Lemma 6.5 maps any point in P(E) that are
not in P(x⊥∞) to a sequence converging to p∞. The result then follows from the fact that Λ is
positive, so P(x⊥∞) ∩Λ = x∞. □

Now the proof of item (v) follows. For each k, let yk and zk in γk be such that w(γk) =
diam(πxk (γk)) = dHn (πxk (yk), πxk (zk)). Since the angular width is invariant under the action
of G, we have w(γk) = diam(πp(γ′k)) where πp : E → L⊥. By the previous lemma, the
sequence {gk(yk)} and {gk(zk)} subconverge to a point in σ. Since πp(σ) is a point, the sequence
{w(γk)}k∈N subconverges to 0. □
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8.2. Proof of Theorem 8.1. Consider {γk}k∈N the sequence constructed in Proposition 8.2.
By Theorem 7.1, there exists a sequence {Σk}k∈N of complete acausal maximal surfaces with
∂Σk = γk.

Since {γk}k∈N satisfies the hypothesis of Theorem 6.2, we obtain a maximal surface whose
asymptotic boundary is Λ.

Appendix A. Bounded geometry in the pseudo-Riemannian setting

A.1. Convergence of Riemannian and pseudo-Riemannian manifolds.

A.1.1. The Riemannian setting. We say that a sequence {(xk,Mk)}k∈N of pointed Riemannian
manifolds converges Cn to a pointed Riemannian manifold (x,M) if for every compact set K
in M, there exists an integer k0 such that, for any k > k0 there is a an open set U containing K
in M, a diffeomorphism ϕk from U onto an open set in Mk, so that when k tends to infinity,
we have that {ϕ−1

k (xk)}k∈N converges to x and the metric ϕ∗kgk converge Cn to g in U, where
gk and g are respectively the metrics on Mk and M.

Similarly, given a sequence {(xk,Nk,Mk)}k∈N such that Nk is a submanifold of Mk and
xk ∈ Nk, we say that {(xk,Nk,Mk)}k∈N converges Cn to (x,N,M) if for every compact set K
there exists an integer k0 and an open set U containg K, such that for k > k0, there is a
diffeomorphism ϕk from the U to an open set Uk in Mk containing xk, so that

(i) ϕk(N ∩U) = Nk ∩Uk,
(ii) {ϕ−1

k (xk)}k∈N converges to x,
(iii) when k tends to infinity, the sequence {ϕ∗kgk}k∈N of metrics converge Cn to g in U.

We say an estimate only depends on the local geometry of a Riemannian manifold (M, x)
if such an estimate holds uniformly for any sequence of pointed Riemaniann manifolds
converging to (M, x).

A.1.2. The pseudo-Riemannian setting. The definitions in this setting require additional data.
Let M be a pseudo-Riemannian manifold of signature (p, q), and N a submanifold of

non-degenerate signature (p′, q′).

Definition A.1. A normal framing of N is a smooth choice, for every x in N, of a positive
definite (p − p′)-plane of the normal space (TxN)⊥. We will denote No the submanifold N
together with a normal framing.

Remark that if N reduces to a point x, then a normal framing xo is the choice of a positive
definite p-plane of TxM.

We denote by Gp(M) the Grassmannian of positive definite p-dimensional subspaces of M.
By definition, Gp(M) is a bundle over M whose fiber over x is the Grassmannian Grp,0(TxM)
of positive definite p-planes in TxM (thus the fiber is identified the symmetric space of
SO(p, q)). The tangent space of Gp(M) at (x,P) splits as

T(x,P)Gp(M) = TxM ⊕Hom(P,P⊥) = P ⊕ P⊥ ⊕Hom(P,P⊥) .

The Riemannian metric g on Gp(M) is given by

g(x,P) = gx |P ⊕ (−gx |P⊥ ) ⊕ hP ,

where hP is the Killing metric on the symmetric space Grp,0(TxM) evaluated at P and g the
metric on M.

A normal framing of a submanifold N gives an embedding of Gp′(N) into Gp(M) whose
image we denote by Go

p′(N). Given a triple (x,N,M) where N is a submanifold of M with
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non-degenerate induced metric and x belongs to N, we say that the normal framing (xo,No,M)
is compatible if the normal framing of x contains the normal framing of N at x.

We can thus define the notion of convergence of framed pseudo-Riemannian submanifolds
by using the Riemannian metric on the Grassmannian bundle:

Definition A.2. We say that the sequence {(xo
k,N

o
k ,Mk)}k∈N, where xo

k is a compatibly normally
framed point of Nk, and No

k is a normally framed submanifold of (non-degenerate) signature
(p′, q′) of the pseudo-Riemanniann manifold Mk of signature (p, q) converges Cn, if the
corresponding sequence of pointed Riemannian submanifolds {xo

p,Go
p′(Nk),Gp′(Mk)}k∈N

converges Cn.

Note that this notion of convergence highly depends on the choice of normal framing.
This choice of normal framing of N is either vacuous or natural in two important cases that
are used in this paper: in the case that N is a spacelike surface in a pseudo-Riemannian
manifolds of signature (2,n), then the framing is trivial, and it is similarly trivial for spacelike
curves equipped with a (spacelike) osculating plane. Accordingly we will not explicitly
describe the normal framing in our definitions below that describe the convergence in these
cases.

Recall that strongly positive curves in H2,n is in particular 2-spacelike: that is the osculating
plane T(2)γ = span{ qγ,∇ q

γ

q

γ} is spacelike everywhere.

Definition A.3 (Spacelike surfaces and strongly positive curves). Let {Mk}k∈N be a sequence
of pseudo-Riemannian manifolds of signature (2,n),

(i) Let Nk be spacelike surfaces in Mk. In that case, we say that
{xk,Nk,Mk}k∈N converges to {x∞,N∞,M∞}

if {Txk Nk,TNk,G(Mk)}p∈N converges to {Tx∞N∞,TN∞,G(M∞)}.
(ii) Let γk be a spacelike curve in Mk whose osculating plane T(2)γk is spacelike

everywhere. In that case again we say that
{xk, γk,Mk}k∈N converges to {x, γ,M}

if
{

T
(2)
xk
γk,T(2)γk,G(Mk)

}

k∈N converges to
{

T
(2)
x γ,T

(2)γ,G(M)
}

.

Observe that the limits are always spacelike. More precisely in the first item, since by
definition Tx∞N∞ is in G(M∞), Tx∞N∞ is spacelike. The same holds for the curves in the
second item: by the same argument T2

xγ is spacelike, hence Tγ is spacelike.
As for the Riemannian setting, we can use this notion of convergence to define the notion

of bounded geometry.

A.2. Bounded Geometry. A sequence of Riemaniann manifolds {Mk}k∈N has Cn bounded
geometry if for every sequence of points {xk}k∈N with xk ∈ Mk, then every subsequence of
{(Mk, xk)}k∈N subconverges Cn to a pointed Riemannian manifold.

A sequence {(Nk,Mk)}k∈N where Mk is a Riemannian manifold and Nk a submanifold
in Mk has Cn bounded geometry if for every sequence of points {xk}k∈N with xk ∈ Nk, every
subsequence of {(xk,Nk,Mk)}k∈N subconverges Cn.

In the pseudo-Riemannian setting, we say a sequence {Mk}k∈N of pseudo-Riemannian
manifolds has Cn bounded geometry if the sequence of Riemannian manifolds {Gp(Mk)}k∈N
has bounded geometry.

For pseudo-Riemannian submanifolds, we use a normal framing: a sequence {(No
k ,Mk)}k∈N

where Nk is a submanifold of Mk with normal framing No
k , has Cn bounded geometry if for

any sequence {xo
k}k∈N where xk is a point of Nk with compatible normal framing xo

k, every
subsequence of {xo

k,N
o
k ,Mk}k∈N subconverges Cn.
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Appendix C. Holomorphic curves and Gromov’s Schwarz lemma

We recall the basis of the theory of holomorphic curves and some results from [26] for the
convergence portion and [32] for the part concerning the area. We give an improvement of
these results as well as considerations of when a limit of immersions is an immersion.

C.1. Preliminaries. Recall that an almost-complex structure on a even dimensional manifold
M is a section J of the bundle of endomorphisms of TM such that J2 = − Id. When the real
dimension of M is equal to 2, an almost complex structure is always integrable (that is,
comes from an holomorphic atlas), and we call such a manifold M a Riemann surface.

Definition C.1. Given an almost complex manifold (M, J), a holomorphic curve is a smooth
map f : (X, j)→ (M, J) where (X, j) is a Riemann surface, and satisfying T f ◦ j = J ◦ T f .

In this paper, we will be mostly interested in the case where X = D defined by

D = {z ∈ C, |z| < 1} .
The frontier of D is

Fr(D) = D \D = {z ∈ C, |z| = 1} .
Definition C.2. A totally real submanifold of an almost-complex manifold (M, J) (possibly
with boundary) is a submanifold W ⊂M of half the dimension and such that for any x in W,
we have TxM = TxW ⊕ J(TxW).

Our main focus is the semi-disk S defined by

S = {z ∈ D, ℜ(z) ⩾ 0} .
We denote by

∂S = S \ int(S) = {z ∈ D, ℜ(z) = 0} ,
Fr(S) = S \ S = {z ∈ Fr(D), ℜ(z) ⩾ 0}.

In this case, ∂S is a totally real submanifold of S.

Definition C.3. A holomorphic curve with boundary in an almost complex manifold M with
totally real submanifold W is a holomorphic curve f from S to M mapping ∂S to W.

Definition C.4. Let (M, J) be a almost complex manifold equipped with a Riemannian metric
⟨. | .⟩. An open set U in M is K-calibrated if there exists a 1-form β so that

∀u ∈ TU, β(u)2
⩽ K2 · ⟨u | u⟩ , ⟨u | u⟩ ⩽ K · dβ(u, Ju) . (36)

If W is a totally real, totally geodesic submanifold, we furthermore assume that β vanishes
along W ∩U.

Then we have the following lemma

Lemma C.5 (Local calibration). There exists positive constants ε and K, only depending on the
geometry of (M, x) so that the ball B of radius ε in M of center x is K-calibrated.

We sketch a proof since the extension incorporating the totally real submanifold W is not
in the original paper [40].

Proof. Let exp : TxM→M be the exponential map. Observe that T0 exp is holomorphic. We
choose β = exp∗ λ, where λ ∈ Ω1(TxM) is defined by λu(v) = ⟨u | Jv⟩. Since the preimage by
exp of W is TxW since W is totally geodesic, and TxW is a totally real submanifold (actually
linear) of TxM since W is, it follows that λ vanishes on TxW and thus β vanishes on W. The
result follows. □
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Remark C.6. The notion of holomorphic curve can be extended to the following case. The
(not necessarily even-dimensional) manifold M carries a distribution D ⊂ TM equipped
with an almost complex structure J : D → D. We then ask that a holomorphic curve is a
map f such that T f takes values inD and intertwines the almost complex structures.

In this framework, a totally real submanifold is a submanifold W of M of half the
dimension of the distributionD and such that for any x in W we haveDx = TxW ⊕ J(TxW).

All of the results described in the sequel canonically extend to this case.

C.2. Schwarz lemmas and convergence of holomorphic curves. In this subsection, we state
and sketch the proofs of two of our main goals for this appendix. After a few definitions, we
state the results, then collect some preliminaries before concluding with a description of the
arguments.

To begin, let f be a map from D or S to M. If Z is a subset of Fr(D) or respectively Fr(S),
we denote by f (Z) the accumulation set of sequences { f (yk)}k∈N where {yk}k∈N is a sequence
converging to a point in Z.

Let {Mk}k∈N be a sequence of complete almost complex Riemannian manifolds with
bounded geometry, let {xk}k∈N be a sequence of points. We assume that xk ∈ Mk and that
{(xk,Mk)}k∈N converges Cp,α as almost complex Riemannian manifolds.

Theorem C.7 (Free boundary). Let {Uk}k∈N be a sequence, where Uk is an open set in Mk,
uniformly calibrated and with bounded geometry. Let { fk}k∈N be a sequence of holomorphic maps
from D with values in Uk. Then { fk}k∈N subconverges Cp,α on every compact set to f0. Assume
furthermore that

sup
{

area( fk(D)), k ∈N}

< ∞ . (37)

Then for every non-empty open subset Z of Fr(D),

f0(Z) ⊂ lim
k→∞

fk(Z) .

Assume now that Wk is a totally real submanifold and totally geodesic submanifold of
Mk containing xk and that {(xk,Wk,Mk)}k∈N converges Cp,α to {(x0,W0,M0)}, with W0 totally
real. In the boundary case, the following is an extension of [33].

Theorem C.8 (Boundary). Let {Uk}k∈N be a sequence of open sets in Mk, uniformly calibrated and
with bounded geometry. Let { fk}k∈N be a sequence of holomorphic maps from S with values in Uk.
Then { fk}k∈N subconverges Cp,α on every compact set to f0. Assume furthermore that

sup
{

area( fk(S)), k ∈N}

< ∞ . (38)

Then for every non-empty open subset Z of Fr(S), we have

f0(Z) ⊂ lim
k→∞

fp(Z) .

Both these theorems represent an improvement over the corresponding earlier results
which only considered the case Z = Fr(D) or Z = ∂S.

C.2.1. Quadrangles and extremal length. We prepare for the proof by recalling a classical
construction.

A quadrangle Q B (U, x1, x2, x2, x3) in C equipped with the complex structure J is a
topological disk U with four marked points (x1, x2, x3, x4) in cyclic order in ∂U. The a-
rectangle is the rectangle Ra B (R, a, a + i, i, 0) of vertices (0, a, a + i, i). Two quadrangles
(U, x1, x2, x2, x3) and (V, y1, y2, y2, y3) are conformally equivalent if we can find a conformal
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mapping Φ sending U to V so that ϕ(xi) = yi. Every quadrangle is conformally equivalent
to a unique a-rectangle.

Let Q be a quadrangle and ΓQ be the set of arcs in U joining a point in the interval between
x1 to x2 on Fr(U) to a point in the interval between x3 to x4 on Fr(U). The extremal length of Q
is L(Q) where for a metric g

Lg(Q) =
inf

{

length2
g(γ) | γ ∈ ΓQ

}

areag(Q)
(39)

L(Q) = sup
{

Lg(Q) | g conformal to J
}

, (40)

where lengthg and areag denotes respectively the length and area with respect to g. By
construction L(Q) is a conformal invariant. A classical result asserts

Proposition C.9. We have L(Ra) = a.

Let Z0 be the standard quarter in S1, that is the subarc of S1 between 1 and i. Let Q0 be the
standard sector

Q0 B {z ∈ D | ℜ(z) ⩾ 0 , ℑ(z) ⩾ 0 , |z| < 1} ,
so that Fr(Q0) = Z0.

Let ℓ(R) be the Euclidean distance from 0 to a point x in D at hyperbolic distance R from 0.
(Of course, it is classical that ℓ(R) = tanh(R), but the precise formula is not important for our
discussion.) We define the R-corner quadrangle to be the quadrangle QR = (U, iℓ(R), ℓ(R), 1, i)
where U = {z ∈ C | ℓ(R) < |z| < 1,ℜ(z) > 0,ℑ(z) > 0}.

One then checks, for example by applying the conformal map z 7→ log z to the domain
QR, that

Proposition C.10. The map K : R→ L(QR), is a decreasing homeomorphism from (0,∞) to (0,∞).

The following lemma is a consequence of the previous discussion and is used in the
sequel.

Lemma C.11. For any positive A and ε, there exists a positive constant ρ, with the following
property. Assume f is a holomorphic map from Q0 to an almost complex manifold M. Assume
that area( f (Q0)) ⩽ A and ∥T f ∥ is bounded by ε

ρ on the ball of radius ρ (in Q0) (with respect to the
hyperbolic metric on D). Then d( f (0), f (Z0)) ⩽ 2ε.

Proof. We choose ρ so that A · L(Qρ) ⩽ ε2. Let g be the induced metric by f from M. Observe
that for any curve γ in ΓQρ ,

lengthg(γ) ⩾ d( f (γ(0), f (γ(1)) ⩾ d( f (0), f (Z0)) − d( f (0), f (γ(0))

⩾ d( f (0), f (Z0)) − ε ,
where the last inequality uses the fact that ∥T f ∥ is bounded by ε

ρ on B(0, ρ). Thus

ε2
⩾ L(Qρ)· areag(Qρ) ⩾ (d( f (0), f (Z0)) − ε)2 .

The result follows. □

C.2.2. Sketch of the proof of the first part of Theorem C.7. Without the hypothesis on the area,
the subconvergence is consequence of the celebrated Gromov’s Schwarz Lemma [26, 40]
which states that the derivatives of fk are uniformly bounded. We sketch the argument,
since we are going to sketch a modification of it. We need three preliminary lemmas. In the
first two, M is a manifold equipped with an almost complex structure J and a compatible
metric ⟨. | .⟩ (that is a metric for which J is an isometry). First we have (see [40])
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Lemma C.12 (Weingarten lemma). Let Σ be a holomorphic curve in M, and let x ∈ Σ. Then there
is a bound K only depending on the geometry of (M, x) so that the curvature of Σ at x is less than K.

Our second lemma from [40] is

Lemma C.13 (Gromov’s Schwarz lemma). Let g be a conformal metric on the disk. Let g0 be
the hyperbolic metric and h the conformal factor so that g = hg0 Assume that the curvature of g is
bounded from above by K, and that g satisfies a linear isoperimetric inequality, that is for any disk A
embedded in D, we have

areag(A) ⩽ K lengthg(Fr(A)) . (41)

Then there exists a bound K0 only depending on K so that h ⩽ K0.

Combining these two lemmas gives the celebrated

Lemma C.14 (Gromov’s Holomorphic Schwarz lemma). Let K1 be a positive constant. There
exists a positive constant K0, only depending on the local geometry of (M, x) and K1 so that if φ is a
holomorphic map from the hyperbolic disk D to a K1-calibrated open set with bounded curvature then

∥Tφ∥ ⩽ K0 .

Proof. By replacing φ by the graph map φ′ = (φ, Id) : D→M ×D we may assume that φ is
an immersion.

We consider the induced metric g by φ. By the Weingarten Lemma C.12 the curvature of
g is bounded from above. From the definition of calibration, the metric g satisfies a linear
isoperimetric inequality:

area(A) ⩽ K1

∫

A
dβ = K1

∫

∂A
β ⩽ K2

1 length(Fr(A)) .

Thus the result follows by Gromov’s Schwarz lemma C.13. □

The strengthening of the first conclusion of Theorem C.7 with the hypothesis on the area
is an extension of [32, Lemme 6.8]. This will be proved in the last paragraph of this section.

C.2.3. Sketch of the proof of the first part of Theorem C.8. We proceed as in [33, Lemme 9.1]. We
have

Proposition C.15. Let φ be a holomorphic immersion from S to a Riemannian almost complex
manifold M equipped with a compatible metric, so that f (∂S) lies in a totally real totally geodesic
submanifold W. Then ∂S is totally geodesic for the metric induced by φ.

Proof. Let J be the complex structure of M and ⟨. | .⟩ the compatible metric. Let γ be an arc
length parametrisation of f (∂S). The geodesic curvature of γ is ⟨∇ q

γ

q

γ | J q

γ⟩. Since γ = f (∂S) is
embedded in a totally geodesic submanifold W, ∇ q

γ

q

γ and
q

γ lie in TW. Since W is totally real,
for all u and v in TW, we have ⟨u | Jv⟩ = 0, and the result now follows. □

Combining this lemma with the previous arguments, we obtain

Lemma C.16 (Holomorphic Schwarz lemma with boundary). There exists positive constants ε
and K0, only depending on the geometry of (M, x) so that if φ is a holomorphic map from the semi-disk
S into the ball of radius ε centred at x, then

∥Tφ∥ ⩽ K0 .
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Proof. After replacingφ by the graph mapφ′ = (φ, Id) from S to M×D and W by W′ =W×∂S,
we may assume that φ is an immersion.

Let g0 be the hyperbolic metric on S and g = hg0 the metric induced by φ. By the
Weingarten Lemma, the curvature of g is bounded from above. Since ∂S is totally geodesic
for g, we can double g to obtain a C0 metric g2 on D. By the doubling argument and since
∂S is totally geodesic, the curvature of g2 is also bounded from below.

To conclude the proof using Gromov’s Schwarz Lemma one needs to show that g2 satisfies
a linear isoperimetric inequality. Let us use the form β obtained from the Local Calibration
Lemma C.5. Let A be a disk in D, write A = A0 ∪ A1, where A1 = A ∩ S. Then by Stokes
formula

area(A1) ⩽ K

∫

A1

dβ = K

∫

Fr(A1)
β = K

∫

Fr(A)∩A1

β ⩽ K2 length(Fr(A)) ,

where the first equality follows from the fact that β = 0 on W, hence on ∂S. Repeating the
argument for A0 leads the desired linear isoperimetric inequality for g2. □

C.2.4. Improving regularity. Gromov’s Schwarz Lemma gives uniform C1-bounds on the
sequence { fk}k∈N. We need to improve this and proves the Cp,α convergence to obtain the
first part of Theorems C.7 and Theorem C.8.

This is done in two steps. As a preliminary, we choose Cp,α local coordinates on Mk so that
Mk is identified with Cn and Wk with Rn. Thanks to our C1 bounds, we reduce to the case
(by possibly shrinking the source) to bounded maps fk with values in Cn. The holomorphic
curve condition then reduces to the equation

∂y fk = Jk( fk)∂x fk , (42)

where x and y are the coordinates on D or S and {Jk}k∈N converges in Cp−1,α. When present,
the boundary condition is

fk(∂S) ⊂ Rn .

The two steps of our regularity improvement are as follows.

Uniform C2-bounds: we consider the 1-jet map gk = ( fk, ∂y fk) with values in C2n satisfying the
boundary condition

gk(∂S) ⊂ R2n .

A derivation of (42) gives that gk is holomorphic for a certain complex structure J′k on C2n.
Indeed, erasing for a moment the index k to have readable formulas, we claim:

∂yg = J′(g)∂xg ,

where for (s, t) in Cn × Cn,

J′(s, t)(u, v) = (J(s)u, J(s)v + A(s, t)(u)) ,

where A(s, t) B (Ds J)(t) is the derivative of J at s in the direction of t. Since A(s, t) anticommutes
with J(s), we see that

J′2(u, v) = (−u,−v + JA(u) + AJ(u)) = −(u, v) .

Gromov’s holomorphic Schwarz Lemma then gives a uniform C1-bound on gk, hence the
desired C2-bound on fk.

Cp,α-convergence: Now that we have C2 bounds we can return to the equation (42) with the
information that fk is in C2 and in particular in C1,α, knowing that Jk converges in Cp−1,α.

The proposition is then
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Proposition C.17. Assume that u is in C1,α and satisfies the equation

∂yu = J(u)∂xu , (43)

with possibly the boundary condition u(∂S) ⊂ Rn, where J is in C1,α. Then u is in C2,α. More
precisely, for every positive constant A, there exist positive constants C and ε so that if the C1,α norm
of u is less than A, then the C2,α norm of u is less than C on a ball of radius ε.

Proof. We reproduce and adapt the proof of Theorem A.2.1 in [1] in two ways, first by using
C1,α bounds rather than Wk,p Sobolev norms, and second in assuming lower regularity of J.

In this proof, the quantities Ci will be positive constants. We may as well assume that
u(0) = 0 and J(0) = i and restate equation (43) as

2i Å∂u = −i(i − J(u))∂xu , (44)

We use the difference quotient technique and introduce for small h

uh(x, y) B
1
h

(u(x, y + h) − u(x, y)) =
∫ 1

0
∂yu(x, y + th) dt . (45)

Moreover

0 = ∂yuh − (J(u)∂xu)h

= ∂yuh − J(u)∂xuh − J(u)h∂xu(x, y + h)
= 2i∂uh + i(J(u) − i)∂yuh − J(u)h∂xu(x, y + h) . (46)

Let also β be a bell function in R with β[0, 1/2] = 1, β[1,+∞[= 0, β′(s) ⩽ 0. We define

βε(x, y) = β
(

x2 + y2

ε

)

.

We now obtain, from (46) and the Leibniz rule βε∂y(uh) = ∂y(βεuh) − ∂y(βε)uh,

2i∂(βεuh) = −i(J(u) − i)∂y(βεuh) + i(J(u) − i)(∂yβε)uh

+ βε J(u)h∂yu(x, y + h) + (∂βε)uh) . (47)

Let us denote by ∥v∥p,α,ε the Cp,α norm on the ball of radius ε while using the shorthand
∥v∥p,α = ∥v∥p,α,1.

Let us makes a series of estimates
(i) In the equation above, let us consider the term

B = 2i(∂βε)uh + i(J(u) − i)(∂yβε)uh.

We have a constant Cε depending only on ε and β, so that

∥B∥0,α ⩽ Cε∥uh∥0,α,ε . (48)

(ii) Restricting ε so that ε + h < 1, we have

∥(i − J(u))(∂yβεu
h)∥0,α,ε ⩽ C3∥u∥0,α,ε · ∥βεuh∥1,α . (49)

(iii) Since J is in C1,α and in particular uniformly Lipschitz, we have a uniform constant
C0 so that

|J(u)h| ⩽ C0|uh| .
Thus

∥βε J(u)h∂yu(x + h, y)∥0,α,ε ⩽ C1∥u∥1,α,ε · ∥uh∥0,α,ε . (50)
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Combining the estimates (48), (49) and (50) with our original equation (47), we obtain
that

∥∂(βεuh)∥0,α,ε ⩽ Cε∥uh∥0,α + C1∥u∥1,α,ε∥uh∥0,α,ε
+C3∥u∥0,α,ε · ∥uh∥1,α + C1∥u∥1,α,ε · ∥βεuh∥0,α . (51)

Recall also that from the Cauchy±Pompeiu formula (see [4, Theorem 4.7.1] for a model)
we have the estimates

∥βεuh∥1,α ⩽ C4

∥

∥

∥

Å∂(βεuh)
∥

∥

∥

0,α
.

We now fix ε, so that C3C4∥u∥0,α,ε ⩽ 1
2 . Then for some constant D = Dε depending on u and

independent of h, we find

1
2
∥uh∥1,α, ε2 ⩽

1
2
∥βεuh∥1,α ⩽ D∥uh∥0,α .

Observe that the same methods also yield that for all η < α we have

1
2
∥uh∥1,η, ε2 ⩽ D∥uh∥0,η .

Let us write ψh
B uh − ∂yu and M = ∥u∥1,α. Using the integral form for uh in equation (45),

we observe that ψh satisfies ∥ψh∥0,α ⩽ 2M and |ψh(x)| ⩽ 2Mhα.
This implies that for all η < α, we have

|ψh(z) − ψh(w)| ⩽ 2M·min{hα, |z − w|α} ⩽ 4M · hα−η|z − w|η .
Thus ∥ψh∥0,η ⩽ 4Mhα−η. Thus uh converges to ∂yu in C0,η for all η < α, and then

1
2
∥∂yu∥1,η, ε2 ⩽ D∥∂yu∥0,η .

Then taking the limit when η goes to α, and using that ∂yu ∈ C0,α, we find

1
2
∥∂yu∥1,α, ε2 ⩽ D∥∂yu∥0,α .

Thus u is in C2,α in the ball of radius ε/2. □

Bootstrap and regularity: We can now conclude the argument by showing that if {uk}k∈N is a
sequence of solutions in Cp+1,α satisfying

∂yuk = Jk(uk)∂x(uk) ,

where
• {Jk}k∈N converges in Cp,α to J0 for which Rn is totally real,
• {uk}k∈N has uniform C1-bounds and converges C0 to u0,

then {uk}k∈N converges in Cp+1,α.
This is obtained via the bootstrap described in the first step, or equivalently as in [1,

Theorem A.2.1] which immediately leads, using proposition C.17 to

Proposition C.18. Assume that u is in Ck,α satisfies the equation (42)

∂yu = J(u)∂xu ,

with possibly the boundary condition u(∂S) ⊂ Rn, where J is in Cp,α, then u is in Cp+1,α. More
precisely, for every positive constant A, there exist positive constants C and ε so that if the Cp,α norm
of u is less than A, then the Ck+1,α norm of u is less than C on a ball of radius ε.
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C.2.5. Using the hypothesis on the area. We now show the second part of Theorem C.7 and
Theorem C.8.

Proof. Using the Schwarz Lemma, we can extract in both cases a subsequence so that { fk}k∈N
subconverges to f0.

Observe that we have a constant A so that for all subsets U of D, or S, then

area( f0(U)) ⩽ A . (52)

Let {yk}k∈N be a sequence in D or S converging to a point y0 in an interval Z in Fr(D).
We want to show that there exists a sequence { fnk }k∈N for which we have

lim
k→∞

(d( f0(yk), fnk (Z)) = 0 .

From the bound on the area of f0(D), we have that for all R

lim
k→∞

(area( f0(B(yk,R))) = 0 .

where B(yk,R) is the ball of radius R in the hyperbolic metric.
Using the fact that { fk}k∈N converges on every compact to f0, we can choose a subsequence

{ fnk }k∈N, so that

area( fnk (B(yk, 1)) ⩽
1
k

, d( f0(yk), fnk (yk)) ⩽
1
k
. (53)

Let uk be a conformal mapping of D that sends 0 to yk.
Since {yk}k∈N converges to an interior point of Z, the sequence {u−1

k (Z)}k∈N converges to
the full boundary of D. We can thus choose for each k, a subinterval Zk in Z so that the
preimage of Zk by uk is a quarter of circle Z0.

After precomposing uk with a rotation, we may furthermore assume that the preimage of
Zk is the standard quarter of circle.

Let then Q0 (as defined in the beginning of paragraph C.2.1) be the standard sector. We
furthermore choose Zk so that Q0 is a subset of u−1

k (S) in the boundary case.
To conclude the theorem it will be enough to prove

lim
k→∞

d( fnk (yk), fnk (Zk)) = 0. (54)

Let then gk = fnk ◦ uk. Assertion (54) is now restated as

lim
k→∞

d(gk(0), gk(Z0)) = 0 . (55)

Applying Schwarz Lemma again, {gk}k∈N subconverges to some g0. By inequality (53), the
area of g0(B(0, 1)) is equal to 0, thus g0 is constant.

Let us choose a positive ε. Let A be the bound of the area defined in inequality (52) and ρ
as in Lemma C.11. Since {gk}k∈N converges uniformly on every compact to the constant map
g0, it follows that for k large enough ∥Tgk∥ is bounded above by ε

ρ on B(0, ρ). We can thus
conclude from Lemma C.11 that for k large enough

d(gk(0), gk(Z0)) ⩽ 2ε .

The assertion (55) follows, hence the theorem. □
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C.3. Immersions. A non-constant limit of holomorphic immersions may not be immersed.
We describe here certain situations in which a limit of immersions is an immersion. This
result is a generalization of the case when the target is C: roughly speaking the role of the
2-dimensional target is played by a complex line bundle LC, together with a never vanishing
1-form α with values in L. Our "immersion in C" is now replaced by a holomorphic map f
so that f ∗α is uniformly non-vanishing.

Let us be more precise about our hypothesis: let M be an almost complex manifold, L be
a real line bundle over M, LC the complexification of L and α ∈ Ω1(M,LC) a never vanishing
1-form with values in LC.

We also choose a Hermitian metric h on LC as well as a unitary connection ∇0 on LC for
which L is parallel.

When we have a boundary problem defined by a totally real submanifold W we further-
more assume that α(TW) = L. The result is the following version of a claim that a sequence
of maps that are strongly immersed, in terms of the existence of one-form α which they all
pull back in a non-degenerate way, limit on a map with the same immersivity property.

Theorem C.19. Let { fk}k∈N be either (free boundary case) a sequence of holomorphic maps from
D, or (boundary case) a sequence of holomorphic maps from S to M so that fk(∂S) is included in W.
Equip (M,W) with a real line bundle L and a one-form α with values in its complexification LC as
above, together with the chosen Hermitian metric h and parallel unitary connection ∇0.

Assume that

(i) the sequence { fk}k∈N converges to f0,
(ii) for all k, f ∗kα never vanishes,

(iii) we have a constant K0 so that for all k and

∥ f ∗k d∇
0
α∥ ⩽ K0∥ f ∗kα∥2 , (56)

using the metric h and some auxiliary metric on M.
(iv) assume finally that f ∗0α is not identically zero.

Then f ∗0α never vanishes.

We remark

Proposition C.20. Condition (56) is satisfied in the following two cases

d∇
0
α = 0 , or ∥T fk∥ ⩽ K1∥ f ∗kα∥ .

Proof. The first case in Proposition C.20 is obvious. The second case follows form the remark
that if β ∈ Ωk(V), then ∥g∗β∥ ⩽ ∥Tg∥k· ∥β∥ . □

The first case is satisfied when α = dπ, where π is a submersion in C which maps W to a
line, in which case the setting reduces to simply maps from D (or S) to C.

C.3.1. Preliminary controls. Let f be a holomorphic map from D to M satisfying inequality
(56), and g the quadratic form defined by

g(X,Y) B h(α(T f (X)), α(T f (Y))) ,

Let O be the open set in D on which g is a metric, and let u be the continuous vector fields of
norm 1 (defined up to sign) on O so that α(T f (u)) ∈ L.

Lemma C.21. Let β be the connection form for u defined by

β(X) = g(∇Xu, Ju) ,
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where ∇ is the Levi-Civita connection of g. Then

∥β(X)∥2 ⩽ K1g(X,X).

where K1 only depends on K0, α and ∇0.

Proof. Let us consider the induced bundle L0 B f ∗L, as well as the pull-back metric h0,
induced forms ζ = f ∗α ∈ Ω1(D,L0), and induced connection D = f ∗∇0. In the proof ki will be
constants only depending on α and ∇0. The classical formula for the Levi Civita connection
tells us that

2g(∇Xu, Ju)

= u · g(X, Ju) − Ju · g(X,u) + X · g(u, Ju)

−g(u, [X, Ju]) − g(X, [u, Ju]) + g(Ju, [X,u])

= u · h0 (ζ(X)), ζ(Ju)) − Ju · h0 (ζ(X)), ζ(u)) + X · h0(ζ(u), ζ(Ju))

−h0 (ζ(u)), ζ([X, Ju])) − h0 (ζ(X), ζ([u, Ju])) + h0 (ζ(Ju)), ζ([X,u]))

= 2h0(DX(ζ(u)), ζ(Ju))

+h0(ζ(u),dDζ(X, Ju)) − h0(ζ(Ju),dDζ(X,u)) + h0(ζ(X),dDζ(u, Ju)) .

Here of course dDζ(X,Y) = (DXζ)(Y) − (DYζ)(X) − ζ([X,Y]).
Since L is parallel for ∇0, it follows that h0(DX(ζ(u)), ζ(Ju)) = 0. Observe now that the

hypothesis (56) and the Cauchy±Schwarz inequality implies that

|h0(ζ(X),dDζ(Y,Z))|2 ⩽ K2
0 g(X,X) · g(Y,Y) · g(Z,Z) .

Thus, from the above inequality applied to the final three terms of the computation above of
2β(X) = 2g(∇Xu, Ju) and using that g(u,u) = g(Ju, Ju) = 1, we see that

∥β(X)∥ ⩽ 3
2

K0

√

g(X,X) .

This concludes the proof. □

Lemma C.22. Let g = λ2g0, and let β0 be the connection form of the vector u0 proportional to u and
of norm 1 for g0. Then

−(d logλ) ◦ J = β − β0,

Proof. The connection of g = λ2g0 is given by

∇ = D + (d logλ) ⊗ Id−(d logλ ◦ J) ⊗ J ,

where D is the connection of g0. Thus, if u is the vector field of norm 1 for g, then

β(X) = g(∇Xu, Ju) = g(DXu, Ju) − d logλ(JX)

Observe now that λv = v0 where v0 has norm 1 for g0, thus

g(DXv, Jv) =
1
λ2 g(DXv0, Jv0) = g0(DXv0, Jv0) = β0(X) .

The result follows.
□

Corollary C.23. Assuming f is an immersion, let γ be either

(i) (Free boundary case) an embedded circle γ in D, or
(ii) (Boundary case) or an embedded half circle so that ∂γ ⊂ ∂S.
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Then
∣

∣

∣

∣

∣

∣

∫

γ
(d logλ) ◦ J

∣

∣

∣

∣

∣

∣

⩽ K2

∫

γ
λds ,

where ds is the arc length of γ with respect to g0.

Proof. Let us consider first the free boundary case: from Lemma C.22,
∫

γ
(d logλ) ◦ J =

∫

γ
β −

∫

γ
β0 =

∫

γ
β −

∫

U
dβ0 =

∫

γ
β ,

where U is the disk of boundary γ in the boundary free case, and boundary γ ⊔ I, where
I ⊂ ∂S in the boundary case. Observe that we have used here that

∫

I
β0 = 0 ,

which follows from the fact that u0 is tangent to ∂S, so that its covariant derivative in the
tangential direction is also tangential and hence orthogonal to Ju0. Thus the inequality
follows from the bounds in Lemma C.21. For the boundary case, we first have to remark
that if X ∈ T∂S, then obviously β0(X) = 0. Moreover, f (∂S) is a curve in a totally real and
totally geodesic manifold W. Thus ∇Xu belongs to TW and Ju is orthogonal to TW. Thus

β(X) = g(∇Xu, Ju) = 0 .

The fact that β and β0 are zero when restricted to ∂S allows us to conclude the argument. □

C.3.2. Proof of Theorem C.19. The proof in both cases follow the same scheme. We will point
out where the difference occurs. It is enough to prove that f ∗0α does not vanish at 0. Let gk

be the conformal metric on D given by

gk(u, v) = h
(

α(T fk(u)), α(T fk(u))
)

,

and λk be the function on D so that gk = λ2
k g0 where g0 is the Euclidean metric on D.

To prove the theorem, it is enough is to find a positive ρ so that, for all k ∈N
λk(0) ⩾ ρ .

Let D(R) be the disk of radius R centered at 0 with respect to g0 and γ(R) its boundary. In
the boundary case, we let D(R) be the half disk centered at 0 and denote by γ(R) the half
circle which is part of Fr(D(R)). We denote by (r, θ) the polar coordinates on C \ 0. Let ωθ is
the closed form on C \ {0} given by

ωθ =
xdy − ydx

x2 + y2 .

(Of course, ωθ is usually denoted by dθ but the notation dθ ±disliked by the first author ±
suggests that ωθ is exact) Observe that for any 1-form α

α ∧ ω = α(∂r) dr ∧ ωθ,
∫

S(r)
α ◦ J =

∫

S(r)
α(J∂θ) ωθ = −r

∫

S(r)
α(∂r) ωθ .

For k ∈N, let Gk be the function R>0 given by

Gk(R) B
∫

∂D(R)
log(λk) · ωθ.
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Observe that, because λk does not vanish, we map apply Stokes theorem to the annulus
{η < r,R}, and let η→ 0 to obtain

Gk(R) =
∫

D(R)
d log(λk) ∧ ωθ + Gk(0) =

∫ R

0

(∫

γ(r)
d log(λk)(∂r) · ωθ

)

dr + Gk(0).

After taking the derivatives with respect to R, we get
q

Gk(R) =
∫

γ(R)
d log(λk)(∂r) · ωθ = −

1
R

∫

γ(R)
d log(λk) ◦ J .

Since fk is an immersion, it follows from Corollary C.23 that

|
q

Gk(R)| ⩽ K0

R

∫

γ(R)
λkds ,

where ds is the length with respect to g0. By the Schwarz lemma, we see that λk is uniformly

bounded from above and thus |
q

Gk(R)| ⩽ C2. It follows that for all R0

επ| logλk(0)| = |Gk(0)| ⩽ |Gk(R0)| + C2R0 ,

where ε = 2 in the free boundary case, and ε = 1 in the boundary case. Thus

λk(0) ⩾ exp
(

− 1
επ

(|Gk(R0)| + C0R0)
)

.

Then, sinceλ∞ has isolated zeroes (See the similarity principle Theorem A.5.2 and Proposition
A.5.3 in [1]), there exists some R0 so that γ(R0) does not contain any zeroes of λ∞, thus there
exists a positive α so that

∫

∂D(R0)
log(λ∞) · ωθ > −α > −∞ .

Thus for k large enough, Gk(R0) ⩾ −2α. In particular, for k large enough

λk(0) ⩾ µ B exp
(

− 1
επ

(2α + C0R0)
)

> 0 .

The result follows.
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