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A GAUSSIAN PROCESS MODEL FOR INSULIN SECRETION
RECONSTRUCTION WITH UNCERTAINTY QUANTIFICATION:
APPLICATIONS IN CYSTIC FIBROSIS *

JUSTIN GARRISHT, CHRISTINE L. CHAN} DOUGLAS NYCHKAT, AND CECILIA DINIZ
BEHNTH

Abstract. Investigation of biological systems often requires reconstruction of an unobservable
continuous process from discrete time-series data sampled from a related process or processes. When
the reconstructed process cannot be validated with experimental data, it is particularly important
to quantify the uncertainty on the inferred process, and new methodologies are needed to support
both the inference and uncertainty quantification. This work derives a novel statistical model that
combines an established differential model of intra- and extravascular C-peptide dynamics with a
Gaussian process model of insulin secretion rate (ISR) in order to provide clinical measures of beta-
cell function with quantified uncertainty. These measures are computed from the ISR that is inferred
from measured C-peptide data. The model is first validated using synthetic data, and then applied
to oral glucose tolerance test (OGTT) data from youth participants with and without cystic fibrosis
(CF). Because CF is characterized by scarring and fibrosis of the pancreas, impairment of beta-cell
function, rather than reduced insulin sensitivity, is implicated in the early etiology of CF-related
diabetes (CFRD). ISR~derived measures of beta-cell function show worsening beta-cell function from
healthy control to CF to CFRD groups consistent with previous reports on dysglycemia in CF.
However, the model additionally allows uncertainty in the data to be propagated to ISR and ISR-
derived measures of beta-cell function. These results provide insight into uncertainty in ISR-derived
measures of beta cell function, characterize interindividual variability in CFRD etiology, and provide
novel metrics to quantify the pathogenesis of CFRD.

Key words. mathematical model, C-peptide, metabolism, uncertainty quantification, Gaussian
process
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1. Introduction. A common inverse problem that arises in mathematical phys-
iology is to reconstruct an unobservable continuous process from discrete time-series
data sampled from a related process or processes. Many methods have been proposed
to solve this problem in different physiological contexts, however, current biologi-
cal and medical research requires both inference of the process and quantification of
the uncertainty on this inference, particularly when the underlying process cannot
be measured experimentally. When model assumptions may be translated appropri-
ately to (prior) distributions, a popular approach to solve such an inverse problem
is the construction of a Bayesian hierarchical model [18]. By specifying conditional
distributions between observed and unobserved processes given the required model
parameters, and specifying all prior knowledge of parameter values as probability dis-
tributions, a posterior distribution can be inferred. This posterior distribution allows
for estimation of the desired function(s) as well as quantification of uncertainty. In
many cases, due to the parametric nature of the models used, this inference neces-
sitates the random search of a multidimensional parameter space, for example using
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Markov chain Monte Carlo (MCMC) methods, e.g. in [9, 18]. However, by modeling
unobserved phenomena as Gaussian processes and estimating empirically hyperpa-
rameters that are a priori unknown, it is possible to determine the resultant posterior
distribution explicitly, and thus to obtain closed-form expressions for estimated curves
and their confidence bounds.

An example of such an inverse problem is the reconstruction of an individual’s
insulin secretion rate (ISR) profile from discrete samples of C-peptide concentration
in blood plasma in the hours following a glucose stimulus. As ingested glucose en-
ters the bloodstream and increases blood glucose concentrations, the beta cells of
the pancreas release insulin, a hormone promoting glucose uptake throughout the
body. Under healthy metabolic conditions, the pancreas releases sufficient insulin
that plasma glucose returns back to basal levels in a relatively short time (e.g., 2 h).
However, disruptions to metabolic function may result in higher glucose excursions
and/or prolonged periods of elevated blood glucose. The time course of interactions
between glucose and insulin may be formally evaluated with an oral glucose tolerance
test (OGTT) and provide insight into the individual’s metabolic health. Metabolic
disease may disrupt the glucose-insulin balance by reducing sensitivity to insulin over
time as occurs in type-2 diabetes, or by causing damage to the beta cells and pancreas
as occurs in type-1 diabetes and cystic fibrosis (CF).

CF is a life-limiting genetic disorder wherein a mutation in the CF transmembrane
conductance regulator gene causes thick, dry mucous to restrict flow through narrow
passages in the body, especially within the lungs and pancreas. Cystic fibrosis-related
diabetes (CFRD) is the most common comorbidity associated with CF; up to 20% of
adolescents and 30% to 50% of adults with CF develop CFRD [17], and incidence of
CFRD is expected to rise as improved therapeutics for CF increase life expectancy for
CF patients. Although insulin sensitivity is reduced in patients with CFRD, impaired
beta-cell function is considered to be the primary contributor to early etiology of
CFRD [2, 15, 19]. However, recent work has demonstrated that there are distinct
changes in beta-cell function and insulin sensitivity across glucose tolerance stages
in the progression to CFRD [19]. Loss of early insulin release leads to a pattern of
elevated glucose levels at 140 min in an OGTT in CF patients well before they reach
diagnostic criteria for CFRD, but even mild dysglycemia is associated with decreased
pulmonary function in this population. With progressive loss of beta-cell function
driven by myriad factors related to CF, insulin insufficiency leads to CFRD and is
associated with increased mortality. [12].

Many methods have been proposed for assessing beta-cell function and include
simple indices, deconvolution-based methods, and methods relating insulin secretion
to glucose concentration [26, 3, 15, 14, 9]. The most sensitive methods for assessing
beta-cell function consider ISR and can aid in monitoring the progression of meta-
bolic dysregulation and disease. The rate of insulin secretion in response to a glucose
challenge provides insight into an individual’s beta-cell function and aids in monitor-
ing the progression of metabolic dysregulation and disease. The release of insulin,
however, cannot be observed in real-time during a physiological oral test, thus mo-
tivating the need for inference of ISR from available data. C-peptide, a polypeptide
produced in a 1-to-1 molar ratio with insulin and ultimately cleaved from the fully
formed insulin molecule, is used as a surrogate measure of the insulin secreted by the
pancreas because C-peptide, in contrast to insulin, is not cleared by the liver and is
therefore a more accurate marker of the dynamics of secretion.

We propose a novel method for inferring insulin secretion rate (ISR) with uncer-
tainty in a cohort of youth with and without CF. Our approach introduces a novel
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statistical model that combines an established differential model of intra- and ex-
travascular C-peptide dynamics with a Gaussian process model of ISR in order to
provide clinical measures of beta-cell function with quantified uncertainty. To relate
ISR to the measured values of C-peptide following an oral glucose stimulus during an
OGTT, we employ the two-compartment model from [7]:

Ci(t) = — (k1 + k3)C1(t) + kaCo(t) + S(t), C1(0) = Co,

' k
Calt) = b Ca(t) = k2 Ca(1), C(0) = 2Co,
2

(1.1)
where C1 () represents the intravascular C-peptide concentration at time ¢ (which can
be observed at discrete times via blood sampling), Ca(¢) the extravascular C-peptide
concentration, and S(¢) the ISR. The initial conditions are chosen so that the system
is in equilibrium at time ¢ = 0. For each participant, the kinetic parameters kq, ko,
and k3 are determined based on age and metabolic health. Van Cauter and colleagues
identified standard parameters for C-peptide clearance accounting for obesity and age
using a least-squares regression in a heterogeneous population of adults as described
in [26]. They also showed that standard parameters rather than individually derived
parameters could be used to model C-peptide clearance without a significant loss of
accuracy. These parameters are taken as known in our model.

We demonstrate that, by modeling S as a Gaussian process, we can infer a
closed form for S(t) from discrete samples of C-peptide concentration taken during
an OGTT. We apply this method to estimate several ISR-derived measures in order
to characterize the impacts of CF on beta-cell function and glucose-insulin dynamics
in our cohort.

The paper is structured as follows: section 2 presents the materials and meth-
ods, including study design, mathematical and statistical modeling, and ISR-derived
measures of beta-cell function and metabolic health; section 3 details the results from
analyzing synthetic data as well as clinical data from youth with and without CF; and
lastly, section 4 discusses the contributions of the paper to secretion rate modeling
and the implications of the results for CF in youth.

2. Materials and Methods.

2.1. Study Participants. A cohort of 82 participants with and without CF
aged 6 to 25 years were enrolled as part of a study of early glucose abnormalities
in youth with CF. Appropriate consent and assent were obtained, and this study
was approved by the Colorado Multiple Institutional Review Board. Participants
without CF (healthy controls) were identified using recruitment flyers and emails at
the University of Colorado Anschutz Medical Campus. Exclusion criteria for healthy
controls included known diabetes or pre-diabetes, overweight or body mass index
(BMI) greater than or equal to the 85th percentile according to percentile growth
charts in youth, acute illness, history of chronic disease, or pregnancy. Participants
with CF were recruited from pulmonary and diabetes clinics at Children’s Hospital
Colorado. Inclusion criteria for participants with CF included diagnosis of CF by
newborn screen, sweat chloride testing, or genetic testing. CF patients with known
glucose abnormalities along the entire glycemic spectrum were included. Exclusion
criteria for participants with CF included known type 1 or type 2 diabetes, use of
medications affecting glucose metabolism (other than insulin) in the prior 3 months,
hospitalization in the prior 6 weeks, or pregnancy. CFRD is defined as a 2h glucose
concentration of >200 mg/dL or a fasting glucose concentration of >126 mg/dL ob-
served during an OGTT [16]. Some participants with CFRD use exogenous insulin to
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help regulate blood-glucose. For these insulin-dependent (ID) individuals, exogenous
insulin was not administered for 24 hours prior to OGTT so measured glucose-insulin
dynamics reflect physiological interactions. Among the 82 participants, 17 were clas-
sified as healthy controls, 51 as CF without CFRD (CF controls), and 12 as having
CFRD. Four participants (1 healthy control, 2 CF control, and 1 CFRD) had missing
data and were excluded from analysis.

2.2. Laboratory Procedures. Study visits took place in the Clinical Trans-
lational Research Center at Children’s Hospital Colorado between October 2015 and
May 2018. Height, weight, and vital signs were obtained. A physical exam, including
pubertal staging using the method of Tanner, was completed by a single pediatric en-
docrinologist. Participants arrived to the outpatient research center between 8 a.m.
and 10 a.m. after a minimum of 8 hours of fasting. All participants underwent oral
OGTT. Glucola was administered at a dose of 1.75 g/kg (maximum 75 g). As the
study involved youth participants, a reduced 3-hour schedule was chosen to minimize
the strain and physical burden of the OGTT on the participants [5]. Measurements of
glucose, insulin, and C-peptide were taken at -10, 0, 10, 20, 30, 60, 90, 120, 150, and
180 minutes with time 0 corresponding to the administration time of Glucola. Time
-10 corresponds to 10 mins prior to Glucola administration and was used to establish
basal values of glucose, insulin, and C-peptide. The protocol includes more frequent
sampling in the first half hour following Glucola administration when measured me-
tabolites are expected to change most quickly.

2.3. Data and Process Models. The differential system (1.1) relating ISR to
the measured C-peptide values can be rewritten in matrix-vector form as

Ci(t) —k1— kg ko ] [Cu(2) S(t)
2.1 . = .
(2.1) [02(t) ki —ke| |Ca(t)] T | 0
Equation (2.1) demonstrates that (1.1) is linear and non-homogeneous, with forcing
provided by S(¢). Suppose the matrix of coefficients in (2.1) has eigenvalue-eigenvector

pairs {1, [u1,u2])T} and {Aa, [v1,v2]T}, and define above basal C-peptide and ISR ¢
and s, respectively, as

c(t) == C1(t) — Cp, and
s(t) == S(t) — S(0) = S(t) — k3Co.

With this change of variables, the integral equation form of (2.1) reduces to

1

t t
2.2 c(t) = ——M— uve)‘lt/ e*)‘lTSTdevueAzt/ 6)\2T8Td7':|
22 )=t et [ s - e [ rar)

in terms of ¢ and s. Thus, there is a linear transformation W such that ¢ = Ws.

Let {79,...,Tm} be the sampling times and {¢1,...,%,} be the times at which we
estimate ISR with {71,..., 7} C {t1,...,t,}. Consider ¢ = [¢(71) - c(T:m)]T € R™
and s = [s(t1) -+~ s(t,)]T € R", where n > m. Then, ¢ and s must satisfy

c=Ws+e,

where the m x n matrix W discretizes the continuous linear transformation W, and e
represents the numerical error in estimating the integrals from (2.1) using a quadrature
rule which tends to 0 as n — co. We are able to make n much larger than m: the
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OGTT protocol has m = 8 sampling points, and we take n = 180. Therefore, these
numerical errors are neglible relative to the observational errors noted below, and so
we will not consider the influence of e in subsequent analysis.

The measured above-basal C-peptide values, z, are taken with observation errors
€ which are assumed to be independent and normally distributed:

(2.3) z=Ws+e, e~MN(0,Xc),

where X is diagonal, and MN(u, ) denotes a multivariate normal distribution with
mean p and covariance matrix ¥. In addition, we employ a mixed-effects model for
the above-basal ISR,

(24) S; = S(tz) = o1 + a2t1’ —+ y(tz),

where a1 and a are fixed parameters and y is the realization of a zero-mean Gaussian
process (GP) with Matérn covariance function [8]

(2.5)  Cov(y(t),y(r)) = o2ke(t,7) = o> (1 + t;ﬂ) exp (- i 4 T') :

The Matérn family of covariances is a common choice in Gaussian process modeling
and offers varying degrees of smoothness with a small number of (hyper)parameters
left to estimate [23]. In general, a Matérn process with smoothness v has m mean-
square derivatives for m < v. The function (2.5) is obtained by setting the smoothness
to v = 1.5, so that any given sample path is C'-smooth. This is a reasonable assump-
tion given the process that we are modeling, and this is the minimal smoothness
assumption necessary to enforce the steady-state boundary conditions on our ISR
estimate.

In (2.5), y(t) denotes the value of the GP at time t, 0% represents the variance of
the GP, and 6 represents the time-range of the covariance. This covariance function
models a GP with sample paths that are continuous with continuous first derivative.
Since y is a GP, the random vector

y=[ylt) - ylta)]"

has a multivariate normal distribution with covariance matrix 02Ky, inherited from
the function o2ky as

(Ko)ij = ko(ti, t5)-

The distributions for the GP and its evaluations on the n-node evaluation grid may
then be summarized concisely as

y ~ GP(0,0%kg), and

2.6
(2:6) y ~ MN(0, 0% Kp).

Defining matrix X and vector a as

(2.7) X=1|: :|anda= {0‘1} ,
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we may rewrite (2.4) as

(2.8) s=Xa+y,

so that (2.3) becomes

(2.9) z=WXa+Wy+e.

The final assumption in our model is that the GP y and the measurement errors are
independent. Setting V' = WX and n = Wy + e, we rewrite (2.9) as

z=Va+mn,

If we denote the covariance matrix for n by H, then using linear statistics,

z ~ MN(Va, H),

where

H=Cov(Wy +¢) = > WK,WT 4+ %¢.

2.4. Steady-State Condition. Participants undergo a minimum 8 h fast prior
to the OGTT, so the plasma glucose, insulin, and C-peptide concentrations are as-
sumed to be at steady state at the beginning of the protocol. To ensure that the system
(1.1) is in steady state when ¢t = 0, we enforce the initial condition s(0) = s’(0) = 0,
i.e. that the above-basal ISR and its derivative are 0 prior to the OGTT. From (2.4),
we have that yo == y(0) = —aq, and y) = ¥'(0) = —as. Thus, we condition our
inference on the assumption that yg = [y(0) y’(O)]T = [~a1, a3’ = —a.

Because we model y as a GP, we have the following multivariate normal distribu-
tion for the vector [yl yT]:

- ] e ([g] o e o)),

where the zero vectors are assumed to be of appropriate dimension, and sub-matrices
Koo, Ko1, K10, K11 are assembled using equation (2.5) and equations (A.1), (A.3),
(A4), and (A.5) found in the appendix. In the K;; sub-matrices, the subscripts ¢
and 7 are used to denote partial differentiation with respect to the first argument and
second argument, respectively. These sub-matrices are defined as

Ky [ Bo(0.0) <k9>t<o,0>] _ [1 9] |
|(ka)~(0,0)  (ko)+:(0,0) el
Koy = [ k9(07t1) k‘g(O,tn> :|
[(ko)e(0,t1) -+ (Kg)e(0,tn)]
_kg(tl, 0) (k@)-,—(tl, 0)
Ko = =K,
Lko(tn, 0)  (Ko)r(tn,0)
Kq1 = K.
Given that yg = —a, we obtain the following conditional expectation and covariance

for the random vector y:
p* =E(ylyo = —a) = —K oK, o, and
OQK* = COV(y|y0 = 70[) = 0'2(K9 — KOlK&)lKlo).

6
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We also condition the covariance of n:

H* = Cov(nlyo = —a) = *WK*W' + Y¢.

2.5. Hyperparameter Estimation. Denote by /(c?2, 0, a; z) the log-likelihood
of our hyperparameters given an individual’s measured C-peptide, z. The Gaussian
and other model assumptions allow us to write the individual log-likelihood as

(2.11) £(0%,0,0;2) = —% [(z —Va)TH* ' (z— Va) —mIn(2r) — In(det(H™*))

For any given o2 and 6, we can apply generalized least squares (GLS) to estimate
« for the individual. Setting V = WX and n = Wy + e, we rewrite (2.9) as

z=Va+n.

Then, the GLS estimate of « is given by
Q29 = (VIH V) WTH g,

where the subscripts emphasize dependence on the hyperparameters (via dependence
on H). We use &,2 ¢ in all subsequent calculations depending on a.

Following an empirical Bayes approach, we borrow strength across the C-peptide
measurements of all participants to estimate cohort values for hyperparameters o2
and 6 by maximum likelihood. If p participants’ data are analyzed, and the j-th par-
ticipant has above-basal C-peptide values z;, then the cohort log-likelihood £.(0?2, )
is given by

(2.12) le(0,0) =Y U(0%,6; (&) (2 0),25)-

Jj=1
We then estimate hyperparameters for the cohort as

(2.13) (6%,0) = argmax £.(c2,0).

o260
Although the cohort log-likelihood is nonlinear, a grid search is reasonable to de-
termine 62 and # based on the moderate size of this problem and also allows for
empirically verifying a unique maximum.

2.6. ISR Reconstruction and Uncertainty Quantification. With hyper-
parameters o2 and 6 fixed to empirically determined values 62 and 0, and with «
fixed to the GLS estimate &, we may approximate the conditional expectation of
[y|o?, 0, a, yo] by substituting these estimates of the statistical parameters into the
conditional distribution to obtain our estimate of y:

(2.14) y=p" +(WK)TH* ' (z—Va—Wpu").
We subsequently reconstruct the ISR profile s as
(2.15) s=Xa+y,

which is the best linear unbiased estimator of above-basal ISR with known o2 and 6.
Adding the steady-state secretion rate, k3Cj, to each component of 8 yields the total
ISR approximation, S.
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Consider the n x m matrix A whose i-th column, a;, is given by
(2.16) a;=p* +(WKTH '(e; — Va— Wp*),

where e; is the i-th standard basis vector in R™. To quantify uncertainty in our
inference, we can compute the standard error from the covariance of §, given by

(2.17) 0’K = 0} (K* — (AWK*TH* " AWK*),

so that we obtain the standard error vector from the square roots of the diagonal
elements of 02K,

g R 11

SE = :

oV K,

The pointwise 95% confidence envelope for S is then given by S+1.96-SE. The Bon-
ferroni correction with 95% confidence and m = 8 degrees of freedom (corresponding
to the number of C-peptide measurements during the OGTT) yields conservative up-
per and lower bounds for the 95% confidence envelope with uniform coverage of ISR
profiles comprising the envelope as S+273-SE.

2.7. Application of Model to Synthetic and Clinical Data. Since the
true ISR profile during an OGTT cannot be measured experimentally, we validated
this method on simulated data for which the ISR was known by verifying that we
recovered a simulated ISR profile with good confidence from simulated C-peptide
data. A continuous ISR profile was simulated by inferring the ISR from a healthy
participant’s OGTT data. We used this known ISR to simulate 3-hour OGTT C-
peptide data by applying the differential model (1.1) and sampling at time points
determined by the clinical sampling schedule. We computed the pointwise confidence
bounds with a Bonferroni correction as described in subsection 2.6.

The ISR reconstruction approach was also applied to the C-peptide data collected
from the cohort of control, CF control, and CFRD participants. For the inferred
ISR we computed the pointwise confidence bounds with a Bonferroni correction as
described in subsection 2.6.

2.8. ISR-Based Measures of Beta-Cell Function. A functional reconstruc-
tion of ISR provides several key measures to assess different features of beta-cell
function. We analyze the ISR area under the curve (AUC) in the first 30 min of the
OGTT; the ISR AUC over the full 3 h OGTT; ISR time-to-peak (TTP); and the
slope ap of the linear component of the mixed-effects model (2.8). All AUCs were
computed numerically by composite trapezoid rule. The numerical approximation
error will be small due to the flexibility in choosing a large number of node points (n)
for estimating the ISR curves.

Because the covariance provides a complete description of uncertainty (2.17),
linear statistics enable us to propagate uncertainty in the ISR prediction through to
indices of beta-cell function. For example, if w € R™ is a vector of weights associated
with composite trapezoid rule, the covariance of the ISR, AUC estimate, w’'s, is given
by

(2.18) Cov(wTs) = wl Cov(s)w = o*wl K'w.

Thus, the covariance of the ISR, AUC estimate can be directly related to the covariance
of ISR itself.
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2.9. Statistical Analyses. We analyze differences between measures across
groups using the Kruskal-Wallis rank-sum test due to factors such as non-normality of
computed measures, non-uniformity of sample sizes, and relatively small sample sizes
for the healthy control and CFRD groups. In cases where differences between group
medians are observed with 95% confidence, post hoc analyses are performed with the
pairwise Wilcoxon rank-sum test. The p-values are reported, and comparisons with
p < 0.05 are considered statistically significant.

3. Results.

3.1. Cohort Hyperparameters. The number of polynomial basis function
used in the mixed-effects model (2.4) was determined by assessing the log-likelihood
surfaces with respect to the identifiability of the model hyperparameters. We per-
formed the cohort hyperparameter estimation with mixed-effects models of the form

s(t) =) at/ " +y(b),

j=1

for varying values of d (d = 1,2, 3,4). We found that the model with d = 2 yielded a
log-likelihood surface that best identified the hyperparameters and confidence sets.
By computing the cohort log-likelihood (2.12) on a fine grid of values for hy-

perparameters # and o2, we estimate that maximum likelihood is attained at § =
17 min and 62 = 7400 pmol? / L2 . min%?. The optimal cohort values with 95% and
99% confidence sets are shown in Figure 3.1.

-4150
-4160

9000

-4170
-4180

7000

-4190

Variance (02)

-4200
-4210

5000

Range ()

FiG. 3.1. Log-likelihood values for combinations of hyperparameters @ and o2, with mazimum
likelihood achieved for @ = 17 and 02 = 7400. The contours show 95% and 99% confidence sets.

3.2. Analysis of Simulated Data. We used the simulated ISR profile and
corresponding simulated OGTT C-peptide data shown in Figure 3.2 to validate the
model. Applying our method to the simulated noisy C-peptide observations, we in-
ferred the ISR profile and placed 95% confidence bounds on the inferred curve (Fig-
ure 3.3). We found close agreement between the true and inferred ISR for this example
with synthetic data, and the true ISR was within the 95% confidence bounds of the
inferred ISR curve. Note that the 95% confidence bounds are computed pointwise

9
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and are therefore tightest near the points where data was collected. Due to the for-
ward transformation of ISR to C-peptide concentration and inherent averaging in the
reconstruction of ISR, the time points corresponding to minimal uncertainty will not
be mapped directly to OGTT sampling times.
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F1G. 3.2. (a) ISR profile simulated for a clinical 3h OGTT. (b) Simulated exact C-peptide data
(filled) and noisy C-peptide data (open) sampled according to clinical OGTT schedule.
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Fi1c. 3.3. (a) ISR profile reconstructed using noisy data representing observed C-peptide, with
95% confidence bounds containing the simulated (“ezact”) ISR curve (dashed) Vertical lines repre-
sent sampling times. (b) C-peptide profile modeled using the reconstructed ISR using the C-peptide
minimal model is consistent with the simulated C-peptide data.
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Fic. 3.4. (Top) C-peptide data collected during OGTT with C-peptide profiles estimated from
inferred ISR. (Bottom) ISR profiles reconstructed from OGTT data with 95% confidence sets. Ver-
tical lines represent OGTT sampling times. From left to right, sample reconstructions for a (a)
healthy control participant, (b) CF control participant, (c) non-insulin-dependent CFRD participant
(CFRD: NID), and (d) insulin-dependent CFRD participant (CFRD: ID).

3.3. Analysis of Clinical Data. We present the results from applying our
method to OGTT C-peptide data from youth participants with and without CF. We
include some representative examples of ISR reconstruction and discuss ISR-derived
measures of beta cell function for the full cohort.

3.3.1. ISR Reconstruction. OGTT data and corresponding inferences for ISR,
and C-peptide are shown in Figure 3.4 for representative participants across the three
groups (healthy control, CF control, and CFRD). Within the CFRD group, we in-
clude results from two participants: one non-insulin-dependent (NID) individual and
one insulin-dependent (ID) individual. The measured C-peptide profiles for these
representative participants demonstrate a range of features including multiple peaks
(Figure 3.4A), delayed time to peak (Figure 3.4B, C), and a gradual upward drift
for the duration of the OGTT (Figure 3.4D). These features are recapitulated by the
inferred ISR profiles.

3.3.2. ISR-Based Measures of Beta-Cell Function. In Table 3.1, we pres-
ent the non-parametric analysis of model-based measures of beta-cell function based
on the inferred ISR profile including 30 min ISR AUC, 3 h ISR AUC, ISR TTP, and
trendline slope (a2). Median values increase for each of 3 h ISR AUC, ISR TTP,
and trendline slope, «s,) from the healthy control values to the CF control values
to the CFRD values. Inversely, the median values for the 30-min ISR, AUC decrease
from healthy controls to CF controls to the CFRD group. As statistically significant
differences were observed across the groups for each measure considered, post hoc
results were computed (Table 3.2). The post hoc tests showed statistically significant
differences with at least 95% confidence across all pairs of groups for 3-h ISR AUC and
ISR TTP. For 30-min AUC, a statistically significant difference was observed between
the two CF groups and the healthy controls, and a statistically significant difference
was observed in the slope as between the CFRD group and the two control groups.
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F1G. 3.5. ISR AUC estimates with confidence bounds. (Left) AUC computed over first 30 min.
(Right) AUC computed over duration of OGTT (3 hours).

Figure 3.5 depicts ISR AUC for the first 30 mins of the OGTT and ISR AUC for
the full 3 hour OGTT with 95% confidence intervals for each participant. In general,
the amount of insulin secreted within the first 30 mins of the OGTT was suppressed in
participants with CF. By contrast, the AUC inferred for the entire OGTT was highest
in the CFRD group and lowest in the control group. This summary of individual data
highlights overall trends of as well as the range of interindividual differences in beta-
cell function in these groups.

TABLE 3.1
ISR-based results from non-parametric (Kruskal-Wallis) test. Quantities analyzed are ISR area
under the curve (AUC), ISR time to peak (TTP), and slope of the trendline (a2). Median values
are shown for each group, and a statistically significant difference is observed between medians for
each quantity analyzed with at least 95% confidence.

Quantity CTRL CF CTRL CFRD H-Statistic | p-Value

Sample Size 16 51 11 — —_—

30min ISR AUC (pmol/L) | 3132.078 1415.844 1266.425 19.93 0.0005

3h ISR AUC (pmol/L) 12142.89 14998.13 24190.61 15.38 0.0005

ISR TTP (min) 26.5 72.0 100.0 34.68 <0.0001

az (pmol/L/min?) 0.282 0.363 0.858 8.54 0.0139
TABLE 3.2

ISR-based results from pairwise Wilcoxon analysis.

Quantity CTRL & CF CTRL | CF CTRL & CFRD | CTRL & CFRD
30min ISR AUC <0.0001 0.6450 0.0049
3h ISR AUC 0.0336 0.0057 0.0002
ISR TTP <0.0001 0.0048 <0.0001
asg 0.2086 0.0319 0.0098
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3.3.3. Sensitivity of Results to Kinetic Parameters. As described in the
Methods, the kinetic parameters ki, ko, and k3 were specified using the equations
described by Van Cauter and colleagues in [26] and taken as known. To determine
the sensitivity of the model estimates to the kinetic parameters ki, ko, and k3, we
simulated ISR and computed 30 min ISR AUC and 3 h ISR AUC for C-peptide
data from our cohort with a distribution of kinetic parameters. This distribution was
determined by combinations of health statuses considered in the Van Cauter equations
with ages ranging from 6 to 50 years. We found that the 30 min ISR AUC varied by
less than 5% from the mean and the 3 h ISR AUC varied by less than 9% from the
mean.

4. Discussion.

4.1. Summary of Results. We have demonstrated that our method success-
fully reconstructs a participant’s ISR profile from C-peptide OGTT data, with quan-
tifiable uncertainty that can be propagated through to computed metrics of beta-cell
function that depend on ISR. The ability to pool all participant data together to
estimate hyperparameter values using a simple maximum likelihood approach offers
value to researchers applying this method by allowing for increased predictive power
despite sparse sampling schedules. The 30 min ISR AUC and TTP values calcu-
lated from reconstructed ISR profiles demonstrate a suppressed early insulin response
among the CF control group compared to the control group. This suppressed early
insulin response occurs in conjunction with an increase in the overall insulin released
as assessed by the 3 h ISR AUC. Both of these effects are amplified with the pro-
gression to CFRD and suggest deterioration of beta cell function likely caused by the
scarring and fibrosis of the pancreas that occur in CF. These findings are consistent
with previous results on metabolic dysregulation in people with CF [4, 22, 25] and
provide support for the presented statistical model as a clinically relevant tool for
ISR inference. In particular, the simple ISR AUC offers an easily calculable index of
beta-cell function that, in conjunction with other indices, may be useful in monitoring
metabolic health for individuals with (or at risk of developing) metabolic disorders,
including those originating from CF.

The differences in the individual 30-min ISR AUC and 3-hour ISR AUC (Fig-
ure 3.5) within CF and CFRD groups illustrate the individual and often insidious
nature of CFRD onset and progression. For instance, an individual with CF that
does not meet the OGTT-determined CFRD criteria may still exhibit metabolic dys-
function via delayed insulin action, which may be a manifestation of a suppressed
first-phase insulin response, reduced sensitivity to insulin, or a combination of the
two.

4.2. Motivation for Statistical Model. The covariance structure is a key
component of the model presented, as it places the estimates on a firm mathematical
foundation with avenues to stable and efficient computation even given sparse sam-
pling and ill-conditioned systems that are common in ISR reconstruction and other
applications in mathematical physiology. As the choice of covariance function used to
model ISR determines the function space for our possible ISR inferences, additional
physiologic information may be built in to improve ISR estimates and confidence
bounds. Pulsatile insulin secretion [20, 24], for example, is a known phenomenon that
may inform the construction of a customized covariance function for ISR inference.

Several methods in the literature use deconvolution to infer ISR from C-peptide
data at varying levels of sparsity [7, 9, 10, 15, 20]. In [3, 5], deconvolution is applied

13

This manuscript is for review purposes only.



137
438
439
440
441
142
143
444
445
446
447
148
449
450
451
452
153
154
455
456
457
458
159
460
461
462

463

464
465
466
167
468
469
470
471
A72
173
474
475
476
477
478
479
480
481

482

183

instead to glucose data in order to estimate the derivative of glucose during the
OGTT. While many of the existing deconvolution methods are designed for metabolic
experiments with more frequent sampling, [3] and [9] may be applied to OGTT data
with a sparse sampling schedule. A common strategy in this family of methods is
a penalized least squares approach, where fidelity to data is optimized against some
penalized term(s), often representing roughness or other traits undesirable in the
estimate. Roughness is commonly quantified via the norm of a finite-difference matrix
[6, 9], controlling some derivative of the inferred profile. While allowing for control
over desired features of the reconstruction, these methods typically require large-scale
random search, e.g. MCMC, in order to achieve physiologically realistic profiles and
to also quantify uncertainty.

Our approach avoids such large-scale Monte Carlo searches by invoking the linear
properties of Gaussian processes and writing all distribution information explicitly.
Nonetheless, the method maintains predictive power stemming from the choice of
covariance function used to model the Gaussian process and the calculation of cohort-
wide hyperparameters.

The mixed-effects model (2.4) and choice of covariance in (2.5) offer several ad-
vantages to ISR reconstruction from sparse C-peptide OGTT data. First, the mixed-
effects nature has the flexibility to include additional covariates that support estima-
tion of ISR and stable numerical computation, e.g. in (2.14), involving potentially
ill-conditioned matrices. Additionally, the Matérn covariance function chosen guar-
antees that the estimated ISR profile will be sufficiently smooth to enforce the ini-
tial steady-state condition. Numerical stability is supported by regularization of our
estimate [6], and we note that this arises naturally in the form of the conditional
distribution. There is an equivalence between the empirical Bayesian problem and
the unconstrained variational problem

(4.1) m'%n (z—W(Xa—-y) 'S (z—W(Xa—-y)) +o’y K ly.
yeR™
In (4.1), the second term is interpreted as a penalty with o2 controlling its weight

in the optimization. This variational formulation alone is not rich enough to provide
estimates of 02 and 6 and is in contrast to a likelihood or Bayesian approach.

4.3. Kinetic Parameters and Time Scales. The kinetic parameters ky, ko,
and kg specify time constants (1/A; and 1/Az) for the model (2.1) on the order of 5 and
35 min. These time constants reflect properties of C-peptide clearance and exchange
rates in participants based on biometrics, and they are determined independently of
the OGTT data. By contrast, the time constant € that appears in the Gaussian
process reflects the model’s ability to resolve the ISR dynamics given the sampling
schedule and variation in observed values. We pooled the data from the entire cohort
of participants to arrive at our estimate 6 on the order of 17 min. With this time-
range, values of ISR located more than 29 min apart have a correlation of 0.5 or
less. Data sets with different data collection protocols or participant populations may
yield different hyperparameter values, affecting the range of time points with strong
autocorrelation. For example, with more frequent sampling, the time-range of the GP
may be resolvable to the fast time-scale observed in the differential C-peptide model.
The credible intervals of the ISR estimates will depend on the interactions between
these contributing factors.

4.4. Limitations of Current Modeling Approach. There are several limita-
tions to this modeling approach. This method allows for estimation of aphysiological
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negative values of ISR and the 95% confidence envelope. From the overall cohort of
82 participants, seven individuals’ (representing all three groups) ISR profiles were
estimated to have negative values. However, these negative excursions were typically
small and brief, and therefore, minimally affected measures of beta-cell function that
depend on the ISR profile. This issue has been observed in other methods of ISR
reconstruction, and has been addressed by adding an additional penalty term to the
cost function in the governing optimization problem [9] or by constraining the opti-
mization to preclude non-negative values [10]. Alternatively, in future work we can
modify our modeling structure to build non-negativity into the process level of the
Bayesian hierarchical model rather than add an additional penalty term to the objec-
tive function being optimized. This will allow numerical implementation to remain
cost-efficient and avoid large-scale simulation techniques such as MCMC while still
increasing the model’s predictive power.

In addition, the kinetic parameters ki, ko, and ks are taken as known in our
model based on results established in adults with and without type 2 diabetes [26].
Our numerical experiments with the kinetic parameters indicate that the method
and resulting estimates of 30 min and 3 h ISR AUC are much more sensitive to the
C-peptide data than to kinetic parameters derived from biometric input. Although
this suggests that uncertainty in the data affects estimated ISR more strongly than
uncertainty in the kinetic parameters, the biometric dependence of kinetic parameters
established in [26] has not been validated in pediatric populations or in patients with
cystic fibrosis. Bayesian approaches to estimate these parameters more generally have
been proposed [21]. However, improved estimates for these parameters are needed in
populations with diverse genetic backgrounds, body types, ages, and disease status.
Moreover, future approaches considering uncertainty in kinetic parameters could prop-
agate this additional source of uncertainty to measures such as 30 min and 3 h ISR
AUC, thereby further improving confidence in estimates of these quantities.

ISR is known to depend on glucose concentration and its derivative, and this
relationship has been exploited in other models of ISR [3, 15, 24, 13, 1]. Our cur-
rent model structure does not include glucose data. However, the flexibility of the
mixed-effects structure will allow future incorporation of glucose and its derivative
into the model in such a way that uncertainty in the data is propagated to all inferred
continuous profiles and model-derived indices. One possible way to add glucose to
our current model is to use a sigmoidal dependence of ISR on glucose, as proposed in
[13, 24, 1], in the fixed component of ISR. Modifying the model to include glucose or
other covariates will allow for additional dynamics-motivated metrics to be estimated
that can provide a more nuanced picture of individual health and the landscapes of
heterogeneous metabolic diseases such as CFRD.

4.5. Implications of Results for Clinical Practice. Most methods for re-
constructing ISR have been developed in the context of an IVGTT [11]. However,
OGTTs are the most commonly used protocols for assessing glycemic control in a clin-
ical setting, and annual OGTTs are a standard component of care for many patients
with CF. Although sampling from clinical OGTTs is typically more sparse than the
sampling schedule for this research study, insights into key aspects of altered ISR may
lead to improved diagnostic tools to detect early beta cell dysfunction. Since even
mild beta cell dysfunction is associated with decreased pulmonary function in patients
with CF, early detection of such dysfunction is critical to optimizing CF patient care.
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Appendix A. Covariance Functions for Steady-State Conditions. We
define yo = y(0) with variance

(A1) Var(y(0)) = 0ke(0,0) = o°.

The covariance function kg in (2.5) is chosen to be smooth enough that its mixed
second-order partial derivatives coincide, preserving symmetry and allowing for its
use in conditioning our ISR inference on an initial derivative value. More precisely, 1’
is a zero-mean GP whose covariance function is the mixed partial derivative of o2kg:

(AQ) Cov(y’(t),y’(T)) _ O.Qagiig:ﬂ — 09.7 (1 — |t ; 7'|> exp <_|t ; 7') .

From (A.2), we can compute the variance

(A3 Va(y/(0) = Covly/(0),y (@) = AT 0
(0,0)

It remains to specify the covariance between 3’ and y, which is determined by the
appropriate first-order partial derivative of o2kg, as follows:

(A1) Covly,y') = 248T)

Further, from the symmetry of ky,
8]{39 (7-7 t) _ ak@ (t7 T)
ot - or
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