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Abstract. Investigation of biological systems often requires reconstruction of an unobservable6
continuous process from discrete time-series data sampled from a related process or processes. When7
the reconstructed process cannot be validated with experimental data, it is particularly important8
to quantify the uncertainty on the inferred process, and new methodologies are needed to support9
both the inference and uncertainty quantification. This work derives a novel statistical model that10
combines an established differential model of intra- and extravascular C-peptide dynamics with a11
Gaussian process model of insulin secretion rate (ISR) in order to provide clinical measures of beta-12
cell function with quantified uncertainty. These measures are computed from the ISR that is inferred13
from measured C-peptide data. The model is first validated using synthetic data, and then applied14
to oral glucose tolerance test (OGTT) data from youth participants with and without cystic fibrosis15
(CF). Because CF is characterized by scarring and fibrosis of the pancreas, impairment of beta-cell16
function, rather than reduced insulin sensitivity, is implicated in the early etiology of CF-related17
diabetes (CFRD). ISR-derived measures of beta-cell function show worsening beta-cell function from18
healthy control to CF to CFRD groups consistent with previous reports on dysglycemia in CF.19
However, the model additionally allows uncertainty in the data to be propagated to ISR and ISR-20
derived measures of beta-cell function. These results provide insight into uncertainty in ISR-derived21
measures of beta cell function, characterize interindividual variability in CFRD etiology, and provide22
novel metrics to quantify the pathogenesis of CFRD.23
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1. Introduction. A common inverse problem that arises in mathematical phys-27

iology is to reconstruct an unobservable continuous process from discrete time-series28

data sampled from a related process or processes. Many methods have been proposed29

to solve this problem in different physiological contexts, however, current biologi-30

cal and medical research requires both inference of the process and quantification of31

the uncertainty on this inference, particularly when the underlying process cannot32

be measured experimentally. When model assumptions may be translated appropri-33

ately to (prior) distributions, a popular approach to solve such an inverse problem34

is the construction of a Bayesian hierarchical model [18]. By specifying conditional35

distributions between observed and unobserved processes given the required model36

parameters, and specifying all prior knowledge of parameter values as probability dis-37

tributions, a posterior distribution can be inferred. This posterior distribution allows38

for estimation of the desired function(s) as well as quantification of uncertainty. In39

many cases, due to the parametric nature of the models used, this inference neces-40

sitates the random search of a multidimensional parameter space, for example using41
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Markov chain Monte Carlo (MCMC) methods, e.g. in [9, 18]. However, by modeling42

unobserved phenomena as Gaussian processes and estimating empirically hyperpa-43

rameters that are a priori unknown, it is possible to determine the resultant posterior44

distribution explicitly, and thus to obtain closed-form expressions for estimated curves45

and their confidence bounds.46

An example of such an inverse problem is the reconstruction of an individual’s47

insulin secretion rate (ISR) profile from discrete samples of C-peptide concentration48

in blood plasma in the hours following a glucose stimulus. As ingested glucose en-49

ters the bloodstream and increases blood glucose concentrations, the beta cells of50

the pancreas release insulin, a hormone promoting glucose uptake throughout the51

body. Under healthy metabolic conditions, the pancreas releases sufficient insulin52

that plasma glucose returns back to basal levels in a relatively short time (e.g., 2 h).53

However, disruptions to metabolic function may result in higher glucose excursions54

and/or prolonged periods of elevated blood glucose. The time course of interactions55

between glucose and insulin may be formally evaluated with an oral glucose tolerance56

test (OGTT) and provide insight into the individual’s metabolic health. Metabolic57

disease may disrupt the glucose-insulin balance by reducing sensitivity to insulin over58

time as occurs in type-2 diabetes, or by causing damage to the beta cells and pancreas59

as occurs in type-1 diabetes and cystic fibrosis (CF).60

CF is a life-limiting genetic disorder wherein a mutation in the CF transmembrane61

conductance regulator gene causes thick, dry mucous to restrict flow through narrow62

passages in the body, especially within the lungs and pancreas. Cystic fibrosis-related63

diabetes (CFRD) is the most common comorbidity associated with CF; up to 20% of64

adolescents and 30% to 50% of adults with CF develop CFRD [17], and incidence of65

CFRD is expected to rise as improved therapeutics for CF increase life expectancy for66

CF patients. Although insulin sensitivity is reduced in patients with CFRD, impaired67

beta-cell function is considered to be the primary contributor to early etiology of68

CFRD [2, 15, 19]. However, recent work has demonstrated that there are distinct69

changes in beta-cell function and insulin sensitivity across glucose tolerance stages70

in the progression to CFRD [19]. Loss of early insulin release leads to a pattern of71

elevated glucose levels at 140 min in an OGTT in CF patients well before they reach72

diagnostic criteria for CFRD, but even mild dysglycemia is associated with decreased73

pulmonary function in this population. With progressive loss of beta-cell function74

driven by myriad factors related to CF, insulin insufficiency leads to CFRD and is75

associated with increased mortality. [12].76

Many methods have been proposed for assessing beta-cell function and include77

simple indices, deconvolution-based methods, and methods relating insulin secretion78

to glucose concentration [26, 3, 15, 14, 9]. The most sensitive methods for assessing79

beta-cell function consider ISR and can aid in monitoring the progression of meta-80

bolic dysregulation and disease. The rate of insulin secretion in response to a glucose81

challenge provides insight into an individual’s beta-cell function and aids in monitor-82

ing the progression of metabolic dysregulation and disease. The release of insulin,83

however, cannot be observed in real-time during a physiological oral test, thus mo-84

tivating the need for inference of ISR from available data. C-peptide, a polypeptide85

produced in a 1-to-1 molar ratio with insulin and ultimately cleaved from the fully86

formed insulin molecule, is used as a surrogate measure of the insulin secreted by the87

pancreas because C-peptide, in contrast to insulin, is not cleared by the liver and is88

therefore a more accurate marker of the dynamics of secretion.89

We propose a novel method for inferring insulin secretion rate (ISR) with uncer-90

tainty in a cohort of youth with and without CF. Our approach introduces a novel91

2

This manuscript is for review purposes only.



statistical model that combines an established differential model of intra- and ex-92

travascular C-peptide dynamics with a Gaussian process model of ISR in order to93

provide clinical measures of beta-cell function with quantified uncertainty. To relate94

ISR to the measured values of C-peptide following an oral glucose stimulus during an95

OGTT, we employ the two-compartment model from [7]:96

(1.1)

Ċ1(t) = −(k1 + k3)C1(t) + k2C2(t) + S(t), C1(0) = C0,

Ċ2(t) = k1C1(t)− k2C2(t), C2(0) =
k1
k2

C0,
97

where C1(t) represents the intravascular C-peptide concentration at time t (which can98

be observed at discrete times via blood sampling), C2(t) the extravascular C-peptide99

concentration, and S(t) the ISR. The initial conditions are chosen so that the system100

is in equilibrium at time t = 0. For each participant, the kinetic parameters k1, k2,101

and k3 are determined based on age and metabolic health. Van Cauter and colleagues102

identified standard parameters for C-peptide clearance accounting for obesity and age103

using a least-squares regression in a heterogeneous population of adults as described104

in [26]. They also showed that standard parameters rather than individually derived105

parameters could be used to model C-peptide clearance without a significant loss of106

accuracy. These parameters are taken as known in our model.107

We demonstrate that, by modeling S as a Gaussian process, we can infer a108

closed form for S(t) from discrete samples of C-peptide concentration taken during109

an OGTT. We apply this method to estimate several ISR-derived measures in order110

to characterize the impacts of CF on beta-cell function and glucose-insulin dynamics111

in our cohort.112

The paper is structured as follows: section 2 presents the materials and meth-113

ods, including study design, mathematical and statistical modeling, and ISR-derived114

measures of beta-cell function and metabolic health; section 3 details the results from115

analyzing synthetic data as well as clinical data from youth with and without CF; and116

lastly, section 4 discusses the contributions of the paper to secretion rate modeling117

and the implications of the results for CF in youth.118

2. Materials and Methods.119

2.1. Study Participants. A cohort of 82 participants with and without CF120

aged 6 to 25 years were enrolled as part of a study of early glucose abnormalities121

in youth with CF. Appropriate consent and assent were obtained, and this study122

was approved by the Colorado Multiple Institutional Review Board. Participants123

without CF (healthy controls) were identified using recruitment flyers and emails at124

the University of Colorado Anschutz Medical Campus. Exclusion criteria for healthy125

controls included known diabetes or pre-diabetes, overweight or body mass index126

(BMI) greater than or equal to the 85th percentile according to percentile growth127

charts in youth, acute illness, history of chronic disease, or pregnancy. Participants128

with CF were recruited from pulmonary and diabetes clinics at Children’s Hospital129

Colorado. Inclusion criteria for participants with CF included diagnosis of CF by130

newborn screen, sweat chloride testing, or genetic testing. CF patients with known131

glucose abnormalities along the entire glycemic spectrum were included. Exclusion132

criteria for participants with CF included known type 1 or type 2 diabetes, use of133

medications affecting glucose metabolism (other than insulin) in the prior 3 months,134

hospitalization in the prior 6 weeks, or pregnancy. CFRD is defined as a 2h glucose135

concentration of >200 mg/dL or a fasting glucose concentration of >126 mg/dL ob-136

served during an OGTT [16]. Some participants with CFRD use exogenous insulin to137
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help regulate blood-glucose. For these insulin-dependent (ID) individuals, exogenous138

insulin was not administered for 24 hours prior to OGTT so measured glucose-insulin139

dynamics reflect physiological interactions. Among the 82 participants, 17 were clas-140

sified as healthy controls, 51 as CF without CFRD (CF controls), and 12 as having141

CFRD. Four participants (1 healthy control, 2 CF control, and 1 CFRD) had missing142

data and were excluded from analysis.143

2.2. Laboratory Procedures. Study visits took place in the Clinical Trans-144

lational Research Center at Children’s Hospital Colorado between October 2015 and145

May 2018. Height, weight, and vital signs were obtained. A physical exam, including146

pubertal staging using the method of Tanner, was completed by a single pediatric en-147

docrinologist. Participants arrived to the outpatient research center between 8 a.m.148

and 10 a.m. after a minimum of 8 hours of fasting. All participants underwent oral149

OGTT. Glucola was administered at a dose of 1.75 g/kg (maximum 75 g). As the150

study involved youth participants, a reduced 3-hour schedule was chosen to minimize151

the strain and physical burden of the OGTT on the participants [5]. Measurements of152

glucose, insulin, and C-peptide were taken at -10, 0, 10, 20, 30, 60, 90, 120, 150, and153

180 minutes with time 0 corresponding to the administration time of Glucola. Time154

-10 corresponds to 10 mins prior to Glucola administration and was used to establish155

basal values of glucose, insulin, and C-peptide. The protocol includes more frequent156

sampling in the first half hour following Glucola administration when measured me-157

tabolites are expected to change most quickly.158

2.3. Data and Process Models. The differential system (1.1) relating ISR to159

the measured C-peptide values can be rewritten in matrix-vector form as160

(2.1)

[
Ċ1(t)

Ċ2(t)

]
=

[
−k1 − k3 k2

k1 −k2

] [
C1(t)
C2(t)

]
+

[
S(t)
0

]
.161

Equation (2.1) demonstrates that (1.1) is linear and non-homogeneous, with forcing162

provided by S(t). Suppose the matrix of coefficients in (2.1) has eigenvalue-eigenvector163

pairs {λ1, [u1, u2]
T } and {λ2, [v1, v2]

T }, and define above basal C-peptide and ISR c164

and s, respectively, as165

c(t) := C1(t)− C0, and166

s(t) := S(t)− S(0) = S(t)− k3C0.167168

With this change of variables, the integral equation form of (2.1) reduces to169

(2.2) c(t) =
1

u1v2 − v1u2

[
u1v2e

λ1t

∫ t

0

e−λ1τs(τ)dτ − v1u2e
λ2t

∫ t

0

e−λ2τs(τ)dτ

]
170

in terms of c and s. Thus, there is a linear transformation W such that c = Ws.171

Let {τ0, . . . , τm} be the sampling times and {t1, . . . , tn} be the times at which we172

estimate ISR with {τ1, . . . , τm} ⊂ {t1, . . . , tn}. Consider c = [c(τ1) · · · c(τm)]T ∈ Rm173

and s = [s(t1) · · · s(tn)]T ∈ Rn, where n > m. Then, c and s must satisfy174

c = W s+ e,175

where the m×n matrix W discretizes the continuous linear transformation W, and e176

represents the numerical error in estimating the integrals from (2.1) using a quadrature177

rule which tends to 0 as n → ∞. We are able to make n much larger than m: the178
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OGTT protocol has m = 8 sampling points, and we take n = 180. Therefore, these179

numerical errors are neglible relative to the observational errors noted below, and so180

we will not consider the influence of e in subsequent analysis.181

The measured above-basal C-peptide values, z, are taken with observation errors182

ε which are assumed to be independent and normally distributed:183

(2.3) z = W s+ ε, ε ∼ MN(0,ΣC),184

where ΣC is diagonal, and MN(µ,Σ) denotes a multivariate normal distribution with185

mean µ and covariance matrix Σ. In addition, we employ a mixed-effects model for186

the above-basal ISR,187

(2.4) si := s(ti) = α1 + α2ti + y(ti),188

where α1 and α2 are fixed parameters and y is the realization of a zero-mean Gaussian189

process (GP) with Matérn covariance function [8]190

(2.5) Cov (y(t), y(τ)) = σ2kθ(t, τ) = σ2

(
1 +

|t− τ |
θ

)
exp

(
−|t− τ |

θ

)
.191

The Matérn family of covariances is a common choice in Gaussian process modeling192

and offers varying degrees of smoothness with a small number of (hyper)parameters193

left to estimate [23]. In general, a Matérn process with smoothness ν has m mean-194

square derivatives for m < ν. The function (2.5) is obtained by setting the smoothness195

to ν = 1.5, so that any given sample path is C1-smooth. This is a reasonable assump-196

tion given the process that we are modeling, and this is the minimal smoothness197

assumption necessary to enforce the steady-state boundary conditions on our ISR198

estimate.199

In (2.5), y(t) denotes the value of the GP at time t, σ2 represents the variance of200

the GP, and θ represents the time-range of the covariance. This covariance function201

models a GP with sample paths that are continuous with continuous first derivative.202

Since y is a GP, the random vector203

y := [y(t1) · · · y(tn)]
T

204

has a multivariate normal distribution with covariance matrix σ2Kθ, inherited from205

the function σ2kθ as206

(Kθ)ij = kθ(ti, tj).207

The distributions for the GP and its evaluations on the n-node evaluation grid may208

then be summarized concisely as209

y ∼ GP(0, σ2kθ), and

y ∼ MN(0, σ2Kθ).
(2.6)210

Defining matrix X and vector α as211

(2.7) X =

1 t1
...

...
1 tn

 and α =

[
α1

α2

]
,212
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we may rewrite (2.4) as213

(2.8) s = Xα+ y,214

so that (2.3) becomes215

(2.9) z = WXα+Wy + ε.216

The final assumption in our model is that the GP y and the measurement errors are217

independent. Setting V = WX and η = Wy + ε, we rewrite (2.9) as218

z = Vα+ η,219

If we denote the covariance matrix for η by H, then using linear statistics,220

z ∼ MN(Vα, H),221

where222

H = Cov(Wy + ε) = σ2WKθW
T +ΣC .223

2.4. Steady-State Condition. Participants undergo a minimum 8 h fast prior224

to the OGTT, so the plasma glucose, insulin, and C-peptide concentrations are as-225

sumed to be at steady state at the beginning of the protocol. To ensure that the system226

(1.1) is in steady state when t = 0, we enforce the initial condition s(0) = s′(0) = 0,227

i.e. that the above-basal ISR and its derivative are 0 prior to the OGTT. From (2.4),228

we have that y0 := y(0) = −α1, and y′0 := y′(0) = −α2. Thus, we condition our229

inference on the assumption that y0 :=
[
y(0) y′(0)

]T
= [−α1, α2]

T = −α.230

Because we model y as a GP, we have the following multivariate normal distribu-231

tion for the vector [yT
0 yT ]T :232

(2.10)

[
y0

y

]
∼ MN

([
0
0

]
, σ2

[
K00 K01

K10 K11

])
,233

where the zero vectors are assumed to be of appropriate dimension, and sub-matrices234

K00, K01, K10, K11 are assembled using equation (2.5) and equations (A.1), (A.3),235

(A.4), and (A.5) found in the appendix. In the Kij sub-matrices, the subscripts t236

and τ are used to denote partial differentiation with respect to the first argument and237

second argument, respectively. These sub-matrices are defined as238

K00 =

[
kθ(0, 0) (kθ)t(0, 0)

(kθ)τ (0, 0) (kθ)τt(0, 0)

]
=

[
1 0
0 1

θ2

]
,239

K01 =

[
kθ(0, t1) · · · kθ(0, tn)

(kθ)t(0, t1) · · · (kθ)t(0, tn)

]
,240

K10 =

kθ(t1, 0) (kθ)τ (t1, 0)
...

...
kθ(tn, 0) (kθ)τ (tn, 0)

 = KT
01,241

K11 = Kθ.242243

Given that y0 = −α, we obtain the following conditional expectation and covariance244

for the random vector y:245

µ∗ = E(y|y0 = −α) = −K10K
−1
00 α, and246

σ2K∗ = Cov(y|y0 = −α) = σ2(Kθ −K01K
−1
00 K10).247248
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We also condition the covariance of η:249

H∗ = Cov(η|y0 = −α) = σ2WK∗WT +ΣC .250

2.5. Hyperparameter Estimation. Denote by ℓ(σ2, θ,α; z) the log-likelihood251

of our hyperparameters given an individual’s measured C-peptide, z. The Gaussian252

and other model assumptions allow us to write the individual log-likelihood as253

(2.11) ℓ(σ2, θ,α; z) = −1

2

[
(z− Vα)TH∗−1(z− Vα)−m ln(2π)− ln(det(H∗))

]
.254

For any given σ2 and θ, we can apply generalized least squares (GLS) to estimate255

α for the individual. Setting V = WX and η = Wy + ε, we rewrite (2.9) as256

z = Vα+ η.257

Then, the GLS estimate of α is given by258

α̂σ2,θ = (V TH∗−1V )−1V TH∗−1z,259

where the subscripts emphasize dependence on the hyperparameters (via dependence260

on H). We use α̂σ2,θ in all subsequent calculations depending on α.261

Following an empirical Bayes approach, we borrow strength across the C-peptide262

measurements of all participants to estimate cohort values for hyperparameters σ2263

and θ by maximum likelihood. If p participants’ data are analyzed, and the j-th par-264

ticipant has above-basal C-peptide values zj , then the cohort log-likelihood ℓc(σ
2, θ)265

is given by266

(2.12) ℓc(σ
2, θ) =

p∑
j=1

ℓ(σ2, θ; (α̂j,(σ2,θ), zj).267

We then estimate hyperparameters for the cohort as268

(2.13) (σ̂2, θ̂) = argmax
σ2,θ

ℓc(σ
2, θ).269

Although the cohort log-likelihood is nonlinear, a grid search is reasonable to de-270

termine σ̂2 and θ̂ based on the moderate size of this problem and also allows for271

empirically verifying a unique maximum.272

2.6. ISR Reconstruction and Uncertainty Quantification. With hyper-273

parameters σ2 and θ fixed to empirically determined values σ̂2 and θ̂, and with α274

fixed to the GLS estimate α̂, we may approximate the conditional expectation of275

[y|σ2, θ,α,y0] by substituting these estimates of the statistical parameters into the276

conditional distribution to obtain our estimate of y:277

(2.14) ŷ = µ∗ + (WK∗)TH∗−1(z− V α̂−Wµ∗).278

We subsequently reconstruct the ISR profile s as279

(2.15) ŝ = Xα̂+ ŷ,280

which is the best linear unbiased estimator of above-basal ISR with known σ2 and θ.281

Adding the steady-state secretion rate, k3C0, to each component of ŝ yields the total282

ISR approximation, Ŝ.283
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Consider the n×m matrix A whose i-th column, ai, is given by284

(2.16) ai = µ∗ + (WK∗)TH∗−1(ei − Vα−Wµ∗),285

where ei is the i-th standard basis vector in Rm. To quantify uncertainty in our286

inference, we can compute the standard error from the covariance of ŝ, given by287

(2.17) σ2K̂ = σ2(K∗ − (AWK∗)TH∗−1AWK∗),288

so that we obtain the standard error vector from the square roots of the diagonal289

elements of σ2K̂,290

SE =


σ
√
K̂11

...

σ
√

K̂nn

 .291

The pointwise 95% confidence envelope for Ŝ is then given by Ŝ±1.96 ·SE. The Bon-292

ferroni correction with 95% confidence and m = 8 degrees of freedom (corresponding293

to the number of C-peptide measurements during the OGTT) yields conservative up-294

per and lower bounds for the 95% confidence envelope with uniform coverage of ISR295

profiles comprising the envelope as Ŝ± 2.73 · SE.296

2.7. Application of Model to Synthetic and Clinical Data. Since the297

true ISR profile during an OGTT cannot be measured experimentally, we validated298

this method on simulated data for which the ISR was known by verifying that we299

recovered a simulated ISR profile with good confidence from simulated C-peptide300

data. A continuous ISR profile was simulated by inferring the ISR from a healthy301

participant’s OGTT data. We used this known ISR to simulate 3-hour OGTT C-302

peptide data by applying the differential model (1.1) and sampling at time points303

determined by the clinical sampling schedule. We computed the pointwise confidence304

bounds with a Bonferroni correction as described in subsection 2.6.305

The ISR reconstruction approach was also applied to the C-peptide data collected306

from the cohort of control, CF control, and CFRD participants. For the inferred307

ISR we computed the pointwise confidence bounds with a Bonferroni correction as308

described in subsection 2.6.309

2.8. ISR-Based Measures of Beta-Cell Function. A functional reconstruc-310

tion of ISR provides several key measures to assess different features of beta-cell311

function. We analyze the ISR area under the curve (AUC) in the first 30 min of the312

OGTT; the ISR AUC over the full 3 h OGTT; ISR time-to-peak (TTP); and the313

slope α2 of the linear component of the mixed-effects model (2.8). All AUCs were314

computed numerically by composite trapezoid rule. The numerical approximation315

error will be small due to the flexibility in choosing a large number of node points (n)316

for estimating the ISR curves.317

Because the covariance provides a complete description of uncertainty (2.17),318

linear statistics enable us to propagate uncertainty in the ISR prediction through to319

indices of beta-cell function. For example, if w ∈ Rn is a vector of weights associated320

with composite trapezoid rule, the covariance of the ISR AUC estimate, wT s, is given321

by322

(2.18) Cov(wT s) = wT Cov(s)w = σ2wT K̂w.323

Thus, the covariance of the ISR AUC estimate can be directly related to the covariance324

of ISR itself.325
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2. 9. S t a ti s ti c al A n al y s e s. We a n al y z e di ff er e n c e s b et w e e n m e a s ur e s a cr o s s3 2 6

gr o u p s u si n g t h e Kr u s k al- W alli s r a n k- s u m t e st d u e t o f a ct or s s u c h a s n o n- n or m alit y of3 2 7

c o m p ut e d m e a s ur e s, n o n- u nif or mit y of s a m pl e si z e s, a n d r el ati v el y s m all s a m pl e si z e s3 2 8

f or t h e h e alt h y c o ntr ol a n d C F R D gr o u p s. I n c a s e s w h er e di ff er e n c e s b et w e e n gr o u p3 2 9

m e di a n s ar e o b s er v e d wit h 9 5 % c o n fi d e n c e, p o st h o c a n al y s e s ar e p erf or m e d wit h t h e3 3 0

p air wi s e Wil c o x o n r a n k- s u m t e st. T h e p - v al u e s ar e r e p ort e d, a n d c o m p ari s o n s wit h3 3 1

p < 0 .0 5 ar e c o n si d er e d st ati sti c all y si g ni fi c a nt.3 3 2

3. R e s ul t s.3 3 3

3. 1. C o h o r t H y p e r p a r a m e t e r s. T h e n u m b er of p ol y n o mi al b a si s f u n cti o n3 3 4

u s e d i n t h e mi x e d- e ff e ct s m o d el ( 2. 4) w a s d et er mi n e d b y a s s e s si n g t h e l o g-li k eli h o o d3 3 5

s urf a c e s wit h r e s p e ct t o t h e i d e nti fi a bilit y of t h e m o d el h y p er p ar a m et er s. We p er-3 3 6

f or m e d t h e c o h ort h y p er p ar a m et er e sti m ati o n wit h mi x e d- e ff e ct s m o d el s of t h e f or m3 3 7

s (t) =
d

j = 1

α j t
j − 1 + y (t),3 3 8

f or v ar yi n g v al u e s of d (d = 1 , 2 , 3 , 4). We f o u n d t h at t h e m o d el wit h d = 2 yi el d e d a3 3 9
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and are therefore tightest near the points where data was collected. Due to the for-352

ward transformation of ISR to C-peptide concentration and inherent averaging in the353

reconstruction of ISR, the time points corresponding to minimal uncertainty will not354

be mapped directly to OGTT sampling times.355
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(a) Simulated ISR
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(b) Simulated 3h OGTT C-peptide data

Fig. 3.2. (a) ISR profile simulated for a clinical 3h OGTT. (b) Simulated exact C-peptide data
(filled) and noisy C-peptide data (open) sampled according to clinical OGTT schedule.
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(a) ISR reconstruction
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Fig. 3.3. (a) ISR profile reconstructed using noisy data representing observed C-peptide, with
95% confidence bounds containing the simulated (“exact”) ISR curve (dashed) Vertical lines repre-
sent sampling times. (b) C-peptide profile modeled using the reconstructed ISR using the C-peptide
minimal model is consistent with the simulated C-peptide data.
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(c) CFRD: NID
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(d) CFRD: ID

Fig. 3.4. (Top) C-peptide data collected during OGTT with C-peptide profiles estimated from
inferred ISR. (Bottom) ISR profiles reconstructed from OGTT data with 95% confidence sets. Ver-
tical lines represent OGTT sampling times. From left to right, sample reconstructions for a (a)
healthy control participant, (b) CF control participant, (c) non-insulin-dependent CFRD participant
(CFRD: NID), and (d) insulin-dependent CFRD participant (CFRD: ID).

3.3. Analysis of Clinical Data. We present the results from applying our356

method to OGTT C-peptide data from youth participants with and without CF. We357

include some representative examples of ISR reconstruction and discuss ISR-derived358

measures of beta cell function for the full cohort.359

3.3.1. ISR Reconstruction. OGTT data and corresponding inferences for ISR360

and C-peptide are shown in Figure 3.4 for representative participants across the three361

groups (healthy control, CF control, and CFRD). Within the CFRD group, we in-362

clude results from two participants: one non-insulin-dependent (NID) individual and363

one insulin-dependent (ID) individual. The measured C-peptide profiles for these364

representative participants demonstrate a range of features including multiple peaks365

(Figure 3.4A), delayed time to peak (Figure 3.4B, C), and a gradual upward drift366

for the duration of the OGTT (Figure 3.4D). These features are recapitulated by the367

inferred ISR profiles.368

3.3.2. ISR-Based Measures of Beta-Cell Function. In Table 3.1, we pres-369

ent the non-parametric analysis of model-based measures of beta-cell function based370

on the inferred ISR profile including 30 min ISR AUC, 3 h ISR AUC, ISR TTP, and371

trendline slope (α2). Median values increase for each of 3 h ISR AUC, ISR TTP,372

and trendline slope, α2,) from the healthy control values to the CF control values373

to the CFRD values. Inversely, the median values for the 30-min ISR AUC decrease374

from healthy controls to CF controls to the CFRD group. As statistically significant375

differences were observed across the groups for each measure considered, post hoc376

results were computed (Table 3.2). The post hoc tests showed statistically significant377

differences with at least 95% confidence across all pairs of groups for 3-h ISR AUC and378

ISR TTP. For 30-min AUC, a statistically significant difference was observed between379

the two CF groups and the healthy controls, and a statistically significant difference380

was observed in the slope α2 between the CFRD group and the two control groups.381
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Fig. 3.5. ISR AUC estimates with confidence bounds. (Left) AUC computed over first 30 min.
(Right) AUC computed over duration of OGTT (3 hours).

Figure 3.5 depicts ISR AUC for the first 30 mins of the OGTT and ISR AUC for382

the full 3 hour OGTT with 95% confidence intervals for each participant. In general,383

the amount of insulin secreted within the first 30 mins of the OGTT was suppressed in384

participants with CF. By contrast, the AUC inferred for the entire OGTT was highest385

in the CFRD group and lowest in the control group. This summary of individual data386

highlights overall trends of as well as the range of interindividual differences in beta-387

cell function in these groups.388

Table 3.1
ISR-based results from non-parametric (Kruskal-Wallis) test. Quantities analyzed are ISR area

under the curve (AUC), ISR time to peak (TTP), and slope of the trendline (α2). Median values
are shown for each group, and a statistically significant difference is observed between medians for
each quantity analyzed with at least 95% confidence.

Quantity CTRL CF CTRL CFRD H-Statistic p-Value
Sample Size 16 51 11 —– —–
30min ISR AUC (pmol/L) 3132.078 1415.844 1266.425 19.93 0.0005
3h ISR AUC (pmol/L) 12142.89 14998.13 24190.61 15.38 0.0005
ISR TTP (min) 26.5 72.0 100.0 34.68 <0.0001
α2 (pmol/L/min2) 0.282 0.363 0.858 8.54 0.0139

Table 3.2
ISR-based results from pairwise Wilcoxon analysis.

Quantity CTRL & CF CTRL CF CTRL & CFRD CTRL & CFRD
30min ISR AUC <0.0001 0.6450 0.0049
3h ISR AUC 0.0336 0.0057 0.0002
ISR TTP <0.0001 0.0048 <0.0001
α2 0.2086 0.0319 0.0098
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3.3.3. Sensitivity of Results to Kinetic Parameters. As described in the389

Methods, the kinetic parameters k1, k2, and k3 were specified using the equations390

described by Van Cauter and colleagues in [26] and taken as known. To determine391

the sensitivity of the model estimates to the kinetic parameters k1, k2, and k3, we392

simulated ISR and computed 30 min ISR AUC and 3 h ISR AUC for C-peptide393

data from our cohort with a distribution of kinetic parameters. This distribution was394

determined by combinations of health statuses considered in the Van Cauter equations395

with ages ranging from 6 to 50 years. We found that the 30 min ISR AUC varied by396

less than 5% from the mean and the 3 h ISR AUC varied by less than 9% from the397

mean.398

4. Discussion.399

4.1. Summary of Results. We have demonstrated that our method success-400

fully reconstructs a participant’s ISR profile from C-peptide OGTT data, with quan-401

tifiable uncertainty that can be propagated through to computed metrics of beta-cell402

function that depend on ISR. The ability to pool all participant data together to403

estimate hyperparameter values using a simple maximum likelihood approach offers404

value to researchers applying this method by allowing for increased predictive power405

despite sparse sampling schedules. The 30 min ISR AUC and TTP values calcu-406

lated from reconstructed ISR profiles demonstrate a suppressed early insulin response407

among the CF control group compared to the control group. This suppressed early408

insulin response occurs in conjunction with an increase in the overall insulin released409

as assessed by the 3 h ISR AUC. Both of these effects are amplified with the pro-410

gression to CFRD and suggest deterioration of beta cell function likely caused by the411

scarring and fibrosis of the pancreas that occur in CF. These findings are consistent412

with previous results on metabolic dysregulation in people with CF [4, 22, 25] and413

provide support for the presented statistical model as a clinically relevant tool for414

ISR inference. In particular, the simple ISR AUC offers an easily calculable index of415

beta-cell function that, in conjunction with other indices, may be useful in monitoring416

metabolic health for individuals with (or at risk of developing) metabolic disorders,417

including those originating from CF.418

The differences in the individual 30-min ISR AUC and 3-hour ISR AUC (Fig-419

ure 3.5) within CF and CFRD groups illustrate the individual and often insidious420

nature of CFRD onset and progression. For instance, an individual with CF that421

does not meet the OGTT-determined CFRD criteria may still exhibit metabolic dys-422

function via delayed insulin action, which may be a manifestation of a suppressed423

first-phase insulin response, reduced sensitivity to insulin, or a combination of the424

two.425

4.2. Motivation for Statistical Model. The covariance structure is a key426

component of the model presented, as it places the estimates on a firm mathematical427

foundation with avenues to stable and efficient computation even given sparse sam-428

pling and ill-conditioned systems that are common in ISR reconstruction and other429

applications in mathematical physiology. As the choice of covariance function used to430

model ISR determines the function space for our possible ISR inferences, additional431

physiologic information may be built in to improve ISR estimates and confidence432

bounds. Pulsatile insulin secretion [20, 24], for example, is a known phenomenon that433

may inform the construction of a customized covariance function for ISR inference.434

Several methods in the literature use deconvolution to infer ISR from C-peptide435

data at varying levels of sparsity [7, 9, 10, 15, 20]. In [3, 5], deconvolution is applied436

13

This manuscript is for review purposes only.



instead to glucose data in order to estimate the derivative of glucose during the437

OGTT. While many of the existing deconvolution methods are designed for metabolic438

experiments with more frequent sampling, [3] and [9] may be applied to OGTT data439

with a sparse sampling schedule. A common strategy in this family of methods is440

a penalized least squares approach, where fidelity to data is optimized against some441

penalized term(s), often representing roughness or other traits undesirable in the442

estimate. Roughness is commonly quantified via the norm of a finite-difference matrix443

[6, 9], controlling some derivative of the inferred profile. While allowing for control444

over desired features of the reconstruction, these methods typically require large-scale445

random search, e.g. MCMC, in order to achieve physiologically realistic profiles and446

to also quantify uncertainty.447

Our approach avoids such large-scale Monte Carlo searches by invoking the linear448

properties of Gaussian processes and writing all distribution information explicitly.449

Nonetheless, the method maintains predictive power stemming from the choice of450

covariance function used to model the Gaussian process and the calculation of cohort-451

wide hyperparameters.452

The mixed-effects model (2.4) and choice of covariance in (2.5) offer several ad-453

vantages to ISR reconstruction from sparse C-peptide OGTT data. First, the mixed-454

effects nature has the flexibility to include additional covariates that support estima-455

tion of ISR and stable numerical computation, e.g. in (2.14), involving potentially456

ill-conditioned matrices. Additionally, the Matérn covariance function chosen guar-457

antees that the estimated ISR profile will be sufficiently smooth to enforce the ini-458

tial steady-state condition. Numerical stability is supported by regularization of our459

estimate [6], and we note that this arises naturally in the form of the conditional460

distribution. There is an equivalence between the empirical Bayesian problem and461

the unconstrained variational problem462

(4.1) min
y∈Rn

(z−W (Xα̂− y))TΣ−1
C (z−W (Xα̂− y)) + σ2yTK−1y.463

In (4.1), the second term is interpreted as a penalty with σ2 controlling its weight464

in the optimization. This variational formulation alone is not rich enough to provide465

estimates of σ2 and θ and is in contrast to a likelihood or Bayesian approach.466

4.3. Kinetic Parameters and Time Scales. The kinetic parameters k1, k2,467

and k3 specify time constants (1/λ1 and 1/λ2) for the model (2.1) on the order of 5 and468

35 min. These time constants reflect properties of C-peptide clearance and exchange469

rates in participants based on biometrics, and they are determined independently of470

the OGTT data. By contrast, the time constant θ that appears in the Gaussian471

process reflects the model’s ability to resolve the ISR dynamics given the sampling472

schedule and variation in observed values. We pooled the data from the entire cohort473

of participants to arrive at our estimate θ̂ on the order of 17 min. With this time-474

range, values of ISR located more than 29 min apart have a correlation of 0.5 or475

less. Data sets with different data collection protocols or participant populations may476

yield different hyperparameter values, affecting the range of time points with strong477

autocorrelation. For example, with more frequent sampling, the time-range of the GP478

may be resolvable to the fast time-scale observed in the differential C-peptide model.479

The credible intervals of the ISR estimates will depend on the interactions between480

these contributing factors.481

4.4. Limitations of Current Modeling Approach. There are several limita-482

tions to this modeling approach. This method allows for estimation of aphysiological483
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negative values of ISR and the 95% confidence envelope. From the overall cohort of484

82 participants, seven individuals’ (representing all three groups) ISR profiles were485

estimated to have negative values. However, these negative excursions were typically486

small and brief, and therefore, minimally affected measures of beta-cell function that487

depend on the ISR profile. This issue has been observed in other methods of ISR488

reconstruction, and has been addressed by adding an additional penalty term to the489

cost function in the governing optimization problem [9] or by constraining the opti-490

mization to preclude non-negative values [10]. Alternatively, in future work we can491

modify our modeling structure to build non-negativity into the process level of the492

Bayesian hierarchical model rather than add an additional penalty term to the objec-493

tive function being optimized. This will allow numerical implementation to remain494

cost-efficient and avoid large-scale simulation techniques such as MCMC while still495

increasing the model’s predictive power.496

In addition, the kinetic parameters k1, k2, and k3 are taken as known in our497

model based on results established in adults with and without type 2 diabetes [26].498

Our numerical experiments with the kinetic parameters indicate that the method499

and resulting estimates of 30 min and 3 h ISR AUC are much more sensitive to the500

C-peptide data than to kinetic parameters derived from biometric input. Although501

this suggests that uncertainty in the data affects estimated ISR more strongly than502

uncertainty in the kinetic parameters, the biometric dependence of kinetic parameters503

established in [26] has not been validated in pediatric populations or in patients with504

cystic fibrosis. Bayesian approaches to estimate these parameters more generally have505

been proposed [21]. However, improved estimates for these parameters are needed in506

populations with diverse genetic backgrounds, body types, ages, and disease status.507

Moreover, future approaches considering uncertainty in kinetic parameters could prop-508

agate this additional source of uncertainty to measures such as 30 min and 3 h ISR509

AUC, thereby further improving confidence in estimates of these quantities.510

ISR is known to depend on glucose concentration and its derivative, and this511

relationship has been exploited in other models of ISR [3, 15, 24, 13, 1]. Our cur-512

rent model structure does not include glucose data. However, the flexibility of the513

mixed-effects structure will allow future incorporation of glucose and its derivative514

into the model in such a way that uncertainty in the data is propagated to all inferred515

continuous profiles and model-derived indices. One possible way to add glucose to516

our current model is to use a sigmoidal dependence of ISR on glucose, as proposed in517

[13, 24, 1], in the fixed component of ISR. Modifying the model to include glucose or518

other covariates will allow for additional dynamics-motivated metrics to be estimated519

that can provide a more nuanced picture of individual health and the landscapes of520

heterogeneous metabolic diseases such as CFRD.521

4.5. Implications of Results for Clinical Practice. Most methods for re-522

constructing ISR have been developed in the context of an IVGTT [11]. However,523

OGTTs are the most commonly used protocols for assessing glycemic control in a clin-524

ical setting, and annual OGTTs are a standard component of care for many patients525

with CF. Although sampling from clinical OGTTs is typically more sparse than the526

sampling schedule for this research study, insights into key aspects of altered ISR may527

lead to improved diagnostic tools to detect early beta cell dysfunction. Since even528

mild beta cell dysfunction is associated with decreased pulmonary function in patients529

with CF, early detection of such dysfunction is critical to optimizing CF patient care.530
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Appendix A. Covariance Functions for Steady-State Conditions. We531

define y0 = y(0) with variance532

(A.1) Var(y(0)) = σ2kθ(0, 0) = σ2.533

The covariance function kθ in (2.5) is chosen to be smooth enough that its mixed534

second-order partial derivatives coincide, preserving symmetry and allowing for its535

use in conditioning our ISR inference on an initial derivative value. More precisely, y′536

is a zero-mean GP whose covariance function is the mixed partial derivative of σ2kθ:537

(A.2) Cov(y′(t), y′(τ)) = σ2 ∂
2kθ(t, τ)

∂t∂τ
=

σ2

θ2

(
1− |t− τ |

θ

)
exp

(
−|t− τ |

θ

)
.538

From (A.2), we can compute the variance539

(A.3) Var(y′(0)) = Cov(y′(0), y′(0)) = σ2 ∂
2kθ(t, τ)

∂t∂τ

∣∣∣∣∣
(0,0)

=
σ2

θ2
.540

It remains to specify the covariance between y′ and y, which is determined by the541

appropriate first-order partial derivative of σ2kθ, as follows:542

(A.4) Cov(y, y′) =
∂kθ(t, τ)

∂τ
.543

Further, from the symmetry of kθ,544

(A.5)
∂kθ(τ, t)

∂t
=

∂kθ(t, τ)

∂τ
.545
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