

Mathematical Modeling Reveals Differential Dynamics of Insulin Action Models on Glycerol and Glucose in Adolescent Girls with Obesity

- 1 Griffin S. Hampton¹, Kai Bartlette¹, Kristen J. Nadeau^{2,3}, Melanie Cree-Green^{2,3}, Cecilia Diniz
- 2 Behn*1,2
- ¹Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United
- 4 States.
- ⁵ Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora,
- 6 CO, United States.
- ³Ludeman Center for Women's Health Research, University of Colorado Anschutz Medical Campus,
- 8 Aurora, CO, United States.
- 9 * Correspondence:
- 10 cdinizbe@mines.edu
- 11 Keywords: glycerol, glucose, insulin, insulin resistance, lipolysis, insulin
- 12 Number of words: 5707
- 13 Number of figures: 7
- 14 Number of tables: 1
- 15 Running title: Modeling Dynamics of Insulin Action

Contribution to the Field Statement – 143 words

- 18 Under healthy conditions, insulin regulates blood sugar through action on multiple tissues including
- 19 liver, muscle, and fat. Insulin resistance (IR), which may be tissue-specific, occurs when higher
- 20 concentrations of insulin are required to achieve the same regulation and contributes to metabolic
- 21 disease. Concentration-dependence of insulin action on different tissues has been established, but the
- 22 dynamics of tissue-specific insulin action are not well-understood. In this paper, we develop a
- 23 mathematical model of the interactions between glycerol and insulin to represent dynamic features of
- 24 adipose metabolism during an oral glucose tolerance test. We apply this model to establish that the
- action of insulin on glucose was delayed compared to the action of insulin on glycerol in a cohort of
- 26 IR adolescent girls. Future work is needed to determine how changes in the dynamics of glycerol and
- 27 glucose may contribute to the etiology of metabolic disease.

28

29

17

Abstract – 300 words

- 30 Under healthy conditions, the pancreas responds to a glucose challenge by releasing insulin. Insulin
- 31 suppresses lipolysis in adipose tissue, thereby decreasing plasma glycerol concentration, and it
- 32 regulates plasma glucose concentration through action in muscle and liver. Insulin resistance (IR)
- occurs when more insulin is required to achieve the same effects, and IR may be tissue-specific. IR
- 34 emerges during puberty as a result of high concentrations of growth hormone and is worsened by
- youth-onset obesity. Adipose, liver, and muscle tissue exhibit distinct dose-dependent responses to
- insulin in multi-phase hyperinsulinemic-euglycemic (HE) clamps, but the HE clamp protocol does
- 37 not address potential differences in the dynamics of tissue-specific insulin responses. Changes to the
- dynamics of insulin responses would alter glycemic control in response to a glucose challenge. To
- investigate the dynamics of insulin acting on adipose tissue, we developed a novel differential-
- 40 equations based model that describes the coupled dynamics of glycerol concentrations and insulin
- action during an oral glucose tolerance test in female adolescents with obesity and IR. We compared
- 42 these dynamics to the dynamics of insulin acting on muscle and liver as assessed with the oral
- 43 minimal model applied to glucose and insulin data collected under the same protocol. We found that
- the action of insulin on glycerol peaks approximately 67 minutes earlier (p<0.001) and follows the
- dynamics of plasma insulin more closely compared to insulin action on glucose as assessed by the
- parameters representing the time constants for insulin action on glucose and glycerol (p<0.001).
- 47 These findings suggest that the dynamics of insulin action show tissue-specific differences in our IR
- 48 adolescent population, with adipose tissue responding to insulin more quickly compared to muscle
- and liver. Improved understanding of the tissue-specific dynamics of insulin action may provide
- 50 novel insights into the progression of metabolic disease in patient populations with diverse metabolic
- 51 phenotypes.

52

1 Introduction

- 53 The obesity epidemic now affects a significant portion of the world, causing insulin resistance and
- 54 metabolic dysregulation in multiple organs of the body. The worldwide prevalence of overweight and
- obesity has approximately doubled from 1980 to 2015, affecting adults and children of all ages, and
- is forecasted to reach levels over 50% by 2030 (1, 2). The metabolic syndrome as defined in the
- National Health and Nutrition Examination Survey (NHANES) is related to insulin resistance (IR)
- and shows an increased risk for developing type 2 diabetes and cardiovascular disease. The metabolic
- 59 syndrome was calculated to affect 34.7% of the U.S. population in 2016, with a significant increase
- in the incidence in young adults from 2011 to 2016 (3, 4). Related to this obesity and metabolic

- dysfunction, approximately 34.2 million adults in the United States have type 2 diabetes (T2D) (5),
- and among youth the incidence rate of T2D is also increasing and expected to quadruple from 2010
- to 2050 (6-8). Of grave concern, T2D appears to be much more aggressive in youth than in adults,
- 64 including poor response to interventions effective in adults, and early onset of diabetes complications
- 65 (9-11). Even when dysglycemia is already present, adolescents secrete much higher concentrations of
- 66 insulin than adults, likely driven by their marked IR (12, 13). This high morbidity and the unique
- 67 physiologic features of insulin sensitivity and secretion in youth drive the necessity to specifically
- 68 investigate the systems involved in metabolic disease development in youth. By better understanding
- 69 the unique pathology of metabolic disease in youth, better treatments can be developed and
- 70 personalized for individuals.
- 71 Metabolic dysregulation often arises from an imbalance in energy consumption and expenditure.
- 72 During fasting, energy is primarily provided from energy stored in adipose and hepatic tissue. In a
- healthy individual, when energy is acquired through ingesting food, the mechanisms that provide
- endogenous energy sources are suppressed, so that the ingested fuel can be used and stored. Insulin
- facilitates the transition from an endogenous to exogenous energy source, and it manages glycerol,
- free fatty acid (FFA), and glucose systems across different metabolic states. In addition to
- suppressing the release of glucose from the liver and stimulating glucose uptake in hepatic and
- peripheral tissues (14), insulin is the most potent antilipolytic hormone: it suppresses lipolysis, and
- 79 reduces the use of FFA as an energy source. IR is defined as a decreased biological response to
- 80 insulin, which leads to increased insulin secretion, eventually causing pancreatic β-cell failure and
- 81 T2D (15-17). IR is tissue specific, and it may manifest in individual tissues at different points in
- disease progression. It is hypothesized that the development of IR in adipose tissue, resulting in
- 83 excess circulating FFA and glycerol, may induce IR in other tissues (18). Elevated FFA
- 84 concentrations may contribute to dysglycemia in multiple ways, including impairing β -cell insulin
- secretion and vascular function, and directly inducing hepatic and skeletal muscle IR (16, 18-20),
- thereby emphasizing the importance of characterizing adipose IR.
- 87 The gold standard in assessing insulin action on adipose tissue is a low dose hyperinsulinemic
- 88 euglycemic (HE) clamp with stable isotope tracers. The HE clamp determines the steady state
- 89 concentration of insulin that is necessary to suppress FFA and/or glycerol release into circulation.
- 90 Using different insulin infusion rates as part of a multi-step clamp with glucose and glycerol tracers,
- 91 the insulin sensitivity of adipose, liver, and peripheral tissue can be determined (21). While effective
- at quantifying some aspects of adipose health, the HE clamp is resource intensive and narrow in
- 93 application as it relies on steady state values produced from glucose and insulin infusions rather than
- 94 the coordinated physiologic response that occurs with oral nutrient ingestion (19). Moreover, the HE
- clamp does not provide insight into the dynamics of insulin action on adipose, liver, or muscle tissue.
- An insulin-modified frequently sampled intravenous glucose tolerance test (IM-FSIVGTT) is a
- 97 dynamic test where glucose is administered intravenously followed by an insulin bolus, showing
- 98 metabolic dynamics under non-physiologic circumstances. An oral glucose tolerance test (OGTT) is
- a more physiologically complete dynamic test where participants ingest glucose orally through a
- sugary drink, allowing for the contribution of multiple gut hormones that may also play a role in the
- 101 coordinated response to nutrition. Therefore, to focus on the dynamic response of adipose, liver, and
- muscle tissue to insulin under a more physiologic state, we quantify the dynamics of insulin action on
- glycerol and glucose during an oral glucose tolerance test (OGTT).
- Both glycerol and FFA are released during lipolysis, but glycerol is a better marker of lipolysis due to
- differences in recycling between glycerol and FFA. FFA can either be released from adipose cells
- into the bloodstream or be recycled within adipose cells in a process by which the FFA are

reincorporated into triacylglycerides and absorbed by neighboring cells prior to entry to the

bloodstream (17, 22-28). The process of intracellular and intratissue recycling complicates the

- dynamics of FFA and must be considered when evaluating adipose metabolism with FFA. In
- 110 contrast, because adipose tissue lacks the expression of glycerol kinase (29), glycerol is not recycled
- in adipose tissue as it cannot be reincorporated into triacylglycerides. Instead, circulating glycerol
- produced by lipolysis is taken up primarily by the liver via hepatic glycerol kinase expression,
- allowing glycerol to be phosphorylated and reincorporated into triacylglycerides (24, 28, 30). The
- absence of local glycerol recycling in adipose makes glycerol an appealing metabolite to track
- adipose metabolism. Whereas lipolysis from adipose tissues is the primary source for intravascular
- glycerol, a small proportion of glycerol is also produced via glycogenolysis and gluconeogenesis
- 117 (31). These synthetic processes are regulated by glycerol-3-phosphate phosphatase and
- phosphoglycolate phosphatase which control the amount of glycerol made by glycogenolysis in the
- fasting state, and then gluconeogenesis in the fed state (32). It is estimated that up to 10-15% of
- intravascular glycerol during prolonged fasting may be attributed to these processes, but the
- proportion attributed in the fed state is not as clear. The fasting contribution from glycogenolysis is
- higher with long fasting durations. In our study, participants had a monitored fast of 12 hours, so the
- 123 contribution from glycogenolysis is expected to be low. The contribution from gluconeogenesis is
- related to serum glucose concentrations. As none of our participants had diabetes, the contribution
- from this pathway is also expected to be low. Therefore, we consider changes in glycerol
- concentration to primarily reflect insulin-mediated changes in lipolysis.
- Mathematical models of glucose metabolism have contributed a fundamental understanding of
- interactions in glucose and insulin dynamics (33, 34). These models describe how insulin induces
- glucose uptake by peripheral tissue and reduces glucose production from endogenous sources under
- different experimental conditions, and the Oral Minimal Model (OMM) describes glucose dynamics
- during an OGTT (35-39). Although insulin concentrations may be modeled directly (37, 40-42), an
- intermediate variable of insulin action is often introduced to account for the delay between changes in
- insulin concentrations and observed effects on glucose concentrations (35, 36), and this delay may
- increase as insulin sensitivity decreases. The concepts of glucose metabolic modeling have also been
- extended to other tissues and metabolic systems including adipose tissue (40, 43-47). In previous
- work we modeled glycerol dynamics with an implicit insulin effect on the glycerol rate of appearance
- that was estimated using glycerol stable isotope tracer data (48). Periwal and colleagues proposed a
- that was estimated using gryceror stable isotope tracer data (46). Ferrwar and correagues proposed a
- model of interacting FFA and insulin dynamics to measure adipose metabolism during an IM-
- 139 FSIVGTT (44). Their model used a Hill function to represent insulin action-dependent lipolysis and
- described both glucose and FFA dynamics using a single insulin action term, suggesting that the
- dynamics of insulin action on glucose and FFA were similar in this study. These models have been
- successfully employed to assess adipose metabolism in translational studies utilizing IVGTTs (49,
- 143 50).
- To characterize the dynamics of orally-stimulated adipose metabolism, we develop a differential-
- equations based mathematical model that describes the interaction between glycerol and insulin
- concentrations during an OGTT. We use the modeling infrastructure of existing FFA models as a
- basis for our glycerol-insulin model, and we explicitly represent the effects of insulin on lipolysis.
- We apply the glycerol-insulin model and the OMM to OGTT data from a population of obese and
- overweight adolescent girls with and without polycystic ovary syndrome (PCOS). This population is
- characterized by a significant degree of IR and metabolic dysregulation (38, 51). To quantify tissue-
- specific insulin action, we compare simulation results and model parameters associated with the
- glycerol model and the OMM. The differences in the dynamics of insulin action on glycerol and
- glucose systems were the primary focus of this study.

2 Methods

154

155

2.1 Participants

- 156 The development of the glycerol model and analysis of insulin action dynamics was conducted on
- data collected in the APPLE (Androgens and Post-Prandial LivEr metabolism: liver and fat
- regulation in overweight adolescent girls; NCT02157954) study. This study was performed to
- explore metabolic abnormalities associated with PCOS and develop new adolescent specific models
- to understand IR. It was approved by the Colorado Multiple Institutional Review Board. All
- participants provided informed consent if they were 18-21 years old or parental consent and
- participant assent if they were 12-17 years old.
- The participants were recruited for this cross-sectional study from pediatric clinics at Children's
- Hospital Colorado. The inclusion criteria were age 12 to 21 years, female sex, postpubertal Tanner
- Stage 5 status, at least 18 months post-menarche, and overweight/obese status (BMI \geq 90th percentile
- 166 for age and sex). The participants had a sedentary lifestyle (< 3 hours routine exercise per week,
- validated with both a 3-day activity recall and 7-day accelerometer use). The exclusion criteria were
- a confirmed diagnosis of diabetes (HbA1c \geq 6.5%), pregnancy, anemia, liver diseases other than non-
- alcoholic fatty liver disease (NAFLD), an alanine transferase (ALT) level greater than 125 IU/L, and
- use of medications known to affect insulin sensitivity or glucose metabolism (including systemic
- steroids and antipsychotics) in the last 6 months. Metformin and oral contraceptives were excluded in
- all participants except in metformin (N=6) and contraceptive (N=10) sub-cohorts. Participants with
- 173 PCOS were defined according to the NIH criteria: 1) an irregular menstrual cycle and 2) clinical
- and/or biochemical evidence of hyperandrogenism (52). Total body fat and fat free mass percentages
- was assessed by standard DEXA methods (Hologic, Waltham, MA).
- 176 From the ninety-two studied participants, the population analyzed in this paper was a subset of sixty-
- six participants (eighteen with normal menses and forty-eight with PCOS, described in **Table 1**). Of
- the ninety-two study participants the following were excluded: sixteen with missing OGTT time
- points precluding modeling and 10 participants randomized to receive exanatide during the OGTT,
- because exenatide is known to alter insulin dynamics.

181 2.2 Protocol

196

- Each participant had two study-visits: 1) an initial consent/screening for eligibility; 2) an overnight
- monitored fast during the follicular phase of the menstrual cycle followed by a six-hour OGTT.
- Before the metabolic study visit, participants refrained from physical activity for 3 days. The
- afternoon and evening prior to the OGTT, each participant consumed an isocaloric diet (65%
- carbohydrate, 15% protein, 20% fat). After the evening meal, each participant refrained from activity
- and followed a monitored inpatient 12-hr fast, followed by a frequently sampled OGTT. Baseline
- fasting metabolite concentrations were determined prior to the OGTT. At 8AM, participants ingested
- 189 75 grams glucose and 25 grams of fructose. Fructose was included to distinguish abnormal hepatic
- 190 fat metabolism. The drink was consumed in a three-minute window at time 0 and blood samples were
- taken at the following time points: -20, -10, 0, 10, 20, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165,
- 180, 210, 240, 300, and 360 minutes. Blood glucose was measured at the bedside with the StatStrip®
- 193 Hospital Glucose Monitoring System (Novo Biomedical, Waltham, MA, USA). Serum insulin was
- measured with radioimmunoassay (Millipore, Billerica, MA, USA). Serum glycerol concentrations
- incastica with radiominationssay (Withpore, Bilicitea, WA, OSA). Scrum gryceror concentra
- were obtained from an ELISA assay (R-Biopharm, Washington, MO, USA).

2.3 Oral Minimal Model for glucose dynamics

- 197 OGTT glucose dynamics for each participant were described using the Oral Minimal Model (OMM)
- 198 (36), a one-compartment mathematical model that describes the effect of insulin on glucose and
- 199 provides an estimate of whole-body insulin sensitivity (S_1), as reported previously (38). Figure 1 is a
- schematic that shows how insulin action affects the uptake term of the glucose dynamics. 200
- 201 The OMM equations are:

$$\dot{G} = -[S_G + X_G]G + S_G G_b + \frac{Ra_{meal}}{V}$$

203
$$\dot{X_G} = \begin{cases} -p_2^G X_G & , I(t) < I_b \\ -p_2^G X_G + p_3 (I(t) - I_b) & , I(t) \ge I_b \end{cases}$$

- where G(t) is glucose concentration in mg/dL; $X_G(t)$ is insulin action on glucose; I(t) is the insulin 204
- 205
- concentration; G_b and I_b are basal glucose and insulin concentrations, respectively; S_G is the glucose effectiveness; p_2^G is a time constant of insulin action; p_3 is a constants of insulin action clearance and 206
- appearance; and $Ra_{meal}(\alpha, t)$ is a piecewise-linear function describing the rate of appearance of 207
- 208 exogenous glucose in the bloodstream. The initial values for the OMM are $G(0) = G_b$ and $X_G(0) = G_b$
- 209 0. Six-hour OGTT data from this population were fit to the OMM implemented in SAAM II (SAAM
- 210 II software v 2.2, The Epsilon group, Charlottesville, VA, USA) as we previously detailed in
- 211 Bartlette et al. (38). The parameters we determined in this prior study were used to model the glucose
- 212 dynamics for all participants in the present study. The insulin action profiles generated from the best-
- fit parameters were the focus of comparison between insulin-mediated glucose and glycerol 213
- 214 dynamics.

Glycerol dynamics model

- 216 Informed by models of FFA dynamics, we developed a differential equations-based model for
- 217 glycerol dynamics that utilizes the concept of insulin action as an intermediate variable between
- 218 measured insulin and its action on adipose tissue. Figure 2 is a schematic of insulin action on
- 219 glycerol dynamics that illustrates insulin action on glycerol production. By contrast with insulin
- 220 action's role to activate glucose uptake in OMM, insulin action in the glycerol model suppresses
- 221 glycerol production. The equations for the glycerol model are as follows:

222
$$\dot{g} = -S_g g + l_0 + \frac{l_2}{1 + \left(\frac{X_g}{X_2}\right)^A}$$

223
$$\dot{X_g} = \begin{cases} -p_2^g X_g & , I(t) < I_b \\ -p_2^g X_g + p_2^g (I(t) - I_b) & , I(t) \ge I_b \end{cases}$$

- where g(t) is the concentration of glycerol in μ mol/L; $X_g(t)$ is insulin action on glycerol; p_2^g is a 224
- time constant of insulin action; I(t) is the insulin concentration; I_b is the basal insulin concentration; 225
- S_q is the effectiveness of glycerol uptake; l_0 is the insulin independent lipolysis rate; l_2 is the insulin 226
- 227 dependent (suppressible) lipolysis rate; X_2 scales insulin action; and A affects how aggressively
- 228 changes in insulin action result in changes of lipolysis suppression. Lipolysis is modeled as the sum
- of an insulin independent lipolysis rate, l_0 , and a Hill function representing insulin action-dependent 229
- 230 lipolysis and describing the transition from maximum lipolysis rate, $l_0 + l_2$, to the minimum lipolysis

- rate, l_0 , as insulin action increases. The Hill function is the functional form that was determined to 231
- best fit the dynamics of FFA suppression (44). 232

Glycerol model fitting process 233

- 234 Before the glycerol model was fit to glycerol data for each participant, the data were truncated to
- 235 reflect the time period from the drink ingestion (t=0) to the time at which the participant's glucose
- 236 concentration reached a nadir concentration following the glucose excursion induced by the drink.
- 237 The choice to fit data from t=0 to the glucose concentration nadir avoided physiological
- 238 complications due to the high prevalence of reactive hypoglycemia in this population, and it provided
- 239 a standard check point by which to compare participants. More details are included in the Discussion.
- 240 The basal concentration of insulin was determined by averaging the concentrations at timepoints -20,
- 241 -10, and 0 min. The model was then fit to the truncated data in MATLAB (Mathworks, Natick, MA)
- 242 using the interior point algorithm FMINCON and the built-in ode solver ODE23S with an absolute
- 243 tolerance of 1e-10. The FMINCON algorithm minimized an objective function analogous to the
- 244 objective function described in Periwal et al. 2008 and Li et al. 2016 (44, 45). Briefly, this objective
- 245 function uses single spectrum analysis with only one eigenvalue retained to generate a representative
- 246 smoothing of the data. Variance of the data is calculated by squaring the standard deviation of the
- 247 squared difference between the experimental data and the representative smooth curve generated
- 248 from the single spectrum analysis. The error term is the sum of the square differences between the
- 249 experimental data and the numeric solution produced by ODE23S divided by the calculated variance.
- 250 As in previous work, we fixed the parameter A to 2 because the model was not sensitive to this
- 251 parameter and fixing it improved model identifiability (45).
- Lipolysis parameters were seeded in a physiological range between 0 and approximately 200% of the 252
- analogous parameter values reported by Periwal and colleagues (44). The S_g and p_2^g parameters were seeded between 0 and 1. If the initial parameters did not produce a valid model state (i.e., model 253
- 254
- states were not real or positive), all parameters would be randomly reseeded until the initial model 255
- 256
- state was valid. For the optimization, all parameters were constrained to be nonnegative and parameters representing proportions, S_g and p_2^g were restricted to range between 0 and 1. The 257
- glycerol and insulin concentration data for each participant were fit with FMINCON 75 times. The 258
- 259 solution with the lowest objective function value of the 75 runs was selected as the best fit parameter
- 260 set.

261

2.6 Analysis of insulin action dynamics

- 262 All analysis was done in MATLAB (Mathworks, Natick, MA). To quantify the differences in insulin
- action dynamics associated with glucose and glycerol, we defined three metrics on the insulin action 263
- 264 profiles. The first metric determines the difference in time between the insulin action peak for each
- metabolite and the peak insulin concentration. The magnitudes of each delay were computed for both 265
- 266 glucose and glycerol for all participants and compared with a Wilcoxon signed rank test. The
- 267 Wilcoxon test was chosen to compare the two distributions because the data are paired and not
- 268 normally distributed. Since the dynamics of glucose and glycerol come from the same participant,
- 269 using the same insulin concentrations as a forcing function, the samples are not independent.
- 270 The second metric determines the difference in time between the insulin action peak for glucose and
- 271 the insulin action peak for glycerol. This measure describes the relative timing of insulin action for
- 272 each metabolite. The difference in timing for glucose and glycerol action was evaluated using a one-

- 273 sample Student's t-test to establish if the difference was equal to zero. The third metric determines
- 274 the difference in the normalized insulin actions at the time point associated with the glucose nadir
- 275 (i.e., the lowest glucose value after the glucose peak). This measure quantifies the relative strength of
- 276 insulin on the glucose system compared to the glycerol system at the time of the glucose nadir. To
- compute this measure, the insulin action curves for each metabolite were normalized by the peak 277
- 278 insulin action values, respectively, and then the insulin action values at the time point associated with
- 279 the glucose nadir were determined. The normalized glycerol insulin action nadir value was subtracted
- 280 from the normalized glucose insulin action nadir value to obtain the relative difference in insulin
- 281 actions at the nadir. The relative difference in the normalized insulin actions at the nadir was
- 282 evaluated with a one-sample Student's t-test to test if the difference was equal to zero.
- In addition to these metrics comparing the insulin action profiles, and we also compared the 283
- estimated parameters p_2^G and p_2^g that govern the insulin action dynamics for glucose and glycerol, respectively. Qualitatively, larger insulin action time constants reflect smaller delays from the insulin 284
- 285
- concentration profile while smaller insulin action time constants reflect larger delays from the insulin 286
- 287 concentration profile. Since the insulin action time constants have an exponential effect on insulin
- 288 action, we compared the magnitude of time constant values for each metabolic system using
- 289
- $log_{10}(p_2^G)$ and $log_{10}(p_2^g)$. The $log_{10}(p_2^g)$ and $log_{10}(p_2^G)$ parameter distributions were not approximately normal. We compared $log_{10}(p_2^G)$ and $log_{10}(p_2^g)$ with a Wilcoxon signed rank test. 290

291 3 Results

292

311

312

Mathematical modeling of glucose and glycerol dynamics

- 293 For each participant we fit OMM and the glycerol model to OGTT data. Following ingestion of the
- 294 drink, glucose and insulin concentrations increased and glycerol concentrations decreased for all
- 295 participants. Although the functional form for insulin action was the same for both models, we found
- 296 that obtaining good fits to the glucose and glycerol data required separate representations of the
- 297 dynamics of insulin action on each metabolite. Figure 3 shows the OMM and glycerol model fits to
- 298 glucose and glycerol dynamics, respectively, for two representative individuals from our cohort.
- 299 These participants were selected to show different dynamic features associated with varying degrees
- 300 of glycemic dysregulation in this population. The first participant's insulin profile has a single insulin
- 301 peak (SIP). The second participant's insulin profile has a secondary peak prior to the main peak
- 302 resulting in a double insulin peak (DIP). The SIP participant reaches peak insulin concentration at 75
- 303 minutes while the DIP participant's insulin peaks at 90 minutes. The magnitude of the insulin
- 304 response for the DIP participant is large compared to that of the SIP participant, more than doubling
- 305 peak insulin from the approximately 300 μU/mL in the SIP participant to approximately 700 μU/mL
- 306 in the DIP participant. In addition, the DIP participant exhibits an insufficient initial insulin response,
- 307 an extended period of hyperglycemia, and an excursion below the basal glucose level to a nadir
- 308 glucose level of 58 mg/dL of glucose, all indicators of poor control of central metabolism. The DIP
- participant is one a subset of individuals in our cohort who exhibits a hypoglycemic response. Both 309
- 310 participants show an increase in glycerol concentrations above basal levels after the glucose nadir.

Dynamics of glucose insulin action are delayed relative to dynamics of glycerol insulin 3.2 action

- Each simulated glucose and glycerol profile has a corresponding insulin action profile. Insulin action 313
- 314 profiles for the representative participants are shown in Figure 4. Both glucose and glycerol insulin
- 315 action time traces rely on the same insulin concentration time series as a forcing function, but distinct

- 316 dynamics for glucose and glycerol in response to insulin give rise to qualitatively different insulin
- action time traces. For both individuals, the glucose insulin action time trace shows a greater delay 317
- relative to the insulin time trace while the dynamics of the glycerol insulin action time trace follow 318
- insulin dynamics more closely. This observation that glucose insulin action has a greater delay 319
- 320 relative to changing insulin concentration than the glycerol insulin action is consistent throughout the
- 321 population and can be quantified using several metrics.
- 322 The results from three metrics comparing distinct features of the insulin action profiles for glucose
- 323 and glycerol in all participants are depicted in the histograms in Figure 5. The differences between
- 324 glucose insulin action and insulin peak timing are larger and more variable compared to the
- 325 differences between glycerol insulin action and insulin peak timing (Wilcoxon signed rank test, p <
- 326 0.001) reflecting the relatively later timing of the glucose insulin action peak (Figures 5A and 5B).
- 327 This relatively later timing of glucose insulin action is also seen in the difference in the timing of
- 328 insulin action peaks for glucose and glycerol, where the glycerol insulin action peak time is
- 329 subtracted from the glucose insulin action peak time (Figure 5C). The glycerol insulin action peak
- 330 time was determined to be earlier compared to the glucose insulin action peak time with a difference
- 331 between peak times significantly different from 0 (Student's t-test, p < 0.001, 95% confidence
- 332 interval: 67.38 ± 13.52). The normalized glucose insulin action is greater than the normalized
- 333 glycerol insulin action at the glucose concentration nadir (Figure 5D). The difference in normalized
- 334 insulin action was positive and significantly different from 0 (Student's t-test, p < 0.001, 95%
- 335 confidence interval: 0.3120 ± 0.0736). This difference indicates that glycerol insulin action
- 336 terminates earlier compared to glucose insulin action relative to the timing of the glucose excursion.
- 337 All of these metrics suggest that the timing of insulin action differs between tissues: glycerol insulin
- 338 action on adipose tissue initiates and terminates earlier relative to glucose insulin action on hepatic
- 339 tissue and muscle.

340

352

Differences in the insulin action time constant

- For glucose and glycerol insulin action models, the insulin action time constant parameters, p_2^G and p_2^g , respectively, govern the dynamics of insulin action. As the insulin action time constant parameters approach one, the insulin action curve approaches the plasma insulin curve. When the distributions of p_2^G and p_2^g were compared across all participants, the p_2^g values for the glycerol model were much greater and were distributed across the range 0 to 1. To evaluate the effect of p_2^G 341
- 342
- 343
- 344
- 345
- and p_2^g on each model, the parameters were base 10 log transformed and compared. The distribution of the log transformed p_2^g and p_2^g values in all participants are shown in **Figure 6**. The estimates of 346
- 347
- the log-transformed parameters were significantly different (Wilcoxon signed rank test, p < 0.001) 348
- 349
- and show a distinct difference in magnitude with p_2^g approximately two orders larger in magnitude than p_2^G . The difference in estimated glycerol p_2^g and glucose p_2^G parameters indicates that insulin has a more immediate effect on glycerol insulin action than on glucose insulin action. 350
- 351

Summary of differences in insulin action dynamics

- To illustrate how insulin action changes relative to each metabolite, trajectories were considered in 353
- 354 the metabolite-insulin action phase plane. Phase planes for each representative participant are shown
- 355 in Figure 7. In each phase plane, the insulin action and metabolite were normalized by their
- 356 maximum value. The phase planes show that changes in glycerol tracked more closely with changes
- 357 in glycerol insulin action compared to changes in glucose and glucose insulin action. Specifically, the
- 358 trajectory for the glycerol model showed an out and back diagonal path with glycerol and glycerol
- 359 insulin action changing together. By contrast, the trajectory for the glucose model showed a cyclic

- 360 path reflecting a time lag in changes in glucose insulin action relative to changes in glucose
- concentration. 361

363

373

4 **Discussion**

4.1 **Summary of results**

- 364 This study introduced a model of interacting glycerol and insulin dynamics in response to an OGTT
- and compared the dynamics of insulin acting on glucose and glycerol in a population of adolescent 365
- 366 girls with obesity and with or without PCOS. To our knowledge, this glycerol model is the first
- 367 mathematical model to describe interactions between glycerol and insulin dynamics. It successfully
- 368 simulated glycerol concentration data over time from the ingestion of the drink to the post-excursion
- 369 glucose nadir, and it demonstrated a suppression in glycerol concentrations in response to insulin
- action. Comparison of results from the glycerol model to results from OMM simulations of glucose 370
- and insulin dynamics showed that the dynamics of insulin action on glucose were delayed when 371
- 372 compared to the dynamics of insulin action on glycerol.

Differential dynamics for glucose and glycerol in adolescent girls

- 374 We quantified the dynamics of insulin action on glucose and glycerol based on model parameters and
- 375 characteristics of the modeled insulin action using several metrics. All of these metrics showed that
- 376 the dynamics of insulin action on glucose were delayed relative to the dynamics of insulin action on
- glycerol during the OGTT, and distinct representations of insulin action on glucose and glycerol were 377
- 378 necessary to describe the metabolite data from our adolescent cohort.
- 379 Although we represent adipose metabolism through glycerol instead of FFA, the difference in
- 380 dynamics we observe for insulin acting on glucose compared to insulin acting on glycerol likely
- 381 reflects the extreme IR with compensatory hyperinsulinemia in our adolescent cohort. Our cohort has
- a significant degree of IR, accompanied by impaired glucose tolerance, with an average two-hour 382
- glucose measurement ≥ 140 mg/dL. Low insulin sensitivity suggests a slower insulin response, 383
- 384 possibly increasing the delay in insulin action on the glucose system compared to the action of
- 385 insulin on the glycerol system. The delayed timing of the insulin peaks in our cohort reflects extreme
- IR consistent with similar populations of adolescents with dysmetabolism (12, 53). In 386
- 387 normoglycemic non-obese youth, peak insulin concentrations occur at 30 min post drink, while the
- 388 insulin peak is at 120 min in adolescents with prediabetes and diabetes (12, 54). Our cohort has an
- 389 insulin peak at 84 ± 47 min. However, the higher insulin concentrations required as a result of IR
- 390 may also play a role in the observed delay of insulin action on the glucose system. The average peak
- 391 insulin concentration for a healthy adolescent insulin profile is approximately 55 µU/mL (54). The
- 392 individuals in our cohort have an average peak insulin concentration of 361 µU/mL. Whereas the
- 393 insulin concentration needed to suppress lipolysis in this population, 40-50 µU/mL, is reached
- 394 quickly after consuming the drink, there is a much longer delay associated with reaching the peak
- 395 insulin concentration which drives maximal glucose uptake (25).
- 396 Adolescents have different metabolic characteristics compared to adults due to pubertally-mediated
- 397 changes in insulin sensitivity, which present in addition to effects of obesity (12). Growth hormone
- 398 alters both lipolysis and glucose metabolism, reducing insulin sensitivity in muscle and peripheral
- 399 tissue, with concentrations peaking during the rapid growth phase of puberty (55, 56). Growth
- hormone may preferentially influence IR in glucose metabolism compared to adipose metabolism 400
- 401 producing a distinct metabolic phenotype in adolescents compared to phenotypes where IR is
- induced by other metabolic pathways. A tissue-specific difference in IR in adolescents could produce 402

- 403 differential metabolic dynamics and is consistent with our findings that data in this cohort requires
- separate models for insulin action on glucose and glycerol during an OGTT.
- By contrast, Periwal and colleagues described glucose and FFA dynamics in an IM-FSIVGTT and a
- 406 mixed meal tolerance test (MMTT) in African American and Caucasian premenopausal women using
- a single model with one form of insulin action (44, 45). In addition to the dissimilarities between
- study populations, distinct dynamics of glucose, insulin, glycerol and FFA among experimental
- protocols may contribute to the differences in our findings. In an IM-FSIVGTT, plasma glucose
- 410 concentrations peak at the beginning of the protocol, and the initial early peak in insulin reflects the
- 411 injection of exogenous insulin and may interact with the endogenous glucose-insulin dynamics and
- diminish endogenous insulin release. In an OGTT, ingested glucose is slowly absorbed and typically
- peaks at least 20 minutes after the administration of the drink (12, 57); endogenous insulin is released
- in response to increased plasma glucose concentrations and acts on glycerol and glucose in a
- 415 concentration-dependent manner. In an MMTT, the absorbance of glucose is slower compared to an
- 416 OGTT due to the presence of fat and protein (45).
- Thus, although, the glucose and FFA model captured the dynamics of two very disparate methods of
- increasing glucose and insulin in an adult population, the temporality of changes in glucose, insulin,
- and FFA were similar within each protocol (all fast in an IM-FSIVGTT and all slow in a MMTT). By
- 420 contrast, an OGTT may highlight distinct dynamics between adipose and glucose metabolism by
- producing physiologic interactions between glucose and endogenous insulin dynamics in the context
- of glucose absorbance that is slower compared to an IM-FSIVGTT and faster compared to an
- 423 MMTT. Thus, differences in study populations and protocols likely contributed to the differences in
- 424 temporality and rate of changes between glucose, insulin, and glycerol and necessitated distinct
- representations of insulin action on glucose and glycerol in our study compared to previous work
- 426 with FFAs (44, 45).

427

4.3 Possible physiologic basis for difference in dynamics

- 428 Insulin regulation of the metabolic pathways for glucose and glycerol occurs through distinct
- mechanisms. The elevation of glucose concentration triggers the release of insulin. The insulin then
- acts so that glucose concentrations decrease back to basal levels. When glucose concentrations return
- 431 to normal, insulin secretion also decreases. Thus, the interaction between glucose and insulin is
- bidirectional. Conversely, the interaction between glycerol and insulin is unidirectional. Insulin
- induces the suppression of lipolysis by regulating the activity of hormone sensitive lipase (20, 58).
- When insulin concentrations decrease, activation of hormone sensitive lipase stops, and glycerol
- concentrations increase. However, glycerol concentration has no effect on insulin concentration.

436 4.4 Limitations

- This model makes several simplifying assumptions about glycerol biochemistry. First, although we
- expect lipolysis to be the primary source of glycerol in our protocol, glycolysis may play a role (31).
- Second, the structure of this glycerol model assumes that the maximum lipolysis rate occurs in the
- initial fasted state, and, therefore, it cannot describe rebounds in glycerol concentrations above basal
- levels. In many participants in our cohort (both SIP and DIP), glycerol concentrations post-
- suppression rose above basal levels, suggesting the involvement of other metabolic pathways. This
- post-suppression rebound was particularly pronounced in the approximately 10% of participants
- demonstrating reactive hypoglycemia (RHG) (51). Hypoglycemia is characterized as a condition
- where blood sugar falls below 60 mg/dL, resulting in warning symptoms and the secretion of
- counterregulatory hormones working to rapidly increase blood sugar levels (51, 59, 60). Along with

- glucagon, catecholamines are released during a RHG response, stimulating lipolysis (61). The current
- 448 glycerol model does not account for these additional metabolic pathways, so we truncated the data at
- 449 the glucose nadir to avoid trying to represent two distinct physiological conditions (the initial glucose
- excursion and the recovery of lipolysis above basal rates) with a single set of parameters. Future
- work should consider extensions of the glycerol model that account for the counterregulatory
- 452 response.
- There are several additional limitations to this study. This model was developed in a highly IR
- population of adolescent girls with a high incidence of non-alcoholic fatty liver disease (NAFLD), a
- 455 condition associated with adipose dysmetabolism. Application of the model to data from healthy
- 456 populations as well as other IR or dysglycemic populations is important to verify the generalizability
- of this glycerol-insulin model to the range of dynamics associated with adipose metabolism. For
- example, in a healthy individual, glycerol may be suppressed earlier in response to a smaller plasma
- insulin peak.

4.5 Summary and implications

- In summary, we have proposed a novel differential equations-based model of interactions between
- 462 glycerol and insulin dynamics that provides a better understanding of glycerol dynamics relative to
- other metabolic processes like glucose metabolism. In addition, this model demonstrates that during
- an OGTT, insulin action on glucose is more delayed compared to insulin action on glycerol in our
- cohort of IR adolescent girls. Although tissue-specific actions of insulin are known to be
- concentration dependent, to our knowledge this is the first study to establish a difference in the
- dynamics of distinct insulin actions. Future work examining the mechanisms implicated in this
- 468 difference and the significance of altered relative glycerol and glucose dynamics to metabolic disease
- development and progression is needed to alleviate the growing burden of metabolic dysregulation.

470 5 Tables and Figure Captions

Table 1: Population Description. These values are reported as population numbers or means \pm the standard deviation.

Variable	Values
Physical Characteristics	
Number (n)	66
Age (years)	15.6 ± 2
Race (n)	
White/Black	59/7
Ethnicity (n)	
Hispanic/non-Hispanic	35/31
Disease State (n)	
Obese Control/PCOS/PCOS+drug	18/33/15
BMI (kg/m²)	35.5 ± 5.7
Weight (kg)	95.8 ± 16.9
Fat Free Mass (kg)	49.6 ± 7.3
Fat Mass (kg)	42.9 ± 10.8
Height (cm)	164.1± 7.1
Waist Circumference (cm)	106.5 ± 11.9

Metabolic Characteristics	
6hr Insulin Sensitivity	
$(dL/kg/min per \mu U/mL)$	$2.9 \pm 2.4 \times 10^{-4}$
Fasting glucose (mg/dL)	90 ± 9
2-hr glucose (mg/dL)	142 ± 25
Fasting glycerol (µmol/L)	118 ± 26
Fasting FFA (μmol/L)	625 ± 139
Fasting Insulin (μU/mL)	26 ± 15
Peak Insulin (μU/mL)	361 ± 207
Peak Insulin Time (min)	84 <u>±</u> 47

- 474 **Figure 1**: Schematic of oral minimal model (OMM).
- 475 **Figure 2**: Schematic of glycerol model.
- Figure 3: Numerical solutions and OGTT data for glucose and glycerol in two representative
- participants. **A, B.** The numerical solutions for glucose (black) are shown relative to the data (blue)
- and insulin (red) concentrations for two representative participants demonstrating a single insulin
- peak (A) and a double insulin peak (B), respectively. C, D. The numerical solutions for glycerol
- (black) are shown relative to the data (blue) and insulin (red) concentrations for the same
- 481 representative participants and show the suppression of glycerol concentrations in response to insulin
- concentrations. The lowest glucose concentration following the glucose excursion is taken to be the
- end point for the glucose and glycerol numerical solutions for each individual.
- Figure 4: Time courses of insulin action on glucose and glycerol for two representative participants.
- 485 **A, B.** The time course of insulin action on glucose plotted against insulin concentrations for two
- 486 representative participants demonstrating a single insulin peak (A) and a double insulin peak (B),
- respectively. C, D. The time course of insulin action on glycerol plotted against insulin
- concentrations for the same two representative participants. All insulin action concentrations are
- and the DIP participant normalized, and the DIP participant
- 490 has higher insulin secretion compared to the SIP participant.
- 491 **Figure 5:** Metrics comparing the dynamics of insulin action on glucose and glycerol across all
- participants. A, B. Histograms of the differences between glucose (A) and glycerol (B) insulin action
- 493 peak timing from insulin peak timing show that insulin peaks are closer to glycerol insulin action
- 494 peaks compared to glucose insulin action peaks (Wilcoxon signed rank test, p < 0.001). C. A
- histogram of the differences between glucose and glycerol insulin action peak timing show that this
- 496 difference is significantly greater than 0 (Student's t-test, p < 0.001, 95% confidence interval: 67.38
- 470 difference is significantly greater than 0 (Student's t-test, p < 0.001, 93/0 confidence interval. 07.36
- \pm 13.52), indicating that peak glucose insulin action occurs at a later time compared to peak glycerol
- insulin action. **D.** A histogram of the differences between normalized insulin actions for glucose and
- 499 glycerol at the glucose nadir shows that the normalized insulin action for glucose is greater than the
- normalized insulin action for glycerol at this time point (Student's t-test, p < 0.001, 95% confidence
- interval: 0.3120 ± 0.0736) and indicates that insulin action on glucose has stronger relative action at
- the glucose nadir.
- Figure 6: Histograms of insulin action time constants for glucose and glycerol across all participants.
- The time constants for insulin action on glucose, p_2^G , (A) are consistently smaller than the time

- constants for insulin action on glycerol, p_2^g , **(B)** (Wilcoxon signed rank test, p < 0.001). This indicates that the time course of insulin action on glucose is more delayed than the time course of 505
- 506
- 507 insulin action on glycerol relative to insulin concentration data.
- Figure 7: Metabolite phase plane trajectories summarize qualitative differences in glucose and 508
- 509 glycerol dynamics relative to insulin action. Plotting normalized metabolite concentrations against
- 510 normalized insulin action concentrations for the representative participants SIP (A) and DIP (B)
- 511 reveals that glycerol concentrations change in a diagonal out-and-back pattern while the glucose
- 512 concentrations change in a cyclic clockwise pattern reflecting the different dynamics of the
- 513 responses.

514

6 **Conflict of Interest/ Disclosure Statement**

- 515 The authors declare that the research was conducted in the absence of any commercial or financial
- 516 relationships that could be construed as a potential conflict of interest.

517 7 **Author Contribution Statement**

- 518 GSH, MCG, and CDB contributed to conception and design of the study. KJN and MCG collected
- 519 the data. GSH, KB, and CDB implemented the mathematical models. GSH and CDB performed the
- statistical analysis. GSH wrote the first draft of the manuscript. MCG and CDB wrote sections of the 520
- 521 manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

522 8 **Funding**

- 523 BIRCWH K12HD057022, NIDDK K23DK107871, Doris Duke Foundation 2015212, Children's
- 524 Hospital Colorado/Colorado School of Mines Collaborative Pilot Award, Mines Undergraduate
- 525 Research Fellowship, Boettcher, Boettcher-Webb Warring, National Science Foundation Grant DMS
- 526 1853511, Nutrition and Obesity Research Core Pilot Grant, P30 DK048520, University of Colorado
- 527 NIH CTSI protocol micro-grant
- 528 This research was also supported by NIH/NCATS Colorado CTSA Grant Number UL1 TR001082

529 9 Acknowledgments

- 530 The authors would like to thank Dr. Laura Pyle for helpful discussions of the statistical approach.
- 531 The authors would like to thank Yesenia Garcia-Reyes, Gregory Coe, and Haseeb Rahat for
- 532 assistance in the APPLE study. The authors would like to thank the participants, their families and
- 533 the CTRC nurses and staff.

534 10 References

- Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. 535 1.
- 536 Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and
- 537 projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7.
- Hirode G, Wong RJ. Trends in the Prevalence of Metabolic Syndrome in the United States, 538
- 539 2011-2016. JAMA. 2020;323(24):2526-8.
- Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in 540
- 541 the United States, 2003-2012. JAMA. 2015;313(19):1973-4.

- 542 5. Control CfD, Prevention. National diabetes statistics report, 2020. Atlanta, GA: Centers for
- 543 Disease Control and Prevention, US Department of Health and Human Services. 2020.
- 6. American Diabetes A. 13. Children and Adolescents: Standards of Medical Care in Diabetes-
- 545 2020. Diabetes Care. 2020;43(Suppl 1):S163-S82.
- 546 7. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence
- 547 Trends of Type 1 and Type 2 Diabetes among Youths, 2002-2012. N Engl J Med.
- 548 2017;376(15):1419-29.
- 549 8. Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, et al. Projections of
- type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic
- modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35(12):2515-20.
- 552 9. Consortium R, Investigators RC. Effects of Treatment of Impaired Glucose Tolerance or
- Recently Diagnosed Type 2 Diabetes With Metformin Alone or in Combination With Insulin
- Glargine on beta-Cell Function: Comparison of Responses In Youth And Adults. Diabetes.
- 555 2019;68(8):1670-80.
- 556 10. Utzschneider KM, Tripputi MT, Kozedub A, Barengolts E, Caprio S, Cree-Green M, et al.
- 557 Differential loss of beta-cell function in youth vs. adults following treatment withdrawal in the
- Restoring Insulin Secretion (RISE) study. Diabetes Res Clin Pract. 2021;178:108948.
- 559 11. Group TS, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, et al. Long-Term
- Complications in Youth-Onset Type 2 Diabetes. N Engl J Med. 2021;385(5):416-26.
- 561 12. Consortium R. Metabolic Contrasts Between Youth and Adults With Impaired Glucose
- Tolerance or Recently Diagnosed Type 2 Diabetes: I. Observations Using the Hyperglycemic Clamp.
- 563 Diabetes Care. 2018;41(8):1696-706.
- 13. Utzschneider KM, Tripputi MT, Kozedub A, Mather KJ, Nadeau KJ, Edelstein SL, et al.
- beta-cells in youth with impaired glucose tolerance or early type 2 diabetes secrete more insulin and
- are more responsive than in adults. Pediatr Diabetes. 2020;21(8):1421-9.
- 567 14. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol
- 568 Rev. 2018;98(4):2133-223.
- 569 15. Ronald Kahn C. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A
- necessary distinction. Metabolism. 1978;27(12, Supplement 2):1893-902.
- 571 16. Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev.
- 572 2002;18 Suppl 2:S5-9.
- 573 17. Cree-Green M, Wiromrat P, Stuppy JJ, Thurston J, Bergman BC, Baumgartner AD, et al.
- Youth with type 2 diabetes have hepatic, peripheral, and adipose insulin resistance. Am J Physiol
- 575 Endocrinol Metab. 2019;316(2):E186-e95.
- 576 18. Arner P, Rydén M. Fatty Acids, Obesity and Insulin Resistance. Obes Facts. 2015;8(2):147-
- 577 55.
- 578 19. Sondergaard E, Espinosa De Ycaza AE, Morgan-Bathke M, Jensen MD. How to Measure
- Adipose Tissue Insulin Sensitivity. J Clin Endocrinol Metab. 2017;102(4):1193-9.
- Arner P. Free fatty acids do they play a central role in type 2 diabetes? Diabetes, Obesity
- 581 and Metabolism. 2001;3:11-9.
- 582 21. Conte C, Fabbrini E, Kars M, Mittendorfer B, Patterson BW, Klein S. Multiorgan insulin
- sensitivity in lean and obese subjects. Diabetes Care. 2012;35(6):1316-21.

- Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, et al.
- Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278(33):30413-6.
- Wolfe RR, Chinkes DL. Isotope Tracers in Metabolic Research: Principles and Practice of
- Kinetic Analysis. 2nd ed. Hoboken, N.J.: Wiley-Liss; 2005. vii, 474 p. p.
- 588 24. Coppack SW, Persson M, Judd RL, Miles JM. Glycerol and nonesterified fatty acid
- metabolism in human muscle and adipose tissue in vivo. Am J Physiol. 1999;276(2):E233-40.
- 590 25. Cree-Green M, Bergman BC, Coe GV, Newnes L, Baumgartner AD, Bacon S, et al. Hepatic
- 591 Steatosis is Common in Adolescents with Obesity and PCOS and Relates to De Novo Lipogenesis
- but not Insulin Resistance. Obesity (Silver Spring). 2016;24(11):2399-406.
- 593 26. Cree-Green M, Bergman BC, Cengiz E, Fox LA, Hannon TS, Miller K, et al. Metformin
- Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab.
- 595 2019;104(8):3265-78.
- 596 27. Magkos F, Fabbrini E, Conte C, Patterson BW, Klein S. Relationship between adipose tissue
- 597 lipolytic activity and skeletal muscle insulin resistance in nondiabetic women. J Clin Endocrinol
- 598 Metab. 2012;97(7):E1219-23.
- 599 28. Landau BR. Glycerol production and utilization measured using stable isotopes. Proc Nutr
- 600 Soc. 1999;58(4):973-8.
- Steinberg D, Vaughan M, Margolis S, Price H, Pittman R. Studies of Triglyceride
- Biosynthesis in Homogenates of Adipose Tissue. J Biol Chem. 1961;236(6):1631-7.
- 603 30. Jensen MD. Regional glycerol and free fatty acid metabolism before and after meal ingestion.
- 604 Am J Physiol. 1999;276(5):E863-9.
- Rotondo F, Ho-Palma AC, Romero MDM, Remesar X, Fernandez-Lopez JA, Alemany M.
- Higher lactate production from glucose in cultured adipose nucleated stromal cells than for rat
- 607 adipocytes. Adipocyte. 2019;8(1):61-76.
- Possik E, Schmitt C, Al-Mass A, Bai Y, Cote L, Morin J, et al. Phosphoglycolate phosphatase
- homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nat
- 610 Commun. 2022;13(1):177.
- 611 33. Cobelli C, Dalla Man C, Toffolo G, Basu R, Vella A, Rizza R. The oral minimal model
- 612 method. Diabetes. 2014;63(4):1203-13.
- 613 34. Ajmera I, Swat M, Laibe C, Le Novere N, Chelliah V. The impact of mathematical modeling
- on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol.
- 615 2013;2:e54.
- Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance.
- 617 Minimal-model approach. Diabetes. 1989;38(12):1512-27.
- Dalla Man C, Caumo A, Cobelli C. The oral glucose minimal model: estimation of insulin
- sensitivity from a meal test. IEEE Trans Biomed Eng. 2002;49(5):419-29.
- 620 37. Ha J, Satin LS, Sherman AS, A Mathematical Model of the Pathogenesis, Prevention, and
- Reversal of Type 2 Diabetes. Endocrinology. 2016;157(2):624-35.
- 622 38. Bartlette K, Carreau AM, Xie D, Garcia-Reyes Y, Rahat H, Pyle L, et al. Oral minimal
- model-based estimates of insulin sensitivity in obese youth depend on oral glucose tolerance test
- protocol duration. Metabol Open. 2021;9:100078.

- 625 39. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity.
- 626 Am J Physiol. 1979;236(6):E667-77.
- 627 40. Ramos-Roman MA, Lapidot SA, Phair RD, Parks EJ. Insulin activation of plasma
- 628 nonesterified fatty acid uptake in metabolic syndrome. Arterioscler Thromb Vasc Biol.
- 629 2012;32(8):1799-808.
- 630 41. Picchini U, De Gaetano A, Panunzi S, Ditlevsen S, Mingrone G. A mathematical model of the
- euglycemic hyperinsulinemic clamp. Theoretical Biology and Medical Modelling. 2005;2(1):1-11.
- 632 42. Bergman RNB, C.R.; Cobelli, C. The Minimal Model approach to quantification of factors
- 633 controlling glucose disposal in man. In: R.N. CCB, editor. Carbohydrate Metabolism. 13: John Wiley
- 634 & Sons Ltd.; 1981. p. 269-96.
- 43. Young LH, Periwal V. Metabolic scaling predicts posthepatectomy liver regeneration after
- accounting for hepatocyte hypertrophy. Liver Transpl. 2016;22(4):476-84.
- 637 44. Periwal V, Chow CC, Bergman RN, Ricks M, Vega GL, Sumner AE. Evaluation of
- 638 quantitative models of the effect of insulin on lipolysis and glucose disposal. Am J Physiol Regul
- 639 Integr Comp Physiol. 2008;295(4):R1089-96.
- 640 45. Li Y, Chow CC, Courville AB, Sumner AE, Periwal V. Modeling glucose and free fatty acid
- kinetics in glucose and meal tolerance test. Theor Biol Med Model. 2016;13:8.
- 642 46. Thomaseth K, Brehm A, Pavan A, Pacini G, Roden M. Modeling glucose and free fatty acid
- kinetics during insulin-modified intravenous glucose tolerance test in healthy humans: role of
- 644 counterregulatory response. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R321-31.
- 645 47. Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, and insulin: an extended
- "minimal model". Diabetes Technol Ther. 2006;8(6):617-26.
- 647 48. Diniz Behn C, Jin ES, Bubar K, Malloy C, Parks EJ, Cree-Green M. Advances in stable
- 648 isotope tracer methodology part 1: hepatic metabolism via isotopomer analysis and postprandial
- 649 lipolysis modeling. J Investig Med. 2020;68(1):3-10.
- 650 49. Adler-Wailes DC, Periwal V, Ali AH, Brady SM, McDuffie JR, Uwaifo GI, et al. Sex-
- associated differences in free fatty acid flux of obese adolescents. J Clin Endocrinol Metab.
- 652 2013;98(4):1676-84.
- 653 50. Levine JA, Han JM, Wolska A, Wilson SR, Patel TP, Remaley AT, et al. Associations of
- 654 GlycA and high-sensitivity C-reactive protein with measures of lipolysis in adults with obesity. J
- 655 Clin Lipidol. 2020;14(5):667-74.
- 656 51. Ware M, Carreau A, Garcia-Reves Y, Rahat H, Diniz Behn C, Cree-Green M, editors.
- Reactive Hypoglycemia Following a Sugar Challenge is Accompanied by Higher Insulin in
- Adolescent Girls with Obesity. J Investig Med; 2022: BMJ PUBLISHING GROUP BRITISH MED
- 659 ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H
- 660 52. Zawadzki JD, A. Diagnostic criteria for polycystic ovary syndrome: towards a rational
- approach. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications; 1992. p. 39-50.
- 662 53. Cree-Green M, Cai N, Thurston JE, Coe GV, Newnes L, Garcia-Reves Y, et al. Using simple
- clinical measures to predict insulin resistance or hyperglycemia in girls with polycystic ovarian
- 664 syndrome. Pediatr Diabetes. 2018;19(8):1370-8.

- 665 54. Tommerdahl KL, Brinton JT, Vigers T, Cree-Green M, Zeitler PS, Nadeau KJ, et al. Delayed
- glucose peak and elevated 1-hour glucose on the oral glucose tolerance test identify youth with cystic
- 667 fibrosis with lower oral disposition index. Journal of Cystic Fibrosis. 2021;20(2):339-45.
- 668 55. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism
- in human subjects. Endocr Rev. 2009;30(2):152-77.
- 670 56. Kim SH, Park MJ. Effects of growth hormone on glucose metabolism and insulin resistance
- in human. Ann Pediatr Endocrinol Metab. 2017;22(3):145-52.
- 672 57. Cree-Green M, Xie D, Rahat H, Garcia-Reyes Y, Bergman BC, Scherzinger A, et al. Oral
- 673 Glucose Tolerance Test Glucose Peak Time Is Most Predictive of Prediabetes and Hepatic Steatosis
- in Obese Girls. Journal of the Endocrine Society. 2018;2(6):547-62.
- 58. Stralfors P, Honnor RC. Insulin-induced dephosphorylation of hormone-sensitive lipase.
- 676 Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur J Biochem.
- 677 1989;182(2):379-85.
- 678 59. Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events.
- 679 Diabetes Care. 2010;33(6):1389-94.
- 680 60. Casertano A, Rossi A, Fecarotta S, Rosanio FM, Moracas C, Di Candia F, et al. An Overview
- of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical
- 682 Use. Front Endocrinol (Lausanne). 2021;12:684011.
- 683 61. Fanelli CG, Lucidi P, Bolli GB, Porcellati F. Hypoglycemia. Springer International
- 684 Publishing; 2020. p. 615-52.

685