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Contribution to the Field Statement – 143 words 17 

Under healthy conditions, insulin regulates blood sugar through action on multiple tissues including 18 
liver, muscle, and fat. Insulin resistance (IR), which may be tissue-specific, occurs when higher 19 
concentrations of insulin are required to achieve the same regulation and contributes to metabolic 20 
disease. Concentration-dependence of insulin action on different tissues has been established, but the 21 
dynamics of tissue-specific insulin action are not well-understood. In this paper, we develop a 22 
mathematical model of the interactions between glycerol and insulin to represent dynamic features of 23 
adipose metabolism during an oral glucose tolerance test. We apply this model to establish that the 24 
action of insulin on glucose was delayed compared to the action of insulin on glycerol in a cohort of 25 
IR adolescent girls. Future work is needed to determine how changes in the dynamics of glycerol and 26 
glucose may contribute to the etiology of metabolic disease.  27 
 28 

Abstract – 300 words 29 

Under healthy conditions, the pancreas responds to a glucose challenge by releasing insulin. Insulin 30 
suppresses lipolysis in adipose tissue, thereby decreasing plasma glycerol concentration, and it 31 
regulates plasma glucose concentration through action in muscle and liver. Insulin resistance (IR) 32 
occurs when more insulin is required to achieve the same effects, and IR may be tissue-specific. IR 33 
emerges during puberty as a result of high concentrations of growth hormone and is worsened by 34 
youth-onset obesity. Adipose, liver, and muscle tissue exhibit distinct dose-dependent responses to 35 
insulin in multi-phase hyperinsulinemic-euglycemic (HE) clamps, but the HE clamp protocol does 36 
not address potential differences in the dynamics of tissue-specific insulin responses. Changes to the 37 
dynamics of insulin responses would alter glycemic control in response to a glucose challenge. To 38 
investigate the dynamics of insulin acting on adipose tissue, we developed a novel differential-39 
equations based model that describes the coupled dynamics of glycerol concentrations and insulin 40 
action during an oral glucose tolerance test in female adolescents with obesity and IR. We compared 41 
these dynamics to the dynamics of insulin acting on muscle and liver as assessed with the oral 42 
minimal model applied to glucose and insulin data collected under the same protocol. We found that 43 
the action of insulin on glycerol peaks approximately 67 minutes earlier (p<0.001) and follows the 44 
dynamics of plasma insulin more closely compared to insulin action on glucose as assessed by the 45 
parameters representing the time constants for insulin action on glucose and glycerol (p<0.001). 46 
These findings suggest that the dynamics of insulin action show tissue-specific differences in our IR 47 
adolescent population, with adipose tissue responding to insulin more quickly compared to muscle 48 
and liver. Improved understanding of the tissue-specific dynamics of insulin action may provide 49 
novel insights into the progression of metabolic disease in patient populations with diverse metabolic 50 
phenotypes. 51 

1 Introduction 52 

The obesity epidemic now affects a significant portion of the world, causing insulin resistance and 53 
metabolic dysregulation in multiple organs of the body. The worldwide prevalence of overweight and 54 
obesity has approximately doubled from 1980 to 2015, affecting adults and children of all ages, and 55 
is forecasted to reach levels over 50% by 2030 (1, 2). The metabolic syndrome as defined in the 56 
National Health and Nutrition Examination Survey (NHANES) is related to insulin resistance (IR) 57 
and shows an increased risk for developing type 2 diabetes and cardiovascular disease. The metabolic 58 
syndrome was calculated to affect 34.7% of the U.S. population in 2016, with a significant increase 59 
in the incidence in young adults from 2011 to 2016 (3, 4). Related to this obesity and metabolic 60 
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dysfunction, approximately 34.2 million adults in the United States have type 2 diabetes (T2D) (5), 61 
and among youth the incidence rate of T2D is also increasing and expected to quadruple from 2010 62 
to 2050 (6-8). Of grave concern, T2D appears to be much more aggressive in youth than in adults, 63 
including poor response to interventions effective in adults, and early onset of diabetes complications 64 
(9-11). Even when dysglycemia is already present, adolescents secrete much higher concentrations of 65 
insulin than adults, likely driven by their marked IR (12, 13). This high morbidity and the unique 66 
physiologic features of insulin sensitivity and secretion in youth drive the necessity to specifically 67 
investigate the systems involved in metabolic disease development in youth. By better understanding 68 
the unique pathology of metabolic disease in youth, better treatments can be developed and 69 
personalized for individuals. 70 
Metabolic dysregulation often arises from an imbalance in energy consumption and expenditure. 71 
During fasting, energy is primarily provided from energy stored in adipose and hepatic tissue. In a 72 
healthy individual, when energy is acquired through ingesting food, the mechanisms that provide 73 
endogenous energy sources are suppressed, so that the ingested fuel can be used and stored. Insulin 74 
facilitates the transition from an endogenous to exogenous energy source, and it manages glycerol, 75 
free fatty acid (FFA), and glucose systems across different metabolic states. In addition to 76 
suppressing the release of glucose from the liver and stimulating glucose uptake in hepatic and 77 
peripheral tissues (14), insulin is the most potent antilipolytic hormone: it suppresses lipolysis, and 78 
reduces the use of FFA as an energy source. IR is defined as a decreased biological response to 79 
insulin, which leads to increased insulin secretion, eventually causing pancreatic β-cell failure and 80 
T2D (15-17). IR is tissue specific, and it may manifest in individual tissues at different points in 81 
disease progression. It is hypothesized that the development of IR in adipose tissue, resulting in 82 
excess circulating FFA and glycerol, may induce IR in other tissues (18). Elevated FFA 83 
concentrations may contribute to dysglycemia in multiple ways, including impairing β-cell insulin 84 
secretion and vascular function, and directly inducing hepatic and skeletal muscle IR (16, 18-20), 85 
thereby emphasizing the importance of characterizing adipose IR.  86 

The gold standard in assessing insulin action on adipose tissue is a low dose hyperinsulinemic 87 
euglycemic (HE) clamp with stable isotope tracers. The HE clamp determines the steady state 88 
concentration of insulin that is necessary to suppress FFA and/or glycerol release into circulation. 89 
Using different insulin infusion rates as part of a multi-step clamp with glucose and glycerol tracers, 90 
the insulin sensitivity of adipose, liver, and peripheral tissue can be determined (21). While effective 91 
at quantifying some aspects of adipose health, the HE clamp is resource intensive and narrow in 92 
application as it relies on steady state values produced from glucose and insulin infusions rather than 93 
the coordinated physiologic response that occurs with oral nutrient ingestion (19). Moreover, the HE 94 
clamp does not provide insight into the dynamics of insulin action on adipose, liver, or muscle tissue. 95 
An insulin-modified frequently sampled intravenous glucose tolerance test (IM-FSIVGTT) is a 96 
dynamic test where glucose is administered intravenously followed by an insulin bolus, showing 97 
metabolic dynamics under non-physiologic circumstances. An oral glucose tolerance test (OGTT) is 98 
a more physiologically complete dynamic test where participants ingest glucose orally through a 99 
sugary drink, allowing for the contribution of multiple gut hormones that may also play a role in the 100 
coordinated response to nutrition. Therefore, to focus on the dynamic response of adipose, liver, and 101 
muscle tissue to insulin under a more physiologic state, we quantify the dynamics of insulin action on 102 
glycerol and glucose during an oral glucose tolerance test (OGTT).   103 

Both glycerol and FFA are released during lipolysis, but glycerol is a better marker of lipolysis due to 104 
differences in recycling between glycerol and FFA. FFA can either be released from adipose cells 105 
into the bloodstream or be recycled within adipose cells in a process by which the FFA are 106 
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reincorporated into triacylglycerides and absorbed by neighboring cells prior to entry to the 107 
bloodstream (17, 22-28). The process of intracellular and intratissue recycling complicates the 108 
dynamics of FFA and must be considered when evaluating adipose metabolism with FFA. In 109 
contrast, because adipose tissue lacks the expression of glycerol kinase (29), glycerol is not recycled 110 
in adipose tissue as it cannot be reincorporated into triacylglycerides. Instead, circulating glycerol 111 
produced by lipolysis is taken up primarily by the liver via hepatic glycerol kinase expression, 112 
allowing glycerol to be phosphorylated and reincorporated into triacylglycerides (24, 28, 30). The 113 
absence of local glycerol recycling in adipose makes glycerol an appealing metabolite to track 114 
adipose metabolism. Whereas lipolysis from adipose tissues is the primary source for intravascular 115 
glycerol, a small proportion of glycerol is also produced via glycogenolysis and gluconeogenesis 116 
(31). These synthetic processes are regulated by glycerol-3-phosphate phosphatase and 117 
phosphoglycolate phosphatase which control the amount of glycerol made by glycogenolysis in the 118 
fasting state, and then gluconeogenesis in the fed state (32). It is estimated that up to 10-15% of 119 
intravascular glycerol during prolonged fasting may be attributed to these processes, but the 120 
proportion attributed in the fed state is not as clear. The fasting contribution from glycogenolysis is 121 
higher with long fasting durations. In our study, participants had a monitored fast of 12 hours, so the 122 
contribution from glycogenolysis is expected to be low. The contribution from gluconeogenesis is 123 
related to serum glucose concentrations. As none of our participants had diabetes, the contribution 124 
from this pathway is also expected to be low. Therefore, we consider changes in glycerol 125 
concentration to primarily reflect insulin-mediated changes in lipolysis.  126 

Mathematical models of glucose metabolism have contributed a fundamental understanding of 127 
interactions in glucose and insulin dynamics (33, 34). These models describe how insulin induces 128 
glucose uptake by peripheral tissue and reduces glucose production from endogenous sources under 129 
different experimental conditions, and the Oral Minimal Model (OMM) describes glucose dynamics 130 
during an OGTT  (35-39). Although insulin concentrations may be modeled directly (37, 40-42), an 131 
intermediate variable of insulin action is often introduced to account for the delay between changes in 132 
insulin concentrations and observed effects on glucose concentrations (35, 36), and this delay may 133 
increase as insulin sensitivity decreases. The concepts of glucose metabolic modeling have also been 134 
extended to other tissues and metabolic systems including adipose tissue (40, 43-47). In previous 135 
work we modeled glycerol dynamics with an implicit insulin effect on the glycerol rate of appearance 136 
that was estimated using glycerol stable isotope tracer data (48). Periwal and colleagues proposed a 137 
model of interacting FFA and insulin dynamics to measure adipose metabolism during an IM-138 
FSIVGTT (44). Their model used a Hill function to represent insulin action-dependent lipolysis and 139 
described both glucose and FFA dynamics using a single insulin action term, suggesting that the 140 
dynamics of insulin action on glucose and FFA were similar in this study. These models have been 141 
successfully employed to assess adipose metabolism in translational studies utilizing IVGTTs (49, 142 
50).  143 

To characterize the dynamics of orally-stimulated adipose metabolism, we develop a differential-144 
equations based mathematical model that describes the interaction between glycerol and insulin 145 
concentrations during an OGTT. We use the modeling infrastructure of existing FFA models as a 146 
basis for our glycerol-insulin model, and we explicitly represent the effects of insulin on lipolysis. 147 
We apply the glycerol-insulin model and the OMM to OGTT data from a population of obese and 148 
overweight adolescent girls with and without polycystic ovary syndrome (PCOS). This population is 149 
characterized by a significant degree of IR and metabolic dysregulation (38, 51). To quantify tissue-150 
specific insulin action, we compare simulation results and model parameters associated with the 151 
glycerol model and the OMM. The differences in the dynamics of insulin action on glycerol and 152 
glucose systems were the primary focus of this study. 153 
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2 Methods 154 

2.1 Participants 155 

The development of the glycerol model and analysis of insulin action dynamics was conducted on 156 
data collected in the APPLE (Androgens and Post-Prandial LivEr metabolism: liver and fat 157 
regulation in overweight adolescent girls; NCT02157954) study. This study was performed to 158 
explore metabolic abnormalities associated with PCOS and develop new adolescent specific models 159 
to understand IR. It was approved by the Colorado Multiple Institutional Review Board. All 160 
participants provided informed consent if they were 18-21 years old or parental consent and 161 
participant assent if they were 12-17 years old. 162 

The participants were recruited for this cross-sectional study from pediatric clinics at Children’s 163 
Hospital Colorado. The inclusion criteria were age 12 to 21 years, female sex, postpubertal Tanner 164 
Stage 5 status, at least 18 months post-menarche, and overweight/obese status (BMI	≥ 90th percentile 165 
for age and sex). The participants had a sedentary lifestyle (< 3 hours routine exercise per week, 166 
validated with both a 3-day activity recall and 7-day accelerometer use). The exclusion criteria were 167 
a confirmed diagnosis of diabetes (HbA1c ≥6.5%), pregnancy, anemia, liver diseases other than non-168 
alcoholic fatty liver disease (NAFLD), an alanine transferase (ALT) level greater than 125 IU/L, and 169 
use of medications known to affect insulin sensitivity or glucose metabolism (including systemic 170 
steroids and antipsychotics) in the last 6 months. Metformin and oral contraceptives were excluded in 171 
all participants except in metformin (N=6) and contraceptive (N=10) sub-cohorts. Participants with 172 
PCOS were defined according to the NIH criteria: 1) an irregular menstrual cycle and 2) clinical 173 
and/or biochemical evidence of hyperandrogenism (52). Total body fat and fat free mass percentages 174 
was assessed by standard DEXA methods (Hologic, Waltham, MA). 175 

From the ninety-two studied participants, the population analyzed in this paper was a subset of sixty-176 
six participants (eighteen with normal menses and forty-eight with PCOS, described in Table 1). Of 177 
the ninety-two study participants the following were excluded: sixteen with missing OGTT time 178 
points precluding modeling and 10 participants randomized to receive exanatide during the OGTT, 179 
because exenatide is known to alter insulin dynamics. 180 

2.2 Protocol 181 

Each participant had two study-visits: 1) an initial consent/screening for eligibility; 2) an overnight 182 
monitored fast during the follicular phase of the menstrual cycle followed by a six-hour OGTT. 183 
Before the metabolic study visit, participants refrained from physical activity for 3 days. The 184 
afternoon and evening prior to the OGTT, each participant consumed an isocaloric diet (65% 185 
carbohydrate, 15% protein, 20% fat). After the evening meal, each participant refrained from activity 186 
and followed a monitored inpatient 12-hr fast, followed by a frequently sampled OGTT. Baseline 187 
fasting metabolite concentrations were determined prior to the OGTT. At 8AM, participants ingested 188 
75 grams glucose and 25 grams of fructose. Fructose was included to distinguish abnormal hepatic 189 
fat metabolism. The drink was consumed in a three-minute window at time 0 and blood samples were 190 
taken at the following time points: -20, -10, 0, 10, 20, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 191 
180, 210, 240, 300, and 360 minutes. Blood glucose was measured at the bedside with the StatStrip® 192 
Hospital Glucose Monitoring System (Novo Biomedical, Waltham, MA, USA). Serum insulin was 193 
measured with radioimmunoassay (Millipore, Billerica, MA, USA). Serum glycerol concentrations 194 
were obtained from an ELISA assay (R-Biopharm, Washington, MO, USA). 195 

2.3 Oral Minimal Model for glucose dynamics 196 
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OGTT glucose dynamics for each participant were described using the Oral Minimal Model (OMM) 197 
(36), a one-compartment mathematical model that describes the effect of insulin on glucose and 198 
provides an estimate of whole-body insulin sensitivity (SI), as reported previously (38). Figure 1 is a 199 
schematic that shows how insulin action affects the uptake term of the glucose dynamics. 200 

The OMM equations are: 201 

𝐺̇ = −[𝑆) + 𝑋)]𝐺 + 𝑆)𝐺- +
𝑅𝑎0123
𝑉  202 

𝑋)̇ = 5−𝑝7
)	𝑋)																																																	, 𝐼(𝑡) < 	𝐼-

−𝑝7)	𝑋) 	+	𝑝>	(𝐼(𝑡) 	− 	𝐼-)									, 𝐼(𝑡) ≥ 	𝐼-
 203 

where 𝐺(𝑡) is glucose concentration in mg/dL; 𝑋)(𝑡) is insulin action on glucose; 𝐼(𝑡) is the insulin 204 
concentration; 𝐺- and 𝐼- are basal glucose and insulin concentrations, respectively; 𝑆)  is the glucose 205 
effectiveness; 𝑝7)  is a time constant of insulin action; 𝑝> is a constants of insulin action clearance and 206 
appearance; and 𝑅𝑎0123(α, 𝑡) is a piecewise-linear function describing the rate of appearance of 207 
exogenous glucose in the bloodstream. The initial values for the OMM are 𝐺(0) = 𝐺- and 𝑋)(0) =208 
0. Six-hour OGTT data from this population were fit to the OMM implemented in SAAM II (SAAM 209 
II software v 2.2, The Epsilon group, Charlottesville, VA, USA) as we previously detailed in 210 
Bartlette et al. (38). The parameters we determined in this prior study were used to model the glucose 211 
dynamics for all participants in the present study. The insulin action profiles generated from the best-212 
fit parameters were the focus of comparison between insulin-mediated glucose and glycerol 213 
dynamics. 214 

2.4 Glycerol dynamics model 215 

Informed by models of FFA dynamics, we developed a differential equations-based model for 216 
glycerol dynamics that utilizes the concept of insulin action as an intermediate variable between 217 
measured insulin and its action on adipose tissue. Figure 2 is a schematic of insulin action on 218 
glycerol dynamics that illustrates insulin action on glycerol production. By contrast with insulin 219 
action’s role to activate glucose uptake in OMM, insulin action in the glycerol model suppresses 220 
glycerol production. The equations for the glycerol model are as follows: 221 

𝑔̇ = −𝑆B𝑔 + 𝑙D +
𝑙7

1 + F
𝑋B
𝑋7
G
H 222 

𝑋Ḃ = 5
−𝑝7

B	𝑋B																																																	, 𝐼(𝑡) < 	𝐼-
−𝑝7

B	𝑋B 	+	𝑝7
B	(𝐼(𝑡) 	− 	 	𝐼-)									, 𝐼(𝑡) ≥ 	𝐼-

 223 

where 𝑔(𝑡) is the concentration of glycerol in 𝜇mol/L; 𝑋B(𝑡) is insulin action on glycerol; 𝑝7
Bis a 224 

time constant of insulin action; 𝐼(𝑡) is the insulin concentration; 𝐼- is the basal insulin concentration; 225 
𝑆B is the effectiveness of glycerol uptake; 𝑙D is the insulin independent lipolysis rate; 𝑙7 is the insulin 226 
dependent (suppressible) lipolysis rate; 𝑋7 scales insulin action; and A affects how aggressively 227 
changes in insulin action result in changes of lipolysis suppression. Lipolysis is modeled as the sum 228 
of an insulin independent lipolysis rate, 𝑙D, and a Hill function representing insulin action-dependent 229 
lipolysis and describing the transition from maximum lipolysis rate, 𝑙D + 𝑙7, to the minimum lipolysis 230 
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rate, 𝑙D, as insulin action increases. The Hill function is the functional form that was determined to 231 
best fit the dynamics of FFA suppression (44). 232 

2.5 Glycerol model fitting process 233 

Before the glycerol model was fit to glycerol data for each participant, the data were truncated to 234 
reflect the time period from the drink ingestion (t=0) to the time at which the participant’s glucose 235 
concentration reached a nadir concentration following the glucose excursion induced by the drink. 236 
The choice to fit data from t=0 to the glucose concentration nadir avoided physiological 237 
complications due to the high prevalence of reactive hypoglycemia in this population, and it provided 238 
a standard check point by which to compare participants. More details are included in the Discussion. 239 

The basal concentration of insulin was determined by averaging the concentrations at timepoints -20, 240 
-10, and 0 min. The model was then fit to the truncated data in MATLAB (Mathworks, Natick, MA) 241 
using the interior point algorithm FMINCON and the built-in ode solver ODE23S with an absolute 242 
tolerance of 1e-10. The FMINCON algorithm minimized an objective function analogous to the 243 
objective function described in Periwal et al. 2008 and Li et al. 2016 (44, 45). Briefly, this objective 244 
function uses single spectrum analysis with only one eigenvalue retained to generate a representative 245 
smoothing of the data. Variance of the data is calculated by squaring the standard deviation of the 246 
squared difference between the experimental data and the representative smooth curve generated 247 
from the single spectrum analysis. The error term is the sum of the square differences between the 248 
experimental data and the numeric solution produced by ODE23S divided by the calculated variance. 249 
As in previous work, we fixed the parameter A to 2 because the model was not sensitive to this 250 
parameter and fixing it improved model identifiability (45). 251 

Lipolysis parameters were seeded in a physiological range between 0 and approximately 200% of the 252 
analogous parameter values reported by Periwal and colleagues (44). The 𝑆B and 𝑝7

B parameters were 253 
seeded between 0 and 1. If the initial parameters did not produce a valid model state (i.e., model 254 
states were not real or positive), all parameters would be randomly reseeded until the initial model 255 
state was valid. For the optimization, all parameters were constrained to be nonnegative and 256 
parameters representing proportions, 𝑆B and 𝑝7

B were restricted to range between 0 and 1. The 257 
glycerol and insulin concentration data for each participant were fit with FMINCON 75 times. The 258 
solution with the lowest objective function value of the 75 runs was selected as the best fit parameter 259 
set. 260 

2.6 Analysis of insulin action dynamics 261 

All analysis was done in MATLAB (Mathworks, Natick, MA). To quantify the differences in insulin 262 
action dynamics associated with glucose and glycerol, we defined three metrics on the insulin action 263 
profiles. The first metric determines the difference in time between the insulin action peak for each 264 
metabolite and the peak insulin concentration. The magnitudes of each delay were computed for both 265 
glucose and glycerol for all participants and compared with a Wilcoxon signed rank test. The 266 
Wilcoxon test was chosen to compare the two distributions because the data are paired and not 267 
normally distributed. Since the dynamics of glucose and glycerol come from the same participant, 268 
using the same insulin concentrations as a forcing function, the samples are not independent. 269 

The second metric determines the difference in time between the insulin action peak for glucose and 270 
the insulin action peak for glycerol. This measure describes the relative timing of insulin action for 271 
each metabolite. The difference in timing for glucose and glycerol action was evaluated using a one-272 
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sample Student’s t-test to establish if the difference was equal to zero. The third metric determines 273 
the difference in the normalized insulin actions at the time point associated with the glucose nadir 274 
(i.e., the lowest glucose value after the glucose peak). This measure quantifies the relative strength of 275 
insulin on the glucose system compared to the glycerol system at the time of the glucose nadir. To 276 
compute this measure, the insulin action curves for each metabolite were normalized by the peak 277 
insulin action values, respectively, and then the insulin action values at the time point associated with 278 
the glucose nadir were determined. The normalized glycerol insulin action nadir value was subtracted 279 
from the normalized glucose insulin action nadir value to obtain the relative difference in insulin 280 
actions at the nadir. The relative difference in the normalized insulin actions at the nadir was 281 
evaluated with a one-sample Student’s t-test to test if the difference was equal to zero.  282 

In addition to these metrics comparing the insulin action profiles, and we also compared the 283 
estimated parameters 𝑝7)  and 𝑝7

B that govern the insulin action dynamics for glucose and glycerol, 284 
respectively. Qualitatively, larger insulin action time constants reflect smaller delays from the insulin 285 
concentration profile while smaller insulin action time constants reflect larger delays from the insulin 286 
concentration profile. Since the insulin action time constants have an exponential effect on insulin 287 
action, we compared the magnitude of time constant values for each metabolic system using 288 
𝑙𝑜𝑔KD(𝑝7)) and 𝑙𝑜𝑔KDL𝑝7

BM. The 𝑙𝑜𝑔KDL𝑝7
BM and 𝑙𝑜𝑔KD(𝑝7)) parameter distributions were not 289 

approximately normal. We compared 𝑙𝑜𝑔KD(𝑝7)) and 𝑙𝑜𝑔KDL𝑝7
BM with a Wilcoxon signed rank test. 290 

3 Results 291 

3.1 Mathematical modeling of glucose and glycerol dynamics 292 

For each participant we fit OMM and the glycerol model to OGTT data. Following ingestion of the 293 
drink, glucose and insulin concentrations increased and glycerol concentrations decreased for all 294 
participants. Although the functional form for insulin action was the same for both models, we found 295 
that obtaining good fits to the glucose and glycerol data required separate representations of the 296 
dynamics of insulin action on each metabolite. Figure 3 shows the OMM and glycerol model fits to 297 
glucose and glycerol dynamics, respectively, for two representative individuals from our cohort. 298 
These participants were selected to show different dynamic features associated with varying degrees 299 
of glycemic dysregulation in this population. The first participant’s insulin profile has a single insulin 300 
peak (SIP). The second participant’s insulin profile has a secondary peak prior to the main peak 301 
resulting in a double insulin peak (DIP). The SIP participant reaches peak insulin concentration at 75 302 
minutes while the DIP participant’s insulin peaks at 90 minutes. The magnitude of the insulin 303 
response for the DIP participant is large compared to that of the SIP participant, more than doubling 304 
peak insulin from the approximately 300 µU/mL in the SIP participant to approximately 700	µU/mL 305 
in the DIP participant. In addition, the DIP participant exhibits an insufficient initial insulin response, 306 
an extended period of hyperglycemia, and an excursion below the basal glucose level to a nadir 307 
glucose level of 58 mg/dL of glucose, all indicators of poor control of central metabolism. The DIP 308 
participant is one a subset of individuals in our cohort who exhibits a hypoglycemic response. Both 309 
participants show an increase in glycerol concentrations above basal levels after the glucose nadir. 310 

3.2 Dynamics of glucose insulin action are delayed relative to dynamics of glycerol insulin 311 
action 312 

Each simulated glucose and glycerol profile has a corresponding insulin action profile. Insulin action 313 
profiles for the representative participants are shown in Figure 4. Both glucose and glycerol insulin 314 
action time traces rely on the same insulin concentration time series as a forcing function, but distinct 315 



   Differential Dynamics of Insulin Action 

 
9 

dynamics for glucose and glycerol in response to insulin give rise to qualitatively different insulin 316 
action time traces. For both individuals, the glucose insulin action time trace shows a greater delay 317 
relative to the insulin time trace while the dynamics of the glycerol insulin action time trace follow 318 
insulin dynamics more closely. This observation that glucose insulin action has a greater delay 319 
relative to changing insulin concentration than the glycerol insulin action is consistent throughout the 320 
population and can be quantified using several metrics.  321 

The results from three metrics comparing distinct features of the insulin action profiles for glucose 322 
and glycerol in all participants are depicted in the histograms in Figure 5. The differences between 323 
glucose insulin action and insulin peak timing are larger and more variable compared to the 324 
differences between glycerol insulin action and insulin peak timing (Wilcoxon signed rank test, p < 325 
0.001) reflecting the relatively later timing of the glucose insulin action peak (Figures 5A and 5B). 326 
This relatively later timing of glucose insulin action is also seen in the difference in the timing of 327 
insulin action peaks for glucose and glycerol, where the glycerol insulin action peak time is 328 
subtracted from the glucose insulin action peak time (Figure 5C). The glycerol insulin action peak 329 
time was determined to be earlier compared to the glucose insulin action peak time with a difference 330 
between peak times significantly different from 0 (Student’s t-test, p < 0.001, 95% confidence 331 
interval: 67.38 ± 13.52). The normalized glucose insulin action is greater than the normalized 332 
glycerol insulin action at the glucose concentration nadir (Figure 5D). The difference in normalized 333 
insulin action was positive and significantly different from 0 (Student's t-test, p < 0.001, 95% 334 
confidence interval: 0.3120 ± 0.0736). This difference indicates that glycerol insulin action 335 
terminates earlier compared to glucose insulin action relative to the timing of the glucose excursion. 336 
All of these metrics suggest that the timing of insulin action differs between tissues: glycerol insulin 337 
action on adipose tissue initiates and terminates earlier relative to glucose insulin action on hepatic 338 
tissue and muscle. 339 

3.3 Differences in the insulin action time constant 340 

For glucose and glycerol insulin action models, the insulin action time constant parameters, 𝑝7)  and 341 
𝑝7
B, respectively, govern the dynamics of insulin action. As the insulin action time constant 342 

parameters approach one, the insulin action curve approaches the plasma insulin curve. When the 343 
distributions of 𝑝7)  and 𝑝7

B were compared across all participants, the 𝑝7
B values for the glycerol 344 

model were much greater and were distributed across the range 0 to 1. To evaluate the effect of 𝑝7)  345 
and 𝑝7

B on each model, the parameters were base 10 log transformed and compared. The distribution 346 
of the log transformed 𝑝7)  and 𝑝7

B values in all participants are shown in Figure 6. The estimates of 347 
the log-transformed parameters were significantly different (Wilcoxon signed rank test, p < 0.001) 348 
and show a distinct difference in magnitude with 𝑝7

B approximately two orders larger in magnitude 349 
than 𝑝7) . The difference in estimated glycerol 𝑝7

B and glucose 𝑝7)	parameters indicates that insulin has 350 
a more immediate effect on glycerol insulin action than on glucose insulin action. 351 

3.4 Summary of differences in insulin action dynamics 352 

To illustrate how insulin action changes relative to each metabolite, trajectories were considered in 353 
the metabolite-insulin action phase plane. Phase planes for each representative participant are shown 354 
in Figure 7. In each phase plane, the insulin action and metabolite were normalized by their 355 
maximum value. The phase planes show that changes in glycerol tracked more closely with changes 356 
in glycerol insulin action compared to changes in glucose and glucose insulin action. Specifically, the 357 
trajectory for the glycerol model showed an out and back diagonal path with glycerol and glycerol 358 
insulin action changing together. By contrast, the trajectory for the glucose model showed a cyclic 359 
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path reflecting a time lag in changes in glucose insulin action relative to changes in glucose 360 
concentration. 361 

4 Discussion 362 

4.1 Summary of results 363 

This study introduced a model of interacting glycerol and insulin dynamics in response to an OGTT 364 
and compared the dynamics of insulin acting on glucose and glycerol in a population of adolescent 365 
girls with obesity and with or without PCOS. To our knowledge, this glycerol model is the first 366 
mathematical model to describe interactions between glycerol and insulin dynamics. It successfully 367 
simulated glycerol concentration data over time from the ingestion of the drink to the post-excursion 368 
glucose nadir, and it demonstrated a suppression in glycerol concentrations in response to insulin 369 
action. Comparison of results from the glycerol model to results from OMM simulations of glucose 370 
and insulin dynamics showed that the dynamics of insulin action on glucose were delayed when 371 
compared to the dynamics of insulin action on glycerol. 372 

4.2 Differential dynamics for glucose and glycerol in adolescent girls 373 

We quantified the dynamics of insulin action on glucose and glycerol based on model parameters and 374 
characteristics of the modeled insulin action using several metrics. All of these metrics showed that 375 
the dynamics of insulin action on glucose were delayed relative to the dynamics of insulin action on 376 
glycerol during the OGTT, and distinct representations of insulin action on glucose and glycerol were 377 
necessary to describe the metabolite data from our adolescent cohort.  378 

Although we represent adipose metabolism through glycerol instead of FFA, the difference in 379 
dynamics we observe for insulin acting on glucose compared to insulin acting on glycerol likely 380 
reflects the extreme IR with compensatory hyperinsulinemia in our adolescent cohort. Our cohort has 381 
a significant degree of IR, accompanied by impaired glucose tolerance, with an average two-hour 382 
glucose measurement ≥ 140 mg/dL. Low insulin sensitivity suggests a slower insulin response, 383 
possibly increasing the delay in insulin action on the glucose system compared to the action of 384 
insulin on the glycerol system. The delayed timing of the insulin peaks in our cohort reflects extreme 385 
IR consistent with similar populations of adolescents with dysmetabolism (12, 53). In 386 
normoglycemic non-obese youth, peak insulin concentrations occur at 30 min post drink, while the 387 
insulin peak is at 120 min in adolescents with prediabetes and diabetes (12, 54). Our cohort has an 388 
insulin peak at 84 ± 47 min. However, the higher insulin concentrations required as a result of IR 389 
may also play a role in the observed delay of insulin action on the glucose system. The average peak 390 
insulin concentration for a healthy adolescent insulin profile is approximately 55 µU/mL (54). The 391 
individuals in our cohort have an average peak insulin concentration of 361 µU/mL. Whereas the 392 
insulin concentration needed to suppress lipolysis in this population, 40-50 µU/mL, is reached 393 
quickly after consuming the drink, there is a much longer delay associated with reaching the peak 394 
insulin concentration which drives maximal glucose uptake (25).  395 

Adolescents have different metabolic characteristics compared to adults due to pubertally-mediated 396 
changes in insulin sensitivity, which present in addition to effects of obesity (12). Growth hormone 397 
alters both lipolysis and glucose metabolism, reducing insulin sensitivity in muscle and peripheral 398 
tissue, with concentrations peaking during the rapid growth phase of puberty (55, 56). Growth 399 
hormone may preferentially influence IR in glucose metabolism compared to adipose metabolism 400 
producing a distinct metabolic phenotype in adolescents compared to phenotypes where IR is 401 
induced by other metabolic pathways. A tissue-specific difference in IR in adolescents could produce 402 
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differential metabolic dynamics and is consistent with our findings that data in this cohort requires 403 
separate models for insulin action on glucose and glycerol during an OGTT.   404 

By contrast, Periwal and colleagues described glucose and FFA dynamics in an IM-FSIVGTT and a 405 
mixed meal tolerance test (MMTT) in African American and Caucasian premenopausal women using 406 
a single model with one form of insulin action (44, 45). In addition to the dissimilarities between 407 
study populations, distinct dynamics of glucose, insulin, glycerol and FFA among experimental 408 
protocols may contribute to the differences in our findings. In an IM-FSIVGTT, plasma glucose 409 
concentrations peak at the beginning of the protocol, and the initial early peak in insulin reflects the 410 
injection of exogenous insulin and may interact with the endogenous glucose-insulin dynamics and 411 
diminish endogenous insulin release. In an OGTT, ingested glucose is slowly absorbed and typically 412 
peaks at least 20 minutes after the administration of the drink (12, 57); endogenous insulin is released 413 
in response to increased plasma glucose concentrations and acts on glycerol and glucose in a 414 
concentration-dependent manner. In an MMTT, the absorbance of glucose is slower compared to an 415 
OGTT due to the presence of fat and protein (45).  416 

Thus, although, the glucose and FFA model captured the dynamics of two very disparate methods of 417 
increasing glucose and insulin in an adult population, the temporality of changes in glucose, insulin, 418 
and FFA were similar within each protocol (all fast in an IM-FSIVGTT and all slow in a MMTT). By 419 
contrast, an OGTT may highlight distinct dynamics between adipose and glucose metabolism by 420 
producing physiologic interactions between glucose and endogenous insulin dynamics in the context 421 
of glucose absorbance that is slower compared to an IM-FSIVGTT and faster compared to an 422 
MMTT. Thus, differences in study populations and protocols likely contributed to the differences in 423 
temporality and rate of changes between glucose, insulin, and glycerol and necessitated distinct 424 
representations of insulin action on glucose and glycerol in our study compared to previous work 425 
with FFAs (44, 45). 426 

4.3 Possible physiologic basis for difference in dynamics 427 

Insulin regulation of the metabolic pathways for glucose and glycerol occurs through distinct 428 
mechanisms. The elevation of glucose concentration triggers the release of insulin. The insulin then 429 
acts so that glucose concentrations decrease back to basal levels. When glucose concentrations return 430 
to normal, insulin secretion also decreases. Thus, the interaction between glucose and insulin is 431 
bidirectional. Conversely, the interaction between glycerol and insulin is unidirectional. Insulin 432 
induces the suppression of lipolysis by regulating the activity of hormone sensitive lipase (20, 58). 433 
When insulin concentrations decrease, activation of hormone sensitive lipase stops, and glycerol 434 
concentrations increase.  However, glycerol concentration has no effect on insulin concentration. 435 

4.4 Limitations 436 

This model makes several simplifying assumptions about glycerol biochemistry. First, although we 437 
expect lipolysis to be the primary source of glycerol in our protocol, glycolysis may play a role (31). 438 
Second, the structure of this glycerol model assumes that the maximum lipolysis rate occurs in the 439 
initial fasted state, and, therefore, it cannot describe rebounds in glycerol concentrations above basal 440 
levels. In many participants in our cohort (both SIP and DIP), glycerol concentrations post-441 
suppression rose above basal levels, suggesting the involvement of other metabolic pathways. This 442 
post-suppression rebound was particularly pronounced in the approximately 10% of participants 443 
demonstrating reactive hypoglycemia (RHG) (51). Hypoglycemia is characterized as a condition 444 
where blood sugar falls below 60 mg/dL, resulting in warning symptoms and the secretion of 445 
counterregulatory hormones working to rapidly increase blood sugar levels (51, 59, 60). Along with 446 
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glucagon, catecholamines are released during a RHG response, stimulating lipolysis (61). The current 447 
glycerol model does not account for these additional metabolic pathways, so we truncated the data at 448 
the glucose nadir to avoid trying to represent two distinct physiological conditions (the initial glucose 449 
excursion and the recovery of lipolysis above basal rates) with a single set of parameters. Future 450 
work should consider extensions of the glycerol model that account for the counterregulatory 451 
response. 452 

There are several additional limitations to this study. This model was developed in a highly IR 453 
population of adolescent girls with a high incidence of non-alcoholic fatty liver disease (NAFLD), a 454 
condition associated with adipose dysmetabolism. Application of the model to data from healthy 455 
populations as well as other IR or dysglycemic populations is important to verify the generalizability 456 
of this glycerol-insulin model to the range of dynamics associated with adipose metabolism. For 457 
example, in a healthy individual, glycerol may be suppressed earlier in response to a smaller plasma 458 
insulin peak.  459 

4.5 Summary and implications 460 

In summary, we have proposed a novel differential equations-based model of interactions between 461 
glycerol and insulin dynamics that provides a better understanding of glycerol dynamics relative to 462 
other metabolic processes like glucose metabolism. In addition, this model demonstrates that during 463 
an OGTT, insulin action on glucose is more delayed compared to insulin action on glycerol in our 464 
cohort of IR adolescent girls. Although tissue-specific actions of insulin are known to be 465 
concentration dependent, to our knowledge this is the first study to establish a difference in the 466 
dynamics of distinct insulin actions. Future work examining the mechanisms implicated in this 467 
difference and the significance of altered relative glycerol and glucose dynamics to metabolic disease 468 
development and progression is needed to alleviate the growing burden of metabolic dysregulation. 469 

5 Tables and Figure Captions 470 

Table 1: Population Description. These values are reported as population numbers or means ± the 471 
standard deviation. 472 

Variable Values 

Physical Characteristics 
Number (n) 66 
Age (years) 15.6	±	2 

Race (n)  
White/Black 59/7 
Ethnicity (n)  

Hispanic/non-Hispanic 35/31 
Disease State (n) 

Obese Control/PCOS/PCOS+drug 18/33/15 
BMI (kg/m2) 35.5	±	5.7 
Weight (kg) 95.8 ±	16.9 

Fat Free Mass (kg) 49.6 ±	7.3 
Fat Mass (kg) 42.9 ±	10.8 
Height (cm) 164.1±	7.1 

Waist Circumference (cm) 106.5 ±	 11.9 
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Metabolic Characteristics 
6hr Insulin Sensitivity 

(dL/kg/min per µ𝑈/𝑚𝐿) 2.9	±	2.4 x 10-4 
Fasting glucose (mg/dL) 90	±	9 

2-hr glucose (mg/dL) 142	±	25 
Fasting glycerol (µmol/L) 118	±	26 

Fasting FFA (µmol/L) 625	±	139 
Fasting Insulin (µU/mL) 26	±	15 
Peak Insulin (µU/mL) 361	±	207 

Peak Insulin Time (min) 84 ±	47	
 473 

Figure 1: Schematic of oral minimal model (OMM). 474 

Figure 2: Schematic of glycerol model. 475 

Figure 3: Numerical solutions and OGTT data for glucose and glycerol in two representative 476 
participants. A, B. The numerical solutions for glucose (black) are shown relative to the data (blue) 477 
and insulin (red) concentrations for two representative participants demonstrating a single insulin 478 
peak (A) and a double insulin peak (B), respectively. C, D. The numerical solutions for glycerol 479 
(black) are shown relative to the data (blue) and insulin (red) concentrations for the same 480 
representative participants and show the suppression of glycerol concentrations in response to insulin 481 
concentrations. The lowest glucose concentration following the glucose excursion is taken to be the 482 
end point for the glucose and glycerol numerical solutions for each individual. 483 

Figure 4: Time courses of insulin action on glucose and glycerol for two representative participants. 484 
A, B. The time course of insulin action on glucose plotted against insulin concentrations for two 485 
representative participants demonstrating a single insulin peak (A) and a double insulin peak (B), 486 
respectively. C, D. The time course of insulin action on glycerol plotted against insulin 487 
concentrations for the same two representative participants. All insulin action concentrations are 488 
normalized by their maximum value. Insulin concentrations not normalized, and the DIP participant 489 
has higher insulin secretion compared to the SIP participant.  490 

Figure 5: Metrics comparing the dynamics of insulin action on glucose and glycerol across all 491 
participants. A, B. Histograms of the differences between glucose (A) and glycerol (B) insulin action 492 
peak timing from insulin peak timing show that insulin peaks are closer to glycerol insulin action 493 
peaks compared to glucose insulin action peaks (Wilcoxon signed rank test, p < 0.001). C. A 494 
histogram of the differences between glucose and glycerol insulin action peak timing show that this 495 
difference is significantly greater than 0 (Student’s t-test, p < 0.001, 95% confidence interval: 67.38 496 
± 13.52), indicating that peak glucose insulin action occurs at a later time compared to peak glycerol 497 
insulin action. D.  A histogram of the differences between normalized insulin actions for glucose and 498 
glycerol at the glucose nadir shows that the normalized insulin action for glucose is greater than the 499 
normalized insulin action for glycerol at this time point (Student's t-test, p < 0.001, 95% confidence 500 
interval: 0.3120 ± 0.0736) and indicates that insulin action on glucose has stronger relative action at 501 
the glucose nadir. 502 

Figure 6: Histograms of insulin action time constants for glucose and glycerol across all participants. 503 
The time constants for insulin action on glucose, 𝑝7) , (A) are consistently smaller than the time 504 
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constants for insulin action on glycerol, 𝑝7
B, (B) (Wilcoxon signed rank test, p < 0.001). This 505 

indicates that the time course of insulin action on glucose is more delayed than the time course of 506 
insulin action on glycerol relative to insulin concentration data. 507 

Figure 7: Metabolite phase plane trajectories summarize qualitative differences in glucose and 508 
glycerol dynamics relative to insulin action. Plotting normalized metabolite concentrations against 509 
normalized insulin action concentrations for the representative participants SIP (A) and DIP (B) 510 
reveals that glycerol concentrations change in a diagonal out-and-back pattern while the glucose 511 
concentrations change in a cyclic clockwise pattern reflecting the different dynamics of the 512 
responses.  513 
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