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Abstract. In this paper, we propose and analyze a new stochastic homogenization method for
diffusion equations with random and fast oscillatory coefficients. In the proposed method, the homog-
enized solutions are sought through a two-stage procedure. In the first stage, the original oscillatory
diffusion equation is approximated, for each fixed random sample w, by a spatially homogenized
diffusion equation with piecewise constant coefficients, resulting in a random diffusion equation. In
the second stage, the resulting random diffusion equation is approximated and computed by using
an efficient multimodes Monte Carlo method which only requires solving a diffusion equation with
a constant diffusion coefficient and a random right-hand side. The main advantage of the proposed
method is that it separates the computational difficulty caused by the spatial fast oscillation of the
solution and caused by the randomness of the solution, so they can be overcome separately using
different strategies. The convergence of the solution of the spatially homogenized equation (from the
first stage) to the solution of the original random diffusion equation is established, and the optimal
rate of convergence is also obtained for the proposed multimodes Monte Carlo method. Numerical
experiments on some benchmark test problems for random composite materials are also presented
to gauge the efficiency and accuracy of the proposed two-stage stochastic homogenization method.
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1. Introduction. This paper is concerned with numerical solutions of the fol-
lowing diffusion equation with random coefficients and data encountered in materials
science:

(1.1a) —div(A(i,w) Vu%x,w)) = f(z,w) in D x Q,
(1.1b) uf(z,w) =0 on 9D x Q.

Here D C R%d = 1,2,3) is a bounded domain, and w denotes a sample point
which belongs to a probability (sample) space (2, F,P). The coeflicient matrix
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A(%,w) = (aij(%£,w))1<ij<a and the right-hand side term f(z,w) are random fields
with continuous and bounded covariance functions. The parameter ¢ represents the
size of microstructure for the composite materials, which is usually very small, that
is, 0 <e <1

The random diffusion equation (1.1) has many applications in mechanics, hydrol-
ogy, and thermics (see [15, 19, 24, 26]). A direct accurate numerical solution of (1.1)
is difficult to obtain because it requires a very fine mesh and large-scale sampling
of w and thus a prohibitive amount of computation time. In the case of absence of
the randomness (i.e., the dependence on w in (1.1) is dropped ), the homogenization
method has been successfully developed for solving the diffusion equation with peri-
odic deterministic coefficients (cf. [5, 8, 25]), in which the homogenized coefficients are
obtained by solving a cell problem defined in the unit cell. For the diffusion equation
(1.1) with random coeflicients, a stochastic homogenization theory has also been well
developed; see [6, 7, 10, 9, 14, 18, 17, 21, 23, 27, 30]. Similar to the deterministic case,
the homogenized diffusion equation is constructed by solving a certain cell problem.
However, a fundamental difference is that the stochastic cell problem is a random
second-order elliptic problem, which is posed in the whole space R? (see (2.6)). Solv-
ing such an infinite domain problem numerically is not only challenging but also very
expensive, and the homogenization methods quoted above did not give any practical
recipe for numerically approximating the cell problem and the homogenized equation.

To circumvent the above difficulties, some localized approximations of the effec-
tive (or homogenized) coefficients by using “periodization” and “cutoff” procedures
were introduced in [2, 7, 22, 31]. A big benefit of the localized approximations is that
the resulting cell problem is now posed on a bounded domain, and it was proved that
the approximated coefficients converge to the effective (or homogenized) coefficients
as the size of the bounded domain goes to infinity. We also note that the localized
approximation methods, such as the representative volume element (RVE) method,
have also been used to compute the effective parameters of highly heterogeneous ma-
terials and to calculate the effective coefficients related to random composite materials
by utilizing a possibly large number of realizations [9, 13, 18, 29]. After having con-
structed the approximated effective (or homogenized) coefficients, the main task then
reduces to solve the approximated (random) diffusion equation with the constructed
coefficients. As a direct application of the Monte Carlo or stochastic Galerkin method,
since solving this random diffusion equation is computationally expensive, other more
efficient methods have been developed for the job. In [3, 4], a perturbative model
for weakly random materials was proposed, and the first-order and second-order as-
ymptotic expansions were established by means of an ergodic approximation based on
the weak randomness assumption. In [11], a multimodes Monte Carlo (MMC) finite
element method was proposed to solve random partial differential equations under
the assumption that the media (or coefficients) are weakly random in the sense that
they can be expressed as small random perturbations of a deterministic background.
However, to the best of our knowledge, there is still no efficient method for solving
the homogenized equation for (1.1) in the general setting.

The goal of this paper is to develop and analyze an efficient and practical two-
stage homogenization method for (1.1). In the first stage, we construct a piecewise
homogeneous (i.e., piecewise constant) material as an approximation to the original
composite material for each fixed sample w by solving several cell functions on bounded
domains. Under the stationary (process) assumption, we are able to prove that the
coefficient matrix of the piecewise homogeneous material can be rewritten as a small
random perturbation of a deterministic matrix, which then sets the stage for us to
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adapt the MMC framework. In the second stage, we utilize the MMC finite element
method to solve random diffusion problem with the piecewise coefficients obtained
from the first stage and provide a complete convergence analysis for the MMC method.
Since the first stage of the proposed method is similar to the RVE method, the work
of this paper can be regarded as a mathematical interpretation and justification for
the RVE method for (1.1) and introduces a numerical framework for an efficient
implementation of the RVE method.

The rest of the paper is organized as follows. In section 2, we present a few
preliminaries including notations and assumptions. In section 3, we introduce our
two-stage stochastic homogenization method and characterize the piecewise constant
approximate coefficients. In section 4, we present the convergence analysis of the pro-
posed two-stage stochastic homogenization method under the stationary assumption
on the diffusion coefficients. In section 5, we propose a finite element discretization
and a detailed implementation algorithm for the proposed method. In section 6, we
present several benchmark numerical experiments to demonstrate the efficiency of
the proposed method and to validate the theoretical results. Finally, the paper is
completed with some concluding remarks given in section 7.

2. Preliminaries.

2.1. Notations and assumptions. Standard notations will be adopted in the
paper. (2, F,P) denotes a probability space, and E(X) := [, X(w)dP(w) stands for
the expectation value of random variable X € L'(€2,dP). Let @ := (0,1)¢ be the unit
cell and Q +k := (ko, ko +1) x (k1, k1 +1) x - -+ x (ka, kg + 1) for k = (ko, k1, ..., ka)T
with k; € Z. Let D C R? be a bounded domain which can be written as D = Uy¢cza Dy,
where Dy = DNe(Q +k). For a positive integer M € Z*, set Qpr := MQ = (0, M)
and Qllf/[ = MQ + Mk. Let M(a, 8; D) denote the set of invertible real-valued d x d
matrices A = A(-,w) with entries in L>°(D) and satisfying P-a.s.

(2.1) alé]? < (Ag,€) < ple? for any ¢ € R? and a.e. in D.

Here (-,-) denotes the standard inner product in R?, and [£]? = (&, €).
Similar to [2, 3], we also assume that A(%,w) € M(a, 3; D) is stationary in the
sense that

(2.2) A(g + k, w) = A(g, Tkw) for any k € Z%, a.e. in D and P-a.s.,
where 7y is a mapping which is ergodic and preserves the measure IP; that is,
(2.3) wE=FE VEe€JF implies that P(E)=0or 1.

For the ease of presentation, we set f(z,w) = f(z) in the rest of the paper; that
is, f is a deterministic function.

2.2. Elements of the classical stochastic homogenization theory. It is
well known that [2, 6, 7, 17, 21, 23] as € — 0, the solution u®(x,w) of (1.1) converges
to the solution of the following homogenized problem:

(2.4a) —div(A*Vu*(2)) = f(z) in D,
(2.4b) u (x) =0 on 0D,

where the (7, j)-entry of the homogenized matrix (or effective coefficient) A* =

(afj)dxd is defined by

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 07/17/23 to 174.177.102.191 . Redistribution subject to CCBY license

MMC HOMOGENIZATION METHOD FOR RANDOM MATERIAL A1755
(2.5) a;; =B (/ (e; + VN, (y,w))TA(yM)ejdy) )
Q

{ei}4_, denotes the canonical basis of R%, and the cell function N, (y,w) is defined as
the solution of the following cell problem:

(2.6a) —div[A(y,w)(e; + VN, (y,w))] =0 in RY,
(2.6b) B ([ 9N ) =0

Q
(2.6¢) VN, (y,w) is stationary in the sense of (2.2).

As shown above, the classical stochastic homogenization method obtains the ho-
mogenized solution u*(x) in one step; see Figure 3.1 for a schematic explanation. We
note that the cell problem (2.6) is a random elliptic problem which is posed on the
whole space R? and can not be reduced to a cell problem on a bounded domain due to
the global constraint E( [, o VNe,(y,-)dy) = 0. Solving (2.6) is the main computational
challenge for implementing the classical stochastic homogenization method. A natu-
ral and widely used approach (cf. [2, 14]) is to approximate R? by a truncated cubic
domain Qn C R? with size N¢ by using “periodization” and “cutoff” techniques and
then to solve the truncated problem

(2.7a) —div[A(y,w)(e; + VN, n(y,w))] =0 in Qp,
(2.7b) Ne, n(y,w) is Qn-periodic.

Consequently, the deterministic homogenized coefficient matrix A* can be practically
approximated by a random matrix Ay = (aj; y(w))axa Whose (4, j)-entry is defined as

1

(2.8) ajjn(w) = m

(/QN (e; + VN, n(y,w))T Ay, w)(ej + VN@j,N(y,w))dy> .

Then, the solution u* of (2.4) is approximated as Elu} (w)] with u} (w) being the
solution of the following equation:

(2.9a) —div(Ay (w)Vuy (z,w)) = f(z) in D,
(2.9b) uy(z,w) =0 on 0D.

We refer the reader to [2, 4, 14] for a detailed account about the above classical
numerical approach.

3. Two-stage stochastic homogenization method. In this section, we shall
present a detailed formulation of our two-stage stochastic homogenization method for
(1.1). The new method only needs to solve similar diffusion equations with constant
diffusion coefficients and random right-hand sides.

3.1. Formulation of the two-stage stochastic homogenization method.
As explained earlier, the main difficulty for solving (1.1) is due to the oscillatory nature
of its solution which is caused by the oscillatory coefficient matrix A of the problem.
Recall that the classical numerical homogenization methods approximate effective (or
homogenized) coefficient matrix A* by matrix A} which is formed by solving the
cell problem (2.7), which is often expensive to solve numerically. Motivated by this
difficulty, the main idea of our method is to propose a different procedure to construct

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 07/17/23 to 174.177.102.191 . Redistribution subject to CCBY license

A1756 7. YANG, J. HUANG, X. FENG, AND X. GUAN

uf(z,w)|A%(x,w)

" i H
O|"H 5
O u* ()| A* )
iz, w)| Az, w) MG uf(z)|E(A(z,w))

Fic. 3.1. A schematic diagram for the two-stage stochastic homogenization method. In the
first stage, the composite material with coefficient matriz A(f,w) is equivalent to a piecewise ho-
mogeneous random material with coefficient matriz A(:v,w). In the second stage, the homogenized
solution ug(x) is obtained by using the MMC method. As a comparison, the classical stochastic
homogenization method aims to get the stochastic homogenized solution u*(x) in one step.

(a) (b) (e)

Fic. 3.2. (a) Composite material with random coefficients A(Z,w) for given w. (b) Equivalent
material with random coefficients A(x,w) for given w, which is a constant matriz in each cell. (c)
Stochastic homogenization material with deterministic coefficient E(A(z,w)).

an approximation to A* (in the first stage) whose corresponding homogenized problem
can be solved efficiently (in the second stage).

Specifically, our proposed method aims to construct a homogenized solution u$(z)
by the following two stages as illustrated in Figure 3.1. In the first stage, for each given
sample w, the composite material with microstructure is equivalently transformed to
a piecewise homogeneous material with coefficient matrix A(z,w) = A¥(w) = (di‘j (w))
(see Figure 3.2), referred to as the equivalent matriz in each block D N EQIR/[, where

(81) @) = @ [ (e VI () Ay + M )5+ TN (0.0l

and the cell function Nle‘i (y,w) is defined as the solution of the following cell problem
on block Qk/]:

(3.2a) —div[A(y,w)(e; + VNE (y,w))] =0 in 0%,
(3.2b) NE (y,w) is Qf;-periodic.

Here M is a parameter used to balance the efficiency and accuracy of the proposed
method. In numerical simulations, we usually choose M = O(1). Notice that the
equivalent matrix A(m,w) in each block Q¥ is a constant matrix. The equivalent
matrix A(x,w) can be regarded as a coarse-grained approximation of the original
matrix A(Z,w). In the coarsening process, the equivalent material with coefficient

matrix fl(:r, w) is homogeneous in each block Q% but still maintain the heterogeneity
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between different blocks (see Figure 3.2(b)). It should be pointed out that the equiv-
alent matrix A(x,w) is usually different from A} obtained by the “periodization”
procedure. In fact, by comparing cell problems (3.2) and (2.7) with M = N, it is easy
to see that A% is the same as A%(w) and may be different from A¥(w) for k # 0 due
to the possible heterogeneity between different blocks (recall that /Alk(w) denotes the
equivalent matrix in block D NeQX%,).

In the second stage, we intend to solve the random diffusion problem with the
equivalent (piecewise constant) coefficient matrix fl(az, w), namely,

(3.3a) —div(A(z, w)Vi(z,w)) = f(x) in D,
(3.3b) (z,w) =0 on 0D.

In other words, the original oscillatory random coefficient matrix A(Z,w) is approx-
imated by the equivalent matrix A(z,w) which is a constant matrix A¥(w) in each
block DN 59%4. For a given w, the computational cost for solving the homogenized
problem (3.3) is less than that for solving the original problem (1.1). However, the
equivalent matrix A(m,w) fluctuates on different blocks D N 5Q11f/[ due to the non-
periodicity. The fluctuation leads to expensive computational costs for solving the
homogenized problem (3.3) with small parameter € and M = O(1) because the com-
putational mesh size must be proportional to Me. To overcome the difficulty, we
adapt the MMC finite element method of [11] to solve (3.3) in an efficient way. This
is possible thanks to our discovery which shows that the equivalent matrix A(x,w)
has a nice structure; that is, it can be rewritten as a small random perturbation of
the deterministic matrix E(A(z, -)); see section 3.2. This then sets an ideal stage for
us to solve problem (3.3) by using the MMC method. The leading term in the MMC
approximation will be defined as u3(z), which is the sought after approximate solution
alluded earlier; see section 3.3.

It is important to point out that the MMC method presented in [11] cannot be
directly applied to a random diffusion problem (1.1) because its diffusion coefficient
does not satisfy the weak media assumption of the MMC method (see Appendix A).

3.2. Characterization of the equivalent coefficient matrix A(z,w). In
this subsection, we show that the equivalent matrix A(z,w) can be rewritten as a
(small) random perturbation of a deterministic matrix. The precise statement is
given in the following theorem.

THEOREM 3.1. Suppose A(Z,w) satisfies stationary hypothesis (2.2). Then the
equivalent matrix A(m,w) can be rewritten as

(3.4) A, w) = E(A°(w)) + 4 (z,0),

where A°(w) denotes the equivalent matriz in any block DNeQX,, A1 (z,w) = (aj;(z,w))
with aj; € L*(Q, L>®(D)), and § is a (small) parameter which depends on ¢ and M.

Proof. By the stationary assumption (2.2), the (i, j)-entry of A(z,w) can be writ-
ten as

R 1
(3.5) ak(w) = ol /o (e: + VNE (y,w)) " A(y + Mk, w)(e; + VNE (y,w)) dy
1
~ 0w (ei + VN (v, arcw)) T Ay, Tanew) (¢ + VN; (y, Tmkw)) dy,
(o}

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 07/17/23 to 174.177.102.191 . Redistribution subject to CCBY license

A1758 7. YANG, J. HUANG, X. FENG, AND X. GUAN
where the cell function N¥ (y, Taskw) satisfies

(3.6a) —div[A(y, Tarkw) (e; + VN (Y, Tmkw))] = 0 in Qur,
(3.6b) Nei (y, Tmkw) is Qpr-periodic.
Thus, A¥(w) = A°(7pw), which shows that the equivalent matrix coincides with

A% (w) on each block and at each sample. Since the ergodic mapping 75, preserves
the measure P, then we have

(3.7) / A (w)dP(w / A (ranew)dP(ranew) = E(A%(w))
and
(3.8) Var(AX(w Ak( )))Qd]P’(w)

\{O\

TMkw —-E (fAlO(T]\/[kw)))2 dP(mpw) = Var(/lo (w)).
Q

~ Next, we derive a (small) random perturbation form for the equivalent matrix
A(x,w). For a given k, A¥(w) = (a¥;(w)) € L?(¢Q¥;), and the autocorrelation func-
tion of di‘j (w), which is a constant, is defined by

(3.9) Covy = Var(A¥(w)) = Var(A%(w)).

Introduce the self-adjoint covariant operator Ty : L?(eQX,) — L%(eQX,) as

(3.10) Teo(+) = Coviv(z)dx = Covk/ v(z)dr Vv e L?(eQ%)).

eQk, eQk,
Let {(A\i, ¢1) }i>1 denote a complete eigenset of the operator Ty with Ay > Ay =--- =0
and

/ o1(x) @ (x)dT = Oty Lm=1,2,....
ok

By the Karhunen-Loéve expansion, we obtain
o)
(311)  af(w) = E@f(w)) + Y VAZE(W)a(@) = E(@lw) + VM ZE (w)er ()
=1
where ¢ (z) = [¢QX,|~% and Z¥(w) is a standard normal variable given by

5(w)) /Q o1 () = /7|EQ |

B12) 2w = ) BE )

The principal eigenvalue \; satisfies

Loox Tipr - g1 (x)da ?
(3.13) A\ = IQM Dor@de Covk / pi(z)de | = |eQly| Covy,
eQk, P1\T)P1 eQf
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which implies that
(3.14) &i‘j (w) = E(&Z (w)) + /Covi ZX (w) = E(d?j(w)) + Q/Var(d?j (W) ZX (w).

Thus, (4, j)-component of A(z,w) satisfies
(3.15) aij(2,w) = E(afy (W) + /Var(a9 (w)) ) Z¥(w)Ex(@),
Kk

where Ek(z) stands for the characteristic function of the domain D N e Q.
Finally, setting ¢ := max;<; j<a /Var(af;(w)), then the equivalent matrix Az, w)
can be rewritten as a (small) random perturbation as stated in (3.4). d
Remark 3.2. The smallness of § and the precise relationship between § and M as

well as € will be given in Theorem 4.2 later in the next section.

3.3. An efficient MMC method for solving the homogenized problem
(3.3). By Theorem 3.1 we know that the equivalent matrix A(x, w) can be rewritten
as a (small) random perturbation of E(A°(w)) as given in (3.4). This then sets the
stage for us to solve homogenized problem (3.3) by using the MMC method. To
proceed, we first notice that A; (z,w) = (aj;(z,w)) with af; € L*(Q, L>°(D)) satisfying

P{w € Q;|

azlj(W)HLoo(D) <aj=1.

In [11], the perturbation term is assumed to be in L?(Q2, W1°(D)). However, the
perturbation term A;(z,w) in (3.4) is not in L?(Q, WH°(D)) because A;(z,w) is a
piecewise constant function which is discontinuous in D. Nevertheless, we show below
that the MMC method can be easily extended to the case.

Due to the linear nature of the equivalent problem (3.3) and the small random
perturbation structure of the equivalent matrix fl(m, w), we can postulate the following
multimodes expansion for 4(x,w):

(3.16) i(z,w) =Y 8"u) (z,w).
n=0

Substituting (3.4) and (3.16) into (3.3) and matching the coefficients of §™-order terms
forn=1,2,..., we get

(8172) -V (E[A°W)]Vuf(w,w)) = f(a),
(317b) -V (E[AO(W)]vug(x,w)) =V (A (2,0)Vil_ (z,w))  Vn > 1,
(3.17¢) ud(r,w) =0 on AD V¥n >0.

Clearly, the first mode function u(w,z) satisfies a diffusion equation with a de-

terministic coefficient matrix E(A°(w)) and a deterministic source term f. Thus,
ud(w, ) is independent of w, and we relabel it as u)(z) := ul(w,x). Moreover, the
mode functions {ul},>0 satisfy a family of diffusion equations that have the same
deterministic diffusion operator Lo(-) := —V - (E[A?(w)]V-) but different right-hand
side source terms. Furthermore, {ul},>; are defined recursively with the current
mode function wu, being only dependent directly on the proceeding mode function
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Un—1. The well-posedness of multimode functions {u?} and the corresponding error
estimates will be discussed in the next section (see Theorem 4.4 and Theorem 4.5).

In this paper, we shall use the first term of the multimodes expansion, that is,
ud(x) as an approximation for @(x,w). How to efficiently compute the mode functions
{ul},,>1 is important and challenging since A; (z,w) in the right-hand side of (3.17b)
fluctuates in probability space and oscillates in different blocks D N sQlj/[. A natural
but expensive approach is to solve (3.17b) for each sample w by using a fine mesh with
mesh size proportional to Me, which is easily implemented but low efficient. According
to Theorem 4.5 in the next section, taking u3(x) as an approximation of i (z,w) only
enjoys the first-order convergence rate. The convergence rate can be further improved
by using more mode functions {u},>1. Thus, developing more efficient numerical
methods and algorithms for computing the mode functions {ul },,>1 is important and
will be addressed in future work.

4. Convergence analysis. In this section, we analyze the convergence and error
estimates for the proposed two-stage stochastic homogenization method. We first
show the convergence of the equivalent matrix A(w, w) to the homogenization matrix
A* as M — oo in the next theorem.

THEOREM 4.1. Suppose A(%,w) satisfies the stationary hypothesis (2.2). Let
A(z,w) = (a;j(z,w)) be the equivalent matriz defined by (3.1) and A* = (a3;) be
defined by (2.5); then there holds

(41) N}l—r)noo ||&”(,QJ) — a;‘jHLoo(D) =0 a.s..

Proof. By Theorem 1 in [7], we have

. ~0 o
(4.2) N}l_r)noo lai;(-;w) — ajjllLe(py =0 as..

For any k, it follows that

. ~k _ . ~0 % : o0
(4.3) ]\/}Lr)noo a;5(w) = A}lgloo a;;(Tvew) = aj;  a.s. in L2(D).
The proof is complete. ]

To derive the rate of convergence of A(m,w), we introduce the uniform mixing
condition as in [7]. For a given random field B(z,w) in RY, let Fp denote the o-
algebra 0{B(z), x € D}. The uniform mixing coefficient of B is defined as

(4.4) ~(s) = sup sup P(D; N'Dy) — P(Dy)P(Dy)] .
Dl,DQCRd, diSt(Dl,Dg)Zs ﬁle}_ﬁl ,ﬁzG}—ﬁ2

In the rest of this section, we assume v(s) satisfies the following growth condition:
(4.5) v(s) < e(145)~? for some § > 0 and Vs > 0.

Then we have the following theorem.

THEOREM 4.2. Suppose A(%,w) satisfies the stationary hypothesis (2.2). Assume
that the uniform mizing coefficient of A(Z,w) satisfies (4.5). Let Az, w) = (ay(x,w))
and A* = (aj;); then there holds

(4.6) E [(aij(z,-) —a};)’] <CM~¢  for a.e. x € D,

ij
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and there exists ( = (0, a,d) > 0 such that

(4.7a) Var(&?j (w)) <CM~¢,
(4.7b) § < CM™/2,
Proof. By Theorem 5 of [7], we have
(4.8) E[(@() —a};)?] <CM~¢  forae. x € D.

For any k, similar to (3.8), we have

(4.9) E[(@5() —a})?] =E[(ad() —a};)?] <CM™¢ for a.e. x € D,

ij ij
which completes the proof of (4.6). To show (4.7), using Holder’s inequality and (4.6),
we get

~ * )2 ~ * 1\ 2 ~ * —
(4.10) (]E[a?j] - aij) = (]E[a?j - aij]) < E[(a?j - aij)z} <COM™¢,
which implies
(4.11) Var(ag;) = E [(ag; — E[ag;])?]
< 28 [(a); — a};)?] + 2E [(a}; — Ela%}))?]
<OM™¢
Thus, the proof is complete. 0

Remark 4.3. One immediate corollary of Theorem 4.2 is that § — 0 as ¢ — 0 after
taking M = ¢~ with o € (0,1). This verifies that ¢ is indeed a small parameter.

Following Theorem 3.1 of [11], we can show the unique existence and the stability
estimate for each mode u! in (3.16).

THEOREM 4.4. Assume that A(%,w) € M(a, 8, D) and f € L*(D). There exists
a unique solution ud € L*(Q, H} (D)) to (3.17) for each n > 0 which satisfies

(4.12) E(lunlitr(py) < Co T If 1122y
for some Cy > 0 independent of n and §.

Proof. Using Hashin-Shtrikman bounds [16], we have A(z,w) € M(a, 8, D). For
n = 0, the existence of a unique weak solution u € HZ (D) follows immediately from
the Lax—Milgram Theorem (see, e.g., [12]), and there holds

(4.13) E(luglr () < CollflI72(m)-

The proof for the cases n > 1 can be done by the induction argument. Assume
that (4.12) holds for n = 0,1,...,1 — 1; then A;(z,w)Vul_, € [L3(Q, L3(D))]"
(which is the source term in (3.17)). Using Theorem 3.3 in [20], there exists a unique
up € L?(2, H} (D)) which solves (3.17) for n = [ and fulfills the following estimate:

(4.14) E(H“?H%{l(p)) <C(D)E (HAl(xaw)VU'roz—l||[2L2(D)]d>
< dC(D)a’E (HVU%qH[QLz(D)]d)
< dC(D)aE (|l I (1)

< CETM ATz (-

The proof is complete. 0
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The next theorem establishes an estimate for the error function @(z,w) — ud(z),
which is an analogue to Theorem 3.2 of [11].

THEOREM 4.5. Suppose that A(Z,w) € M(a, B, D) satisfies stationary hypothesis
(2.2). Assume that § <1 and f € L*(2); we have

(4.15) E(|li(e,w) = u§(@) 1)) < C18 1 72(n)
for some positive constant Cy independent of 4.
Proof. Let r(z,w) := @(x,w) —u(x). Substituting (3.4) into (3.3) and combining
it with the first equation of (3.17), we obtain
(4.16a) —div(E(A(z, w))Vr(z,w)) = ddiv(A4, (z, w)Vi(z,w)) in D,
(4.16b) r(z,w) =0 on 0D.
By Theorem 3.3 of [20], we get
E(lIrl3 (p)) < CD)PE(1 A (2, 0) Valfzpy)
< dC(D)ad*E (|| Vel frapyja)
< 016 Hf”i?(D) )
which completes the proof. 0
THEOREM 4.6. Let M = Ce™7 with o € (0,1) and u® denote the solution of prob-
lem (1.1). Assume that f € L*(D) and A(%,w) € M(a, B; D) satisfies the stationary
hypothesis (2.2) and is Qpr-periodic for P-a.s. w € Q. Then there holds
(4.17) limE(HuE(x,w) —ug(x)HiQ(D)) =0.

e—0

Proof. By Theorem 4.5, we have

(4.18) E ([l w) — u(@)]|7a(p)) < C18 I£1Z2(0)
Since M = Ce~? with o € (0, 1), it follows from Theorem 4.2 that
(4.19) g%E(Hﬁ(m,w) - ug(x)H;(D)) —0.

By Theorem 6.1 of [8], there holds for given w € Q

(4.20) uf (2, w) = 0(r,w) weakly in H}(D) ase — 0
and

(4.21) uf(z,w) — @(x,w) strongly in L*(D) as e — 0.

By the triangle inequity, we get
. 2 . ~ 2
(4.22) 1 E ([[u(,0) = w(@)|[}2p) ) < ImE (JJus (@,0) = iz, 0)[32(p) )
. . 0 2 .
+ lim E( [z, @) — u (@)} ) = 0.

which completes the proof. ]

We note that the above theorem establishes the convergence of the proposed two-
stage stochastic homogenization method in the case when A(%,w) is Q-periodic; the
convergence for the nonperiodic case remains open and will be addressed in future
work.
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5. Implementation algorithm for the proposed two-stage method. In
this section, we address the implementation issues for the proposed two-stage stochas-
tic homogenization method. Let {w,}% | be L independent and identically distributed
(ii.d.) random samples in the sample space Q. Let Tlg stand for a quasi-uniform par-
tition of cell Q%, such that Ok, = U Kke'ﬂ*lﬁfk. Here we assume that the partition
’]I‘lh‘ is a body-fitted grid according to the coefficients matrix A(y + Mk, w,). Let V¥»
denote the standard finite element space of degree r defined by

(5.1) VRh.—{ye H;ET(QR‘/[);MKK is a polynomial of degree r for each Ky € TF}.

Here H!,,(Q¥,) = {v € H'(QX,); such that v is QX,-periodic}.

per
The finite element cell solutions Nl;;h(y,ws) are defined as

(5.2) (A(y, ws)(e; + VNle‘i’h(y, ws)), Vvh) Vol e Vi,

fol 0
where (u”, vh)Qﬁf denotes the standard L2-inner product over QX,. With the help of
the finite element cell solutions Nle‘i’h(y,ws), the (4, j)-component of the approximate
equivalent matrix A" (z,ws) in block D NeQ¥, is given by

1

5.3) a"(w,) = ——
(5.3) a;" (ws) Gl Jo.

ij

(es+ VNG (y,ws)) " A(y+ Mk, ws) (e + VNE" (y, ws))dy.

We define the empirical mean and variance for each component of A%"(w,) in block
DNeQk, as

L
1
~k,F ~Kk.h
(5.43) 'U?LL = UL (aij L(Ws)) = E Zaij (ws)v
s=1
L
(5 4b> O'k — b Ak,h( ) _ L Z Ak,h( ) _ .k 2
. L = on | (Ws)) = 71 Qi (Ws Hijr) -
s=1

Similar to [2], by the strong law of large numbers and the fact that di-(j’h(ws) is

i.i.d., we have

(5.5) p, SR (ak’h(ws)) P-as..

j

It follows from the central limit theorem that

(5.6) VI (1~ B (a5 (wy)) ) £ Var (a5 (@,)) M0, 1),
where the convergence holds in law and A/(0,1) denotes the standard Gaussian law.
For sufficiently large L, we use “Z . as an approximation of E(&Z’h(ws)).

In the finite element approximation of the proposed two-stage stochastic homog-
enization method, we use pj, = (,u?LL) as an approximation of E[A°(w)]. Let Ty, be
a quasi-uniform partition of computational domain D with mesh size hy such that
D=U KeThOF- Assume V"o is the standard finite element space of order r over T,
defined by

(5.7)  Vho.={y € H}(D);v|k is a polynomial of degree r for each K € T, }.
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Algorithm 5.1 The finite element two-stage stochastic homogenization method

1: Generate a family of i.i.d. samples {w,}Z ;. For each wj, construct a body-fitted
and quasi-uniform partition of the cell Qs according to A(y,ws) for y € Q.

2: Compute finite element cell solutions Nle‘i’h(y, ws) with k = 0 by solving cell prob-
lem (5.2) and (4, j)-entry of the equivalent matrix A%"(w,) by (5.3).

3: Calculate the (4, j)-component of the empirical mean matrix uy, by using (5.4).

4: Solve the finite element equation (5.8) and obtain the finite element approxima-
tion of the first mode function uf, which is taken as the finite element two-stage
stochastic homogenization solution for the random diffusion equation (1.1).

The finite element approximation of the first mode function u is defined by

(5.8) (,uLVug’h“ (x)7Vvh°> (f,v")p Vol € Yho,

D
Its implementation algorithm is given below in Algorithm 5.1.

Since direct simulations of the random diffusion equation (1.1) are computation-
ally expensive, we use the empirical mean E(4(z,w)) of the equivalent solution for
(3.3) as a reference solution to verify the efficiency and accuracy of the finite element
two-stage stochastic homogenization method. To the end, let T}, be a quasi-uniform
partition of computational domain D with mesh size hy such that D = U KGTM? and

VP is the standard finite element space of order r defined by
(5.9) VM .= {v e H}(D);v|k is a polynomial of degree  for each K € Ty, }.

Let @/ (x,ws) be the solution of (3.3) with w = w, defined by

(5.10) (Ak’h(ws)vahl(m,ws),Vv’“) (f,o")p  Voho e Y,

D_

Its implementation algorithm is given below in Algorithm 5.2.

Algorithm 5.2 Algorithm for computing the reference solution

1: Generate a family of i.i.d. samples {w}L ;. For each ws, construct a body-fitted
and quasi-uniform partition of the cell QX, according to A(y,ws) for y € QX,.

2: For k € Z such that EQI& N D # (), compute a set of finite element cell solutions
N¥"(y,w,) by solving cell problem (5.2) and the equivalent matrix ARl (w,) =
(a5 (ws)) by (5.3).

3: For each w;, solve the finite element solution 4 (z,w;) from (5.10).

4: Calculate the reference solution for the finite element two-stage stochastic homog-
enization method by

L
1
b (@) = £ il (@, ws).
s=1

6. Numerical experiments. In this section, we present several 2D numerical
experiments to evaluate the performance of the proposed two-stage stochastic homog-
enization method for the random diffusion equation (1.1). We mainly focus on the
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verification of the accuracy and efliciency of the finite element approximation of the
two-stage method. Our numerical experiments are performed on a desktop worksta-
tion with 16G memory and a 3.4GHz Core i7 CPU. We set f(z) = 10 in all the
tests. The cell Qp; in the two-stage stochastic homogenization method is taken as
Q = (0,1)? with M = 1. The computational domain is D = (0,1)?, and € = 1/8.

6.1. Convergence of the equivalent matrix. In this test, we study the con-
vergence of the numerical empirical mean g, given in (5.4), which is used in the
two-stage stochastic homogenization method. Assume Q) = @ = Q1 U @2 with
Q1NQ2 =0 and Q2 = (0.25,0.75)2. The random coefficients in the diffusion equation
(1.1) are chosen as
(6.1)

. 1 . o
30,5 + (1 + sin (27r—> sin (QW—) 6ij> Zx(w), z€e(@ +k),
aij(=,w) = © ©

™

3000, + (50 +sin (277%) sin (%%) 5ij) Z(w), w€e(Qa+k),

where the i.i.d. random variables (Zy(w))kezz satisfy a truncated normal distribution.
The probability density function for the truncated normal distribution is given by

(6.2) Flw, —b,b) = { B(b) — B(—b)’ w € [=b,0],

0 otherwise,
where ¢(w) = \/% exp (—iw?), ®(w) = $(1 + erf(w/Vv/2)), and b = 1.5.

For the comparison purpose, we calculate Ay, = (a;; y(w)) defined by the “cutoff”
approach in (2.8) and take it as the reference solution. Since A} converges to A* as
N — oo, we compare the values of py, and A% by setting L = N? to study the
convergence behavior of py. We generate a family of random variables Zy(w) with
1<k <N and1<ky <N. In the two-stage stochastic homogenization method,
the L samples are then taken as Zp(ws) = Zk(ws) with s = ko N + k1. To neglect
the numerical errors coming from the finite element discretization, we use a finer
quasi-uniform mesh of ']Tl}: with h = 1/60.

The numerical results for py and A} with L = N? =4,16,...,1,024 are given
in Table 6.1. From the table we observe that the relative errors for the equivalent
matrix py, by taking the stochastic homogenization matrix A} as reference increase
as N increases and stop at a small value (about 4%). Since A%, converges to A* as
N — oo, thus one can take py as a valid approximation of A*. To study statistic
fluctuations of the equivalent matrix gy, and the stochastic homogenization matrix
Ay, we take N = 22 as an example and run the simulation with twenty sets of
iid. samples. Each set consists of 484 samples. The numerical expectation and
variance are given in Table 6.2, which clearly show that the equivalent matrix up,
is a good approximation for the stochastic homogenization matrix A*. The total
computation time for each set of the two approaches is also reported in Table 6.2,
which demonstrates that the proposed two-stage stochastic homogenization method
is more efficient than the classical stochastic homogenization method with almost
the same accuracy. As a comparison to the cell problem posed on Qy for N = 22
in the “periodization” stochastic homogenization method, the proposed two-stage
stochastic homogenization method only needs to deal with N? cell problems defined
on the unit cell @, which is the main reason for the computational saving and the
efficiency improvement. It should be pointed out that the N? cell problems can be
solved naturally in parallel.
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TABLE 6.1
The comparison of equivalent coefficients “(1)1 L and stochastic homogenization coefficients

a11 N for cell Qn. The “Error” in the table is deﬁned as |u11 L —ay N|/a11 N The compar-
isons for the other three entries of the matriz are similar but not "shown here.

— N2 0 A — N2 0 Ax
L=N Bi1,p, “Il,N Error L=N Ki1,p, af; N Error

4 4.9437 4.8932 0.0103 324 5.1923  5.0009 0.0383
16 5.0970 4.8020 0.0614 400 5.2592  4.9960 0.0527
36 5.3440 5.2024  0.0272 484 5.2100 4.9941 0.0432
64 5.5265 5.1084  0.0818 576 5.3724  5.0974  0.0539

100 5.3234 5.0461  0.0550 676 5.2123  4.9562  0.0517
144 5.1703 4.8894 0.0575 784 5.2520 5.0438 0.0413
196 5.1830  4.8505  0.0685 900 5.2447  5.0212  0.0445
256 5.1892 4.8886 0.0615 1024 5.1899 4.9759  0.0430

TABLE 6.2
The comparison of the numerical expectation and variance of equivalent matriz and stochastic
homogenization matriz.

Expectation = Variance  Compute time (s)

1wy L 5.2130 0.1320 125.9
4.9991 0.1334 917.5

a11 N

2. Verification of accuracy and efficiency. In order to validate the ac-
curacy and efficiency of the proposed two-stage stochastic homogenization method,
three kinds of tests (Test A, B, C) are performed in this subsection. In Test A, the
composite materials have periodic structure and random coefficients; in Test B, the
materials have random structure and deterministic coefficients; in Test C, both the
structure and coefficients of the materials are random.

Test A: Composite materials with periodic structure and random coefficients. In
this simulation, we consider two types (Type I and Type II) of composite materials
with periodic structure and random parameters. The computational domain D is
decomposed into 8 x 8 cells, and all cells have the same geometry constructed by
matrix (denoted by Q1) and inclusions (denoted by Q2). The unit cell of Type I
includes a square inclusion as shown in Figure 6.1(a). Figure 6.1(b) shows the unit cell
of Type II which contains 70 elliptical inclusions with uniform random distribution,
which is generated by the take-and-place algorithm [28]. The random coefficients
for matrix and inclusion are given by (6.1), in which i.i.d. random variables Zy(w)
satisfy the uniform distribution over [—1, 1] or a truncated normal distribution with
the probability density function defined by (6.2).

Test B: Composite materials with random structure and deterministic coefficients.
In this test, we consider composite materials with random structure and deterministic
coefficients. As shown in Figure 6.2(a), the computational domain D is decomposed
into 8 x 8 cells and each cell contains 10 elliptical inclusions with uniform random
distribution sample w, which is generated by the take-and-place algorithm [28]. De-
note Dp(w) as the matrix subdomain and Ds(w) as the inclusion subdomain. The
deterministic coefficients in both subdomains are taken as

(m ) 305, z € Di(w),
aj (= w) =
J 3006@‘, x € DQ((A}).
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0.25

0.0 0.00
(a) 0.00 0.125 0.25 (b) 0.00 0.125 0.25

F1G. 6.1. Test A: Composite materials with periodic structure and random coefficients. Pseu-
docolor of a11(x,w) on the domain (0, 0.25)2 is plotted. (a) Type I: a square inclusion. (b) Type
I1: 10 elliptical inclusions with deterministic major/minor azes and rotation angles in each cell are
taken as an example.

0.25

0.125

0.00 .
(a) 0.00 0.125 0.25 (b) 0.00 0.125 0.25

FiG. 6.2. Pseudocolor of ai1(z,w) on the domain (0,0.25)2 is plotted. Elliptical inclusions
with random position, magjor/minor azes, and rotation angles in each cell. (a) Test B: Composite
materials with random geometry structure and deterministic coefficients. (b) Test C: Composite
materials with random geometry structure and random coefficients.

Test C: Composite materials with random structure and random coefficients. This
test can be viewed as a combination of Test A and B. As shown in Figure 6.2(b), the
computational domain D is decomposed into 8 x 8 cells and each cell contains 10 el-
liptical inclusions with uniform random distribution sample wy, which is generated by
the take-and-place algorithm [28]. Let Dj(w1) and Da(w) have the same definitions
as in Test B. The random coefficients in both subdomains are now defined as

as (%) = 30i5 + (1 + sin (277%) sin (27r%) 5ij) Zy(wo), z € Di(w1) Ne(Q + k),

m

3000;; + (50 +sin (271'%) sin (277968—2) 51-]-) Zie(ws), x € Da(wr) Ne(Q + k),

where the i.i.d. random variables (Zx(ws2))kezz satisfy the uniform distribution over
[-1,1] or the truncated normal distribution with the probability density function
defined by (6.2) .
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Fi1c. 6.3. The numerical expectation and fluctuation of equivalent coefficient /‘(1)1,L' (a) Type
1 of Test A with coefficients satisfying uniform distribution over [—1,1]. (b) Type I of Test A with
coefficients satisfying the truncated normal distribution. (c) Type 11 of Test A with coefficients
satisfying uniform distribution over [—1,1]. (d) Type II of Test A with coefficients satisfying the
truncated normal distribution.

In each simulation, the unit cell @ is partitioned into a body-fitted and quasi-
uniform mesh TX. The mesh size h = 1/60 is used for Type I of Test A and h = 1/120
for the other tests. Equation (5.8) is solved on a quasi-uniform partition Tp, of
the domain D with the mesh size hy = 1/100. For comparison, we calculate the
reference solution by solving (5.10) on another quasi-uniform partition Tj, of the

domain D with the mesh size hy = 1/100. The relative error for the two-stage
stochastic homogenization solution is defined as |Jug”® — @™ || g2y /05" |12 ().

In Test A and Test C, the total number of samples is taken as 10,000. Those samples
are then divided into several subsets, and they consist of, respectively, the following
numbers of samples L = 5, 10, 20, ..., 1,000. In Test B, the total number of
samples is taken as 5,000 and the numbers of samples in the subsets are set as L =
5, 10, 20, ..., 500.

The numerical expectations and fluctuations of the equivalent coefficients u(l)L I
for all three tests are presented in Figures 6.3, 6.4, and 6.5. The numerical results,
which are not shown, for the other entries of the equivalent matrix are similar. We ob-
serve that, as the number (L) of the total samples increases, the expectation tends to
stabilize, and the variance gradually decreases. Moreover, we also observe that when
L =500 ~ 1,000 the two-stage stochastic homogenization method can obtain a stable
and accurate equivalent matrix. Figures 6.4, 6.6, and 6.7 show the relative errors of
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F1G. 6.4. Test B: (a) the numerical expectation and fluctuation of equivalent coefficient /‘(1)1 s
(b) the relative errors of the two-stage stochastic homogenization method.
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FiG. 6.5. The numerical expectation and fluctuation of equivalent coefficient “?1 .- (a) Test C
with uniformly distributed coefficients. (b) Test C with truncated normally distributed coefficients.

the computed two-stage stochastic homogenization solutions, and the numerical re-
sults show that the relative errors reduce to a relatively low value (about 0.1%-10%)
as the number of the total samples increases. Figure 6.8 displays the contour plots
of the computed two-stage stochastic homogenization solutions and the reference so-
lution. The consistency of the two solutions is clearly seen. Table 6.3 presents the
computational costs for solving the cell problem and the homogenized problem. Since
the homogenized problem is only solved once in the two-stage stochastic homoge-
nization method, the computational cost for the proposed method is much less than
the other approach in which the homogenized problem must be solved L times. The
CPU times used by Tests A, B, and C are, respectively, given in Table 6.4. Those
numerical results demonstrate that the two-stage stochastic homogenization method
is computationally quite efficient and accurate.

7. Conclusion. In this paper, we developed a two-stage stochastic homogeniza-
tion method for solving diffusion equations with random fast oscillation coefficients.
In the first stage, the proposed method constructs an equivalent matrix by solving a
cell problem posed on the finite cell Q. It was proved that the equivalent matrix
converges to the stochastic homogenized matrix as the cell size goes to infinity. To
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Fic. 6.6. The relative errors of the two-stage stochastic homogenization method. (a) Type 1
of Test A with coefficients satisfying uniform distribution over [—1,1]. (b) Type I of Test A with
coefficients satisfying the truncated normal distribution. (c) Type I of Test A with coefficients
satisfying uniform distribution over [—1,1]. (d) Type I1 of Test A with coefficients satisfying the
truncated normal distribution.
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Fia. 6.7. The relative errors of the two-stage stochastic homogenization method. (a) Test C
with uniformly distributed coefficients. (b) Test C with truncated normally distributed coefficients.

balance the efficiency and accuracy, the proposed two-stage stochastic homogeniza-
tion method usually chooses a suitable large cell and calculates the empirical mean by
taking L samples in the probability space. In the second stage, the approximation of
the homogenized problem, which is a random diffusion problem, is solved by employ-
ing an efficient MMC method after having shown that the equivalent matrix can be
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(a)

Fic. 6.8. The contour plots of the solutions. (a) The two-stage stochastic homogenization
solution ug’ho for Type 1 of Test A with truncated normally distributed coefficients. (b) Reference
solution 4" for Type 1 of Test A with standard normally distributed coefficients. (c) The two-stage
stochastic homogenization solution ug’ho for Type 11 of Test A with truncated normally distributed

coefficients. (d) Reference solution aloh for Type IT of Test A with standard normally distributed
coefficients.

TABLE 6.3
The number of degrees of freedom used in the three tests.

Test A (Type I) Test A (Type II), Test B,C

Cell problem 3,600 14,400
Homogenized problem 10,000 10,000

rewritten as a small random perturbation of some deterministic matrix. As a result,
the proposed two-stage method provides an efficient procedure to obtain an approx-
imation to the homogenized solution. The efficiency and accuracy of the two-stage
stochastic homogenization method were validated by several numerical experiments
on some benchmark problems.

In summary, we propose a new stochastic homogenization method with a two-
stage procedure, which is different with the classical stochastic homogenization
method or “cutoff” procedure. This appears to be the first attempt to separate the
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TABLE 6.4
Total compute times for the three test cases by using the two-stage stochastic homogenization
method (“Present”) and the reference method (“Reference”).

Method Total time (s)  Cell problem (s) Homogenized problem (s)

Test A Reference 6,415.9 2,569.9 3,846.0
s Present 2,704.4 2,703.9 0.5
Test B Reference 10,115.5 6,258.3 3,857.2

Present 6,337.3 6,334.4 2.9
Test C Reference 17,294.9 13,434.1 3,860.8
Present 12,753.5 12,750.5 3.0

computational difficulty caused by the spatial fast oscillation of the solution and
caused by the randomness of the solution, so they can be overcome separately using
different strategies. Besides, the convergence of the solution of the spatially homoge-
nized equation (from the first stage) to the solution of the original random diffusion
equation is established, and the optimal rate of convergence is also obtained for the
proposed MMC method. This appears to be the first attempt to obtain the explicit
convergence order for the stochastic homogenization method.

Appendix A: The property of random matrix A(%,w). The random ma-
trix A(Z,w) of the composite materials usually does not satisfy the small random
perturbation or cannot be rewritten into the desired form by the Karhunen-Loéve
expansion. The precise statement is supported by the following example. Thus, the
MMC finite element method of [11] cannot be applied directly to solving the random
diffusion problem (1.1).

Example 1. Let Q = Q1UQ2 with Q1NQ2 = 0. Assume D1 = Uy cza DNe(Q1+Kk)
and Dy = Uyeza D Ne(Q2 + k). The entries of the random matrix A(Z,w) are taken
as

i1 (1 +w), € Dy,
(A1) i (g,w) = aa(l+w), @ !
€ a'ij,2(1 —|—OJ), x € Do.

where a;51 and a;;2 are two distinct constants and w is a uniformly distributed scalar
random variable over [0, 1]. The autocorrelation function of a;;(%,w) is given by

Cova(s,t) = E {(aij (Zw) -EleuCw)]) (aij(zyw) —E [aj(ﬁw)m

1
(A 2) Eaiﬂaij’g for s € Dy, t€ Dy, or s € Dy, t € Dy,
' 1
= Eafﬂ for s € Dy, t € Dy,
1 2
Eamz for s € Dg, te Ds.

Therefore, Cov, (s, t) is a discontinuous function. By Lemma 4.2 of [1], the Karhunen—
Loéve expansion does not give the required small random perturbation form for ran-
dom matrix A(Z,w).
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Moreover, suppose that the (i,j)-component of A(%Z,w) can be rewritten as
aij(%,w) = a?j(x) + 5a}j(w w) with aj; € L?(Q, L>=(D)) satisfying

e

]P’{w e,

a}j(w)HLm(D) < a} =1,

where a is a constant independent of small parameter §. Thus, we have

a

) (2.) = 2ol =)

L2 w
“w\g’ )

Let wy € Q1 = [0, 1] and wo € Oy = [3,1]; it follows that

() )
(A-3) ‘a”(e’uh) L°°(D)+ a”(a’w2> Lo (D)
(A4) o Mlaij (2, w1) — aij (2, w2) [ = (D)
' - 1)
1
(A.5) > —max{a;;1, aijz2},

20

which contradicts with the condition P{w € ; ||a};(w)||L~(py < a} = 1 with @ being
independent of small parameter §. Therefore, the random matrix A(Z,w) cannot be
rewritten as A;;(Z,w) = A (z) + 0AL(Z,w).
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