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Abstract This paper proposes a mini-batch stochastic optimization-based adaptive localization scheme

for computing the “optimal” localization radius in data assimilation (DA) applications. After constructing a
cost function of the localization radius by estimating forecast and observation error statistics, a mini-batch
stochastic gradient descent method with a novel sampling strategy is proposed to minimize the cost function.
The proposed stochastic optimization algorithm is further incorporated into the DA method NLS-i4DVar (the
nonlinear least squares integral correcting four-dimensional variational DA method), which was developed by
the authors in Tian et al. (2021, https://doi.org/10.1029/2021EA001767). It is utilized to compute the “optimal”
covariance localization radii adaptively and flow-dependently inside NLS-i4DVar. The computational cost

of NLS-i4DVar with the proposed adaptive localization scheme only increases slightly due to the use of the
mini-batch stochastic optimization algorithm. Numerical experimental results using the shallow-water equations
demonstrate that NLS-i4DVar with the proposed adaptive localization scheme shows substantial performance
improvement over the standard NLS-i4DVar method.

1. Introduction

The objective of data assimilation (DA) aims to incorporate the observations into the Earth system models' state
to improve their initial condition estimations and thus the models' predictive capabilities by taking advantage
of the consistency constraints between the laws of time evolution and physical properties (Kalnay, 2003). It is
well known that accurate specification of the background error covariance matrix, which will be denoted by B
in this paper and usually has very high dimension in the order of 107~° x 107~°, plays a key role in improving the
performance of the two major methods in DA (Tian et al., 2018), namely, the ensemble Kalman filter (EnKF:
Evensen, 2007; Houtekamer & Mitchell, 1998; Whitaker et al., 2004) and four-dimensional variational data
assimilation (4DVar: Courtier et al., 1994; Lewis & Derber, 1985; Navon et al., 2005).

The B matrix often can be approximated by the ensembles produced via the so-called method of the National
Meteorological Center (NMC; now named the National Centers for Environmental Prediction) (Parrish &
Derber, 1992) or the ensemble Kalman filter (Evensen, 2007). Under the limited consideration resource condi-
tion, the ensemble size is usually of the order 10, which is too small compared to the problem dimension (107-9).
Such sampling errors may induce spurious long-distance error correlations resulting in poor conditioning of B
matrix. Localization has proven to be an effective technique to ameliorate the spurious long-range correlations
of the ensemble-estimated B matrix and to increase its rank, so that the system can “fit” the background innova-
tions (Anderson, 2007; Anderson & Lei, 2013; Bishop & Hodyss, 2011; Blum et al., 2009; Hamill et al., 2001;
Houtekamer et al., 2005; Kepert, 2008; Lei & Anderson, 2014; Zhen & Zhang, 2014).

Covariance localization is usually implemented as a Schiir product between the ensemble-based B matrix and
a decaying distance-dependent function, such as a Gaussian (Anderson, 2012) or the Gaspari-Cohn fifth-order
piecewise polynomial (Gaspari & Cohn, 1999). The computation of the decaying distance-dependent function
needs to predetermine an “optimal” localization radius (given empirically or through sensitivity experiments),
which determines the influence distance of the observations. More importantly, the ensemble-estimated B matrix
is usually flow-dependent, and its optimal localization radius is also not stagnant or unchangeable and depends
on the ensemble size, observation properties, model dynamics and the model resolution, etc (Kirchgessner
etal., 2014). A lot of effort has been devoted to adaptively estimating optimal localization radii from the data based
on EnKF in order to optimize the assimilation performance according to some criteria (Bishop & Hodyss, 2011;
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Meénétrier et al., 2015; Moosavi et al., 2018), for example, based on the ideas of statistics (Anderson, 2007;
Lei & Anderson, 2014; Lei et al., 2015), according to the characteristics of correlation functions (Bishop &
Hodyss, 2007) and sampling error (Anderson, 2012), as well as the method based on machine learning (Moosavi
et al., 2018). Although some progress has been made in developing adaptive localization schemes, significant
issues remain to be addressed and many improvements are still needed regarding the perspective of precision,
applicability, and computational complexity.

On the other hand, covariance localization is an extremely expensive process when the optimization problem to
be solved is of high dimension (namely, 10"%or higher). Its implementation in EnKF is generally conducted in the
observation space by assimilating the observations one-by-one or batch-by-batch to alleviate its computational
costs. In the ensemble-variational framework, covariance localization is conducted through the extended state/
control variable strategy based on the local correlation matrix decomposition (Liu et al., 2009; Lorenc, 2003;
Zhang & Tian, 2018). However, the matrix decomposition can be only roughly achieved by decomposing its
low-resolution or low-rank approximations and interpolating it back to the expected high-resolution system (Liu
et al., 2009). Zhang and Tian (2018) developed an efficient local correlation matrix decomposition method to
approximate the full correlation matrix decomposition with sufficient accuracy, which was successfully used to
improve the localization implementation of the nonlinear least squares four-dimensional variational data assimi-
lation method (NLS-4DVar, Tian et al., 2018; Tian & Feng, 2015) to enhance its computational efficiency.

NLS-4DVar (Tian et al., 2018; Tian & Feng, 2015) is an advanced four-dimensional ensemble variational
(4DEnVar) algorithm that utilizes a Gauss-Newton iterative method (Dennis & Schnabel, 1996) to handle the
nonlinearity of the 4DVar cost function; it is capable of enhancing the assimilation accuracy of the 4DEnVar
while maintaining an overall structure that resembles traditional 4DEnVar algorithms (i.e., with no dependence
on the adjoint model) and provides a flow-dependent background error covariance matrix B. Very recently, Tian
etal. (2021) proposed an integral correcting 4DVar (i4DVar) approach by treating initial and model errors together
as a whole and correcting them simultaneously and indiscriminately based on a less recognized property of the
traditional 4DVar. The new i4DVar approach has the potential to be applicable to various DA problems from
scientific and engineering fields because of its ease of implementation and superior performance compared with
the traditional 4DVar (Tian et al., 2021). The implementation of the i4DVar optimization does not require much
extra cost because it only slightly differs in the way how the forecast model is integrated (see Tian et al., 2021)
during the optimization process. Thus, the ensemble nonlinear least squares-based approach can also be used to
solve the i4DVar minimization problem (the resulting method is referred to as NLS-i4DVar).

The primary goal of this study is to propose a mini-batch stochastic optimization-based adaptive localization
scheme for computing the “optimal” localization radius and to incorporate it into NLS-i4DVar. To the end, we
first transform an objective function developed by Zheng (2009) based on a general approach of estimating fore-
cast and observation error statistics by Dee (1995) and Dee and da Silva (1999) into a nonlinear optimization
problem of seeking the optimal localization radius by introducing the localized background error covariance
matrix B. Second, to reduce the computational cost and speed up the minimization algorithm, a mini-batch
stochastic gradient decent optimization method (Bottou, 2012; LeCun et al., 2015) is proposed to solve the
involved nonlinear optimization problem. Third, the Maximum Likelihood Estimation (MLE) of all the batches'
optimal localization radii is then taken as the final optimal localization radius. A novel mini-batch sampling strat-
egy is proposed to make best use of all the observational formations as much as possible. Finally, the adaptive and
fast localization scheme is thus obtained by combining the adaptively optimizing process (for seeking the optimal
localization radii) and the fast localization scheme based on an efficient local correlation matrix decomposition
approach to avoid direct decomposition of the correlation matrix for improving localization implementation of
the NLS-i4DVar.

The remainder of this paper is organized as follows. In Section 2, we introduce our mini-batch stochastic
optimization-based adaptive localization scheme by detailing its four main steps. We then present an application
of this new adaptive localization scheme to the localization implementation of the integral correcting 4DVar
(i4DVar) method based on the ensemble nonlinear least squares-based approach (i.e., the NLS-i4DVar approach).
In Section 3, we present a series of comparison experiments to evaluate the effectiveness and robustness of the
proposed mini-batch stochastic optimization-based adaptive localization scheme and its potential for improv-
ing the localization schemes used in the NLS-i4DVar. Our numerical experiments are carried out on the 2D
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shallow-water equation model. Finally, we finish the paper with a summary and some concluding remarks in
Section 4.

2. Methodology

The methodology we propose consists of two parts: First, we formulate a mini-batch stochastic gradient descent
(SGD) adaptive localization scheme; then, we incorporate this scheme into the NLS-i4DVar method.

2.1. Mini-Batch Stochastic Optimization-Based Adaptive Localization Scheme
As mentioned in the introduction, the proposed adaptive localization scheme consists of four steps as given below.

First, by incorporating the localized B matrix into the 2log-likelihood of y/, (Zheng, 2009, Equation 11) and
following the pioneering work of Dee and da Silva (1999), we adopt the following loss function in the whole
observational area:

L(ro) = In {det [H (BoC (ro)) H" + R| } + (y/,,) ' [H BoC (ro)) H" + R] ™ (¥, ) 6y
where y(’) bs = Yobs — HX, ¥ and x are the ny/nx-dimensional observation and state vectors, respectively, His
the observation operator, and B € R"*"x and R € R"»*"» are the background and observation error covariance
matrices, respectively. Here, C(r,) is the spatial correlation matrix computed by Zhang and Tian (2018) and Tian
et al. (2018).

di,j
C (I‘()) = C() —_— . (2)
ro

where d,; is the spatial spherical distance (computed by d,; = r, X arccos[sin(y,) X sin(y,) + cos(y,) X cos(y,) X ¢
os(x, — x,)], where r, denotes the Earth radius, and (x,,y,) and (x,,y,) are the latitude and longitude coordinates in
the radian of any two points) between the ith and jth grid points and r is the covariance localization radius (to be
predetermined). A common localization function used in production software is the fifth-order piecewise rational
function (Gaspari & Cohn, 1999). Here, we use the Gaussian function C defined by

Co(u) = exp (—u?/2), 3

where u = d, /r,,. Obviously, the minimizer (i.e., the optimal localization radius) of Equation 1 can be computed
iteratively by performing evaluations of the cost function and its gradient using a suitable gradient descent algo-
rithm (e.g., the limited memory Broyden-Fletcher-Goldfarb-Shanno [L-BFGS]; Liu & Nocedal, 1989). Unfortu-
nately, it is not an easy task to compute the function values and its gradient due to their large scales in the whole
observational area. Moreover, the analytical expression of the gradient is normally inaccessible. To overcome this
difficulty, we use the idea of the mini-batch SGD algorithm (which is widely used in machine learning, LeCun
et al., 2015) by dividing the whole (and large) observational vector into the mini-batch (small) ones.

Thus, in the second step, we propose the following modified mini-batch SGD algorithm and the mini-batch
sampling strategy to solve the nonlinear optimization problem 1-3. The mini-batch sampling strategy is to divide
the whole observation area into several subareas according to Figure 1 and randomly select observations in each
subarea. More explicitly, we first divide the whole observational area into i, , (where i, is the number of the
total random batches) subareas and randomly select observations n, L(Sny) (i.e., the local mini-batch observations)
in each subarea, which is followed by solving the mini-batch version of the loss Equation 1 using the gradient
descent method. The details are as follows:

fori,=1,- do

> Uimax

1. Randomly selectn).L(sn).)observations (the i, th mini-batch observations in Figure 1) and construct the follow-
ing mini-batch cost function

L(ror) = In {det [B,.10C, (ror) + Re] } + (¥ 1) [BrroCy (ron) + Re] ™ (¥, ) )
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Figure 1. The diagram of a novel mini-batch sampling strategy.

where the subscript “L” denotes the ith local mini-batch and “y” means in the observation space.

(rij/ro.L)*
- Thi 0L

PT p
B, = ( oL y'L) € RxiL, Ry € RrXML,y! € RL, Cy(ror) € R™XL, and Cyii(ror) =€

N-1

(I<i<n, ;1 <j<n,), and r;is the spatial spherical distance between the ith and jth observations.

2. Minimize the mini-batch cost Equation 4 iteratively by performing its function evaluations and the second-order
numerical gradientL (r, ) defined by

L(ro + Aror) — L(ro — Aro,)

L (ro) = 210

&)

using the L-BFGS algorithm (Liu & Nocedal, 1989) to obtain the optimal mini-batch localization radius ré)" L

Define the initial value of the next mini-batch localization radius as ro = rg' L

end for

It is not hard to see that this mini-batch sampling strategy is capable of making best use of all the observational
formations and achieving a satisfactory result at a very low computation cost.

The third step defines the MLE r; of all the batches' optimal localization radii rf)”_ =1,y as the final

optimal localization radius. This definition is based on the conviction that since each radius r:)" , is optimal for its
batch, then the best one out of all these optimal radii would be an accurate approximation to the MLE. In addition,

this choice is perhaps the simplest and cheapest way to compute the MLE for our approach.

Finally, the adaptive and fast location scheme is obtained by combining the adaptively optimizing process (i.e.,
substituting the optimal localization radii rj into the (Gaussian) spatial correlation matrix C(r,)) and the fast
localization scheme proposed by Zhang and Tian (2018), which is further used to modify localization implemen-
tation of NLS-i4DVar. See Section 2.2 for further details.

2.2. The NLS-I4DVar Enhanced by the Adaptive and Fast Location Scheme

The integral correcting 4DVar (i4DVar, Tian et al., 2021) extends the constrained 4DVar's strategy of correcting
the initial and model errors as a whole to other time points (with the same time intervalz) in the assimilation
window [#,Z] (the subindex O indicates the initial time point, S + 1 represents the total number of observation
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time points in the assimilation window) by proposing the following i4DVar cost functional (for more details, see
Tian et al., 2021):

S
()" B () + & 3% [ () = vl R [ () = v ©
k=0

ts — 1
oy X'+ X/, kzt(,,,()+f,...,,()+<S_O_I)T’
XZ (X ) = T (7)
M, (x;_,). otherwise.

where X; = Xp, X, is the background field (b denotes the background value) and M,(-) is the forecast model from
t,_, to t,, the superscript T stands for matrix transpose, k denotes the kth observation time point, H,denotes the
observation operator, Yopsx € R, n, = Zf:() nyk, and matrices B and Ry € R"»+*"»k are defined as the back-
ground and kth observation error covariances, respectively. Different from the traditional 4DVar, the assimilation
window [7,,t,] is further divided into #; — #,/z sub-windows, 7 is the length of each sub-window and the averaged
“integral” correction term x’ € R"x is sequentially added at #y,t, + 7,---,f, + (t; — t,/r—1)7 along the integration
in the model. Obviously, when the correction term (or the analysis increment) X’ at the initial time step is added,
that is,

X; + X/, k = to,

x (x') = ®)
M, (x;_). otherwise,

we recover the usual 4DVar formulation.

The ensemble nonlinear least squares-based i4DVar approach (NLS-i4DVar) assumes the optimal “integral”
correction term x’ € R~ can be characterized as a linear combination of the model perturbations (MPs)P_; that
is,x' =P B,P, = (x’l x;\,),ﬂ =(f,py) T, and X; is jth (j = 1,---,N) ensemble and the background error covar-
iance B is defined by B = (P )(P)"/N—1. By substituting the above assumptions and minimizing the i4DVar cost
function by the Gauss-Newton iteration method (Dennis & Schnabel, 1996), Tian et al. (2021) obtained

s s
B,=B,"+ Z (Pyi<e> P;k)TL; (x"1) + Z (P <e> Pik)TR;] [Vopsse = Lic (x"71)] ©®

k=0 k=0
x"=(px <e> P, (10)

. . . . . . . e , N
for i = 1, where i is the maximum iteration number, Py,k—(yl,---,yN)EZR"M s

max’ max

andy, | = He [x;, (x)] - B [ 0)]

X (x) =4 S TX k=

M (x* (an

1 ) otherwise,
=Ly

L, (X) = H [ (¥)] = Hy [x:0)] (12)
and
y(’)bs,k = Yobs.k — Hk [X:(O)] . (13)

We also note that
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s -1 s -1
Py, = —(N = D) (®y) [Z 0" am} x {(N ~ Dl + Y (P0"RY! (Py.o] )
k=0

k=0

and

s -1
Pl =P [(N — Dlyxy + ) (PR} <Py,k)] : (15)

k=0

2
where p, € R™*", p, pi = C (ro) € R"*",and C;,; (ro) = exp [—(d'—,f> /2},1)%;( € R is computed together
"o

with p, € R™*" and r is the selected truncation mode number (Zhang & Tian, 2018). The operator “<e>" is
defined by D = A <e> B = (A<B,A°B,,-,A°B ), A € R™"B € R™, and D € R"™®"x"), Bj is the jth column of
B. The operator “<o0>" is the Schiir product. It should be noted that the matrix decomposition of the correlation
C (ro) = p,p! can be achieved by an efficient local correlation matrix decomposition approach proposed by Zhang
and Tian (2018) in Appendix A. This efficient decomposition was further used to modify localization implemen-
tation in the NLS-i4DVar to enhance its computational efficiency (Tian et al., 2021; Zhang & Tian, 2018). Here,
we accomplish the mini-batch SGD adaptive localization scheme and its implementation within the NLS-i4DVar.
Additionally, the NLS-i4DVar also uses the following modified square root analysis scheme

P, =P, V,®" (16)

for the online ensemble update in the assimilation cycles (see Tian et al., 2020 for the definitions of V, and ®).

3. OSSEs Using the Shallow-Water Equation Model

In this section, we present several groups of observing system simulation experiments (OSSEs) based on the
shallow-water equation model to demonstrate the potential merits and advantages of the NLS-i4DVar with the
proposed adaptive localization scheme, especially to compare with the traditional (nonadaptive) localization
implementation.

3.1. The 2D Shallow-Water Equation Model

The following 2D shallow-water equations, with the f~plane formulation, are utilized as the forecast model for
the OSSEs:

a—u——ua—u—va—u—kfv— oh 17
ot ox  ov 5% an

ou__ou_ ou_ . on 5
o “ax  “ov 55y (s

oh d(h—hy)  d(h—hy) (du du)
9r _ _ — —(H —h) =+ =
ot " ox v av (H+h=hs) ox + ov (9

where f = 7.272 x 10771 is the Coriolis parameter, H = 3,000 m is the basic state depth, h, = h, sin(4zx/L )
[sin(4zy/L))]* is the terrain height, i, = 250m, and the lengths of the two sides of the computational domain are
D=L = Ly = 44dm, respectively (where d = A = A = 300 km is the uniform grid size). The domain is parti-
tioned into smaller square subdomains with 45 grid points in each coordinate direction, and periodic boundary
conditions are imposed at x = (0,L,) and y = (0,L,). The second-order central finite difference and two-step
backward difference schemes of (cf.) Matsuno (1966) are used to discretize the spatial and local time derivatives,
respectively, in order to ensure computational stability (Qiu et al., 2007). The time step is taken as 360 s (6 min).
The model state vector is represented by height / and the horizontal velocity components by « and v at the grid
points.
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(a) height (m)

3.2. Experimental Setup

10

RMS error

As in Tian et al. (2021), the “true” initial fields for all the OSSEs are first
produced by integrating the perfect (i.e., i, = 250 m) shallow-water equation
model from the following initial conditions:

= 360fsin (Z2)] + 1208 (222 (Zﬂ)

h—360[sm<D>] + 120 sin D sin D (20)
g0 gy g

u=-—f gavandu— f gaxatt— 60hr 1)

for 60 hr. Similarly, the background state x, is also produced but using the

1

(b) wind (m/s)

T T imperfect model with i, = Om. Obviously, x, is significantly different from
4 5 6 the true state (not shown) due to the two 60 hr model integrations under with
hy = 0m and h, = 250m, respectively. Specifically, the spatially averaged root
mean square errors (RMSEs) are 23.4 m, 1.53 m s~!, and 2.58 m s~! for A, u,

RMS error

and v, respectively.

There are six assimilation cycles (windows) in all the OSSEs. The length of
each window is 12 hr, and “observations” are available every 3 hr (i.e., at 3,
6,9, and 12 hr during each assimilation window). Each model grid has one
randomly distributed observation site, resulting in a total of 44 X 44 observa-
tional sites at each observation time point. The “observations” are generated
by adding random noise to the “true” values at the “observational” locations,
which are obtained using a simple bilinear interpolation method. Therefore,
the observation operator H,is simply a bilinear interpolation operator. The
ensemble number N is 70 and the default (optimal through sensitivity exper-

iments) covariance localization radius is 7, = 6 X 300 km (Tian et al., 2021)
and the 4D moving strategy (Tian & Feng, 2015) is adopted to produce the

Assimilation windows initial MPs for NLS-i4DVar. Finally, the following modified square root anal-

ysis scheme

Figure 2. Time series of spatially and temporally averaged root mean
square errors (RMSEs) of (a) height and (b) wind for the i4DVar + ADr, P, =P, V,®' (22)
and i4DVar + r(=6x300, 5 x 300, 7 x 300 km, and the averaged

radius = 6.9 X 300 km), respectively.

is utilized for the online ensemble update in the assimilation cycles (see Tian
et al., 2020 for the definitions of V,and ®).

3.3. Experimental Results

We first evaluate the performance of the NLS-i4DVar with (hereafter, i4DVar + ADr,) and without (i4DVar + r,))
the proposed adaptive localization scheme. The spatially and temporally averaged RMSEs of height (v!..)

and wind (riind) (see Tian & Zhang, 2019 for definitions of 2, and r% ) for i4DVar + ADr, and i4DVar + r,
[r, = 6 X 300(the optimal radius through sensitivity experiments), 5 X 300 and 7 x 300 km, respectively] are

compared for each assimilation window under the imperfect model scenario (i.e., i, = 0) in Figure 2. Both meth-
ods perform satisfactorily in terms of overall low RMS errors even under the imperfect model scenario, which
obviously attribute to the capability of the integral correcting 4DVar by treating the initial and model errors
together as a whole and by correcting them simultaneously and indiscriminately (Tian et al., 2021). In addition,
the performance of the NLS-i4DVar could be effectively enhanced by the adaptive localization scheme, which
contributes significantly to the substantially better performance of i4DVar + ADr, compared with i4DVar + r,
when r; = 6 X 300 km (Figure 2), although the latter radius (r, = 6 X 300 km) is already the optimal value through
several groups of sensitivity experiments. It is worth noting that i4DVar + r(=5 X 300) km, which is actually
very close to the optimal value off only by one grid interval d(=300 km), performs significantly worse than
i4DVar + ADr,. Another case with 7, = 7 X 300 km is slightly better than i4DVar + r,(=5 x 300) km with lower
RMS errors for both the wind and height components, but still considerably larger than i4DVar + ADr(Figure 1).
The average, minimum, and maximum values of all the six-window adaptively optimized radii are 6.9%, 5.5X,
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(a) height (m)

and 8.48 x 300 km, respectively. In particular, i4DVar + ry(=6.9 x 300 km,

10

RMS error

the average value of all the six-window adaptively optimized radii) performs

_______ n,=10; N,=66 almost same as the case of r, = 7 X 300 km in terms of the height compo-
n,=10; N,=22 nent but substantially worse than the latter (r, = 7 X 300 km) for the wind

"""""" Ny =12; N=44 component. Again, this demonstrates that the optimal radii are indeed
------ n,=8; N,=44

flow-dependent and change according to variations of atmospheric motion
and incoming observation data.

To investigate the impact of the subdomain number N, and the observa-
tional number n,/2 selected in each subdomain, four additional exper-
iments are conducted to compare with the default i4DVar + ADr, (ie.,
n, = 10ande = 44, referred to as i4DVar + AD (10 + 44)) in Figure 3: (1)

T T n:vL =8 and N, = 44, referred to as i4DVar + ADry(8 + 44), (2)n,, = 12 and
4 5 6 N, = 44, referred to as i4DVar + ADry(12 + 44), 3)n, = 10 and N, = 22,
referred to as i4DVar + ADr((10 + 22), and (4)n,, = 10 and N, = 66, referred
to as i4DVar + ADr(10 + 66). In summary, the performance of the proposed

RMS error

adaptive localization scheme is not substantially improved by increasing the
number of the subdomains and the observational number n,/2 selected in
each subdomain. Noticeably, there is little difference between the RMS error
curves of all the four additional N,-n,,-paired i4DVar + ADr,, methods. This
illustrates that, on the one hand, the proposed novel mini-batch sampling
strategy shown in Figure 1 indeed works well to make full use of all the
observations, and on the other hand, the appropriate combination of N, and
n,, could reach the full potential of this adaptive localization scheme. Admit-

tédly, the appropriate combination of N, and n, can be only obtained through
sensitivity experiments so far and clearly there is room for improvement.

0.6 ' ' ' We also compare the proposed adaptive localization scheme with the novel
1 2 4 o 6 mini-batch sampling strategy (referred to as NMS) and with the commonly
Assimilation windows used random sampling strategy (referred to as CRS) by selecting 44 groups

Figure 3. Time series of spatially and temporally averaged root
mean square errors (RMSEs) of (a) height and (b) wind for the

of 10 observational points within the observation area in Figure 4. For the
mini-batch sampling strategy, we first divided the whole observation area

i4DVar + ADr(8 + 44), i4DVar + ADr,(12 + 44), idDVar + ADr,(10 + 22), into 44 subareas according to Figure 1 and randomly selected 10 observa-
and i4DVar + ADr,(10 + 66), respectively. tions in each subarea. For the commonly used sparse observation strategy, we

randomly selected 10 observations for 44 times and minimized the mini-batch

cost function (4) iteratively using the L-BFGS algorithm. As expected, the

mini-batch sampling strategy substantially outperforms the CRS strategy
(Figure 4). The results of these experiments show that the proposed mini-batch sampling strategy is indeed capa-
ble of achieving higher assimilation accuracy.

4. Summary and Concluding Remarks

A decaying distance-dependent function, such as a Gaussian or the Gaspari-Cohn fifth-order piecewise polyno-
mial, is usually adopted to compute the Schiir product appeared in the implementation of covariance localization.
The localization radius plays a vital role in the computation of such functions. Furthermore, the background error
covariance matrix B should be flow-dependent; consequently, covariance localization is also flow-dependent and
its key parameter (i.e., the localization radius) should not be immutable. An optimization procedure must be used
to determine the “optimal” localization radii (to achieve higher assimilation accuracy) adaptively according to
model integrations and incoming observation data, which thus leads to adaptive localization schemes.

Any straightforward adaptive covariance localization process is expected to be computationally expensive due to
the amount of computation involved. To circumvent this difficulty, we proposed to use a mini-batch stochastic
optimization-based algorithm to minimize the objective function by introducing a localized B matrix and taking
the localization radius as a variable to be optimized, which thus led to an adaptive covariance localization scheme
of this study. Subsequently, a novel mini-batch sampling strategy was proposed to make best use of all the
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(a) height (m)

12

104

RMS error

(b) wind (m/s)

RMS error

0.7

2 3 4 5 6
Assimilation windows

Figure 4. Time series of spatially and temporally averaged root mean square
errors (RMSEs) of (a) height and (b) wind for the i4DVar + ADr,, with the
NMS and CRS sampling strategies, respectively.

observational formations as much as possible, which makes the proposed
algorithm be able to obtain a satisfactory result at a low computational cost.
We presented an application of the proposed adaptive covariance localiza-
tion scheme to the localization implementation of NLS-i4DVar, which is
an ensemble nonlinear least squares-based approach for solving the integral
correcting i4DVar (developed recently by the authors).

We conducted a comprehensive performance evaluation of the NLS-i4DVar
method with the proposed adaptive covariance localization scheme using
several groups of OSSEs based on 2D shallow-water equations and compared
the results with those obtained by the standard NLS-i4DVar method without
adaptive localization. The experiments showed that the NLS-i4DVar with
adaptive covariance localization performed substantially better than the
standard NLS-i4DVar without adaptive localization. Moreover, while using
the same number of samples, the proposed adaptive covariance localization
scheme with the mini-batch sampling strategy performed much better than
the commonly used random sampling strategy because NMS is capable of
making best use of all the observational formations. On the other hand, the
appropriate combination of the numbers of the subareas and the numbers of
the random observations selected in each subarea can only be obtained via
sensitivity experiments so far.

Incorporating the proposed adaptive covariance localization scheme into
NLS-i4DVar has several advantages and great potential including its supe-
rior performance, which was achieved without noticeably increasing the
computational cost, and its ease of implementation. Moreover, the proposed
adaptive scheme can further enhance the NLS-i4DVar performance (which
is an advanced ensemble nonlinear least squares-based approach for solv-
ing i4DVar and can correct the initial and model errors simultaneously
and indiscriminately by treating them together as a whole). However, we
like to note that the numerical evaluation experiments presented in this paper
are only conducted based on the simple shallow-water equations. We will
apply NLS-i4DVar with the adaptive localization scheme to more complex
real-world models and continue exploring its potential applications in oper-
ational numerical weather prediction in future works. It is worth mentioning
that the proposed adaptive localization scheme can be similarly adopted into
other ensemble-based assimilation methods.

Appendix A: The Efficient Local Correlation Matrix Decomposition Approach

This approach is used to generated the p,, (used in model space) and p, (used in observation space). Considering

that the grid of some model state variables is not a regular grid, we first construct a regular grid to generate p.

Then, p,, and p are obtained according to interpolation.

The generation of p requires the following steps:

1. Construct the 1D correlation matrices Cx,k(k = 1,2,-~,my), which vary with the latitude; Cy; and C_ in three
coordinate (i.e., x, y, and z) directions at a low resolution using the Gaussian function.

2. Construct empirical orthogonal function (EOF) of the one-dimensional matrices C,,, C,, and C, at a low
resolution and obtain p, ;, p,, and p,_ with r,, r,, and r, columns, which named the truncation mode number and

selected based on the cumulative relative root mean square error. Remarkably, r,, r,, and r, are quite small at

a low resolution.

3. p%,. Py, and p; of the high-resolution grid are obtained by spline interpolation.
4. Finally, the 3D p is generated using p ,, pj, and p; with the Kronecker product.

Then, p,, and p , are generated by interpolation.
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