
1.  Introduction
The objective of data assimilation (DA) aims to incorporate the observations into the Earth system models' state 
to improve their initial condition estimations and thus the models' predictive capabilities by taking advantage 
of the consistency constraints between the laws of time evolution and physical properties (Kalnay, 2003). It is 
well known that accurate specification of the background error covariance matrix, which will be denoted by B 
in this paper and usually has very high dimension in the order of 10 7−9 × 10 7−9, plays a key role in improving the 
performance of the two major methods in DA (Tian et al., 2018), namely, the ensemble Kalman filter (EnKF: 
Evensen,  2007; Houtekamer & Mitchell,  1998; Whitaker et  al.,  2004) and four-dimensional variational data 
assimilation (4DVar: Courtier et al., 1994; Lewis & Derber, 1985; Navon et al., 2005).

The B matrix often can be approximated by the ensembles produced via the so-called method of the National 
Meteorological Center (NMC; now named the National Centers for Environmental Prediction) (Parrish & 
Derber, 1992) or the ensemble Kalman filter (Evensen, 2007). Under the limited consideration resource condi-
tion, the ensemble size is usually of the order 10 2, which is too small compared to the problem dimension (10 7−9). 
Such sampling errors may induce spurious long-distance error correlations resulting in poor conditioning of B 
matrix. Localization has proven to be an effective technique to ameliorate the spurious long-range correlations 
of the ensemble-estimated B matrix and to increase its rank, so that the system can “fit” the background innova-
tions (Anderson, 2007; Anderson & Lei, 2013; Bishop & Hodyss, 2011; Blum et al., 2009; Hamill et al., 2001; 
Houtekamer et al., 2005; Kepert, 2008; Lei & Anderson, 2014; Zhen & Zhang, 2014).

Covariance localization is usually implemented as a Schür product between the ensemble-based B matrix and 
a decaying distance-dependent function, such as a Gaussian (Anderson, 2012) or the Gaspari-Cohn fifth-order 
piecewise polynomial (Gaspari & Cohn, 1999). The computation of the decaying distance-dependent function 
needs to predetermine an “optimal” localization radius (given empirically or through sensitivity experiments), 
which determines the influence distance of the observations. More importantly, the ensemble-estimated B matrix 
is usually flow-dependent, and its optimal localization radius is also not stagnant or unchangeable and depends 
on the ensemble size, observation properties, model dynamics and the model resolution, etc (Kirchgessner 
et al., 2014). A lot of effort has been devoted to adaptively estimating optimal localization radii from the data based 
on EnKF in order to optimize the assimilation performance according to some criteria (Bishop & Hodyss, 2011; 
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Ménétrier et  al.,  2015; Moosavi et  al.,  2018), for example, based on the ideas of statistics (Anderson,  2007; 
Lei & Anderson,  2014; Lei et  al.,  2015), according to the characteristics of correlation functions (Bishop & 
Hodyss, 2007) and sampling error (Anderson, 2012), as well as the method based on machine learning (Moosavi 
et al., 2018). Although some progress has been made in developing adaptive localization schemes, significant 
issues remain to be addressed and many improvements are still needed regarding the perspective of precision, 
applicability, and computational complexity.

On the other hand, covariance localization is an extremely expensive process when the optimization problem to 
be solved is of high dimension (namely, 10 7−9or higher). Its implementation in EnKF is generally conducted in the 
observation space by assimilating the observations one-by-one or batch-by-batch to alleviate its computational 
costs. In the ensemble-variational framework, covariance localization is conducted through the extended state/
control variable strategy based on the local correlation matrix decomposition (Liu et al., 2009; Lorenc, 2003; 
Zhang & Tian, 2018). However, the matrix decomposition can be only roughly achieved by decomposing its 
low-resolution or low-rank approximations and interpolating it back to the expected high-resolution system (Liu 
et al., 2009). Zhang and Tian (2018) developed an efficient local correlation matrix decomposition method to 
approximate the full correlation matrix decomposition with sufficient accuracy, which was successfully used to 
improve the localization implementation of the nonlinear least squares four-dimensional variational data assimi-
lation method (NLS-4DVar, Tian et al., 2018; Tian & Feng, 2015) to enhance its computational efficiency.

NLS-4DVar (Tian et  al., 2018; Tian & Feng,  2015) is an advanced four-dimensional ensemble variational 
(4DEnVar) algorithm that utilizes a Gauss-Newton iterative method (Dennis & Schnabel, 1996) to handle the 
nonlinearity of the 4DVar cost function; it is capable of enhancing the assimilation accuracy of the 4DEnVar 
while maintaining an overall structure that resembles traditional 4DEnVar algorithms (i.e., with no dependence 
on the adjoint model) and provides a flow-dependent background error covariance matrix B. Very recently, Tian 
et al. (2021) proposed an integral correcting 4DVar (i4DVar) approach by treating initial and model errors together 
as a whole and correcting them simultaneously and indiscriminately based on a less recognized property of the 
traditional 4DVar. The new i4DVar approach has the potential to be applicable to various DA problems from 
scientific and engineering fields because of its ease of implementation and superior performance compared with 
the traditional 4DVar (Tian et al., 2021). The implementation of the i4DVar optimization does not require much 
extra cost because it only slightly differs in the way how the forecast model is integrated (see Tian et al., 2021) 
during the optimization process. Thus, the ensemble nonlinear least squares-based approach can also be used to 
solve the i4DVar minimization problem (the resulting method is referred to as NLS-i4DVar).

The primary goal of this study is to propose a mini-batch stochastic optimization-based adaptive localization 
scheme for computing the “optimal” localization radius and to incorporate it into NLS-i4DVar. To the end, we 
first transform an objective function developed by Zheng (2009) based on a general approach of estimating fore-
cast and observation error statistics by Dee (1995) and Dee and da Silva (1999) into a nonlinear optimization 
problem of seeking the optimal localization radius by introducing the localized background error covariance 
matrix B. Second, to reduce the computational cost and speed up the minimization algorithm, a mini-batch 
stochastic gradient decent optimization method (Bottou,  2012; LeCun et  al.,  2015) is proposed to solve the 
involved nonlinear optimization problem. Third, the Maximum Likelihood Estimation (MLE) of all the batches' 
optimal localization radii is then taken as the final optimal localization radius. A novel mini-batch sampling strat-
egy is proposed to make best use of all the observational formations as much as possible. Finally, the adaptive and 
fast localization scheme is thus obtained by combining the adaptively optimizing process (for seeking the optimal 
localization radii) and the fast localization scheme based on an efficient local correlation matrix decomposition 
approach to avoid direct decomposition of the correlation matrix for improving localization implementation of 
the NLS-i4DVar.

The remainder of this paper is organized as follows. In Section  2, we introduce our mini-batch stochastic 
optimization-based adaptive localization scheme by detailing its four main steps. We then present an application 
of this new adaptive localization scheme to the localization implementation of the integral correcting 4DVar 
(i4DVar) method based on the ensemble nonlinear least squares-based approach (i.e., the NLS-i4DVar approach). 
In Section 3, we present a series of comparison experiments to evaluate the effectiveness and robustness of the 
proposed mini-batch stochastic optimization-based adaptive localization scheme and its potential for improv-
ing the localization schemes used in the NLS-i4DVar. Our numerical experiments are carried out on the 2D 
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shallow-water equation model. Finally, we finish the paper with a summary and some concluding remarks in 
Section 4.

2.  Methodology
The methodology we propose consists of two parts: First, we formulate a mini-batch stochastic gradient descent 
(SGD) adaptive localization scheme; then, we incorporate this scheme into the NLS-i4DVar method.

2.1.  Mini-Batch Stochastic Optimization-Based Adaptive Localization Scheme

As mentioned in the introduction, the proposed adaptive localization scheme consists of four steps as given below.

First, by incorporating the localized B matrix into the 2log-likelihood of 𝐴𝐴 𝐲𝐲
′

𝑜𝑜𝑜𝑜𝑜𝑜
 (Zheng, 2009, Equation 11) and 

following the pioneering work of Dee and da Silva (1999), we adopt the following loss function in the whole 
observational area:

𝐿𝐿 (𝑟𝑟0) = ln

{

det

[

𝐻𝐻 (𝐁𝐁◦𝐂𝐂 (𝑟𝑟0))𝐻𝐻
T
+ 𝐑𝐑

]}

+

(

𝐲𝐲
′

obs

)T[

𝐻𝐻 (𝐁𝐁◦𝐂𝐂 (𝑟𝑟0))𝐻𝐻
T
+ 𝐑𝐑

]−1 (

𝐲𝐲
′

obs,

)

� (1)

where 𝐴𝐴 𝐲𝐲
′

obs
= 𝐲𝐲obs −𝐻𝐻𝐱𝐱 , yobs and x are the ny/nx-dimensional observation and state vectors, respectively, His 

the observation operator, and 𝐴𝐴 𝐁𝐁 ∈ ℜ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 and 𝐴𝐴 𝐑𝐑 ∈ ℜ
𝑛𝑛𝑦𝑦×𝑛𝑛𝑦𝑦 are the background and observation error covariance 

matrices, respectively. Here, C(r0) is the spatial correlation matrix computed by Zhang and Tian (2018) and Tian 
et al. (2018).

𝐂𝐂 (𝑟𝑟0) = 𝐂𝐂0

(

𝑑𝑑𝑖𝑖𝑖𝑖𝑖

𝑟𝑟0

)

.� (2)

where di,j is the spatial spherical distance (computed by di,j = re × arccos[sin(y1) × sin(y2) + cos(y1) × cos(y2) × c
os(x1 − x2)], where re denotes the Earth radius, and (x1,y1) and (x2,y2) are the latitude and longitude coordinates in 
the radian of any two points) between the ith and jth grid points and r0 is the covariance localization radius (to be 
predetermined). A common localization function used in production software is the fifth-order piecewise rational 
function (Gaspari & Cohn, 1999). Here, we use the Gaussian function C0 defined by

𝐂𝐂0(𝑢𝑢) = exp

(

−𝑢𝑢
2
∕2

)

,� (3)

where u = di,j/r0. Obviously, the minimizer (i.e., the optimal localization radius) of Equation 1 can be computed 
iteratively by performing evaluations of the cost function and its gradient using a suitable gradient descent algo-
rithm (e.g., the limited memory Broyden-Fletcher-Goldfarb-Shanno [L-BFGS]; Liu & Nocedal, 1989). Unfortu-
nately, it is not an easy task to compute the function values and its gradient due to their large scales in the whole 
observational area. Moreover, the analytical expression of the gradient is normally inaccessible. To overcome this 
difficulty, we use the idea of the mini-batch SGD algorithm (which is widely used in machine learning, LeCun 
et al., 2015) by dividing the whole (and large) observational vector into the mini-batch (small) ones.

Thus, in the second step, we propose the following modified mini-batch SGD algorithm and the mini-batch 
sampling strategy to solve the nonlinear optimization problem 1–3. The mini-batch sampling strategy is to divide 
the whole observation area into several subareas according to Figure 1 and randomly select observations in each 
subarea. More explicitly, we first divide the whole observational area into 𝐴𝐴 𝐴𝐴𝑛𝑛max

 (where 𝐴𝐴 𝐴𝐴𝑛𝑛max
 is the number of the 

total random batches) subareas and randomly select observations nyL(≤ny) (i.e., the local mini-batch observations) 
in each subarea, which is followed by solving the mini-batch version of the loss Equation 1 using the gradient 
descent method. The details are as follows:

for 𝐴𝐴 𝐴𝐴𝑛𝑛 = 1,⋯, 𝑖𝑖𝑛𝑛max
 do

�1.	� Randomly selectnyL(≤ny)observations (the inth mini-batch observations in Figure 1) and construct the follow-
ing mini-batch cost function

𝐿𝐿 (𝑟𝑟0,𝐿𝐿) = ln

{

det

[

𝐁𝐁𝑦𝑦𝑦𝑦𝑦◦𝐂𝐂𝑦𝑦 (𝑟𝑟0,𝐿𝐿) + 𝐑𝐑𝐿𝐿

]}

+

(

𝐲𝐲
′

obs,𝐿𝐿

)T[

𝐁𝐁𝑦𝑦𝑦𝑦𝑦◦𝐂𝐂𝑦𝑦 (𝑟𝑟0,𝐿𝐿) + 𝐑𝐑𝐿𝐿

]−1 (

𝐲𝐲
′

obs,𝐿𝐿𝐿

)

,� (4)
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where the subscript “L” denotes the inth local mini-batch and “y” means in the observation space. 

𝐴𝐴 𝐁𝐁𝑦𝑦𝑦𝑦𝑦 =

(

𝐏𝐏
T

𝑦𝑦𝑦𝑦𝑦
𝐏𝐏𝑦𝑦𝑦𝑦𝑦

𝑁𝑁−1

)

∈ ℜ
𝑛𝑛𝑦𝑦𝑦𝑦𝑦×𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐑𝐑𝐿𝐿 ∈ ℜ

𝑛𝑛𝑦𝑦𝑦𝑦𝑦×𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐲𝐲
′

obs,𝐿𝐿
∈ ℜ

𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐂𝐂𝑦𝑦 (𝑟𝑟0,𝐿𝐿) ∈ ℜ
𝑛𝑛𝑦𝑦𝑦𝑦𝑦×𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , and 𝐴𝐴 C𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑟𝑟0,𝐿𝐿) = e

−

(𝑟𝑟𝑖𝑖𝑖𝑖𝑖 ∕𝑟𝑟0,𝐿𝐿 )
2

2  

(1 ≤ i ≤ ny,L;1 ≤ j ≤ ny,L), and ri,j is the spatial spherical distance between the ith and jth observations.

�2.	� Minimize the mini-batch cost Equation 4 iteratively by performing its function evaluations and the second-order 
numerical gradientL '(r0,L) defined by

𝐿𝐿
′
(𝑟𝑟0,𝐿𝐿) =

𝐿𝐿 (𝑟𝑟0,𝐿𝐿 + Δ𝑟𝑟0,𝐿𝐿) − 𝐿𝐿 (𝑟𝑟0,𝐿𝐿 − Δ𝑟𝑟0,𝐿𝐿)

2Δ𝑟𝑟0,𝐿𝐿
� (5)

using the L-BFGS algorithm (Liu & Nocedal, 1989) to obtain the optimal mini-batch localization radius 𝐴𝐴 𝐴𝐴
𝑖𝑖𝑛𝑛

0,𝐿𝐿
 . 

Define the initial value of the next mini-batch localization radius as 𝐴𝐴 𝐴𝐴0,𝐿𝐿 = 𝑟𝑟
𝑖𝑖𝑛𝑛

0,𝐿𝐿
 .

end for

It is not hard to see that this mini-batch sampling strategy is capable of making best use of all the observational 
formations and achieving a satisfactory result at a very low computation cost.

The third step defines the MLE 𝐴𝐴 𝐴𝐴
∗

0
 of all the batches' optimal localization radii 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑛𝑛

0,𝐿𝐿
 (𝐴𝐴 𝐴𝐴𝑛𝑛 = 1,⋯, 𝑖𝑖𝑛𝑛max

 ) as the final 
optimal localization radius. This definition is based on the conviction that since each radius 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑛𝑛

0,𝐿𝐿
 is optimal for its 

batch, then the best one out of all these optimal radii would be an accurate approximation to the MLE. In addition, 
this choice is perhaps the simplest and cheapest way to compute the MLE for our approach.

Finally, the adaptive and fast location scheme is obtained by combining the adaptively optimizing process (i.e., 
substituting the optimal localization radii 𝐴𝐴 𝐴𝐴

∗

0
 into the (Gaussian) spatial correlation matrix C(r0)) and the fast 

localization scheme proposed by Zhang and Tian (2018), which is further used to modify localization implemen-
tation of NLS-i4DVar. See Section 2.2 for further details.

2.2.  The NLS-I4DVar Enhanced by the Adaptive and Fast Location Scheme

The integral correcting 4DVar (i4DVar, Tian et al., 2021) extends the constrained 4DVar's strategy of correcting 
the initial and model errors as a whole to other time points (with the same time intervalτ) in the assimilation 
window [t0,tS] (the subindex 0 indicates the initial time point, S + 1 represents the total number of observation 

Figure 1.  The diagram of a novel mini-batch sampling strategy.
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time points in the assimilation window) by proposing the following i4DVar cost functional (for more details, see 
Tian et al., 2021):

𝐽𝐽
(

𝐱𝐱
′
)

=
1

2

(

𝐱𝐱
′
)T

𝐁𝐁
−1
(

𝐱𝐱
′
)

+
1

2

𝑆𝑆
∑

𝑘𝑘=0

[

𝐻𝐻𝑘𝑘

(

𝐱𝐱
∗

𝑘𝑘

)

− 𝐲𝐲obs,𝑘𝑘

]T

𝐑𝐑
−1

𝑘𝑘

[

𝐻𝐻𝑘𝑘

(

𝐱𝐱
∗

𝑘𝑘

)

− 𝐲𝐲obs,𝑘𝑘

]

� (6)

under the constraint

�∗�
(

�′
)

=

⎧

⎪

⎨

⎪

⎩

�∗� + �′, � = �0, �0 + �,⋯, �0 +
( �� − �0

�
− 1

)

�,

��
(

�∗�−1
)

, otherwise.
� (7)

where 𝐴𝐴 𝐱𝐱
∗

𝑡𝑡
0

= 𝐱𝐱𝑏𝑏 , xb is the background field (b denotes the background value) and Mk(⋅) is the forecast model from 
tk−1 to tk, the superscript T stands for matrix transpose, k denotes the kth observation time point, Hkdenotes the 
observation operator, 𝐴𝐴 𝐲𝐲obs,𝑘𝑘 ∈ ℜ

𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐴𝐴𝑦𝑦 =
∑𝑆𝑆

𝑘𝑘=0
𝑛𝑛𝑦𝑦𝑦𝑦𝑦 , and matrices B and 𝐴𝐴 𝐑𝐑𝑘𝑘 ∈ ℜ

𝑛𝑛𝑦𝑦𝑦𝑦𝑦×𝑛𝑛𝑦𝑦𝑦𝑦𝑦 are defined as the back-
ground and kth observation error covariances, respectively. Different from the traditional 4DVar, the assimilation 
window [t0,tS] is further divided into tS − t0/τ sub-windows, τ is the length of each sub-window and the averaged 
“integral” correction term 𝐴𝐴 𝐱𝐱

′
∈ ℜ𝑛𝑛𝑥𝑥 is sequentially added at t0,t0 + τ,⋯,t0 + (tS − t0/τ−1)τ along the integration 

in the model. Obviously, when the correction term (or the analysis increment) x′ at the initial time step is added, 
that is,

�∗�
(

�′
)

=

⎧

⎪

⎨

⎪

⎩

�∗� + �′, � = �0,

��
(

�∗�−1
)

, otherwise,
� (8)

we recover the usual 4DVar formulation.

The ensemble nonlinear least squares-based i4DVar approach (NLS-i4DVar) assumes the optimal “integral” 
correction term 𝐴𝐴 𝐱𝐱

′
∈ ℜ𝑛𝑛𝑥𝑥 can be characterized as a linear combination of the model perturbations (MPs)Px; that 

is, x′ = Pxβ, 𝐴𝐴 𝐏𝐏𝑥𝑥 =

(

𝐱𝐱
′

1
,⋯, 𝐱𝐱

′

𝑁𝑁

)

 , β = (β1,⋯,βN) T, and xj is jth (j = 1,⋯,N) ensemble and the background error covar-
iance B is defined by B = (Px)(Px) T/N−1. By substituting the above assumptions and minimizing the i4DVar cost 
function by the Gauss-Newton iteration method (Dennis & Schnabel, 1996), Tian et al. (2021) obtained

� �
� = � �−1

� +
�
∑

�=0

(

��,� < � > � ∗
�,�

)T�′
�

(

�′,�−1) +
�
∑

�=0

(

��,� < � > � #
�,�

)T�−1
�

[

�′obs,� − �′
�

(

�′,�−1)]� (9)

�′,� = (�� < � > ��) � �
�� (10)

for i  =  1,⋯,imax, where imax is the maximum iteration number, 𝐴𝐴 𝐏𝐏𝑦𝑦𝑦𝑦𝑦 =

(

𝐲𝐲
′

1
,⋯, 𝐲𝐲

′

𝑁𝑁

)

∈ ℜ
𝑛𝑛𝑦𝑦𝑦𝑦𝑦×𝑁𝑁 , 

and 𝐴𝐴 𝐲𝐲
′

𝑘𝑘𝑘𝑘𝑘
= 𝐻𝐻𝑘𝑘

[

𝐱𝐱
∗

𝑘𝑘𝑘𝑘𝑘

(

𝐱𝐱
′

𝑗𝑗

)

]

−𝐻𝐻𝑘𝑘

[

𝐱𝐱
∗

𝑘𝑘
(0)

]

 ,

�∗�,�
(

�′�
)

=

⎧

⎪

⎨

⎪

⎩

�∗�,� + �′� , � = �0,

��

(

�∗�−1,�
)

, otherwise,
� (11)

𝐿𝐿
′

𝑘𝑘

(

𝐱𝐱
′
)

= 𝐻𝐻𝑘𝑘

[

𝐱𝐱
∗

𝑘𝑘

(

𝐱𝐱
′
)]

−𝐻𝐻𝑘𝑘

[

𝐱𝐱
∗

𝑘𝑘
(0)

]

,� (12)

and

𝐲𝐲
′

obs,𝑘𝑘
= 𝐲𝐲obs,𝑘𝑘 −𝐻𝐻𝑘𝑘

[

𝐱𝐱
∗

𝑘𝑘
(0)

]

.� (13)

We also note that
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𝐏𝐏
∗

𝑦𝑦𝑦𝑦𝑦
= −(𝑁𝑁 − 1) (𝐏𝐏𝑦𝑦𝑦𝑦𝑦)

[

𝑆𝑆
∑

𝑘𝑘=0

(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)
T
(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)

]−1

×

[

(𝑁𝑁 − 1)𝐈𝐈𝑁𝑁×𝑁𝑁 +

𝑆𝑆
∑

𝑘𝑘=0

(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)
T
𝐑𝐑

−1

𝑘𝑘
(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)

]−1

,� (14)

and

𝐏𝐏
#

𝑦𝑦𝑦𝑦𝑦
= (𝐏𝐏𝑦𝑦𝑦𝑦𝑦)

[

(𝑁𝑁 − 1)𝐈𝐈𝑁𝑁×𝑁𝑁 +

𝑆𝑆
∑

𝑘𝑘=0

(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)
T
𝐑𝐑

−1

𝑘𝑘
(𝐏𝐏𝑦𝑦𝑦𝑦𝑦)

]−1

,� (15)

where �� ∈ ℜ��×� , ���T
� = � (�0) ∈ ℜ��×�� , and 𝐴𝐴 𝐂𝐂𝑖𝑖𝑖𝑖𝑖 (𝑟𝑟0) = exp

[

−

(

𝑑𝑑𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
∗

0

)2

∕2

]

 , ��,� ∈ ℜ��,�×� is computed together  

with 𝐴𝐴 𝐴𝐴𝑥𝑥 ∈ ℜ𝑛𝑛𝑥𝑥×𝑟𝑟 and r is the selected truncation mode number (Zhang & Tian, 2018). The operator “<e>” is 
defined by D = A <e> B = (A∘B1,A∘B2,⋯,A∘Br), A ∈ ℝ m×N,B ∈ ℝ m×r, and D ∈ ℝ m×(N×r). Bj is the jth column of 
B. The operator “<o>” is the Schür product. It should be noted that the matrix decomposition of the correlation 
� (�0) = ���T

� can be achieved by an efficient local correlation matrix decomposition approach proposed by Zhang 
and Tian (2018) in Appendix A. This efficient decomposition was further used to modify localization implemen-
tation in the NLS-i4DVar to enhance its computational efficiency (Tian et al., 2021; Zhang & Tian, 2018). Here, 
we accomplish the mini-batch SGD adaptive localization scheme and its implementation within the NLS-i4DVar. 
Additionally, the NLS-i4DVar also uses the following modified square root analysis scheme

𝐏𝐏𝑥𝑥 = 𝐏𝐏𝑥𝑥𝐕𝐕2Φ
T� (16)

for the online ensemble update in the assimilation cycles (see Tian et al., 2020 for the definitions of V2 and Φ).

3.  OSSEs Using the Shallow-Water Equation Model
In this section, we present several groups of observing system simulation experiments (OSSEs) based on the 
shallow-water equation model to demonstrate the potential merits and advantages of the NLS-i4DVar with the 
proposed adaptive localization scheme, especially to compare with the traditional (nonadaptive) localization 
implementation.

3.1.  The 2D Shallow-Water Equation Model

The following 2D shallow-water equations, with the f-plane formulation, are utilized as the forecast model for 
the OSSEs:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑢𝑢

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑓𝑓𝑓𝑓 − 𝑔𝑔

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (17)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑢𝑢

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑓𝑓u − 𝑔𝑔

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (18)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑢𝑢

𝜕𝜕 (ℎ − ℎ𝑠𝑠)

𝜕𝜕𝜕𝜕
− 𝑣𝑣

𝜕𝜕 (ℎ − ℎ𝑠𝑠)

𝜕𝜕𝜕𝜕
− (𝐻𝐻 + ℎ − ℎ𝑠𝑠)

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

� (19)

where f = 7.272 × 10 −5s −1 is the Coriolis parameter, H = 3,000 m is the basic state depth, hs = h0 sin(4πx/Lx)
[sin(4πy/Ly)] 2 is the terrain height, h0 = 250m, and the lengths of the two sides of the computational domain are 
D = Lx = Ly = 44dm, respectively (where d = Δx = Δy = 300 km is the uniform grid size). The domain is parti-
tioned into smaller square subdomains with 45 grid points in each coordinate direction, and periodic boundary 
conditions are imposed at x  =  (0,Lx) and y  =  (0,Ly). The second-order central finite difference and two-step 
backward difference schemes of (cf.) Matsuno (1966) are used to discretize the spatial and local time derivatives, 
respectively, in order to ensure computational stability (Qiu et al., 2007). The time step is taken as 360 s (6 min). 
The model state vector is represented by height h and the horizontal velocity components by u and v at the grid 
points.
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3.2.  Experimental Setup

As in Tian et al. (2021), the “true” initial fields for all the OSSEs are first 
produced by integrating the perfect (i.e., h0 = 250 m) shallow-water equation 
model from the following initial conditions:

ℎ = 360

[

sin

(

𝜋𝜋𝜋𝜋

𝐷𝐷

)]2

+ 120 sin

(

2𝜋𝜋𝜋𝜋

𝐷𝐷

)

sin

(

2𝜋𝜋𝜋𝜋

𝐷𝐷

)

� (20)

𝑢𝑢 = −𝑓𝑓
−1
𝑔𝑔
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
and 𝑣𝑣 = −𝑓𝑓

−1
𝑔𝑔
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
at 𝑡𝑡 = −60hr� (21)

for 60 hr. Similarly, the background state xb is also produced but using the 
imperfect model with h0 = 0m. Obviously, xb is significantly different from 
the true state (not shown) due to the two 60 hr model integrations under with 
h0 = 0m and h0 = 250m, respectively. Specifically, the spatially averaged root 
mean square errors (RMSEs) are 23.4 m, 1.53 m s −1, and 2.58 m s −1 for h, u, 
and v, respectively.

There are six assimilation cycles (windows) in all the OSSEs. The length of 
each window is 12 hr, and “observations” are available every 3 hr (i.e., at 3, 
6, 9, and 12 hr during each assimilation window). Each model grid has one 
randomly distributed observation site, resulting in a total of 44 × 44 observa-
tional sites at each observation time point. The “observations” are generated 
by adding random noise to the “true” values at the “observational” locations, 
which are obtained using a simple bilinear interpolation method. Therefore, 
the observation operator Hkis simply a bilinear interpolation operator. The 
ensemble number N is 70 and the default (optimal through sensitivity exper-
iments) covariance localization radius is r0 = 6 × 300 km (Tian et al., 2021) 
and the 4D moving strategy (Tian & Feng, 2015) is adopted to produce the 
initial MPs for NLS-i4DVar. Finally, the following modified square root anal-
ysis scheme

𝐏𝐏𝑥𝑥 = 𝐏𝐏𝑥𝑥𝐕𝐕2Φ
T� (22)

is utilized for the online ensemble update in the assimilation cycles (see Tian 
et al., 2020 for the definitions of V2and Φ).

3.3.  Experimental Results

We first evaluate the performance of the NLS-i4DVar with (hereafter, i4DVar + ADr0) and without (i4DVar + r0) 
the proposed adaptive localization scheme. The spatially and temporally averaged RMSEs of height (𝐴𝐴 𝑟𝑟

ℎ

mse ) 
and wind (𝐴𝐴 𝑟𝑟

wind
𝑚𝑚𝑚𝑚𝑚𝑚  ) (see Tian & Zhang, 2019 for definitions of 𝐴𝐴 𝑟𝑟

ℎ

mse and 𝐴𝐴 𝑟𝑟
ℎ

mse ) for i4DVar + ADr0 and i4DVar + r0 
[r0 = 6 × 300(the optimal radius through sensitivity experiments), 5 × 300 and 7 × 300 km, respectively] are 
compared for each assimilation window under the imperfect model scenario (i.e., h0 = 0) in Figure 2. Both meth-
ods perform satisfactorily in terms of overall low RMS errors even under the imperfect model scenario, which 
obviously attribute to the capability of the integral correcting 4DVar by treating the initial and model errors 
together as a whole and by correcting them simultaneously and indiscriminately (Tian et al., 2021). In addition, 
the performance of the NLS-i4DVar could be effectively enhanced by the adaptive localization scheme, which 
contributes significantly to the substantially better performance of i4DVar + ADr0 compared with i4DVar + r0 
when r0 = 6 × 300 km (Figure 2), although the latter radius (r0 = 6 × 300 km) is already the optimal value through 
several groups of sensitivity experiments. It is worth noting that i4DVar + r0(=5 × 300) km, which is actually 
very close to the optimal value off only by one grid interval d(=300 km), performs significantly worse than 
i4DVar + ADr0. Another case with r0 = 7 × 300 km is slightly better than i4DVar + r0(=5 × 300) km with lower 
RMS errors for both the wind and height components, but still considerably larger than i4DVar + ADr0(Figure 1). 
The average, minimum, and maximum values of all the six-window adaptively optimized radii are 6.9×, 5.5×, 

Figure 2.  Time series of spatially and temporally averaged root mean 
square errors (RMSEs) of (a) height and (b) wind for the i4DVar + ADr0 
and i4DVar + r0(=6×300, 5 × 300, 7 × 300 km, and the averaged 
radius = 6.9 × 300 km), respectively.
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and 8.48 × 300 km, respectively. In particular, i4DVar + r0(=6.9 × 300 km, 
the average value of all the six-window adaptively optimized radii) performs 
almost same as the case of r0 = 7 × 300 km in terms of the height compo-
nent but substantially worse than the latter (r0 = 7 × 300 km) for the wind 
component. Again, this demonstrates that the optimal radii are indeed 
flow-dependent and change according to variations of atmospheric motion 
and incoming observation data.

To investigate the impact of the subdomain number NP and the observa-
tional number nyL/2 selected in each subdomain, four additional exper-
iments are conducted to compare with the default i4DVar  +  ADr0 (i.e., 
nyL = 10andNp = 44, referred to as i4DVar + AD (10 + 44)) in Figure 3: (1)
nyL = 8 and Np = 44, referred to as i4DVar + ADr0(8 + 44), (2)nyL = 12 and 
Np = 44, referred to as i4DVar + ADr0(12 + 44), (3)nyL = 10 and Np = 22, 
referred to as i4DVar + ADr0(10 + 22), and (4)nyL = 10 and Np = 66, referred 
to as i4DVar + ADr0(10 + 66). In summary, the performance of the proposed 
adaptive localization scheme is not substantially improved by increasing the 
number of the subdomains and the observational number nyL/2 selected in 
each subdomain. Noticeably, there is little difference between the RMS error 
curves of all the four additional NP-nyL-paired i4DVar + ADr0 methods. This 
illustrates that, on the one hand, the proposed novel mini-batch sampling 
strategy shown in Figure  1 indeed works well to make full use of all the 
observations, and on the other hand, the appropriate combination of NP and 
nyL could reach the full potential of this adaptive localization scheme. Admit-
tedly, the appropriate combination of NP and nyL can be only obtained through 
sensitivity experiments so far and clearly there is room for improvement.

We also compare the proposed adaptive localization scheme with the novel 
mini-batch sampling strategy (referred to as NMS) and with the commonly 
used random sampling strategy (referred to as CRS) by selecting 44 groups 
of 10 observational points within the observation area in Figure 4. For the 
mini-batch sampling strategy, we first divided the whole observation area 
into 44 subareas according to Figure 1 and randomly selected 10 observa-
tions in each subarea. For the commonly used sparse observation strategy, we 
randomly selected 10 observations for 44 times and minimized the mini-batch 
cost function (4) iteratively using the L-BFGS algorithm. As expected, the 
mini-batch sampling strategy substantially outperforms the CRS strategy 

(Figure 4). The results of these experiments show that the proposed mini-batch sampling strategy is indeed capa-
ble of achieving higher assimilation accuracy.

4.  Summary and Concluding Remarks
A decaying distance-dependent function, such as a Gaussian or the Gaspari-Cohn fifth-order piecewise polyno-
mial, is usually adopted to compute the Schür product appeared in the implementation of covariance localization. 
The localization radius plays a vital role in the computation of such functions. Furthermore, the background error 
covariance matrix B should be flow-dependent; consequently, covariance localization is also flow-dependent and 
its key parameter (i.e., the localization radius) should not be immutable. An optimization procedure must be used 
to determine the “optimal” localization radii (to achieve higher assimilation accuracy) adaptively according to 
model integrations and incoming observation data, which thus leads to adaptive localization schemes.

Any straightforward adaptive covariance localization process is expected to be computationally expensive due to 
the amount of computation involved. To circumvent this difficulty, we proposed to use a mini-batch stochastic 
optimization-based algorithm to minimize the objective function by introducing a localized B matrix and  taking 
the localization radius as a variable to be optimized, which thus led to an adaptive covariance localization scheme 
of this study. Subsequently, a novel mini-batch sampling strategy was proposed to make best use of all the 

Figure 3.  Time series of spatially and temporally averaged root 
mean square errors (RMSEs) of (a) height and (b) wind for the 
i4DVar + ADr0(8 + 44), i4DVar + ADr0(12 + 44), i4DVar + ADr0(10 + 22), 
and i4DVar + ADr0(10 + 66), respectively.

 23335084, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022EA

002254, W
iley O

nline Library on [17/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Earth and Space Science

ZHANG ET AL.

10.1029/2022EA002254

9 of 11

observational formations as much as possible, which makes the proposed 
algorithm be able to obtain a satisfactory result at a low computational cost. 
We presented an application of the proposed adaptive covariance localiza-
tion scheme to the localization implementation of NLS-i4DVar, which is 
an ensemble nonlinear least squares-based approach for solving the integral 
correcting i4DVar (developed recently by the authors).

We conducted a comprehensive performance evaluation of the NLS-i4DVar 
method with the proposed adaptive covariance localization scheme using 
several groups of OSSEs based on 2D shallow-water equations and compared 
the results with those obtained by the standard NLS-i4DVar method without 
adaptive localization. The experiments showed that the NLS-i4DVar with 
adaptive covariance localization performed substantially better than the 
standard NLS-i4DVar without adaptive localization. Moreover, while using 
the same number of samples, the proposed adaptive covariance localization 
scheme with the mini-batch sampling strategy performed much better than 
the commonly used random sampling strategy because NMS is capable of 
making best use of all the observational formations. On the other hand, the 
appropriate combination of the numbers of the subareas and the numbers of 
the random observations selected in each subarea can only be obtained via 
sensitivity experiments so far.

Incorporating the proposed adaptive covariance localization scheme into 
NLS-i4DVar has several advantages and great potential including its supe-
rior performance, which was achieved without noticeably increasing the 
computational cost, and its ease of implementation. Moreover, the proposed 
adaptive scheme can further enhance the NLS-i4DVar performance (which 
is an advanced ensemble nonlinear least squares-based approach for solv-
ing i4DVar and can correct the initial and model errors simultaneously 
and  indiscriminately by treating them together as a whole). However, we 
like to note that the numerical evaluation experiments presented in this paper 
are only conducted based on the simple shallow-water equations. We will 
apply NLS-i4DVar with the adaptive localization scheme to more complex 
real-world models and continue exploring its potential applications in oper-
ational numerical weather prediction in future works. It is worth mentioning 
that the proposed adaptive localization scheme can be similarly adopted into 
other ensemble-based assimilation methods.

Appendix A:  The Efficient Local Correlation Matrix Decomposition Approach
This approach is used to generated the ρm (used in model space) and ρo (used in observation space). Considering 
that the grid of some model state variables is not a regular grid, we first construct a regular grid to generate ρ. 
Then, ρm and ρo are obtained according to interpolation.

The generation of ρ requires the following steps:

1.	 �Construct the 1D correlation matrices Cx,k(k = 1,2,⋯,my), which vary with the latitude; Cy; and Cz in three 
coordinate (i.e., x, y, and z) directions at a low resolution using the Gaussian function.

2.	 �Construct empirical orthogonal function (EOF) of the one-dimensional matrices Cx,k, Cy, and Cz at a low 
resolution and obtain ρx,k, ρy, and ρz with rx, ry, and rz columns, which named the truncation mode number and 
selected based on the cumulative relative root mean square error. Remarkably, rx, ry, and rz are quite small at 
a low resolution.

3.	 ��∗
�,� , �

∗
� , and �∗

� of the high-resolution grid are obtained by spline interpolation.
4.	 �Finally, the 3D ρ is generated using �∗

�,� , �
∗
� , and �∗

� with the Kronecker product.

Then, ρm and ρo are generated by interpolation.

Figure 4.  Time series of spatially and temporally averaged root mean square 
errors (RMSEs) of (a) height and (b) wind for the i4DVar + ADr0 with the 
NMS and CRS sampling strategies, respectively.
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Data Availability Statement
The data used in this paper were obtained by the authors through numerical experiments using the shallow-water 
equation model and are all freely available at National Tibetan Plateau Data Center (http://data.tpdc.ac.cn), 
https://doi.org/10.11888/Atmos.tpdc.272233 (Zhang et al., 2022).
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