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Abstract: Priority effects, where arrival order and initial relative abundance modulate local
species interactions, can exert taxonomic, functional, and evolutionary influences on ecological
communities by driving them to alternative states. It remains unclear if these wide-ranging conse-
quences of priority effects can be explained systematically by a common underlying factor. Here,
we identify such a factor in an empirical system. In a series of field and laboratory studies, we
focus on how pH affects nectar-colonizing microbes and their interactions with plants and polli-
nators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated
shrub, Diplacus (formerly Mimulus) aurantiacus, exhibited abundance patterns indicative of alter-
native stable states that emerge through domination by either bacteria or yeasts within individual
flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent
with the existence of these alternative stable states. In laboratory experiments, Acinetobacter
nectaris, the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly nega-
tive priority effect against Metschnikowia reukaufii, the most common nectar-specialist yeast, by
reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of domi-
nance found in the field survey. Furthermore, experimental evolution simulating hummingbird-
assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve
resistance against the priority effect if constantly exposed to A. nectaris-induced pH reduction.
Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by
hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant
reproduction. Taken together, these results show that it is possible to identify an overarching
factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of
biological organization.

Editor's evaluation

This important study documents the causes and consequences of priority effects in community
assembly, using a plant-microbe-pollinator model system. Using an elegant combination of lab and
field approaches, the authors provide compelling evidence that early-colonizing microbes alter the
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nectar pH, which has far-reaching ecological and evolutionary effects. It will likely be of interest to a
wide audience and has implications for microbial, plant, and animal ecology and evolution.

Introduction

Many ecological communities take one of multiple alternative states even under the same species
pool and the same initial environmental conditions (Beisner et al., 2003; Chase, 2003; Scheffer
et al.,, 2001; Schréder et al., 2005). Alternative states can vary not just in species composition,
but also in functional, ecosystem-level characteristics such as invasion resistance, total biomass, and
nutrient cycling (Bittleston et al., 2020; Delory et al., 2019, Leopold et al., 2017, Pausas and Bond,
2020, Sprockett et al., 2018; Suding et al., 2004). However, it is often hard to predict which of the
alternative states an ecological community will take. The main challenge is that alternative states are
caused by priority effects, the elusive, historically contingent process in which the order and timing
of species arrival dictate the trajectory of community assembly (Debray et al., 2022; Drake, 1991,
Fukami, 2015; Palmgren, 1926; Song et al., 2021). To further complicate matters, the strength of
priority effects is not always static, but can change rapidly through evolutionary changes in species
traits (De Meester et al., 2016; Faillace et al., 2022, Faillace and Morin, 2016; Knope et al., 2011,
Urban and De Meester, 2009; Wittmann and Fukami, 2018; Zee and Fukami, 2018). The broad
scope of priority effects makes it difficult to fully understand which of the alternative states is realized
under what conditions (Fukami, 2015). For any ecological community, this understanding requires
simultaneous examination of the compositional, functional, and evolutionary consequences of priority
effects.

Questions that need to be addressed to understand the causes and consequences of priority
effects are indeed wide-ranging. For example, how do priority effects happen (mechanism)? When
are priority effects particularly strong (condition)? How rapidly can priority effects change in strength
(evolution)? And how do priority effects affect the functional, not just taxonomic, properties of the
communities being assembled (functional consequences)? These questions are interrelated, but given
that they concern different scales of time and biological organization, it seems reasonable to expect
each question to involve a different set of species traits and environmental factors. In this paper, we
present empirical evidence that, contrary to this expectation, it is possible for one common factor to
underlie many aspects of priority effects, including mechanism, condition, evolution, and functional
consequences. Specifically, we show that environmental pH is an overarching factor governing priority
effects in a microbial system.

Simple microbial systems can help identify general basic principles that organize ecological
communities (Cadotte et al., 2005; Drake et al., 1996; Jessup et al., 2004; Vega and Gore, 2018),
and the nectar microbiome has recently emerged as a well-characterized simple system for under-
standing community assembly (Brysch-Herzberg, 2004; Chappell and Fukami, 2018; de Vega et al.,
2021, Lachance et al., 2001, Letten et al., 2018; Vannette, 2020). Our study system here consists of
the bacteria and yeasts that colonize the floral nectar of the sticky monkeyflower, Diplacus (formerly
Mimulus) aurantiacus, a hummingbird-pollinated shrub native to California and Oregon of the USA
(Belisle et al., 2012). Initially sterile, floral nectar is colonized by these microbes via pollinator-
mediated dispersal (Belisle et al., 2012, de Vega et al., 2022). Microbial communities that develop in
nectar through this dispersal are often simple, dominated by one or a few species of nectar-specialist
bacteria or yeast (Alvarez-Pérez et al., 2019; Golonka and Vilgalys, 2013; Herrera et al., 2010; Tsuji
and Fukami, 2018, Warren et al., 2020).

Our previous work has shown that hummingbird-mediated dispersal is highly stochastic because
the pollinators differ in the species identity of yeasts and bacteria they carry on their beaks and
tongues (Morris et al., 2020; Toju et al., 2018; Vannette et al., 2021; Vannette and Fukami, 2017).
Additionally, the outcome of local antagonistic interactions among these microbial species can be
sensitive to relative initial abundances (Dhami et al., 2016; Dhami et al., 2018; Grainger et al., 2019,
Mittelbach et al., 2016; Peay et al., 2012; Tucker and Fukami, 2014; Vannette and Fukami, 2014).
Together, the stochastic dispersal and the history-dependent interactions jointly cause priority effects
in nectar microbial communities. Moreover, recent studies indicate that whether flowers are domi-
nated by bacteria or yeasts can affect pollination and seed set, although a mechanism for this effect
remains unclear (de Vega et al., 2022; Good et al., 2014; Herrera et al., 2013, Jacquemyn et al.,

Chappell et al. eLife 2022;11:€79647. DOI: https://doi.org/10.7554/eLife.79647 2 of 33



eLife

Ecology | Evolutionary Biology

2021; Junker et al., 2014; Rering et al., 2020; Schaeffer and Irwin, 2014; Vannette et al., 2013,
Vannette and Fukami, 2016; Yang et al., 2019). Despite the increasing amount of knowledge about
this system, whether or not there is a common factor that explains the various phenomena associated
with priority effects has not been investigated in this system, or any other system for that matter, to
our knowledge.

In this paper, we present and synthesize multiple independent pieces of evidence that all point to
the pervasive role of pH across several aspects of priority effects in this nectar microbiome. First, we
report the results of a field survey of D. aurantiacus flowers across a 200-km coastline in California,
showing that microbial communities in the nectar exhibit distribution patterns that are consistent with
the existence of two alternative community states, one dominated by bacteria and the other domi-
nated by yeasts (Figure 1A). Next, we describe findings from laboratory experiments that suggest
that the potential alternative states we observed in the field survey are caused by inhibitory priority
effects between bacteria and yeasts (Figure 1B). We then show that these priority effects are largely
driven by bacteria-induced reduction in nectar pH , a finding consistent with the tri-modal distribution
of nectar pH among flowers that we observed in the field (Figure 1A). Motivated by these results as
well as the high variation we found in the strength of priority effects among yeast strains, we then use
experimental evolution in artificial nectar (Figure 1C) to show that the low pH of nectar can cause rapid
evolution of yeast traits, resulting in increased resistance to the pH-driven priority effects (Figure 1D).
This evolution appears to be constrained by a trade-off between tolerance to a low-pH environment
and growth in a neutral-pH environment. Using whole genome resequencing, we explore genomic
differences in yeast strains evolved in isolation, in the presence of its primary bacterial competitor,
and in a low pH environment (Figure 1E). Finally, we show in a field experiment that the low pH of
nectar reduces nectar consumption by flower-visiting hummingbirds (Figure 1F), suggesting that pH
reduction is the likely explanation for our earlier observations that nectar bacteria reduced pollination
and seed set in D. aurantiacus. We end by weaving these results together in a pH-based story of the
wide-ranging consequences of priority effects in this system.

Results and discussion

Field observations suggest bacterial vs. yeast dominance as alternative
states

To study the distribution of nectar-colonizing bacteria and yeasts among D. aurantiacus flowers, we
conducted a regional survey in and around the San Francisco Peninsula of California (Figure 1A,
Figure 2—source data 1) in June and July of 2015. Floral nectar was sampled from a total of 1152
flowers (96 flowers at each of 12 sites) along an approximately 200km coastline (Dhami et al., 2018;
Tsuji et al., 2016; Figure 2A). Bacteria and yeasts were cultured on different media to characterize
floral nectar communities, which had been corroborated by molecular sequencing (Vannette and
Fukami, 2017) and correlations between cell counts and colony forming units (Peay et al., 2012,
Figure 2—figure supplement 1).

Across all 12 sites, we found that D. aurantiacus flowers were frequently dominated by either
bacteria or yeast, but rarely by both (Figure 2C, Figure 2—figure supplement 2). We used a clas-
sification method called CLAM (Chazdon et al., 2011) to classify flowers into four groups: bacteria-
dominated flowers, yeast-dominated flowers, co-dominated flowers, and flowers with too few
microbes to be accurately classified (Figure 2B, Figure 2—figure supplement 3). For each site, we
then calculated the proportion of co-dominated flowers that would be expected if bacteria and yeasts
were distributed among flowers independently of each other. This analysis showed that the observed
proportions of co-dominated flowers were lower than expected by chance alone (Figure 2D; paired
t-test: n=12, 95% CI [-5.3,-1.1], p=0.006).

This scarcity of co-dominance may have been caused by stochastic factors such as dispersal limita-
tion that creates spatial segregation (Belisle et al., 2012) or deterministic factors such as nectar
chemistry that allows for niche partitioning. For example, some flowers may have nectar character-
istics that intrinsically favor bacterial growth, while other flowers with different nectar chemistry may
preferentially support yeast growth. However, another possibility is that the scarcity of co-dominance
was caused jointly by stochastic and deterministic factors. Specifically, if a flower happens to become
dominated by bacteria, it may prevent yeast from becoming abundant, and vice versa, through
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Figure 1. Schematic of the approaches taken in this study. (A) Field survey to characterize the distribution of yeast and bacteria in flowers as well as
nectar pH of Diplacus aurantiacus, (B) initial microcosm experiments to assess strength of priority effects and identify nectar pH as a potential driver,
(C) experimental evolution to study adaptation to low-pH and bacteria-conditioned nectar, (D) secondary microcosm experiments to study the effect of
adaptation to nectar environments, (E) whole genome resequencing to identify genomic differences between evolved strains, and (F) field experiments

to study the effect of low pH on nectar consumption by pollinators.
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Figure 2. Sites vary in regional dominance of bacteria and yeast. (A) Ninety-six Diplacus aurantiacus flowers were harvested from each of 12 field sites
in and around the San Francisco Peninsula in California, USA (Figure 2—source data 1) with (B) variable numbers of flowers classified as bacteria-
dominated (blue), fungi-dominated (yellow), co-dominated (green) flowers, or flowers where microbes were too rare to determine (grey) (n=1152).

(C) Flowers are often dominated by bacteria or yeast, but rarely both. Each point represents a floral community and inset plot represents zoomed-in
version of the plot behind it (n=1152). (D) Co-dominated flowers were observed less frequently than expected. In panel D, each point represents a site,
with the numbers indicating the site numbers shown in panels A and B. In panel A, the location of Jasper Ridge Biological Preserve (JR) is also indicated

(n=12).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Field sites in Diplacus aurantiacus field survey.

Source data 2. Association between percentage of flowers colonized by yeast or bacteria per plant and the distance between host plants.

Figure 2 continued on next page

Chappell et al. eLife 2022;11:€79647. DOI: https://doi.org/10.7554/eLife.79647

50of 33



eLife

Figure 2 continued

Ecology | Evolutionary Biology

Source data 3. Association between bioclimate variables, date of sampling, and microbial colonization.

Figure supplement 1. Preliminary association between flow cytometry cell counts (populations identified by forward and side scatter) and colony
forming units of A. nectaris growing on tryptic soy agar with cycloheximide.

Figure supplement 2. Diplacus aurantiacus flowers were harvested from 12 field sites in and around the San Francisco Peninsula (California, USA) at
various dates in June and July 2015 with variable densities of bacteria and yeast (n=1152).

Figure supplement 3. Classification of flowers into bacteria-dominated (blue), yeast-dominated (yellow), co-dominated (green), or microbes too rare to

determine (grey).

Figure supplement 4. We found no significant relationship between distance and the difference in bacterial colonization (A, n=8775, p=0.07,
R?=0.0003) and a slightly negative association between distance and the difference in fungal colonization (B, n=8775, p<0.05, R?=0.004).

differential modification on nectar chemistry by bacteria vs. yeasts. This mutual suppression would
represent inhibitory priority effects, where stochastic dispersal dictates the trajectory of local commu-
nity assembly because early-arriving colonists deterministically exclude late-arriving immigrants.

To examine the possibility of spatial segregation, we regressed the geographic distance between all
possible pairs of plants to the difference in bacterial or fungal abundance between the paired plants.
If plant location affected bacterial or yeast abundance, we should see a positive relationship between
distance and the difference in abundance between a given pair of plants. Contrary to this expecta-
tion, we found no strong relationship between distance and the difference in bacterial colonization
(Figure 2—figure supplement 4A, Figure 2—source data 2, LM: n=8775, p=0.07, R>=0.0003) and a
slightly negative association between distance and the difference in fungal colonization (Figure 2—
figure supplement 4B, Figure 2—source data 2, LM: n=8775, p<0.05, R?=0.004), suggesting that
spatial segregation is unlikely to explain the observed abundance pattern.

It is also possible that climatic variables affected the colonization of bacteria and yeasts. However,
in a linear mixed model predicting bacterial or yeast abundance by average annual temperature,
temperature seasonality, annual precipitation, sampling date, and site location included as a random
effect, none of the predictors were significant (Figure 2—source data 3). This result indicates that
the observed abundance pattern is unlikely to have been strongly influenced by spatial proximity,
temperature, moisture, or seasonality, reinforcing the hypothesis that the distribution pattern is
instead underlain by bacterial and yeast dominance as alternative stable states. To test this hypothesis
more directly, we conducted laboratory experiments using Acinetobacter nectaris and Metschnikowia
reukaufii, which are the most frequently found species of nectar bacteria and yeasts, respectively.

Previously, we reported that M. reukaufii was the most frequently cultured species of fungi in D.
aurantiacus nectar in the 12-site survey in 2015 (Table S2 in Dhami et al., 2018; see also Belisle et al.,
2012). As for bacteria, Dhami et al.'s (2018) data are not extensive enough to draw a firm conclusion.
However, we here present data from a multi-year survey of bacteria cultured from D. aurantiacus nectar
at one site, Jasper Ridge (JR, Figure 3), from 2012 to 2022. The Jasper Ridge data support culture-
independent (metabarcoding) data on bacterial species composition of D. aurantiacus nectar at the
same site (Vannette and Fukami, 2017) and a nearby site (Toju et al., 2018). Namely, both culture-
dependent and culture-independent methods indicate that Acinetobacter spp. were the dominant
species of bacteria in D. aurantiacus nectar, followed by Neokomagataea (formerly Gluconobacter)
sp. (see further detail in Appendix 1). The most common species of bacteria and yeast observed in our
study system, such as species of Acinetobacter, Neokamagataea, Pseudomonas, and Metschnikowia,
have been shown to be common nectar specialists in other plants as well (e.g., Fridman et al., 2012;
Warren et al., 2020). Taken together, these independent pieces of information collectively indicate
that, given their prevalence, A. nectaris and M. reukaufii would be a reasonable pair of species to
focus on as a first step toward understanding the possible alternative states in the nectar microbial
community of D. aurantiacus in our study landscape.

Evidence for pH-mediated priority effects causing alternative states

One way to directly test for priority effects between bacteria and yeasts is to experimentally manip-
ulate initial relative abundance of the two microbial groups. This manipulation would allow us to
determine if communities diverge such that bacteria-dominated communities develop if bacteria were
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Figure 3. Cultured bacteria and yeast from a éyear survey. Cultured nectar bacteria (A) and yeast (B) from a é-year survey of D. aurantiacus nectar at
Jasper Ridge identified by colony PCR. The number placed at the top of each bar indicates the number of colony samples analyzed. Single fungal
colonies were isolated on yeast mold agar (YMA) with supplemented 100 mg/L of the antibacterial chloramphenicol. Single bacterial colonies were
either isolated on Reasoner’s 2A agar (R2A) supplemented with 20% sucrose and 100 mg/L of the antifungal cycloheximide (2012-2018), or tryptic soy
agar (TSA) supplemented with 100 mg/L of the antifungal cycloheximide (2019-2022).

The online version of this article includes the following source data for figure 3:

Source data 1. Primer sequences and PCR cycles for colony PCR.

initially more abundant than yeast and vice versa. Our prior work that took this approach yielded
evidence for strong priority effects in D. aurantiacus nectar (Dhami et al., 2016; Peay et al., 2012,
Toju et al., 2018; Vannette and Fukami, 2014). However, these studies either looked at priority
effects among yeast species or, in the case of priority effects between yeast and bacteria, focused on
the yeast M. reukaufii and the bacterium Neokomagataea (formerly Gluconobacter) sp. (Tucker and
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Fukami, 2014). The most common bacterial species, A. nectaris, may also engage in strong priority
effects against M. reukaufii, but this possibility has not previously been tested.

To test for priority effects between M. reukaufii and A. nectaris, we used sterile PCR tubes as
artificial flowers. Each tube contained artificial nectar that closely mimicked sugar and amino acid
concentrations in field-collected D. aurantiacus nectar (Peay et al., 2012). We altered the arrival order
of M. reukaufii and A. nectaris and measured growth after five days, which approximated the lifespan
of individual D. aurantiacus flowers (Peay et al., 2012, Figure 4—source data 1). We found that A.
nectaris exerted a strong inhibitory priority effect against M. reukaufii (Figure 4A, Figure 4—source
data 2) and vice versa (Figure 4—figure supplement 1).

From our previous work with Neokomagataea (Tucker and Fukami, 2014), we hypothesized that
inhibitory priority effects against yeast were caused by bacteria-induced reduction in nectar pH,
hindering yeast growth. Consistent with this hypothesis, we found that higher densities of bacteria
were tightly associated with lower nectar pH (Spearman rank-order: n=94, R(ad;j.)=0.69, p=2.2 x
107", Figure 4B), whereas higher densities of yeast were weakly associated with higher nectar pH
(Figure 4—figure supplement 2). In addition, monoculture yeast grew poorly in low-pH nectar (pH =
3) when inoculated at low density (Figure 4C), but not if introduced at high density (Figure 4—figure
supplement 3). Bacterial growth was not affected by lowered nectar pH (Figure 4—figure supple-
ment 4). Together, these data provide further evidence that nectar pH reduction by bacteria mediates
their priority effects on yeast.

One likely reason for this density-dependent effect of pH on yeast is that, when yeast arrive first to
nectar, they deplete nutrients such as amino acids and consequently limit bacterial growth, thereby
avoiding pH-driven suppression that would happen if bacteria were initially abundant (Tucker and
Fukami, 2014, Vannette and Fukami, 2018). Another possible reason is that larger yeast populations
have higher phenotypic heterogeneity, which increases the probability that the population will include
cells that are resilient to low pH. This mechanism has been suggested in the baker's yeast, Saccharo-
myces cerevisiae (Guo and Olsson, 2016), although whether it applies to M. reukaufii remains to be
tested. In addition to priority effects, phenotypic plasticity or stochastic phenotypic switching could
contribute to increased variation in the extent of bacterial dominance among flowers (Levy, 2016;
Morawska et al., 2022). In fact, previous work on M. reukaufii suggested that epigenetic changes
contribute to its broad niche width (Herrera et al., 2010). However, our experiments manipulating
initial abundance provide evidence for priority effects between nectar bacteria and yeast. Since we
have already sought to elucidate priority effects of early-arriving yeast in our previous papers (Tucker
and Fukami, 2014; Vannette and Fukami, 2018), we focus primarily on the other side of the priority
effects, where initial dominance of bacteria inhibits yeast growth, in this paper.

To assess whether the nectar pH reduction by bacteria that we observed in the laboratory experi-
ment (Figure 4B) had relevance for explaining variation in nectar pH among real flowers in the field,
we conducted a survey of D. aurantiacus nectar at two sites, San Gregorio (site 6) and Jasper Ridge, in
June and July of 2022. We found that the distribution of nectar pH ranged from 2 to 9 in a way consis-
tent with the prediction that fresh D. aurantiacus nectar has a mean pH of about 7.5 and that, once
colonized, yeast and bacteria reduce nectar pH to an average of 5.5 and 2.5, respectively (Vannette
et al., 2013). Specifically, we found that the distribution of nectar pH in the field was non-unimodal
(Hartigan’s dip test: n=576, D=0.05, p<2.2 x 107%). Furthermore, a 3-mode model was a better fit than
a 2-mode model (Likelihood ratio test: p=1.6 x 107'¢, AIC,_, = 2365, AIC,_;-2296, Figure 5—figure
supplement 1). According to the mixture model we used, nectar pH had local modes at 7.8, 5.5,
and 2.6 (Figure 5A, solid vertical lines), which are strikingly similar to those from the experiment we
reported previously (Vannette et al., 2013), where filtered nectar from newly opened D. aurantiacus
flowers was inoculated with no microbes, the yeast M. reukaufii, or the bacterium Neokomagataea sp.
under controlled laboratory conditions (Figure 5A, dashed vertical lines). In addition, we observed
that older and pollinated flowers were more likely to have low nectar pH, reflecting the fact that, in
these flowers, microbes would have more chance to grow and modify the nectar pH than in younger
and non-pollinated flowers (Figure 5B, Figure 5—figure supplement 2). We also found that the
two sites differed in their distributions of nectar pH (Figure 5B, Figure 5—figure supplement 2). At
Jasper Ridge, many of the pollinated flowers had low pH values consistent with bacterial dominance.
In contrast, at San Gregorio, these flowers had intermediate pH values that characterize yeast domi-
nance. At another site within the region, Stanford University's Dish hill, we measured both nectar pH
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Figure 4. Nectar bacteria exert negative priority effects against nectar yeast, potentially due to reduction in nectar pH. (A) Metschnikowia reukaufii
(strain MR1) yeast population density after five days of growth with alternating arrival order with Acinetobacter nectaris bacteria or growth alone with
inoculation on either the first or third day (arriving early or late) of the experiment (n=128). (B) Final pH of nectar after 5 days of bacterial growth; higher
densities of bacteria are associated with lower pH. The shape of each point represents the treatments represented in panel A. Points are jittered on
the y-axis (n=96). (C) Low pH (pH = 3) nectar depresses yeast growth when grown in low-density monoculture (n=72). In box plots (panels A and C),
treatments that share the same letter placed above their boxes were statistically indistinguishable from one another.

Figure 4 continued on next page
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The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Priority effect experiment treatments.

Source data 2. Priority effect experiment results.

Figure supplement 1. M. reukaufii yeast and A. nectaris bacteria exhibit negative priority effects against each other, as evidenced by growth in
microcosm experiments where arrival order is altered.

Figure supplement 2. Yeast increases nectar pH (p<0.05, Spearman rank correlation).

Figure supplement 3. We found no effect of nectar type (pH=3, pH=6) on the growth of M. reukaufii, when grown in monoculture at a high density

(approximately 10,000 cells/uL).

Figure supplement 4. \We found no effect of nectar type (pH=3, pH=6) on the growth of A. nectaris when grown in monoculture at a low density
(approximately 10 cells/uL) (A) or high density (approximately 10,000 cells/uL) (B).

and bacterial growth and found that D. aurantiacus flowers with higher bacterial densities tended
to have lower nectar pH (LMM: n=62, p=7.4 x 107 (Figure 5C). All of these results give field-based
support for the idea that microbial abundance and nectar pH are dictated by the priority effects
between bacteria and yeasts.

pH as an eco-evolutionary driver of priority effects

In the field survey of 12 sites, we found large site-to-site variation in the relative prevalence of bacteria
vs. yeast (Figure 2B), even though all sites followed the same L-shaped pattern that characterized
alternative bacteria vs. yeast dominance (Figure 2C). For example, San Gregorio (site 6) had many
bacteria-dominated flowers in 2015, whereas a nearby site, La Honda (site 5), had more yeast-
dominated flowers that same year. Through further laboratory experimentation, we also found that
three genetically divergent strains of M. reukaufii, all of which were collected from the same site, Jasper
Ridge, were differentially affected by early arrival of A. nectaris (Figure 6, Figure 6—source data 1).
Specifically, one of the three yeast strains, MR1, was more negatively affected by priority effects than
the other two strains, MY0182 and MY0202, which were representative of distinct genotypic groups
found across the 12 sites (Dhami et al., 2018). Given this genotypic and phenotypic variation among
strains, it seemed conceivable that the site-to-site differences in the relative prevalence of yeasts and
bacteria observed in the field could drive an eco-evolutionary feedback (sensu Post and Palkovacs,
2009), such that sites dominated by bacteria would be characterized by stronger selective pressure
for yeasts to become more resistant to priority effects than sites dominated by yeasts (Figure 2B).

To test this hypothesis, we experimentally evolved nectar yeast under conditions that resembled
repeated exposure to bacterial priority effects (Figure 1C). In our experimental evolution, we simu-
lated the serial transfer of microbes between flowers via hummingbirds over the course of an entire
flowering season. To this end, over 60 days, we serially transferred a single clone of M. reukaufii strain
MR1, which we refer to as ancestral, to fresh nectar three times a week (Appendix 2, Appendix 2—
figure 1). This strain was isolated from Jasper Ridge (Peay et al., 2012). Sixty days roughly corre-
sponds to the duration of a typical flowering season of D. aurantiacus at that site (Belisle et al., 2012)
and some of the other sites we used for the field survey (Figure 2A). We chose strain MR1 for this
experiment because it was the most susceptible to priority effects (Figure 6).

We serially transferred four independent replicates of strain MR1 in three nectar types: (1) synthetic
nectar where pH was 6, simulating fresh D. aurantiacus nectar (Vannette et al., 2013); (2) synthetic
nectar where pH was 3 (called “low-pH"), mimicking the pH reduction caused by growth of A. nectaris,
our hypothesized mechanism of priority effects (Figure 4—figure supplement 2); and (3) synthetic
nectar where pH was initially 6, but then conditioned by growth of A. nectaris. The growth of A.
nectaris reduced pH to approximately 3 (called ‘bacteria-conditioned’) (Figure 4B). To prepare the
bacteria-conditioned nectar, we grew a strain of A. nectaris for five days in fresh synthetic nectar
and then filtered the bacteria out with a 0.2um filter. We selected these two experimental treat-
ments to test whether pH reduction alone or, additionally, the production or consumption of chemical
compounds by A. nectaris influenced M. reukaufii's susceptibility to priority effects. Together, these
nectar treatments represent the most extreme selective pressure that yeasts could be exposed to in

Chappell et al. eLife 2022;11:€79647. DOI: https://doi.org/10.7554/eLife.79647 10 of 33
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Figure 5. Field survey of nectar pH in D. aurantiacus. (A) Distribution of nectar pH in individual D. aurantiacus flowers collected at Jasper Ridge and
San Gregorio (n=576 flowers from which we were able to extract a sufficient amount of nectar to measure pH; 21% of flowers sampled, i.e., 152 of 728
flowers, had too little nectar for pH measurement). The tri-modal distributions represent the prediction from a 3-part mixture model, with the modes
indicated by solid vertical lines. Dashed vertical lines indicate experimental pH measurements from Vannette et al., 2013, where bacteria (blue dashed
vertical line) and yeast (yellow dashed vertical line) were grown in field-collected D. aurantiacus nectar (control as grey dashed vertical line), and pH

was measured after four days of growth. (B) Distributions of nectar pH amongD. aurantiacus flowers with open and closed stigmas (a closed stigma
indicatesvisitation by a pollinator in D. aurantiacus; Fetscher and Kohn, 1999) shown separately for Jasper Ridge and San Gregorio (site 6). At Jasper
Ridge, 71/233 and 37/204 flowers with closed and open stigma, respectively, had too little nectar to measure pH. At San Gregorio, 31/145 and 13/146
flowers with closed and open stigma, respectively, had too little nectar to measure pH. (C) Association between bacterial density in individual flowers
and nectar pH (n=62). White points represent flowers where no microbes were cultured on R2A, but some colonies were present on TSA. Grey points
represent flowers where yellow colonies were present on R2A at a greater density than other colonies on R2A. Preliminary data suggest that these yellow
colonies represent non-acidifying bacteria such as Pseudomonas. Black points represent flowers with colonies on R2A that do not fit into either of the
prior categories. The regression line was shown for all data.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Expectation-maximization (EM) algorithm-based mixture model of nectar pH from D.aurantiacus flowers harvested from Jasper
Ridge and San Gregorio in June-July 2022.

Figure supplement 2. Distribution of nectar pH for flowers harvested from Jasper Ridge and San Gregorio separated by anther status.

the field, either never encountering flowers with early-arriving bacteria or only encountering flowers
where bacteria had already colonized.

To determine whether yeasts that had evolved in low-pH nectar were more resistant to priority
effects by bacteria, we conducted laboratory experiments similar to those described above. We
manipulated the initial density of a given M. reukaufii strain relative to a co-inoculated standard strain
of A. nectaris and measured their abundances after three days of growth. Using these data, we quan-
tified the strength of the bacterial priority effect on yeast using the same metric as before (Figure 7).

We found that, over the two months of serial transfers, yeasts that evolved in environments
that constantly simulated early arrival of bacteria (bacteria-conditioned and low-pH nectars) were
less affected by priority effects than the ancestral yeast or the yeast evolved in the normal nectar
(Figure 7A, Figure 7—figure supplement 1, Figure 7—source data 2). This difference in the
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Figure 6. M. reukaufii strains differ in susceptibility to bacterial priority effects. Three strains of M. reukaufii were
differentially affected by early arrival of bacteria (n=25). For each strain, we calculated the strength of priority
effects using a metric that compares growth between varying initial inoculation densities with a competitor and
alone. BY and YB represents initial dominance by bacteria or yeast (e.g. BY represents bacteria arriving early and
yeast arriving late). Y- and -Y represent the comparable growth of yeast at either density (early or late) alone.
Letters shown above each box (each treatment) indicate statistical significance as in Figure 4.

The online version of this article includes the following source data for figure 6:

Source data 1. Priority effect experiment results with wild strains.

strength of priority effects reflects that the absolute growth of yeast evolved in bacteria-conditioned
and low-pH nectars was less negatively affected by bacteria (Figure 7B, Figure 7—source data 3).
However, their improved growth was apparent only when bacteria were present (Figure 7—figure
supplement 2, Figure 7—source data 4). Together, these findings suggest that yeast can evolve to
resist low pH, the very mechanism by which bacteria exert priority effects against yeast over a duration
that roughly corresponds to a single flowering season of D. aurantiacus.

Furthermore, we observed a pattern that suggests a potential evolutionary tradeoff between
adaptation to low pH and neutral pH (Figure 8, Figure 8—source data 1). When considered across
all experimental evolution treatments, strains that evolved stronger resistance to priority effects of
pH-reducing bacteria became marginally worse at growing in neutral-pH monoculture (strains that
are in the upper left quadrant in Figure 8). Conversely, strains that did not increase resistance to
bacterial priority effects during experimental evolution were better able to grow in neutral-pH mono-
culture (those in the upper right quadrant in monoculture) (LMM: n=48, p=0.05, Figure 8—figure
supplement 1). Incidentally, this type of evolutionary trade-off is the basis for the ‘eco-evolutionary
buffering’ hypothesis recently proposed by Wittmann and Fukami, 2018. This hypothesis provides
one potential reason why species that engage in strong inhibitory priority effects in local communities
can still co-exist in a metacommunity even though such priority effects should eventually cause only
one species to persist in the metacommunity, with others driven to extinction. Our finding here, that
is rapid evolution of resistance to priority effects under a trade-off constraint, may partly explain why
both yeast and bacteria persist in the field despite strong priority effects, but this possibility remains
highly speculative at this stage.

Genome re-sequencing to explore the genetic changes associated with
pH-driven rapid evolution

To understand whether these phenotypic differences in response to priority effects have a genetic
basis, we conducted full genome re-sequencing of the ancestral strain and end-point clones isolated

Chappell et al. eLife 2022;11:€79647. DOI: https://doi.org/10.7554/eLife.79647 12 of 33
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Figure 7. Yeast evolved with bacterial niche modification were more resistant to bacterial priority effects. (A) Yeast
evolved in low-pH nectar was less affected by bacterial priority effects than other treatments, especially compared
to ancestral yeast and yeast evolved in normal nectar (n=72). Consequently, (B) yeast evolved in bacteria-like nectar
(both bacteria-conditioned and low-pH) was less negatively affected by initial bacterial dominance, relative to their
growth alone, than ancestral yeast or yeast evolved in normal nectar (n=168). Letters shown above each box (each
treatment) indicate statistical significance as in Figure 4.

The online version of this article includes the following source data and figure supplement(s) for figure 7:
Source data 1. Evolution treatments.

Source data 2. Priority effect experiment results with evolved strains (priority effect metric).

Source data 3. Differences in growth between evolved strains with and without bacteria.

Source data 4. Difference in final yeast densities between evolved strains with and without bacteria.

Figure supplement 1. We calculated an additional priority effect metric, which corroborated our main result.

Figure supplement 2. Effects of evolution treatments and bacterial addition on yeast density.
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Figure 8. Relationship between resistance to priority effects and monoculture growth. Strains that could more
strongly resist priority effects by bacteria were poor at growing in monoculture (upper left quadrant). Conversely,
strains that were more affected by bacterial priority effects were better able to grow in monoculture (upper right
quadrant). Each point in the plot represents an evolved strain, plotted with respect to the ancestral strain grown in
that round of the experiment (centered on the origin) (n=60).

The online version of this article includes the following source data and figure supplement(s) for figure 8:
Source data 1. Relationship between resistance to priority effects and monoculture growth.

Figure supplement 1. Negative relationship between the strength of priority effects of bacteria and yeast on their
monoculture growth rate at a low density, with round of the experiment (week) as a random effect (LMM: n=48,
p=0.006).

from the four independent evolutionary replicates of each treatment (Figure 1E, Figure 9—figure
supplement 1, Figure 9—source data 1). Genomic variation across samples was characterized by
calling variants against the reference genome for this species (Dhami et al., 2016). Our sequencing
approach discounted the possibility that the observed phenotypic dynamics were solely driven by
plasticity or epigenetic changes in the yeast strains (Herrera et al., 2012). We explored two potential
mechanisms of adaptation: loss of heterozygosity through fixation of one of the ancestral heterozy-
gous alleles and de novo mutations that emerge and become fixed.

Loss of heterozygosity (LOH) is a common driver of molecular evolution in yeast (Dutta et al.,
2021, Peter et al., 2018). We explored its role in driving the observed patterns of evolution between
the ancestral strain and our evolved lineages. We found that the ancestral strain exhibited heterozy-
gosity at 25,820 sites across the 19 Mb diploid genome. Across all evolved lineages, we observed an
average of 142 sites exhibiting LOH per lineage (1699 total across all lineages). Most sites exhibiting
LOH were shared across lineages and treatments (97%) and likely indicative of adaptation of this wild
strain to the laboratory environment.

To infer genomic loci subject to treatment-specific selection pressure, we compared patterns of
LOH between the lineages evolved in the normal nectar treatment and those evolved in the low-pH

Chappell et al. eLife 2022;11:€79647. DOI: https://doi.org/10.7554/eLife.79647 14 of 33



eLife

Ecology | Evolutionary Biology

and bacteria-conditioned treatments. We specifically identified individual sites of LOH that were
shared across multiple lineages within the low-pH and/or bacteria-conditioned treatments, but were
rare or absent in the normal treatment and ancestral strain (Figure 9—figure supplement 2). These
sites correspond to permutation-derived p-values less than 0.1 and Fs; values ranging between 0.3
and 0.5, and thus are indicative of substantial genomic differentiation between treatments.

Despite the limited statistical power owing to the moderate sample size (four evolutionary repli-
cates per treatment), we were able to identify several sites with consistent loss of heterozygosity
across the bacteria-conditioned and low-pH treatments (Figure 9A). Several of the LOH events most
predominant in the low-pH and bacteria-conditioned treatments fell near genes involved in amino acid
biosynthesis (Figure 9—figure supplement 2, Figure 9—source data 2 for all treatments). Competi-
tion for amino acids has been suggested as a mechanism by which yeast species exert priority effects
against bacteria and other species of yeast in this system (Dhami et al., 2016; Peay et al., 2012,
Tucker and Fukami, 2014). Our results suggest that adaptation to limited amino acid availability
could be associated with differential resistance to priority effects in low-pH environments, though
further experimentation is needed to determine the precise targets of selection.

We identified 146 putative de novo mutations across all lineages, with an average of 12 puta-
tive de novo mutations per lineage (Figure 9B). The locations of these mutations displayed some
spatial concordance with patterns of LOH, corroborating the putative role of these genomic regions
in adaptive evolution (Figure 9—figure supplement 2). Yeast evolved in low-pH and bacteria-
conditioned nectar both exhibited putative de novo mutations near genes involved in solute regu-
lation, such as membrane transport, vesicle cargo recognition, and solute carrier proteins (Figure
9—source data 3). Solute regulation has been implicated in adaptation to high-osmolarity environ-
ments (Pozo et al., 2015), where osmotolerant yeast has been found to compete more strongly
in sugar-rich nectar. Although we cannot yet directly establish that these are causal variants, they
are consistent with our hypothesis that yeasts undergo rapid genetic adaptation to pH-mediated
priority effects in nectar.

We also found some differences between yeast evolved in low-pH and bacteria-conditioned
nectars. For example, strains evolved in low-pH nectar had repeated LOH events in genes associated
with stress responses and growth, whereas strains evolved in bacteria-conditioned nectar did not.
Further studies are necessary to deduce the effect that such genomic differences have on their pheno-
types and strategies to resist priority effects. Although our phenotypic data suggest that alterations
to pH drive priority effects, yeast may take a variety of molecular approaches to resist priority effects
by bacteria. Additionally, these results suggest that yeast might develop multiple genomic strategies
to resist priority effects, potentially explaining the genetic diversity we see in the field (Dhami et al.,
2018).

In summary, these results indicate that the observed patterns of phenotypic evolution were concur-
rent with changes in genomic variation. Future work within this system could elucidate the specific loci
underpinning yeast adaptation to bacterial priority effects. These results also highlight that, although
our phenotypic data suggest alterations to pH as the most important factor for this priority effect, it
still may be one of many affecting the coevolutionary dynamics of wild yeast in the microbial commu-
nities they are part of. In the full community context in which these microbes grow in the field, multi-
species interactions, environmental microclimates, etc. likely also play a role in rapid adaptation of
these microbes, which was not investigated in the current study.

Reduced consumption of low-pH nectar by flower-visiting animals

Finally, we present evidence that bacteria-induced reduction in nectar pH not only drives microbial
priority effects, but also has functional consequences for D. aurantiacus plants. Prior work has shown
that bacterial growth in nectar can negatively affect nectar consumption by pollinators, the probability
of pollination, and the number of seeds produced by D. aurantiacus flowers (Vannette et al., 2013,
Vannette and Fukami, 2016). However, the mechanism behind this effect remains unknown. To test
whether pH affects nectar consumption by flower-visiting animals, we conducted a field experiment
using an array of artificial plants at an outdoor garden at the Stock Farm Growth Facility on the Stan-
ford University campus, located 5 km from Jasper Ridge. We used artificial flowers attached to garden
stakes (Figure 10A) and measured changes in nectar volume after one day, correcting for reduction
in volume through evaporation as opposed to consumption by animals like hummingbirds and bees.
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Figure 9. Yeast evolved to synthetic nectar. (A) Heat map depicting treatment-specific loss of heterozygosity (LOH). Columns represent individual
samples (independent evolutionary trajectories) and rows represent single sites with LOH. White or light red/orange boxes indicate sites without LOH,
while dark grey boxes represent a site with LOH. Sites selected for the figure exhibited Fsr >0.3 and permutation-derived p-value <0.1 when comparing

the ancestral strain and one of the evolved clones at that site. Boxes with dashed lines are highlighted examples of sites that are potentially adaptive in

low-pH nectar, both low-pH and bacteria-conditioned nectar, and normal nectar but not the other two nectar types. (B) Distribution of putative de novo
mutations across the genome in 50 kB windows and separated by treatment. Dots represent the sum of putative de novo mutations in a 50 kB window,

per treatment (n=146).

Figure 9 continued on next page
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The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Sequencing and mapping QC.

Source data 2. Nearest annotated gene with treatment-specific divergence.

Source data 3. Nearest annotated gene with punitive de novo singleton mutation.

Figure supplement 1. Principal components analysis of single nucleotide polymorphisms that differ between evolved and any ancestral strain (2319

sites).

Figure supplement 2. Genome-wide differentiation by (A) computed p-values for observed patterns of loss of heterozygosity (LOH) and (B) Weir-

Cockerham estimator of Fgr.

Extensive video footage that we recorded of the artificial flowers indicated that the consumption was
primarily by hummingbirds.

We used synthetic nectar with either pH = 7, typical of microbe-free fresh nectar, or pH = 2, the
lowest potential nectar pH (Figure 5C), to evaluate the effect of pH reduction on nectar consump-
tion. In addition, because nectar-colonizing microbes, particularly M. reukaufii, can reduce amino acid
concentrations in nectar (Dhami et al., 2016; Vannette and Fukami, 2018), we also manipulated
the concentration of amino acids in the artificial nectar to quantify the relative importance of pH
compared to amino acid concentration. Nectar contained either a high (0.32 mM) or low (0.032 mM)
concentration of amino acids in a factorial design with pH manipulation. We found that for the high
amino acid nectar, which resembled the synthetic nectar used in the previously described microcosm
experiments, less nectar was consumed from flowers with low-pH nectar (Figure 10B). This result
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Figure 10. Low nectar pH reduces nectar consumption by flower-visiting animals. (A) Photo of field experiment setup: hummingbird visits artificial
flowers containing PCR tubes of nectar attached to a garden stake. See this link for video: https://www.youtube.com/watch?v=LbD2r43dvnQ or refer to
Rich Media (Figure 10—video 1) (B) Flower-visiting animals consumed less nectar from flowers containing low pH/high amino-acid nectar than high pH/
high amino acid nectar (n=79). Letters shown above each box (each treatment) indicate statistical significance as in Figure 4.

The online version of this article includes the following video and figure supplement(s) for figure 10:

Figure supplement 1. No difference in the volume of nectar consumed by nectar treatment in 2016 (A) or 2018 (B) when nectar sugars were altered with

pH.

Figure 10—video 1. Anna's hummingbirds (Calypte anna) visiting experimental plants to consume artificial nectar at the Jasper Ridge Biologial
Preserve of Stanford University in California, USA (video taken on July 19th, 2013 by Trevor Hebert and Tadashi Fukami).
https://elifesciences.org/articles/79647 /figurestfig10video
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indicates that low pH, but not low concentrations of amino acids, was the primary factor that caused
a reduction in nectar consumption. One possible explanation as to why hummingbirds responded less
to amino acids than pH is that hummingbirds are less sensitive to the taste of amino acids (Baldwin
et al., 2014). Because the bacteria lower pH (Figures 4B and 5C), these findings suggest that bacteria-
dominated flowers can negatively affect nectar consumption by pollinators by lowering nectar pH. We
did not observe an effect of pH on pollinator preference when sugar concentrations were also altered,
potentially since the pH reduction was less extreme (3.2) in those years or the weather was not as
conducive to hummingbird foraging (Figure 10—figure supplement 1).

Overall, these results, together with our previous findings (Vannette et al., 2013), suggest that
in addition to impacting microbial interactions and community assembly, low nectar pH associated
with bacteria-dominated flowers affects the relationship between plants and pollinators via microbial
priority effects. pH is thought to be a strong predictor of community assembly in other microbial
systems as well (Ratzke and Gore, 2018), including those in the soil (Fierer and Jackson, 2006;
Tedersoo et al., 2014), the human gut (Beasley et al., 2015), and food products such as sourdough
bread (Oshiro et al., 2020; Valmorri et al., 2008), cheese (Ferreira and Viljoen, 2003), and milk
(Alvarez-Martin et al., 2008; Gadaga et al., 2001). Priority effects have been observed in some

A. Yeast and bacteria- B. Bacteria exert priority effects C. Hummingbirds
dominated flowers against yeast by lowering avoid low pH
exhibit alternative nectar pH; evolved yeast better nectar

stable states resist bacterial priority effects

2 months later

Day 0

Figure 11. pH is an eco-evolutionary driver of priority effects in nectar microbes. (A) Field observations show that nectar yeast and bacteria in individual
flowers exhibit alternative stable states, where some flowers are either dominated by bacteria (dark blue), yeast (yellow (ancestral) or red (evolved))

or lack significant microbial growth (gray). (B) Laboratory experiments identify negative priority effects between bacteria (dark blue) and yeast (yellow
(ancestral) or red (evolved)) that lead to alternative states; for example, where early arriving bacteria lower the pH of nectar (depicted here in light blue),
limiting the growth of later arriving yeast. Experimentally evolved nectar yeast (red) was less affected by bacterial priority effects, supporting pH as the
key mechanism by which nectar bacteria inhibit yeast growth. (C) A field experiment shows one functional outcome of bacterial dominance in nectar:
low nectar pH decreases nectar consumption by pollinators. Graphics modified from Chappell and Fukami, 2018.
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of these microbial habitats, suggesting that pH may govern priority effects as an overarching factor
across many types of microbial communities.

Conclusion

The independent series of evidence presented here collectively demonstrates that it is possible to find
a single deterministic factor that explains a range of the ecological and evolutionary consequences of
priority effects that drive alternative community states (Figure 11). Using nectar-inhabiting microbes,
we have shown that pH-mediated priority effects (Figures 4 and 6) give rise to bacterial and yeast
dominance as alternative community states (Figures 2, 3 and 5). We have also shown, however, that
pH is not merely a mechanism of the priority effects, but it also determines the strength of the priority
effects, fuels rapid evolution that changes the strength of the priority effects (Figures 7-9), and causes
functional consequences of the priority effects for the host plants’ reproduction (Figure 10). These
findings indicate that historical contingency via priority effects can be understood more simply than
generally thought once we identify a common factor that dictates various aspects of priority effects.
Although this study has focused on one specific system, we hope that its message serves as a source
of optimism for evolutionary ecology: even the phenomena regarded as difficult to explain like wide-
ranging consequences of historical contingency in community assembly can sometimes be given a
surprisingly simple explanation if we study them in depth.

Materials and methods

Field survey

Field sampling was conducted at 12 sites throughout the San Francisco Peninsula (Figure 2), and a
permit was obtained for work at Jasper Ridge Biological Preserve (37°82'40” N, 122°13'30" W). At
each site, eight D. aurantiacus flowers with a closed stigma were harvested from 12 plants. Flowers
with a closed stigma are more likely to have been pollinated than flowers with an open stigma
(Fetscher and Kohn, 1999). From each flower, nectar was extracted using a clean 10 pL microcap-
illary tube, measured, and diluted in 40 pL sterile PCR-grade water. Sample size was determined
based on previous data (Vannette et al., 2013). In the laboratory, samples were further diluted (10 X)
and plated on yeast malt agar (YMA; Difco, Sparks, MD, USA) supplemented with 100 mg/L of the
antibacterial chloramphenicol and on Reasoner’s 2 A agar (R2A; BD Diagnostics, Sparks, MD, USA)
supplemented with 20% sucrose and 100 mg/L of the antifungal cycloheximide. Plates were incu-
bated at 25 °C for five days and colony forming units (CFUs) were counted on the YMA and R2A
plates to estimate yeast and bacterial abundance, respectively. Molecular identification of colonies
via amplification and sequencing of ribosomal genes (16 S rDNA for bacteria and 28 S rDNA for
fungi; Good et al., 2014) indicated that Neokomagataea sp. was capable of forming colonies on the
chloramphenicol-supplemented YMA and that these bacterial colonies tended to be distinctly smaller
than yeast colonies. Observations of cells from these small colonies under a compound microscope
confirmed that the size of the cells tended to be distinctly smaller than cells found in yeast colonies.
Furthermore, we found that the small colonies failed to proliferate during subsequent sub-culturing
on YMA, whereas most colonies identified as yeast grew optimally, providing additional indication
that the small colonies were bacteria. For these reasons, we removed the small colonies from CFU
on YMA for our estimation of yeast abundance. In a previous study (Vannette and Fukami, 2014),
lllumina MiSeq metabarcoding conducted on D. aurantiacus nectar samples indicated that the domi-
nant 45 taxa of bacteria (e.g. Acinetobacter, Neokomagataea, and Pseudomonas spp.) and yeast (e.g.
Metschnikowia, Starmerella, and Cryptococcus spp.) recovered from culture-independent analyses
also form colonies on R2A and YMA, respectively (Aizenberg-Gershtein et al., 2015). Thus, our
culture-based methods for estimating bacterial and yeast abundance should provide useful, though
not perfectly precise, information on their abundances.

We used the CLAM (Classification Methods) program (Chazdon et al., 2011), a multinomial model
that uses estimated species relative abundance to classify flowers into (1) bacteria-dominated flowers,
(2) yeast-dominated flowers, (3) co-dominated flowers, and (4) flowers with too few microbes to be
classified into any of the three other groups. The CLAM program was originally developed to clas-
sify species into habitat specialists and generalists, focusing on two types of habitats, with species
grouped into four categories: habitat A specialists, habitat B specialists, generalists, and species that
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are too rare to be classified into any of the other three groups. The same principle can be applied
to classifying microbial communities into bacteria-dominated, yeast-dominated, co-dominated, and
microbial communities with too few bacteria and/or yeast for classification. We applied the CLAM
method separately for flowers in each of the 12 sites. At each site, the resultant flowers (bacteria-
dominated, yeast-dominated, co-dominated, too few to classify) were summed and a two-sided Fish-
er's exact test was used to determine differences between sites.

Culturable fungi and bacteria in D. aurantiacus nectar was surveyed at Jasper Ridge Biological
Preserve (JR) in 2012, 2016, 2017, 2018, 2019, and 2022. Diplacus aurantiacus flowers were chosen
haphazardly, and nectar was extracted using microcapillary tubes and diluted into 135 pL sterile 0.85%
NaCl. In the lab, nectar was further diluted 10 X and 100 X in sterile 0.85% NaCl. 100 pL of the orig-
inal diluted nectar was plated on yeast malt agar (YMA; Difco, Sparks, MD, USA) supplemented with
100 mg/L of the antibacterial chloramphenicol, and 100 pL of the 10X-fold diluted nectar was plated
onto tryptic soy agar (TSA; BD Diagnostics, Sparks, MD, USA) supplemented with 100 mg/L of the
antifungal cycloheximide, or Reasoner’s 2 A agar (R2A; BD Diagnostics, Sparks, MD, USA) supple-
mented with 20% sucrose and 100 mg/L of the antifungal cycloheximide. Plates were incubated at
25 °C for 3-5 days (fungi) or 3 days (bacteria) and the total number of colonies per plate was counted.

Of the plates that had colonies, two colonies of each morphotype (if available) were selected
for colony PCR. DNA from individual colonies was extracted by resuspending colonies in 20 plL
REDExtract-N-Amp Extraction Buffer (Sigma-Aldrich, Darmstadt, Germany) and lysed at 65 °C for
10 min and 95 °C for 10 min. A total of 20 uL REDExtract-N-Amp Neutralization Buffer (Sigma-Aldrich,
Darmstadt, Germany) and 16 pL REDTaq ReadyMix (Sigma-Aldrich, Darmstadt, Germany) were added
and samples were amplified via PCR using the NL1/NL4 28 S rDNA primers for fungal DNA samples
and E1099FRC/E343F 16 S rDNA for bacterial DNA samples. Amplified samples were treated using
2 pL Exo-SAP (ThermoFisher, Vilnius, Lithuania) and heated for 15 min at 37 °C and 15 min at 80 °C.
Successfully amplified samples were sequenced using the NL1 primer for fungal samples and the
E343F primer for bacterial samples (Figure 3—source data 1).

Spatial analysis of abiotic factors

To determine whether climatic factors and seasonality influence microbial abundance in this system,
WorldClim bioclimatic variables (average annual mean temperature, temperature seasonality, and
average monthly precipitation) were extracted for each plant and site. These variables, along with
sampling date, were modeled as variables predicting bacterial and fungal abundance, respectively,
in a linear mixed model with site as a random effect. Additionally, the geographic distance between
plants was regressed against the difference in number of flowers colonized by bacteria or fungi
between plant pairs using a linear model. All analyses were conducted using the gimmTMB package
(1.7.14) in R (3.6.0).

Nectar pH measurements in the field

Diplacus aurantiacus flowers were surveyed for nectar pH measurements at two field sites on the
San Francisco Peninsula in May-June of 2022. At Jasper Ridge, 437 flowers were sampled, and at
San Gregorio (site 4), 291 flowers were sampled. Flowers were checked for stigma status, where the
stigma was identified as either open or closed (Fetscher and Kohn, 1999), and anther status, where
each flower was categorized from 1 (youngest) to 4 (oldest) as a rough estimate of the flower's age
(Tsuji et al., 2016). Missing anthers were classified as 0. An anther categorized as a 1 displayed a
bright yellow appearance with no brown spots, an anther of 2 was a mix of yellow and golden brown,
an anther of 3 was only golden brown, and an anther of 4 was dark brown and wrinkled. Nectar pH was
measured using a pH indicator strip (2.0-9.0, EMD, Darmstadt, Germany). Distribution of nectar pH
was modeled using an expectation-maximization (EM) algorithm to infer the value of hidden group-
ings, in this case, three distributions of nectar pH modified by yeast, bacteria, or no microbes. Harti-
gan’s dip test was used to test for multimodality (dip.test). Mixture models with k=2 (Figure 5—figure
supplement 1) and k=3 (Figure 7) were generated using the mixtools package (1.2.0) Models (k=2 vs.
k=3) were compared using two methods. First, a chi-square test was used to compare log-likelihoods
between k=2 vs. k=3. Second, AIC values were calculated using both log-likelihoods. All analyses
were conducted in R (3.6.0).
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Additional nectar sampling to correlate nectar pH and bacterial colony forming units was conducted
at Stanford University’s Dish Hill from June to August 2022. During this time period, a day prior to
sample collection, flowers on D. aurantiacus plants that had been planted on Dish Hill in November-
December 2021 were bagged to allow for nectar accumulation. After stigma and anther classification,
one pL of nectar was extracted using a one pL microcapillary tube, and diluted in 100 pL of sterile
0.85% NaCl. The pH of the remaining nectar was measured using a pH indicator strip (range: 2.0-9.0;
EMD, Darmstadt, Germany). After transportation on ice, 10 L of the diluted nectar was further diluted
in 90 pL of sterile 0.85% NaCl (dilution 1) and 10 L of this diluted sample was further diluted in 90 pL
of sterile 0.85% NaCl (dilution 2). 40 pL of dilution 1 was plated onto a yeast malt agar plate (YMA;
Difco, Sparks, MD, USA) supplemented with 100 mg/L of the antibacterial chloramphenicol. Forty pL
of dilution 2 was plated onto each of the following two media: tryptic soy agar (TSA; BD Diagnostics,
Sparks, MD, USA) supplemented with 100 mg/L of the antifungal cycloheximide, and Reasoner’s 2 A
agar (R2A; BD Diagnostics, Sparks, MD, USA) supplemented with 20% sucrose and 100 mg/L of the
antifungal cycloheximide. YMA and TSA plates were incubated at 25 °C and colony forming units
(CFUs) were counted after five (YMA and TSA) or three (R2A) days of incubation. YMA plates yielded
relatively few CFUs. On TSA, CFUs were counted separately by two easily distinguishable morpho-
types (white and yellow colonies). Similarly, on R2A, CFUs were counted separately for white, yellow,
and clear colonies. A linear mixed model was used to predict the number of CFUs growing on R2A
from nectar pH, with the date sampled and sub-site within the Dish Hill as nested random effects using
the gImmTMB package (1.7.14) in R (3.6.0).

Synthetic nectar preparation

Synthetic nectars for laboratory experiments were prepared based on previous chemical analysis of
D. aurantiacus nectar (Peay et al., 2012). The sugars and amino acids found to be abundant in this
analysis, including fructose (4%), glucose (2%), sucrose (20%), serine (0.102 mM), glycine (0.097 mM),
proline (0.038 mM), glutamate (0.035 mM), aspartic acid (0.026 mM), GABA1 (0.023 mM), and alanine
(0.021 mM), were mixed until dissolved, adjusted using NaOH to pH = 6, filtered through a 0.2 pm
filter, and stored at -20 °C until used. We made two additional synthetic nectars that were modified
from the synthetic nectar recipe above to mimic chemical changes to nectar induced by early arrival
of bacteria A. nectaris. “Bacteria-conditioned” nectar was prepared by inoculating A. nectaris (strain
FNA3) at a density of 200 cells/pL into two liters of synthetic nectar. The nectar was conditioned for
five days by incubating at 25 °C while shaking at 200 RPM. This conditioned nectar was sterilized by
filtering through a 0.22 pm filter and stored at —20 °C until use. This nectar had a pH of 3. The second
type of the two additional nectars was ‘low-pH nectar’, which was prepared by adjusting the pH of the
original synthetic nectar to pH = 3 using HCI.

Experimental evolution

The bacterium A. nectaris (strain FNA17, isolated in 2017) and the yeast M. reukaufii (strain MR1,
isolated in 2010) (Appendix 2) were isolated from floral nectar of D. aurantiacus growing at Jasper
Ridge Biological Preserve and glycerol stocks were kept at —80 °C. Acinetobacter nectaris was streaked
on tryptic soy agar (TSA) with 100 mg/L cycloheximide and M. reukaufii was streaked on yeast mold
agar (YMA) with 100 mg/L chloramphenicol from glycerol stocks. Plates were incubated for two days
at 25 °C. Single colonies from these strains were re-suspended in synthetic nectar and inoculated
into 96-well plates containing 120 pL nectar per well at a density of approximately 200 cells/pL. Four
replicate isolates of each strain were inoculated into low-pH (pH = 3), normal (pH = 6), and bacteria-
conditioned (pH = 3) nectar. Plates were covered with sterile, air-permeable membranes (Breathe-
Easy sealing membranes, Millipore Sigma, Darmstadt, Germany) and incubated at 25 °C. 10 pL of
each culture was transferred to a new 110 pL of nectar for 30 transfers (every Monday, Wednesday,
and Friday). Every two weeks, the remaining culture of the evolving strains was frozen in 25% glycerol
and stored at —80 °C for later experimental use.

To isolate individual clones of yeast evolved in each treatment, 20 pl of culture from the final
transfer was diluted with 200 pl sterile phosphate buffered saline and plated onto YMA plates with
100 mg/L chloramphenicol and incubated at 25 °C for 2 days. From each plate, 10 colonies were
re-streaked and stored for future use as single colony pure cultures. One of these isolates per replicate
per treatment was used for subsequent priority effects experiments.
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Priority effects experiments

For the first round of priority effects experiments, A. nectaris and different strains of M. reukaufii
(strains MR1, MY0182, and MY0202) were plated on TSA plates with 100 mg/L cycloheximide or
YMA plates with 100 mg/L chloramphenicol and incubated for 2 days at 25 °C. Individual colonies
from strains were resuspended in synthetic nectar and inoculated into PCR tubes at a density of
200 cells/pL in a fully factorial design (Figure 4—source data 1) on either day 0 or day 2 of the exper-
iment. Yeast density was measured using a bright-line hemocytometer (Hausser Scientific, Horsham,
PA). Bacterial density was measured using optical density measurements using a microplate reader
(TECAN, Mannedorf, Switzerland). Microcosms were covered with sterile, air-permeable membranes
(Breathe-Easy Sealing Membrane, Sigma-Aldrich, Darmstadt, Germany) and incubated at 25 °C. After
5 days, cultures were resuspended, serially diluted in sterile 0.85% NaCl and plated on TSA plates
with 100 mg/L cycloheximide or YMA plates with 100 mg/L chloramphenicol. After two days of incu-
bation at 25 °C, colony forming units were counted to quantify microbial growth in the competition
experiment. Experiments were repeated over multiple weeks (rounds) with two or three biological
replicates per week.

For the second round of priority effects experiments, ancestral A. nectaris (strain FNA17) and
ancestral and evolved M. reukaufii (strain MR1) were plated on TSA plates with 100 mg/L cyclohexi-
mide or YMA plates with 100 mg/L chloramphenicol and incubated for 2 days at 25 °C. Single strains
sub-cultured from individual colonies were resuspended in synthetic nectar and inoculated into wells
in 96-well plates at either a density of 10,000 cells/pL (a high density of microbes, simulating microbes
that arrive early to a flower and subsequently grow to a high density) or 10 cells/pL (a low density of
microbes, simulating a late arrival to the flower) with a competitor species or alone in a fully factorial
design (Figure 7—source data 1). Yeast density was measured using a bright-line hemocytometer
(Hausser Scientific, Horsham, PA). Bacterial density was measured using an Attune NxT Flow Cytom-
eter (Invitrogen, Waltham, MA) with Attune autosampler and all data was analyzed using Attune NxT
Software (v.3.2.1). The concentration of cells per uL was determined by gating by forward scatter
height (FSC) and side scatter height (SSC) at 350 V and threshold of 2.0. After inoculation, 96-well
plates were covered with sterile, air-permeable membranes and incubated at 25 °C. After 2 days,
cultures were resuspended, serially diluted in sterile 0.85% NaCl, and plated on TSA plates with
100 mg/L cycloheximide or YMA plates with 100 mg/L chloramphenicol. After 2 days of incubation
at 25 °C, colony-forming units were counted to quantify microbial growth in the competition experi-
ment. Experiments were repeated over four rounds with two independent replicates (96-well plates)
per week. The data from the first week of each academic quarter was omitted from the final analysis
due to variation in training new student researchers. Two additional rounds of this experiment were
conducted using low-pH nectar instead of the normal nectar to investigate differential growth of
ancestral M. reukaufii in low- vs. normal-pH nectar. For both experiments, sample size was deter-
mined based on previous data (Belisle et al., 2012; Peay et al., 2012; Tucker and Fukami, 2014)
and feasibility.

Priority effects statistical analysis
For all analysis, colony counts were logq,-transformed and analysis was conducted using the gimmTMB
package (1.7.14) in R (3.6.0).

To calculate the effect of arrival order on bacteria and yeast growth, we used a linear mixed model
predicting the final density of yeast or bacteria based on the priority effects treatment. We included
the week of the experiment (round) and replicate tubes as nested random effects. Then, we used a
post-hoc test using the emmeans package (1.7.2) to see whether for each priority effect treatment
(representing different arrival orders), there was a difference in microbial growth.

To calculate the effect of bacterial density on final nectar pH, we used a Spearman’s rank order
correlation model with the log-transformed final bacterial density as the predictor and final nectar pH
as the response variable.

We calculated the differential response of M. reukaufii strains to bacterial priority effects by first
calculating priority effect strength (PE) as PE = log (%) log (}{—E), where BY and YB represents
early arrival (day 0 vs. day 2 of the experiment) by bacteria or yeast, respectively. -Y and Y- repre-
sent the comparable growth of yeast at either arrival time alone (Vannette and Fukami, 2014), and
treatment densities were averaged by round of the experiment. Next, we used a linear mixed model
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predicting the priority effect strength of bacteria on yeast, by yeast strain. We included the week of
the experiment (round) and replicate tubes as nested random effects. Then, we used a post-hoc test
using the emmeans package (1.7.2) to see whether for each yeast strain, there was a difference in the
strength of priority effects by bacteria.

For experiments comparing the effect of evolutionary history on priority effect strength (PE), we
calculated the priority effect strength (PE), as described above, as well as differences in growth by
evolutionary history (ancestral or experimental evolutionary treatment) by subtracting yeast growth
with initial bacterial dominance (BY) from monoculture growth at the same density (-Y) for each repli-
cate. We used linear mixed models predicting either the final density of yeast or the difference in
yeast growth based on priority effects treatment. We included the week of the experiment (round)
and 96-well plate as nested random effects and evolutionary replicate (independent evolutionary
trajectory) as a random effect. Then, we used a pairwise post-hoc test using the emmeans package
(1.7.2) to see whether, for each evolution treatment (ancestral, normal, low-pH, bacteria-conditioned),
there was a difference in microbial growth by priority effects treatment (representing different arrival
orders).

We calculated the effect of nectar type on final yeast density by conducting the evolutionary
priority effects experiments described above in both normal and low pH nectars. By combining these
experiments, conducted over 6 total weeks, we used a linear mixed model with the evolution treat-
ment (ancestral or three evolved treatments), the priority effect treatment (related to arrival order),
and nectar type as predictors and the final density of yeast as a response. We included independent
evolutionary replicates as a random effect and included nested random effects of the week the exper-
iment was conducted and the 96-well plate (experiments were conducted across two 96-well plates).
We used a post-hoc test to see whether, for each evolution treatment (ancestral, normal, low-pH,
bacteria-conditioned), there was a difference in microbial growth in either low or high pH by priority
effects treatment (yeast at a high density, yeast at a low density, etc.).

The relationship between monoculture growth and resistance to priority effects was calculated
using a linear mixed model predicting the difference in the strength of priority effects from the mono-
culture growth. Both values were comparing each evolved strain to the ancestral strain within a single
weekly iteration of the experiment, which was also included as a random effect. An additional analysis
was conducted comparing the strength of priority effects resistance to monoculture growth without
comparison to the ancestral strain (Figure 8—figure supplement 1). This analysis was conducted
using the gimmTMB package (1.7.14) in R (3.6.0).

Genome re-sequencing

Ancestral A. nectaris (strain FNA17) and ancestral and single clones of evolved M. reukaufii (strain
MR1) from glycerol stocks were plated on TSA plates with 100 mg/L cycloheximide or YMA plates
with 100 mg/L chloramphenicol, respectively and incubated for 2 days at 25 °C. Single colonies were
selected and subcultured in 10 mL yeast mold broth (yeast) or tryptic soy broth (bacteria). Cultures
were grown for 15 hr at 24 °C and 200 RPM. Overnight cultures were adjusted to 1x107 yeast cells/pL
or 1x107 bacteria cells/pL and yeast cells were treated with Zymolase (100 U/pL) for 30 min at 30 °C.
DNA was extracted using Qiagen Blood and Tissue Kit (Qiagen, Redwood City, CA) and quantified
using a Qubit HS Kit (ThermoFisher Scientific, Waltham, MA). Dual-indexed genomic libraries were
prepared using a Nextera XT index kit (lllumina, San Diego, CA) and pooled for sequencing. Libraries
were sequenced on a single lllumina MiSeq V3 run, which produces 300 bp, paired-end reads. This
resulted in a total of 675 M mapped reads with an average sequencing depth of 444 X per sample
(19.2 Mb genome) (Dhami et al., 2016).

Read filtering, sequence alignment, and variant calling

Variants in genomic data were identified with grenepipe (0.1.0) (Czech and Exposito-Alonso, 2021),
an automated variant calling pipeline for snakemake (Késter and Rahmann, 2012). Raw fastq
sequencing files were trimmed using trimmomatic (0.36) (Bolger et al., 2014). Filtered reads were
mapped to the reference genome provided by Dhami et al., 2016 using bwa mem (0.7.17) (Li and
Durbin, 2009). Mapped reads were sorted and indexed using samtools (1.9) (Li et al., 2009) and
duplicate reads were removed using the picard software (2.22.1) (Picard Toolkit, 2019). Genetic vari-
ants, both single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were identified
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using freebayes (1.3.1) (Garrison and Marth, 2012). The resulting VCF file was filtered using vcftools
(2.22.1) (Danecek et al., 2011), which yielded a total of 3,016,402 polymorphic sites across all samples.
Quality of filtered reads and their adapter content was determined by fastqc (0.11.9) with additional
statistics collected from qualimap (2.2.2 a) (Okonechnikov et al., 2016) for genome coverage, and
samtools stats v1.6 (Li et al., 2009) and samtools flagstat (1.10) (Li et al., 2009) for mapping and
alignment metrics. Output of all tools was then summarized in a MultiQC (1.9) report (Ewels et al.,
2016), which we provide as Figure 9—source data 1.

Loss of heterozygosity and de novo mutation analyses

To identify loss of heterozygosity (LOH) between the ancestral strain and the evolved clones, we first
identified those sites in which the ancestral strain was heterozygous (26,490 locations, corresponding
to ~0.14% of all sites). LOH events were then characterized as those instances in which any of the
evolved strains was homozygous at a site identified as heterozygous in the ancestor, an event occur-
ring 1,699 times across all end point clones. We did not expect to see contiguous segments of the
genome where all sites show LOH because we do not see recombination in this yeast species (they are
clonal), assessed four independent evolutionary replicates per treatment, and conducted the experi-
ment over a relatively short period of time. To explore evidence of treatment-specific LOH events, we
computed an odd’s ratio of alternate to reference allele counts in the control relative to the low-pH or
bacteria-conditioned treatment genotypes. For each odds ratio, we generated 1000 permuted odds
ratios in which the genotype data at that site were randomly shuffled across control treatment and
either low-pH or bacteria-conditioned samples. P-values were subsequently computed by comparing
the observed odds ratio to that of the 1000 permuted ratios.

Next, to further quantify the genomic differentiation between treatments, we computed a Weir-
Cockerham estimator of Fs; using vcftools. While genome-wide Fsr was exceedingly low between
the normal and low-pH treatment (0.0013), as well as the normal and bacteria-conditioned treat-
ment (0.0014), a small subset of sites (50/26,380) exhibited extreme divergence with Fs; ranging
between 0.3 and 0.5. Unsurprisingly, those sites with elevated Fs; largely overlapped with LOH sites
with permutation-derived P-values <0.1 (35/25,545). Putative de novo mutations were identified using
a custom program to identify SNPs that differed between each pair of ancestral and evolved strains
(245 singletons out of 3,016,402 sites). The program was written using the C++library genesis (0.25.0)
(Czech et al., 2020). To ensure that these singletons were accurate, we generated a mappability score
across the genome using GenMap (Pockrandt et al., 2020) and filtered by singletons in sites with
a mappability score of 1 (representing a unique k-mer region with high mappability), reducing the
number of putative de novo mutations to 146 sites.

To explore the functional basis of genomic divergence between ancestral and evolved strains, we
identified genes in close proximity to those sites with treatment-specific patterns of LOH (permutation-
derived p-value <0.1; Fs; = 0.3-0.5) and/or those containing a putative de novo mutation. We re-anno-
tated the M. reukaufii reference genome provided by Dhami et al., 2016 using the InterPro database
(interproscan 5.45-80.0) (Blum et al., 2021) and identified the closest gene with an InterPro annota-
tion within 5 KB upstream/downstream of each candidate site. This annotation resulted in functional
information for 42 of the candidate LOH sites and 94 of the putative de novo mutations. Distance
to the nearest gene and its associated functional annotation information are provided in Figure 9—
source data 2 and Figure 9—source data 3.

Nectar consumption field experiment

To study the effect of nectar chemistry on nectar consumption by flower-visiting animals, an array
of artificial plants was constructed at the Plant Growth Facility on Stock Farm Road on the Stanford
University campus. Artificial plants were created using 1 m tall garden stakes with 10 artificial flowers
arranged vertically on each stake. Each artificial flower consisted of a pipette tip wrapped in orange
and green tape and contained a 200 pL PCR tube of nectar to resemble real D. aurantiacus flowers in
color, shape, and size. The bottom two artificial flowers were covered with small white organza bags
(ULINE, Pleasant Prairie, WI) and were used to estimate the loss of nectar volume by evaporation.
See Figure 10A for a schematic of these artificial plants. Artificial plants were placed 3-5 m apart and
positioned near potted D. aurantiacus plants.
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Across 2016-2018, 188 artificial plants were deployed, and several nectar types were tested
(n=610). In 2017, nectar treatments included two levels of amino acid concentration (high and low)
and two pH levels (7 and 2). The high amino acid nectar contained 0.32 mM casamino acids whereas
the low amino acid nectar contained 0.032 mM casamino acids. In 2016 and 2018, nectar treatments
had two sugar levels (regular and altered sugars) and two pH levels (7 and 3.2). The control sugars had
30% sucrose, 1.5% glucose, and 4% fructose. The altered sugars had 20% sucrose, 0.5% glucose and
6% fructose. Results from these findings are reported in Figure 10—figure supplement 1.

Undergraduate students and staff in the BIO 47 (formerly 44Y) course at Stanford University
(Fukami, 2013) exposed 100 pL nectar in each flower to potential pollinators for 22 hr (approximately
3 PM to 1 PM) and measured the change in nectar using 100 L Drummond calibrated microcapillary
tubes. Nectar removal from each tube was calculated by subtracting the volume of nectar remaining
in experimental tubes from the average volume of nectar in bagged controls. Over the duration of
the experiment, we observed visitation to artificial flowers by primarily Anna’s hummingbirds (Calypte
anna) and excluded ant visitation by painting the base of each stake with Tanglefoot (Tanglefoot,
Marysville, OH, USA). We calculated the difference between treatments and the volume of nectar
consumed using a Mann-Whitney U test, and the difference in proportion of flowers consumed using
a chi-square test.
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We also looked at culturable fungi along with culturable bacteria at Jasper Ridge (Figure 3). In
this fungal dataset, too, M. reukaufii was common, being the second most common species after
Starmerella bombicola. However, sample size for the fungal data was more than 10 times smaller
(n=53 isolates) than the bacterial data (n=619). Furthermore, the Jasper Ridge isolates were always
collected early in the flowering season (mid May), whereas the 12-site regional survey we report in our
paper was conducted later in the season (late June to mid July). Seasonal changes in fungal species
composition in floral nectar have been documented by other studies at Jasper Ridge (Vannette
and Fukami, 2017) and elsewhere (e.g., Brysch-Herzberg, 2004, Tsuji and Fukami, 2018). For
these reasons, the data from Dhami et al., 2018, where M. reukaufii was clearly the most dominant
species, are both more extensive and more directly relevant to our present study.
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Appendix 2

Evolving microbes were transferred 30 times at a dilution of 1/10 (10 uL of each culture was transferred
to a fresh 110 uL of nectar). These 30 transfers occurred over 10 weeks (1680 hours).

To calculate generation time, we estimated the population size of yeast across the experiment by
inoculating a series of nectar microcosms with the same initial density of yeast approximately 2,500
colony forming units (CFUs) and destructively sampling each day.
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Appendix 2—figure 1. M. reukaufii growth over four days in experimental microcosms.

To calculate generation time, we used the following equation, assuming the yeast growth was
exponential before day two:

Time (hours)

Population size of yeast on day two
3.3 % IOg( Population size of yeast on day one

Generation time =

Based on this equation and the data above, we estimate the generation time of M. reukaufii
yeast (strain MR1) in synthetic nectar is approximately one generation per eight hours. Assuming
the generation time stays constant throughout the experiment, we estimate approximately 200
generations over the 30 transfers.
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