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Abstract

Paleoanthropologists have long speculated about the role of environmental change in shaping hu-

man evolution in Africa. In recent years, drill cores of late Neogene lacustrine sedimentary rocks

have yielded valuable high-resolution records of climatic and ecosystem change. Eastern African

Rift sediments (primarily lake beds) provide an extraordinary range of data in close proximity

to important fossil hominin and archaeological sites, allowing critical study of hypotheses that

connect environmental history and hominin evolution. We review recent drill-core studies span-

ning the Plio–Pleistocene boundary (an interval of hominin diversification, including the earliest

members of our genusHomo and the oldest stone tools), and theMid–Upper Pleistocene (spanning

the origin of Homo sapiens in Africa and our early technological and dispersal history). Proposed

drilling of Africa’s oldest lakes promises to extend such records back to the late Miocene.

� High-resolution paleoenvironmental records are critical for understanding external drivers

of human evolution.

� African lake basin drill cores play a critical role in enhancing hominin paleoenvironmental

records given their continuity and proximity to key paleoanthropological sites.

� The oldest African lakes have the potential to reveal a comprehensive paleoenvironmental

context for the entire late Neogene history of hominin evolution.

1. INTRODUCTION

For nearly 150 years, since the time of Charles Lyell (1863) and Charles Darwin (1871), scientists

have hypothesized about the role of environmental factors, specifically climate, in shaping the evo-

lution of the hominins (humans and our close relatives). What kinds of climate, vegetation, land-

scape, and resources did early hominins encounter? Did environmental conditions remain stable

over long periods, change directionally, or vary in time and space? How might these changes have

impacted selection for characteristics that define humans and our close relatives? From the evo-

lutionary divergence between hominins and our closest relatives, the African great apes, some 8–

6 million years ago until the early Pleistocene, this history was exclusively an African chronicle. It

is unsurprising, then, that since the early twentieth-century discovery of the first early hominins

in South Africa (Dart 1925), extraordinary effort has gone into extracting records of African en-

vironmental history relevant to understanding evolutionary innovations, phylogeny, behavioral
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Hypothetical phylogenetic treesPaleoenvironmental record
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Speciation/extinction synchronized

with increased variability 
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synchronized with 
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b

Figure 1

Conceptual model showing temporal linkages between environmental drivers and diversification/extinction
events in human evolution (time advances upward in each case). (a) Null hypothesis: tempo of evolutionary
history largely unrelated to environmental history. (b) Speciation/extinction/dispersal linked to strong
temporal environmental gradients. (c) Speciation/extinction/dispersal linked to pulses of increased
environmental variability. Note that whereas this diagram explicitly references correlations of cladogenetic
events (or lack thereof ) to environmental processes, these conceptual linkages could be extended to
noncladogenetic processes such as acquisition of novel behaviors or dispersal events.

change, and dispersal within the hominin lineage. Understanding the relationship between Earth

system history and human evolution remains an enduring challenge of broad scientific and public

interest.

Possible linkages between hominin evolution and environmental history can be broadly placed

in three categories (Figure 1). A null hypothesis is that environmental history has had little

to do with hominin evolution and that the major drivers of selection, adaptation, diversifica-

tion, and extinction in hominins were interspecific biotic interactions and intraspecific cultural

interactions, rather than changes in climate and environment. If hominin evolution had been

generally independent of large-scale external environmental forcing [variants of the Red Queen

hypothesis (Van Valen 1973, Foley 1994)], we might expect little or no temporal correlation
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between major hominin evolutionary events and environmental histories, beyond those occurring

randomly (Figure 1a). However, if environmental change did play a major role in shaping

our evolution, we would expect significant correlations between external forcing mechanisms

and evolutionary events. These might entail directional shifts in climate, for example toward

more arid conditions, driving evolutionary events (Washburn 1960), or as coordinated pulses

of diversification and extinction (Vrba 1988) (Figure 1b). Alternatively, adaptive change might

have responded to increased environmental variability (Potts 1996) (Figure 1c). Correlation

in time alone is insufficient to infer a causal linkage between records of environmental and

phylogenetic history; a theoretical understanding of how landscapes and resources would have

regulated evolutionary change must underpin the connection (Faith et al. 2021).Whereas current

alternative hypotheses make predictions about the temporal linkages between environmental

history and hominin evolution, data to test or support different hypotheses remain limited.

These temporal correlations, however, are a necessary starting point for supporting or refuting

particular hypotheses about environmental history’s role in human evolution.

Over the past 25 years science has made significant advances in improving the chronology of

both the environmental context of human evolution (deMenocal 1995, 2004; Behrensmeyer 2006;

Kingston et al. 2007; Trauth et al. 2007; Donges et al. 2011; Blome et al. 2012; Levin 2015; Potts &

Faith 2015) and African hominin phylogeny (Collard &Wood 2000, Kimbel 2015, Haile-Selassie

et al. 2016, Strait & Grine 2016, Foley 2017). Our understanding of the former comes from three

sources of information: (a) outcrop records at key fossil and archaeological sites (e.g., Bonnefille

et al. 2004, Kingston et al. 2007, Cerling et al. 2011, Potts et al. 2018), (b) marine drill cores from

offshore Africa (e.g., deMenocal 1995, Bonnefille 2010, Feakins et al. 2013, Uno et al. 2016a), and

(c) terrestrial (primarily lacustrine) sediment drill cores from Africa and surrounding regions (e.g.,

Cohen et al. 2007, 2016; Campisano et al. 2017) (Figure 2). Each of these sources of information

has strengths and weaknesses for addressing the hypotheses discussed previously. In this review,

we consider the major insights in understanding the environmental context of human evolution

that have been recently achieved using drill-core records derived from lacustrine sedimentary

successions. These records come from a combination of extant, ancient lakes, such as those of

the East African Rift System (EARS), and sediments deposited in lake basins that have long since

dried up, filled in, or been destroyed through tectonic processes. Ultimately, understanding the

environment/evolution nexus in hominin evolutionmust rely on a synthesis from all three sources,

as they provide complementary information at different temporal and spatial scales, appropriate

for addressing different aspects of these hypotheses.

2. INTEGRATING LAKE SEDIMENT CORES WITH OTHER RECORDS
OF AFRICAN ENVIRONMENTAL HISTORY

Outcrop-based records documenting conditions at paleoanthropological sites are critical for

understanding hominin evolution but present researchers with some fundamental problems in

contextualizing this evolutionary history. Most eastern African fossil hominin and archaeological

occurrences are in terrestrial deposits, particularly in paleosols and fluvial deposits, recording con-

ditions near where hominins actually lived (e.g., Cerling et al. 2011, Uno et al. 2016b) (Figure 3).

However, these deposits are highly episodic and/or time averaged over ecologically long intervals,

and they typically do not provide high-resolution records of seasonality or even decadal- or

centennial-scale climate events relevant to local hominin populations and their ecosystems. In

regions of limited erosion, discontinuous outcrop records also limit our ability to reconstruct long

climate records and precisely correlate records regionally. Nevertheless, a paleoenvironmental
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Figure 2

Key African and nearby Eurasian terrestrial drilling site locations and prior offshore records overlain on African regional topography
and bathymetry. Dates indicate when drilling took place. Abbreviations: DSDP, Deep Sea Drilling Project; HSPDP, Hominin Sites and
Paleolakes Drilling Project; ODP, Ocean Drilling Program; OLO, Olorgesailie Drilling Project.
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Proximity to fossils

Hiatuses possible during
periods of desiccation

Weathering
Discontinuous records 

(typically paleosols, �uvial)

O U T C R O P S

L A K E  B E D  C O R E S

Synthesis of records

Improved

understanding of 

environmental

history

Proximity     Record quality
High-resolution records

Distance from fossils
Spatial averaging     Temporal resolution

M A R I N E  C O R E S

Record length,
quality, and continuity

Figure 3

Relative strengths (+ blue text) and weaknesses (− red text) of lake bed drill core, marine drill core, and outcrop paleoenvironmental
records and how they can complement each other for contextualizing the role of environmental history in human evolution. Photo of
R/V JOIDES Resolution courtesy of Arito Sakaguchi (photographer) and IODP/TAMU; other photos courtesy of Hominin Sites and
Paleolakes Drilling Project.

record from the precise deposit in which a fossil was recovered provides highly relevant localized

information about a specific paleolandscape in which early hominins lived.

Other sources of paleoenvironmental information likewise have a combination of advantages

and disadvantages in terms of contextualizing human origins. Marine drill-core records from the

Indian Ocean, the Mediterranean Sea, and other areas surrounding the African continent provide

relatively continuous records of climate change over the entire time span of human evolution (e.g.,

deMenocal 2004, Liddy et al. 2017, Caley et al. 2018, Pollisar et al. 2019). However, their utility

is limited by the slow sedimentation rates of the deep ocean and distance from hominin fossil

and archaeological sites in the EARS, creating a filter of temporal and spatial averaging in these

archives.

It was this combination of archival limitations of outcrops andmarine cores that led researchers

more than 40 years ago to suggest that drill cores from the large lakes of the EARS might offer an

exceptional opportunity to obtain records of humanity’s deep-time environmental history, partic-

ularly becausemuch of the Plio–Pleistocene paleoanthropological record in Africa has been recov-

ered from these deposystems (Lewin 1981). Drill cores from lacustrine sites that are close to key

fossil and archaeological sites provide a wide array of paleoenvironmental records of nearby hom-

inin habitats, typically at annual to decadal resolution (Cohen et al. 2016, Campisano et al. 2017).
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Lake deposits offer important advantages for assembling information about hominin habitats.

First, because of the calm and often anoxic conditions present in tropical lake floor environments,

sediments typically accumulate in laminated beds, undisturbed by intensive bioturbation or cur-

rent reworking, and thus register annual- or even subannual-scale environmental conditions. Sec-

ond, an extraordinary range of records can be extracted from lake deposits, reflecting watershed-

scale vegetation, geomorphology, internal lake hydrology and ecology, and regional-scale climate.

These include paleoecological, geochemical/mineralogical, and sedimentological/facies analysis

records, as well as petrophysical data obtained using multi-sensor core loggers. Associated nonla-

custrine fluvial, wetland, aeolian, or paleosol deposits, commonly encountered in lake basin drill

cores, can also provide information on environmental heterogeneity, although these typically lack

the temporal resolution of lake beds. Unweathered drill cores frequently preserve a level of strati-

graphic detail and unaltered geochemical information that is difficult or impossible to obtain from

nearby outcrops (e.g., Maxbauer et al. 2016) (Figure 4).

This recognition of the value of lake drill-core records for paleoanthropology provided impetus

for early drilling campaigns in African lakes. At the meteorite impact crater lake at Tswaing, South

Africa (the Pretoria Saltpan), Partridge et al. (1993) demonstrated the role of orbital cyclicity on

precipitation cycles in the region of importance to early modern humans. And at LakeMalawi, the

significance of documentedmegadroughts for earlymodern human demography was an important

outcome of drill-core studies (Cohen et al. 2007, Scholz et al. 2007). Efforts to obtain lacustrine

drill cores specifically to address paleoanthropological questions began in the mid-2000s, involv-

ing a series of conceptual planning workshops (e.g., Cohen et al. 2006). These workshops spurred

the development of the multisite Hominin Sites and Paleolakes Drilling Project (HSPDP) (sites

in green in Figure 2) starting in the late 2000s, along with other, similar drilling projects near the

paleoanthropological sites at Olorgesailie, Kenya (Potts et al. 2020), and Olduvai Gorge, Tanzania

(Colcord et al. 2019, Deino et al. 2020, Rodríguez-Cintas et al. 2020, Njau et al. 2021).

Following nearly a decade of data collection, our collective experience has shown that our

best hope for reconstructing the environments our earliest ancestors inhabited and how those

conditions shaped the course of human evolution lies in creative synthesis of outcrop, marine, and

lacustrine drill-core records.

3. IMPORTANCE OF GEOCHRONOLOGY FOR TESTING HUMAN
EVOLUTION AND ENVIRONMENTAL HISTORY LINKAGES USING
LAKE BED CORES

A highly resolved chronostratigraphic framework is essential for developing causal linkages be-

tween global climate change, regional environmental responses, and faunal evolution. However,

these attempts have often relied on broad temporal correlations with an incomplete fossil or ar-

chaeological record. As in outcrop studies, a variety of geochronological techniques are available

to study drill-core records, depending on the time span covered by those cores. But datingmaterial

derived from drill cores can be complicated compared to outcrops due to uncertainties about drill

core–outcrop correlations, limited sample size, and sample artefacts and uncertainties created by

the drilling process itself (e.g., core deformation, recoring, and cave-ins). These challenges have

led researchers to expand and refine dating techniques to increase the geochronological toolkit

available for scientific drilling, particularly addressing the geologic constraints of equatorial (e.g.,

for paleomagnetic studies), rift-lake settings. For example, Owen et al. (2018) successfully applied

U-series dating to authigenic cherts in the HSPDP Lake Magadi drill core. U-series dating was

previously applied to Lake Magadi cores, but these results provided only minimum ages for la-

custrine sediments, as there was no way at the time to determine whether the dated minerals
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P
T

a b

Figure 4

Outcrop (a) versus drill core sample (b) (portion of WTK-1A-35Q2; core scale bar in centimeters) from approximate correlative
Nachukui Formation lacustrine deposits at West Turkana, Kenya (outcrop is less than 1 km from WTK-1 drill site and ∼2.5 m high),
demonstrating the much greater detail in information extractable from the unweathered core segments, even when compared with
shallowly excavated (i.e., archaeologically trenched) surfaces. The core segment shows clear evidence of desiccation surfaces and
incipient paleosol formation (intraclastic horizons, marked P) overlain by evidence of abrupt transgressive events marked by finer,
laminated muds (T). Only vague lithologic alternations in color and degree of oxidative weathering (responsible for orange and brown
outcrop coloration), lacking the millimeter-scale facies changes when observed at the same scale, were visible in the equivalent outcrop
section. Photo courtesy of Craig Feibel.

were syndepositional or diagenetic (Goetz & Hillaire-Marcel 1992). Recently, the HSPDP team

developed methods for determining which chert units formed syndepositionally and thereby re-

fine the geochronology (Leet et al. 2021). Ultimately, these U-series dates were integrated with
14C, 40Ar/39Ar, and paleomagnetic age control points to develop a comprehensive age model for

the core (Owen et al. 2018). Similarly, at Chew Bahir (CHB), multiple geochronometers (14C,
40Ar/39Ar, optically stimulated luminescence, and geochemical fingerprinting of known tephra)

were used to develop that core’s age model (Roberts et al. 2021).

Another methodological breakthrough for the HSPDP team involved the challenge of deter-

mining polarity orientation of samples from near-equatorial drill cores, where inclination is close

to zero. This problem is compounded by the rotation of core segments during drilling, which can

randomly redistribute declination. Sier et al. (2017, 2021) developed two independent drill-core
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reorientation methods for paleomagnetic analysis of samples from the HSPDP West Turkana

(WTK) and Baringo-Tugen Hills-Barsemoi (BTB) drill sites.

Tephra from cores that can be geochemically correlated to nearby outcrops and/or well-dated

eruptions are extremely valuable, even if those tephra cannot be directly dated (e.g., Lowe 2011;

Lane et al. 2017, and references therein). There is a long history of tephrostratigraphic research

at fossil sites in eastern Africa (WoldeGabriel et al. 2005, 2013; Brown et al. 2006), and increas-

ingly tephra correlations are being incorporated into drill-core age modeling in eastern African

basins (e.g., Lane et al. 2013, 2018; McNamara et al. 2018; Deino et al. 2019, 2020; Roberts et al.

2021). Eastern African tephra have also been correlated to marine drill cores in the Gulf of Aden

and the Arabian Sea, providing radiometric or orbitally tuned ages for the horizons (Brown et al.

1992, deMenocal et al. 1999). Several of the HSPDP site age models have incorporated tephra

correlations to 40Ar/39Ar–dated outcrop horizons. This can be advantageous as, unlike laterally

extensive outcrops, drill-core sample sizes are limited by core diameter. Ages derived from thin

lake-core tephra that may be poorly preserved in weathered subaerial exposures can also provide

age control to outcrops. Four 40Ar/39Ar ages based on outcrop tephra correlations were incor-

porated into the BTB age model, compared to twelve 40Ar/39Ar ages directly from core material

(Deino et al. 2019), whereas all but one of the six WTK 40Ar/39Ar ages were based on tephra

correlations (Lupien et al. 2018). Core-to-outcrop tephra correlations have also been established

for the Northern Awash HSPDP site (Garello 2019) as well as the Olduvai Gorge Coring Project

(Deino et al. 2020, McHenry et al. 2020).

Additional geochronological tools can be deployed to determine exhumation and erosion rates

in the watersheds of the lake basins. These provide a means of assessing the roles of topographic

relief, tectonics, and climate drivers on sediment sources, and erosion rates over thousand- to

million-year timescales during the sampled time periods. Zawacki et al. (2022) used detrital zircon

U-Pb double dating of high-temperature crystallization ages and low-temperature exhumation

ages on the same samples to characterize sedimentary provenance and transport.Cosmogenic 10Be

derived from quartz-bearing sands at the Northern Awash and WTK sites indicates millennial-

scale variability in erosion rates.

Although sedimentation in large, modern lakes is often assumed to be relatively continuous,

stratigraphic discontinuities are evident in most lake cores, including those of the HSPDP. Dis-

continuities can be associated with fluvial incisions, lava flows, erosive volcaniclastics, and sub-

aerial exposure, often with associated pedogenesis of lacustrine sediments (Campisano et al. 2017;

Lupien et al. 2018; Deino et al. 2019, 2021). These challenges led Deino et al. (2019) to develop

a Bayesian age model for the Olorgesailie drill core that corrected for variable rates of deposition

and accommodated different scales of discontinuities. For example, identified paleosols were clas-

sified based on a maturity index ensuring that paleosol-based indicator records (e.g., pedogenic

carbonates) were not treated as coincident with the lacustrine records (e.g., diatoms) upon which

the soil developed. Additionally, to account for the rapid deposition of volcanic material, sedimen-

tary units that included a high proportion of tephra were variably temporally compressed based

on sedimentary characteristics.

4. WHAT ARE DRILL-CORE RECORDS TELLING US ABOUT PAST
EASTERN AFRICAN ENVIRONMENTS?

4.1. The Plio–Pleistocene Transition in Tropical Africa and Its Significance
for Hominin Diversification

The intensification ofNorthernHemispheric glaciation associatedwith the Plio–Pleistocene tran-

sition has long been posited as a driving force behind environmental change and mammalian
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evolution in Africa, tethered to a shift toward more arid conditions or greater climate variability

(e.g., Vrba 1988, 1995; deMenocal 1995, 2004; Potts & Faith 2015). This interval coincides with

the first appearance of two hominin genera (Homo and Paranthropus) and Oldowan stone tools

(Harrison 2011, Villmoare et al. 2015, Braun et al. 2019). Outcrop studies from the Baringo Basin

demonstrated that equatorial Africa responded to precessional forcing between ∼2.7 and 2.55 Ma

(Deino et al. 2006, Kingston et al. 2007). The HSPDP BTB and Northern Awash Osi Isi (NAO)

andNorthernAwashWeranso (NAW) drill-core sites, selected to span the Plio–Pleistocene transi-

tion, thus provide unique opportunities to explore how tropical terrestrial communities responded

across a major global climate transition and the relative roles of high-latitude boundary conditions

and low-latitude insolation forcing of climate.

Rather than showing the most profound change at the Plio–Pleistocene boundary, evidence

from the high-resolution BTB core (Figure 5) indicates significant changes in multiple records

∼3.04 Ma, near the end of the mid-Piacenzian Warm Period (Dowsett et al. 2011), when a ma-

jor shift in Baringo Basin hydrology occurred (Deino et al. 2021, Westover et al. 2021). Before

∼3.04 Ma, environments were dominated by alluvial, fluvial, deltaic, and wetland environments

with only brief intervals of deep lakes and probably overfilled depositional systems, as recorded

in the high-resolution lithofacies, mineralogy, gamma density, magnetic susceptibility, elemental

[X-ray fluorescence (XRF)] geochemistry, and diatom data from the BTB core (Billingsley et al.

2021, Yost et al. 2021). After ∼3.04 Ma, a major environmental shift occurred, featuring dramatic

swings between deep, freshwater lakes and shallow/marginal lacustrine or subaerial exposure en-

vironments, synchronous with precessional periodicity cycles during a high-eccentricity phase

(Kingston et al. 2007, Billingsley et al. 2021,Westover et al. 2021). Various records indicate a dra-

matic change in character at∼3Ma, from high-frequency, low-amplitude oscillations in the earlier

sequence to higher-amplitude, lower-frequency oscillations that intensified over time (Westover

et al. 2021).

Vegetation records from the BTB core also show a significant shift at∼3.04Ma, demonstrating

that these changes were not primarily a consequence of rift basin reconfiguration but rather re-

flect broad climatic changes. Change-point analysis of leaf wax carbon isotopes shows a shift from

an average of over 50% C3 vegetation (trees/shrubs) relative to C4 grasses prior to ∼3.04 Ma to

∼40% afterward, suggesting increasing aridity/seasonality. The younger sequence also includes

high-amplitude variability that oscillated between∼20% and 100%C4 plants (Lupien et al. 2019).

Phytoliths, which can distinguish C3 and C4 grasses and can further differentiate between mes-

ophytic and xerophytic C4 grasses, indicate a shift toward increasing C4 grassland vegetation at

∼3.04 Ma in the BTB record (Yost et al. 2021). This record is probably the most detailed, high-

resolution, and long-duration vegetation reconstruction ever developed from phytoliths. In the

pre-3.04Ma sequence, phytoliths show that woody cover fluctuated at precessional periodicity be-

tween open savanna/wooded grassland and woodland/forest habitats (Figure 5). In contrast, the

younger sequence is dominated by grasslands and wooded grasslands that include precession-scale

oscillations between mesic tall-grass and xeric short-grass habitats (Figure 5). These oscillations

were important as less nutritious tall grasses support a different herbivore community than short

grasses, hide predators, and promote higher fire frequency and intensity (Dobson 2009; Pays et al.

2012; Hempson et al. 2015a,b).

The Plio–Pleistocene BTB records suggest the onset of major environmental change in east-

ern Africa was more likely linked to the end of the mid-Piacenzian Warm Period and subsequent

cooling than the intensification of Northern Hemisphere glaciation at ∼2.7 Ma. Furthermore,

not only is precession-scale variability observed in these equatorial records, but also such fluc-

tuations appear to have been much larger than the long-term secular changes and responses

to high-latitude climate, an observation consistent with a recent synthesis that argues for the
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Comparison of the paleoanthropological record across the Plio–Pleistocene transition with stratigraphic, paleoecologic, and
geochemical records from the BTB (central Kenya) drill core and Northern Awash (Ethiopia) outcrop records. BTB phytolith
reconstructions are shown for C4 grass type [phytolith index (Iph)] and percent tree cover (D/P° index; grassland category includes
grasslands with 0–10% tree cover and wooded grasslands with 10–40% tree cover) (Yost et al. 2021). The BTB leaf wax biomarker
(δ13Cwax, dashed green line) is the linearly resampled record of C3 versus C4 vegetation (showing a major change point at 3.04 Ma) and
independently derived bulk organic matter δ13C record (brown line) (Lupien et al. 2021). The BTB gamma density is −20 pt. running
median with higher values indicative of increased terrigenous inputs and lower values indicative of deeper water and lacustrine
accumulation of nonmagnetic and light components (e.g., organic matter or biogenic silica) (Billingsley et al. 2021). The dark red
vertical bar is the duration of the mid-Piacenzian Warm Period. Dietary classification of Hadar and Ledi-Geraru fauna from tooth
enamel δ13C shows increasing C4 consumption, reflecting more open habitats over time (Wynn et al. 2016, Robinson et al. 2017).
Comparisons are made with the benthic foraminiferan 18O stack (Lisiecki & Raymo 2005), calculated insolation at June 30°N, and the
ODP 721 (Arabian Sea) terrigenous (dust) flux (deMenocal 1995). Abbreviations: BTB, Baringo-Tugen Hills-Barsemoi; FAD, first
appearance datum; ODP, Ocean Drilling Program.

importance of low-latitude forcing of Plio–Pleistocene African climate (Trauth et al. 2021a).These

extreme, short-term oscillations would have impacted terrestrial resources that mammals, includ-

ing hominins, relied upon. Forthcoming results of the HSPDP cores from the Northern Awash

sites (∼3.3–2.9 Ma) will provide a useful comparison to test whether changes noted in the BTB

core at ∼3.04 Ma are local or regional (Campisano et al. 2017). The fossil record from near the

Northern Awash site suggests that significant environmental changes also occurred in that area

around the same time, as a distinct faunal turnover has been documented at ∼3.1 Ma with an in-

crease in more arid-adapted mammalian taxa (Reed 2008) and a further shift toward more open,

drier, and seasonally variable environments by 2.8Ma thatmay have played a role in the emergence

of early Homo from Australopithecus (Robinson et al. 2017).
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The Lake Malawi, Malawi (MAL05–1B/1C), Poaceae (grass) pollen record largely reflects aridity. The Olorgesailie Basin, Kenya,
land-lake cycles are based on outcrop records discussed in Potts et al. (2020) and the diatom Correspondence Analysis (CA) Axis 1
record of lake depth from the hydrologically connected downstream Koora Basin ODP-OLO12-1A drill-core record (Potts et al.
2020). The Lake Magadi, Kenya (HSPDP-MAG-1A/C), pollen Principal Component Analysis (PCA) Axis 1 aridity record is shown
(Owen et al. 2018). The Chew Bahir, southern Ethiopia (HSPDP-CHB14), elemental K/Zr aridity record is driven by the inverse
correlation of K flux with precipitation, as illitization is controlled by evaporation (Foerster et al. 2018); data from V. Foerster et al.
(unpublished paper). Comparisons are made with calculated insolation at 1°S, the European Project for Ice Coring in Antarctica
(EPICA) ice core CO2 record (Bereiter et al. 2015), and the benthic foraminiferan 18O stack, including marked timing of the
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4.2. Middle–Late Pleistocene Lake Records and Their Implications
for the Evolution of Modern Humans

Numerous critical transitions in African hominin evolution have been documented in the past

half-million years, notably the Acheulian to Middle Stone Age (MSA) change in stone tool tech-

nology and the origin of our own species,Homo sapiens (Stringer 2016, Hublin et al. 2017, Richter

et al. 2017, Brooks et al. 2018) (Figure 6). Lacustrine cores spanning this interval provide an

excellent opportunity to understand how Middle to Late Pleistocene environmental change may

have influenced the physical and cultural evolution of H. sapiens in eastern Africa. Results from

these studies suggest that over the past several hundred thousand years, hominins and other fauna

experienced temporal and spatial heterogeneity in ecological resources (e.g., freshwater supply,
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dietary breadth, vegetation structure) coincident with critical transitions in their evolutionary

history.

LakeMalawi, in the southern subtropics, was the first African rift lake to be drilled (Scholz et al.

2007). The core record from this lake provides evidence of extraordinary lake-level and climatic

fluctuations (Lyons et al. 2015), some of which were in response to eccentricity-modulated preces-

sion cycles over the past 800 kyr (Ivory et al. 2016). Malawi pollen data over the past 600 kyr mir-

ror lake-level records, with forest expansion coincident with increases in water level, demonstrat-

ing these fluctuations were climatically driven. Rapid fluctuations occurred between forested and

semiarid phases, particularly during high precession variability phases (Ivory et al. 2018). In con-

junction with nearby (25–150 km) MSA archaeological and geomorphic data, the Malawi pollen

and charcoal records also document how early anthropogenic fire impacts, coupled with climate

changes, drove landscape and ecological changes (Thompson et al. 2021). Early human use of

fire appears to have altered the preagricultural anthropogenic landscape through changes in the

seasonality and intensity of ignitions, which in turn influenced both vegetation composition and

erosion rates.

Southern Kenyan Rift drill sites, ∼900 km north of Lake Malawi, highlight the importance of

spatial variation for regional ecosystem change.Olorgesailie, in southern Kenya, has a rich archae-

ological and paleontological record spanning the past 1.2 million years (Potts et al. 2018). Out-

crops preserve evidence of the replacement of the Acheulean byMSA innovations between 500 and

320 ka, including smaller, more diverse, and complex tool types, a change in raw material type and

transport distance, and the use of pigments (Brooks et al. 2018,Deino et al. 2018, Potts et al. 2018).

A contemporaneous faunal turnover is recorded by the loss of large and mega-herbivores, particu-

larly water-dependent mega-grazers, and an increase in smaller, water-independent mixed grazing

or browsing herbivores (Potts & Deino 1995, Potts et al. 2018). An erosional disconformity in the

Olorgesailie Basin outcrops spans 500–320 ka, coincident with these transitions, but this interval

is covered by Olorgesailie Drilling Project cores in the adjacent Koora Basin, so the precise tim-

ing of these cultural and biotic transitions remains uncertain (Deino et al. 2019, Potts et al. 2020).

This record shows relatively stable environmental conditions until ∼450–400 ka, followed by sig-

nificantly more variable and arid conditions. This includes changes in basin-scale water balance

that produced substantial fluctuations in lake depth and water quality, from large, fresh, and deep

to fluctuating saline and shallow. The frequency of short, dry episodes also increased, represented

by evidence of subaerial exposure and soil formation. Vegetation structure also shifted, from pre-

dominantly C4 short-grass (xeric) woodland to stronger fluctuations between woody cover and

C4 grass dominance, and then a shift to more mesic C4 tall-grass dominance (Potts et al. 2020,

Lupien et al. 2021).

The nearby Lake Magadi drill-core site (∼20 km from the Koora core) was chosen because it

likely experienced the same regional climatic conditions, but with a different tectonic and hydro-

logic history. Comparing the two core sites allows us to untangle tectonic from climatic signals.

The Magadi core records a shift from early wetter conditions and a freshwater lake stage (par-

ticularly ∼750–500 ka) to a stratified, saline lake reflecting a long-term trend toward a more arid

climate (Owen et al. 2018, Muiruri et al. 2021a). The geochemical, diatom, and pollen data indi-

cate a directional trend over the past 500 kyr toward more arid conditions, but with many wet/

dry cycles and of increasing variability superimposed upon the longer-term drying trend. Intense

aridification took place between ∼525 and 400 ka, coincident with the Mid-Brunhes increase in

amplitude of glacial/interglacial cycles (430 ka), with relatively persistent arid conditions from

∼350 ka to present (Owen et al. 2018, 2019; Muiruri et al. 2021a,b). Drier episodes, reflected in

the diatom and pollen data, mostly occurred during periods of low-amplitude insolation variabil-

ity (Muiruri et al. 2021a,b). Notably, the Magadi wet/dry cycles are generally antiphased with the
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Malawi record (Muiruri et al. 2021b). Such interhemispheric antiphased relationships have also

been recorded and modeled for the Late Pleistocene (Blome et al. 2012, Kutzbach et al. 2020).

The timing of environmental shifts at Magadi is consistent with shifts in the Olorgesailie core

record, but theOlorgesailie record does not exhibit a directional trend in aridity after 400 ka (Potts

et al. 2020). The difference between these records and some of the changes in water availability

and vegetation at Olorgesailie may have been the result of spatial heterogeneity related to local

tectonics and increased topographic relief (Behrensmeyer et al. 2018, Potts et al. 2020).Moreover,

as a regional drainage sump and terminal saline lake,Magadimay have beenmore sensitive to shifts

in water balance.Nonetheless, the overall similarity in timing of environmental change recorded in

the two basins suggests they were responding to changes in regional and global climate (Figure 6).

Records from the Chew Bahir basin (southern Ethiopia,∼5°N) core provide another key data

point for understanding regional and latitudinal variation of environmental change with implica-

tions for hominin evolution and dispersal in eastern Africa since ∼620 ka (Foerster et al. 2012;

Viehberg et al. 2018; Duesing et al. 2021; Roberts et al. 2021; Schaebitz et al. 2021; Trauth et al.

2021b; V. Foerster et al., unpublished paper). A change-point analysis of the CHB K/Zr record

demonstrates a three-phased history of significant changes in hydroclimate driven by orbitally

forced variations in low-latitude insolation with general trends similar to those observed in the

southern Kenya HSPDP site records (Schaebitz et al. 2021; V. Foerster et al., unpublished paper).

The interval between ∼620 and 410 ka exhibits a long-term drying trend culminating in fluc-

tuations between hydrological extremes. A wetter phase between ∼410 and 210 ka, increasingly

pulsed by rapid oscillations on precessional timescales, coincides with the emergence of modern

H. sapiens and the MSA in Africa (V. Foerster et al., unpublished paper). The most recent phase,

∼210 ka to present, shows a long-term drying trend with increasing intensity since ∼125 ka, su-

perimposed on the highest variability between wet and dry pulses observed in the whole record.

The humid pulses of this phase (until ∼60 ka) may have opened migration corridors for H. sapi-

ens out of Africa. The driest phase (∼60–14 ka) during lowest eccentricity shows millennial- to

centennial-scale wet/dry fluctuations, associated with Dansgaard–Oeschger and Heinrich events,

which could have spurred the development of new adaptive strategies byH. sapiens, such as the in-

novation of tool technologies (Late Stone Age) or migration to the adjoining highlands (Schaebitz

et al. 2021).

A pan-African synthesis of multiple high-resolution core records from both lake and marine

settings spanning the past 620 kyr demonstrates an east-west alternation in precipitation regimes

across Africa (Kaboth-Bahr et al. 2021). Generally wet conditions prevailed in western Africa and

more arid conditions in eastern Africa between ∼525 and 279 ka and ∼128 and 0 ka, with a rever-

sal of this mode during the intervening period. Kaboth-Bahr et al. argue that these alternations

were driven by warming and cooling in the tropical Pacific, driving east-west positional changes

in the Walker circulation on eccentricity-linked timescales. This continental-scale alternation in

climate and vegetation patterns coincides with molecular phylogenetic evidence for diversification

events in pan-African mammalian clades, and would have had profound effects on the resources

upon which mammals including early H. sapiens depended, as well as their biogeography as those

resources shifted.

4.3. Testing the Hypothesized Impact of the Toba Supereruption on Terrestrial
Ecosystems and Anatomically Modern Human Populations in Africa Using
the Lake Malawi Drill-Core Record

Our ability to resolve environmental events down to annual or even subannual timescales in lam-

inated lake beds makes these records particularly well suited for answering questions about the
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impact of extreme events on human populations, how seasonality may have influenced early hom-

inin habitats, and the nature of the landscapes particular hominins occupied. One of the most

intriguing ideas linking early modern human demography and dispersal to environmental catas-

trophes is the volcanic winter/weak Garden of Eden hypothesis, linking the Mt. Toba (Indonesia)

supereruption to a global climate catastrophe, and subsequently to the collapse of human pop-

ulations in Africa (Ambrose 1998). The youngest (∼74 ka) eruption of Mt. Toba is the largest

Quaternary eruption known. Its fingerprinted tephra [the Youngest Toba Tuff (YTT)] can be

found across a wide swath of Africa and Eurasia in marine and continental sediments (Smith et al.

2011, 2018), and possibly in Greenland and Antarctic ice core aerosols as well (Svensson et al.

2013). The approximate concurrence of this eruption with molecular genetic evidence for a pos-

sible early modern human population bottleneck, as well as the presumed timing of the dispersal

of modern humans out of Africa, prompted a lively debate on the possible connection between

these events (e.g., Rampino & Ambrose 2000, Oppenheimer 2002, Robock et al. 2009, Williams

2012, Smith et al. 2018). This is difficult to test in most terrestrial occurrences, however, because

the linkage between the tephra and coincident paleoenvironmental records is limited by episodic

deposition.

Lane et al. (2013) recovered YTT cryptotephra from two of the LakeMalawi drill cores and ar-

gued, based on both TEX86 paleotemperature reconstructions and scanning XRF data, that there

is no evidence supporting a major environmental perturbation or volcanic winter associated with

the tephra horizon. Subsequently, Jackson et al. (2015) and Yost et al. (2018) took advantage of

the wide range of paleoecological data preserved in the laminated Malawi cores at subdecadal res-

olution for several hundred years before and after the eruption to evaluate the volcanic winter

hypothesis. They confirmed that neither lacustrine nor terrestrial ecosystems suffered the types

of impacts predicted by a hypothesized volcanic winter severe enough to have catastrophic effects

on human populations and generate a genetic bottleneck (Rampino & Ambrose 2000, Robock

et al. 2009) (Figure 7). Given the degree of hypothesized cooling proposed by the volcanic winter

hypothesis, Lake Malawi, a thermally stratified tropical lake, would have undergone a complete

limnological overturn. Complete water column mixing would have had an immediate and long-

lasting impact on a lake of this size by nutrients released into the epilimnion and oxygenation

of lake floor. Jackson et al. (2015) and Yost et al. (2018) found no such major perturbations in

the fossil record of dominant phytoplankton or zooplankton following the YTT, nor evidence of

colonization of the normally anoxic (and thus unbioturbated) lake floor by benthic invertebrates

at this time. The terrestrial records of vegetation (from phytolith fossils) and fire (from charcoal

abundance) across the YTT horizon are similarly instructive. There is no evidence for the types

of wholesale environmental degradation required by the volcanic winter hypothesis to cause a col-

lapse of the ecosystems upon which contemporaneous modern humans depended, as documented

by archaeological sites in this region (Thompson et al. 2018, 2021).

The two Malawi drill cores in which the YTT was encountered also allowed Yost et al. (2018)

to differentiate low from high elevation impacts of the ashfall. In the central Lake Malawi core

(MAL-1C), adjacent to low-elevation miombo woodland, no changes were observed immediately

following the YTT in tree cover, or in either cool climate C3 or warmth-indicating C4 grasses

that exceeded background (i.e., pre-Toba) variability. In the north basin (MAL-2A), adjacent to

the Rungwe and Livingstone Mountains, there is evidence of increased charcoal and C4 grasses

immediately after the YTT, signaling some burning and aridification predicted by the volcanic

winter hypothesis. However, the levels of these indicators remained well within the background

levels of variability prior to the YTT, making it extremely unlikely these climatic effects were

sufficiently severe to cause major human population declines across Africa.

www.annualreviews.org • African Drilling and Human Evolution 465

A
n
n
u
. 
R

ev
. 
E

ar
th

 P
la

n
et

. 
S

ci
. 
2
0
2
2
.5

0
:4

5
1
-4

7
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 1

0
5
.1

6
0
.8

3
.5

6
 o

n
 0

7
/1

8
/2

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Ic index
(temperature)

Iph index
(aridity)

D/P index
(tree cover)

Microcharcoal/g
Macrocharcoal/g GISP2 δ18O

0 100 200

0 1.5 3.0

Chaoborus/g
Pediastrum/g

Lacustrine organisms Fire Vegetation (phytoliths)

5 15 1 100 0 1 220 100 203

1 3

–44 –40 –36

D
e

p
th

 b
e

lo
w

 l
a

k
e

 �
o

o
r 

(m
)

D
ista

n
ce

 d
o

w
n

 co
re

 (m
)

Toba ash

(YTT)

Diatom
mixing index

28.01

28.02

28.03

28.04

28.05

28.06

28.07

28.08

28.09

28.10

28.11

28.12

28.13

28.14

28.15

Core 1C

2,580

2,585

2,590

2,595

Number/g (× 104) Index IndexNumber/g (× 103)

Number/g (× 105)

% %

‰

WARMER, LESS MIXING

COOLER

MORE FIRE

LOCAL FIREMORE MIXING COOLER MORE TREESMORE ARID

Figure 7

Indicators of lake ecology and mixing, terrestrial vegetation, and fire from the Lake Malawi drill core spanning an interval of
∼100 years before and ∼200 years after the Mt. Toba supereruption [Youngest Toba Tuff (YTT) horizon] recovered from the
GLAD7-MAL05-1C-8H-1 core section with cryptotephra chemically matched to the YTT (Lane et al. 2013). Data are from Jackson
et al. (2015) and Yost et al. (2018) and are plotted on a depth scale. Plotted data include counts per dry gram of Pediastrum (green
algae–photic zone mixing); Chaoborus (phantom midge larvae, deep water mixing plus overall secondary productivity); a diatom mixing
index [(Aulacoseira + Stephanodiscus)/Cyclotella]; and microcharcoal (<45 µm) and macrocharcoal (>45 µm) (regional and local fire
activity, respectively). Phytolith-derived climate and vegetation indices are based on grass phytoliths [climate index (Ic), phytolith index
(Iph), and the ratio of woody plant to grass phytoliths (D/P)]. Greenland Ice Sheet Project 2 (GISP2) δ18O values are from Grootes &
Stuiver (1997). All records show an absence of significant perturbations in lake or land ecology associated with the YTT beyond
background variability. The red dashed line marks the position of first occurrence of YTT cryptotephra in the Lake Malawi core and
links it to the position of the GISP2 H2SO4 spike attributed to the Toba supereruption (Zielinski et al. 1996), which shows a minor
cooling event associated with this eruption against a background decline in temperatures underway long before the eruption.

5. EVALUATING THE ROLE OF ENVIRONMENTAL VARIABILITY
IN HUMAN EVOLUTION WITH CORE RECORDS

Since the late 1990s there has been considerable interest among paleoanthropologists in the

potential role that environmental variability may have played as a driver of evolution, tech-

nological change, and dispersal of hominins. In a series of papers, Potts (1996, 1998) argued

that increased variability (as opposed to long-term directional shifts, for example toward drier

conditions) resulted in adaptations that conferred greater flexibility during times of increased

environmental uncertainty, potentially leading to significant species turnover. Potts termed this

variability selection. As examples in the hominin lineage, Potts pointed to the expansion of

arguably more adaptively flexible Homo erectus at the expense of dietarily specialized Paranthropus
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(during the climatically variable early Pleistocene) or the replacement of cold climate–adapted

Neanderthals by rapidly expanding and behaviorally diverse modernH. sapiens in Eurasia through

the most extreme climate swings of the late Pleistocene. Potts (1998) recognized that testing

this hypothesis required evidence that the evolution of adaptations for increased environmental

flexibility be both temporally and logically (in terms of specific adaptations) associated with

evidence of enhanced environmental variability. Highly resolved drill-core records are well suited

for providing evidence of changes in environmental variability.

Potts & Faith (2015) evaluated the variability selection hypothesis’s predictions using orbital

insolation cycles to predict periods of high and low climate variability. The insolation record was

then compared quantitively against Arabian Sea and Mediterranean dust records, which demon-

strated that high- and low-variability orbital insolation intervals corresponded to actual increases

and decreases in the two indicator records. They then showed that qualitative changes in paleoen-

vironmental records from a series of hominin fossil–bearing basins in eastern Africa corresponded

to the timing of variability stages predicted by the orbital-control model of variability. Finally, they

compared the times of high variability, as predicted by the variability selection hypothesis, with

first and last appearance datums (FADs and LADs) for a variety of hominin evolutionary transi-

tions to see if these corresponded in time. Their null model, comparable to Figure 1a, predicts

no statistical relationship between these events, but they found a significant relationship between

the two, as would be predicted if evolutionary novelty were driven by increased climate variability

(Figure 1c).

More recently, Potts and colleagues (2018, 2020) have emphasized the possible role of non-

climatic aspects of environmental variability in affecting resource fluctuations and their tempo-

ral association with hominin technological change. They note that the Acheulian to MSA tran-

sition at Olorgesailie, linked to the greater technological capacity of early modern humans to

procure resources over greater areas and with greater cognitive flexibility, is temporally associ-

ated in the nearby Koora drill-core record with increasing hydroclimate variability. However, the

Koora record of water resource variability is itself not strongly associated with orbital cyclicity, but

rather with possible tectonically and volcanically induced changes in local hydrology and spatial

fragmentation of resources.

Several terrestrial core records show correspondences between important human evolutionary

transitions and evidence of high hydroclimate, vegetation, or landscape variability. Lupien et al.

(2018) identified a dramatic episode of high variability in δD and δ13C of leaf waxes in the WTK

drill-core record at 1.73 Ma, a time of high eccentricity. This timing corresponds with the last

appearance of Homo rudolfensis, the first appearance of H. erectus, the dispersal of Homo spp. out of

Africa, and the earliest evidence for Acheulian (e.g., hand axe) technology (Spoor et al. 2007, 2015;

Lepre et al. 2011; Antón et al. 2014). Abrupt, high-amplitude climate variability, as registered in

theMagadi (Owen et al. 2018),Koora (Potts et al. 2020), andCHB (Duesing et al. 2021; V.Foerster

et al., unpublished paper) drill-core records, accompanied the technological transition from the

Acheulian to theMSA.This ismarked by evidence of increasing human cognition through features

such as production of smaller and more complex tools, evidence for greater transport distances

of raw materials, and the appearance of pigments, possibly for adornment. The significance of

these temporal correspondences needs to be tempered by the fact that hominin fossil sample sizes

remain small and geographically restricted; thus, uncertainties of the timing of specific hominin

evolutionary transitions remain large (Faith et al. 2021).

Environmental variability is not a singular concept, and different tempos and modes of vari-

ability have been theorized to have different effects on hominin resources and populations. Trauth

et al. (2021b) quantified different types of variability using recurrence quantification analysis,

which allows the recognition of tipping points in hydroclimate (and thus ecosystems and hominin
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resources) that may result from relatively small changes in the climate state. They analyzed the

CHB potassium (aridity) andOceanDrilling Project ODP Site 967 wet/dry index records and rec-

ognized two types of variability. One of these modes shows maximum variability at precessional

frequencies and is accompanied by shorter (centennial- and millennial-scale) changes between

wet and dry states. The second type of variability shows a weaker association with orbital param-

eters and occurs during insolation variability minima by rapid (years to decades) changes between

wet and dry conditions, which increase in frequency through the entire phase of this type of vari-

ability. Trauth et al. (2021b) argued that the long-term variability associated with the first type

would have corresponded to longer timescales, potentially associated with human evolutionary

events and large-scale dispersal, whereas the short-term fluctuations of the second type would

have more directly influenced differential mortality and fertility and population occupation of

more favorable nearby habitats, as discussed by Schaebitz et al. (2021) and V. Foerster et al. (un-

published paper).

Modeling experiments are useful for understanding these potential effects of environmental

variability on population growth and dispersal. Grove (2014) suggested that phenotypic plastic-

ity (i.e., variability in phenotypes within a population allowing a broadening of habitat or dietary

tolerances) could be expected to increase during periods of environmental instability. This accu-

mulated plasticity could provide a pump for successful dispersal when a period of low climatic

instability immediately follows a period of high instability. Grove et al. (2015) modeled favorable

periods of dispersal for early H. sapiens out of Africa based on episodes of stability following ex-

treme instability registered in the Lake Tana, Ethiopia, drill core Ca/Ti record (an indicator of

relative moisture). They argued that the most favorable intervals for dispersal would have been

between ∼103 and 97 ka, consistent with evidence for early H. sapiens occupation in the Levant

at the time. Lamb et al. (2018), evaluating the same Lake Tana paleoclimate record, noted three

intervals favorable to dispersal (150–144, 125–93, and 82–73 ka) that also predate the latest age

(∼65–55 ka) from genetic evidence for the common ancestry of non-African H. sapiens (Nielsen

et al. 2017). Some of these intervals were not marked by records of stability following extreme

instability elsewhere in Africa, suggesting that if Grove’s (2014) accumulated plasticity model is

correct, the dispersal pump must have operated erratically around Africa.

Two important concerns can be raised about these comparisons between individual paleocli-

mate records of variability and the fossil/archaeological record of hominin evolution. First, it is

unknown whether the individual records of variability reflect environmental conditions in the

area(s) where the evolutionary transitions occurred. Second, it is well-known that FADs and LADs

provide only minimal temporal bounds for the duration of any species or technology (e.g., Faith

et al. 2021).This is problematic for extinct hominin species, for which the confidence intervals sur-

rounding the FADs and LADs are very large. To address these uncertainties and further test the

long-term relationships between environmental variability and hominin evolution, future stud-

ies will investigate how regionally stacked variability records from around Africa compare with

the tempo of mammalian evolution and extinction during the Plio–Pleistocene, recognizing the

inherent uncertainties of the fossil record.

6. FUTURE DIRECTIONS APPLYING LACUSTRINE DRILL-CORE
RECORDS TO UNDERSTANDING HUMAN EVOLUTION

Research integrating paleoenvironmental reconstructions from drill-core records into our under-

standing of human evolution in Africa is still a work in progress. The cores described here are

still under study, and as new approaches to dating these cores or reconstructing past climates and

ecosystems are developed, we expect all of them to be mined more intensively for clues about the
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habitats of early humans. Thus, careful preservation of these valuable materials in facilities such as

theContinental ScientificDrilling Facility (https://cse.umn.edu/csd) is essential formaintaining

their future value.

Beyond retrieving new information from existing cores, projects such as HSPDP provide a

proof of concept for the transformative value of scientific drilling in ancient lake deposits for pa-

leoanthropology. Three future directions for this science hold particular promise. First, ancient

African lakes provide an extraordinary geographic range across which records can be collected

and compared. It is evident even from the limited data gathered from lacustrine drill cores to

date that large spatiotemporal differences exist between these records. To what extent can these

be understood using existing paleoclimate models (e.g., Kutzbach et al. 2020) in terms of the rel-

ative impacts of low-latitude insolation versus high-latitude, glacial/interglacial forcing? While

the evidence from lake core records makes the importance of orbital forcing for long-term cli-

mate variability in tropical Africa clear (e.g., Deino et al. 2021), strong evidence from African lake

cores and climate models also exists for high-latitude forcing, particularly for abrupt/high-impact

events (e.g., Tierney et al. 2008, Otto-Bliesner et al. 2014). Broad-scale syntheses are needed to

evaluate the relative importance of these drivers across and adjacent to Africa (i.e., integration

with core records from western Asia). From the paleoanthropological perspective, understanding

the dynamics of these changes will clarify how and when various parts of the African continent, as

well as corridors of dispersal out of Africa, became more or less favorable to hominins.

Second, the value of scientific drilling for addressing paleoanthropological questions is by no

means restricted to studies in Africa. Many sites already drilled in Eurasia (Figure 2) have been

incorporated into our understanding of hominin expansion out of Africa (e.g.,Miebach et al. 2019).

In the future we can expect similar integration of lacustrine drill-core records in deeper time,

drawing on the many ancient lakes of Eurasia, to explore the habitats of Pleistocene hominins

other than anatomically modern humans (AMHs), or the environmental context of the expansion

of AMHs out of Africa.

Third, hopefully in the near future we can expect much longer records of African environ-

mental history to be obtained from lake beds, spanning the entire 8–6 Ma time frame of hominin

evolution. Projects in advanced stages of development from the oldest African lakes, Lakes Tan-

ganyika (Cohen & Salzburger 2016, Russell et al. 2020) and Chad (Sylvestre et al. 2018), promise

to provide records of African paleoclimate and ecosystem history since the Late Miocene from

two very different regions of the continent (Figure 2). Along with other possible future drilling

sites in other AfricanGreat Lakes,we anticipate these long records will yield tremendous advances

in the emerging science of using scientific drilling to further our understanding of the deep-time

environmental history of our distant ancestors. Understanding this history of environment and

human evolution holds important implications for understanding our own adaptability to climate

change into the future.
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