
Query Complexity of the Metric Steiner Tree Problem⇤

Yu Chen† Sanjeev Khanna‡ Zihan Tan§

Abstract

In the metric Steiner Tree problem, we are given an n ⇥ n metric w on a set V of vertices along with
a set T ✓ V of k terminals, and the goal is to find a tree of minimum cost that contains all terminals in
T . This is a well-known NP-hard problem and much of the previous work has focused on understanding its
polynomial-time approximability. In this work, we initiate a study of the query complexity of the metric
Steiner Tree problem. Specifically, if we desire an ↵-approximate estimate of the metric Steiner Tree cost, how
many entries need to be queried in the metric w? For the related minimum spanning tree (MST) problem,
this question is well-understood. For any fixed " > 0, one can estimate the MST cost to within a (1+ ")-factor
using only Õ(n) queries, and this is known to be essentially tight. Can one obtain a similar result for Steiner
Tree cost? Note that a (2 + ")-approximate estimate of Steiner Tree cost can be obtained with Õ(k) queries
by simply applying the MST cost estimation algorithm on the metric induced by the terminals.

Our first result shows that the Steiner Tree problem behaves in a fundamentally di↵erent manner from
MST: any (randomized) algorithm that estimates the Steiner Tree cost to within a (5/3 � ")-factor requires
⌦(n2) queries, even if k is a constant. This lower bound is in sharp contrast to an upper bound of O(nk) queries
for computing a (5/3)-approximate Steiner Tree, which follows from previous work by Du and Zelikovsky.

Our second main result, and the main technical contribution of this work, is a sublinear query algorithm
for estimating the Steiner Tree cost to within a strictly better-than-2 factor. We give an algorithm that
achieves this goal, with a query complexity of Õ(n12/7 +n

6/7 · k); since k  n, the algorithm performs at most
Õ(n13/7) = o(n2) queries in the worst-case. Our estimation algorithm reduces this task to that of designing
a sublinear query algorithm for a suitable set cover problem. We complement this result by showing an
⌦̃(n + k

6/5) query lower bound for any algorithm that estimates Steiner Tree cost to a strictly better than
2 factor. Thus ⌦̃(n6/5) queries are needed to just beat 2-approximation when k = ⌦(n); a sharp contrast to
MST cost estimation where a (1 + o(1))-approximate estimate of cost is achievable with only Õ(n) queries.

1 Introduction

In the Steiner Tree problem, we are given a weighted (undirected) graph G and a subset T of vertices in G called
terminals, and the goal is to compute a minimum weight connected subgraph of G (a Steiner Tree) that spans
all terminals in T . This is one of the most fundamental NP-hard problems [16], and has been studied extensively
over the past several decades from the perspective of approximation algorithms [17, 27, 13, 18, 20, 15, 14] (see also
[21] for a compendium of its variants). The current best known approximation ratio is ln 4 + " < 1.39 achieved
by [15] (see also [14, 23]), and it has been shown [22] that approximating to within a factor better than 96/95 is
NP-hard.

In this paper, we study the query complexity of the Steiner Tree problem. In particular, we consider an
equivalent variant called the metric Steiner Tree problem, where the input consists of a metric w on a set V of
n points (equivalently, a weighted complete graph on V) and a subset T ✓ V of k points called terminals. We
are allowed to perform weight queries between vertices in V 1, and the goal is to design an algorithm for either
computing a Steiner Tree with minimum cost or estimating the cost of an optimal Steiner Tree, using as few
queries as possible.

⇤
The full version of the paper can be accessed at https://arxiv.org/abs/2211.03893

†
EPFL, Lausanne, Switzerland. Email: yu.chen@epfl.ch. Supported by ERC Starting Grant 759471. Work done while the author

was a graduate student at University of Pennsylvania.

‡
University of Pennsylvania, Philadelphia, PA, USA. Email: sanjeev@cis.upenn.edu. Supported in part by NSF awards CCF-

1763514, CCF-1934876, and CCF-2008305.

§
Rutgers University, NJ, USA. Email: zihantan1993@gmail.com. Supported by a grant to DIMACS from the Simons Foundation

(820931). Work done while the author was a graduate student at University of Chicago.
1
This is also known as the Dense Graph Model [8]. In the other model, the Bounded-Degree Graph Model [10] (where the max-

degree of the input graph is bounded by d), it is easy to show that estimating the minimum Steiner Tree cost, or even the minimum

spanning tree cost, in an n-vertex graph within any non-trivial factor requires ⌦(nd) queries.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4893

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2211.03893

It is well-known that a minimum weight spanning tree of the metric induced by the terminals gives a 2-
approximate Steiner Tree [17]. Moreover, the metric Minimum Spanning Tree (MST) cost can be estimated to
within factor (1+ ") be performing Õ(n/"O(1)) queries [25, 24]. Therefore, the minimum metric Steiner Tree cost
can be estimated within factor (2 + ") with only Õ(k/"O(1)) queries. However, the query complexity of obtaining
a better-than-2 estimation of the minimum metric Steiner Tree cost remains wide open, and so is the query
complexity of computing such a Steiner Tree. We note that this is the interesting regime of the metric Steiner
Tree problem: approximating or estimating the cost to a factor better than 2 crucially requires some knowledge
of the metric incident on Steiner nodes.

1.1 Our Results In this paper, we provide a comprehensive understanding on the trade-o↵ between
approximation ratio and query complexity of the metric Steiner Tree problem.

Our first result establishes a separation between the behavior the Steiner Tree problem and the MST problem.
Specifically, we show that for any " > 0, any randomized algorithm to estimate Steiner Tree cost to within a
(5/3 � ")-factor requires ⌦(n2) queries even if k is a constant. Together with an upper bound of O(nk) queries
for computing a (5/3)-approximate Steiner Tree (which follows from [28] and [27]2), this result shows a phase
transition in the query complexity at (5/3)-approximation. This is in contrast to the MST cost estimation problem
where for any " > 0, Õ(n) queries su�ce to estimate MST cost to within a factor of (1 + ").

Theorem 1.1. For any constant 0 < " < 2/3, any randomized algorithm that with high probability estimates the

metric Steiner Tree cost to within a factor of (5/3�") performs ⌦(n2/4(1/")) queries in the worst case, even when

k is a constant.

Our proof of this result is based on constructing a pair of distributions on Steiner Tree instances whose costs
di↵er by a (5/3 � ") factor, and yet whose metrics di↵er in O"(1) entries, leading to an ⌦(n2) lower bound for
any fixed " > 0.

We complement the above result by showing that even if we weaken the goal to simply computing a slightly
better-than-2 approximate Steiner Tree, the query complexity remains ⌦(nk).

Theorem 1.2. For any constant 0 < " < 1/3, any randomized algorithm that outputs a (2 � ")-approximate

Steiner Tree performs at least ⌦(nk) queries in the worst case.

Our second set of results is concerned with understanding the query complexity of obtaining a strictly better-
than-2 estimate of the Steiner Tree cost. The main technical contribution of this paper is a sublinear-query
algorithm that obtains a strictly better-than-2 estimate of the cost, by performing Õ(n12/7 + n6/7 · k) queries (as
k  n, the query complexity is Õ(n13/7) = o(n2)).

Theorem 1.3. There is an e�cient randomized algorithm that with high probability estimates the metric Steiner

Tree cost to within a factor of (2 � "0) for some universal constant "0 > 0, by performing Õ(n12/7 + n6/7 · k)
queries.

At a high-level, the proof of the above theorem starts with a minimum spanning tree T of the graph induced
by terminals. Even on simple metrics such as a metric where all weights are 1 or 2, the cost of such a tree can be
up to a factor 2 away from the optimal Steiner Tree cost. But in this case, the optimal tree necessarily improves
upon T by using Steiner nodes to e�ciently connect together many terminals. The first challenge then becomes
if such opportunities can be identified only by local exploration of the metric. Our main insight is that this task
can be cast as a suitable set cover problem where the objective is to estimate the universe size minus the optimal
set cover size. We then design a sublinear query algorithm for estimating the value of this set cover objective, and
use it to determine whether or not the optimal Steiner tree cost is close to the cost of T , or bounded away from it.
The second challenge in obtaining this result is that explicit computation of the MST T in the graph induced by
the terminals requires O(k2) queries which rules out a sublinear query complexity when k = ⌦(n). To get around
this, we design an outer algorithm that e�ciently simulates access to T without ever explicitly computing it.
The composed algorithm, achieves a strictly better-than-2 estimate of the Steiner Tree cost in Õ(n12/7 + n6/7 · k)
queries.

2
See Appendix A for an explanation.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4894

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The result above raises a natural question: can the task of obtaining a strictly better-than-2 estimate of the
Steiner Tree cost be achieved with only Õ(n) queries? Our next result rules out this possibility at least when k
is su�ciently large. We show that any algorithm that estimates the Steiner Tree cost to a factor strictly better
than 2, necessarily requires ⌦̃(n+ k6/5) queries.

Theorem 1.4. For any constant 0 < " < 1/3, any randomized algorithm that with high probability estimates the

metric Steiner Tree cost to within a factor of (2� ") performs at least ⌦̃(n+ k6/5) queries in the worst case.

Our third and final set of results is concerned with understanding the query complexity of computing an
↵-approximate Steiner Tree for any ↵ � 2. We show that ⇥̃(k2/↵) queries are both su�cient and necessary for
this task.

Theorem 1.5. Let ↵ � 2 be any constant. Then

• there exists an e�cient randomized algorithm that with high probability computes an ↵-approximate Steiner

Tree, by performing Õ(k2/↵) queries; and

• any randomized algorithm that outputs an ↵-approximate Steiner Tree performs at least ⌦(k2/↵) queries in
the worst case.

Our results on the tradeo↵ between query complexity and approximation quality are summarized in Figure 1.
Together, they illustrate several interesting phase transitions in the query complexity of approximating metric
Steiner Tree. The query complexity remains ⇥(n2) up to an approximation factor of 5/3 even if k is a constant
and the goal is to only estimate the Steiner Tree cost. Then at (5/3)-approximation, it drops to ⇥(nk), and
it is possible to also find a (5/3)-approximate Steiner Tree with ⇥(nk) queries. Next if the goal is to find an
↵-approximate Steiner Tree, the query complexity remains ⇥(nk) even as ↵ approaches 2. At this point, another
phase transition occurs: for any ↵ � 2, the query complexity of finding an ↵-approximate Steiner Tree becomes
⇥̃(k2/↵). For ↵-approximate estimation of the cost for any ↵ < 2, we show that ⌦̃(n6/5) queries are necessary
when k = ⌦(n). On the other hand, we give a (2 � "0)-estimation algorithm that uses only Õ(n12/7 + n6/7 · k)
queries, for some universal "0 > 0.

Figure 1: An illustration of the trade-o↵ between query complexity and approximation ratio for the metric Steiner
Tree problem. The red curve shows the complexity of computing a Steiner Tree, while the green curve shows
the complexity of estimating the minimum metric Steiner Tree cost. The upper bound at (5/3)-approximation
follows from [28] and [27]; the bottom green curve (showing ⇥(k) query complexity for ↵-estimating the cost
where ↵ > 2) is due to [24], and all other curves are results of this paper. All terms are inside a Õ(·) symbol.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4895

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Organization. We start with some preliminaries in Section 2. We then provide the proof of (5/3 � ")-
approximation lower bound (Theorem 1.1) in Section 3. We present the (2 � "0)-approximation algorithm for
Theorem 1.3 in Section 4. The proofs of the lower bounds in Theorem 1.2, Theorem 1.4 and Theorem 1.5 are
provided in Section 5, Section 7 and Section 6, respectively.

2 Preliminaries

Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G induced by S. For
two (not necessarily disjoint) subsets A,B of vertices of G, we denote by EG(A,B) the set of all edges with one
endpoint in A and the other endpoint in B, and we denote by EG(A) the set of all edges with both endpoints in
A. For a vertex v 2 V (G), we denote by degG(v) the degree of v in G. We sometimes omit the subscript G in
the above notations if it is clear from the context.

Let G = (V,E,w) be a weighted graph where w : E(G) ! R+ is a weight function on edges in G.
For a subgraph H ✓ G, we define w(H) =

P
e2E(H) w(e). For a pair u, u0 of vertices in G, we denote

by distG(u, u0) the shortest-path distance in G between u and u0. In this paper, we will often consider the
case where G is a complete graph and w satisfies the triangle inequality. That is, for all u, u0, u00 2 V ,
w(u, u0)  w(u, u00) + w(u0, u00). In this case, w can be also viewed as a metric on the set V of points. For
a vertex v and a set U ✓ V , we denote w(v, U) = min {w(v, u) | u 2 U}. For a pair U,U 0 ✓ V of sets, we denote
w(U,U 0) = min {w(u, u0) | u 2 U, u0 2 U 0}.

Let T be a tree rooted at a vertex r 2 V (T). Let u be a vertex in T . The height of u in T is defined to be
the minimum hop-distance between u and any leaf in the subtree of T rooted at u. For example, the height of a
leaf is 0, and the height of a parent of a leaf is 1, etc.

For a weighted graph G = (V,E,w) and a subset T of vertices in G, we denote by (G, T) the instance of the
Steiner Tree problem where G is the graph and T is the set of vertices to be connected. We denote the optimal
cost of a solution to this instance by ST(G, T). When G is a complete graph and w is a metric on V , an instance
of the Steiner Tree problem is also denoted by (V, T, w), and the optimal cost of a solution is also denoted by
ST(V, T, w). Vertices in T are called terminals, and vertices in V \ T are called Steiner vertices.

Throughout the paper, we will refer to the algorithms that compute an ↵-approximate Steiner Tree of cost
bounded by ↵-approximations, and will refer to the algorithms that estimate the metric Steiner Tree cost to within
factor ↵ by ↵-estimations.

We use the following standard version of Cherno↵ Bound (see. e.g., [5]).

Lemma 2.1. (Chernoff Bound) Let X1, . . . , Xn be independent randon variables taking values in {0, 1}. Let

X =
P

1in Xi, and let µ = E[X]. Then for any t > 2eµ,

Pr
h
X > t

i
 2�t.

Additionally, for any 0  �  1,

Pr
h
X < (1� �) · µ

i
 e�

�2·µ
2 .

3 An ⌦(n2) Lower Bound for (5/3� ")-Estimation

In this section we provide the proof of Theorem 1.1. Specifically, for any constant 0 < " < 2/3, we will construct
a pair IY = (V, T, wY), IN = (V, T, wN) of instances of the metric Steiner Tree problem where |T | = O(2(1/")), such
that the metric Steiner Tree costs of instance IY and instance IN di↵er by factor (5/3� "), while the metrics wY

and wN di↵er at only O"(1) places. We will then construct two distributions DY,DN of instances by randomly
naming the vertices in the instances IY, IN respectively; and show that any algorithm that with probability at
least 0.51 distinguishes between instances DY and DN (and in particular between the distributions on metrics wY

and wN) has to perform at least ⌦(n2/4(1/")) queries. We remark that it is easy to construct (by adding dummy

terminals to instances IY and IN), for every k � ⌦(21/"), such a pair of instances I(k)
Y

and I(k)
N

with k terminals
each. Our constructions are similar to the examples used in [26] to determine the worst-case k-Steiner ratios.

We start by giving a high-level overview of the construction of instances (V, T, wY) and (V, T, wN). We would
like to ensure that (i) metrics wY and wN di↵er only in O"(1) places; and (ii) ST(V, T, wY) and ST(V, T, wN) di↵er
by a factor of (5/3) roughly. In order to achieve property (i), for every pair (u, u0) of vertices in V such that at least

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4896

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

one of u, u0 is a terminal, wY(u, u0) = wN(u, u0) must hold, since otherwise simply querying all terminal-involved
distances will distinguish between metrics wY and wN by performing O(nk) queries. However, once we are given
that wY and wN are identical on all terminal-involved pairs, the previous results in [27] and [28] imply that the
values ST(V, T, wY) and ST(V, T, wN) di↵er by a factor of at most (5/3). Therefore, we have to design metrics
wY and wN such that the analysis from [27] and [28] is nearly tight. It turns out that the tree TY has to be quite
balanced and symmetric.

We now describe the construction of instances (V, T, wY) and (V, T, wN) in detail. Let d = d1/"e. We first
define an auxiliary weighted tree ⇢ as follows. The tree ⇢ is a complete binary tree of depth d, so |V (⇢)| = 2d+1�1.
Let r be the root of ⇢. For each node v 2 V (⇢), we say that v is at level i (or the level of v is i), i↵ the unique
path in ⇢ that connects v to r contains i edges. Clearly, all leaves of ⇢ are at level d. For an edge (u, u0) 2 E(⇢)
where u0 is the parent of u, we say that (u, u0) is a level-i edge i↵ u is at level i. We now define the weights on
edges in E(⇢): all level-d edges have weight 1, and for each 1  i  d� 1, all level-i edges have weight 2(d�1)�i.
We denote by L(⇢) the set of all leaves of ⇢.

In order to avoid ambiguity, we refer to vertices of ⇢ as nodes and points in V as vertices. The vertex set V
is partitioned into (2d+1 � 1) subsets: V =

S
x2V (⇢) Vx, where each subset is indexed by a node in ⇢. For each

leaf node x in L(⇢), the set Vx contains a single vertex, that we denote by ux. For each non-leaf node x in ⇢,

the set Vx contains either
j
n�2d

2d�1

k
or

l
n�2d

2d�1

m
vertices (so that the total number of vertices in V is n), with one of

them designated as the special vertex in Vx, denoted by ux, and all other vertices are called regular vertices. For
consistency, for each leaf node x 2 L(⇢), we also call the only vertex ux in Vx a special vertex. The terminal set
is defined to be T = {ux | x 2 L(⇢)}, so |T | = 2d. We denote by S the set of all special vertices, so T ✓ S and
|S| = 2d+1 � 1.

We now define metrics wY and wN as follows. We first define wN. For every pair v, v0 of vertices in V , assume
v 2 Vx and v0 2 Vx0 ; denote by ˆ̀ the level of the lowest common ancestor of nodes x and x0 in ⇢; and assume
without loss of generality that the level of x is at least the level of x0. Now let x̃ be any leaf of ⇢ that lies in the
subtree of ⇢ rooted at x; then wN(v, v0) = dist⇢(x̃, x) + dist⇢(x̃, x0) (note that this is well-defined since any such
leaf x̃ will give the same value of dist⇢(x̃, x) + dist⇢(x̃, x0)). We now define wY. For every pair v, v0 2 V such that
at least one of v, v0 does not lie in S, wY(v, v0) is defined identically as wN(v, v0). For every pair v, v0 of vertices
in S with v 2 Vx and v0 2 Vx0 , the value wY(v, v0) is defined slightly di↵erent as wY(v, v0) = dist⇢(x, x0).

We prove the following claim which says on wY and wN defined above are indeed metrics (that is, they satisfy
the triangle inequality). The proof is based on a straightforward case analysis, and is deferred to Appendix B.

Claim 3.1. wY, wN are metrics on V .

We next prove the following two claims showing that the minimum Steiner Tree cost of instances (V, T, wY)
and (V, T, wN) di↵er by a factor of roughly (5/3).

Claim 3.2. The minimum Steiner Tree cost of instance (V, T, wY) is at most (d+ 1) · 2d�1
.

Proof. Consider the following Steiner Tree T whose vertex set is S. Recall that S = {ux | x 2 V (⇢)}. The edge
set of T contains, for each edge (x, x0) 2 E(⇢), an edge (ux, ux0). From the definition of wY, it is easy to verify
that the tree T is identical to the tree ⇢ (together with its edge weights). Therefore,

wY(T) = w(⇢) = 2d +
X

1id�1

2(d�1)�i · 2i = (d+ 1) · 2d�1.

Claim 3.3. The minimum Steiner Tree cost of instance (V, T, wN) is at least (5/3) · d · 2d�1
.

Proof. We start by proving the following observation on an optimal Steiner Tree of instance (V, T, wN).

Observation 3.1. There exists an optimal Steiner Tree T of instance (V, T, wN), such that for each node

x 2 V (⇢), |V (T) \ Vx| is either 0 or 1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4897

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Let T ⇤ be an optimal Steiner Tree of instance (V, T, wN), and assume that there exists a node x 2 V (⇢),
such that T ⇤ contains at least two distinct vertices of Vx, that we denote by v, v0. Clearly, x is a non-leaf node
in ⇢ and so both v and v0 are Steiner vertices in T ⇤. From the definition of wN, for any vertex u 2 V, u 6= v, v0,
wN(u, v) = wN(u, v0). Let T be the tree obtained from T ⇤ by replacing every v0-incident edge (u, v0) 2 E(T ⇤)
with edge (u, v) and then removing any parallel edges. It is easy to verify that T is also a Steiner Tree of instance
(V, T, wN), and that w(T)  w(T ⇤). Since T ⇤ is an optimal Steiner Tree, T has to be an optimal Steiner Tree as
well. We can keep modifying T in the same way until every group Vx contains at most one vertex in T , while
ensuring that the resulting tree T stays an optimal Steiner Tree of instance (V, T, wN). This completes the proof
of the observation.

From Observation 3.1, and since all vertices in the same group behave identically with respect to wN, we
conclude that there is an optimal Steiner Tree T with V (T) ✓ S. Therefore, we from now on focus on showing
that the optimal Steiner Tree of instance (S, T, wN) is at least (5/3) · d · 2d�1. Recall that S = {ux | x 2 V (⇢)}.
We use the following observation, whose proof is deferred to Appendix C.

Observation 3.2. Let T be an optimal Steiner Tree of the instance (S, T, wN), then every edge of T is incident

to a vertex in T .

For each non-leaf node x 2 V (⇢), we denote by R(x) the subtree of ⇢ rooted at x and denote by R1(x),
R2(x) the subtrees of ⇢ rooted at two children of x, respectively. Recall that S = {ux0 | x0 2 V (⇢)}. We define
sets S1(x) = {ux0 | x0 2 R1(x)}, S2(x) = {ux0 | x0 2 R2(x)} and S0(x) = {ux0 | x0 /2 R(x)}. We then define
Ti(x) = T \ Si(x) for i 2 {0, 1, 2}, and T (x) = T1(x) [T2(x). For convenience, for every node x 2 V (⇢) at level
i of ⇢, we also say that ux is a level-i vertex in S. Similarly, if node x is the parent of node x0 in ⇢, we also say
that vertex ux is the parent of vertex ux0 in S.

We use the following observation, whose proof is deferred to Appendix D.

Observation 3.3. There is an optimal Steiner Tree T of the instance (S, T, wN), such that for every Steiner

vertex ux in T : (i) ux has either one or two neighbors in T0(x), exactly one neighbor in T1(x), and exactly

one neighbor in T2(x); (ii) if we denote by W1 and W2 the connected components in the graph T 0 \ {ux} that

contains the T1(x)-neighbor of ux and the T2(x)-neighbor of ux, respectively, then T1(x) ✓ V (W1) ✓ S1(x), and
T2(x) ✓ V (W2) ✓ S2(x); and (iii) for every vertex ux at level at most d� 2 in S, exactly one vertex from the set

containing ux and its two children belongs to V (T).

We are now ready to complete the proof of Claim 3.3. Let r be the root of tree ⇢. Note that metric wN

and tree ⇢ are both determined by a single nonnegative integer d. In order to avoid ambiguity, we denote by
(S, T, wN)d the instance determined by d. For each d � 0, we define

• A(d) as the minimum cost of a Steiner tree of instance (S, T, wN)d that does not contain ur; and

• B(d) as the minimum cost of a Steiner tree of instance (S, T, wN)d that contains ur.

It is easy to verify that A(1) = 2 and B(1) = 2. We now show that, for each d � 1,

(3.1) A(d+ 1) = A(d) +B(d) + 2d�1 + 2d; and B(d+ 1) = 2 ·A(d) + 2d+1.

On the one hand, let T be an optimal Steiner tree of instance (S, T, wN)d+1 that does not contain ur. Let
u1, u2 be the children of ur. From Observation 3.3, exactly one of u1, u2 is contained in T . Assume w.l.o.g. that
u1 2 V (T). From Observation 3.3, T is the union of

• a Steiner tree of instance (S1(ur), T1(ur), wN)d+1 that contains u1 (denote by T1);

• a Steiner tree of instance (S2(ur), T2(ur), wN)d+1 that does not contain u2 (denote by T2); and

• an edge connecting T1 to T2.

Note that instances (S1(ur), T1(ur), wN)d+1 and (S2(ur), T2(ur), wN)d+1 are identical to the instance (S, T, wN)d,
so w(T1) = B(d) and w(T2) = A(d). Note that the minimum weight of an edge connecting T1 to T2 is the edge
connecting u1 to any leaf in T2(ur), which has cost 2d�1 + 2d. Therefore, A(d+ 1) = A(d) +B(d) + 2d�1 + 2d.

On the one hand, let T be an optimal Steiner tree of instance (S, T, wN)d+1 that contains ur. From
Observation 3.3, both u1, u2 are contained in T . Indeed, T is the union of

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4898

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• a Steiner tree of instance (S1(ur), T1(ur), wN)d+1 that does not contain u1 (denote by T1);

• a Steiner tree of instance (S2(ur), T2(ur), wN)d+1 that does not contain u2 (denote by T2); and

• an edge connecting T1 to ur and an edge connecting T2 to ur.

Via similar arguments, we can show that w(T1) = w(T2) = A(d). Note that the minimum weight of an
edge connecting T1 to ur is the edge connecting any leaf in T1(ur) to ur, which has cost 2d. Therefore,
B(d+ 1) = 2 ·A(d) + 2d+1.

We now use the inequality 3.1 to complete the proof of Claim 3.3. From 3.1, we get that, for each d � 1,
A(d+1) = A(d)+ 2 ·A(d� 1)+5 · 2d�1. Using standard techniques and the initial values A(0) = 0 and A(1) = 2,
we get that

A(d) =

✓
5

6

◆
· d · 2d +

✓
�1

9

◆
· (�1)d +

✓
1

9

◆
· 2d.

Therefore, from 3.1, we get that

B(d) = 2 ·A(d� 1) + 2d = 2 ·
✓✓

5

6

◆
· (d� 1) · 2d�1 +

✓
�1

9

◆
· (�1)d�1 +

✓
1

9

◆
· 2d�1

◆
+ 2d

=

✓
5

6

◆
· d · 2d +

✓
2

9

◆
· (�1)d +

✓
5

18

◆
· 2d.

Therefore, A(d), B(d) � (5/6) · d · 2d. This completes the proof of Claim 3.3.

From Claim 3.2 and Claim 3.3, we get that

ST(IN)

ST(IY)
� (5/3) · d · 2d�1

(d+ 1) · 2d�1
� 5

3
� 1

d
� 5

3
� ".

We now complete the proof of Theorem 1.1 using the metrics wY, wN defined above.
We construct a pair DY,DN of distributions on metric Steiner Tree instances (V 0, T 0, w0) as follows. Set V 0

is fixed and contains n vertices. Let F be the set of all one-to-one mappings from V 0 to V . For each mapping
f 2 F , we define a pair of instances If

Y
and If

N
as follows:

• If
Y
= (V 0, f�1(S), wf

Y
), where wf

Y
is defined as: 8v, v0 2 V 0, wf

Y
(v, v0) = wY(f(v), f(v0));

• If
N
= (V 0, f�1(S), wf

N
), where wf

N
is defined as: 8v, v0 2 V 0, wf

N
(v, v0) = wN(f(v), f(v0));

where f�1(S) = {v 2 V 0 | f(v) 2 S}. We then let DY be the uniform distribution on all instances in
n
If
Y
| f 2 F

o
,

and let DN be the uniform distribution on all instances in
n
If
N
| f 2 F

o
. Let D be the distribution that sample

an instance from DY with probability 1/2, and sample an instance from DN with probability 1/2.
It is easy to verify that for each mapping f 2 F , ST(If

Y
) = ST(IY) and ST(If

Y
) = ST(IY) hold, so any

algorithm that with probability 0.51 estimates the cost to within factor (5/3� ") can correctly report a random
instance from D comes from DY or DN with probability 0.51.

Recall that the metrics wY and wN are identical on all pairs of vertices that are not both terminals. For each
instance If

Y
, we say a pair (v01, v

0
2) of vertices in V 0 is crucial i↵ v01, v

0
2 2 f�1(S), and we say that the pair (v01, v

0
2)

is discovered i↵ the pair (v01, v
0
2) is queried by the algorithm. From Yao’s minimax principle [7] and the above

discussion, in order to distinguish between DY and DN with probability 0.51, it is necessary that the algorithm
discovers a crucial pair on at least 0.01-fraction of the instances in IY. Therefore, the proof of Theorem 1.1 is
concluded by the following lemma.

Lemma 3.1. Any deterministic algorithm that discovers a crucial pair on at least 0.01-fraction of the instances

in IY performs at least ⌦(n2/22d) queries in expectation.

Proof. Since f is a random one-to-one mapping from V 0 to V , the set f�1(S) is a random size-|S| subset of
V 0. Therefore, the probability that a single query discoveres a crucial pair is

�|S|
2

�
/
�n
2

�
, and it follows that

the expected number of queries that is required to discovers a crucial pair with probability at least ⌦(1) is
⌦
��n

2

�
/
�|S|

2

��
= ⌦(n2/22d).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4899

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4 Algorithm for a (2� "0)-Estimation of Steiner Tree Cost

In this section we provide the proof of Theorem 1.3. Specifically, we will construct an algorithm, that, takes as
input a set V of n points, a set T ✓ V of k terminals, and access to a metric w on V , estimates the metric
Steiner Tree cost to within a factor of (2� "0), for some universal constant "0 that does not depend on n and k,
by performing Õ(n12/7 + n6/7 · k) queries. This section is organized as follows. First, in Section 4.1, we give an
algorithm that, assumes that the induced metric of w on T is known to us upfront, estimates the metric Steiner
Tree cost to within a factor of (2� "0) with Õ(n3/2 + n3/4 · k) queries. The detail of some critical subroutine of
the algorithm is provided in Section 4.2. Then in Section 4.3, we show how to remove the assumption that the
induced metric of w on T is given, while still attaining a slighly worse (while still sublinear) query complexity
Õ(n12/7 + n6/7 · k).

4.1 An Algorithm with the Terminal-Induced Metric Given Upfront In this subsection, we assume
that the metric on terminals induced by w is given to us upfront, and give an algorithm that estimates the metric
Steiner Tree cost to within a factor of (2�"0). We first give a high-level overview, and then describe the algorithm
in detail and provide its analysis.

Overview of the algorithm We start by constructing a minimum spanning tree over the terminals, say T ⇤.
Let MST denote the weight of T ⇤, so ST(V, T, w) � MST/2. The rest of the algorithm focuses on gathering “local
evidence” to ascertain that ST(V, T, w) is bounded away from MST. If the algorithm fails to find the evidence to
support this assertion, then we will be able to claim that ST(V, T, w) is bounded away from MST/2.

We now describe what constitutes this local evidence. At a high-level, it is some property of the metric w
that allows us to locally “restructure” the minimum terminal spanning tree maintaining connectivity among the
terminals while reducing its total cost. To get some intuition for this process, let us consider a metric where all
distances are 1 or 2. Suppose that the distances between all terminals are 2, the distances between all Steiner
vertices are 2, and the distances between a terminal and a Steiner vertex is either 1 or 2. Clearly, MST = 2k� 2.
Assume that a Steiner vertex v is at distance 1 to three terminals u1, u2, u3. Now if we remove two edges from
T ⇤ such that terminals u1, u2, u3 lie in di↵erent connected subtrees, and then add the edges (v, u1), (v, u2), and
(v, u3), then we get another Steiner Tree that now contains v. Note that, in this process we have deleted two
edges of cost 2 each and added three edges of cost 1 each, so essentially the total cost decreases by 1. We view
this “Steiner vertex v connects to terminals u1, u2, u3 via length-1 edges” structure as a “local evidence that
separates ST(V, T, w) from MST”.

It is not hard to observe that, this type of evidence is both local and aggregatable, e.g., if a Steiner vertex v
is at distance 1 to terminals u1-u3 and another Steiner vertex v0 is at distance 1 to terminals u4-u7, then we can
“save a total of (4�3)+(6�4) = 3 units of cost” from MST. The process of identifying the best way to aggregate
these local cost-saving improvements is reminiscent of solving an instance of Set Cover. Specifically, if we define,
for each Steiner vertex v, a set Wv containing all terminals u 2 T with w(u, v) = 1, then a good aggregation
of the local evidence is a collection of a small number of sets Wv that cover many terminals. In particular, if
we denote W = {Wv | v /2 T}, then using similar “local MST restructure”-type arguments, we can show that
ST(V, T, w)  MST� ⌦(k � SC(T,W)), where SC(T,W) is the minimum solution size of the Set Cover instance
(T,W). Therefore, our goal now is to estimate the value of k � SC(T,W) to within an additive "k factor (and
some small multiplicative factor). We provide an Õ(n3/2 + n3/4 · k)-query algorithm for this task in Section 4.2,
and then show how to implement this algorithm when the terminal-induced metric is not given upfront, with a
slightly worse query complexity Õ(n12/7 + n6/7 · k).

We next describe how the ideas outlined above for the special case of (1, 2)-metric, can be extended to the
general case. Let us consider the construction of the minimum spanning tree T ⇤ on T using Kruskal’s algorithm.
Assume that the weight of every terminal-terminal edge is (1 + ")i for some non-negative integer i. Then in
the first round we add all weight-1 edges and obtain some connected components (called clusters), and in the
second round we add all weight-(1+") edges, and some clusters in the first round are merged into bigger clusters,
etc. The main observation is that, in every round, we can use the Steiner vertices to locally restructure this
cluster-merging step just as the special case. In particular, if there exists a Steiner vertex v and three first-round
clusters U1, U2, U3, such that U1, U2, U3 are merged in the second round, and w(v, U1), w(v, U2), w(v, U3) are close
to (1 + ")/2, then we can replace two weight-(1+") edges with three weight-roughly-(1+")/2 edges, thereby
saving the total cost by roughly (1+")/2 without destroying the connectivity between the terminals in U1, U2, U3.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4900

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Therefore, the main framework of our algorithm is to compute the hierarchical structure of the terminal minimum
spanning tree T ⇤ and use this set-cover-type algorithm at every “level” of T ⇤ to search for local evidence that
there is a Steiner tree of cost significantly better than T ⇤.

There is one subtlety in the above algorithmic framework, which is that the cardinality-2 sets do not provide
cost-saving. In particular, if we replace one terminal-terminal edge with two terminal-Steiner edge (of weight
about half of that of a terminal-terminal edge), then the total cost will not decrease. More concretely, if we
consider the metric wY defined in Section 3, which is the shortest-path metric induced by a complete binary
tree with edge cost geometrically decreasing along with the levels, then when we construct Set Cover instances
on di↵erent levels, we will only get cardinality-2 sets and ended up finding no local evidence at all, but in fact
ST(V, T, wY) = MST/2 holds. To overcome this issue, we introduce another evidence-searching subroutine that
goes beyond a single level of the hierarchical structure of T ⇤ while involving only O(1) vertices. This is based
on the observation that, in this very special case, although local evidence cannot be found at a single level, it
can be found by looking at two consecutive levels and only focusing on sets of O(1) vertices. It turns out that
incorporating this subroutine into the above framework gives us the desired algorithm.

We now describe the algorithm in detail. Recall that we are given an instance (V, T, w) of the metric Steiner
Tree problem and are allowed to perform queries to metric w. Also recall that the induced metric of w on T is
also given to us upfront. We use the following parameters: "0 = 2�40; " = 2�20.

Step 1. Computing an MST on T and its hierarchical structure We pre-process the instance (V, T, w) as
follows. Let D = max {w(u, u0) | u, u0 2 T}. While there exists a pair u, u0 2 T with w(u, u0)  D/k2, we delete an
arbitrary one of them from T and V . We repeat this until all pairwise distances between vertices of T are at least
D/k2. Let T 0 be the resulting terminal set we get, and define V 0 = (V \ T) [T 0. We then scale the metric w by
defining another metric w0 on V 0 such that for every pair v, v0 2 V , w0(v, v0) = w(v, v0)/min {w(u, u0) | u, u0 2 T 0},
so now the distance (under w0) between every pair of terminals in T 0 is at least 1 and at most k2. It is easy to
verify that: (i) the metric Steiner Tree cost ST(V 0, T 0, w0) of instance (V 0, T 0, w0) is within factor (1 + O(1/k))
of ST(V, T, w)/min {w(u, u0) | u, u0 2 T 0}; and (ii) every distance query to w0 can be simulated by a distance
query to w. Therefore, from now on we work with instance (V 0, T 0, w0), and we will construct an algorithm that
with high probability estimates the value of ST(V 0, T 0, w0) to within a factor of (2 � 2"0). Eventually, when the
algorithm returns an estimate X of ST(V 0, T 0, w0), we return X ·min {w(u, u0) | u, u0 2 T 0} as the output estimate
of ST(V, T, w). It is easy to verify that the final output of the algorithm is with high probability a (2 � "0)-
approximation of ST(V, T, w). For convenience, in the remainder of this section, we rename the vertex set V 0, the
terminal set T 0 and the metric w0 by V, T, w, respectively.

Let L =
⌃
log1+" k

2
⌥
. For every pair u, u0 2 T , we say that the edge (u, u0) is at level i (or (u, u0) is an level-i

edge), i↵ (1 + ")i�1  w(u, u0) < (1 + ")i. Clearly, every edge connecting a pair of terminals is at level at most
L. For each 1  i  L, we define Hi to be the graph on T that contain all edges up to level i, and we define H0

to be the empty graph on T . For each index 1  i  L, we define Si as the collection of vertex sets of connected
components of graph Hi�1. That is, each set in Si contains all vertices of some connected component of Hi�1.
Clearly, each Si is a partition of T .

Let S =
S

1iL Si. It is easy to verify that S is a laminar family. That is, every pair S, S0 of sets in S, either
S ✓ S0, or S0 ✓ S, or S \ S = ;. We associate with S a partition tree T as follows. The vertex set of T contains,
for each set S 2 S, a node xS representing the set S. The edge set of T contains, for each pair S, S0 2 S such
that S ✓ S0 and S, S0 lie on consecutive levels, an edge (xS , xS0). In this case, we say that xS0 is the parent node
of xS (and xS is a child node of xS0); similarly, we say that S0 is a parent set of S (and xS is a child set of S0).
Note that SL contains a single set, and its corresponding node in T is designated as the root of T . It is easy to
verify that T is a tree.

Lastly, we compute a minimum spanning tree T ⇤ on T , and denote MST = w(T ⇤). As the induced metric of
w on T is given to us upfront, in this step we did not perform any additional queries.

Step 2. Finding local evidence using a set-cover-type subroutine We start by introducing a set-cover-
type subroutine that we will use in this step.Algorithm AlgSetCover. Let (U,W) be an instance of the Set Cover problem, where U is a collection of
elements and W is a collection of subsets of U . For convenience, throughout the paper, when we consider an
instance (U,W) of Set Cover, we always assume that W contains, for each element u 2 U , a singleton set {u},

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4901

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

so |W| � |U |, and if we denote by SC(U,W) the size of the smallest set cover for the instance (U,W), then
SC(U,W)  |U |. The elements of U and the number of sets in W are known to us, but we do not know which
elements each set of W contains. We are allowed to perform queries to a membership oracle of instance (U,W),
which is an oracle that, takes as input an element u 2 U and a set W 2 W , returns whether or not u belongs to
W . A query to the membership oracle of instance (U,W) is also called a membership query to instance (U,W).

For a collection W of subsets of U , we denote by W 6=2 the collection that contains all sets in W with size
not equal to 2. For positive real numbers X,Y, a, b with a > 1, we say that X is an (a, b)-estimation of Y i↵
Y  X  aY + b.

We use the following theorem, whose proof is deferred to Section 4.2.

Theorem 4.1. There is a polynomial-time randomized algorithm called AlgSetCover, that, given any instance

(U,W) of Set Cover and any constant 0 < " < 1, with high probability, returns a (4, "|U |)-estimation of�
|U | � SC(U,W 6=2)

�
, by performing O((|W|3/2 + |W|3/4|U |)(log |W|)2/"3) membership queries to the instance

(U,W).

We remark that improving the query complexity of the result above will immediately improve the query
complexity for the (2 � "0)-estimation algorithm. Also, note that the number of queries needed by a naive
algorithm to solve the estimation problem above would be O(|U ||W|), the size of the input description. So the
theorem above provides an estimation algorithm that is sublinear in the size of the input description whenever
|W|3/2 = o(|U ||W|).

For each index 1  i  L and each pair u, u0 2 T , we let wi(u, u0) = w(u, u0) if (u, u0) is a level-i edge;
otherwise we let wi(u, u0) = 0. Consider the minimum spanning tree T ⇤ computed in Step 1. For each 1  i  L,
we say that level i is light i↵ wi(T ⇤) < MST/(L log n) (that is, the total weight of all level-i edges in T ⇤ is
less than MST/(L log n)); otherwise we say that level i is heavy. For a set E of edges in E(T ⇤), we define
wi(E) =

P
(u,u0)2E wi(u, u0) and call wi(E) the level-i weight of set E. The following observation is immediate.

Observation 4.1.
P

i: level i is light wi(T ⇤)  MST/ log n.

Before we describe the set-cover-type subroutine in detail, we give some intuition. We intend to find local
evidence on di↵erent levels separately. For each 0  i  L and for each set S 2 Si, we think of vertices in S as
already connected via edges up to level i. So we will search for better ways to connect di↵erent sets in Si via
Steiner vertices. However, for Steiner vertex v and set S 2 S, naively it takes O(|S|) queries to compute w(v, S),
which we cannot a↵ord as |S| can be as large as k. Therefore, for each S 2 Si, we will first compute a subset
S̃ ✓ S as its “representative”, such that |S̃| is small, and the values w(v, S) and w(v, S̃) are close for all Steiner
vertices v.

We now describe the set-cover-type subroutine in detail. For each level i that is heavy, we construct an
instance Ii = (Ui,Wi) of Set Cover as follows. Recall that Si is the collection of all level-i sets. We first compute,
for each index 0  i  L and for each set S 2 Si, a maximal subset S̃ of S, such that the distance between every
pair of terminals in S̃ is at least " · (1 + ")i. We define S̃i to be the collection that contains all such sets S̃ with

|S̃|  (L log2 n)/". The ground set Ui in instance Ii is defined as Ui =
n
xS | S̃ 2 S̃i

o
. The collection Wi contains,

for each vertex v 2 V \ T , a set Wi(v) that is defined as Wi(v) =
n
xS | w(v, S̃)  (3/5) · (1 + ")i

o
. We use the

following simple observations.

Observation 4.2. |Ui|  k, |Wi|  n�k, and every membership query in the instance (Ui,Wi) can be simulated

by at most (L log2 n)/" distance queries to the metric w.

Observation 4.3. For each level i that is heavy, |Ui| � (1�O(1/ log n)) · |Si|.

Proof. Recall that Ui =
n
xS | S̃ 2 S̃i

o
. It su�ces to show that, if level i is heavy, then there are at most

O(1/ log n) fraction of sets S in Si with |S̃| > (L log2 n)/". Define X =
S

S2Si
S̃. Note that every pair of vertices

in X are at distance at least " · (1 + ")i in w. Therefore, |X|  1 +MST/(" · (1 + ")i)  2 ·MST/(" · (1 + ")i).
On the other hand, since level i is heavy, wi(T ⇤) � MST/(L log n), and so |Si| � MST/(L · log n · (1 + ")i�1).
Altogether,

L log2 n

"
·
����

⇢
S 2 Si | |S̃| >

L log2 n

"

� ����  |X|  2 ·MST

" · (1 + ")i
 |Si| ·

2L · log n
" · (1 + ")

,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4902

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

and it follows that there are at most O(1/ log n) fraction of sets S in Si with |S̃| > (L log2 n)/".

Then for each 0  i  L, we apply the algorithm AlgSetCover to instance Ii = (Ui,Wi) constructed above,
and obtain an estimate Xi of

�
|Ui| � SC(Ui, (Wi) 6=2)

�
. If

P
0iL(1 + ")i · Xi > 230 · "0 · MST, then we return

(1�"0)·MST as an estimate of ST(V, T, w). Otherwise, we go to the next step. Since the algorithm in Theorem 4.1
performs (|Ui||Wi|3/4 + |Wi|3/2) · (log(|Ui|+ |Wi|))O(1)  Õ(n3/2 + n3/4k) queries, using Observation 4.2, we get
that the algorithm performs Õ(n3/2+n3/4k) ·O(L log2 n) = Õ(n3/2+n3/4k) queries on the metric w in this step.

Analysis of Step 2 when the algorithm returns (1 � "0) · MST as the estimate of ST(V, T, w) Before
we proceed to describe the next steps of the algorithm, we first show in this subsection that, if we collected
enough local evidence in this step, then indeed ST(V, T, w) is bounded away from MST. Specifically, we will show
that, if

P
0iL(1 + ")i · Xi > 230 · "0 · MST, then ST(V, T, w)  (1 � "0) · MST. Since ST(V, T, w) � MST/2,

our estimate in this case is indeed a (2 � 2"0)-approximation of ST(V, T, w). For each 0  i  L, we define
Yi = |Ui|� SC(Ui, (Wi) 6=2). Define L0 =

⌃
log1+" 2

⌥
, so L0 is a constant between 219 and 220 from the definition of

". We start by proving the following claim.

Claim 4.1. For each 0  i  L� 1, there exists a set Ei of edges, each connecting a terminal in T to a Steiner

vertex in V \ T , such that (i) the vertex sets of the connected components in graph Hi�1 [Ei are exactly the sets

in Si+L0�1; and (ii) w(Ei) 
�P

is<i+L0 ws(T ⇤)
�
� (1/20) · (1 + ")i · |Yi|.

Proof. Fix an index 0  i  L� 1 and consider the instance Ii = (Ui, (Wi) 6=2). Let W⇤
i be an optimal set cover

of instance (Ui, (Wi) 6=2). We compute a sub-collection fWi of W⇤
i as follows. We process the sets of W⇤

i in an

arbitrary order. Upon processing each set inW⇤
i , we add it into to fWi i↵ the set contains at least two elements that

are not contained in all previously processed sets in W⇤
i . Denote the resulting set by fWi = {Wi(v1), . . . ,Wi(vr)},

where the sets are indexed according to the order in which they are added to fWi. For each 1  j  r � 1, define
Ui(vj) = Wi(vj) \

�S
1tj�1 Wi(vt)

�
. From the above discussion, sets Ui(v1), . . . , Ui(vr) are mutually disjoint

and each containing at least two elements.
On the one hand, we show that

P
1jr |Ui(vj)| � 2 · |Yi|. In fact, in the process of iteratively processing

the sets of W⇤
i to obtain a subcollection fWi, every set that is not added into fWi contains exactly one element

that does not lie in previously processed sets. Therefore, at least Yi sets are eventually added to fWi. Note that
|Ui(vj)| � 2 for each 1  j  r, we get that

P
1jr |Ui(vj)| � 2 · |Yi|.

On the other hand, we construct the set Ei of edges via the following iterative process. Throughout, we
maintain a set Ê of edges, that is initialized to be the set of all edges in T ⇤ from level i to level i + L0 (so the
initial total weight of Ê is

P
is<i+L0 ws(T ⇤)). We will ensure that set Ê always satisfies the property (i) in the

claim. That is, the vertex sets of the connected components in graph Hi�1 [Ê are exactly the sets in Si+L0�1.
We iteratively process Steiner vertices v1, . . . , vr while modifying set Êi as follows. Consider now the iteration of
processing vj for some 1  j  r. Denote Ui(vj) = {S1, . . . , Sp}, where S1, . . . , Sp 2 Si�1. Clearly, sets S1, . . . , Sp

are subsets of the same set in Si+L0�1, as each pair of them is at distance at most (6/5) · (1 + ")i < (1 + ")i+L0�1

in w. Moreover, from the definition of Wi(vj), for each 1  q  p, there exists a terminal uq 2 Sq such that
w(vj , uq)  (3/5) · (1 + ")i. We distinguish between the following two cases.

Case 1. |Ui(vj)| � 3. We simply add edges (vj , u1), . . . , (vj , up) into the set Ê. Since initially set Ê contains
all edges of E(T ⇤) at level i, and since elements in Ui(vj) do not belong to any other set in {Ui(v1), . . . , Ui(vr)},
it is easy to see that, we can delete (p� 1) edges from the current set Ê that are level-i edges of E(T ⇤), such that
the resulting set Ê still satisfies property (i) in the claim.

Case 2. |Ui(vj)| = 2. Since |Wi(vj)| � 3, there must exist another set S0 2 Si such that element xS0 is
contained in Wi(vj) and some previous set Wi(vj0) (for some j0 < j), and so there exists a terminal u0 2 S0 with

w(vj , u0)  (3/5) · (1 + ")i. We simply add edges (vj , u0), (vj , u1), (vj , u2) into the set Ê. For similar reasons, it

is easy to see that we can delete 2 edges from the current set Ê that are level-i edges of E(T ⇤), such that the
resulting set Ê still satisfies property (i) in the claim.

In either case, we add tj edges into set Ê and delete (tj � 1) from set Ê, for some tj � 3 (and in fact

tj � |Ui(vj)|). Since the edges that are added to set Ê have weight at most (3/5) · (1 + ")i, and the edges that

are deleted from set Ê have weight at least (1 + ")i�1. In the iteration of processing vj , the total weight of Ê

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4903

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

decreases by at least (tj � 1) · (1 + ")i�1 � tj ·
�
(3/5) · (1 + ")i

�
� (1/40) · tj · (1 + ")i, as tj � 3. Therefore, the

accumulative decrease of the total weight of Ê has weight is at least

X

1jr

tj · (1 + ")i

40
�

X

1jr

|Ui(vj)| · (1 + ")i

40
� |Yi| · (1 + ")i

20
.

Denote the resulting set Ê by Ei, and the claim now follows.

We now use Claim 4.1 to complete the analysis of Step 2. For each index 0  j  L0 � 1, we define
↵j =

P
0iL: i⌘j(mod L0) Yi · (1 + ")i. Clearly,

P
0j<L0 ↵j =

P
0iL(1 + ")i · Yi, and so there exists some

0  j⇤  L0 � 1 such that ↵j⇤ � (1/L0) ·
P

0iL(1 + ")i · Yi. We now define E0 as the set that contains (i)
all edges of T ⇤ that are at level 0, 1, . . . , j⇤ � 1; and (ii) all edges of Ej⇤ , Ej⇤+L0 , Ej⇤+2L0 , . . . , that are given by
Claim 4.1. From Claim 4.1, it is easy to verify that the graph induced by edges of E0 is a Steiner tree of instance
(V, T, w), and moreover,

w(E0)  w(T ⇤)� 1

20
· ↵j⇤

 w(T ⇤)� 1

20L0 ·
X

0iL

(1 + ")i · Yi

 w(T ⇤)� 1

20L0 ·
X

0iL

(1 + ")i · Xi � "|Ui|
4

= w(T ⇤)� 1

20L0 ·
✓ X

0iL

(1 + ")i ·Xi

4
�

X

0iL

(1 + ")i · "|Ui|
4

◆

 w(T ⇤)� 1

20L0 ·
✓
230 · "0 ·MST

4
� " ·MST

◆
 (1� "0) · w(T ⇤),

according to the definition of ", "0 and the fact that 219  L0  220. This shows that our estimate in this case is
indeed a (2� 2"0)-approximation of ST(V, T, w).

Step 3. Finding local evidence using a 4-vertex subroutine In the third and last step, we focus on finding
one specific type of local evidence, by querying distances related to groups of 4 vertices.

Recall that we have computed a laminar family S of subsets of terminals in T and its partition tree
T . We say that a node xS in T is good i↵ xS has exactly two children in T , and each child node of xS

also has exactly two children in T . In this case, we also say that the corresponding set S in S is good.
Consider a good set S 2 S. Let S1, S2 be its child sets, let S11, S12 be the child sets of S1, and let
S21, S22 be the child sets of S2. We define the advantage of set S, denoted by adv(S), as follows. We define
w⇤(S) = w(S11, S12) + w(S21, S22) + w(S1, S2), that is, the total edge weight in T ⇤ that is used to connect the
four sets S11, S12, S21, S22 into a single set S. We say that a set Y represents S, i↵ Y contains exactly four terminals
u11, u12, u21, u22 2 T , such that u11 2 S11, u12 2 S12, u21 2 S21, and u22 2 S22. For a set Y that represents S,
we define adv(S, Y) = w⇤(S)�minv2V \T {ST(Y [{v} , Y, w)}, so adv(S, Y) is the maximum cost reduction (local
evidence) that can be achieved with the help of any single Steiner vertex. We define adv(S) = maxY {adv(S, Y)}.
Intuitively, in this step we are searching for the benefit of utilizing one Steiner vertex to restructure a specific
type of 2-level local structure in T ⇤.

We now describe the algorithm in this step. We denote by Sg the collection of all good sets in S. For each
0  i  L, let Si

g be the set of all level-i good sets. For each good set S 2 Si
g, similar to Step 2, we compute a

maximal subset S̃ of S, such that the distance between every pair of terminals in S̃ is at least " · (1 + ")i. We
then define

Ai =
X

S2Si
g :|S̃|(L log2 n/")

adv(S) · 1
⇥
adv(S) � "3/4(1 + ")i

⇤
.

However, we are unable to compute Ai using few queries, as the number of sets S with |S̃|  (L log2 n/") can be
large, and for each such set, computing adv(S) takes ⌦(n) queries since we need to try all Steiner vertuces. To get

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4904

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

around this obstacle, we will compute, for each i, an estimate Bi of Ai as follows. Let Ŝi
g be the collection of all

level-i good sets S with |S̃|  (L log2 n)/". We sample (log n)/"10 sets in Ŝi
g. For each sampled set S 2 Ŝi

g, we first

query all distances between any terminal in S̃ and any vertex in V \T . We then try all four-terminal sets Y , such
that Y ✓ S̃ and Y represents S (note that there are at most O((L log2 n/")4) such sets), and compute adv(S, Y)
using the acquired distance information. We then let adv(S) be the maximum over all values adv(S, Y) that we
computed. We then let Bi be the sum of adv(S) for all sampled sets S such that adv(S) > ("3/4/2) · (1 + ")i,
namely

Bi =
X

S sampled

✓
("3/4/2) · (1 + ")i

◆
· 1
⇥
adv(S) � ("3/4/2) · (1 + ")i

⇤
.

Finally, we compute
P

0iL Bi · |Ŝi
g|/(log n/"10). If it is greater than 5"3/4 ·MST, then we return (1� "0) ·MST

as an estimate of ST(V, T, w). Otherwise, we return MST as an estimate of ST(V, T, w). This completes the
description of Step 3, and also completes the description of the whole algorithm. In Step 3, we performed in total�
(log n)/"10

�
·O((L log2 n/")4) ·O(n) = Õ(n) queries. Overall, the algorithm performs Õ(n3/2 +n3/4k) + Õ(n) =

Õ(n3/2 + n3/4k) queries.

Analysis of Step 3 when the algorithm returns (1 � "0) ·MST as the estimate of ST(V, T, w) We now
show that, if we collected enough local evidence in this step, then indeed ST(V, T, w) is bounded away from
MST. Specifically, we will show that, with high probability, if

P
0iL Bi · |Ŝi

g|/(log n/"10) > 5"3/4 ·MST, then
ST(V, T, w)  (1� "0) ·MST. Since ST(V, T, w) � MST/2, this implies that our estimate in this case is indeed a
(2� 2"0)-approximation of ST(V, T, w).

We first show that, if
P

0iL Ai > (2"0) ·MST holds, then ST(V, T, w)  (1� "0) ·MST. Note that we haveP
0iL Ai =

P
i even Ai+

P
i odd Ai. We assume that

P
i even Ai > "0 ·MST (the case where

P
i odd Ai > "0 ·MST

is symmetric). Consider now the minimum spanning tree T ⇤ computed in Step 1. We will iteratively modify T ⇤

by processing good sets in Sg and eventually obtain a Steiner Tree of instance (V, T, w), such that the total cost
decreases by at least

P
i even Ai.

We now formally describe the iterative modification process. Throughout the process, we will maintain
a Steiner Tree T of instance (V, T, w), that is initialized to be T ⇤. Let Se

g be the set of all good sets S at

an even-index level, such that |S̃|  (L log2 n)/". In each iteration, we pick a set S 2 Se
g that is at the

lowest level, and after processing S we discard it from Se
g . We now describe the iteration of processing set

S. Let sets S1, S2, S11, S12, S21, S22 be defined as before. Before this iteration, each of these six sets induce
a connected subgraph of the current tree T , and they are connected in T by an edge e1 connecting S11 to
S12, an edge e2 connecting S21 to S22, and an edge e connecting S1 to S2. Clearly, the total cost of these
three edges is at most w⇤(S), by the definition of w⇤(S). Consider now the set Y that represents S such that
adv(S) = adv(S, Y). Let E0

Y be the set of edges in the Steiner Tree that achieves adv(S, Y). In this iteration
we simply replace edges e, e1, e2 with edges in E0

Y . It is easy to see that the resulting tree T is still a Steiner
Tree of instance (V, T, w), and the decrease of total weight is w⇤(S) � w(E0

Y) = adv(S, Y) = adv(S). Therefore,
after processing all sets in Se

g in this way, we obtain a Steiner Tree of instance (V, T, w) with total cost at most
w(T ⇤)�

P
S2Se

g
adv(S) = w(T ⇤)�

P
i even Ai  (1� "0) ·MST. This shows that ST(V, T, w)  (1� "0) ·MST.

We now show that, if
P

0iL Bi · |Ŝi
g|/(log n/"10) > 5"3/4 · MST, then

P
0iL Ai > (2"0) · MST holds,

completing the analysis of Step 3 when the output is (1�"0)·MST. We start with the following simple observation.

Observation 4.4. For each good set S 2 Si
g and each set Y that represents S, there exists a set Ỹ ✓ S̃ that

represents S, such that adv(S, Y)  adv(S, Ỹ) + 8" · (1 + ")i.

Proof. Let Y = {u11, u12, u21, u22}. Recall that S̃ is a maximal subset of S, such that the distance between every
pair of terminals in S̃ is at least " · (1 + ")i. So there exist vertices ũ11 2 S11, such that w(u11, ũ11)  " · (1 + ")i.
Similarly, there exist vertices ũ12 2 S12, ũ21 2 S21, ũ22 2 S22 that are close to u12, u21, u22, respectively. We
simply let Ỹ = {ũ11, ũ12, ũ21, ũ22}. Assume that the set Y achieves the cost adv(S, Y) via Steiner vertex v and
tree T . It is easy to observe that by replacing vertex uij with ũij , we obtain another Steiner tree T̃ that achieves
advantage at least adv(S, Y)� 8" · (1 + ")i. Observation 4.4 now follows.

Consider now the collection Ŝi
g. Let S 0 ✓ Ŝi

g contain all sets S 2 Ŝi
g with adv(S) � "3/4(1 + ")i, and let S 00

contain other sets. Since we have sampled log n/"10 sets in Ŝi
g, from Cherno↵ Bound,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4905

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• if |S 0| � " · |Ŝi
g|, then with probability (1� n�10) the number of sampled sets in S 0 is within factor (1 + ")

from (log n/"10)|S 0|/|Ŝi
g|, so

|Ŝi
g|

(log n/"10)
·

X

S sampled,S2S0

("3/4/2) · (1 + ")i  (1 + ") ·
X

S2S0

adv(S);

• if |S 0| < "·|Ŝi
g|, then then with probability (1�n�10), the number of sampled sets in S 0 is at most 10 log n/"9,

|Ŝi
g|

(log n/"10)
·

X

S sampled,S2S0

("3/4/2) · (1 + ")i  (10") · ("3/4/2) · (1 + ")i · |Ŝi
g|  " · wi(T ⇤).

On the other hand, it is clear that

|Ŝi
g|

(log n/"10)
·

X

S sampled, S2S00

("3/4/2) · (1 + ")i  "3/4 · wi(T ⇤).

Altogether, we get that, with probability 1�O(n�10), Ai � (Bi � "3/4 ·wi(T ⇤))/2. Taking the union bound over
all 0  i  L, we get that, with probability 1�O(n�9),

P
0iL Ai �

P
0iL(Bi � "3/4 ·wi(T ⇤))/2. Therefore,

if
P

0iL Bi � 5"3/4 ·MST, then
P

0iL Ai � 2"3/4 ·MST � 2"0 ·MST. This completes the analysis of Step 3
when the output is (1� "0) ·MST.

Note that, if the algorithm did not return (1 � "0) · MST, then according to the algorithm,
P

0iL Bi <

5"3/4 ·MST. From the definition of Ai and Bi and similar arguments in the above analysis, we get that with high
probability,

P
0iL Ai < 5"1/2 ·MST. Then from similar arguments in Observation 4.3, we can then show thatP

S2Sg
w⇤(S)  O(MST/ log n), and

P
S2Sg

adv(S)  6"1/2 ·MST.

Analysis when the algorithm returns MST as the estimate of ST(V, T, w) Lastly, we show that, if the
algorithm did not collect enough local evidence in Step 2 and Step 3, then ST(V, T, w) is indeed bounded away
from MST/2. Specifically, we show that, if the algorithm returns MST as the estimate, then ST(V, T, w) �
MST/(2� 2"0), and so in this case the estimate is indeed a (2� 2"0)-approximation of ST(V, T, w).

Before diving into the details, we give some intuition. Consider the optimal Steiner Tree T , and we will
iteratively remove Steiner vertices from it such that eventually it becomes a spanning tree over terminals. In each
iteration, we will try to replace some set E of edges in the current tree with another set E0 of terminal-terminal
edges, such that w(E0)  (2�⌦("0)) ·w(E) holds and the resulting graph is still a Steiner Tree. Intuitively, if we
cannot find su�cient local evidence in Step 2, then most Steiner vertices in T can be eliminated such that the
resulting tree T satisfies that w(T) · (2�⌦("0))  MST. However, it is also possible that T behaves in a similar
way as wY defined in Section 3 and we cannot find Steiner vertices to eliminate in T . In this case, we will replace
some set E of edges in the current tree with a set E0 of terminal-terminal edges, such that w(E0)  2 ·w(E) holds
and simultaneously construct a set of four vertices that represents some set in S as defined in Step 3, and achieves
cost reduction comparable to w(E0). Eventually, we will collect su�cient four-vertex sets, indicating that the
local evidence that should have been found by the 4-vertex subroutine is large, contradicting the outcome of Step
3.

We now provide the complete proof. Let TOPT be an optimal solution of instance (V, T, w). We will iteratively
modify tree TOPT, such that eventually we obtain a spanning tree on T whose total weight is at most (2 � 2"0)
times the weight of TOPT. Since such a tree has total weight at least MST, we get that w(TOPT) � MST/(2� 2"0).

We now describe the tree-modification process. Throughout, we maintain a Steiner Tree T of instance
(V, T, w), that is initialized to be TOPT. Note that we can assume without loss of generality that TOPT does not
contain degree-2 Steiner vertices (since such vertices can be suppressed without increasing the total weight of
the tree), and whenever degree-2 Steiner vertices emerge in tree T , we immediately suppress them. We will also
maintain two collections X ,Y of sets of terminals in T , such that both X and Y initially contain no sets, and (i)
every set added into X has size at least 3, and will be denoted by Xi(v) for some integer 0  i  L� 1 and some

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4906

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Steiner vertex v; and (ii) every set added into Y has size exactly 4. In each iteration, we distinguish between the
following cases.

Case 1. T contains a Steiner vertex that is adjacent to at least three terminals. Let v be such a vertex.
Let u1, . . . , ut be the terminals that are adjacent to v, such that distances w(v, u1)  w(v, u2)  · · ·  w(v, ut).
Intuitively, if the distances di↵er significantly, then we can replace the heaviest edge with a terminal-terminal edge;
if the distances are almost the same and close to half of terminal-terminal distances, then they should contribute a
set to the Set Cover instance on this level (defined in Step 2); if the distances are almost the same and significantly
greater than half of terminal-terminal distances, then they can all be replaced by terminal-terminal edges, with
the total weight increasing by a factor at most (2�⌦("0)). Specifically, we distinguish between the following two
cases.

Case 1.1. There exists a pair i, j of indices such that w(ui, uj)  (2� 4"0) ·w(v, uj). In this case, we simply
replace the edge (v, uj) in T with edge (ui, uj). See Figure 2(a) for an illustration.

Case 1.2. For every pair i, j of indices, w(ui, uj) > (2�4"0) ·w(v, uj). Denote ` = w(u, v1). Observe that, in
this case, w(v, ut)  (1+5"0)·` must hold, since otherwise w(u1, ut)  w(v, u1)+w(v, ut)  (1+ 1

1+5"0
)·w(v, ut) 

(2 � 4"0) · w(v, ut), a contradiction to the assumption in this case. Also observe that, for every pair i, j,
w(ui, uj) > (2 � 4"0) · `. We denote i⇤ =

⌅
log1+" `

⇧
, and then define the set Xi⇤(v) = {u1, . . . , ut} and add

it into X (note that t � 3). We then replace, for each 2  i  t, edge (v, ui) with edge (u1, ui). See Figure 2(b)
for an illustration.

(a) Case 1.1: before (left) and after (right). (b) Case 1.2: deleted edges (red) and new edges (blue).

Figure 2: An illustration of edge replacement in Case 1.

Assume now that Case 1 does not happen, so every Steiner vertex is adjacent to at most two terminals. We
root tree T at an arbitrary Steiner vertex. Since T does not contain degree-2 Steiner vertices, every height-1
Steiner vertex is incident to exactly two terminals (since otherwise it is either a leaf or a degree-2 Steiner vertex,
a contradiction).

Consider now any Steiner vertex v of height 2 in T . Let u0
1, . . . , u

0
p be the terminals that v is adjacent to, let

v1, . . . , vt be the height-1 Steiner vertices adjacent to v, and for each 1  j  t, let uj
1, u

j
2 be the two terminals

adjacent to vj , such that w(vj , u
j
1)  w(vj , u

j
2). See Figure 3 for an illustration. Since v is not a degree-2 Steiner

vertex in T , either t � 2, or t = 1 and p � 1.

Figure 3: A schematic view of vertices and edges in Case 2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4907

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Case 2. The tree-distances in T between v and terminals u0
1, . . . , u

0
p, u

1
1, u

1
2, . . . , u

t
1, u

t
2 are not all within

factor (1 + O("0)). Intuitively, in this case the subtree of T rooted at v is not balanced enough, and so we can
always find some terminal-Steiner edge to replace with a terminal-terminal edge. In particular, we distinguish
between the following six cases.

Case 2.1. There exists a pair 1  i, j  p such that w(u0
i, u

0
j)  (2� 4"0) · w(v, u0

j). Similar to Case 1.1, we
replace edge (v, u0

j) in T with edge (u0
i, u

0
j) (see Figure 4(a)).

Case 2.2. There exists an index 1  j  t such that w(uj
1, u

j
2)  (2� 4"0) ·w(v, uj

2). We replace edge (v, uj
2)

in T with edge (uj
1, u

j
2) (see Figure 4(b)).

Case 2.3. There exist 1  i  p, 1  j  t and z 2 {1, 2}, such that w(u0
i, u

j
z)  (2 � 4"0) · w(v, u0

i). We
replace edge (v, u0

i) in T with edge (u0
i, u

j
z) (see Figure 4(c)).

Case 2.4. There exist indices 1  i  p, 1  j  t and z 2 {1, 2}, such that w(u0
i, u

j
z) 

(2 � 8"0) ·
�
w(v, vj) + w(vj , uj

z)
�
. We replace edges (v, vj), (vj , u

j
1), (vj , u

j
2) in T with edges (uj

1, u
j
2) and (u0

i, u
j
z)

(see Figure 4(d)).

Case 2.5. There exist 1  j, j0  t and z, z0 2 {1, 2}, such that w(uj
z, u

j0

z0)  (2� 8"0) ·
�
w(v, vj)+w(vj , uj

z)
�
.

We replace edges (v, vj), (vj , u
j
1), (vj , u

j
2) in T with edges (uj

1, u
j
2) and (u0

i, u
j
z), edge (vj , u

j
2) with edge (uj

1, u
j
2)

(see Figure 4(e)).
Case 2.6. There exist 1  j  t and z 2 {1, 2}, such that w(v, uj

z)  (1 � 4"0) ·
�
w(v, vj) + w(vj , uj

z)
�
. We

replace edges (v, vj), (vj , u
j
1), (vj , u

j
2) in T with edges (uj

1, u
j
2) and (v, uj

z).

(a) Case 2.1. (b) Case 2.2. (c) Case 2.3. (d) Case 2.4. (e) Case 2.5.

Figure 4: An illustration of edge replacement in Case 2.

Assume that Case 1 and 2 do not happen. We denote U =
�
u0
1, . . . , u

0
p, u

1
1, u

1
2, . . . , u

t
1, u

t
2

. From the discussion

in Case 2, it is easy to observe that the tree-distances in T between v and terminals U are within factor (1+20"0)
from each other. Denote ` = min {w(v, u) | u 2 U}. So for every terminal u 2 U , `  w(v, u)  (1 + 20"0) · `. We
denote i⇤ =

⌅
log1+" `

⇧
, and let u⇤ = argminu2U {w(v, u) | u 2 U}.

Figure 5: An illustration of edge replacement in Case 3.1 (assume that u⇤ = u0
1).

Case 3. We say Case 3 happens if one of the following subcases happen.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4908

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Case 3.1. p + t � 3. We define the set Xi⇤(v) =
�
u0
1, . . . , u

0
p, u

1
1, . . . , u

1
t

and add it into X . Then for each

1  j  t, we replace edge (vj , u
j
2) with (uj

1, u
j
2), and for each vertex u 2 U \

�
u⇤, u1

2, . . . , u
t
2

, we replace edges in

the v-u path in T with edge (u⇤, u) (see Figure 5).
Case 3.2. p = 1 and t = 1. This case can be actually viewed as the special case of the next case by letting

v2 = u2
1 = u2

2 = u0
1.

Case 3.3. p = 0 and t = 2. We assume without loss of generality that u⇤ = u1
1.

Case 3.3.1. We say that Case 3.3.1 happens if one of the following two cases happen:

• if w(v, v1)  (50"0) · `, then we define set Xi⇤(v) =
�
u1
1, u

1
2, u

2
1

and add it into X ;

• if w(v, v2)  (50"0) · `, then we define set Xi⇤(v) =
�
u1
1, u

2
1, u

2
2

and add it into X .

In addition, in the above cases, we replace edge (v2, u2
2) with (u2

1, u
2
2), edges (v2, v), (v2, u2

1) with edge (u2
1, u

1
1),

and edge (v1, u1
2) with edge (u1

1, u
1
2) (see Figure 6(a)).

Case 3.3.2. Consider now the laminar family S computed in Step 1. We say that a set U 0 of terminals in T
is interfered i↵ there is a set S in S, such that both S \ U 0, U 0 \ S 6= ;, and in this case we say that any vertex
u 2 S \U 0 is a witness. If the pair u1

1, u
1
2 of terminals are interfered, then let u be a witness, and assume without

loss of generality that there exists a set S 2 S that contains u1
1 and u but not u1

2 (the case where the pair u2
1, u

2
2

of terminals are interfered is symmetric). If the set
�
u1
1, u

1
2, u

2
1, u

2
2

is interfered, then let u be a witness, and

assume in particular that there exists a set S 2 S that contains u1
1, u

1
2 and u but not u2

1, u
2
2. In both cases, we

delete vertex v1 and all its incident edges, and add edges (u1
1, u

1
2) and (u1

1, u) (see Figure 6(b)).
If Case 3.3.2 does not happen, then the collection S computed in Step 1 must contain sets

�
u1
1, u

1
2

,
�
u2
1, u

2
2

and some set that contains all elements u1
1, u

1
2, u

2
1, u

2
2. Since S is a laminar family, there exists a minimum set in

S that contains all elements u1
1, u

1
2, u

2
1, u

2
2, that we denote by S.

Case 3.3.3. S =
�
u1
1, u

1
2, u

2
1, u

2
2

, and either w(v, v1)  (1� 4"1/4)` or w(v, v2)  (1� 4"1/4)` holds. Assume

without loss of generality that w(v, v1)  (1 � 4"1/4)`. Then we add the set S into Y, and then we replace
edge (v2, u2

2) with (u2
1, u

2
2), edges (v2, v), (v2, u2

1) with edge (u2
1, u

1
1), and edge (v1, u1

2) with edge (u1
1, u

1
2). The

illustration figure in this case is identical to that of Case 3.3.1 (see Figure 6(a)).
Case 3.3.4. w(v, v1), w(v, v2) > (1� 4"1/4) · `. In this case we simply replace edge (v, u1

2) with (u1
1, u

1
2) and

edge (v, u2
2) with (u2

1, u
2
2). We call the operation particularly in this case a bad replacement.

(a) Case 3.3.1. (b) Case 3.3.2: old and new edges (left) and part of the tree T (right).

Figure 6: An illustration of edge replacement in Case 3.3.1 and Case 3.3.2.

The only possibility that Cases 2,3 do not happen is when:

• v has two children v1, v2; v1 has two children u1
1, u

1
2; and v2 has two children u2

1, u
2
2;

• `  w(v, u1
1), w(v, u

1
2), w(v, u

2
1), w(v, u

2
2)  (1 + 20"0)`; and

• the set
�
u1
1, u

1
2, u

2
1, u

2
2

of vertices are not interfered in S, but S 6=

�
u1
1, u

1
2, u

2
1, u

2
2

.

In this case, we say that v is an unlucky vertex. If there exists a height-2 non-unlucky vertex, then we process it
using the operations described in Cases 2 and 3. We now consider the fourth and the last case, where all height-2
vertices in the current tree T are unlucky.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4909

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Case 4. All height-2 vertices in T are unlucky. If tree T does not contain any height-3 vertices, then
T contains a unique height-2 vertex, but then this unique height-2 vertex is a degree-2 Steiner vertex in T , a
contradiction. Therefore, tree T contains height-3 vertices, and every height-3 vertex has at least two children.
Consider now any height-3 vertex v⇤ and let v, v̂ be two of its height-2 children. Since v is unlucky, we let the
vertices v1, v2, u1

1, u
1
2, u

2
1, u

2
2 be defined as before, and we define the vertices v̂1, v̂2, û1

1, û
1
2, û

2
1, û

2
2 similarly for v̂. We

also define set S for v as before.
Recall that S 6=

�
u1
1, u

1
2, u

2
1, u

2
2

. From the construction of laminar family S, there exists a terminal u in

S \
�
u1
1, u

1
2, u

2
1, u

2
2

, such that min

�
w(u, u1

1), w(u, u
1
2), w(u, u

2
1), w(u, u

2
2)

 2` · (1 + "). Assume without loss of

generality that w(u, u1
1)  2` · (1 + ").

Case 4.1. If w(v, v⇤) � 10" ·` (the case where w(v̂, v⇤) � 10" ·` is symmetric), then we delete from T vertices
v1, v2, v and all its incident edges, and add new edges (u1

1, u
1
2), (u

2
1, u

2
2), (u

1
1, u

2
1) and (u1

1, u) (see Figure 7(a)).
Case 4.2. If w(v, v⇤), w(v̂, v⇤)  10" · `. Denote ` = w(v⇤, u1

1) and ˆ̀ = w(v⇤, û1
1), and assume without

loss of generality that `  ˆ̀. Then we delete all edges in the subtree rooted at T ⇤ expect for the v⇤-u1
1 path,

and add edges (u1
1, u

1
2), (u

2
1, u

2
2), (u

1
1, u

2
1), edges (û1

1, û
1
2), (û

2
1, û

2
2), (û

1
1, û

2
1) and edge (u1

1, û
1
1) (see Figure 7(b)). If

ˆ̀ (1 + 10") · `, then we further add set Xi⇤(v⇤) =
�
u1
1, u

2
1, û

1
1, û

2
1

into collection X , where i⇤ =

⌅
log1+" `

⇧
.

(a) Case 4.1. (b) Case 4.2.

Figure 7: An illustration of edge replacement in Case 4.

This finally completes the description of the tree-modification process. Note that, in each of the cases described
above, we replaced a set E of edges that do not connect a pair of terminals in the current tree T with a new set
E0 of edges that connect a pair of terminals, such that (T \ E) [E0 is still a valid Steiner Tree, such that either

• w(E0)  (2� 4"0) · w(E); or

• w(E0)  2 · w(E), and we have added a set Xi(v) into X , such that w(E)  10 · (1 + ")i; or

• w(E0)  2 · w(E), and we have added a set Y into Y, such that adv(Y) � "3/4 · w(E); or

• w(E0)  2 ·w(E), and we have not added sets into X or Y, which may only happen in Case 3.3.4 where we
performed a bad replacement.

First, it is easy to see that, the total cost of all edges where we perform bad replacements is at most
8 · "1/4 · w(TOPT). Second, from the construction of the Set Cover instances {(Wi, Ui)}0iL�1 in Step 2, and
using similar arguments in the proof of Observation 4.4, it is easy to show that when we add a set Xi(v) into
collection X , there is a set W 2 Wi, such that, for each u 2 Xi(v), there is a terminal u0 2 W , such that
w(u, u0)  " · (1 + ")i; and di↵erent sets Xi(v) corresponds to di↵erent sets in Wi. Therefore, according to
the algorithm and the discussion above, the total weight of all edges in T ⇤ in which we either perform a bad
replacement or add a set into X or Y is at most

8 · "1/4 · w(TOPT) +
6"1/2 ·MST

"1/4
+ 220 · "0 ·MST  MST

3
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4910

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Therefore, if we denote by T 0 the resulting tree we get from the above process, then

MST  w(T 0)  2 · w(TOPT)

3
+ (2� 4"0) ·

2 · w(TOPT)

3
 (2� 2"0) · w(TOPT).

It follows that w(TOPT) � MST/(2� 2"0). This completes the proof of the correctness of the algorithm.

4.2 Proof of Theorem 4.1 In this section, we give a sublinear query algorithm for our Set Cover objective,
and prove Theorem 4.1. Recall that we are given an instance (U,W) of Set Cover, and the goal is to estimate
the value of

�
|U |� SC(U,W 6=2)

�
where W 6=2 is the collection of sets in W with size not equal to 2. We note that

the goal of estimating the number of sets needed to cover a universe has been considered from the perspective of
sublinear query algorithms [3, 4, 2]. However, these results do not apply to our setting as we need to estimate
the di↵erence between the universe size and the set cover size.

We first give an algorithm that outputs an estimate of
�
|U |� SC(U,W)

�
, and then show how to modify the

algorithm to prove Theorem 4.1.

An Algorithm for Estimating
�
|U |� SC(U,W)

�
The main result of this subsection is the following theorem.

Theorem 4.2. There is a polynomial-time randomized algorithm, that, given an instance (U,W) of Set Cover

and any constant 0 < " < 1, with probability 1 � O(n�2), returns a (4, "|U |)-estimation of
�
|U | � SC(U,W)

�
, by

performing O((|W|3/2 + |W|3/4|U |) · (log n)2/"3) membership queries to the instance (U,W).

Before we describe the algorithm in detail, we give a brief intuition. First we observe that, with high
probability, all elements that appear in many (at least ⌦(|W| log |W|/"|U |)) sets in W can be covered by a
random subset of O("|U |) sets in W, and so they can be ignored as we allow "|U | additive error in the estimation.
Assume for simplicity that all elements that appear in fewer than o(|W| log |W|/"|U |) sets in W. Consider the
optimal set cover W⇤ and assume the sets in W⇤ are arranged into a sequence. Now, if a set in W⇤ covers t
elements that are not covered by the previous sets in the sequence, then it can be viewed as “contributing” (t�1)
to

�
|U | � SC(U,W)

�
. We will show that, at a high-level, this “contribution” can be characterized as follows: if

we consider the graph on U where there is an edge (u, u0) i↵ u, u0 appear in the same set in W, then it can be
shown that the size of any maximal matching in the graph is within a constant factor of

�
|U | � SC(U,W)

�
. We

then focus on this graph and utilize the algorithm from [12] to estimate the size of any maximal matching in it.
We now describe the algorithm in detail. For convenience, we denote n = |W| and k = |U |. Throughout

this subsection, we use a parameter � = max
�
k/n3/4, 1

. In other words, when k � n3/4, � = k/n3/4, otherwise

� = 1.
We define the frequency of an element u 2 U in the collection W to be the number of sets in W that contain

u. We first partition the vertices into two subsets according to their frequency in W as follows. Let W̃ be a
random sub-collection of W that contains k/� sets. For every element u 2 U , we compute the frequency u in W̃
by performing membership queries on all pairs (u,W) with W 2 W̃. We then let Ulow be the set of all elements
in U with frequency at most 75�n log n/("k) in W̃, and let Uhigh = U \ Ulow. The total number of queries that
are needed to compute this partition is at most

k · (k/�)) = O(k2/�) = O

✓
k2

max
�
k/n3/4, 1

◆

= O

✓
k2 ·min

n
n3/4/k, 1

o◆
= O(n3/2 + kn3/4).

Let N = 50n� log n/("k). We use the following observations that follow from the Cherno↵ Bound in
Lemma 2.1.

Observation 4.5. With probability 1 � n�2
, all elements in Ulow have frequency at most 2N in W, and all

elements in Uhigh have frequency at least N in W.

Observation 4.6. Let Ŵ be a random sub-collection of W that contains "k/(10�) sets. Then with probability

1� n�2
, every element in Uhigh is contained in some set in Ŵ.

We now focus on the elements in Ulow. We define Wlow = {W \ Ulow | W 2 W}. From Observation 4.5 with
probability 1 � n�2, all elements in Ulow have frequency at most 2N in Wlow. We define a graph H as follows.
Its vertex set is Ulow, and its edge set contains, for every pair u, u0 2 Ulow, an edge (u, u0) i↵ there exists a set
W 2 Wlow that contains both u and u0. We prove the following lemma.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4911

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 4.1. Let M be any maximal matching in H. Then

|Ulow|� SC(Ulow,Wlow)

2
 |M |  |Ulow|� SC(Ulow,Wlow).

Proof. On the one hand, we can construct a set cover of size at most |Ulow| � |M | as follows. For every pair
u, u0 2 Ulow that is matched in M , we take any set that contains both u, u0; for every u00 2 Ulow that is not
matched in M , we take the set {u00}. Clearly, we have taken at most |Ulow|� |M | sets and they form a set cover,
so |M |  |Ulow|�SC(Ulow,Wlow). On the other hand, consider an optimal set cover F with |F| = SC(Ulow,Wlow).
Note that each set W 2 F contains at most one element that is not matched in M ; otherwise there are u, u0 2 Ulow

that are both not matched in M while the edge (u, u0) belongs to H by the definition of H, a contradiction to the
maximality of M . Therefore, the number of vertices in H that are unmatched in M is at most SC(Ulow,Wlow),

which implies that |Ulow|�SC(Ulow,Wlow)
2  |M |.

We use the following result, which is implicit in Section 3 of [12].

Theorem 4.3. ([12]) Let G be a graph on Z vertices with average degree d̄. If we are given an oracle that takes a

vertex v of G as input and outputs all neighbors of v in G, then there is an algorithm, that, given any 0 < " < 1,
with probability at least 1 � n�2

estimates the size of some maximal matching in G to within an additive factor

of "Z, by performing O(d̄ logZ/"2) queries to the oracle.

In order to use Theorem 4.3 to estimate the size of a maximal matching in H, we need to e�ciently implement
an oracle that, given any u 2 U , finds all neighbors of u in H, which we do next.

A subroutine for finding all neighbors of a given vertex in H. From the definition of H, the neighbors
of u are the elements u0 in Ulow that are contained in the same set as u. We find all neighbors of u in H as follows.
We first perform membership queries on all pairs (u,W) with W 2 Wlow (a total of O(n) queries), and find all
sets in Wlow that contains u. Then for each set W 2 Wlow that contains u, we perform membership queries on
all pairs (u0,W) with u0 2 Ulow (a total of at most 2N · k queries as u is contained in at most 2N sets), and figure
out which elements are contained in W . The set of all neighbors of u in H is then obtained by taking the union
of all sets W that contain u. In the whole subroutine, we have performed 2N · k = O(�n log n/") queries in total.

From Theorem 4.3 with the algorithm described above serving as the oracle, we can with high probability
estimate the size of a maximal matching to within an additive factor of "k with O(d̄ · �n log2 n/"3) membership
queries, where d̄ is the average degree in H. However, d̄ can be as large as k, in which case we can only get an
Õ(k · n/"3) upper bound. To improve upon this, we will pre-process the instance (Ulow,Wlow) before using the
algorithm in Theorem 4.3.

We partition the collection Wlow into W1 and W2 as follows. We use a parameter Q = (k log�2 n/"n1/4).
Let Ũ be a size-Q random subset of Ulow. We let W1 contain all sets W 2 Wlow with |W \ Ũ |  log n, and let
W2 = Wlow \W1. Using Cherno↵ bound and similar arguments in the proof of Observation 4.5, we can show that
with probability 1�n�2, every set in W1 contains at most (100k log n/Q) elements, and every set in W2 contains
at least (k log n/100Q) elements. The number of queries that are needed for computing this partition is at most
(k log�2 n/"n1/4) · n  Õ(kn3/4/").

We now consider the instances (Ulow,W1) and (Ulow,W2) separately. We define graphs H1, H2 for (Ulow,W1)
and (Ulow,W2) respectively, in a similar way that H is defined for instance (Ulow,Wlow). We use the following
observation.

Observation 4.7. Let M1 be any maximal matching in H1, and let M2 be any maximal matching in H2. Then

there exists a maximal matching in H whose size is between (|M1|+ |M2|)/2 and |M1|+ |M2|.

Proof. Note that H = H1 [H2. Assume without loss of generality that |M1| � |M2|. We construct a matching
M in H as follows. We start with M = M1. We add all edges of M2 that do not share endpoint with any edges
in M1. Then we greedily add edges in H2 that do not share endpoint with any of the current edges in M , until
no edge can be added. Since M1 is a maximal matching in H1, from our algorithm, it is easy to verify that the
resulting matching M is a maximal matching in H. Note that |M | � |M1| � (|M1|+ |M2|)/2.

It remains to show that |M |  |M1| + |M2|. We denote by M 0
2 the subset of edges in M2 that do not share

endpoints with edges in M1. It su�ces to show that in the last step we have greedily added at most |M2 \M 0
2|

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4912

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

edges into M . Consider an edge e added to M in this step. Since e 2 E(H2) and M2 is a maximal matching
in H2, e shares an endpoint with some edge e0 2 M2, and e0 has not been added to M in the previous step, so
e0 2 M2 \M 0

2. We say that e0 is the blocker of e. In fact, every edge e0 2 M2 \M 0
2 can be the blocker of at most

one edge added in the last step, since if e0 = (u, u0) and u is an endpoint of some edge in M1, then every edge e
blocked by e0 has to contain u0 as an endpoint, and thus there can be at most one such edge.

We first consider the instance (Ulow,W1). Recall that each set in W1 has size at most (100k log n/Q), and
every element in Ulow is contained in at most 2N sets in W1. Therefore, every element in Ulow, as a vertex in
H1, has at most (100k log n/Q) · 2N = Õ(�n/Q) neighbors. We now apply the algorithm in Theorem 4.3 with
parameter "/10 together with the subroutine for finding all neighbors of a given vertex described above to obtain
an estimate X1 of the size of a maximal matching in H1. Since the average degree in H1 is Õ(�n/Q), the number
of queries performed by the algorithm is

O(�n log n/") · Õ(�n/Q) · (log n)/"2 = Õ(�2n2/Q) = Õ

✓�
max

�
k/n3/4, 1

 �2 · n
k/n1/4

◆
= Õ(n3/2 + kn3/4).

We next consider the instance (Ulow,W2). Recall that every set in W2 has size at least (k log n/100Q) and
every element is contained in at most 2N sets. Therefore,

|W2| 
k · 2N

(k log n/100Q)
=

k · 100�n log n/("k)

(k log n/(100k log�2 n/"n1/4))
= o

✓
max

n
k, n3/4

o◆
.

Therefore, when k > n3/4, we can simply use another Õ(n) queries to estimate |
S

W2W2
W | to obtain an estimate

of SC(U,W2) to within an additive "k factor. When n3/4 � k, we can then perform k · |W2| = O(kn3/4) queries
to obtain the entire instance (Ulow,W2), compute the graph H2, and then compute the size X2 of a maximal
matching in H2.

Lastly, we return X = |Uhigh| � "k/10 + (X1 + X2)/2 as our final output. From the above discussion, the
number of queries we have performed is Õ(n3/2 + kn3/4).

We next analyze the probability that X is a (4, "|U |)-approximation of |U |� SC(U,W).
Bad Event ⇠. We define ⇠ to be the bad event that either of the following happens: (i) there exists some

element in Ulow with frequency at more than 2N in W or there exists some element in Uhigh with frequency at
most N in W; (ii) there does not exist a subcollection of "k/(10�) sets in W that cover all elements in Uhigh; (iii)
there exists some set in W1 that contains more than (100k log n/Q) elements, or there exists some set in W2 that
contains fewer than (k log n/100Q) elements; and (iv) in the application of the algorithm from Theorem 4.3 to
H1, the output X1 is not an estimate of the size of any maximal matching in H1 to within an additive error of
"k/10. From Observation 4.5, Observation 4.6, Theorem 4.3 and the above discussion, Pr[⇠] = O(n�2).

The proof of Theorem 4.2 is concluded by the following claim.

Claim 4.2. If event ⇠ does not happen, then X is a (4, "|U |)-estimation of |U |� SC(U,W).

Proof. Assume now that event ⇠ does not happen. Let M1 be a maximal matching in H1, such that
X1  |M1|  X1 + "|U |/10. Let M2 be a maximal matching in H2, such that X2 = |M2|. Let M be any
maximal matching in H. From Observation 4.7,

X1 +X2

2
 |M1|+ |M2|

2
 |M |  |M1|+ |M2|  X1 +X2 +

"|U |
10

.

Then from Lemma 4.1,

X1 +X2

2
 |M |  |Ulow|� SC(Ulow,Wlow)  2|M |  2(X1 +X2) +

"|U |
5

.

Let W̃ be a sub-collection of "|U |/10 sets in W that cover all elements in Uhigh (such a subcollection exists
since event ⇠ does not happen). Let ˜Wlow be an optimal set cover of instance (Ulow,Wlow). Clearly, W̃ [˜Wlow is
a feasible set cover of instance (U,W). Therefore, SC(U,W)  SC(Ulow,Wlow) + "|U |/10, and

X = |Uhigh|�
"|U |
10

+
X1 +X2

2
 |Uhigh|�

"|U |
10

+ |M |  |Uhigh|�
"|U |
10

+ |Ulow|� SC(Ulow,Wlow)

= |U |� SC(Ulow,Wlow)�
"|U |
10

 |U |� SC(U,W).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4913

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

On the other hand, since SC(Ulow,Wlow)  SC(U,W),

|U |� SC(U,W)  |U |� SC(Ulow,Wlow) = |Uhigh|+ |Ulow|� SC(Ulow,Wlow)  |Uhigh|+ 2|M |

 |Uhigh|+ 2(X1 +X2) +
"|U |
5

 4 ·
✓
|Uhigh|�

"|U |
10

+
X1 +X2

2

◆
+ "|U | = 4X + "|U |.

Handling the cardinality-2 sets We follow the same algorithm as decribed in Section 4.2. We first partition U
into Ulow and Uhigh, and then focus on instance (Ulow,Wlow). We partition Wlow into W1 and W2 and construct
graphs H1 and H2. Note that when constructing these partitions, we do not (and are not able to) ignore the sets
of size 2. Since every set in W2 contains more than 2 elements, computing an estimate of the size of a maximal
matching in H2 can be done in the same way. When processing the instance (Ulow,W1), in the subroutine of
finding all neighbors of an element u 2 Ulow, we just need to ignore all sets of size 2 in W1 that contains u.

Regarding the proof that the output is a (4, "|U |)-approximation of |U | � SC(U,W), Observation 4.6 shows
that with probability 1�n�2 there exists a subcollection W̃ of at most "|U |/10 sets in W that cover all elements
in Uhigh. We need to modify it to show that with probability 1 � n�2 there exists a subcollection of "|U |/5 sets
in W 6=2 that cover all elements in Uhigh, and this can be simply achieved by replacing all cardinality-2 sets in W̃
with singleton sets that contain all elements that are covered by the cardinality-2 sets in W̃. And the proof of
Claim 4.2 now still goes through with this modification.

4.3 Implementation without Knowing the Terminal-Induced Metric Upfront In this subsection, we
complete the proof of Theorem 1.3 by showing that the algorithm described in Section 4.1 and Section 4.2 can in
fact be implemented without knowing the terminal-induced metric upfront, at the cost of a slightly worse query
complexity Õ(n12/7 + n6/7 · k).

Intuitively, since we do not have the terminal-induced metric upfront, we can no longer assume that we can
start the process with a MST on terminals along with its hierarchical structure in our hand. However, as Step 2
and Step 3 in our algorithm only utilize local MST structure to find evidence, we do not really need the whole
MST in order to implement them, but we can instead locally explore the MST structure (and its hierarchical
structure) whenever needed. Therefore, we start by introducing two BFS-type subroutines that are crucial for
implementing Steps 2 and 3. These subroutines are similar to the ones used in [24].

Auxiliary BFS-type Subroutines Since we are not able to query the distances between each pair of terminals,
we are not able to precisely recover the graph Hi for each layer i. Thus, we will define a graph Ĥi which lies
somewhere “in-between” Hi and Hi+1 but makes it easier to explore locally.

Let "1 = "/10. We first construct a graph H̄i as follows: the vertices are terminals, and there is an edge
between each pair of terminals if their distance is less than "1(1+ ")i. We assign a random rank on each terminal,
and let Ri be the lexicographically first maximal independent set based on this rank. We say the terminals in
R are the representative terminals, and for each terminal u, there is a representative terminal u0 at distance at
most "1(1 + ")i away from u. We say u is represented by u0. We define Ĥ as follows: any terminal is connected
to its representative terminal, and for any two representative terminals in R, they are connected in Ĥ if and only
if their distance is at most (1 + 3"1)(1 + ")i. The following observation directly follows from these definitions:

Observation 4.8. Any component in Hi is also connected in Ĥi, and any component in Ĥi is also connected in

Hi+1.

We define the size of a component in Ĥ as the number of representative terminals in Ĥ. Next, we define
another directed graph HC

i as follows. The vertices of HC
i are the components in Ĥ, and for any two components

S1 and S2, there is a directed edge from S1 to S2 if there is a representative terminal u1 2 S1 and a terminal
u2 2 S2 such that their distance is at most (1+ 3"1)(1+ ")i. We say that a component S1 can reach a component

S2 if there is a directed path from S1 to S2 in HC
i . We have the following observation:

Observation 4.9. If S1 can reach S2 in HC
i , then S1 and S2 are inside the same component in Hi+1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4914

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We define Ui to be the components S in Ĥi�1 such that the total size of the components that can be reached
by S is at most 100L log2 n/"1.

Throughout the process, we will always maintain the knowledge of whether a terminal is representative or
not. At first, it is unknown for each terminal whether or not it is a representative. The subroutine FIND(u, i)
takes as input a terminal u and a parameter i and outputs a representative u0 in the following manner. We
query the distance between u and all other terminals, if all terminals that are at most "1(1 + ")i away from u
have lower rank than u or are known not to be a representative, then we output u. Otherwise let u1 be the
highest rank terminal among them, and we repeat this process on u1, and continue in this manner, until we find
a representative u0. We then mark u0 as a representative, and all terminals that are at most "1(1+ ")i away from
u0 as non-representative. Note that u0 might not represent u, but u and u0 must be in in the same component in
Ĥi. The following observation gives an upper bound on the running time of FIND.

Observation 4.10. With high probability, for any u and i, FIND(u, i) uses Õ(k) queries.

Proof. The exploration sequence is in fact a path in the DFS tree of the running of greedy parallel maximal
independent set problem, and the depth of the DFS tree is O(log n) with high probability [1]. So with high
probability, the length of the exploration sequence is Õ(1) and the total number of queries we use is Õ(k).

Next, we give a BFS subroutine that takes as input a terminal u and an integer i. Intuitively, the subroutine
explores the neighborhood of u in its level-i connected component up to a poly-logarithmic depth. Throughout,
every terminal is either marked out, or in, or representative, or active. Initially, terminal u is marked active and
all other terminals are marked out. The procedure BFS(u, i) proceeds in rounds. In each round, we first pick an
active terminal u0 with the maximum rank (if there is no such terminal then the procedure is terminated). We
run FIND(u0, i) and let û be the output. We mark û as representative. We then query the distance between û
and all other terminals marked out, for each such terminal u00, if w(û, u00) < "1(1 + ")i, then we mark u00 in. If
"1(1 + ")i  w(û, u00) < (1 + 3"1)(1 + ")i, we mark u00 active. This completes the description of a round. If the
procedure did not terminate after 100L log2 n/"1 rounds, then we artificially terminate the procedure and mark
all active terminals in.

It is easy to observe that, after the procedure BFS(u, i) terminates, all terminals marked in or representative
are certified to lie in the a component that is reachable from the component that contains u in Ĥi Clearly, if
the procedure is not artificially terminated, then we have found all components in Ĥi that is reachable from
the component containing u with all representative terminals inside it. So we can check if the component that
contains u is inside Ui+1 or not. If the procedure is artificially terminated, then u is contained in a component
that is not in Ui+1. As the procedure BFS(u, i) runs for at most 100L log2 n/" rounds and each round takes at
most Õ(k) queries, its query complexity is Õ(k/"1).

We prove the following lemma.

Lemma 4.2. For any integers i and M , either (i) level i is light; or (ii) |Ri�1|  2ML log n/"1; or (iii) |Ui| � M
holds.

Proof. Assume that (i) and (ii) do not hold. We will show that |Ui| � M must hold. Since |Ri�1|  2ML log n/"1,
the 2ML log n/" representative terminals are at distance at least "1(1 + ")i�1 from each other, so MST �
(2ML log n/") · "(1 + ")i�1 = 2ML log n(1 + ")i�1. On the other hand, since level i is not light, the total
weight of all level-i edges in MST is at least MST/(L log n) � 2M(1 + ")i�1. Note that wi(T ⇤)  |Si|(1 + ")i, so
|Si| � 2M/(1 + "). Lastly, from Observation 4.3, and the fact that any component of Ĥi�1 that is not in |Ui| is
inside a large component in Hi by Observation 4.9. |Ui| � 2(1�O(1/ logn))M

1+" > M .

We now proceed to describe the simulation of Steps 2 and 3 of our algorithm in the previous subsections. Note
that if k = O(n6/7), then we can simply perform k2 = O(n12/7) queries to obtain the terminal-induced metric
and then perform Steps 2 and 3. The query complexity is O(n12/7) + Õ(n3/2 + n3/4 · k) = Õ(n12/7 + n6/7 · k).
Therefore, we assume from now on that k = ⌦(n6/7). 3

3
The main reason that we can run on graph Ĥi instead of Hi is the following: the algorithm we give in the previous section is in

fact also true if we run layer i algorithms on graph Hi+1 since the threshold we use for setting up the set cover instance, 3/5(1 + ")
i

can be an arbitrary number between 1/2(1 + ")
i
and (1 + ")

i
, which means it also works for 3/5(1 + ")

i+1
. And since Ĥi is between

Hi and Hi+1 by Observation 4.8 and Observation 4.9, the analysis still works if we run on Ĥi.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4915

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Simulation of Step 2 We now describe how to simulate Step 2 of the algorithm described in Section 4.1. Recall
that, in Step 2, we have constructed, for each index i, an instance (Ui,Wi) of Set Cover for finding local evidence
at level i, and designed an algorithm called AlgSetCover for estimating the value of |Ui| � SC(Ui, (Wi) 6=2). In
particular, the sets in Wi correspond to Steiner nodes and the elements in Ui correspond to level-i connected
components whose representative size is small (at most L log2 n/"), and a set W 2 Wi contains an element in U
i↵ the Steiner node that W corresponds to is at distance at most (3/5) · (1 + ")i from some representative of the
component that the element in U corresponds to.

Fix an index i, and for convenience we denote U = Ui and W = Wi. As we do not have the MST on terminals,
we do not know the level-i connected components, which means we do not know the element in U but can only
make queries to locally explore them. The simulation of Step 2 (and Step 3) finds the best tradeo↵ between the
query complexity of this additional local exploration task and the previous algorithmic steps. In the remainder
of this section, we use the parameter M = n6/7 log2 n.

We first find the first (2ML log n/"1) terminal in Ri�1 by greedy MIS algorithm. The query complexity of
this step is Õ(Mk). If |Ri�1|  (2ML log n/"), then we have already figured out all level-i connected components
together with the representatives in each component, and therefore we can now run the algorithm AlgSetCover
described before to obtain an estimate of the value of |U |�SC(U,W 6=2), whose query complexity is Õ(n3/2+n3/2·k).
Assume from now on that |Ri�1| > (2ML log n/")

From Lemma 4.2, either level i is light, or |U | � M . In order to determine which case happens, we will
estimate the size of U . Specifically, we pick a random terminal u and run the procedure BFS(i � 1, u). If
the level-i connected component containing u is small, then we set X(u) to be the inverse of the size of this
component, otherwise we set X(u) = 0. It is easy to observe that X is a random variable supported on [0, 1],
and E[X] = |U |/k. Therefore, from Cherno↵ Bound, if we repeat the process for 100k log n/M random sampled
terminals, then with probability 1� n�10, we can estimate the value of |U | to within an additive factor of M/5.
Therefore, we can either correctly claim that |U | < M or correctly claim that |U | � M/2. The query complexity
is Õ(k) · (100k log n/M) = Õ(k2/M) = Õ(k · n1/7). If the claim is |U | < M , then from Lemma 4.2, level-i is light,
and we will just ignore this layer by giving up local evidence on it. From now on we assume that |U | > M/2.

We now simulate the algorithm AlgSetCover in Section 4.2 with some modifications. We use another parameter
R = 50n1/7 log n/". First we partition the terminals into subsets Thigh and Tlow such that (i) for every u 2 Thigh,
the number of Steiner nodes v at distance at most (3/5) · (1+ ")i from u is at least R; and (ii) for every u 2 Tlow,
the number of Steiner nodes v at distance at most (3/5) · (1 + ")i from v is at most 2R. Such a partition can
be computed with Õ(kn/R) = Õ(k · n6/7) queries. Note that, for each terminal in Thigh, the element in U that
corresponds to the level-i connected component that the terminal belongs to is contained in at least R sets.
Since |U | > M/2, we can show via similar arguments that "|U | random sets will cover all these elements (as
M ·R > n/"). Therefore, we can ignore all level-i connected components that contain a terminal in Thigh.

Next, we partition the Steiner vertices into subsets V1 and V2, using another parameter P = n2/7 such that
(i) for every vertex v 2 V1, the number of terminals in Tlow at distance at most (3/5) · (1 + ")i from v is at most
100P ; and (ii) for every vertex v 2 V1, the number of terminals in Tlow at distance at most (3/5) · (1 + ")i from v
is at least P . Such a partition can be computed with Õ(nk/P) = Õ(k · n5/7) queries. A similar argument shows

|V2| 
kR

P
=

k · 50n1/7 log n/"

n2/7
= O(n6/7 log n) = o(M) = o(|U |).

We now define Ulow as the set of small level-i connected components that consist of only terminals in Tlow.
Let W1,W2 be the collections of sets naturally defined by Steiner nodes in V1, V2, respectively. We consider the
set cover instances (W1, Ulow) and (W2, Ulow) separately.

We first estimate the value of |Ulow| � SC(W2, Ulow). Since |W2| = o(|U |), in order to obtain a (2, "|U |)-
estimate of |U |� SC(W2, Ulow), it is su�cient to estimate |

S
W2W2

W | to within an additive factor of "|U |. This
can be done in a similar way as estimating |U |. Specifically, we pick a random terminal u 2 Ulow and run the
procedure BFS(u, i). If the level-i connected component that contains u is small, then we set X(u) to be the
inverse of the size of this component; otherwise we set X(u) = 0. So the random variable X is supported on [0, 1]
and E[X] = |

S
W2W2

W |/|Tlow|. From Cherno↵ bound, if we repeat the experiment for 100k log n/("M) times,
then we can obtain an estimate of |

S
W2W2

W | to within an additive factor of "M . The query complexity of this

step is Õ(k · k/M) = Õ(k · n1/7).
We next estimate the value of |U | � SC(W1, Ulow). We proceed similarly as AlgSetCover, by defining an

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4916

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

auxiliary graph H on U and estimate its maximal matching size. Similar to Section 4.2, we only need to design a
subroutine for finding all neighbors of a given element in H. This can be done as follows. Note that an element
in H corresponds to a small level-i connected component. We first find all Steiner nodes in V1 that is close to (at
distance at most (3/5) · (1 + ")i from) the component, and then find all terminals that are close to each of these
Steiner nodes. Since any small components has at most Õ(1) representatives, the number of such terminals is at
most R · P = Õ((n1/7/") · n2/7) = Õ(n3/7/"). For each of these terminals, we run the procedure BFS(·, i) on it
to figure out if it indeed lies in a small component or not, and if the answer is yes, the component that contains
the terminal is counted as a neighbor in H. The query complexity for all BFS procedures is Õ(n3/7 · k/"). Lastly,
via similar arguments, we can show that the query complexity of implementing the maximal matching estimation
algorithm on H is O(RP ·RPk) = Õ(n6/7 · k).

We note that it is immediate to generalize above procedure to handle the cardinality-2 sets, since when
estimating |U |� SC(W1, Ulow), we have figured out all elements in each explored set (and will be able to discard
the set whenever it contains exactly two elements in U).

Simulation of Step 3 We now describe the simulation of Step 3, the four-vertex subroutine. Recall that,
with the knowledge of terminal-induced metric, we constructed a laminar family and its partitioning tree T to
represents its hierarchical structure, and we only aim to find a node xS 2 V (T), such that xS has exactly two
children in T and each child of xS also has exactly two children in T . Consider such a node xS at level i. Note
that, if a child of xS splits (into two child nodes) at a lower-than-(i � log1+"(1/"0)) level, then the advantage
obtained within this child node is at most "0(1 + ")i, and it is safe to ignore it. Thus, we can run BFS on all
terminals S for all levels between i� log1+"(1/"0) and i to figure out the hierarchical structure of S between these

levels and calculate adv(S). The query time is Õ(k).
The additional steps needed in simulating Step 3 are similar to that of Step 2, we first find the first

(2ML log n/") terminals in Ri�1. If |Ri�1|  2ML log n/", than we already figured out all level-i connected
components, and we then simply proceed as before: sample O(log n/"10) small components and calculate the
advantage of them. Otherwise, similar to Step 2, we first estimates |U |. Either we correctly establish that
|U | < M , in which case level i is light and can be safely ignored; or we correctly establish that |U | > M/2. Now
we sample O(k log n/("10M)) terminals, and for each sampled terminal u, we first run BFS(u, i� 1) to figure out
the component S that contains u. If S is a small component, we calculate adv(S), and add it to Bi with probability
1/|S|. The process is the same as sampling log n/"10 small components in U and sum up the advantage of them.
So Bi is a good approximation of Ai in this case as well. The total query complexity is Õ(nk/M) = Õ(n1/7k).

Altogether, the query complexity is Õ(n12/7 + n6/7 · k).

5 An ⌦̃(nk) Lower Bound for (2� ")-Approximate Steiner Tree

In this section, we provide the proof of Theorem 1.2 by showing that any randomized algorithm that computes a
(2� ")-approximate Steiner Tree performs at least ⌦(nk) queries in the worst case. Throughout this section, we
assume that k  n/100.

We first construct a distribution on metric Steiner Tree instances (V, T, w) as follows. The vertex set V and

the terminal set T are fixed (recall that |V | = n and |T | = k). The terminal set is partitioned into t =
j

k
b1/"c

k

sets T =
S

1it Ti, such that each set Ti contains either b1/"c or d1/"e terminals. This partitioning is fixed as
well. The only randomized part is the weight-metric w. Let X be a set chosen uniformly at random from all size-t
subsets of V \ T . We call vertices in X crucial vertices. We then choose a random one-to-one mapping from X
to [t], and for each i 2 [t], we call the vertex in X that is mapped to i the i-crucial vertex. The random metric w
is defined according to the random set X as follows. For every i 2 [t], the weight between the i-crucial vertex in
X and every terminal in Ti is 1, and the weight between any other pair of vertices in V is 2. It is easy to verify
that w always satisfies the triangle inequality.

We call edges that are incident to crucial vertices crucial edges. Clearly, crucial edges form t disjoint stars. It
is easy to verify that, although w is random, any two realizations of w are isomorphic, and so the metric Steiner
Tree cost is always the same. In particular, the optimal Steiner tree contains all crucial edges and (t � 1) other
edges connecting the star graphs formed by crucial edges, and so ST(V, T, w) = k · 1+ (t� 1) · 2 = k+2t� 2. On
the other hand, any Steiner tree that contains k0 crucial edges has to contain at least (t�1)+(k�k0) other edges

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4917

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

in order to span all terminals, and its total cost is at least k0 ·1+
�
(t�1)+(k�k0)

�
·2 = 2k�k0+2t�2. Therefore,

in order to compute a Steiner tree of cost (2� 4") ·ST(V, T, w), which is a Steiner tree of cost (2� 4")(k+2t� 2),
an algorithm has to finds at least (2k + 2t� 2)� (2� 4")(k + 2t� 2) = 4"k � 2t � "k edges.

Observe that, from the construction of w, if a terminal u 2 Ti has a weight-1 edge connecting to a Steiner
vertex, then that Steiner vertex is the i-crucial vertex in X and every other terminal in Ti is also connected to
it by weight-1 edges. For ease of analysis, we consider the following distribution of instances (V 0, T 0, w0). The
terminal set T 0 contains, for each i 2 [t], a terminal ui 2 Ti, and it is fixed. The vertex set V 0 = T 0 [(V \ T) and
is also fixed. The metric w0 is random and defined as follows. Let X be a set chosen uniformly at random from
all size-t subsets of V \ T , and we then choose a random one-to-one mapping from X to [t]. We define i-crucial
vertices similarly as before. For every i 2 [t], the weight between the i-crucial vertex in X and terminal ui is
1, and the weight between any other pair of vertices in V 0 is 2. It is easy to observe that a size-t set X and a
mapping from X to [t] defines a metric (V, T, w) and a metric (V 0, T 0, w0), and a query in either metric can be
simulated by a query in the other. Additionally, in order to find at least "k crucial edges in w, it is necessary to
find ("k)/ d1/"e � "2k/2 crucial edges in w0.

We say that an crucial edge (u, x) is discovered by an algorithm at some step i↵ the set of queries performed
by the algorithm before this step uniquely identify the edge (u, x) to be a crucial edge. We say that a terminal
is discovered i↵ its (unique) incident crucial edge is discovered, otherwise we say it is undiscovered. From Yao’s
minimax principle [7] and the above discussion, in order to prove Theorem 1.2, it su�ces to prove the following
lemma.

Lemma 5.1. Any deterministic algorithm that discovers in expectation at least "2k/2 crucial edges in the

distribution on w0
defined above performs at least ⌦("2nk) queries in expectation.

In the remainder of this section, we provide the proof of Lemma 5.1. From now on, we only consider algorithms
that perform queries to the metric w0 instead of the metric w. We follow the framework used in the proof of
Lemma 5.3 in [6], which shows that any randomized algorithm that outputs an approximate maximal matching
performs at least ⌦(n2) queries in the worst case.

Consider a deterministic algorithm and the sequence of queries it performs. We partition the sequence into
phases as follows. The first phase starts at the first query, a phase ends as soon as a crucial edge is discovered,
and the next phase starts right after the previous phase ends. For each integer j, let Zj be the random variable
denoting the number of queries performed in the j-th phase. In order to prove Lemma 5.1, it su�ces to show
that E[

P
1j"2k Zi] =

P
1j"2k E[Zi] = ⌦("2nk).

From the construction of w, the weight between any pair of Steiner vertices and the weight between any pair
of terminals is always 2, so the only potentially useful queries are the ones between a terminal and a Steiner
vertex. We define the uncertainty of a terminal u 2 T 0 at some step to be (n � k) minus the number of queries
involving u performed by the algorithm so far. We say that a phase is bad, i↵ at the start of the phase, there exists
an undiscovered terminal whose uncertainty is below 3n/4; and we say that a phase is good, i↵ at the start of the
phase, the uncertainty of every undiscovered terminal is at least 3n/4. The proof of Lemma 5.1 is concluded by
the following claims.

Claim 5.1. The expected number of queries in a good phase is at least n/200.

Proof. We use the following lemma, which is similar to Lemma 5.4 in [6].

Lemma 5.2. Let H = (A,B,E) be a bipartite graph with |A| = a and |B| = b (where b > 10a), such that every

vertex in A has degree at least 2b/3, then for every edge e 2 E, the probability that e is contained in a uniformly

at random chosen A-perfect matching in G is at most 2/b (here an A-perfect matching is a matching that matches

all vertices of A).

Proof. It is easy to verify from Hall’s Theorem that H always contains a perfect matching. Consider an edge
(u, v) 2 E where u 2 A and v 2 B. Let M be an A-perfect matching that contains edge (u, v). We construct b/2
other A-perfect matchings as follows. Let B0 be the set of vertices in B \ {v} that is adjacent to u in H but is not
an endpoint of any edge in M . Since degH(u) � 2b/3 and b > 10a, we get that |B0| � 2b/3� 1� b/10 � b/2. For
each vertex v0 2 B0, we define Mv0 to be the matching obtained from M by replacing edge (u, v) with edge (u, v0).
Clearly, Mv0 is an A-perfect matching for every v 2 B0, so we obtained a collection of at least b/2 other A-perfect

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4918

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

matchings that do not contain edge (u, v), that we denote by F(M). On the other hand, for every pair M,M 0 of
distinct A-perfect matchings in H that contains the edge (u, v), the collections F(M),F(M 0) are disjoint. This is
because for every matching M̂ 2 F(M) and for every matching M̂ 0 2 F(M 0), M̂ and M̂ 0 must di↵er on an edge
not incident to u, as M and M 0 do. Therefore, the number of perfect A-matchings in H is at least (b/2) times
the number of perfect A-matchings in H that contains the edge (u, v), and the lemma now follows.

By definition, at the start of a good phase, the uncertainty of every undiscovered terminal is at least 3n/4.
Therefore, for the next n/24 queries, it is easy to verify that the graph induced by all unqueried edges satisfy
the conditions of Lemma 5.2, and so the probability that any single query finds an edge of weight 1 is at most
2/(n � k)  3/n. Thus, with probability at least (n/24) · (3/n) = 1/8, none of the first n/24 queries of a
good phase finds a weight-1 edge. This implies that the expected number of queries in a good phase is at least
(1/8) · (n/24) � n/200.

Claim 5.2. If the algorithm performs less than "2nk/20 queries, then the number of bad phases is at most "2k/4.

Proof. Since any useful query is between a terminal and a Steiner vertex, a useful query reduces the uncertainty of
exactly one terminal by 1. Therefore, in order to have "2k/40 bad phases, the reduction in the total uncertainty is
at least ("2k/4) · (n�k�3n/4) � "2nk/200, which implies that the algorithm performs at least "2nk/200 queries.

From the above two claims, in order to find "2k/2 crucial edges, either the algorithm performs at least "2nk/20
queries, or the number of bad phases encountered by the query sequence is at most "2k/4. Thus, in the first "2k/2
phases, there are at least "2k/4 good phases, implying that the expected number queries made by the algorithm
is at least ("2k/4) · (n/200) = ⌦("2nk). This completes the proof of Lemma 5.1, and therefore also completes the
proof of Theorem 1.2.

6 Upper and Lower Bounds for ↵-Approximate Steiner Tree (↵ � 2)

In this section we provide the proof of Theorem 1.5.

6.1 Upper Bound We start by presenting an Õ(k2/↵) query algorithm for any ↵ � 2. The query algorithm
for any ↵ � 2 is very similar to the algorithm in the proof of Theorem 1 in [9], which shows a one-pass Õ(n/�)
streaming algorithm for estimating the metric MST cost to within factor � (for any � > 1). Note that we may
assume without lose of generality that ↵ = ⌦(log2 n), as otherwise we can simply query all terminal-terminal
weight (which is k2 = Õ(k2/↵) queries) and then compute the minimum spanning tree on T , which is a 2-
approximate Steiner Tree (and therefore an ↵-approximate Steiner Tree as ↵ � 2).

Algorithm. Let � = ↵/(100 log n). We first choose a uniformly at random size-dk/�e subset of T , and
denote it by T 0. We then query all weights between pairs of terminals in T 0, and use the acquired information
to compute the minimum spanning tree T 0 over T 0. Lastly, for every terminal u /2 T , we query all weights
between u and terminals in T 0, and let f(u) = argu02T 0 min {w(u, u0)}. Finally, we output the tree T defined as
T = T 0 [{(u, f(u)) | u 2 T \ T 0}.

On the one hand, observe that the algorithm only queries weights with one endpoint in T 0 and the other
endpoint in T , so the number of queries performed by the algorithm is at most k · (k/�) = Õ(k2/↵). On the other
hand, it is easy to verify that the algorithm always outputs a spanning tree on T . The proof that the spanning
tree T output by the algorithm above is with high probability an ↵-approximate Steiner Tree is similar to the
analysis on pages 15-16 in [9], and is deferred to Appendix E.

6.2 Lower Bound We now prove an ⌦(k2/↵) lower bound for computing an ↵-approximate Steiner Tree for
any ↵ � 2. In fact, we will show that, if all vertices in the metric space are terminals (so there are k terminals
and no Steiner vertices), then for every ↵ � 2, computing a spanning tree of cost at most ↵ times the minimum
spanning tree cost requires at least ⌦(k2/↵) queries. Since the metric Steiner Tree cost is at most twice the
minimum terminal spanning tree cost, this lower bound implies the lower bound in Theorem 1.5 (as we can
construct a metric Steiner Tree instance, where all Steiner vertices are su�ciently far from all terminals and so
any ↵-approximate Steiner tree may only terminal-terminal edges, and is therefore a terminal spanning tree).

It is easy to observe that it su�ces to consider the case where ↵ � 2 is an integer and k is divisible by
100↵. We generate a metric space w from the following distribution. The vertex set V = T is fixed. Let P be a

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4919

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

partitioning of T , that is chosen uniformly at random from all partitioning of T that partition T into t = k/100↵
sets T1, . . . , Tt of size 100↵ each. For every pair u, u0 of terminals in the same part of P, w(u, u) = 1, and for all
other pairs u, u0, w(u, u) = 2↵.

We call the weight-1 edges as crucial edges. It is easy to verify that, although metric w is random, any two
realizations of w are isomorphic, and so the minimum spanning cost is always the same. In particular, the minimum
spanning tree contains (k� t) crucial edges and (t� 1) other edges connecting the trees incide each partition, and
so MST(w) = (k� t) · 1+ (t� 1) · 2↵ = 1.02k� t� 2↵. On the other hand, for any spanning tree that contains k0

crucial edges and (k� k0� 1) other edges, its total cost is at least k0 · 1+ (k� k0� 1) · 2↵ = 2↵k� (2↵� 1)k0� 2↵.
Therefore, in order for a spanning tree T to approximate the minimum spanning tree to within factor ↵, the tree
T has to contain at least

2↵k � 2↵� ↵ · (1.02k � t� 2↵)

2↵� 1
=

0.98↵k � 2↵+ ↵t+ 2↵2

2↵
� 0.01k

crucial edges, and so there must be at least 0.01k vertices in T , such that T contains a crucial edge incident to it.
We say that an edge is discovered by an algorithm at some step i↵ the set of queries performed by the

algorithm before this step uniquely identify the edge to be a weight-1 edge or a weight-2↵ edge. We say that a
vertex u is settled i↵ the algorithm has discovered a crucial edge incident to u; otherwise we say that it is unsettled.
Similarly, we say that a part Ti in the partitioning P is settled i↵ all its vertices are settled. From Yao’s minimax
principle [7] and the above discussion, in order to prove the lower bound of Theorem 1.5, it su�ces to prove the
following lemma.

Lemma 6.1. Any deterministic algorithm that settles at least 0.01k vertices in the distribution on w defined above

performs at least ⌦(k2/↵) queries in expectation.

In the remainder of this section, we provide a proof of Lemma 6.1. We use a similar approach as in Section 5.
Consider a deterministic algorithm and the sequence of queries it performs. Assume without loss of generality
that the algorithm terminates whenever it settles 0.01k vertices. We partition the sequence of queries it makes as
follows. The first phase starts at the first query, a phase ends as soon as a previously unsettled vertex is settled,
and the next phase starts right after the previous phase ends. For each j � 1, we let Zj be the random variable
denoting the number of queries performed in the j-th phase. In order to prove Lemma 6.1, it su�ces to show
that

P
1j0.01k E[Zi] = ⌦(k2/↵).

We classify all phases into good ones and bad ones as follows. We say that an unsettled vertex u is well-

discovered, i↵ the number of parts Ti in P such that some edge in E(u, Ti) has been discovered is at least t/10.
We say that a phase is type-1 bad, i↵ at the start of this phase there exists an unsettled part Ti 2 P, and such
that all discovered edges in E(Ti, T \Ti) touch at least k/10 vertices outside Ti. We say that a phase is type-2 bad

i↵ at the start of this phase there exists a well-discovered vertex. If a phase is neither type-1 bad nor type-2 bad,
then we say it is good. For ease of analysis, whenever the algorithm starts a type-1 bad phase due to some part Ti,
we immediately reveal to the algorithm the weight of all edges with at least one endpoints in Ti, so the part Ti is
settled right away; and whenever the algorithm starts a type-2 bad phase due to some well-discovered unsettled
vertex u, we immediately reveal a crucial edge incident on u, so u and the other endpoint of the revealed edge
are settled right away. We prove the following claims.

Claim 6.1. The expected number of queries in a good phase is at least k/1600↵.

Proof. Recall that the metric w is defined based on a partitioning P of T into t = k/100↵ subsets of size 100↵
each (that we call a valid partitioning). We say that a valid partitioning P joins a pair u, u0 of vertices in T , i↵
u, u0 lie in the same part of P, otherwise we say that P separates the pair u, u0. We say that a valid partitioning
P of T is consistent with the current queries, i↵ (i) every discovered crucial edge has both its endpoints lying
in the same part of P and every discovered edge that is not crucial has its endpoints in di↵erent partitions; (ii)
every unsettled vertex u is not well-discovered; and (iii) for every unsettled part Ti in P, all discovered edges in
E(Ti, T \ Ti) touch at least k/10 vertices outside Ti. In other words, a partitioning P is consistent i↵ it provides
consistent answers for all queries made by the algorithm, and the algorithm is not a bad phase given the current
queries. Intuitively, from the algorithm’s viewpoint, the up-to-date distribution (according to the answers to the
queries performed so far) of the underlying partitioning should be the uniform distribution on all partitionings
that are consistent with the current queries. We prove the following observation.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4920

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Observation 6.1. At any time during the first k/(10↵) queries of a good phase, for every pair u, u0
of vertices

in T such that u, u0
are not both settled and the edge (u, u0) has not been queried yet, the number of consistent

partitionings that separate the pair u, u0
is at least k/800↵ times the number of consistent partitionings that joins

the pair u, u0
.

Proof. Consider a pair u, u0 of vertices and a consistent partitioning P that joins the pair u, u0. Assume without
loss of generality that u is unsettled. We construct a collection of other partitionings as follows. Let Ti be the part
in P that contains u and u0. Let T 0(u) be the set of all unsettled terminals û such that (i) no edge in E({û} , Ti)
has been discovered; and (ii) no edge in E({u} , Ti0) has been discovered, where Ti0 is the part in P that contains
û. We prove the following observation.

Observation 6.2. At any time during the first k/(10↵) queries of a good phase, for every unsettled vertex u,
|T 0(u)| � k/2.

Proof. Before this good phase, u is also unsettled, so the number of vertices û such that (u, û) has been discovered
is at most (t/10) · (100↵)  k/10. Let Ti be the part that u lies in, since Ti is not settled before this phase, it
did not create a bad phase before, and so the number of vertices in T \ Ti that are touched by discovered edges
in E(Ti, T \ Ti) is at most k/10. On the other hand, note that the algorithm settles at most 0.49 vertices before
this phase, and has performed performed at most k/(10↵) queries in this phase. By definition, T 0(u) contains all
vertices û that does not satisfy any of the above conditions, so |T 0(u)| � k�k/10�k/10�0.01k�k/(10↵) � k/2.

For each û 2 T 0(u), consider the partitioning P(û) obtained by exchanging the positions of vertices u and
û (that is, if originally u 2 Ti and û 2 Ti0 , then we move u to Ti0 and move û to Ti). Clearly, vertices u, u0 are
separated in P(û). We prove the following observation.

Observation 6.3. For every û 2 T 0(u), P(û) is a consistent partitioning.

Proof. Consider a vertex û 2 T 0(u). Let Ti be the set that contains u and let Ti0 be the set that contains û. By
definition of T 0(u), no edge in E({û} , Ti) has been discovered, and no edge in E({u} , Ti0) has been discovered. On
the other hand, since u and û are not settled, no edge in E({û} , Ti0) has been discovered, and no edge in E({u} , Ti)
has been discovered. Therefore, P(û) provides consistent answers with all queries made by the algorithm so far.
On the other hand, it also implies that for every part Tj in P(û), all discovered edges in E(Tj , T \ Tj) touch the
same set of vertices as the corresponding part in P. Lastly, it is also easy to verify that every unsettled vertex is
still not discovered in P(û). Altogether, P(û) is a consistent partitioning with all current queries.

For every û 2 T 0(u), we say that P(û) is a host of P, so P has at least k/2 hosts. On the other hand, for every
partitioning P 0 that separates u, u0, there are at most 200↵ partitioning P, such that P joins u, u0 and P 0 is a host
of P (since in P 0, u, u0 belong to di↵erent parts, say u 2 Ti and u0 2 Ti0 so it must be the case that either u and
some vertex in Ti0 are exchanged or u0 and some vertex in Ti are exchanged, a total of at most 200↵ possibilities).
Therefore, the number of consistent partitionings that separate the pair u, u0 is at least (k/2)/(200↵) = k/400↵
times the number of consistent partitionings that joins the pair u, u0.

From Observation 6.1, among the first k/800↵ queries in a good phase, the probability that any single query
finds a crucial edge is at most 400↵/n, and so with probability 1/2, none of them finds a crucial edge. This
implies that the expected number of queries in a good phase is at least (k/800↵) · (1/2) = k/1600↵.

Claim 6.2. If the algorithm performs less than k2/(107↵) queries, then the number of type-1 bad phases is at

most k/(105↵), and the number type-2 bad phases is at most k/103.

Proof. Assume for contradiction that the number of type-1 bad phases is more than k/(105↵). Then there are at
least k/(105↵) indices i, such that the number of edges in |E(Ti, T \ Ti)| discovered by the algorithm is at least
k/10. On the other hand since the algorithm never settles more than 0.01k vertices, it never discovers more than
0.01k crucial edges. Therefore, the number of queries performed by the algorithm is at least

1

2
· k

105↵
·
✓

k

10
� k

105↵
· 100↵� 0.01k

◆
� k2

107↵
,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4921

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

a contradiction. Assume for contradiction that the number of type-2 bad phases is more than k/103, then there
are more than k/103 well-discovered vertices. Therefore, the number of queries performed by the algorithm over
all phases is at least (k/103) · (t/10� k/(105↵)) · (1/2) � k2/(107↵), a contradiction.

From the above two claims, we get that, in order to settle 0.01k vertices, either the algorithm performs at least
k2/(107↵) queries, or the number of type-1 bad phases of its query sequence is at most k/(105↵) (which settles at
most 0.001k vertices in total) and the number of type-2 bad phases of its query sequence is at most k/103 (which
settles at most 0.002k vertices in total), and so among the first 0.01k phases, there are at least 0.007k good phases,
implying that the expected number queries made by the algorithm is at least 0.007k · (k/1600↵) = ⌦(k2/↵). This
completes the proof of Lemma 6.1, and therefore also completes the proof of the lower bound in Theorem 1.5.

7 An ⌦̃(n+ k6/5) Query Lower Bound for (2� ")-Estimation

In this section we provide the proof of Theorem 1.4, by showing that, for any 0 < " < 1, any randomized algorithm
that with probability 2/3 estimates the Steiner Tree cost to within a factor of 2�" performs ⌦(n+k6/5) in the worst
case. We will prove a lower bound of ⌦(n) in Section 7.1 and a lower bound of ⌦(k6/5) in Section 7.2. Combined
together, they complete the proof of Theorem 1.4. Throughout the section, we assume that 1/(2") < k < n/2.

7.1 An ⌦(n) Lower Bound We construct a distribution D of metric Steiner Tree instance (V, T, w) as follows.
The set T contains k terminals and the vertices in V \T are denoted by v1, . . . , vn�k. We define w0 as the metric
on V where w0(v, v0) = 2 for all pairs v, v0 2 V . For each 1  j  n� k, we define a metric wj as follows:

• For each terminal u 2 T , wj(u, vj) = 1.

• For every other pair v, v0 2 V , wj(v, v0) = 2.

In other words, the weight-1 edges in wj form a star graph where vj is its center and all terminals are its leaves.
It is easy to verify that wj is indeed a metric. We then define the instance Ij = (V, T, wj), and the distribution
D is defined as follows: Pr[I0] = 1/2, and for each 1  j  n� k, Pr[Ij] = 1/(2(n� k)).

Clearly, ST(I0) = 2(k � 1), and for each j, ST(Ij) = k as the star graph formed by all weight-1 edges is a
Steiner Tree of cost k. Since k > 1/(2"), ST(I0)/ST(Ij) > 2 � " for all j, and so estimating the metric Steiner
Tree cost of a random instance sampled from D to within factor (2� ") is equivalent to determining whether or
not the random instance is I0.

In order to correctly determining if a random instance sampled from D is I0 with probability at least 2/3, it
is necessary that the algorithm discovers a weight-1 edge on at least (1/3)-fraction of the instances I1, . . . , In�k.
From Yao’s minimax principle [7], the following claim implies a ⌦(n � k) = ⌦(n) lower bound on the query
complexity of any randomized algorithm, as k  n/2.

Claim 7.1. Any deterministic algorithm that discovers a weight-1 edge on at least 1/3-fraction of the instances

I1, . . . , In�k performs at least ⌦(n) queries in expectation.

Proof. Observe that, in each of the instances I1, . . . , In�k, all weight-1 edges are incident to one Steiner vertex,
that we call the secret vertex, and the secret vertex is v1, . . . , vn�k with probability 1/(n� k) each. Since a single
query can only check one Steiner vertex (by querying any edge connecting it to a terminal), in order to find
the secret vertex on at least 1/3-fraction of the instances I1, . . . , In�k, any algorithm needs to perform at least
(n� k)/3 = ⌦(n� k) queries in expectation.

7.2 An ⌦(k6/5) Lower Bound We will construct a pair DY,DN of distributions on metric Steiner Tree
instances, such that DY is only supported on instances (V, T, w) with ST(V, T, w) close to Z, while DN is only
supported on instances instances (V, T, w) with ST(V, T, w) close to 2Z, where Z is some function of k that will
be defined later. We let D = (DY + DN)/2 be the average distribution of DY and DN. We show that, in order
to report correctly with probability at least 2/3 whether an random instance sampled from D comes from DY or
DN, any randomized algorithm has to perform at least ⌦̃(k6/5) queries, thereby proving Theorem 1.4.

We now proceed to define the distributions DY and DN. We first define an auxiliary instance (V, T, w) as
follows. For convenience, we let set T contain k + k2/5/" terminals instead of k terminals. As we will see, this
does not influence our lower bound, as (k + k2/5/")6/5 = ⇥(k6/5).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4922

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• The set T is partitioned into subsets T =
�S

1jd Si

�
[
�S

1id0 Ti

�
, where d = k2/5, d0 = k3/5; for each

1  j  d, |Sj | = 1/", and for each 1  i  d0, |Ti| = k2/5.

– We call sets S1, . . . , Sd, T1, . . . , Td0 groups.

– We denote S =
S

1jd Sj , we call terminals in S special terminals, and we call terminals in T \ S

regular terminals. For each 1  j  d, we denote Sj =
�
sj,1, . . . , sj,1/"

. Note that |S| = k2/5/".

• The set V \ T contains n � (k + k2/5/") Steiner vertices and is further partitioned into d0 + 1 subsets
V \ T =

S
0id0 Vi, where for each 1  i  d0, |Vi| = k2/5/".

• The metric w is defined as follows:

– For every pair u, u0 of regular terminals that belong to the same group, w(u, u0) = 0.

– For each 1  i  d0, we fix an arbitrary perfect matching Mi between terminals in S and vertices in
Vi. For every matched pair u, v0, w(u, v) = 1.

– The weight between every other pair of vertices in V is 2.

Figure 8: An illustration of the metric w. All terminals are shown in dark blue and all Steiner vertices are shown
in black. Matchings M1, . . . ,Mk3/5 are shown in dashed lines and the matched pairs have weight 1. Pairs of
teminals in the same Ti (green box) have weight 0. All other pairs have weight 2.

See Figure 8 for an illustration. It is easy to verify that w is indeed a metric.
We now use the auxiliary instance defined above to construct distributions DY and DN. Every instance with

non-zero probability in either DY or DN has the same vertex set V̂ and the same terminal set T̂ , where |V̂ | = |V |
and |T̂ | = |T |. The set V̂ \ T̂ of Steiner vertices is further partitioned into subsets V̂ \ T̂ =

S
0id0 V̂i, where

V0 = V̂0, and for each 1  i  d0, |V̂i| = |Vi|. We say that a one-to-one mapping f : V̂ ! V is valid, i↵ f maps
terminals in T̂ to terminals in T , f maps every vertex in V̂0 to itself in V0, and for each 1  i  d0, f maps
vertices in V̂i to vertices in Vi. Let F be the set of all valid mappings.

We first define the distribution DN. For each mapping f 2 F , we define an instance If = (V̂ , T̂ , ŵf), where

the metric ŵf is defined as follows: for every pair v, v0 2 V̂ , ŵf (v, v0) = w(f(v), f(v0)). The distribution DN is
simply defined to be the uniform distribution over all instances in IN = {If | f 2 F}.

We now define the distribution DY. Consider a mapping g : [d] ! [d0]. We first define another auxiliary
metric wg on V as follows.

• For each 1  j  d, we consider the matching Mg(j) between S and Vg(j). If we denote by v⇤g(j) the Steiner

vertex in Vg(j) matched with terminal sj,1, then for each u 2 Sj , wg(u, v⇤g(j)) = 1, and the weight in wg

between u and its matched Steiner vertex in Mg(j) is 2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4923

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• For every other pair v, v0 2 V , wg(v, v0) = w(v, v0).

Figure 9: An illustration of the metric wg (where g(1) = 1 and g(k2/5) = k3/5). The only di↵erence between
metrics w and wg are the weight-1 pairs, which are shown in dashed lines.

See Figure 9 for an illustration. It is easy to verify that wg is a metric. The only di↵erence between metrics w
and wg are the weight-1 pairs. In particular, for each Si, there is a star graph consisting of weight-1 edges in wg

that spans all terminals in Si, while there is no such graph in w. These star graphs are the reason that the costs
ST(V, T, w) and ST(V, T, wg) are roughly separated by factor 2.

For every mapping f 2 F , we define a metric Steiner Tree instance I(f,g) as I(f,g) = (V̂ , T̂ , ŵ(f,g)) where the

metric ŵ(f,g) is defined as: for every pair v, v0 2 V̂ , ŵ(f,g)(v, v
0) = wg(f(v), f(v0)). The distribution DY is simply

defined to be the uniform distribution on all instances in IY =
�
I(f,g) | f 2 F , g 2 G

, where G is the collection

of all mappings from [d] to [d0].
On the one hand, it is easy to verify that every instance with non-zero probability in DN is isomorphic

to (V, T, w), and so it has the same Steiner Tree cost as (V, T, w). Similarly, it is easy to verify that every
instance with non-zero probability in DY is isomorphic to (V, T, wg) for an arbitrary g 2 G (and in fact all
instances {(V, T, wg)}g2G are isomorphic to each other), and so it has the same Steiner Tree cost as (V, T, wg).
We next show that ST(V, T, w) is roughly two times ST(V, T, wg) for every g. Recall that IN = {If | f 2 F} and
IY =

�
I(f,g) | f 2 F , g 2 G

.

Claim 7.2. Any instance in IN has Steiner Tree cost at least 2k2/5/". Any instance in IY has Steiner Tree cost

at most k2/5(1/"+ 4). Hence the cost of any instance in IN is more than (2� 8") times the cost of any instance

in IY.

Proof. For any instance in IN, any Steiner node has weight 1 to at most 1 terminals, so the Steiner Tree cost
equals the spanning tree of terminals, which is 2(k2/5 + k2/5/"� 1) > 2k2/5/". For any instance in IY, any group
of special terminnal Si have weight 1 to a common Steiner node, thus we can connect them at a cost of 1/". Thus
the Steiner Tree cost is at most (1/")k2/5 + 2(k2/5 + k2/5 � 1) < (1 + 4")(k2/5/"). Moreover, it is easy to verify
that the ratio of these costs is more than (2� 8") for any " > 0.

We then define distribution D = (DY + DN)/2, and consider the following problem: Given an instance
sampled from D, estimate its value (Steiner Tree cost) to within a factor of (2 � 8"). From Claim 7.2, the
problem is equivalent to the problem of determining a random instance (sampled from D) comes from DY or
DN. If a randomized algorithm reports correctly with probability at least 2/3, then we say that the algorithm
distinguishes between DY and DN. Therefore, in order to prove Theorem 1.4, it su�ces to prove that any algorithm
that distinguishes between DY and DN performs ⌦̃(k6/5) queries in the worst case.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4924

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The remainder of this section is dedicated to the proof that any algorithm that distinguishes between DY and
DN performs ⌦̃(k6/5) queries in the worst case. Before we give the detailed proof, we provide some intuition. From
the construction of DY, DN, distinguishing between DY and DN is essentially distinguishing between the metric
w and the metric wg (for any g), where the identities of vertices are randomized. The main di↵erence between
metrics w and wg is that, in wg, there exist Steiner vertices that are connected to more than one (actually 1/")
special terminals with weight-1 edges. We call such Steiner vertices secret vertices. We now argue from a high
level that finding a secret vertex requires ⌦(k6/5) queries. We call edges of weight 0 or 1 crucial edges, since if a
terminal u is found incident to a crucial edge, then we can immediately tell if u is special or regular.

On the one hand, note that in the metric wg, there are k2/5 secret vertices. So if we sample a random Steiner
vertex v from

S
1id0 Vi (as the vertices in V0 are irrelevant in distinguishing between metrics w and wg), then

the probability that v is a secret vertex is O(k�3/5) as |
S

1id0 Vi| = ⌦(k), and so it takes ⌦(k3/5) random
samples to get a secret vertex. However, in order to certify that v is indeed a secret vertex, we need to find at
least 2 crucial edges incident to it, which takes ⌦(k) queries as every Steiner vertex is only incident to O(1) crucial
edges both in w and wg. Altogether, it takes ⌦(k3/5) · ⌦(k) = ⌦(k8/5) queries to discover a secret vertex in this
way.

On the other hand, note that there are k2/5 special terminals (in both w and wg). So if we sample a random
terminal u from T , then the probability that u is a special terminal is O(k�3/5) as |T | = ⌦(k), and so it takes
⌦(k3/5) random samples to get a special terminal. In order to certify that u is indeed a special terminal, we need
to find a crucial edge incident to it. Since each special terminal is only incident to k3/5 crucial edges (in both w
and wg), this takes ⌦(n/k3/5) = ⌦(k2/5) queries. Altogether, it takes ⌦(k3/5) ·⌦(k2/5) = ⌦(k) queries to discover
a special terminal. If the algorithm performs o(k6/5) queries, it is only able to discover o(k1/5) special vertices.
As the identities of the terminals are randomized, from the Birthday Paradox, with high probability all discovered
special vertices come from di↵erent groups in S1, . . . , Sd, so even if the algorithm has queried all edges incident
to these discovered terminals, with high probability it will not find any vertex that is incident to more than one
discovered special terminal, and so with high probability it will not find any secret vertex.

In the remainder of the section, we formalize the ideas described above, in a way similar to Section 5 and
Section 6. We begin with some definitions. For convenience, we will think of the algorithm as performing queries
on w, but it does not know the identities of the vertices (that is, it does know the set T and the partition
(V0, V1, . . . , Vd0) of V \ T , but it does not know which special terminal in set Sj is sj,i, for any j, i). Over the
course of the algorithm, we say a terminal u is settled at some step, i↵ the set of queries performed thus far
uniquely identify u to be a special terminal or a regular terminal, i.e., we have discovered a crucial edge incident
to it; otherwise we say it is unsettled. For convenience of the analysis, whenever a terminal u is settled, if u is
a regular terminal, then we immediately reveal to the algorithm which Ti group it belongs to; if it is a special
terminal, we will immediately reveal to the algorithm all crucial (weight-1) edges incident to it.

For each special terminal u 2 S, we denote by V (u) be set of Steiner nodes that are connected to u by some
matching in {M1, . . . ,Md0}. Clearly, in w, vertex u is connected to all vertices in V (u) via crucial (weight-1)
edges, while in wg, this is not always the case. We say that an edge is discovered if we can uniquely identify the
weight of the edge. For any 0 < ↵ < 1, we say an unsettled terminal u is ↵-well-discovered if at least one of the
following four conditions is satisfied:

P1. There are at least ↵k2/5 groups Ti such that we have discovered at least one edge in E(u, Ti).

P2. There are at least ↵k2/5 special terminals u0 such that we discovered an edge in E(u, V (u0)).

P3. u is a regular terminal in the Ti, and there are at least ↵k terminals u0 such that some edge in E(u0, Ti) has
been discovered.

P4. u is a special terminal, and there are at least ↵k terminals u0 such that some edge in E(u0, V (u)) has been
discovered.

The following lemma is the main technical tool for the proof of the ⌦(k6/5) lower bound. Intuitively, it shows
that, if the algorithm perform o(k6/5) queries, then not only it settles or ("/200)-well-discovers very few terminals,
but also it has very limited knowledge upon the edges that it has not queried.

Lemma 7.1. Let Alg be any deterministic algorithm that performs at most "2k6/5/109 queries. Then:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4925

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• If the input to Alg is a random instance from DN, then with probability at least 9/10, the number of terminals

that are either settled or ("/200)-well-discovered is at most "k4/5/104, and at most "k1/5/104 of them are

special terminals; and conditioned on the query sequence and its answers over the course of the algorithm, for

every terminal that is neither settled nor ("/200)-well-discovered, the probability that it is a special terminal

is at most 2/k3/5.

• If the input to Alg is a random instance from DY, then with probability at least 9/10,

– the number of terminals that are either settled or ("/200)-well-discovered is at most "k4/5/104;

– at most "k1/5/104 of them are special terminals; and

– all these special terminals belong to di↵erent Si groups.

Moreover, conditioned on the query sequence and its answers over the course of the algorithm, for every

unqueried edge between a Steiner vertex and a not-("/100)-well-discovered terminal, the probability that the

edge is a crucial (weight-1) edge and the Steiner vertex is a secret vertex is at most 2/k8/5.

We provide the proof of Lemma 7.1 in Section 7.2.2 and Section 7.2.3, after we complete the proof of the
⌦(k6/5) lower bound using it.

7.2.1 Completing the Proof of the ⌦(k6/5) Lower Bound Recall that D = (DY+DN)/2. In this subsection
we use Lemma 7.1 to prove the following lemma.

Lemma 7.2. Any randomized algorithm that, given a random instance sampled from D, reports correctly with

probability at least 2/3 that the instance comes from DY or DN, performs at least "2k6/5/109 queries in the worst

case.

From Yao’s minimax principle [7], it su�ces to consider only deterministic algorithms that report correctly
on at least 2/3-fraction (in D) of the instances.

We define a transcript to be the union of a query sequence and all its answers. We can define ↵-well-discovered
vertices and settled terminals with respect to a transcript similarly.

Recall that each instance in IN is determined by a mapping f 2 F and each instance in IY is determined by
a mapping f 2 F and a mapping g 2 G, so |IY| = |IN| · |G|. Let � be the transcript produced by the algorithm
when given a random instance from D. Since the input is randomized, � is a random variable. We say that � is
consistent with an instance I i↵ all answers to the queries in � are matched with the corresponding weight-values
in I. In order to prove Lemma 7.2, it su�ces to show that, if � always contains at most "2k6/5/109 queries, then
with high probability, the ratio between the number of instances in IY that are consistent with � (that we call
consistent instances in IY) and the number of instances in IN that are consistent with � (that we call consistent
instances in IN) is still roughly |G|. We prove this by showing that (i) for each consistent instance If 2 IN, almost
all mappings g 2 G give a consistent instance I(f,g); and (ii) for almost all consistent instances I(f,g) 2 IY, the
instance If 2 IN is also consistent.

We let T ⇤ be the subset of terminals that are either settled or ("/200)-well-discovered by � (so T ⇤ is a random
variable as well). We will focus on queries incident to vertices in T ⇤ and S \ T ⇤.

From Lemma 7.1, there are at most 1/10-fraction of the consistent instances in IN such that the desired
properties (the number of settled or ("/100)-well-discovered terminals is low, etc) do not hold; and there are at
most 1/10-fraction of the consistent instances in IY such that the desired properties do not hold. We call these
instances bad instances, and call all other consistent instances good instances.

Consider now any mapping g 2 G, we define the following instance I 0(f,g) 2 IY defined by g and the T ⇤ which
is slightly di↵erent from I(f,g). For each 1  j  d, we consider the matching Mg(j) between Sj and Vg(j). If Sj

contains more than 1 terminals in T ⇤, then I(f,g) is not well defined. If Sj contains one such terminal and assume
it is s⇤j , then we first exchange the matching node of s⇤j and sj,1 in Mg(j). If Sj contains no such terminal, then
we do not change the matching. After modifying the matching, for each u 2 Sj , we make wg(u, s⇤g(j)) = 1 and the
weight in wg between u and its matched Steiner vertex in Mg(j) is 2. Note that after the change, we guarantee
that we do not change the crucial edges incident on any terminal in T ⇤.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4926

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

From consistent instances in IN to consistent instances in IY. From Lemma 7.1, for every terminal
u 2 T \ T ⇤, the probability (conditioned on � and its answers) that u is special terminal is at most 2/k3/5. Then
from Markov’s Bound, with probability at least 0.98 (i.e., on at least 0.98-fraction of the good instances in IN),
the number of queries performed on edges in E(S \ T ⇤, V \ T) is at most "k3/5/100. We now show that, for such
a good instance If 2 IN, almost all mappings g give consistent instance I 0(f,g) 2 IY.

Now for a random mapping g 2 G. If we view the algorithm as performing queries on wg (without knowing
the identities of the vertices), then from the perspective of the algorithm, the partitioning of the special terminals
into groups S1, . . . , Sk2/5 is random. Since T ⇤ contains at most "k1/5/104 special terminals, with probability at
least 1/104, |Sj \ T ⇤|  1 for all 1  j  d0 hold. Moreover, if z queries are incident to terminals in Sj \ T ⇤, then
with probability at least z/k3/5, no query has been performed between Sj \ T ⇤ and Vg(j). Thus with probability
at least 1 � "/100, for each 1  j  d0, no query has been performed on E(Sj \ T ⇤, Vg(j)). If this happens, then
it is easy to verify that I 0(f,g) is a well defined and consistent instance in IY, as the di↵erence between w and wg,

in particular a subset of edges in
S

1jd0 E(Sj \ T ⇤, Vg(j)), has not been queried at all.
Altogether, there are at least 0.98-fraction of the good instances in IN, such that for each such If , at least

(1� "/100� 1/104)  (1� 10�2)-fraction of mappings g 2 G can give consistent instances I 0(f,g) in IY.
From consistent instances in IY to consistent instances in IN. From Lemma 7.1, for every unqueried

edge between a Steiner vertex and a not-(✏/100)-well-discovered terminal, the probability that the edge is a crucial
(weight-1) edge and the Steiner vertex is a secret vertex is at most 2/k8/5. Therefore, for every u 2 S \ T ⇤ and
every 1  i  d0, the probability that u is a special terminal and belongs to a group Sj with g(j) = i is at most
(2/k8/5) · (k2/5) = 2/k6/5. For each 1  i  d0, if we denote by zi the number of terminals u 2 S \ T ⇤ such that
some edge from E(u, Vi) has been queried, then

Pr
h
9j, s.t. g(j) = i, and some edge in E(Sj \ T ⇤, Vi) has been queried

i
 2zi

"k6/5
.

Since the algorithm performs at most "2k6/5/109 queries, from Markov’s Bound, with probability at least 1�10�6

(i.e., on at least (1� 10�6)-fraction of the good instances in IY), for all pairs (i, j) with g(j) = i, no queries has
been perform on E(Sj \ T ⇤, Vi). For each consistent instance I 0(f,g) 2 IY with the above property, it is easy to
verify that the corresponding instance If in IN is a consistent instance in IN, as the di↵erence between w and
wg, in particular a subset of edges in

S
1jd0 E(Sj \ T ⇤, Vg(j)), has not been queried at all.

Altogether, there are at least (1�10�6) fraction of the good instances in IY, such that for each I 0(f,g) of them,
the corresponding instance If is a consistent instance in IN.

Form the above discussion, the number of consistent instances in IY is at least 0.9·0.98·(1�10�2)|G| > 0.85|G|
times the number of consistent instances in IN, and it is at most |G|/(0.9 · (1 � 10�6))  1.12|G| times the
number of consistent instances in IN. Therefore, the algorithm reports correctly with probability at most
max {1/(1 + 0.85), 1.12/(1 + 1.12)}  2/3.

7.2.2 Proof of Lemma 7.1 for DN In this subsection we prove of the first half of Lemma 7.1. We start with
the following claim.

Claim 7.3. Let � be any transcript, and let DN(�) be the uniform distribution on all instances in IN that are

consistent with �. Then

• for every unqueried edge between a pair of terminals such that at least one is unsettled and not ("/100)-well-
discovered, the probability in DN(�) that the edge is a crucial (weight-0) edge is at most 2/k2/5; and

• for every unqueried edge between a Steiner vertex and a unsettled and not-("/100)-well-discovered terminal,

the probability in DN(�) that the edge is a crucial (weight-1) edge is at most 2/k.

Proof. We first prove the first property. Consider a pair u, u0 of terminals where terminal u is unsettled and not
("/100)-well-discovered. Let I, I 0 be instances in IN that are consistent with �, such that in I, u and u0 belong
to the same Tj group. We say that I 0 is host by I, i↵ I 0 can be obtained from I by exchanging the role of u
with another unsettled regular terminal u00 that is not in the same group as u in I. It is clear that in any such
instance I 0, the answer of the same query will 2 (that is, the edge is not a crucial edge). Suppose u and u0 are in
group Tj . The number of such instances I 0 equals the number of terminal u00 such that (i) u00 /2 Tj , and no edge

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4927

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

in E(u00, Tj) has been queried; and (ii) no edge between u and the group u00 belongs to has been queried. Since
u is not ("/100)-well-discovered, Property P1, the number of u00 that violate (ii) is at most "k/100, and from
Property P3, the number of u00 that violate (i) is at most "k/100. Therefore, I hosts at least 49k/50 instances I 0.
On the other hand, for each instance I 0, the number of instances that hosts it is at most k3/5, since |Tj |  k3/5.
Altogether, over all instances in IN that are consistent with �, at most 50/(49k2/5)  (2/k2/5)-fraction of them
have (u, u0) as a crucial edge.

We now prove the second property. Consider an unsettled and not-("/100)-well-discovered terminal u and a
Steiner vertex v. Let I, I 0 be instances in IN that are consistent with �, such that in I, u is a special terminal and
v 2 V (u). We say that I 0 is host by I if I 0 can be obtained from I by exchanging the role of u with a unsettled
regular terminal u0 in I. The number of such instances is the number of unsettled regular terminals u0 in I such
that (i) no edge in E(u0, V (u)) has been queried; and (ii) no edge between u and the group that contains u0

has been discovered. Since u is not ("/100)-well-discovered, from Property P3, the number of regular terminals
that violate (i) is at most "k/100, and Property P1, the number of regular terminals that violate (ii) is at most
"k3/5 · k2/5/100 = "k/100. Therefore, I hosts at least 49k/50 instances. On the other hand, any instance I 0 is
host by at most one instance since at most one crucial edge is incident tov. Altogether, over all instances in IN
that are consistent with �, at most 50/49k  (2/k)-fraction of them have (u, v) as a crucial edge.

In the remainder of this subsection, we will refer to ("/200)-well-discovered vertices as well-discovered vertices,
for convenience. We call queries between two terminals regular queries, and queries between a terminal and a
Steiner node special queries. We say a query is good i↵ it discovers a previously-unknown crucial edge. In other
words, either (i) the query is a regular query, such that at least one endpoint is not well-discovered, and the
answer is 0, or (ii) the query is a special query such that the terminal is not ("/100)-well-discovered, and the
answer is 1. From Claim 7.3, the probability that a regular query is good is at most 2/k2/5, and the probability
that a special query is good is at most 2/k. Therefore, if the algorithm performs at most "2k6/5/109 queries, then
from Markov’s Bound, with probability 1/50, the number of good regular queries is at most "2k2/5/106, and the
number of good special query is at most "2k3/5/106.

For every settled terminal, if it is not settled by a good query, it must become well-discovered before it become
settled. Thus if we can upper bound the number of terminals that are well-discovered without but not settled
at some step, then we can upper bound the number of settled or well-discovered terminals as well. For ease of
analysis, we always assume that there are at most "k4/5/104 terminals and "k1/5/104 special terminals that are
settled or well-discovered, and we think of the algorithm as being immediately terminated once this condition no
longer holds.

There are four possiblities for a terminal to become well-discovered, and we analyze them seperately.
Possibility 1: through P3. Let u be such a vertex, so u is a regular terminal and the group that Ti

contains it has "k/200 incident edges discovered. For each such edge, it is either discovered by a query or because
the its other endpoint is settled or well-discovered. Since there are at most "k4/5/104 settled or well-discovered
terminals, there are at least 0.004"k edges incident on Ti that are discovered by queries. Thus, if the total number
of queries is at most "2k6/5/109, then there are at most "k1/5/106 groups such that the terminals in this group
is well-discovered through P3. Therefore, the number of terminals that become well-discovered through P3 is at
most "k4/5/106. Note that all these terminals are regular terminals.

Possibility 2: through P4. Let u be such a vertex, so u is a special terminal and the set V (u) has "k/200
incident edges discovered. By the same argument, for at most "k4/5/104 of these edges, the other endpoint is a
settled or well-discovered terminal, and all the others are discovered by queries. Therefore, the number of such
terminals is at most "k1/5/106, and all of them are special terminals.

Possibility 3: through P1 but not P3/P4. Let u be such a vertex, so there are at least "k2/5/200
groups Ti such that some edge in E(u, Ti) has been discovered. Note that each such edge is discovered either by
a query, or because we have discovered all terminals in Ti. By previous analysis, there are at most "k1/5 of them.
Therefore, at least 0.004"k2/5 edges incident on u are queried.

Possibility 4: through P2 but not P3/P4. Let u be such a vertex, so there are at least "k2/5/200 special
terminals u0 such that some edge in E(u, V (u0)) has been discovered. Note that such an edge is discovered either
by a query, or because u0 has already been settled. Therefore, at least 0.004"k2/5 edges incident to u are queried.

From the analysis in Possibilities 3 and 4, for any terminal that becomes well-discovered through P1 or P2
but not P3 or P4, at least 0.004"k2/5 of its incident edges have been queried. Therefore, there are at most
"k4/5/(4 · 106) such vertices. However, such terminals could be either regular or special, and we still need to

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4928

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

upper bound the number of such special terminals. Let u be any such terminal, and consider the moment when
exactly 0.004"k2/5 of its incident edges are queried. From Claim 7.3, for any Steiner node v, the probability that
(u, v) is a crucial (weight-1) edge is at most 2/k. It follows that the probability that u is a special terminal is at
most (2/k) · (k/k3/5) = 2/k3/5. By Markov’s Bound, the number of special terminals that are well-discovered is
at most "k1/5/105 with probability at least 1/40.

Altogether, with probability 1 � 1/40 � 1/50 � 9/10, the number of settled or well-discovered terminals is
at most ("2k4/5 + "k4/5 + "k1/5 + "k4/5)/106 < "k4/5/104, and the number of settled or well-discovered special
terminals is at most ("2k1/5 + "k1/5)/106 + "k1/5/105 < "k1/5/104.

7.2.3 Proof of Lemma 7.1 for DY In this subsection we provide the proof of the second half of Lemma 7.1
Recall that Steiner vertices that are incident to more than one crucial edges are called secret vertices. We

assume for now that, over the course of the algorithm,

• for every Steiver vertex, we have discovered at most one crucial edge incident to it;

• no secret vertex has more than "k/104 of its incident edges discovered;

• the number of terminals that are settled or well-discovered is at most "k4/5/104; and

• the number of special terminals that are settled or well-discovered is at most "k1/5/104.

We will show at the end of this subsection that, if any of the above condition is not satisfied, then the algorithm
has to perform at least "2k6/5/109 as well.

We start with the following claim, whose is very similar to Claim 7.3, and is omitted here.

Claim 7.4. Let � be any transcript, and let DY(�) be the uniform distribution on all instances in IY that are

consistent with �. Then

• for every unqueried edge between a pair of terminals such that at least one is unsettled and not ("/100)-well-
discovered, the probability in DY(�) that the edge is a crucial (weight-0) edge is at most 2/k2/5; and

• for every unqueried edge between a Steiner vertex and a unsettled and not-("/100)-well-discovered terminal,

the probability in DY(�) that the edge is a crucial (weight-1) edge is at most 2/k.

Using Claim 7.4 and the same arguments in the proof of Lemma 7.1 for DN, we can prove that the number
of terminals that are settled or well-discovered is at most "k4/5/104, and at most "k1/5/104 of them are special
terminals. In order to prove that all settled or well-discovered special terminals belong to di↵erent Sj groups, we
use the following two claims.

Claim 7.5. Let u⇤
be a special terminal that is either settled or ("/200)-well discovered. Then for every other

not-("/100)-well-discovered terminal u and any other Steiner vertex v, the probability that u is a special terminal

in the same Sj group as u⇤
and (u, v) is a crucial edge is at most 2/k7/5.

Proof. Let I, I 0 be instances in IN, let u⇤ be a special terminal that is either settled or ("/200)-well discovered
in both I and I 0, let u be a special vertex in the same Sj group as u⇤ in I, and let v be a Steiner vertex such
that (u, v) is a crucial edge in I. We say I 0 is host by I, i↵ there are two terminals u0, u00, such that u0 is special
and u00 is regular, and I 0 can be obtained from I by giving the role of u0 to u, giving the role of u to u00 and
giving the role of u00 to u0. The vertex u0 can be any not-("/100)-well-discovered terminal in Sj with no edge to
V (u) discovered. Since u is not ("/100)-well-discovered, and we have assumed that each secret Steiner vertex has
at most "k/104 of its incident edges discovered, there are at least 0.99k choices for u0. On the other hand, u00

can be any terminal that has no edge discovered to V (u0) and the secret Steiner node of group Sj in I. By the
same arguement, there are at least 0.99k such terminal. Since we have assumed that at most "k1/5/104 special
terminals are ("/100)-well-discovered, an instance I hosts at least 0.992k2 · (k2/5/") > 0.98k12/5/" instances I 0.
On the other hand, for any instance I 0, the terminal u0 must be the terminal such that v 2 Vu0 , and the terminal
u00 must in the same group as u⇤. So there are at most k/" instance I that hosts I 0. Altogether, the probability
that all events happend is at most (k/")/(0.98k12/5/")  2/k7/5.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4929

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Claim 7.6. Let u be a not-("/100)-well-discovered terminal and let v be a Steiner vertex. Then the probability

that (u, v) is a crucial (weight-1) edge and v is an secret vertex is at most 2/k8/5.

Proof. Recall that we have assumed that v has at most one crucial edge connecting to a settled or a well-discovered
terminal discovered. By definition, any ("/100)-well discovered terminal is also a well discovered terminal. So
there v v has at most one crucial edge connecting to a settled or a ("/100)-well-discovered terminal discovered.
We distinguish between the following two cases.

Case 1: There does not exist a settled or ("/100)-well discovered terminal u0, such that (u0, v) is a crucial
edge and has been discovered. For any consistent instance I such that u and v has weight 1 and v is an secret
Steiner node. Suppose u 2 Si and let Si = {si,1, . . . , si,1/"}, and suppose v 2 V (si,1). By assumption, no terminal
in Si is ("/100)-well discovered. We say an instance I 0 is hosted by I if all special terminals not in Si and their
weights to the Steiner nodes are the same as I, and the set V (si,t) in I 0 is identical to the set V (si,t) in I for all
1  t  1/".

We first count the number of such consistent instances I 0. For each 1  t  1/", we define T ⇤
t as the set

of regular terminals that with no edges to V (si,t) discovered. Since no terminal in Si is ("/100)-well discovered,
every set T ⇤

t has size at least (1� "/100)k. For each 1  t  1/", consider any group of terminals t1 . . . , t1/" such
that tj0 2 T 0

j0 \T 0
j . Any tj0 can have weight one to all Steiner nodes in Vsj0 and Vsj , which means we can make any

terminal in Vsj an secret terminal. Thus such group can construct at least k3/5/" consistent instances I 0. On the

other hand, since any |Tj0 | � (1�"/100)k, the number of such group is at least ((1�49"/50)k)1/" > (49/50) ·k1/".
Thus, I hosts at least (49/50)k1/" · (k3/5/") instances I 0.

Now we count how many instance can host an instance I 0. For any instance I 0, an instance I that hosts it can
only change the terminals in Si that has weight 1 to v, and so one of the terminal in Si should be u. Moreover,
every terminal in Si should has weight 1 to v. The total number of such instance is at most k1/" · 1/" since u
could replace any terminal in Si. Thus, the probability that v and u has weight 1 and v is an secret Steiner node
is at most (k1/"�1 · (1/"))/((49/50)k1/"k3/5 · (1/")) < 2/k8/5.

Case 2: There does not exist a settled or ("/100)-well discovered terminal sj⇤ , such that (sj⇤ , v) is a crucial
edge and has been discovered. Note that sj⇤ 6= u. For any instance I such that u and v has weight 1. We say
an instance I 0 is hosted by I as the same definition as the first case, except that now u must still in Si, and
moreover, we exchange one Steiner node in Vj⇤ with Vj for some j. We first count the number of I 0 hosted by
I. We define T 0

j the same as the first case. Suppose v 2 V`⇤ , for any 1  `  k3/5 and ` 6= `⇤, we define v⇤`
as the only one vertex in V ⇤

j \ V`, and T ⇤
` as the set of terminals that does not have weight one to v⇤` . We also

define v⇤`⇤ = v and T ⇤
`⇤ as the set of terminals that does not have weight one to v⇤`⇤ . Now for any 1  `  k3/5,

for any group of terminals t1, . . . , t1/" such that for any j0 6= j⇤, tj0 2 T 0
j0 \ T ⇤

` and tj⇤ = sj⇤ , we can make v⇤`
the secret Steiner node of this group. Moreover, to do so, we can exchange v⇤` from Vsj⇤ with any Vsj0 since
we will not change the weight between any pair of vertices by doing so. Since the algorithm only perform at
most "2k6/5/109 queries and settled or ("/100)-well discovered at most O(k4/5) terminals, there are (1�o(1))k3/5

number of index ` such that |T ⇤
` | > (1 � "/100)k. For such `, the number of groups t1, . . . , t1/" is at least

0.99k1/"�1. So the total number of instances I 0 hosted by I is at least (1� o(1)k3/5 · k1/"�1 · (1/"). On the other
hand, for any instance I 0, it is hosted by at most k1/"�2 · (1/") instance I since we cannot exchange s`⇤ and u
must be a special terminal in Si. This implies that v and u has weight 1 and v is a secret Steiner node is at most
(k1/"�2 · (1/"))/((1� o(1))0.99k1/"�1k3/5 · 1/") < 2/k8/5.

Remember that a special query is called a good query i↵ it discovers a crucial edge between a not-well-
discovered terminal and a Steiner node. If a special terminal is ever settled, then it is either due to a good special
query incident to it, or because it becomes well-discovered at some step. We analyze the probability that a special
query (u, v) is a good query, and u is in the same group Si with some terminal u0 that is already settled or
("/200)-well discovered. By Claim 7.6, the probability that the query is a good query and v is an secret Steiner
node is at most 2/k8/5. On the other hand, if the query is a good query but v is not an secret terminal, it means
v 2 V (u). By Claim 7.5, the probability that it is a good query and u and a fix settled or ("/200)-well discovered
u⇤ in the same group Si is at most 2/k7/5. Since there are at most "k1/5/104 such u⇤. So the probability that a
special is a good query and u is in the same group Si with some terminal u0 that is already settled or ("/200)-well
discovered is at most "/104k6/5. With probablity at least 1 � "/1000, there is no such query through out the
algorithm by Markov’s Bound.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4930

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now we consider the well-discovered terminals. When a terminal is well-discovered but not settled, it is still
not ("/100)-well discovered. By Claim 7.6, the probability that it is in the same group Si with some terminal u0

that is already settled or ("/200)-well discovered is at most (2/k8/5) · ("k1/5/104) · k3/5 < "/100k4/5. Since there
are at most well-discovered "k4/5/104, no well-discovered terminal belongs to the same group with some terminal
u0 that is already settled or well-discovered.

Finally, we need to prove the assumption that there is no secret Steiner node has at least "k/104 edges
discovered. Since we only performed at most "2k6/5/109 queries, there are at most "k1/5/104 terminals that
are queried at least "k/105 times. By Claim 7.6, the probability that such terminal is secret is at most
2/k8/5 · k = 2/k3/5. Thus with proability at least 1 � k�2/5, all these terminals are not secret. This finishes
the proof of Lemma 7.1.

A An O(nk)-Query (5/3)-Approximation Algorithm

In this section, we explain how the previous work [27] and [28] lead to an O(nk)-query algorithm for computing
a (5/3)-approximate Steiner Tree. In fact, their results imply the following theorem.

Theorem A.1. For any instance (V, T, w) of Steiner Tree problem, there exists a Steiner tree T ⇤
with weight at

most (5/3) · ST(V, T, w), such that every edge in T ⇤
is incident on some vertex in T .

We refer to such Steiner trees as good trees. From the above theorem, it is not hard to observe that querying
all terminal related distances is su�cient to find a (5/3)-approximate Steiner Tree, and the query complexity is
O(nk).

We now explain how the results in previous work [27] and [28] imply Theorem A.1.
We start by introducing some definitions. Let T be a tree, let v be a vertex of T , and let v1, . . . , vd be the

neighbors of v. For each 1  i  d, we delete edges (v, v1), . . . , (v, vi�1), (v, vi+1), . . . , (v, vd), and define Ti to be
the connected component of the remaining graph that contains v, so Ti is a subtree of T that contains v. We say
that subtrees T1, . . . , Td are obtained by splitting T at v.

Consider an instance (V, T, w) and let T be a Steiner tree. Let c > 1 be an integer. We say that T is a
c-Steiner tree, i↵ when we split T at all terminals, then each resulting subtree contains at most c terminals. It
is easy to verify that any 2-Steiner Tree is a terminal spanning tree. We now show that every 3-Steiner tree can
be converted into a good tree with at most the same cost. Let T be a 3-Steiner tree. Assume without loss of
generality that every Steiner vertex has degree at least 3 (as otherwise we can suppress such a vertex and get
another Steiner tree with at most the same cost). We now claim that T does not contain any Steiner-Steiner
edge. Assume not, then such a pair of Steiner vertices must both belong to some subtree obtained by splitting T
at all terminals, and such a subtree contains at least (3 + 3� 1� 1) = 4 terminals, a contradiction. It was shown
in [27] and [28] that, for any instance (V, T, w), there exists a 3-Steiner tree with cost at most (5/3) · ST(V, T, w),
and the ratio 5/3 here cannot be improved. Theorem A.1 now follows.

B Proof of Claim 3.1

Let v1, v2, v3 be three vertices in V . Assume v1 2 Vx1 , v2 2 Vx2 , and v3 2 Vx3 , where x1, x2, x3 are nodes in tree
⇢. We denote by `1, `2, `3 the levels of x1, x2, x3, respectively, and assume w.l.o.g. that `1 � `2. Let x0

1 be a leaf
of ⇢ that lies in the subtree of ⇢ rooted at x1, and we define leaves x0

2, x
0
3 similarly.

We first show that wN is a metric on V by showing that wN(v1, v2)  wN(v1, v3) + wN(v2, v3). By definition,
wN(v1, v2) = dist⇢(x0

1, x1) + dist⇢(x0
1, x2). Let x̂ be the lowest common ancestor of nodes x1 and x2 in ⇢. Assume

that y is the unique vertex on the x0
1 � x0

2 path that is closest (under dist⇢) to x3. We distinguish between the
following three cases, depending on the location of y.

Case 1: y lies between (excluding) x̂ and (including) x0
1. On the one hand, wN(v2, v3) � dist⇢(x2, x3); on

the other hand, wN(v1, v3) � dist⇢(x1, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x0

3, x3)}.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4931

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

If y lies between (excluding) x̂ and (including) x1, then

wN(v1, v3) + wN(v2, v3) � dist⇢(x2, x3) + dist⇢(x1, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x

0
3, x3)}

= dist⇢(x1, x2) + 2 · dist⇢(y, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x

0
3, x3)}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 · dist⇢(y, x3) + 2 ·min {0, dist⇢(x0

3, x3)� dist⇢(x
0
1, x1)}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(y, x3), dist⇢(y, x3) + dist⇢(x

0
3, x3)� dist⇢(x

0
1, x1)}

� dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(y, x3), 0}

� dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1)

= dist⇢(x
0
1, x1) + dist⇢(x

0
1, x2) = wN(v1, v2).

If y lies between (excluding) x1 and (including) x0
1, then

wN(v1, v3) + wN(v2, v3) � dist⇢(x2, x3) + dist⇢(x1, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x

0
3, x3)}

= dist⇢(x1, x2) + 2 · dist⇢(y, x1) + 2 · dist⇢(y, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x

0
3, x3)}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 · dist⇢(y, x3) + 2 ·min {dist⇢(y, x1), dist⇢(x

0
3, x3)� dist⇢(y, x

0
1)}

� dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(y, x3), dist⇢(y, x3) + dist⇢(x

0
3, x3)� dist⇢(y, x

0
1)}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(y, x3), 0}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1)

= dist⇢(x
0
1, x1) + dist⇢(x

0
1, x2) = wN(v1, v2).

Case 2: y lies between (excluding) x̂ and (including) x0
2. The analysis in this case is symmetric to that of

Case 1, with an additional observation that dist⇢(x1, x0
1)  dist⇢(x2, x0

2) (as `1 � `2).
Case 3: y = x̂. In this case, from the definition of wN, wN(v2, v3) � dist⇢(x2, x3), and wN(v1, v3) �

dist⇢(x1, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x0

3, x3)}. Therefore,

wN(v1, v3) + wN(v2, v3) � dist⇢(x1, x2) + 2 · dist⇢(x̂, x3) + 2 ·min {dist⇢(x0
1, x1), dist⇢(x

0
3, x3)}

� dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(x̂, x3), dist⇢(x

0
3, x3) + dist⇢(x̂, x3)� dist⇢(x

0
1, x1)}

� dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1) + 2 ·min {dist⇢(x̂, x3), 0}

= dist⇢(x1, x2) + 2 · dist⇢(x0
1, x1)

= dist⇢(x
0
1, x1) + dist⇢(x

0
1, x2) = wN(v1, v2).

This completes the proof that wN is a metric on V .
We now proceed to show that wY is a metric on V by showing that wY(v1, v2)  wY(v1, v3) +wY(v2, v3). We

distinguish between the following cases.
Case 1: v1, v2, v3 2 S. In this case,

wY(v1, v2) = dist⇢(v1, v2)  dist⇢(v1, v3) + dist⇢(v2, v3) = wY(v1, v3) + wY(v2, v3).

Case 2: At most one of v1, v2, v3 lies in S. In this case,

wY(v1, v2) = wN(v1, v2)  wN(v1, v3) + wN(v2, v3) = wY(v1, v3) + wY(v2, v3).

Case 3: Exactly two of v1, v2, v3 lie in S. We further consider the following subcases.
Case 3.1: v1, v2 2 S, and v3 /2 S. In this case,

wY(v1, v2)  wN(v1, v2)  wN(v1, v3) + wN(v2, v3) = wY(v1, v3) + wY(v2, v3).

Case 3.2: v2, v3 2 S, and v1 /2 S. The analysis in this case uses almost identical arguments as Case 1 for
showing that wN is a metric (since there we only uses the fact that wN(x2, x3) � dist⇢(x2, x3)).

Case 3.3: v1, v3 2 S, and v2 /2 S. The analysis in this case uses almost identical arguments as Case 2 for
showing that wN is a metric (since there we only uses the fact that wN(x1, x3) � dist⇢(x1, x3)).

This completes the proof that wY is a metric on V .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4932

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

C Proof of Observation 3.2

Let T 0 be an optimal Steiner Tree of instance (S, T, wN), and assume for contradiction that T 0 contains an edge
(ux, ux0) where ux, ux0 /2 T (or equivalently x, x0 /2 L(⇢)). Assume without loss of generality that the level of x in
⇢ is at least the level of x0. Let x̃ be any leaf in ⇢ that is a descendant of x. Consider now the unique path in T 0

connecting ux̃ to ux, that we denote by P .
Assume first that the vertex ux0 does not belong to P . Let T be the tree obtained from T 0 by replacing the

edge (ux, ux0) with edge (ux̃, ux0). It is easy to verify that T is a Steiner Tree. Moreover, from the definition of
wN,

wN(ux, ux0) = dist⇢(x, x
0) + 2 · dist⇢(x, x̃) > dist⇢(x, x

0) + dist⇢(x, x̃) = wN(ux̃, ux0),

which implies that w(T) < w(T 0), a contradiction to the assumption that T 0 is an optimal Steiner Tree of the
instance (S, T, wN).

Assume now that vertex ux0 belongs to P . Similarly, let T be the tree obtained from T 0 by replacing the edge
(ux, ux0) with the edge (ux̃, ux). It is easy to verify that T is a Steiner Tree. Moreover, from the definition of wN,

wN(ux, ux0) = dist⇢(x, x
0) + 2 · dist⇢(x, x̃) > dist⇢(x, x̃) = wN(ux̃, ux),

which implies that w(T) < w(T 0), again a contradiction to the assumption that T 0 is an optimal Steiner Tree of
the instance (S, T, wN). This completes the proof of the observation.

D Proof of Observation 3.3

First of all, it is easy to see that there exists an optimal Steiner Tree such that every Steiner vertex has degree at
least 3, since we can compress degree-2 Steiner vertices without increasing the cost.

Consider now a tree T 0 such that:

1. T 0 is an optimal Steiner Tree such that every Steiner vertex has degree at least 3;

2. on top of 1, T 0 minimizes the number of Steiner vertices;

3. on top of 1 and 2, T 0 maximizes the sum of levels of all its Steiner vertices; and

4. on top of 1, 2, and 3, T 0 minimizes the number of edges incident to Steiner vertices.

For each Steiner vertex ux in T 0, we denote by d0(x), d1(x), d2(x) the number of neighbors of ux in sets
T0(x), T1(x), T2(x), respectively. Consider now a Steiner vertex ux in T 0. Let ux0 be the parent of ux, and let
ux1 , ux2 be the children of ux, where ux1 2 S1(x) and ux2 2 S2(x). We distinguish between the following cases.

Case 1: One of d0(x), d1(x), d2(x) is 0. Assume first that d0(x) = 0. Then if d1(x) � d2(x), we can replace
Steiner vertex ux with ux1 (that is, delete from T 0 the vertex ux and all its incident edges, and replace them with
vertex ux1 and edges in {(u, ux1) | (u, ux) 2 E(T 0)}), without increasing the total cost. In this way, we either
reduce the number of Steiner vertices by 1, or increase the sum of levels of all Steiner vertices, a contradiction to
either 2 or 3. The case where d1(x)  d2(x) is symmetric. Assume now that d1(x) = 0 (the case where d2(x) = 0
is symmetric). Then if d2(x) � d0(x), we can replace ux with ux2 either reducing the number of Steiner vertices
or increasing the sum of levels of all Steiner vertices, leading to a contradiction to 2 or 3; if d2(x) < d0(x), we can
replace ux with ux0 , reducing the total cost, leading to a contradiction to 1.

Case 2: One of d1(x), d2(x) is at least 2. Assume w.l.o.g. that d1(x) � 2. Let u, u0 be two vertices of T1(x)
that are adjacent to ux in T 0. We can replace the edge (u, ux) with edge (u, u0), and it is easy to verify from the
definition of wN that this does increase the total cost, leading to a contradiction to 4.

Case 3: d1(x) = d2(x) = 1 and d0(x) > 2. In this case, we can replace ux with ux0 , reducing the total cost,
leading to a contradiction to 1.

Altogether, we get that d1(x) = d2(x) = 1 and d0(x) is either 1 or 2, completing the proof of property (i) in
the observation. We now focus on proving property (ii). Let T 0 be the tree defined above. Let u1 (u2, resp.) be
the neighbor of ux in T1(x) (T2(x), resp.). Assume for contradiction that in there exists some vertex u 2 T1(x)
such that u /2 W1. From similar arguments in the proof of Observation 3.2, we can replace the edge (u1, ux) with
edge (u1, u), obtaining another optimal Steiner Tree with less edges incident to Steiner vertices, a contradiction
to 4. Assume for contradiction that in there exists some vertex u /2 T1(x) such that u 2 W1. We root tree W1

at u1, and it is easy to see that there exists some pair u0, u00 of vertices in W1, such that u0 2 T1(x), u00 /2 T1(x)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4933

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

and u0 is the parent of u00. Similarly, we can replace the edge (u0, u00) with edge (ux, u00), obtaining another
Steiner Tree with strictly lower cost, a contradiction to 1. Therefore, T1(x) ✓ V (W1) ✓ S1(x). The proof of
T2(x) ✓ V (W2) ✓ S2(x) is symmetric.

Last, we prove property (iii) in the observation. Let T 0 be the tree defined above. Consider a Steiner vertex
ux in T 0. We denote by ux0 the parent of ux, and denote by ux̂ the other child of ux0 . Assume for contradiction
that both ux and ux0 belong to T 0. From property (i), ux0 has a neighbor in T (x), that we denote by u. From
property (ii), since u 2 T (x), vertex u belongs to either W1 or W2. However, ux0 /2 R(x), so u does not belong to
either W1 or W2, a contradiction to the fact that ux0 and u are connected by an edge. Assume for contradiction
that both ux and ux̂ belong to tree T 0. Let u be the neighbor of ux that belongs to the same connected component
of T 0 \ {ux} as ux̂. From property (i) and (ii) on ux̂, u does not belong to the corresponding subgraphs Ŵ1, Ŵ2

for ux̂. Let û be any leaf of T (x̂). Via similar arguments, we can replace the edge (ux, u) with the edge (ux, û),
obtaining another Steiner Tree with strictly lower cost, a contradiction to 1. Assume for contradiction that none
of ux, ux0 , ux̂ belongs to T 0. Via similar arguments, it is easy to verify that we can add either ux or ux̂ to T 0 and
deleting some edges, obtaining another Steiner Tree with strictly lower cost, a contradiction to 1.

E Analysis of the Algorithm in Section 6.1

In this section, we show that the spanning tree T output by the algorithm in Section 6.1 is with high probability
an ↵-approximate Steiner Tree. We denote by MST the minimum spanning tree cost on T . Therefore, it su�ces
to show that, with high probability, w(T)  (↵/2) · MST, as MST is at most twice the minimum Steiner Tree
cost. Recall that � = ↵/(100 log n).

Let T ⇤ be a minimum spanning tree on T . Let ⇡ = (u1, u2, . . . , u2k�2) be an Euler-tour of T ⇤, and for each
1  t  2k � 2, we let R⇡,t = {ui | t  i  t+ 20� log n}. We define a bad event ⇠ as follows.

Bad event ⇠. Let ⇠ be the event that there exists some t, such that R⇡,t \ T 0 = ;. We now show that
Pr[⇠] = O(n�9). Since each edge of T ⇤ appears at most twice in the set {(ui, ui+1) | ui 2 R⇡,t}, R⇡,t contains at
least 10� log n distinct vertices. Therefore, the probability that a random subset of dn/�e vertices in V does not
intersect with R⇡,t is at most (1 � (10� log n/k))k/�  n�10. Taking the union bound over all 1  t  2k � 2,
we get that Pr[⇠1] = O(n�9). Note that, if the event ⇠ does not happen, then every consecutive window of ⇡ of
length 20� log n contains at least one element of T 0.

Let ui1 , ui2 , . . . , uit0 be the vertices of ⇡ that belongs to T 0 (t0 may be larger than |T 0| since we keep all copies
of the same vertex), then for each 1  j  t0, |ij � ij+1|  20� log n.

Let u be any terminal in T \ T 0. Assume that the first appearance of u in ⇡ is between uij and uij+1 , so
w(u, T 0)  min

�
w(u, uij), w(u, uij+1)

 w(uij , uij+1), which is at most the total weight of all edges in ⇡ between

uij and uij+1 . So from triangle inequality, dist⇡(u, T 0) 
P

ijtij+1�1 w(vt, vt+1). As |ij� ij+1|  20� log n holds

for all 1  j  t0,
P

u2T\T 0 w(u, f(u))  20� log n · w(T ⇤)  20� log n · MST. Finally, since w(T 0)  MST, we

conclude that w(T)  21� log n ·MST  (↵/2) ·MST. Altogether, we conclude that, with probability 1�O(n�9),
the spanning tree T output by the algorithm in Section 6.1 is an ↵-approximate Steiner Tree.

Acknowledgements

We thank anonymous reviwers for helpful comments and for pointing to us the previous work [28] and [27].

References

[1] Manuela Fischer and Andreas Noever, Tight Analysis of Parallel Randomized Greedy MIS, ACM Trans. Algorithms,
6:1–6:13, 2020.

[2] Grunau, Christoph and Mitrović, Slobodan and Rubinfeld, Ronitt and Vakilian, Ali, Improved local computation

algorithm for set cover via sparsification, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2993–3011, 2020.

[3] Har-Peled, Sariel and Indyk, Piotr and Mahabadi, Sepideh and Vakilian, Ali, Towards tight bounds for the streaming

set cover problem, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 371–383, 2016.

[4] Indyk, Piotr and Mahabadi, Sepideh and Rubinfeld, Ronitt and Vakilian, Ali and Yodpinyanee, Anak, Set cover in

sub-linear time, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 2467–2486,
2018.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4934

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[5] Dubhashi, Devdatt P and Panconesi, Alessandro, Concentration of measure for the analysis of randomized algorithms,
2009, Cambridge University Press

[6] Assadi, Sepehr and Chen, Yu and Khanna, Sanjeev, Sublinear algorithms for (�+ 1) vertex coloring, Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 767–786, 2019.

[7] Yao, Andrew Chi-Chin, Probabilistic computations: Toward a unified measure of complexity, 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), 222–227, 1977.

[8] Goldreich, Oded and Goldwasser, Shari and Ron, Dana, Property testing and its connection to learning and

approximation, Journal of the ACM (JACM), 45, 4, 653–750, 1998.
[9] Chen, Yu and Khanna, Sanjeev and Tan, Zihan, Sublinear Algorithms and Lower Bounds for Estimating MST and

TSP Cost in General Metrics, arXiv preprint arXiv:2203.14798, 2022.
[10] Goldreich, Oded and Ron, Dana, Property testing in bounded degree graphs, Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, 406–415, 1997.
[11] Guy E. Blelloch and Jeremy T. Fineman and Julian Shun, Greedy sequential maximal independent set and matching

are parallel on average, 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh,
PA, USA, June 25-27, 2012, 308–317, 2012.

[12] Soheil Behnezhad, Time-Optimal Sublinear Algorithms for Matching and Vertex Cover, 62nd IEEE Annual
Symposium on Foundations of Computer Science, 873–884, 2021.

[13] Zelikovsky, Alexander, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical
Report CS-96-06, Department of Computer Science, University of Virginia 1996.

[14] Goemans, Michel X and Olver, Neil and Rothvoß, Thomas and Zenklusen, Rico, Matroids and integrality gaps for

hypergraphic steiner tree relaxations, Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
1161–1176, 2012.

[15] Byrka, Jaroslaw and Grandoni, Fabrizio and Rothvoß, Thomas and Sanita, Laura, An improved LP-based

approximation for Steiner tree, Proceedings of the forty-second ACM symposium on Theory of computing, 583–592,
2010.

[16] Garey, Michael R and Johnson, David S, Computers and intractability, 1979.
[17] Gilbert, Edgar N and Pollak, Henry O, Steiner minimal trees, SIAM Journal on Applied Mathematics, 16, 1, 1–29,

1968.
[18] Karpinski, Marek and Zelikovsky, Alexander, New approximation algorithms for the Steiner tree problems, Journal of

Combinatorial Optimization, 1, 1, 47–65, 1997.
[19] Zelikovsky, Alexander Z, An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, 9, 5,

463–470, 1993.
[20] Robins, Gabriel and Zelikovsky, Alexander, Tighter bounds for graph Steiner tree approximation, SIAM Journal on

Discrete Mathematics, 19, 1, 122–134, 2005.
[21] Hauptmann, Mathias and Karpiński, Marek, A compendium on Steiner tree problems, Inst. für Informatik 2013.
[22] Chleb́ık, Miroslav and Chleb́ıková, Janka, The Steiner tree problem on graphs: Inapproximability results, Theoretical

Computer Science, 406, 3, 207–214, 2008.
[23] Traub, Vera and Zenklusen, Rico, Local search for weighted tree augmentation and Steiner tree, Proceedings of the

2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 3253–3272, 2022.
[24] Czumaj, Artur and Sohler, Christian, Estimating the weight of metric minimum spanning trees in sublinear time,

SIAM Journal on Computing, 39, 3, 904–922, 2009.
[25] Chazelle, Bernard and Rubinfeld, Ronitt and Trevisan, Luca, Approximating the minimum spanning tree weight in

sublinear time, SIAM Journal on computing, 34, 6, 1370–1379, 2005.
[26] Borchers, Al and Du, Ding-Zhu, The k-Steiner ratio in graphs, SIAM Journal on Computing, 26, 3, 857–869, 1997.
[27] Zelikovsky, Alexander Z, An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, 9, 5,

463–470, 1993.
[28] Du, Ding-Zhu, On component-size bounded Steiner trees, Discrete applied mathematics, 60, 1-3, 131–140, 1995.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4935

D
ow

nl
oa

de
d

07
/1

8/
23

 to
 1

58
.1

30
.1

13
.6

3
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Our Results

	Preliminaries
	An (n2) Lower Bound for (5/3-)-Estimation
	Algorithm for a (2-0)-Estimation of Steiner Tree Cost
	An Algorithm with the Terminal-Induced Metric Given Upfront
	Proof of Theorem 4.1
	Implementation without Knowing the Terminal-Induced Metric Upfront

	An (nk) Lower Bound for (2-)-Approximate Steiner Tree
	Upper and Lower Bounds for -Approximate Steiner Tree (2)
	Upper Bound
	Lower Bound

	An (n+k6/5) Query Lower Bound for (2-)-Estimation
	An (n) Lower Bound
	An (k6/5) Lower Bound
	Completing the Proof of the (k6/5) Lower Bound
	Proof of lem:settle-sp for DN
	Proof of lem:settle-sp for DY

	An O(nk)-Query (5/3)-Approximation Algorithm
	Proof of clm: YN metrics
	Proof of obs: edges love terminal
	Proof of obs: OPTprops
	Analysis of the Algorithm in subsec: >2upper

