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We study how communication platforms can improve social learning without cen-
soring or fact-checking messages, when they have members who deliberately and/or
inadvertently distort information. Message fidelity depends on social network depth
(how many times information can be relayed) and breadth (the number of others with
whom a typical user shares information). We characterize how the expected number of
true minus false messages depends on breadth and depth of the network and the noise
structure. Message fidelity can be improved by capping depth or, if that is not possible,
limiting breadth, e.g., by capping the number of people to whom someone can forward
a given message. Although caps reduce total communication, they increase the fraction
of received messages that have traveled shorter distances and have had less opportunity
to be altered, thereby increasing the signal-to-noise ratio.

social learning | network | misinformation

The safety of our democracy is more important than shareholder dividends and
CEO salaries ... That's why I'm calling on [tech companies] to take real steps
right now to fight disinformation.

Elizabeth Warren

I don’t think that Facebook or Internet platforms in general should be arbiters
of truth.

Mark Zuckerberg

Misinformation has always been a social concern, but there has recently been a resurgence
of interest in addressing it. This is both because social media and messaging platforms
make (mis)information spreading easier (e.g., see ref. 1) and because they have made
its impact more transparent, with wide-ranging implications from voter attitudes toward
election outcomes to their views on vaccination. The most common approach to regulate
communication on online platforms involves some form of fact-checking and flagging or
censorship. However, policing communication is challenging and problematic due to the
enormous volume and fast pace of online communication and the potential for bias by
whoever is “determining the truth,” be it a government or private enterprise, an algorithm,
or crowd. Moreover, communication on some platforms is intentionally encrypted to
protect user privacy, making fact-checking impossible.

Given these challenges, we study policies that improve informational content and social
learning without relying on anyone to know or decide what is true. In particular, we study
how people learn as a function of their networks when information is subject to mutation,
deliberate manipulation, and transmission failure. We characterize how learning depends
on the depth and breadth of a person’s network. Increasing depth and breadth of a network
increases the number of messages passed and therefore received. However, it also increases
the number of distant sources, from which surviving messages are less accurate, more than
it increases the number of nearby sources. Our analysis shows how and when limiting the
network can improve the accuracy of overall content without the need for censorship or
message monitoring. Our results show how one can satisfy Warren’s objectives outlined in
the quote above, while respecting Zuckerberg’s reticence for private enterprises to serve as
arbiters of the truth.

In our model, information is relayed from original sources via sequences of individuals
to an eventual “learner,” who wishes to ascertain the state of the world. Our results
apply whether the learner is a fully rational Bayesian facing substantial uncertainty or
a naive learner who is simply influenced by the preponderance of messages. The state
of the world and corresponding messages are 1 or 0 (e.g., the state can be “climate
change is an urgent concern” or “climate change is not an urgent concern”). With
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noiseless word-of-mouth (oral or digital) communication and suf-
ficiently many sources of conditionally independent information,
the receiver learns the true state. However, along each transmission
chain, the message may mutate (deliberately or inadvertently),
become unintelligible, or be dropped, reducing the information
content of the signals that reach the receiver.

Limiting how many times messages can be relayed (network
depth) is key to overcoming the noise that builds up as messages
are repeatedly relayed. People see fewer messages when depth is
capped, but the messages that they do receive are more informative
on average, thereby increasing the overall signal-to-noise ratio and
enabling at least partial learning. We derive an optimal cap on
depth and show that if depth can be capped, there is no need to
otherwise restrict communication.

However, what if depth cannot be capped? For instance, some
social media platforms do not track whether a message is new or
forwarded. Moreover, tracking messages™ trajectories can become
particularly challenging when they mutate. Such platforms can
instead limit network breadth by making it more difficult to
forward a message to many people. Such a cap can be easier to
implement even though it might be a cruder way of improving the
ratio of true to false signals. In particular, breadth restrictions still
improve learning since decreasing breadth increases the relative
number of messages from closer sources nodes, as higher breadth
increases the expansion properties of a network and thus the
relative number of distant to nearby nodes.

Indeed, breadth limits have been adopted by online messaging
platforms. For instance, WhatsApp has capped the number of
people that someone can message, for the express purpose of curb-
ing the spread of false information. Facebook has implemented
a similar strategy, capping the number of people or groups to
which a message can be forwarded (https://about.fb.com/news/
2020/09/introducing-a-forwarding-limit-on-messenger/).

Some Background Observations

Consider the children’s game of “Telephone,” in which a message is
whispered from one player to the next. The final message typically
bears little resemblance to the original because of “mutations”
along the transmission chain. Such mutations have been found
to occur frequently. In ref. 2’s study of online viral memes, one
meme was reposted more than 470,000 times, with a mutation
rate of around 11% and more than 100,000 variants. Indeed, 121
of the 123 most viral memes each had more than 100,000 vari-
ants. [Other examples of mutating messages include mythology
and the morphing of religious texts (3): estimates that there are
around 500,000 textual variants of the Greek New Testament, not
including spelling errors.] In particular, when relayed, a message
can change—intentionally or inadvertently—in ways that alter its
meaning (mutate) or render it unintelligible and/or irrelevant to
the underlying state (drop), or simply not be forwarded (another
way of being dropped). Ref. 4 discusses an interesting example of
a message whose meaning was inadvertently lost in transmission.
An initial tweet “Street style shooting in Oxford Circus for ASOS
and Diet Coke. Let me know if you're around!” was an invitation
for people to join the crowd for a commercial being filmed
in London. This was misunderstood and within minutes had
mutated to “Shooting in progress in Oxford Circus? What?” and
then retweeted as “Shooting in progress in Oxford Circus, stay safe
people.”

Tabloids are rife with examples of intentional message muta-
tions. For example, the Yellowstone Volcano Observatory (YVO)
discussed in an article how they repaired a monitoring station that
was damaged during a storm. However, aspects of the article were
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quickly grabbed by a tabloid website, and within hours they had
produced their own article that exaggerated and misconstrued the
original information and implied Yellowstone was unmonitored.
That story even failed to correctly copy and paste the original text.
As an example, the word “borehole” in the original was misspelled
as “boreal” in the tabloid version. The exact same misspelling was
perpetuated in social media reports and by sources that repeatedly
conduct misinformation campaigns about Yellowstone. They ei-
ther did not know, or ignored, the fact that YVO was the original
source of the article and that the tabloid changed the article’s
meaning to something ominous (https://www.usgs.gov/center-
news/playing-telephone-miss-information).

In our model, both intentional and inadvertent changes in con-
tent are captured by the probability of nodes changing messages
when they forward them, while failures to forward and garbling
of content that renders a message uninterpretable are captured
by the probability of a message being dropped. Importantly, we
allow mutations to occur in different directions with different
probabilities. For example, as we have noted, some mutations
may be intentional as ideologues relay messages that they prefer
telling rather than what they truly heard (e.g., “fake news”), and
there may be more ideological pressure in one direction or another
depending on the topic (5, 6).

In ref. 7, we show that in the presence of such mutations, slight
uncertainty over the mutation rates severely limits what even a
fully Bayesian receiver can learn from a distance, no matter how
many independent chains of message relays they hear. Moreover,
it appears that people are far from the ideal Bayesian social learner
and tend to be swayed by the preponderance of messages (e.g.,
see ref. 8). Indeed, experimental evidence suggests that simply
repeating falsehoods makes people more likely to believe them,
even when no additional evidence is presented and they have prior
knowledge to the contrary (see ref. 9 and the references therein).
Also, ref. 10 shows that people are poor at distinguishing what
is true and false but become more confident in false messages if
shared by others. In light of these findings, we step back from
particular specifications of sender intentions and receiver updating
rules and focus directly on the problem of how platforms can
increase message fidelity.

Several governments have increased regulations and fines for
disinformation (11). This puts platforms that are hesitant to be
arbiters of the truth in a difficult situation. Our analysis highlights
a policy that such platforms could follow to ensure that most
messages on their platforms are true, without needing to police
message content. Limiting message passing does not eliminate
false information but can improve the overall quality of what gets
shared and allow people to learn more from the content they
encounter.

A Model of Noisy Information Transmission

Information is relayed by word-of-mouth (oral, written, via social
media, etc.) from original sources to a learner. For instance, the
learner may hear from friends about whether there is a link
between vaccines and autism and then decide whether to vaccinate
their child.*

There are two possible states of the world, w € {0,1}. Let 6 be
the prior probability that the state is 1.7

*The learner may have information from sources outside of their network. If these sources
are not direct, then they can be modeled as part of the network. Otherwise, we can think
of this external information as being reflected in the prior.

fWe focus on a binary world to crystallize the main ideas. Extensions to richer state spaces
and signal structures are left for future research.
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Agents are in an infinite network.

With probability > 0 any given agent is an original source
and gets information (exogenously from the network) about the
state, and the agent is uninformed with probability 1 — 7. An
original source observes a noisy signal of the state in {0, 1}, as
described below. All original sources then transmit their informa-
tion to all of their neighbors as a message. Neighbors relay each
piece of information that they receive to their neighbors, and this
process repeats.

Thus, in the first period, some random people hear direct (but
noisy) information about the state. Then, in the next period, they
broadcast that information to their neighbors via noisy messages.
In each of the following periods, people broadcast the messages
they have received in the last period, each time subject to noise.

To keep the analysis uncluttered, we abstract from cycles and
multiple paths that the same information may follow. In partic-
ular, we study the perspective of some learner who is the root
node of the subtree consisting of the learner’s parent nodes, their
parents, and so on. Each node in this subtree is a potential source
of information that may then be relayed with noise to the learner.

We allow the tree to be random, following a standard Galton—
Watson branching process: each node has an independent and
identically drawn number of parent nodes. What is important in
the analysis is the expected number of parent nodes at each level in
the tree, which we denote by k. The exact distribution that gives
that expected degree is not consequential, and one can think of a
regular tree or some other distribution that has & parent nodes on
average at each level.

Consider a path of length T' that information travels from
an original source to the learner. Label the source node 1 and
the learner T > 1, with the message passing via the sequence (or
chain) of agents {1,2,..., T}.

Messages are distributed as follows. Let mg € {0, 1} be the true
state.

Messages m; sent by agent ¢ € {1,2,..., T} take on the
values {0, 1,0}, with the null message, m; = 0, indicating that
the message either was dropped at some earlier stage or was
so garbled that it was not interpretable. In particular, if agent
t > 1 receives a null message m; = {), then all subsequent agents
(including the learner) also receive a null message.

Noisy transmission along the chain proceeds according
to the following procedure. If agent ¢ >1 receives a mes-
sage my € {0,1}, then that agent passes along a nonnull
message (my41 # () with probability p, and the message is
dropped/garbled (m;1 = @) with probability 1 — p.*

Each time a nonnull message is transmitted, that message
mutates from 0 to 1 with probability po1 € (0,1/2) or from 1
to 0 with probability p119 € (0,1/2).%

Thus, for each ¢ > 0, if m; = 1, then agent ¢ + 1 passes along
the message my+1 = 1 with probability p(1 — p19), me11 =0
with probability pu19, and my41 =0 with probability 1 — p.
Similarly, if m; =0, then myy1 =1 with probability puo1,
m¢r1 =0 with probability p(1 — ug1), and myp; =0 with
probability 1 — p. If m; =0, then my41 = 0. An agent in the

*In another paper (7), we analyze social learning when the pass rate p depends on
message content and characterize conditions under which learning can be enhanced by
such dependence. However, those results shed little additional light on the role of network
structure, and so we focus here on the case in which all messages have the same pass rate.

81n practice, agents pass along messages for a variety of reasons, be it to inform or
persuade or mislead others, tell a joke, or even to just keep a record of what they
heard. Since our goal is to understand the type of content that reaches a learner, we do
not explicitly model agents' incentives for passing along messages. However, given any
microfoundation of senders’ incentives, the resulting average probabilities of mutations
and message dropping at each step is what matters for the analysis.

PNAS 2022 Vol. 119 No.34 e2205549119

tree may end up relaying multiple messages at once or at multiple
times in the process. We treat each relay as independent.

We assume that the initial message m; depends on the true state
my in the same way that any other m;41 depends on my, i.e., as
if nature were agent 0 in the chain. This simplifies expressions,
although our analysis easily extends to allow first-signal accuracies
and dropping rates to differ from subsequent ones.

This defines a 3 x 3 Markov chain in which () is an absorbing
state.

The basic structure of the model is pictured in Fig. 1.

The interesting case is when mutation rates differ across states.
If pio1 = pt10, then messages are always (slightly) more likely to
match the starting state. Even a naive learner who just follows
the majority signal would make correct decisions on average by
following messages originating from any distance. However, for
instance, if 101 < f10, then as T becomes large, any surviving
message is more likely to be a 0 than a 1, regardless of the starting
state.

In particular, letting M =1 — po1 — 10, if the state w =0,
the frequency of true (0) to false (1) messages originating 7' steps
away is”

pio + pror M7

pror — proa M T
If w =1, the frequency of true (1) to false (0) messages originating
T steps away is

(1]

pror + prioM ™
pr1o — pioM T

A Bayesian learner who knows the exact mutation rates
(101, f110) and the exact distance T that a message has traveled
can leverage the difference between the frequency ratios in Egs. 1
and 2 to glean information about the state from a message, even
if it has traveled from a great distance. For such a learner, having
more messages from any distance, and hence a broader and deeper
network, is unambiguously good for learning.

However, perfect knowledge about message distances and mu-
tation rates is unrealistic: people often cannot tell how far away
the original source of a message is or how likely others are to
alter messages. Thus, we analyze situations in which the learner
cannot tell how far a message has traveled and faces uncertainty

about mutation rates.l With this in mind, we assume that the
learner follows the majority of messages received. This may be
seen as capturing learners who follow a simple rule of thumb; it
can also be justified as a reduced-form model of Bayesian agents.”
The analysis readily extends to nonsymmetric settings where there
is some threshold applied that differs from a majority (e.g., the
learner has a status quo bias and presumes it is state 0 unless
messages of 1 outnumber messages of 0 by some number or by
some ratio), but the symmetric case makes the expressions most
transparent.

(2]

Y Also, we ignore the possibility of the learner being an original source and just examine
the marginal information that the learner gets from the network. Again, a direct extension
addresses the case where the learner can be an original source, without any additional
intuition but with some additional notation and two cases.

#See the proof of Lemma for a derivation.

i ref. 7, we characterize how agents learn with known mutation rates and known chain
lengths. We show that learning from distant messages requires not only sufficient growth in
the network but also that the learner has no uncertainty about the mutation rates. With any
uncertainty about mutation rates, it is impossible to learn from any number of messages
if they have traveled a sufficiently long distance.

**For instance, suppose a learner faces uncertainty about the mutation rates and has a
symmetric prior on the state and on mutation rates. Moreover, suppose after receiving
messages, the learner takes a binary action a € {0, 1} that yields payoff 41 if it matches
the state or payoff —1 if not. Such an agent would, after Bayesian updating, find it optimal
to choose the action corresponding to the most common message received.
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Fig. 1. An illustration of the model. The learner is at the root of a tree.
From four original sources, messages are passed along with the possibility
of dropping and mutation. The learner ends up hearing three messages,
of which one mutated en route. (A) A random tree with a learner and 24
other agents who could pass information to the learner. (B) Randomly, with
probability r some of the agents get information. Here three nodes get initial
information of 1, and one gets initial information of 0, while others get no
directinformation. (C) Messages pass to the learner. One of the messages was
randomly dropped, while three others made it to the learner. One message
mutated along its path.

Improving Learning by Restricting
Communication

We analyze how restricting the distance that messages can travel
(depth) or reducing the network’s degree (breadth) improves
learning. To gain intuition, consider a situation in which pk > 1
so that the learner receives exponentially more messages from
farther away. Whenever the mutation rates fto1, (119 are unequal,
a majority of messages from sufficiently far away are more likely
to match the mutation-favored state (state 0 if 191 < 10 or state
L if fio1 > pe10), causing the learner to take the mutation-favored
action regardless of the true state. The learner would be better off
in a network with no retransmission at all: depth capped at 7' = 1.
However, such a draconian restriction might not be optimal since
the learner would receive too few messages.
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Fig. 2. Atree in which each node has three neighbors via whom messages
are relayed and the learner is at the root. Blue nodes are those from which
the signal gets to the learner in its true form: matching the state. Red nodes
are those from which the signal is eventually corrupted and reach the learner
in a false form: not matching the state. (This figure differs from Fig. 1 in that
we do not show how messages mutate along the route but just color them at
their point of origin based on whether they are true by the time they reach
the learner.) Under the caps in B and C, the gray nodes are those whose
messages no longer reach the learner. The parameter values are p =1 so
that there is no dropping, w10 = 0.15, o1 = 0, and the state is 1. (A) Without
any cap, the learner hears 58 correct and 63 incorrect messages. More distant
sources have a greater fraction of incorrect messages. (B) A depth cap blocks
messages from nodes at a distance of 4 or greater, for which messages are
more often incorrect than correct. The learner now hears 22 correct and 18
incorrect messages. (C) A breadth cap limits the extent to which messages
are forwarded, so each person now only hears from two others on average.
This increases the relative fraction of near to far sources. The learner hears
19 correct and 12 incorrect messages.

We examine how to optimally restrict communication with
respect to two related objectives. We first focus on the objective
of maximizing the expected number of true minus false messages,
which allows for a tractable analysis. We then turn to the objec-
tive of maximizing expected learner welfare, which simplifies to
maximizing the probability that the majority of received messages
match the true state. We show in a numerical example that the
main qualitative findings continue to hold.*

Before offering results outlining breadth and depth caps that
maximize the number of true minus false messages, we illustrate
why such caps work in a simple example, as illustrated in Fig. 2.
This is a simplified setting in which there is no dropping and the
tree is regular and of depth four to begin with. Parameters are such

" Whenever the number of potential sources that are not too far from the learner is
reasonably large, maximizing the expected number of true minus false messages also
approximately maximizes the probability that true messages outnumber false ones. The
reason, effectively, is that increasing how far the mean of the distribution of excess number
of true messages is above zero also tends to reduce its tail probability of being below
zero. Extra complications arise in our context, however, because depth and breadth caps
impact the variance of this distribution, and these caps are themselves subject to an integer
constraint.

pnas.org
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that messages are more likely to be true than false as long as they
do not travel more than a distance of three. The optimal depth
cap is to block messages traveling four or more, which changes
the messages from being a majority false to be a majority true.
Similarly, restricting breadth also increases the relative number of
close to far messages and leads to a majority of true messages.

Say that a set of sources generates a “preponderance of true
messages” if the expected number of true messages from these
sources exceeds the expected number of false messages, regardless
of the state. Whether the network generates a preponderance of
true messages depends on the mutation rates (and other model
parameters), which may differ depending on message topic, etc.

More generally, a platform may want there to be a prepon-
derance of true messages for a set of possible mutation rates.
The platform may be uncertain about which rates apply, may
face varying conditions and mutation rates, or may have different
rates across different topics that are transmitted across the same
network. To deal with this, we can require a preponderance of true
messages to hold with respect to a whole set of mutation rates. Let
A be a compact set of pairs of mutation rates ({1, f410)- Say that
a set of sources generates a robust preponderance of true messages
if there are more true than false stories from these sources, in
expectation, for every pair of mutation rates (fo1, f410) € A and
regardless of the state. In a platform designed to generate a robust
preponderance of true messages, a learner who simply follows
the majority of messages expects that majority to be correct on
average, for every pair of mutation rates in A and regardless of the
state.

A depth (breadth) cap is undominated if there is no other depth
(breadth) cap that generates a strictly higher expected number
of true minus false messages in the mutation-disfavored state for
some (fi(, (1) € A and weakly higher for all (o1, 110) € A.

A platform facing mutation rates in A with a goal of maxi-
mizing the expected number of true minus false messages would
choose an undominated cap. Which one of the undominated caps
they would choose would then depend on some more specific
weightings on the possible mutation rates in A.

Capping Depth. Proposition 1 establishes a critical distance such
that messages traveling no more than that distance are always more
likely to be true than false. This determines the set of caps that are
undominated.

A rounding function is a mapping 7 : R — Z such that r(z) €
{lz],[z]} foral z € R.

Proposition 1. Any given source generates a robust preponderance of
true messages if and only if it is at distance from the learner of no more
than T* = min(um,uw)eA T(,LL()l, Mlo), where
1 .
log(§)+log(1—m1n{%7%})’ 3]
log(l — Ho1 — f410)

T (po1, p10) =

There exists a rounding function r such that a depth cap T is
undominated ifand only if T € [r(T*), r(T**)],* where T** =
max (o, uo)ed 1 (Ho1, f10)-

The proof of Proposition 1 is relatively straightforward, and so
we outline it here. The first part of Proposition 1 follows from
considering the values of T for which the ratios in Egs. 1 or 2 are
less than 1 for some pair of mutation rates. After some algebraic
manipulations, that ratio is equal to 1 for the T'(po1, pt10) defined

ﬁCaps in [[T*], LT**]] are always undominated; whether the caps |[T*] or [T**] are
undominated can depend on parameter values.

PNAS 2022 Vol. 119 No.34 e2205549119

in Eq. 3. Beyond that distance, the expected number of false
messages exceeds true ones, and at less than that distance the
reverse is true.

The cap of T™ is a conservative one, and it might be that
a platform designer is willing to admit some additional false
messages for some mutation rates in order to improve the expected
number of true minus false for some other mutation rates. Beyond
T**, however, more false than true messages are then expected
for every pair of mutation rates in A. This leads us to the latter
statement of Proposition 1.

The magnitude of T'(t01, ft10), and hence the caps T, T**,
depends on how asymmetric the mutation rates are. On
one extreme, when po; and 1o are equal, it follows that
T(po1, pt10) = 00. On the other extreme, when one of the
mutation rates is near 1/2 and the other is near zero, it follows
that T (o1, p10) is close to 1. Thus, presuming that the designer
is concerned about some asymmetric mutation rates—as those
are the ones that upset learning—the designer will choose some
finite T > T*.

In principle, the set of possible mutation rates A can be
determined by a platform that has data on different types of
messages, what we will refer to as “topics.” Setting a depth cap of
T* ensures that the expected number of true minus false messages
is positive on every topic and in every state and is maximized for
some topic. That said, if the platform designer can set different
depth caps (and knows the mutation rates) for each topic, then
setting a customized depth cap of T'(f01, f10) for each topic
maximizes the expected number of true minus false messages that
users receive, topic by topic.

Capping Breadth. If the depth of the network has been capped
at T < T, all received messages are more likely to be true than
false. A platform designer intent on maximizing the expected
number of true minus false messages would therefore not restrict
breadth d.

However, what if the network’s depth 7" cannot be capped?
Capping T requires following the life cycle of a message, which
can be infeasible in practice. For instance, it may be difficult or
impossible to tell whether someone is mutating a previous message
she heard or originating a new message. Alternatively, a designer
maintaining user privacy may not even observe the messages being
forwarded, which are encrypted on some platforms. When depth
cannot be restricted, limiting breadth can help ensure that most
messages are true. A designer can lower the relative number of
long chains by restricting the number of others to whom any given
agent can send or forward messages.

Consider again the infinite tree network with no cap on depth
in which each node has average in-degree and out-degree k& > 0.
A cap on message forwards of £* < k limits each agent to passing
along messages to at most k£* of its out-neighbors (Fig. 2). We
suppose that agents follow such a cap by choosing their £* out-
neighbors uniformly at random. (The cap is not binding if the
agent has k* or fewer friends.)

Proposition 2. An infinite-depth network generates a robust prepon-
derance of true messages if and only if its degree is less than

T . 1 — 2 max{ o1, ft10}
=  min .
(po1,m10)EA p(l — Ho1 — MIO)

The breadth cap

1-7
1—(1—po1 — p0)Z2)’

k(por, pio) = P (4]
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where

g < max(ft10, fto1) — min(fi10, fo1) )1/2 5]

2 max(p10, ft01)(1 — o1 — f10)

maximizes the expected number of true minus false messages
in the unfavored state for mutation rates (lo1,p10). Let
E* =ming,g, u0)ea k(po1, pio) and k™ = max g, u,0)ea
k(uo1, 1o). It follows that there exists a rounding function r
such that a breadth cap k is undominated if and only if k €
[r(k*), (k)]

Proposition 2 is not an exact parallel to the result on depths,
Proposition 1. The reason is that a depth cap produces an absolute
cap on which nodes are in or out of consideration based on
their distance from the learner. In contrast, a breadth cap does
not rule out any distance absolutely but instead controls the
relative frequency of nodes at various distances. Thus, the robust
preponderance is stated relative to the tree in the case of a breadth
cap, while it is stated for the source nodes in the case of a depth
cap. This also makes Proposition 2 harder to prove and leads to
different expressions depending on whether we are considering a
robust preponderance or undominated caps.

Note that pk captures the expansion property of a network
with average degree k, with far-away messages dominating
what the learner receives if pk > 1. Not surprisingly, the cap
(o1, 110) is thus always low enough so that pk (101, p10) < 1,
with pk(po1, pt10) =1 only in the special case with symmetric
mutation rates, (o1 = f10.55 (To see why, note that Z = 0 ifand
only if/,é(n = Mlo.)

As the likelihood p that messages are passed is decreased,
fewer messages come from longer distances and the optimal
cap is higher, meaning that people are less constrained in how
widely they can forward any given message. In the extreme as p
approaches 1, so messages are likely to travel far, the optimal cap
is set such that the expected degree is less than 1.

If we increase the higher of the two mutation rates, then
Z increases and (1 — pg1 — p10) decreases. This implies that
ﬁ decreases since the denominator shrinks more
slowly, and a tighter cap is needed. In contrast, when the lower
of the two mutation rates increases (but not so much to pass the
other), a looser cap is possible. In other words, caps are less useful
when mutation rates come more into balance.

As can be easily checked, the breadth cap & always exceeds the
cap k*. This difference highlights a potential conflict of interest
between platforms and their users. In particular, if a platform seeks
to maximize its overall volume of communication, subject to the
constraint that there is a robust preponderance of the truth, then
the platform might set a looser cap on network breadth than a
social planner seeking to maximize learner welfare.

Probabilities that True Outnumber False Messages. The above
results examine the expected number of true minus false messages,
but more relevant for some learners is the probability that true
messages exceed false ones. These objectives are closely related
but do not always yield the same caps. The probability that
true messages exceed false is not tractable in closed form, but
we observe through numerical simulations that the comparative
statics of varying network depth/breadth are similar to those of the

881 the special case with symmetric mutation rates and no dropping (p = 1), the optimal
breadth limit k* = 1, meaning that the optimally pruned tree is a single infinite chain.
Otherwise, whenever ng1 # o, the optimal breadth limit prunes the tree sufficiently that
the expected number of sources is always finite.
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Fig. 3. These graphs show how the probability that most received messages
are true in state O (the state more likely to have mutations) varies with
the depth and breadth of the learner's social network. The parameters
used in these simulations are p = 0.2, pp1 = 0.10, and p40 = 0.03 for A and
p=0.2, pupy =0.10, and w49 € {0.03,0.05,0.07} for B. (A) Probability that
more messages are true than false in state 0, as a function of the cap on tree
depth for three values of breadth. (B) Probability that more messages are true
than false in state O for three relative mutation rates (all with depth 10).

caps above. In particular, the probabilities of having true messages
exceed false ones for different combinations of d and T (for
k-regular trees) are pictured in Fig. 3.

In the numerical examples illustrated in Fig. 3, messages of
any distance are more likely to be true than false in state 1, the
mutation-favored state. However, once a message travels too far,
it is more likely to be false than true in state 0. By Proposition 1, the
threshold depth at which false messages on average overtake true
ones is T* = 7.5, regardless of network breadth. The breadth cap
in Proposition 2 that maximizes the extent to which true messages
outnumber false ones is £* = 1.83, while the cap in Proposition 2
that ensures a robust preponderance of the truth is k = 4.6.

Those thresholds do not maximize the probability that true
messages outnumber false ones. Nonetheless, as is clear from
Fig. 3, these are also close to the maximizers of probability. 19

Fig. 3 also shows that as the mutation rates become closer to
each other, it could be optimal to avoid capping breadth. This
illustrates how so the confound in learning originates from the
asymmetry in mutation rates, which increasingly biases informa-
tion the longer it travels.

997he breadth figures are all done for a fixed depth of T = 10 rather than an infinite
depth, for the sake of tractable simulations.
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Discussion

Cutting down on fake news has recently become an expressed
objective for social media platforms that have been blamed for
facilitating the spread of misinformation. For example, the mes-
saging platform WhatsApp was criticized for allowing the spread
of incendiary rumors leading to mob killings in India and for
serving as a vehicle of misinformation in the 2018 Brazilian
elections. WhatsApp subsequently placed a cap of five on the
number of people to whom a message can be forwarded in an
attempt to curtail the spread of false information (12).

Our results above show platforms can reduce the relative fre-
quency of false communications by limiting either the depth
or breadth of people’s communication networks. These policies
enable agents to partially learn the true state in the presence of
asymmetric mutations, by ensuring that relatively more of an
agent’s received messages originate from nearby.

Most importantly, such policies improve learning without re-
quiring message content to be observed, an attractive feature for
platforms intent on respecting user privacy. Even if messages are
observable, a platform designer who does not know the true state
of the world may not be able to discern true messages from false
ones or may prefer to take a content-neutral stance and avoid
censoring messages.

Of course, as with any model, there are important omissions,
and we mention a couple here.

Tagging and Tracing. The challenges of learning from word-of-
mouth communication can motivate learners to seek out infor-
mation from closer, trusted contacts. Platforms differ in the ways
that messages are forwarded and the extent to which a learner can
trace the path back partway or all the way to the origin, as well
as the extent to which this is easily disguised. To the extent that
a platform can make it easy to trace the length of a chain and
a message’s history, that could also enhance learning. However,
tracing information backward is difficult in many cases, especially
for platforms with encrypted messages. In such cases, caps on the
breadth of users’ word-of-mouth networks can be powerful tools
and relatively easily implemented. Nonetheless, studying how the
ability to partially trace messages’ transmission chains can help
learners and the extent to which learners would take advantage of
such an ability in practice are important topics for further research.

Homophily. A common feature of many social networks is that
nodes tend to be more similar to neighbors than they are to those
more distant from them. In communication networks, nearby
nodes may share similar tendencies to mutate or drop messages.
For example, one cluster of users may be primarily responsible for
exaggerating information in one direction, while another group
may be responsible for another.

Given our focus on robust bounds for a set of mutation rates,
the caps we derive can account for this sort of heterogeneity.
Nevertheless, there are interesting questions for further study.
Optimizing learning within homophilous networks involves more
than just trading off signal and noise (e.g., ref. 13). For instance, if
clusters of nodes in different parts of the network tend to mutate
messages in different directions, then loosening caps on depth
and/or breadth could help receivers hear messages from other
groups. Learning could then be nonmonotone in the caps.

Incentives. Our results imply that a profit-motivated platform
might still prefer different looser caps than would be socially
optimal if the platform profits from message traffic and/or conflict
among its users. Studying how profit-motivated platforms would
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behave is an important future topic. (For some analysis of learning
on strategic platforms, see refs. 14-17.)

Our model captures deliberate misinformation sources as ap-
pearing randomly in the network. They may have some discre-
tion on their position. Fully analyzing sources’ incentives when
originating information is a topic for further study. Relatedly, if
sources that wish to deliberately manipulate beliefs have choices of
where to appear in the network or simply happen to appear more
frequently in some parts of the network, that could introduce
asymmetries in exposure to true versus false information across
learners. This could result in more complex policies, which is also
an interesting topic for further study.

Also, caps reduce the scope for false messages to go viral. To
the extent that this diminishes ideological sources” incentive to
originate false content more than it dissuades reliable sources from
originating true content, the positive impact of caps is understated
in our model, which treats information arrival as exogenous.

Proofs

The proof of Proposition 1 is straightforward and outlined in the
main text. Here we provide the proof of Proposition 2. We preface
the proof with a lemma that provides some useful Markov chain
formulas.

Lemma. Suppose that p > 0 and consider any pair of mutation rates
to1, 1o € (0,1/2). If the state is O and agent t > 1 receives a
nonnull message, then the message is 0 (matching the true state) with

probability

_ Mo+ por M*

Xo(t) =Pr[m; =0|my A0, w=0
o(®) [ Ime # ] H10 + o1

If the state is 1 and agent t > 1 receives a nonnull message, the
message is 1 (matching the true state) with probability

+ oM
Xl(t):Pr[mt:”mt#@,wzl]zu
o1 + 1o

It follows that
Xo(t) — (1 — X1(t)) = M".

As t grows, regardless of the starting state, the probabilities that a
surviving message is a 0 and a 1, respectively, are

H1o0 and Ho1

T = =
H1o + Ho1 H1o + Ho1

Finally, if 1101 = 10 = W, then the message matches the true state
with probability

1+ Mt
-5 (6]

Proof of Lemma: We derive the expressions of X, X;, which
can also be deduced from standard Markov chain results, but it
may be useful for the reader to see the derivation. The proof is
by induction. We give the proof for Xy, when the state is 0. The
proof for X is symmetric, and the expression for X is a special
case.

First, note that if ¢ =1, then this expression simplifies to
1 — po1, which is exactly the probability that the message has not
mutated, and so this holds for ¢t = 1.

Then for the induction step, supposing that the claimed expres-
sion is correct for t — 1, we show it is correct for ¢.

X(t)
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The probability of matching the true state at ¢ is the proba-
bility of not matching at ¢ — 1 times p109 plus the probability

pao + por M1 pao + por M1
l-——————J o+ |—————

of matching at ¢t — 1 times 1 — 191, which by the induction
assumption can be written as

J = )

Pio + fo H1o + Ho1
2 Mt—l _ Mt_l 2 Mt_l
= lo + { Hip — Ho1t10 + H10 — H10fo1 + Hor u, ]
H10 + o1
_ —p30 + p1o — paokor + o1 M1 — p1o — pio1)
= p10 +
H10 + o1
_ tao+ poM*
1o + po1
as claimed. B Muliiplying this by k does not change the sign and gives

Proof of Proposition 2: Suppose without loss of generality that
101 < p10. Given this ordering, the worst case for the number of
true minus false messages occurs when the true state is 1.

We first develop the expression for k(f1, f410) and then the
expression for k.

When the average degree of the Galton—Watson tree is k,
it follows by induction and iterated expectations that there are
k' nodes at a distance ¢ away from the learner, in expectation.
Therefore, the expected number of true messages received is
Y ooy r(pk)! X1 (t), and the expected number of false messages
received is > o, 7(pk)*(1 — X1(¢)). The expected number of

true minus false messages is

> k)" (Xu(t) -

Thus, we need to maximize Y, , (pk)"(2X:(¢) —

i(pk)t (2M10Mt + po1 — ,Ul())'

pa H10 + Ho1
- M1o> —0.

Multiplying this by k, this is equivalent to

= 20 M? -
thtkt( K10 + o1 M10> —0

p1o + Ho1
(Mlo - Mm) -0
K10 + fo1
Noting that Y77 | t2' = z/(1 — 2)?, we rewrite the above as

pkM2p10
(1 — pkM)?

(1—=X1(1))).

1), ie.,

The first-order conditions are

i tptkt=1 <2H10Mt + po1
H10 + o1

(7]

or

i lfp L Mt ( 2IU/].O )

1o + Ho1

— itptkt

t=1

-~ Pk (k10 — po1) -0

(1 — pk)?

Rearranging terms to solve for k leads to the claimed expression
expression for k(po1, f410). To check the second-order conditions,
note that the second derivative is

i(t — Dtp'k'2 (2N10Mt + fo1 — ,u10>
s H10 + Mot
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i(t — D)tp'k'? <2M10Mt + Hor — Mlo)
P H10 + Hot 7
which is the same as Eq. 7 but where the weights are adjusted by

210 M " +p01 —p10
pio+po1

in ¢ (and eventually negative), then reweighting with (¢ — 1)
tp'k*~1 compared to tp°k?~! puts more weight on higher terms
(in a dominance sense), and since Eq. 7 is 0, the second derivative
expression is necessarily negative.

(t —1). Since the expression ( is decreasing

Next, we develop the expression for k, again presuming that
Ho1 < [10, as the expressions are symmetric.

By Lemma, the expected number of true messages exceed the
expected number of false messages when the state is 0 since for

_ piotpor M por—por M 4
every ¢, Xo(t) = Bl = > Bobobel s =1 — Xo(1).

It remains to be shown that the expected number of true
messages also exceed the expected number of false messages when
the state is 1. Using the expressions from the proof above, we need
to characterize the conditions under which

erk VX (t >Z (pk)* (1 — X1 (t)).

Thus, we need >, (pk)"(2X:1(t) —

i(pk)t <2N10Mt + o1

et H10 + Ho1

1) >0, i.e., when

—lilo) < 0.

If p1o1 = ft10, then this holds regardless of k.
Next, suppose (01 < f10. Then it follows that

. 2110 M —
55 ()
] H10 + ot

oo

— Z(pMk)t@uw Z

t=1 =1

,U1o - ,U01)

pMEk pk
= ———(2pu10) > ——— (110 —
1— pMk( M10) 1— pk (,Ul() ,U01)
2ui0M K10 — Ho1
1 — pMk 1— pk
1 — pMk 1—pk
2u10M K10 — Ho1
1 k 1 k
= _ P < — P
2u10M 2p10  pio— por M1o — Mol
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— 1 ( 1 1 >
p \2pu10M  pio — po1

(3 1)
<k —
2pu10  p10 — Mot

— k<1 PO~ 2imo
P p10 — fo1 — 2p10
P Mi10 + Mot
b < iﬂlO“'ﬂOl — 2p10(p10 + Ho1)
pM M1o + Ho1
1-2
<— k<¢.
pM
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