
On Exponential-Time Hypotheses, Derandomization, and Circuit

Lower Bounds

LIJIE CHEN,Miller Institute for Basic Research in Science at University of California, Berkeley, USA

RON D. ROTHBLUM, Technion, Israel
ROEI TELL, Institute for Advanced Study and DIMACS, USA

EYLON YOGEV, Bar-Ilan University, Israel

The Exponential-Time Hypothesis (ETH) is a strengthening of the P ≠ NP conjecture, stating that 3-SAT on � variables

cannot be solved in (uniform) time 2� ·� , for some � > 0. In recent years, analogous hypotheses that are łexponentially-strongž

forms of other classical complexity conjectures (such as NP ⊈ BPP or ��NP ⊈ NP) have also been introduced, and have

become widely inluential.

In this work, we focus on the interaction of exponential-time hypotheses with the fundamental and closely-related questions

of derandomization and circuit lower bounds. We show that even relatively-mild variants of exponential-time hypotheses have

far-reaching implications to derandomization, circuit lower bounds, and the connections between the two. Speciically, we

prove that:

(1) The Randomized Exponential-Time Hypothesis (rETH) implies that BPP can be simulated on łaverage-casež in

deterministic (nearly-)polynomial-time (i.e., in time 2�̃ (log(�))
= �loglog(�)

� (1)
). The derandomization relies on a

conditional construction of a pseudorandom generator with near-exponential stretch (i.e., with seed length �̃ (log(�)));

this signiicantly improves the state-of-the-art in uniform łhardness-to-randomnessž results, which previously only

yielded pseudorandom generators with sub-exponential stretch from such hypotheses.

(2) The Non-Deterministic Exponential-Time Hypothesis (NETH) implies that derandomization of BPP is completely

equivalent to circuit lower bounds against E, and in particular that pseudorandom generators are necessary for

derandomization. In fact, we show that the foregoing equivalence follows from a very weak version of NETH, and we

also show that this very weak version is necessary to prove a slightly stronger conclusion that we deduce from it.

Lastly, we show that disproving certain exponential-time hypotheses requires proving breakthrough circuit lower bounds. In

particular, if CircuitSAT for circuits over � bits of size poly(�) can be solved by probabilistic algorithms in time 2�/polylog(�) ,

then BPE does not have circuits of quasilinear size.

CCS Concepts: · Theory of computation → Pseudorandomness and derandomization; Complexity classes; Circuit

complexity.

Additional Key Words and Phrases: Exponential-time Hypothesis, Derandomization, Circuit Lower Bounds

1 INTRODUCTION

The Exponential-Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [31] (and reined in [32]), conjec-
tures that 3-SAT with � variables and� = � (�) clauses cannot be deterministically solved in time less than 2� ·�

Authors’ addresses: Lijie Chen, lijiechen@berkeley.edu, Miller Institute for Basic Research in Science at University of California, Berkeley,

Berkeley, CA, USA; Ron D. Rothblum, rothblum@cs.technion.ac.il, Technion, Haifa, Israel; Roei Tell, roeitell@gmail.com, Institute for

Advanced Study and DIMACS, Princeton, New Jersey, USA; Eylon Yogev, eylon.yogev@biu.ac.il, Bar-Ilan University, Ramat Gan, Israel.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2023/4-ART $15.00

https://doi.org/10.1145/3593581

J. ACM

HTTPS://ORCID.ORG/0000-0002-6084-4729
HTTPS://ORCID.ORG/0000-0001-5481-7276
HTTPS://ORCID.ORG/0000-0002-9693-9244
HTTPS://ORCID.ORG/0000-0001-8599-2472
https://orcid.org/0000-0002-6084-4729
https://orcid.org/0000-0001-5481-7276
https://orcid.org/0000-0002-9693-9244
https://orcid.org/0000-0001-8599-2472
https://doi.org/10.1145/3593581
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593581&domain=pdf&date_stamp=2023-04-20

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 1

(for a constant � = ��/� > 0). The ETH may be viewed as an łexponentially-strongž version of P ≠ NP, since it
conjectures that a speciic NP-complete problem requires essentially exponential time to solve.
Since the introduction of ETH many related variants, which are also łexponentially-strongž versions of

classical complexity-theoretic conjectures, have also been introduced. For example, the Randomized Exponential-

Time Hypothesis (rETH), introduced in [15], conjectures that the same lower bound holds also for probabilistic
algorithms (i.e., it is a strong version of NP ⊈ BPP). The Non-Deterministic Exponential-Time Hypothesis

(NETH), introduced (implicitly) in [7], conjectures that ��-3SAT (with � variables and � (�) clauses) cannot be
solved by non-deterministic machines running in time 2� ·� for some constant � > 0 (i.e., it is a strong version
of ��NP ⊈ NP). The variations MAETH and AMETH are deined analogously (see [61]1), and other variations
conjecture similar lower bounds for seemingly-harder problems (e.g., for #3SAT; see [15]).

These Exponential-Time Hypotheses have been widely inluential across diferent areas of complexity theory.
Among the numerous ields to which they were applied so far are structural complexity (i.e., showing classes of
problems that, conditioned on exponential-time hypotheses, are łexponentially-hardž), parameterized complexity,
communication complexity, and ine-grained complexity; see, e.g., the surveys [40, 62ś64].

Exponential-time hypotheses focus on conjectured lower bounds for uniform algorithms. Two other fundamental
questions in theoretical computer science are those of derandomization, which refers to the power of probabilistic
algorithms; and of circuit lower bounds, which refers to the power of non-uniform circuits. Despite the central
place of all three questions, the interactions of exponential-time hypotheses with derandomization and circuit
lower bounds have yet to be systematically studied.

1.1 Our results: Bird’s eye

In this work we focus on the interactions between exponential-time hypotheses, derandomization, and circuit lower
bounds. In a nutshell, our main contribution is showing that:

Even relatively mild variants of exponential-time hypotheses have far-reaching conse-

quences for derandomization and circuit lower bounds.

Let us now give a brief overview of our speciic results, before describing them in more detail in Sections 1.2, 1.3,
and 1.4. Our two main results are the following:

(1) We show that rETH implies a nearly-polynomial-time average-case derandomization of BPP. Speciically,
assuming rETH, we show that BPP can be decided, in average-case and on ininitely many input lengths,

by deterministic algorithms that run in time �loglog(�)
� (1)

(see Theorem 1.1). This signiicantly improves the
state-of-the-art in the long line of uniform łhardness-to-randomnessž results.

(2) A classical open question is whether worst-case derandomization of BPP requires pseudorandom gen-
erators. We show that a weak version of NETH yields a positive answer to this question; speciically, it
suices to assume that E = DTIME[2� (�)] is hard for small circuits that are uniformly generated by
non-deterministic machines (see Section 1.3). This indicates that the answer to the classical question might
be positive, and suggests a path towards proving so.

Lastly, we show that disproving a conjecture similar to rETH requires proving breakthrough circuit lower
bounds (see Theorem 1.7, and see the discussion in Section 1.4 for a comparison with the state-of-the-art).

Relation to Strong Exponential Time Hypotheses. The exponential-time hypotheses that we consider also
have łstrongž variants that conjecture a lower bound of 2(1−�) ·� , where � > 0 is arbitrarily small, for solving
a corresponding problem (e.g., for solving SAT, ��SAT, or #SAT; see, e.g., [63]).2 In this paper we focus only on

1In [61], the introduction of these variants is credited to a private communication from Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, and

Schneider [7].
2Some łstrongž variants of standard exponential-time hypotheses are in fact known to be false (see [61]).

J. ACM

2 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

the łnon-strongž variants that conjecture lower bounds of 2� ·� for some � > 0. Indeed, the point is that even the
variants that we consider already have far-reaching consequences for derandomization and circuit lower bounds.

We mention that a recent work of Carmosino, Impagliazzo, and Sabin [8] studied the implications of hypotheses
in ine-grained complexity on derandomization. These ine-grained hypotheses are implied by the łstrongž version
of rETH (i.e., by rSETH), but are not known to follow from the łnon-strongž versions that we consider in this
paper. We will refer again to their results in Section 1.2.

1.2 rETH and pseudorandom generators for uniform circuits

The irst hypothesis that we study is rETH, which (slightly changing notation from above) asserts that probabilistic
algorithms cannot decide if a given 3-SAT formula with � variables and � (�) clauses is satisiable in time less
than 2� ·� , for some constant � > 0. Note that such a formula can be represented with � = � (� · log(�)) bits, and
therefore the conjectured lower bound as a function of the input length is 2� · (�/log(�)) .

1.2.1 Background: Uniform hardness vs randomness. Intuitively, using łhardness-to-randomnessž results, we
expect that a strong lower bound such as rETH would imply a strong derandomization result. When starting
from lower bounds for non-uniform circuits, and aiming to deduce worst-case derandomization, smooth tradeofs
that yield such results are well-known (see, e.g., [34, 44, 50, 54, 57]) The key problem, however, is that the long
line-of-works that starts from hardness for uniform algorithms (and aims to deduce average-case derandomization)
did not yield such smooth trade-ofs so far (see [6, 8, 20, 26, 27, 33, 35, 41, 51, 56]).

Ideally, given an exponential lower bound for uniform probabilistic algorithms (such asE ⊈ i.o.BPTIME[2� ·�])3

we would like to deduce that there exists a PRG with exponential stretch for uniform circuits, and consequently
that BPP = P in łaverage-casež.4 However, prior to the current work, the state-of-the-art (by Trevisan and
Vadhan [56]) could at best yield PRGs with sub-exponential stretch (i.e., with seed length polylog(�)), even if
the hypothesis refers to an exponential lower bound. Moreover, the best currently-known PRG only works on
ininitely many input lengths.

Previous works bypassed these two obstacles in various indirect ways. Carmosino, Impagliazzo, and Sabin [8]
deduced polynomial-time derandomization of BPP on all input lengths relying on strong hypotheses from
ine-grained complexity (these hypotheses are implied by the łstrongž version of rETH, i.e. by rSETH). Gutfreund
and Vadhan [27] deduced (subexponential-time) derandomization of RP on all input lengths, rather than of
BPP (see details below). Lastly, a line-of-works dealing with uniform łhardness-to-randomnessž forAM (rather
than for BPP) was able to bypass both obstacles in this context (see, e.g., [26, 41, 51]).5

1.2.2 Our contribution to uniform hardness vs randomness. In this work we tackle both obstacles directly. Loosely
speaking, our irst main result is that rETH implies the existence of a PRG for uniform circuits with near-
exponential stretch, which can be used for average-case derandomization of BPP in nearly-polynomial-time.

Speciically, the PRG that we construct has seed length �̃ (log(�), and the corresponding derandomization runs

in time 2�̃ (log(�))
= �loglog(�)

� (1)
.

Our hardness assumption will in fact be weaker than rETH: It suices to assume that the Totallyuantified

Boolean Formula (TQBF) problem cannot be solved by probabilistic algorithms that run in time 2�/polylog(�) (see

3See Section 3.1 for deinitions of complexity classes used throughout the paper.
4Throughout the paper, when we say that a PRG is �-pseudorandom for uniform circuits, we mean that for every eiciently-samplable

distribution over circuits, the probability over choice of circuit that the circuit distinguishes the output of the PRG from uniform with

advantage more than � is at most � (see Deinitions 3.6 and 3.7). The existence of such PRGs implies an łaverage-casež derandomization of

BPP in the following sense: For every � ∈ BPP there exists an eicient deterministic algorithm � such that every probabilistic algorithm

that gets input 1� and tries to ind � ∈ {0, 1}� such that � (�) ≠ � (�) has a small probability of success (see, e.g., [20, Prop. 4.4]).
5Another relevant work is that of Goldreich [20]: He showed that if ��BPP = ��P, then there exists a PRG for uniform circuits that suices

for this conclusion (in particular, the PRG runs in polynomial time and works for all input lengths).

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 3

Deinition 4.6 for a standard deinition of TQBF). This hypothesis is weaker than rETH because 3-SAT reduces to
TQBF with a linear overhead in the input length. (Indeed, it is a far weaker hypothesis, since TQBF is PSPACE-
complete whereas 3-SAT is only NP-complete.)

Theorem 1.1 (rETH⇒ PRG with almost-exponential stretch for uniform circuits; informal). Suppose

that there exists � (�) = 2�/polylog(�) such that TQBF ∉ BPTIME[�]. Then, there exists a PRG that has seed

length �̃ (log(�)), runs in time �polyloglog(�) , and is (1/�)-pseudorandom on ininitely many input lengths for every
distribution over circuits that can be sampled in polynomial time.

The technical statement of Theorem 1.1 is even stronger: For every � (�) = �polyloglog(�) , the PRG is (1/�)-
pseudorandom for every distribution over circuits that can be sampled in time � and with� (log(�)) bits of advice
(see Theorem 4.14 for details).

Theorem 1.1 establishes for the irst time that hardness assumptions for BPTIME yield a PRG for uniform

circuits with seed length as short as �̃ (log(�)) and running time as small as 2�̃ (log(�)) . The proof of this result
is based on careful reinements of the proof framework of [33], using new technical tools that we construct.
The latter tools signiicantly reine and strengthen the technical tools that were used by [56] to obtain the
previously-best uniform hardness-to-randomness tradeof. For high-level overviews of the proof of Theorem 1.1
(and of the new constructions), see Section 2.1.

Overcoming the łininitely-oftenž barrier. The hypothesis in Theorem 1.1 is that any probabilistic algorithm

that runs in time 2�/polylog(�) fails to compute TQBF ininitely-often, and the corresponding conclusion is that the
PRG łfoolsž uniform circuits only ininitely-often. (The meaning of łininitely-oftenž is łon ininitely many input
lengthsž, and the meaning of łalmost-alwaysž that will be used next is łon all but initely many input lengthsž.
Recall that a hypothesis of the form � ∉ BPTIME[�] only means that every probabilistic time-� algorithm
fails to compute � ininitely-often.)
The shortcoming of Theorem 1.1 that the derandomization works only ininitely-often is identical to all

previous uniform łhardness-to-randomnessž results that used the [33] proof framework.67 However, known
techniques (see, e.g., [27]) can nevertheless be adapted to yield an almost-always PRG that uses � (log(�)) bits of
non-uniform advice (relying on an almost-always lower bound hypothesis).
We are able to signiicantly improve this: Assuming the łalmost-alwaysž version of rETH, we show that

BPP can be derandomized in average-case and almost-always, using only a triply-logarithmic number (i.e.,
� (logloglog(�))) of advice bits. In fact, as in Theorem 1.1, it suices to assume hardness for TQBF, rather than for
3-SAT.

Theorem 1.2 (aa-rETH ⇒ almost-always derandomization in time �polyloglog(�) ; informal). Assume that
for some � (�) = 2�/polylog(�) it holds that TQBF ∉ i.o.BPTIME[�], and let � (�) = �polyloglog(�) . Then, for every
� ∈ BPTIME[�] and every distribution ensemble X that can be sampled in polynomial time, there exists a

deterministic algorithm � = �X that runs in time �polyloglog(�) and uses� (logloglog(�)) bits of non-uniform advice
such that for almost all input lengths � ∈ N it holds that Pr�∼X�

[� (�) ≠ �(�)] < 1/�.

Similarly to Theorem 1.2, the conclusion in Theorem 1.2 can be strengthened so that it holds for every
distributionX samplable in time � (�) = �polyloglog(�) , and the derandomization succeeds on all but a (1/�)-fraction
of the inputs under X (rather than only on a 1 − 1/� fraction).

6Other proof strategies (which use diferent hypotheses) were able to support an łalmost-alwaysž conclusion, albeit not necessarily a PRG,

from an łalmost-alwaysž hypothesis (see [8, 26]).
7As mentioned above, Gutfreund and Vadhan [27, Section 6] showed that if we settle for average-case derandomization of RP (rather than

of BPP), the derandomization can work almost-always. As in previous results, their derandomization is relatively slow (i.e., it works in

sub-exponential time). We show that their ideas can be combined with the techniques underlying Theorem 1.1, to deduce a fast average-case

derandomization RP that works almost-always (see Theorem 4.15).

J. ACM

4 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Remark 1.3 (non-deterministic extensions). We note that łscaled-upž versions of Theorems 1.1 and 1.2 for
non-deterministic settings follow easily from known results; that is, assuming lower bounds for non-deterministic
uniform algorithms, we can deduce strong derandomization of corresponding non-deterministic classes. First, from
the hypothesis MAETH8 we can deduce strong circuit lower bounds, and hence also worst-case derandomization
of ��BPP and of ��MA (see Appendix A for details and for a related result). Similarly, as shown by Gutfreund,
Shaltiel, and Ta-Shma [26], a suitable variant of AMETH implies an average-case derandomization of AM.

1.3 NETH and an equivalence of derandomization and circuit lower bounds

In the previous section we considered the hypothesis rETH, and now we consider the Non-Deterministic

Exponential-Time Hypothesis (NETH), which asserts that ��-3SAT (with � variables and � (�) clauses) cannot be
solved by non-deterministic machines running in time 2� ·� for some � > 0. This hypothesis is an exponential-time
version of ��NP ⊈ NP, and is incomparable to rETH (and weaker thanMAETH).

1.3.1 Background and a surprising observation. The motivating observation for our results in this section is that
NETH has an unexpected consequence to the long-standing question of whether worst-case derandomization of
��BPP is equivalent to circuit lower bounds against E. Speciically, recall that two-way implications between
derandomization and circuit lower bounds have been gradually developing since the early ‘90s (for surveys see,
e.g., [45, 60]), and that it is a long-standing question whether the foregoing implications can be strengthened to
show a complete equivalence between the two. One well-known implication of such an equivalence would be
that any worst-case derandomization of ��BPP necessitates the construction of PRGs that łfoolž non-uniform
circuits.9

Then, being more concrete, the motivating observation for our results in this section is that NETH implies an
airmative answer to the foregoing classical question. In fact, this is not diicult to show, relying on known results
(see Section 2.2 for details).

1.3.2 Our results: Even very weak forms of NETH sufice for the equivalence. Our main contribution is in showing
that, loosely speaking, even a very weak form of NETH suices to answer the question of equivalence in the
airmative, and that this weak form of NETH is in some sense inherent. Speciically, we say that � ⊆ {0, 1}∗ has
NTIME[�]-uniform circuits if there exists a non-deterministic machine� that gets input 1� , runs in time� (�),
and satisies the following: For some non-deterministic choices � outputs a single circuit � : {0, 1}� → {0, 1}
that decides � on all inputs � ∈ {0, 1}� , and whenever � does not output such a circuit, it outputs ⊥. We also
quantify the size of the output circuit, when this size is smaller than � (�).
The weak forms of NETH that will suice to show equivalences between derandomization and circuit lower

bounds are of the form łE does not have NTIME[�]-uniform circuits of size � (�) ≪ � (�)ž, for values of �
and � that will be speciied below. In words, this hypothesis rules out a world in which every � ∈ E can be
computed by small circuits that can be eiciently produced by a uniform (non-deterministic) machine. Indeed,
this hypothesis is weaker than the NETH-style hypothesis E ⊈ NTIME[�], and even than the hypothesis

8Note that indeed a non-deterministic analogue of rETH is MAETH (or, arguably, AMETH), rather than NETH, due to the use of randomness.

Also recall that, while the łstrongž version of MAETH is false (see [61]), there is currently no evidence against the łnon-strongž version

MAETH.
9The question of equivalence is mostly łfolklorež, but was mentioned several times in writing. It was asked in [30, Remark 33], who

proved an analogous equivalence between non-deterministic derandomization with short advice and circuit lower bounds against non-

deterministic classes (i.e., against NTIME; see also [11]). It was also mentioned as a hypothetical possibility in [56] (referred to there as a

łsuper-Karp-Lipton theoremž). Following the results of [43], the question was recently raised again as a conjecture in [55].

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 5

E ⊈ (NTIME[�]∩SIZE[�]). 10 The fact that such aweak hypothesis suices to deduce that derandomization
and circuit lower bounds are equivalent can be seen as appealing evidence that the equivalence indeed holds.

Our results refer both to the łlow-endž parameter regime, which connects relatively weak circuit lower bounds
to relatively slow derandomization algorithms, and to the łhigh-endž parameter regime, which connects strong
circuit lower bounds to fast derandomizatoin algorithms. Showing an equivalence in the former regime will
require weaker hypothesis, compared to the latter regime.

Starting with the łlow-endž regime, our irst result is that if E cannot be decided by NTIME[2�
�

]-uniform
circuits of polynomial size (for some � > 0), then derandomization of ��BPP in sub-exponential time is
equivalent to lower bounds for polynomial-sized circuits against EXP.

Theorem 1.4 (NETH ⇒ circuit lower bounds are eqivalent to derandomization; łlow-endž setting).

Assume that there exists � > 0 such that E cannot be decided by NTIME[2�
�

]-uniform circuits of arbitrary
polynomial size, even ininitely-often. Then,

��BPP ⊆ i.o.��SUBEXP ⇐⇒ EXP ⊄ P/poly .

The scaling of Theorem 1.4 to the łhigh-endž regime us not smooth, and uses diferent proof techniques (see
Section 5 for details). Nevertheless, an analogous result holds for the extreme łhigh-endž setting: Under the
stronger hypothesis that E cannot be decided byNTIME[2Ω (�)]-uniform circuits, we show that ��BPP = ��P
is equivalent to lower bounds for exponential-sized circuits against E; that is:

Theorem 1.5 (NETH⇒ circuit lower bounds are eqivalent to derandomization; łhigh-endž setting).

Assume that there exists � > 0 such that E cannot be decided by NTIME[2� ·�]-uniform circuits, even ininitely-
often. Then:

��BPP = ��P ⇐⇒ ∃� > 0 : DTIME[2�] ⊄ i.o.SIZE[2� ·�] .

(We remind the reader again that circuit lower bounds as in Theorems 1.4 and 1.5 are known to be equivalent
to the existence of corresponding PRGs that fool non-uniform circuits [3, 34, 44, 54, 57]. Thus, the hypotheses in
these theorems imply that derandomization requires PRGs.)

The very weak version of NETH is inherent (for a stronger conclusion that it yields). Remarkably, as mentioned
above, hypotheses such as the ones in Theorems 1.4 and 1.5 actually yield a stronger conclusion, and are
also necessary for that stronger conclusion. Speciically, the stronger conclusion is that even non-deterministic
derandomization of ��BPP (such as ��BPP ⊆ ��NSUBEXP) yields circuit lower bounds against E, which
in turn yield PRGs for non-uniform circuits.

Theorem 1.6 (NTIME-uniform circuits for E, non-deterministic derandomization, and circuit

lower bounds). Assume that there exists � > 0 such that E cannot be decided byNTIME[2�
�

]-uniform circuits
of arbitrary polynomial size. Then,

��BPP ⊆ ��NSUBEXP =⇒ EXP ⊄ P/poly . (1.1)

In the other direction, if Eq. (1.1) holds, then E cannot be decided by NP-uniform circuits.

Note that in Theorem 1.6 there is a gap between the hypothesis that implies Eq. (1.1) and the conclusion from

Eq. (1.1). Speciically, the hypothesis refers to NTIME[2�
�

]-uniform circuits of polynomial size, whereas the
conclusion refers to NP-uniform circuits. By optimizing the parameters, this gap between sub-exponential and
polynomial can be considerably narrowed (see Theorem 5.11).

10We stress that our hypothesis refers to lower bounds for uniform models of computation, for which strong lower bounds (compared to

those for non-uniform circuits) are already known. (For example, NP is hard for NP-uniform circuits of size �� for every ixed � ∈ N

(see [49]), whereas we do not even know if ENP is hard for non-uniform circuits of arbitrarily large linear size.)

J. ACM

6 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

1.4 Disproving a version of rETH requires circuit lower bounds

Our last main result is that disproving a weak version of rETH requires breakthrough circuit lower bounds. Recall
that rETH assumes hardness of the form 2� ·� for solving 3-SAT for �-bit formulas; thus, disproving rETH means
constructing a probabilistic algorithm that solves 3-SAT for �-bit formulas in time 2� ·� .

We consider the stronger assumption, that the problemCircuitSAT for�-bit circuits can be solved in probabilistic
time 2�/polylog(�) . (Recall that in CircuitSAT we want to solve satisiability for a given general Boolean circuit,
rather than for a given depth-two formula as in 3-SAT.) We show that such an algorithm would yield lower
bounds for circuits of quasilinear size against BPE = BPTIME[2� (�)]. 11

Theorem 1.7 (circuit lower bounds from randomized CircuitSAT algorithms). For any constant � ∈ N
there exists a constant �′ ∈ N such that the following holds. If CircuitSAT for circuits over � variables and of size

�2 · (log�)�
′
can be solved in probabilistic time 2�/(log�)

�′

, then BPE ⊄ SIZE[� · (log�)�].

Theorem 1.7 can be viewed from another perspective, which reveals that it constitutes progress on a well-
known technical challenge. Speciically, we can view Theorem 1.7 as belonging to the family of results asserting
that circuit-analysis algorithms imply circuit lower bounds (following Williams [59]). Previous results crucially
rely on the hypothesis that the circuit-analysis algorithm is deterministic. It is a well-known challenge to obtain
analogous results for randomized algorithms, and indeed Theorem 1.7 is such a result, albeit one that relies on a
relatively-fast algorithm (see Section 2.3 for further details and for comparison with known results).

Since Theorem 1.1 deduces a conclusion from a weak version of rETH, and Theorem 1.7 deduces a conclusion
from the negation of a weak version of rETH, we can combine the two results to obtain a łwin-winž statement.
This yields the following unconditional Karp-Lipton style result: If BPE can be decided by circuits of quasilinear

size, then BPP can be derandomized, in average-case and ininitely-often, in time 2�̃ (log(�))
= �polyloglog(�) . (See

Corollary 6.6 for details and for a precise statement.)

1.5 Open problems and subsequent work

Our work makes signiicant progress on several long-standing open problems, but by no means did we resolve
them completely. Let us mention a few of these problems.

Uniform hardness vs randomness. As mentioned in Section 1.2, the goal in this classical line of work is to deduce
smooth tradeofs between average-case derandomization and hardness for uniform probabilistic algorithms
(which mirror the known tradeofs between worst-case derandomization and hardness for non-uniform circuits).

The main open problem is to deduce polynomial-time derandomization from the existence of a hard function
computable in exponential time (rather than in linear space as in Theorems 1.1 and 1.2); that is:

Open Problem 1. Deduce average-case derandomization of BPP that runs in polynomial time from the existence

of a function in E = DTIME[2� (�)] that is hard for uniform probabilistic algorithms.

Progress on the foregoing problem was recently made in a work by three of the current authors [12]. They
deduced average-case derandomization of RP that runs in polynomial time from the existence of a function
computable by logspace-uniform circuits of size 2� (�) and depth 2� (�) that is hard for BPTIME[2� ·�] (for an
arbitrary constant � > 0).

Theorem 1.2 (as well as another result in aforementioned work [12]) deduced derandomization of BPP on all
input lengths that relies on a small number of bits of non-uniform advice. A second open problem is to deduce
such derandomization without relying on non-uniform advice:

11For context, the best known lower bounds for circuits of quasilinear size are against Σ2 (see [36]) or against MA/1 (i.e., Merlin-Arthur

protocols that use one bit of non-uniform advice; see [48]).

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 7

Open Problem 2. Deduce fast derandomization of BPP (ideally, polynomial time) that works for all input
lengths and does not rely on any non-uniform advice, from the existence of a function in DSPACE[� (�)] (or,
better yet, in E) that is hard for uniform probabilistic algorithms.

In a diferent direction, a subsequent work by two of the authors [13] showed worst-case derandomization from
strong hardness assumptions for uniform probabilistic algorithms (namely, from the existence of a function � in P
such that every probabilistic algorithm running in a certain ixed polynomial time fails to compute � on each and
every suiciently large input). A follow-up work by Liu and Pass [39] showed an equivalence between worst-case
derandomization and a similar (albeit more complicated) hardness assumption for conditional time-bounded
Kolmogorov complexity.

Derandomization vs circuit lower bounds. As mentioned in Section 1.3, it is a classical question whether
derandomization of ��BPP requires the circuit lower bounds in E = DTIME[2� (�)] that are known to
imply it. The conditional results in Theorems 1.4 and 1.5 suggest that the answer may be positive, yet proving
unconditional results is still a major open problem.

Open Problem 3. Show the implication ��BPP = ��P =⇒ E ⊄ P/poly.

Interestingly, while the foregoing problem has been open for decades, we are not aware of any signiicant
barriers towards solving it.

2 TECHNICAL OVERVIEW

In this section we describe the proofs of our main results, in high level. In Section 2.1 we describe the proofs of
Theorems 1.1 and 1.2; in Section 2.2 we describe the proofs of Theorems 1.4, 1.5 and 1.6; and in Section 2.3 we
describe the proof of Theorem 1.7, which relies on the proofs from Section 2.1.

2.1 Near-optimal uniform hardness-to-randomness results for TQBF

Recall that in typical łhardness-to-randomnessž results, a PRG is based on a hard function, and the proof amounts
to showing that an eicient distinguisher for the PRG can be transformed to an eicient algorithm or circuit that
computes the hard function.

In high-level, our proof strategy follows this paradigm, and relies on the classic approach of Impagliazzo and
Wigderson [33] for transforming a distinguisher into an algorithm for the hard function. Loosely speaking, the
latter approach works only when the hard function � ws : {0, 1}∗ → {0, 1}∗ is well-structured; the precise meaning
of the term łwell-structuredž difers across diferent follow-up works, and in the current work it will also take on
a new meaning, but for now let us intuitively think of � ws as downward self-reducible and as having properties
akin to random self-reducibility. Instantiating the Nisan-Wigderson PRG with a suitable encoding ECC(� ws) of
� ws as the underlying function (again, the precise requirements from ECC difer across works), our goal is to
show that if the PRG with stretch � (�) does not łfoolž uniform distinguishers even ininitely-often, then � ws is
computable in probabilistic time � ′ (�) > � (�).

The key challenge underlying this approach is the signiicant overheads in the proof, which increase the time
complexity � ′ of computing � ws. In the original proof of [33] this time was roughly � ′ (�) ≈ � (� (�)), and the state-of-
the-art prior to the current work, by Trevisan and Vadhan [56] (following [6]), yielded � ′ (�) = poly(� (poly(�))).
Since the relevant functions � ws in all works are computable in E, proofs with such an overhead can yield at

most a sub-exponential stretch � (�) = 2�
Ω (1)

.
As mentioned in Section 1.2, previous works bypassed this diiculty either by using stronger hypotheses, or

by deducing weaker conclusions, or by working in diferent contexts (e.g., considering derandomization of AM
rather than of BPP). In contrast, we tackle this diiculty directly, and manage to reduce all of the polynomial
overheads in the input length to polylogarithmic overheads in the input length. That is, we will show that for

J. ACM

8 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

carefully-constructed � ws and suitably-chosen ECC (and with some variations in the proof approach), if the PRG
instantiated with ECC(� ws) for stretch � does not łfoolž uniform distinguishers ininitely-often, then � ws can be

computed in time � ′ (�) = � (�̃ (�))� (1) .

2.1.1 The well-structured function � ws. Let us now be more speciic about the properties of the well-structured
function � ws that we need in our proof. Our function � ws will satisfy the following:

(1) (Very eicient PSPACE-completeness:) The PSPACE-complete problem TQBF is reducible to � ws

in quasilinear time, and � ws is computable in linear space.12

(2) (Not too ineicient downward self-reducibility:) The function � ws is downward self-reducible in time
2�/polylog(�) (see Deinition 4.1 for a standard deinition).

(3) (A strengthening of random self-reducibility:) The function � ws is sample-aided worst-case to �-
average-case reducible, for � (�) = 2−�/polylog(�) .

The last property, which is implicit in many works and was recently made explicit by Goldreich and G.
Rothblum [23], asserts the following: There exists a uniform algorithm� that gets as input a circuit� : {0, 1}� →
{0, 1}∗ that agrees with � ws� on at least � (�) of the inputs, and labeled examples (�, � ws (�)) where � ∈ {0, 1}� is

uniformly-chosen, runs in time 2�/poly log(�) and with high probability outputs a circuit�′ : {0, 1}� → {0, 1}∗ that
computes � ws� on all inputs (see Deinition 4.2).
(Our construction of � ws will also satisfy an additional property, which will only be used in the proof of

Theorem 1.2 (i.e., of the łalmost-alwaysž version of the result). We will describe this property in the proof outline
for Theorem 1.2 below.)

The construction of � ws. Let us now explain how we construct � ws. Following Trevisan and Vadhan [56], our
� ws is an artiicial PSPACE-complete problem that we carefully construct. Their goal was to construct a
PSPACE-complete problem that will be simultaneously downward self-reducible and randomly self-reducible.
Our goal will be to obtain a construction with stronger completeness and random self-reducibility properties,
while compromising on a slower downward self-reducibility algorithm (as detailed above). In a gist, we do so by
drastically improving the eiciency of parts of their construction; details follow.
The construction in [56] is based on the proof of IP = PSPACE [42, 52]. Recall that the latter proof

starts with a given 3-SAT formula � , which represents a fully quantiied instance for TQBF (see Deinition 4.6
for the standard deinition). The proof then arithmetizes the TQBF function on � by a low-degree polynomial
� (�,0)

= �1 ◦ �2 ◦ ... ◦ �poly(�) ◦ � (�) , where � (�) is a standard arithmetization of 3-SAT, and the �� ’s are
suitable arithmetic operators (i.e., arithmetizations of the ∀ and of the ∃ operators, as well as an operator that
lowers the degree of the intermediary polynomial). Finally, the proof deines a sequence of poly(�) polynomials
� (�,1) , ..., � (�,poly(�)) , where for � = 1, ..., poly(�), the polynomial � (�,�) applies one less operator to � (�) , compared
to � (�,�−1) . The crucial observation of [56] is that computing each � (�,�) eiciently reduces to computing � (�,�−1) ,
and thus this sequence of polynomials already has a property reminiscent to downward self-reducibility (whereas
the polynomials are of low degree, and thus compute functions that are random self-reducible).

Loosely speaking, the function from [56] deines, for every integer � ∈ N, a corresponding interval �� of poly(�)
input lengths; for simplicity of presentation, let us pretend that this interval is �� = [�, ..., � = poly(�)]. At input
length � = poly(�) the function gets as input a 3-SAT formula � over � variables and outputs � (�,0) . Then, for
� ∈ [poly(�)], at input length � − � , the function gets input (�,�), where� is a sequence of auxiliary variables,
and outputs � (�,�) (�). Given the observation mentioned above, this function is downward self-reducible and
randomly self-reducible.

12For our derandomization results, it would have suiced for � ws to be computable in quasiexponential time 2�̃ (�) rather than linear space;

see the comment in the end of Section 4.1.2.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 9

Going through their proof (with needed adaptations for our łhigh-endž parameter setting), we encounter four
diferent polynomial overheads in the input length, when reducing from TQBF to their function. The irst and
obvious one is that inputs of length � are mapped to inputs of length � = poly(�), corresponding to the number
of rounds in the IP = PSPACE protocol. The other polynomial overheads in the input length come from their
reduction of TQBF to an intermediate problem that takes both � and� as part of the input and is still amenable to
arithmetization,13 from the ield size that is required for the stronger random self-reducibility property that we
need, and from the way the poly(�) polynomials are combined into a single Boolean function.

The main challenge is to eliminate all of the foregoing overheads simultaneously. Our irst main idea is to use
an IP = PSPACE protocol with polylog(�) rounds instead of poly(�) rounds, so that the irst overhead (i.e.,
the additive overhead in the input length caused by the number of operators) will be only polylog(�) instead
of poly(�). Indeed, in such a protocol the veriication time in each round is high, and therefore our downward
self-reducibility algorithm is relatively slow and makes many queries; but we will be able to aford this.

While implementing this idea, we deine a diferent intermediate problem that is both amenable to arithmetiza-
tion and reducible from TQBF in quasilinear time, reyling on an eicient Cook-Levin theorem (see Claim 4.7.1);
we move to an arithmetic setting that will support the strong random self-reducibility property that we want,
and arithmetize the intermediate problem in this setting (see Claim 4.7.2); we show how to execute arithmetic
operators in a łbatchž in this arithmetic setting (see Claim 4.7.3); and we eiciently combine the resulting
collection of polynomials into a single Boolean function (see the last part of the proof of Lemma 4.7).
We stress that we are łpayingž for all the optimizations above, by the fact that the associated algorithms (for

downward self-reducibility and for our notion of random self-reducibility) now run in time 2�/polylog(�) , rather
than polynomial time; but again, we are able to aford this in our proof.

2.1.2 Instantiating the [33] proof framework with the function � ws. Given this construction of � ws, we now use a
variant of the proof framework of Impagliazzo and Wigderson [33], as follows. For simplicity, in this overview
we show how to łfoolž polynomial-time distinguishers that do not use advice. (The full technical proof appears
in Section 4.2, see the proof of Lemma 4.9.)
Let ECC be the Goldreich-Levin [21] (i.e., Hadamard) encoding ECC(� ws) (�, �) = ⊕� �

ws (�)� · �� . Our PRG is

the Nisan-Wigderson PRG, instantiated with ECC(� ws) as the hard function, and with seed length �̃ (log(�)). To
analyze it, we rely on the well-known łuniform reconstructionž argument of [33] (following [44]), which shows
the following: If for input length � there exists a uniform poly(�)-time distinguisher� for the PRG, then for input

length ℓ = �̃ (log(�)) there is a weak learner for ECC(� ws). That is, there exists an algorithm that gets input 1ℓ

and oracle access to ECC(� ws) on ℓ-bit inputs, runs in time poly(�) ≈ 2ℓ/polylog(ℓ) , and outputs a small circuit that
agrees with ECC(� ws) on approximately 1/2 + 1/�2 ≈ 1/2 + �0 (ℓ) of the ℓ-bit inputs, where �0 (ℓ) = 2−ℓ/polylog(ℓ) .

Thus, assuming that there exists a distinguisher for the PRG as above for every � ∈ N, we deduce that a weak
learner exists for every ℓ ∈ N. Following the łbootstrappingž idea of [33], we now iteratively construct, for each
input length � = 1, ..., ℓ , a circuit of size 2�/polylog(�) for � ws� . The base case � = 1 is trivial. And, in iteration � > 1,
having already obtained a circuit ��−1 for �

ws
�−1, we run the weak learner for ECC(� ws) on input length 2� , and

answer its oracle queries using the downward self-reducibility of � ws, the circuit��−1, and the fact that ECC(�
ws)2�

is easily computable given access to � ws� .

The weak learner outputs a circuit �
(0)
� . of size 22�/polylog(2�) that agrees with ECC(� ws) on approximately

1/2 + �0 (2�) of the 2�-bit inputs, and we want to transform it into a circuit that computes � ws on all �-bit inputs.

To do so we irst use the list-decoding algorithm of Goldreich and Levin [21] to eiciently transform �
(0)
� to

a circuit �
(1)
� of similar size that computes � ws on a approximately � (�) = poly(�0 (2�)) of the �-bit inputs; the

13Recall that the standard arithmetization of 3-SAT is a polynomial that depends on the input formula, whereas we want a single polynomial

that gets both a formula and the assignment as input.

J. ACM

10 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

algorithm of [21] succeeds only with probability poly(�), so we run it for poly(1/�) times, and each time test the
agreement of the resulting circuit with � ws, using the circuit, ��−1 and the downward self-reducibility of � ws.

Our goal now is to transform �
(1)
� into a circuit of similar size that computes � ws on all �-bit inputs. Recall that

in general, performing such transformations by a uniform algorithm is challenging (intuitively, if the truth-table
of � ws is a codeword in an error-correcting code, then this task corresponds to uniform list-decoding of a łvery
corruptž version of � ws). However, in our speciic setting we can produce random labeled samples for � ws, using its
downward self-reducibility and the circuit��−1. Relying on the sample-aided worst-case to average-case reducibility

of � ws, we can transform �
(1)
� to a circuit �� of similar size that computes � ws� on all inputs.

Finally, since TQBF is reducible with quasilinear overhead to � ws, if we can compute � ws in time 2�/polylog(�) then
we can compute TQBF in such time, a contradiction. This establishes that the generator is indeed pseudorandom,

and since � ws is computable in space � (ℓ) = �̃ (log(�)) (and thus in time �polyloglog(�)), the pseudorandom

generator is also computable in time �polyloglog(�) .

2.1.3 The łalmost-alwaysž version: Proof of Theorem 1.2. We now explain how to adapt the proof above in order
to get an łalmost-alwaysž PRG with near-exponential stretch. For starters, we will use a stronger property of � ws,
namely that it is downward self-reducible in a polylogarithmic number of steps; this means that for every input
length ℓ there exists an input length ℓ0 ≥ ℓ − polylog(ℓ) such that � ws is eiciently-computable at input length
ℓ0 (i.e., �

ws
ℓ0

is computable in time 2ℓ0/polylog(ℓ0) without a łdownwardž oracle); see Section 4.1.1 for intuition and

details about this property.
Now, observe that the transformation of a probabilistic distinguisher� for the PRG to a probabilistic algorithm �

that computes � ws actually gives a łpoint-wisež guarantee: For every input length� ∈ N, if� distinguishes the PRG

on a corresponding set of input lengths �� , then � computes � ws correctly at input length ℓ = ℓ (�) = �̃ (log(�));
speciically, we want to use the downward self-reducibility argument for � ws at input lengths ℓ, ℓ − 1, ..., ℓ0, and ��
is the set of input lengths at which we need a distinguisher for� in order to obtain a weak learner for ECC(� ws)
at input lengths ℓ, ℓ − 1, ...ℓ0. Moreover, since � ws is downward self-reducible in polylog steps, we will only need
weak learners at inputs ℓ, ..., ℓ0 = ℓ −polylog(ℓ); hence, we can show that �� is a set of polylog(ℓ) = polyloglog(�)
input lengths in the interval [�, �2] (see Lemma 4.9 for the precise calculation). Taking the contrapositive, if � ws

cannot be computed by � on almost all ℓ’s, then for every � ∈ N there exists an input length� ∈ �� ⊂ [�, �2]
such that � fools � at input length�.14

Our derandomization algorithm gets input 1� and also gets the łgoodž input length� ∈ �� as non-uniform advice;
it then simulates � (1�) (i.e., the PRG at input length�) and truncates the output to � bits. (We can indeed show
that truncating the output of our PRG preserves its pseudorandomness in a uniform setting; see Proposition 4.12
for details.) The crucial point is that since |�� | = polyloglog(�), the advice length is � (logloglog(�)). Note,
however, that for every potential distinguisher � there exists a diferent input length � ∈ �� such that � is
pseudorandom for � on�. Hence, our derandomization algorithm (or, more accurately, its advice) depends on
the distinguisher that it wants to łfoolž. Thus, for every � ∈ BPP and every eiciently-samplable distribution X
of inputs, there exists a corresponding łalmost-alwaysž derandomization algorithm �X (see Proposition 4.12).

14Actually, since � ws is downward self-reducible in polylog steps, it can be computed relatively-eiciently on ininitely-many input lengths,

and thus cannot be łhardž for almost all ℓ’s. However, since TQBF can be reduced to � ws with quasilinear overhead, if TQBF is łhardž almost-

always then for every ℓ (�) there exists ℓ ′ ≤ �̃ (ℓ (�)) such that � ws is łhardž on ℓ ′, which allows our argument to follow through, with a

similar set �� ⊂ [�,�polyloglog(�)] (see Proposition 4.11 for details). For simplicity, we ignore this issue in the overview.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 11

2.2 NTIME-uniform circuits for E and an equivalence between derandomization and circuit lower

bounds

The proofs that we describe in the current section are signiicantly simpler technically than the proofs described in
Sections 2.1 and 2.3. As mentioned in Section 1.3, the motivating observation is that NETH implies an equivalence
between derandomization and circuit lower bounds; let us start by proving this statement:

Proposition 2.1 (łwarm-upž: a weaker version of Theorem 1.4). Assume that EXP ⊄ i.o.NSUBEXP.
Then, ��BPP ⊆ ��SUBEXP ⇐⇒ EXP ⊄ i.o.P/poly.

Proof. The ł⇐=ž direction follows (without any assumption) from [3]. For the ł=⇒ž direction, assume that
��BPP ⊆ ��SUBEXP, and assume towards a contradiction that EXP ⊂ i.o.P/poly. The latter hypothesis
implies (using the Karp-Lipton style result of [3]) that EXP ⊂ i.o.MA. Combining this with the former
hypothesis, we deduce that EXP ⊂ i.o.NSUBEXP, a contradiction.

Our proofs of Theorems 1.4 and 1.5 will follow the same logical structure as the proof of Proposition 2.1, and our
goal will be to relax the hypothesis EXP ⊄ i.o.NSUBEXP.15 We will do so by strengthening the Karp-Lipton
style result that uses [3] and asserts that a joint łcollapsež hypothesis and derandomization hypothesis implies
that EXP can be decided in small non-deterministic time. We will show two diferent strengthenings, each
referring to a diferent parameter setting: The irst strengthening refers to a łlow-endž setting, and asserts that if
EXP ⊂ P/poly and ��BPP ⊆ ��SUBEXP then EXP hasNSUBEXP-uniform circuits of polynomial size
(see Item (1) of Proposition 5.6); and the second strengthening refers to a łhigh-endž setting, and asserts that if
E ⊂ i.o.SIZE[2� ·�] and ��BPP = ��P then E has NTIME[2� (�) ·�]-uniform circuits (see Proposition 5.7).
The proofs of these two diferent strengthenings rely on diferent ideas; for high-level descriptions of the proofs
see Sections 5.1.2 and 5.1.3, respectively.

For context, recall that (as noted by Fortnow, Santhanam, and Williams [17]), the proof of [3] already supports
the stronger result that EXP ⊂ P/poly ⇐⇒ EXP = OMA;16 and by adding a derandomization hypothesis
(e.g., ��BPP = ��P) we can deduce that EXP = ONP. Nevertheless, our results above are stronger, because
NP-uniform circuits are an even weaker model than ONP: This is since in the latter model the proof is veriied
on an input-by-input basis, whereas in the former model we only verify once that the proof is convincing for
all inputs. We also stress that some lower bounds for this weaker model (i.e., for NTIME-uniform circuits of
small size) are already known: Santhanam and Williams [49] proved that for every � ∈ N there exists a function
in NP that cannot be computed by NP-uniform circuits of size �� .

We also note that our proofs actually show that (conditioned on lower bounds for NTIME-uniform circuits
against E) even a relaxed derandomization hypothesis is already equivalent to the corresponding circuit lower
bounds. For example, in the łhigh-endž setting, to deduce that E ⊄ SIZE[2Ω (�)] it suices to assume that CAPP
on �-bit circuits of size � = 2Ω (�) can be solved in time 2� ·� , for a suiciently small � > 0.17 For more details, see
Section 5.2.

15This high-level proof structure, which combines a non-uniform collapse hypothesis (using a Karp-Lipton-style theorem) and a derandom-

ization hypothesis, dates back to the work of Impagliazzo, Kabanets, and Wigderson [30], underlies the algorithmic method of Williams [59],

and has been used in works published in parallel to ours (such as Chen et al. [10]).
16The notation OMA stands for łobliviousž MA. It denotes the class of problems that can be decided by an MA veriier such that for

every input length there is a single łgoodž proof that convinces the veriier on all inputs in the set (rather than a separate proof for each

input); see, e.g., [17, 22].
17Note that the problem of solving CAPP for �-bit circuits of size � = 2Ω (�) can be trivially solved in time 2� (�)

= poly(�) , and thus

unconditionally lies in ��P ∩ ��BPTIME[�̃ (�)]. The derandomization problem described above simply calls for a faster deterministic

algorithm for this problem.

J. ACM

12 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Proof of Theorem 1.6. The irst part of Theorem 1.6 asserts that if E does not have NTIME[2�
�

]-uniform
circuits of polynomial size, then the conditional statement ł��BPP ⊆ ��NSUBEXP =⇒ EXP ⊄ P/polyž
holds. The proof of this statement again follows the logical structure from the proof of Proposition 2.1, and relies
on a further strengthening of our łlow-endž Karp-Lipton style result such that the result only uses the hypothesis
that ��BPP ⊆ ��NSUBEXP rather than ��BPP ⊆ ��SUBEXP.18

The second part of Theorem 1.6 asserts that if the conditional statement ł��BPP ⊆ ��NSUBEXP =⇒
EXP ⊄ P/polyž holds, then E does not haveNP-uniform circuits. We will in fact prove the stronger conclusion
that E ⊈ (NP ∩ P/poly). (Recall that the class of problems decidable by NP-uniform circuits is a subclass of
ONP ⊆ NP∩P/poly.) The proof itself is very simple: Assume towards a contradiction that E ⊆ (NP∩P/poly);
since BPP ⊆ EXP, it follows that ��BPP ⊆ ��NP (see the proof of Theorem 5.10); and by the hypothesized
conditional statement, we deduce that EXP ⊄ P/poly, a contradiction. Indeed, the parameter choices in the
foregoing proof are far from tight, and (as mentioned after the statement of Theorem 1.6) the quantitative gap
between the two parts of Theorem 1.6 can be considerably narrowed (see Theorem 5.11).

2.3 Circuit lower bounds from randomized CircuitSAT algorithms

Recall that Theorem 1.7 asserts that if CircuitSAT for �-bit circuits of size �̃ (�2) can be solved in probabilistic
time 2�/(log�)

�

, then BPE ⊄ SIZE[� · (log�)�
′
], where �′ depends on � . The relevant context for this result is

the known line of works that deduce circuit lower bounds from łnon-trivialž circuit-analysis algorithms, following
the celebrated result of Williams [59]. The main technical innovation in Theorem 1.7 is that our hypothesis
is only that there exists a probabilistic circuit-analysis algorithm, whereas the aforementioned known results
crucially rely on the fact that the circuit-analysis algorithm is deterministic. On the other hand, the aforementioned
known results yield new circuit lower bounds even if the running time of the algorithm is 2�/�� (1) ,19 whereas
Theorem 1.7 only yields new circuit lower bounds if the running time is 2�/polylog(�) .

As far as we are aware, Theorem 1.7 is the irst result that deduces circuit lower bounds from a near-exponential-
time probabilistic algorithm for a natural circuit-analysis task. The closest result that we are aware of is by
Oliveira and Santhanam [46, Theorem 14], who deduced lower bounds for circuits of size �� (1) against BPE
from probabilistic algorithms for learning with membership queries (rather than for a circuit-analysis task such as
CircuitSAT); as explained next, we build on their techniques in our proof.20

Our proof strategy is indeed very diferent from the proof strategies underlying known results that deduce
circuit lower bounds from deterministic circuit-analysis algorithms (e.g., from the łeasy-witnessž proof strategy [9,
11, 14, 30, 43, 59], or from proofs that rely onMA lower bounds [30, Rmk. 26], [48, 55]). In high-level, to prove
our result we exploit the connection between randomized learning algorithms and circuit lower bounds, which
was recently discovered by Oliveira and Santhanam [46, Sec. 5] (following [16, 28, 37]). Loosely speaking, their
connection relies on the classical results of [33], and we are able to signiicantly reine this connection, using our
reined version of the [33] argument that was detailed in Section 2.1.
Our starting point is the observation that CircuitSAT algorithms yield learning algorithms. Speciically,

ix � ∈ N, and assume (for simplicity) that CircuitSAT for polynomial-sized �-bit circuits can be solved in
probabilistic time 2�/polylog(�) for an arbitrarily large polylogarithmic function. We show that in this case, any

18Intuitively, in the łlow-endž Karp-Lipton result we only need to derandomize probabilistic decisions made by the non-deterministic machine

that constructs the circuit, whereas the circuit itself is deterministic; thus, a non-deterministic derandomization hypothesis suices for this

result. See Section 5.1.2 for details.
19For example, from such an algorithm they deduce the lower bound NEXP ⊈ P/poly; and from an algorithm that runs in time 2�/polylog(�)

as in Theorem 1.7, their results yield the lower bound NP ⊄ SIZE[��] for every ixed � ∈ N.
20Another known result, which was communicated to us by Igor Oliveira, asserts that if CircuitSAT for circuits over � variables and of

size poly(�) can be solved in probabilistic sub-exponential time 2�
� (1)

, then BPTIME[2� (�)] ⊄ P/poly. This result can be seen as a

łhigh-endž form of our result (i.e., of Theorem 1.7), where the latter will use a weaker hypothesis but deduce a weaker conclusion.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 13

function that is computable by circuits of size � · (log�)� can be learned (approximately) using membership

queries in time 2�/polylog(�) (we explain below how to prove this).21 Now, let � ws be the well-structured function
from Section 2.1, and recall that � ws is computable in linear space, and hard for linear space under quasilinear-time
reductions. Then, exactly one of two cases holds:

(1) The function � ws does not have circuits of size � · (log�)� . In this case a Boolean version of � ws also does
not have circuits of such size, and since this Boolean version is in SPACE[� (�)] ⊆ BPE, we are done.

(2) The function � ws has circuits of size � · (log�)� . Hence, � ws is also learnable (as we concluded above), and
so the argument of [33] can be used to show that � ws is computable by an eicient probabilistic algorithm.22

Now, by a diagonalization argument, there exists �diag ∈ Σ4 [� · (log�)2�] that cannot be computed by

circuits of size � · (log�)� . We show that �diag ∈ BPE by irst reducing �diag to � ws in time �̃ (�), and then
computing � ws (using the eicient probabilistic algorithm).

Thus, in both cases we showed a function in BPE \SIZE[� · (log�)�]. The crucial point is that in the second
case, our new and eicient implementation of the [33] argument (which was described in Section 2.1) yields
a probabilistic algorithm for � ws with very little overhead, which allows us to indeed show that �diag ∈ BPE.
Speciically, our implementation of the argument (with the speciic well-structured function � ws) shows that if
� ws can be learned in time� (�) = 2�/polylog(�) , then � ws can be computed in similar time� ′ (�) = 2�/polylog(�) (see
Corollary 4.10).
We thus only need to explain how a CircuitSAT algorithm yields a learning algorithm with comparable

running time. The idea here is quite simple: Given oracle access to a function � ws, we generate a random sample
of � = poly(�) labeled examples (�1, �

ws (�1)), ..., (�� , �
ws (��)) for �

ws, and we use the CircuitSAT algorithm to
construct, bit-by-bit, a circuit of size � · (log�)� that agrees with � ws on the sample. Note that the input for the
CircuitSAT algorithm is a circuit of size poly(�) over only �′ ≈ � · (log�)�+1 bits (corresponding to the size of
the circuit that we wish to construct). Hence, the CircuitSAT algorithm runs in time 2�

′/polylog(�′)
= 2�/polylog(�) .

And if the sample size � = poly(�) is large enough, then with high probability any circuit of size � · (log�)� that
agrees with � ws on the sample also agrees with � ws on almost all inputs (i.e., by a union-bound over all circuits of
such size).

3 PRELIMINARIES

We denote random variables in boldface. For an alphabet Σ and � ∈ N, we denote the uniform distribution over
Σ
� by u� , where Σ will be clear from context.
For any set � ⊆ {0, 1}∗ and � ∈ N, we denote by �� = � ∩ {0, 1}� the restriction of � to �-bit inputs. Similarly,

for � : {0, 1}∗ → {0, 1}∗, we denote by �� : {0, 1}� → {0, 1}∗ the restriction of � to the domain of �-bit inputs.

3.1 Complexity classes

We will use standard complexity-theoretic notation, which can be found in any standard textbook (such as [2, 19]).
As few speciic reminders for classes that will be used in our paper, let us recall that:

(1) The class E = DTIME[2� (�)] is the set of languages decidable in deterministic time 2� (�) .
(2) For a function � : N → N, the class SIZE[�] is the set of languages decidable by an ininite family

{�� : {0, 1}
� → {0, 1}}�∈N of Boolean circuits with fan-in two over the De Morgan basis such that �� is of

size at most � (�).

21That is, there exists a probabilistic algorithm that gets input 1� and oracle access to � , and with high probability outputs an �-bit circuit of

size � · (log�)� that agrees with � on almost all inputs.
22Actually, our implementation of the [33] argument shows that if the function ECC(� ws) (where ECC is deined as in Section 2.1) can be

learned, then the function � ws can be eiciently computed. For simplicity, we ignore the diference between � ws and ECC(� ws) in the current

high-level description.

J. ACM

14 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

(3) For a class C of languages, the notation i.o.C refers the set of languages � ⊆ {0, 1}∗ that agree with some
�′ ∈ C on ininitely many input lengths; that is, there exists an ininite set � ⊆ N such that for every � ∈ �

it holds � ∩ {0, 1}� = �′ ∩ {0, 1}� .
(4) The notation ��BPP refers to the set of promise problems decidable in probabilistic polynomial time; that

is, the set of pairs (Y,N) ∈ {0, 1}∗ × {0, 1}∗ such that there exists a probabilistic polynomial time machine
� satisfying � ∈ Y ⇒ Pr[� (�) = 1] ≥ 2/3 and � ∈ N ⇒ Pr[� (�) = 0] ≥ 2/3.

(5) The class SUBEXP = ∩�>0DTIME[2�
�

] it the set of languages decidable in sub-exponential time (i.e.,
time 2�

�

where � > 0 can be an arbitrarily small constant). Similarly, the class i.o.��SUBEXP is the set
of promise problems decidable in sub-exponential time on ininitely many input lengths; and the class
��NSUBEXP is the set of promise problems decidable in sub-exponential time.

3.2 Two exponential-time hypotheses

We deine two exponential-time hypotheses that we consider in this paper. We note in advance that our actual
results refer to various weaker variants of these hypotheses.

Hypothesis 1 (rETH; see [15]). Randomized Exponential Time Hypothesis (rETH): There exists � > 0 and � > 1
such that 3-SAT on � variables and with � · � clauses cannot be solved by probabilistic algorithms that run in time
2� ·� .

Hypothesis 2 (NETH; see [7]). Non-Deterministic Exponential Time Hypothesis (NETH): There exists � > 0
and � > 1 such that ��-3-SAT on � variables and with � · � clauses cannot be solved by non-deterministic algorithms
that run in time 2� ·� .

We also extend the two foregoing hypotheses to stronger versions in which every algorithm (probabilistic
or non-deterministic, respectively) fails to compute the corresponding łhardž function on all but initely-many
input lengths. These stronger hypotheses are denoted a.a.-rETH, and a.a.-NETH, respectively.

3.3 Worst-case derandomization and pseudorandom generators

We now formally deine the circuit acceptance probability problem (or CAPP, in short); this well-known problem
is also sometimes called Circuit Derandomization, Approx Circuit Average, and GAP-SAT or GAP-UNSAT.

Definition 3.1 (CAPP). The circuit acceptance probability problem with parameters �, � ∈ [0, 1] such that
� > � and for size � : N→ N (or (�, �)-CAPP[�], in short) is the following promise problem:

• The ��� instances are (representations of) circuits over � input bits of size at most � (�) that accept at least an
� fraction of their inputs.

• The �� instances are (representations of) circuits over � input bits of size at most � (�) that accept at most a �
fraction of their inputs.

We deine the CAPP[�] problem (i.e., omitting � and �) as the (2/3, 1/3)-CAPP[�] problem. We deine CAPP to be
the problem when there is no restriction on � .

It is well-known that CAPP is complete for ��BPP under deterministic polynomial-time reductions; in
particular, CAPP can be solved in deterministic polynomial time if and only if ��BPP = ��P. (For a proof see,
e.g. [58, Cor. 2.31], [19, Exer. 6.14].)

We will need the following well-known construction of a pseudorandom generator from a function that is łhardž
for non-uniform circuits, by Umans [57] (following the line of works initiated by Nisan and Wigderson [44]).

Theorem 3.2 (Umans’ PRG; see [57, Thm. 6]). There exists a constant � > 1 and an algorithm� such that the

following holds. When� is given an �-bit truth-table of a function � : {0, 1}log(�) → {0, 1} that cannot be computed

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 15

by circuits of size � , and a random seed of length ℓ (�) = � · log(�), it runs in time �� , and for� = �1/� outputs an
�-bit string that is (1/�)-pseudorandom for every size-� circuit over� bits.

Corollary 3.3 (near-optimal non-uniform hardness-to-randomness using Umans’ PRG). There exists a

universal constant Δ > 1 such that for every time-computable � : N→ N and for � (�) = 2Δ·�
−1 (�Δ) , we have that

(1) If E ⊄ SIZE[�] then CAPP ∈ i.o.��DTIME[�].
(2) If E ⊄ i.o.SIZE[�] then CAPP ∈ ��DTIME[�].

In addition we will need a suitable construction of an averaging sampler. Recall the standard deinition of
averaging samplers:

Definition 3.4 (averaging sampler). A function ���� : {0, 1}�
′
→ ({0, 1}�)� is an averaging sampler with

accuracy � and confidence � (or (�, �)-averaging sampler, in short) if for every � ⊆ {0, 1}� , the probability over
choice of � ∈ {0, 1}�

′
that Pr�∈[�] [���� (�)� ∈ �] ∉ |� |/2� ± � is at most � .

We will speciically use the following well-known construction by Guruswami, Umans, and Vadhan [25]. (The
construction in [25] is of an extractor, rather than of an averaging sampler, but the two are well-known to be
essentially equivalent; see, e.g., [19, Sec. D.4.1.2] or [58, Cor. 6.24].)

Theorem 3.5 (the near-optimal extractor of [25], instantiated as a sampler and for specific pa-

rameters). Let � ≥ 1 and � > � > 0 be constants. Then, there exists a polynomial-time algorithm that for every

� computes an (�−� , 2−(�−�) ·�)-averaging sampler ���� : {0, 1}�
′
→ ({0, 1}�)� , where�′

= (1 + �) ·� and
� = poly(�).

3.4 Average-case derandomization and pseudorandom generators

We now deine the notions of łaverage-casež derandomization of probabilistic algorithms. The irst deinitions that
we need are of circuits that distinguish a distribution from uniform, and of distributions that are pseudorandom
for uniform algorithms. Towards this purpose, we consider a generator� that gets input 1� , a random seed of
length ℓ (�), and a stretch parameter str(�), and outputs str(�) pseudorandom bits.

Definition 3.6 (distinguishing distributions from uniform). For two functions str, ℓ : N→ N, let � be
an algorithm that gets input 1� and a random seed of length ℓ (�) and outputs a string of length str(�). Then:

(1) For � ∈ N and �′ ∈ str−1 (�), we say that �� : {0, 1}� → {0, 1} �-distinguishes � (1�
′
, uℓ (�′)) from uniform

if
��� Pr[�� (� (1�

′
, uℓ (�′))) = 1] − Pr[�� (u�) = 1]

��� > � .

(2) For a probabilistic algorithm �, an integer �, and � > 0, we say that � (1�, uℓ (�)) is �-pseudorandom for � if

the probability that �(1str(�)) outputs a circuit that �-distinguishes � (1�, uℓ (�)) from uniform is at most � .

When applying this deinition without specifying a function str, we assume that str is the identity function.

We now use Deinition 3.6 to deine pseudorandom generators for uniform circuits and hiting-set generators

for uniform circuits, which are analogous to the standard deinitions of PRGs and HSGs for non-uniform circuits:

Definition 3.7 (PRGs for uniform circuits). For ℓ : N→ N, let� be an algorithm that gets as input 1� and a
random seed of length ℓ (�), and outputs strings of length �. For �, � : N→ N and � : N→ (0, 1), we say that � is
an �-i.o.-PRG for (�, �)-uniform circuits if for every probabilistic algorithm � that runs in time � (�) and gets �(�)
bits of non-uniform advice there exists an ininite set �� ⊆ N such that for every � ∈ �� it holds that � (1�, uℓ (�)) is
� (�)-pseudorandom for �. If for every such algorithm � there is a set �� as above that contains all but initely-many
inputs, we say that � is an �-PRG for (�, �)-uniform circuits.

J. ACM

16 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Definition 3.8 (HSGs for uniform circuits). For ℓ : N→ N, let � be an algorithm that gets as input 1� and a
random seed of length ℓ (�), and outputs strings of length �. For �, � : N→ N and � : N→ (0, 1), we say that � is an
�-HSG for (�, �)-uniform circuits if the following holds. For every probabilistic algorithm � that gets input 1� and
�(�) bits of non-uniform advice, runs in time � (�), and outputs a circuit �� : {0, 1}� → {0, 1}, and every suiciently
large � ∈ N, with probability at least 1 − � (�) (over the coin tosses of �) at least one of the following two cases holds:

(1) There exists � ∈ {0, 1}ℓ (�) such that �� (� (1�, �)) = 1.
(2) The circuit �� satisies Pr�∈{0,1}� [�� (�) = 1] ≤ � (�).

As mentioned in Section 1, PRGs for uniform circuits can be used to derandomize BPP łon averagež (see,
e.g., [20, Prop. 4.4]). Analogously, HSGs for uniform circuits can be used to derandomize RP łon averagež. That
is, loosely speaking, if there exists an HSG for uniform circuits, then for any � ∈ RP there exists a deterministic
algorithm � such that for every eiciently-samplable distributionX, the probability over � ∼ X that � (�) ≠ �(�)
is small. For simplicity, we prove the foregoing claim for HSGs that are computable in polynomial time and have
logarithmic seed length:

Claim 3.9 (HSGs for uniform circuits⇒ derandomization of RP łon averagež). For � : N→ (0, 1) such
that � (�) ≤ 1/3, assume that for every � ∈ N there exists a �-HSG for (�� , 0)-uniform circuits that is polynomial-time
computable and that has logarithmic seed length. Then, for every � ∈ RP and every � ∈ N, there exists a deterministic
polynomial-time algorithm � such that for every probabilistic algorithm � that runs in time �� and every suiciently
large � ∈ N, the probability (over the internal coin tosses of �) that � (1�) outputs a string � ∈ {0, 1}� such that
� (�) ≠ �(�) is at most � (�).

Proof. Let � be an RP machine that decides � in time ��
′
, for some �′ ∈ N. The deterministic algorithm

� gets input � ∈ {0, 1}� , enumerates the seeds of the HSG for output length� = ��
′
and with the parameter

� = � (1 + �/�′), and accepts � if and only if there exists an output � of the HSG such that � accepts � with
random coins � . Note that � never accepts inputs � ∉ � (since� is an RP machine), and thus we only have to
prove that for every algorithm � as in the claim’s statement, the probability that � = � (1�) satisies both � ∈ �

and � (�) = 0 is at most � (�).
To do so, let � be a probabilistic algorithm that runs in time �� . Consider the probabilistic algorithm � that, on

input 1� , runs the algorithm � on input 1� to obtain � ∈ {0, 1}� , and outputs a circuit��,� : {0, 1}� → {0, 1} that

computes the decision of� at input � as a function of� ’s� = ��
′
random coins. Note that the algorithm � runs

in time at most�� (1+�/�′) , and also note that the only probabilistic choices that� makes are a choice of � = � (1�).
Thus, by Deinition 3.8 for every suiciently large�, with probability at least 1 − � (�) > 1 − � (�) over choice
of � = � (1�) (i.e., over the coin tosses of �), if � (�) = 0 then Pr� [��,� (�) = 1] = Pr[� (�) = 1] ≤ � (�) ≤ 1/3,
which means that � ∉ �.

3.5 An E-complete problem with useful properties

Our proofs in Section 5 will rely on the well-known existence of an E-complete problem �nice with the following
useful properties: The problem �nice is randomly self-reducible and that has an instance checker with linear-
length queries such that both the instance checker and the random self-reducibility algorithm use a linear number
of random bits. Let us properly deine these notions:

Definition 3.10 (instance checkers). A probabilistic polynomial-time oracle machine IC is an instance checker
for a set � ⊆ {0, 1}∗ if for every � ∈ {0, 1}∗ the following holds:

(1) (Completeness.) IC� (�) = �(�), with probability one.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 17

(2) (Soundness.) For every �′ ⊆ {0, 1}∗ we have that Pr[IC�
′
(�) ∉ {�(�),⊥}] ≤ 1/6. 23

For ℓ : N→ N, if for every � ∈ {0, 1}∗, all the oracle queries of IC on input � are of length ℓ (|� |), then we say that
IC has queries of length ℓ . We will also measure the maximal number of queries that IC makes on inputs of any
given length.

Definition 3.11 (random self-reducible function). We say that � : {0, 1}∗ → {0, 1}∗ is randomly self-

reducible if there exists a probabilistic oracle machine Dec that gets input � ∈ {0, 1}� and access to an oracle
� : {0, 1}� → {0, 1}∗, runs in time poly(�), makes oracle queries such that each query is uniformly distributed in
{0, 1}� , and if for every oracle query � ∈ {0, 1}� it holds that �(�) = � (�), then Dec� (�) = � (�).

In high-level, the problem �nice is the low-degree extension of an (arbitrary) E-complete problem. The intuition
is that since �nice is a low-degree extension it is randomly self-reducible, and since �nice is E-complete we can
construct an instance checker for it. (Speciically, the instance checker for �nice simulates a PCP veriier for �nice,
and the problem of answering the veriier’s queries reduces to �nice, to the veriier’s queries can be answered
using an oracle to �nice.) For details and a full proof, see Appendix C.

Proposition 3.12 (an E-complete problem that is random self-reducible and has a good instance

checker). There exists �nice ∈ DTIME[�̃ (2�)] such that:

(1) Any � ∈ DTIME[2�] reduces to �nice in polynomial time with a constant multiplicative blow-up in the
input length; speciically, for every � there exists �′ = � (�) such that any �-bit input for � is mapped to an
�′-bit input for �nice.

(2) The problem �nice is randomly self-reducible by an algorithm Dec that on inputs of length � uses �+polylog(�)
random bits.

(3) There is an instance checker IC for �nice that on inputs of length � uses � +� (log(�)) random bits and makes
� (1) queries of length ℓ (�) = � (�).

4 RETH AND NEAR-OPTIMAL UNIFORM HARDNESS-TO-RANDOMNESS

In this section we prove Theorems 1.1 and 1.2. First, in Section 4.1, we deine and construct well-structured
functions, which are the key technical component in our proof of Theorem 1.1. Then, in Section 4.2 we show
how well-structured functions can be used in the proof framework of [33] (with minor variations) to construct a
PRG that łfoolsž uniform circuits, assuming that the well-structured function cannot be computed by eicient
probabilistic algorithms. Finally, in Section 4.3 we prove Theorems 1.1 and 1.2.

4.1 Construction of a well-structured function

In Section 4.1.1 we present the required properties of well-structured functions and deine such functions. Then,
in Section 4.1.2 we present a high-level overview of our construction of such functions. Finally, in Section 4.1.3
we present the construction itself in detail.

4.1.1 Well-structured function: Definition. Loosely speaking, we will say that a function � : {0, 1}∗ → {0, 1}∗ is
well-structured if it satisies three properties. The irst property, which is not crucial for our proofs but simpliies
them a bit, is that � is length-preserving; that is, for every � ∈ {0, 1}∗ it holds that |� (�) | = |� |.
The second property is a strengthening of the notion of downwards self-reducibility. Recall that a function

� : {0, 1}∗ → {0, 1}∗ is downwards self-reducible if �� can be computed by an eicient algorithm that has oracle
access to ��−1. First, we quantify the notion of łeicientž, in order to also allow for a very large running time (e.g.,
running time 2�/polylog(�)). Secondly, we also require that for any � ∈ N there exists an input length� that is not

23The standard deinition of instance checkers ixes the error probability to 1/3, but we can reduce the error to 1/6 using standard error-

reduction.

J. ACM

18 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

much smaller than � such that �� is eiciently computable without any łdownwardž oracle. That is, intuitively, if
we try to compute � on input length � by łiterating downwardsž using downward self-reducibility, our łbase
casež in which the function is eiciently-computable is not input length � (1), but a large input length� that is
not much smaller than �. More formally:

Definition 4.1 (downward self-reducibility in few steps). For �, � : N → N, we say that a function
� : {0, 1}∗ → {0, 1}∗ is downward self-reducible in time � and � steps if there exists a probabilistic oracle machine
� that for any suiciently large � ∈ N satisies the following.

(1) When � is given input � ∈ {0, 1}� and oracle access to ��−1, it runs in time at most � (�) and satisies

Pr� [�
��−1 (�, �) = � (�)] ≥ 2/3.

(2) There exists an input length� ∈ [�−� (�), �] such that� computes �� in time � (�) without using randomness
or oracle queries.

In the special case that � (�) = �, we simply say that � is downward self-reducible in time � .

The third property that we need is a reinement of the notion of random self-reducibility, which is called
sample-aided worst-case to average-case reducibility. This notion was recently made explicit by Goldreich and G.
Rothblum [23], and is implicit in many previous results (see, e.g., the references in [23]).

To explain the notion, recall that if a function � is randomly self-reducible, then a circuit �̃ that computes
� on most of the inputs can be eiciently transformed to a (probabilistic) circuit � that computes � on every

input (whp). We want to relax this notion, by allowing the eicient algorithm that transforms �̃ into � to obtain
random labeled samples for � (i.e., inputs of the form (�, � (�)) where � is chosen uniformly at random). The main

advantage in this relaxation is that we will not need to assume that �̃ computes � on most of the inputs, but will

be satisied with the weaker assumption that �̃ computes � on a tiny fraction of the inputs. Speciically:24

Definition 4.2 (sample-aided reductions; see [23, Def 4.1]). Let � : {0, 1}∗ → {0, 1}∗ be a length-preserving
function, and let � : N→ N and �0 : N→ [0, 1). Let� be a probabilistic oracle machine that gets input 1� and a

sequence of � (�) pairs of the form (�, �) ∈ {0, 1}� × {0, 1}� and oracle access to a function �̃� : {0, 1}� → {0, 1}� , and
outputs a circuit � : {0, 1}� → {0, 1}� with oracle gates. We say that� is a sample-aided reduction of computing

� in the worst-case to computing � on �0 of the inputs using a sample of size � if for every �̃� : {0, 1}� → {0, 1}�

satisfying Pr�∈{0,1}� [�̃� (�) = �� (�)] ≥ �0 (�) the following holds: With probability at least 1 − �0 (�) over choice of

�̄ = �1, ..., �� (�) ∈ {0, 1}� and over the internal coin tosses of� , we have that� �̃� (1�, (�� , �� (��))�∈[� (�)]) outputs a

circuit � such that Pr[� �̃� (�) = �� (�)] ≥ 2/3 for every � ∈ {0, 1}� (the probability bound of 2/3 is over the internal
randomness of �).

Definition 4.3 (sample-aided worst-case to average-case reducibility). For �0 : N → (0, 1), we say
that a function � : {0, 1}∗ → {0, 1}∗ is sample-aided worst-case to �0-average-case reducible if there exists a
sample-aided reduction� of computing � in worst-case to computing � on �0 of the inputs such that� runs in time
poly(�, 1/�0 (�)) and uses poly(1/�0 (�)) samples.

For high-level intuition of why labeled samples can be helpful for worst-case to average-case reductions, and
for a proof that if � is a low-degree multivariate polynomial then it is sample-aided worst-case to average-case
reducible, see Appendix B.

24Deinition 4.2 is actually a slightly modiied version of the deinition in [23]. First, we consider reductions of computing � in the worst-case

to computing � in łrare-casež, whereas [23] both reduce the computation of � to the computation of a possibly diferent function � ′,

and parametrize the success probability of computing both � and � ′. Secondly, we separately account for the success probability of the

transformation� and of the inal circuit� . And lastly, we also require � to be length-preserving.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 19

We are now ready to deine well-structured functions. Fixing a parameter � > 0, a function � ws is �-well-
structured if it is length-preserving, downward self-reducible in time poly(1/�), and sample-aided worst-case to
�-average case reducible. That is:

Definition 4.4 (well-structured function). For � : N → (0, 1) and � : N → N, we say that a function
� ws : {0, 1}∗ → {0, 1}∗ is (�, �)-well-structured if � ws is length-preserving, downward self-reducible in time
poly(1/�) and � steps, and sample-aided worst-case to �-average-case reducible. Also, when � (�) = � (i.e., � ws is
simply downward self-reducible in time poly(1/�)), we say that � ws is �-well-structured.

In the following deinition, we consider reductions from a decision problem � ⊆ {0, 1}∗ to a well-structured
function � ws : {0, 1}∗ → {0, 1}∗. To formalize this we consider both a reduction �, which transforms any input �
for � to an input �(�) for � ws, and a łdecision algorithmž � , which translates the non-Boolean result � ws (�(�))
into a decision of whether or not � ∈ �.

Definition 4.5 (reductions to multi-output functions). Let � ⊆ {0, 1}∗ and � : {0, 1}∗ → {0, 1}∗. For
�, � : N→ N, we say that � reduces to � in time � with blow-up � if there exist two deterministic time-� algorithms
� and � such that for every � ∈ {0, 1}∗ it holds that |�(�) | ≤ � (|� |) and that � ∈ � if and only if � (� (�(�))) = 1.

4.1.2 Overview of our construction. For � = 2−�/polylog(�) and � = polylog(�), our goal is to construct a (�, �)-
well-structured function � ws : {0, 1}∗ → {0, 1}∗ such that TQBF reduces to � ws in quasilinear time (and thus with
quasilinear blow-up). Throughout the section, assume that an �-bit input to TQBF is simply a 3-SAT formula
� on � variables, and it is assumed that all variables are quantiied in-order, with alternating quantiiers (e.g.,
∀�1∃�2∀�3 ...� (�1, ...,��); see Deinition 4.6).

Our starting point is the well-known construction of Trevisan and Vadhan [56], which (loosely speaking)
transforms the protocol underlying the IP = PSPACE proof into a computational problem ��� : {0, 1}∗ →
{0, 1}∗.25 They required that ��� will meet the weaker requirements (compared to our requirements) of being
downward self-reducible and randomly self-reducible, where the latter means reducible from being worst-case
computabile to being computable on, say, .99 of the inputs.
Before describing our new construction, let us irst review the original construction of ��� . For every � ∈ N,

ix a corresponding interval �� = [�0, �1] of � (�) = poly(�) input lengths. The input to ��� at any input length
in �� (disregarding necessary padding) is a pair (�,�) ∈ F2� , where F is a suiciently-large ield. (The ield
size is chosen such that both � and related polynomials that are described below will be of low degree.) If
(�,�) ∈ {0, 1}2� then we think of � as representing a 3-SAT formula and of � as representing an assignment.
At input length �0 we deine ��� (�,�) = � (�,�), where � (�, �) is a low-degree arithmetized version of the
Boolean function (�,�) ↦→ � (�).
Now, recall that the IP = PSPACE protocol deines three arithmetic operators on polynomials (two

quantiication operators and a linearization operator). Then, at input length �0 + � , the problem ��� is recursively
deined by applying one of the three arithmetic operators on the polynomial from the previous input length
�0 + � −1.26 Observe that computing ��� at input length �0 + � corresponds to the residual computational problem
that the veriier faces at the (� − �)�ℎ round of the IP = PSPACE protocol, when instantiated for formula
� and with � = � (�) rounds. Indeed, at the largest input length �1 = �0 + � (�) the polynomial ��� is simply a
low-degree arithmetized version of the function that decides whether or not � ∈ TQBF (regardless of�); thus,

25Actually, in [56] they deine a Boolean function, which treats a suix of its input as an index of an output bit in the non-Boolean version

that we describe, and outputs the corresponding bit. To streamline our exposition we ignore this issue.
26In more detail, we deine three arithmetic operators on functions F2� → F, each indexed by a variable � ∈ [�], and denote these operators

by {O
�

�
}�∈ [3], � ∈ [�] . In each recursive step � ∈ [� (�)], the polynomial corresponding to input length �0 + � is obtained by applying operator

O
� (�)
� (�)

, where �, � : N→ [3] are polynomial-time computable functions, to the polynomial corresponding to input length �0 + � − 1. Thus, at

input length �0 + � , we compute ��� (�, �) by applying � operators on the polynomial � and evaluating the resulting polynomial at (�, �) .

J. ACM

20 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

TQBF can be reduced to ��� by mapping � ∈ {0, 1}� to (�, 1�) ∈ F2� and adding padding to get the input to
be of length �1 = poly(�). Note that ��� is indeed both downward self-reducible (since for each operator �
and polynomial � , we can compute � (�) (�,�) in polynomial-time with two oracle queries to �), and randomly
self-reducible (since the polynomials have low degree.)

Let us now deine our � ws : {0, 1}∗ → {0, 1}∗, which replaces their ��� , and highlight what is diferent in our
setting. Recall that our main goal is to construct the well-structured function � ws such that TQBF is reducible to � ws

with only quasilinear overhead in the input length (i.e., we need to avoid polynomial overheads), while keeping
the running time of all operations (i.e., of the algorithms for downward self-reducibility and for sample-aided
worst-case to rare-case reducibility) to be at most 2�/polylog(�) .

The irst issue, which is relatively easy to handle, is the number of bits that we use to represent an (arith-
metized) input (�,�) for � ws. Recall that we want � ws to be worst-case to �-average-case reducible for a tiny
� = 2−�/polylog(�) ; thus, � ws will involve computing polynomials over a ield of large size |F| ≥ poly(1/�). Using

the approach of [56], we would need 2� · log(|F|) = Ω̃(�2) bits to represent (�,�), and thus the reduction from
TQBF to � ws would incur a polynomial overhead. This is easily solvable by considering a łlow-degree extensionž
instead of their łmultilinear extensionž: To represent an input (�,�) ∈ {0, 1}2� to � ws we will use few elements in
a very large ield. Speciically, we will use ℓ = polylog(�) variables (i.e., the polynomial will be F2ℓ → F) such
that each variable łprovidesž � (�/polylog(�)) bits of information.

A second problem is constructing a low-degree arithmetization � (�,�) of the Boolean function that evaluates
� at� . In [56] they solve this by irst reducing TQBF to an intermediate problem TQBF′ that is amenable to such
low-degree arithmetization; however, their reduction incurs a quadratic blow-up in the input length, which we
cannot aford in our setting. To overcome this we reduce TQBF to another intermediate problem, denoted TQBFloc,
which is amenable to low-degree arithmetization, such that the reduction incurs only a quasilinear blow-up in
the input length. (Loosely speaking, we deine TQBFloc by applying a very eicient Cook-Levin reduction to the
Turing machine that gets input (�,�) and outputs � (�); see Claim 4.7.1 for precise details.) We then carefully
arithmetize TQBFloc, while łpayingž for this eicient arithmetization by the fact that computing the corresponding
polynomial now takes time exp(�/ℓ) = poly(1/�), instead of poly(�) time as in [56] (see Claim 4.7.2).

Thirdly, the number of polynomials in the construction of ��� (i.e., the size of the interval ��) is � (�) = poly(�),
corresponding to the number of rounds in the IP = PSPACE protocol. This poses a problem for us since the
reduction from TQBF maps an input of length � is to an input of length �1 ≥ poly(�). We solve this problem by
łshrinkingž the number of polynomials to be polylogarithmic, using an approach similar to an IP = PSPACE

protocol with only polylog(�) rounds and a veriier that runs in time 2�/polylog(�) : Intuitively, at each input length,
we deine � ws by simultaneously applying� (log(1/�)) operators (rather than a single operator) to the polynomial
that corresponds to the previous input length. Indeed, as one might expect, this increases the running-time
of the downward self-reducibility algorithm to poly(1/�), but we can aford this. Implementing this approach
requires some care, since multiple operators will be applied to a single variable (which represents many bits of
information), and since the linearization operator needs to be replaced by a łdegree-lowering operationž (that
will reduce the individual degree of a variable to be poly(1/�)); see Claim 4.7.3 for details.

Lastly, we also want our function to be downward self-reducible in polylog(�) steps (i.e., after polylog(�)
łdownwardž steps, the function at the now-smaller input length is computable in time poly(1/�) without an
oracle). This follows by noting that the length of each interval �� is now polylogarithmic, and that at the łbottomž
input length the function � ws simply computes the arithmetized version of TQBFloc, which (as mentioned above)
is computable in time poly(1/�).

The complexity of � ws. For our derandomization result, it suices to prove that � ws is computable in time 2�̃ (�) ,
rather than in linear space. (This is because our derandomization algorithm enumerates over all choices for a

seed of length �̃ (�), and computes the Nisan-Wigderson generator on each choice, with � ws as the hard function.)

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 21

However, analogously to Trevisan and Vadhan [56], we prove the stronger statement that � ws is computable in
linear space.27 This stronger property may be of independent interest, and in particular may be used in future
work for constructions of PRGs that work in small space. (See Remark 4.13 for further details.)

4.1.3 The construction itself. We consider the standard łtotally quantiiedž variant of theuantified Boolean

Formula (QBF) problem, called Totally uantified Boolean Formula (TQBF). In this version the quantiiers do not
appear as part of the input, and we assume that all the variables are quantiied, and that the quantiiers alternate
according to the index of the variable (i.e., �� is quantiied by ∃ if � is odd, and otherwise quantiied by ∀).

Definition 4.6 (TQBF). A string � ∈ {0, 1}∗ of length � = |� | is in the set TQBF ⊆ {0, 1}∗ if � is a representa-
tion of a 3-SAT formula in variables indexed by [�] such that, denoting the variables by �1, ...,�� , it holds that
∃�1∀�2∃�3∀�4...� (�1, ...,��). In other words, � ∈ TQBF if the quantiied expression that is obtained by quantifying
all � variables, in order of their indices and with alternating quantiiers (starting with ∃), evaluates to true.

Recall that a formula � that is represented by � bits actually has less than � input variables, since the represen-
tation length of an�-bit formula is� (� · log(�)). Thus, an �-bit � actually has at most �/� (log(�)) variable. In
Deinition 4.6 we assume for simplicity (and to avoid cumbersome notation) that � has precisely � input variables,
but some of these are dummy variables that are ignored.28

Recall that QBF, in which the quantiiers are part of the input, is reducible in linear time to TQBF from
Deinition 4.6 (by renaming variables and adding dummy variables).

The main result in this section is a construction of a well-structured function � ws such that TQBF can be reduced
to � ws with only quasilinear blow-up. This construction is detailed in the following lemma:

Lemma 4.7 (a well-structured set that is hard for TQBF under qasilinear reductions). There exists
a universal constant � ∈ N such that for every constant � ∈ N the following holds. For ℓ (�) = log(�)3� and

� (�) = 2−�/ℓ (�) , there exists a (�,� (ℓ2))-well-structured function � ws : {0, 1}∗ → {0, 1}∗ such that � ws is computable

in linear space, and TQBF deterministically reduces to � ws in time � · log2�+� (�).

Proof. In high-level, we irst reduce TQBF to a problem TQBFloc that will have a property useful for arithmetiza-
tion, and then reduce TQBFloc to a function � ws that we will construct as follows. We will irst carefully arithmetize
a suitable witness-relation that underlies TQBFloc; then transform the corresponding arithmetic version of TQBFloc

to a collection of low-degree polynomials that also satisfy a property akin to downward self-reducibility (loosely
speaking, these polynomials arise from the protocol underlying the proof of IP = PSPACE [42, 52]); and
inally łcombinež these polynomials to a Boolean function � ws that will łinheritž the useful properties of the
low-degree polynomials, and will thus be well-structured.

A variant of TQBF that is amenable to arithmetization. We will need a non-standard variant of TQBF, which we
denote by TQBFloc, such that TQBF is reducible to TQBFloc with quasilinear blow-up, and TQBFloc has an additional
useful property. To explain this property, recall that the veriication procedure of a łwitnessž� = �1, ...,�� in
TQBF is local, in the following sense: For every ixed � it holds that � ∈ TQBF if ∃�1∀�2 ... 3��� (�,�), where
3��� (�,�) = � (�) is a relation that can be decided by a conjunction of local conditions on the łwitnessž� . We
want the stronger property that the relation that underlies TQBFloc can be tested by a conjunction of conditions
that are local both in the input and in the witness. That is, denoting the underlying relation by R-TQBFloc, we
will have that � ∈ TQBFloc if ∃�1∀�2 ... R-TQBF

loc (�,�), where R-TQBFloc is a conjunction of local conditions on
(�,�). In more detail:

27Recall that the downward self-reducibility algorithm for � ws works in time poly(1/�) = 2�/polylog(�) , and thus the existence of this

algorithm does not immediately imply that � ws ∈ PSPACE.
28This choice makes our reduction of TQBF to � ws somewhat wasteful, but this waste only causes only a polylogarithmic overhead, which is

insigniicant for our results. Thus, for simplicity, we assume that the number of variables indeed equals the representation length of � .

J. ACM

22 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Claim 4.7.1 (a variant of TQBF with verification that is local in both input and witness). There
exists a set TQBFloc ∈ SPACE[� (�)] and a relation R-TQBFloc ⊆ ({0, 1}∗ × {0, 1}∗) such that TQBFloc = {� :

∃�1∀�2∃�3∀�4...(�,�) ∈ R-TQBFloc}, and the following holds.

(1) (Length-preserving witnesses.) For any (�,�) ∈ R-TQBFloc it holds that |� | = |� |.
(2) (Veriication that is local in both input and witness.) For every � ∈ N there exist � functions {�� : {0, 1}

� ×
{0, 1}� → {0, 1}}�∈[�] such that the mapping (�,�, �) ↦→ �� (�,�) is computable in quasilinear time and linear

space, and each �� depends on only three variables, and (�,�) ∈ R-TQBFloc if and only if for all � ∈ [�] it holds
that �� (�,�) = 1.

(3) (Eicient reduction with quasilinear blow-up.) There exists a deterministic linear-space and quasilinear-time
algorithm� that gets as input � ∈ {0, 1}� and outputs � = �(�) such that � ∈ TQBF if and only if � ∈ TQBFloc.

Proof. Consider a 3-SAT formula � ∈ {0, 1}� as an input to TQBF, and for simplicity assume that � is even (this
assumption is insigniicant for the proof and only simpliies the notation). By deinition, we have that � ∈ TQBF

if and only if

∃�1∀�2∃�3∃�� � (�1, ...,��) = 1 .

Now, let� be a linear-space and quasilinear-time machine that gets as input (�,�) and outputs � (�). We use
an eicient Cook-Levin transformation of the computation of the machine� on inputs of length 2� to a 3-SAT
formula, and deduce the following:29 There exists a linear-space and quasilinear-time algorithm that, on input 1� ,

constructs a 3-SAT formula Φ� : {0, 1}� × {0, 1}� × {0, 1}ql(�) → {0, 1} of size ql(�) = �̃ (�) such that for any
(�,�) ∈ {0, 1}� × {0, 1}� it holds that � (�) = 1 if and only if there exists a unique � ′ ∈ {0, 1}ql(�) satisfying
Φ� (�,�,� ′) = 1.
Now, using the formula Φ� , note that � ∈ {0, 1}� is in TQBF if and only if

∃�1∀�2∃�3...∃�� ∃� ′
1∃�

′
2 ...∃�

′
ql(�) Φ� (�,�,� ′) = 1 . (4.1)

We slightly modify Φ� in order to make the suix of existential quantiiers in Eq. (4.1) alternate with universal
quantiiers that are applied to dummy variables. (Speciically, for each � ∈ [ql(�)], we rename� ′

� to�
′
2� , which

efectively introduces a dummy variable before� ′
� .) Denoting the modiied formula by Φ′

� , we have that � ∈ TQBF

if and only if

∃�1∀�2∃�3...∃��∀�
′
1∃�

′
2∀�

′
3 ...∃�

′
2ql(�) Φ

′
� (�,�,� ′) = 1 .

We deine the relation R-TQBFloc to consist of all pairs (�,�) such that � = (�, 12ql(|� |)) and� = (� (0) ,� (1)) ∈

{0, 1} |� | × {0, 1}2ql(|� |) and Φ
′
|� |

(�,� (0) ,� (1)) = 1. Indeed, in this case the corresponding set TQBFloc is deined

by

TQBFloc =

{
(�, 12ql(|� |)) : ∃�

(0)
1 ∀�

(0)
2 ...∃�

(0)

|� |
∀�

(1)
1 ∃�

(1)
2 ...∃�

(1)

2ql(|� |)
Φ
′
|� | (�,�

(0) ,� (1)) = 1
}
.

Note that, by deinition, for every (�,�) ∈ R-TQBFloc we have that |� | = |� |. To see that R-TQBFloc can be
tested by a conjunction of eiciently-computable local conditions, note that an �-bit input to TQBFloc is of the
form (�, 12ql(|� |)) ∈ {0, 1}� × {1}2ql(�) , and recall that Φ′

� is a 3-SAT formula of size ql(�) < � that can be
produced in linear space and quasilinear time from input 1� . Also, TQBFloc is computable in linear space, since on
input (�, 12ql(|� |)) the number of variables that are quantiied is |� | + 2ql(|� |), and since Φ′

|� |
can be evaluated

in space � (|� |). Lastly, TQBF trivially reduces to TQBFloc by adding padding � ↦→ (�, 12ql(|� |)). □

29The algorithm transforms� into an oblivious machine [24, 47], and then applies an eicient Cook-Levin transformation of the oblivious

machine to a 3-SAT formula (see, e.g., [2, Sec 2.3.4]).

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 23

Arithmetic setting. For any � ∈ N, let ℓ0 = ℓ0 (�) = ⌊(log�)�⌋, let �′ = ⌈�/ℓ0⌉, let �0 (�) = 2−�
′
, and let F be

the ield with 25�
′
= 1/poly(�0 (�)) elements. Recall that a representation of such a ield (i.e., an irreducible

polynomial of degree 5�′ over F2) can be found deterministically either in linear space (by a brute-force algorithm)
or in time poly(�′) = poly(�) (by Shoup’s [53] algorithm).
Fix a bijection � between {0, 1}5�

′
and F (i.e., � maps any string in {0, 1}5�

′
to the bit-representation of the

corresponding element in F) such that both � and �−1 can be computed in polynomial time and linear space. Let
� ⊂ F be the set of 2�

′
elements that are represented (via �) by bit-strings with a preix of �′ arbitrary bits and a

suix of 4�′ zeroes (i.e., � =
{
� (�) : � = �04�

′
, � ∈ {0, 1}�

′}
⊂ F such that |� | = 2�

′
).30

We will consider polynomials F2ℓ0 → F, and we think of the inputs to each such polynomial as of the form
(�,�) ∈ Fℓ0 × Fℓ0 . Note that, intuitively, � and� each represent about 5� bits of information. When � and� are
elements in the subset � ℓ0 ⊂ Fℓ0 , we think of them as a pair of �-bit strings that might belong to R-TQBFloc.

Arithmetization of R-TQBFloc. Our irst step is to carefully arithmetize the relation R-TQBFloc within the arith-
metic setting detailed above. We will mainly rely on the property that there is a łdoubly-localž veriication
procedure for R-TQBFloc.

Claim 4.7.2 (low-degree arithmetization). There exists a polynomial �TQBFloc : F2ℓ0 → F such that the
following holds:

(1) (Low-degree.) The degree of �TQBFloc is at most � (� · 2�
′
).

(2) (Arithmetizes R-TQBFloc.) For every (�,�) ∈ � ℓ0 × � ℓ0 it holds that �TQBFloc (�,�) = 1 if (�,�) ∈ R-TQBFloc,

and �TQBFloc (�,�) = 0 otherwise.
(3) (Eiciently-computable.) There exists a deterministic algorithm that gets as input (�,�) ∈ F2ℓ0 , runs in time

poly(|F|), and outputs �TQBFloc (�,�) ∈ F. There also exists a deterministic linear-space algorithm with the
same functionality.

Proof. We irst show a polynomial-time and linear-space algorithm that, given input 1� , constructs a low-

degree polynomial �TQBFloc

0 : F2�
′ ·ℓ0 → F that satisies the following: For every (�,�) ∈ F2�

′ ·ℓ0
2 (i.e., when the

input is a string of 2�′ · ℓ0 ≥ 2� bits, and we interpret it as a pair (�,�) ∈ {0, 1}2�) it holds that �TQBFloc

0 (�,�) = 1

if (�,�) ∈ R-TQBFloc (�,�), and �TQBFloc

0 (�,�) = 0 otherwise.
To do so, recall that by Claim 4.7.1 we can construct in polynomial time and linear space a collection of �

polynomials
{
�� : F

2�′ ·ℓ0
2 → F2

}
�∈[�]

such that for each � ∈ [�] the polynomial �� depends only on three variables

in the input (�,�), and such that (�,�) ∈ R-TQBFloc if and only if for all � ∈ [�] it holds that �� (�,�) = 1. For
each � ∈ [�], let �� : F

2�′ ·ℓ0 → F be the multilinear extension of �� , which can be evaluated in time poly(�) and in
linear space (since �� depends only on three variables, and using Lagrange’s interpolation formula and the fact

that � is eiciently-computable). Then, the polynomial �TQBFloc

0 is simply the multiplication of all the �� ’s; that is,

�TQBFloc

0 (�,�) =
∏

�∈[�] �� (�,�). Note that �TQBFloc

0 can indeed be evaluated in time poly(�) and in linear space,

and that the degree of �TQBFloc

0 is � (�) (since each �� is a multilinear polynomial in � (1) variables).

Now, let �
(�)
1 , ..., �

(�)
�′ : � → {0, 1} be the łprojectionž functions such that �

(�)
� outputs the ��ℎ bit in the

bit-representation of its input according to � . Abusing notation, we let �
(�)
1 , ..., �

(�)
�′ : F→ F be the low-degree

extensions of the �
(�)
� ’s, which are of degree at most |� | − 1 < 2�

′
. Also, for every � ∈ F, we denote by � (�) (�)

the string �
(�)
1 (�), ..., �

(�)
�′ (�) ∈ F�

′
. Note that the mapping of � ∈ F to � (�) (�) ∈ F�

′
can be computed in time

30The speciic choice of � as the image of �0 = {�04�
′
: � ∈ {0, 1}�

′
} under � is immaterial for our argument, as long as we can eiciently

decide �0 and enumerate over �0.

J. ACM

24 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

poly(|� |) = poly(|F|) and in linear space (again just using Lagrange’s interpolation formula and the fact that �
is eiciently-computable).

Finally, we deine the polynomial �TQBFloc : F2ℓ0 → F. Intuitively, for (�,�) ∈ � ℓ0 ×� ℓ0 , the polynomial �TQBFloc

irst uses the �
(�)
� ’s to compute the bit-projections of � and� , which are each of length �′ · ℓ0, and then evaluates

the polynomial �TQBFloc

0 on these 2�′ · ℓ0 bit-projections. More formally, for every (�,�) ∈ F2ℓ0 we deine

�TQBFloc (�,�) = �TQBFloc

0

(
� (�) (�1), ..., �

(�) (�ℓ0), �
(�) (�1), ..., �

(�) (�ℓ0)
)
.

The irst item in the claim follows since for every � ∈ [�′] the degree of �
(�)
� is less than 2�

′
, and since

deg(�TQBFloc

0) = � (�). The second item in the claim follows immediately from the deinition of �TQBFloc . And the

third item in the claim follows since � (�) can be computed in time poly(|F|) and in linear space, and since �TQBFloc

0
can be constructed and evaluated in polynomial time and in linear space. (The two diferent algorithms are since
we need to ind an irreducible polynomial, which can be done either in linear space or in time poly(�) < poly(|F|).)
□

Constructing a łdownward self-reduciblež collection of low-degree polynomials. Our goal now is to deine a
collection of � (ℓ20) polynomials

{
��,� : F

2ℓ0 → F
}
�∈[� (ℓ20)]

such that the polynomials are of low degree, and ��,1

essentially computes TQBFloc, and computing ��,� can be reduced in time poly(1/�0 (�)) to computing ��,�+1. The
collection and its properties are detailed in the following claim:

Claim 4.7.3. There exists a collection of ℓ̄0 = ℓ0 (2ℓ0 + 1) + 1 polynomials, denoted
{
��,� : F

2ℓ0 → F
}
�∈[ℓ̄0]

, that

satisies the following:

(1) (Low degree:) For every � ∈ [ℓ̄0], the degree of ��,� is at most � (� · ℓ0 · 2
2�′

).
(2) (��,1 computes TQBFloc on � -inputs:) For any (�,�) ∈ � ℓ0 × � ℓ0 it holds that ��,1 (�,�) = 1 if � ∈ TQBFloc,

and ��,1 (�,�) = 0 if � ∉ TQBFloc. (Regardless of� .)

(3) (łForwardž self-reducible:) For every � ∈ [ℓ̄0] it holds that ��,� can be computed in time poly(2�
′
) when given

oracle access to ��,�+1.

(4) (Eiciently-computable:) The polynomial ��,ℓ̄0 can be computed in time poly(2�
′
). Moreover, for every � ∈ [ℓ̄0]

it holds that ��,� can be computed in space � (� · ℓ̄0).

Proof. For simplicity of notation, assume throughout the proof that �′ is even. Towards deining the collection
of polynomials, we irst deine two operators on functions � : F2ℓ0 → F. Loosely speaking, the irst operator
corresponds to �′ alternating quantiication steps in the IP = PSPACE proof (i.e., �′ steps of alternately
quantifying the next variable either by ∃ or by ∀), and the second operator roughly corresponds to a linearization
step that is simultaneously applied to �′ variables. In both cases, the �′ variables that we consider are the bits in
the representation of a single element in the second input to � .

Quantiications operator: Let � ∈ [ℓ0]. Loosely speaking, Quant(�) (�) causes � to ignore the ��ℎ variable
of its second input, and instead consider alternating quantiication steps applied to the bits that represent
this variable. In more detail, consider an input (�,�) ∈ F2ℓ0 for � , and think of � = �1, ...,�ℓ0 ∈ F. The

operator Quant(�) (�) causes � to ignore �� , and instead think of a variable � (�04�
′
) ∈ � that is determined a

sequence of �′ bits � = �1, ..., ��′ ; then, Quant(�) (�) will be the arithmetization of the expression ł∃�1∀�2∃�3... :
� (�,�1, ...,��−1, � (�0

4�′
),��+1, ...,�ℓ0)ž (obtained by arithmetizing the ł∃ž and ł∀ž operations in the usual way).

To do this, we deine a sequence of functions such that the irst function replaces the ��ℎ variable in the second
input for � by a dummy variable in � , and each subsequent function corresponds to a quantiication step applied
to a single bit in the representation of this dummy variable.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 25

Formally, we recurvisely deine �′ + 1 functions Quant(�,0) , ..., Quant(�,�
′)

= Quant(�) (�) such that for � ∈

{0, ..., �′} it holds that Quant(�, �) (�) is a function F2ℓ0 × {0, 1}�
′− � → F. The function Quant(�,0) (�) gets as input

(�,�) ∈ F2ℓ0 and� ∈ {0, 1}�
′
, ignores the ��ℎ element of� , and outputs Quant(�,0) (�,�, �) = � (�,�1...��−1� (�0

4�′
)).

Then, for � ∈ [�′], if � is odd then we deine

Quant(�, �) (�) (�,�, �1...��′− �) = 1 −
©­«
∏

�∈{0,1}

(
1 − Quant(�, �−1) (�) (�,�, �1, ..., ��′− ��)

)ª®¬
,

and if � is even then we deine

Quant(�, �) (�) (�, �1, ..., ��′− �) =
∏

�∈{0,1}

Quant(�, �−1) (�) (�,�, �1...��′− ��) .

Note that the function Quant(�) (�) can be evaluated at any input in linear space with oracle access to �

(since each Quant(�, �) (�) can be evaluated in linear space with oracle access to Quant(�, �−1) (�)). Also observe the
following property of Quant(�) (�), which follows immediately from the deinition:

Fact 4.7.3.1. If for some � ∈ � ℓ0 and any� ∈ � ℓ0 it holds that � (�,�) ∈ {0, 1}, then for the same � and any� ∈

� ℓ0 it holds that Quant(�) (�) (�,�) = 1 if ∃�1∀�2∃�3...∀��′ such that � (�,�1 ...��−1� (�1...��′04�
′
)��+1...�ℓ0) = 1,

and Quant(�) (�) (�,�) = 0 otherwise.

Degree-reduction operator: For every ixed � ∈ � , let �� : � → {0, 1} be the indicator function of whether
the input equals �, and let �̄� : F→ F be the low-degree extension of �� , which is of degree at most |� | − 1 (i.e.,

�̄� (�) =
∏

ℎ∈�\{�}
�−ℎ
�−ℎ). Then, for any � ∈ [ℓ0], we deine

DegRed(�) (�) (�,�) =
︁
�∈�

�̄� (��) · � (�1 ...��−1���+1...�ℓ0 ,�) ,

and similarly for � ∈ [2ℓ0] we denote �
′
= � − ℓ0 and deine

DegRed(�) (�) (�,�) =
︁
�∈�

�̄� (��′) · � (�,�1 ...��′−1���′+1...�ℓ0) .

Similarly to the operator Quant(�) , note that the function DegRed(�) (�) can be evaluated at any input in linear

space with oracle access to � . Also, the deinition of the operator DegRed(�) implies that:

Fact 4.7.3.2. For � ∈ [2ℓ0], let � be the variable whose degree DegRed(�) reduces (i.e., � = �� if � ∈ [ℓ0] and

� = ��′ = ��−ℓ0 if � ∈ [2ℓ0]). Then, the individual degree of � in DegRed(�) (�) is |� | − 1, and the individual degree

of any other input variable to DegRed(�) (�) remains the same as in � . Moreover, for every (�,�) ∈ Fℓ0 × Fℓ0 , if the

input (�,�) assigns the variable � to a value in � , then DegRed(�) (�) (�,�) = � (�,�).

Composing the operators: We will be particularly interested in what happens when we irst apply the quan-
tiications operator to some variable � ∈ [ℓ0], and then apply the degree-reduction operator to all variables,
sequentially. A useful property of this operation is detailed in the following claim:

Claim 4.7.3.3. Let � : F2ℓ0 → F and � ∈ � ℓ0 such that for any � ∈ � ℓ0 it holds that � (�,�) ∈ {0, 1}.

For � ∈ [ℓ0], let �
′ : F2ℓ0 → F be the function that is obtained by irst applying Quant(�) to � , then apply-

ing DegRed(�) for each � = 1, ..., 2ℓ0. Then, for any � ′ ∈ � ℓ0 we have that �′ (�,� ′) = 1 if ∃�1∀�2∃�3...∀��′ :

� (�,� ′
1 ...�

′
�−1� (�1...��′)� ′

�+1...�
′
ℓ0
) = 1, and �′ (�,� ′) = 0 otherwise.

J. ACM

26 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Proof. Fix any � ′ ∈ � ℓ0 . By Fact 4.7.3.1, and relying on the hypothesis that for any � ∈ � ℓ0 we have that
� (�,�) ∈ {0, 1}, it follows that Quant(�) (�) (�,� ′) = 1 if ∃�1∀�2∃�3...∀��′ : � (�,� ′

1...�
′
�−1� (�1...��′)� ′

�+1...�
′
ℓ0
) =

1 and that Quant(�) (�) (�,� ′) = 0 otherwise. Now, let � (0)
= Quant(�) (�), and for every � ∈ [2ℓ0] recursively

deine � (�)
= DegRed(�) (� (�−1)). By the łmoreoverž part of Fact 4.7.3.2, and since (�,� ′) ∈ � ℓ0 ×� ℓ0 , for every

� ∈ [2ℓ0] we have that �
(�) (�,� ′) = � (�−1) (�,� ′), and hence �′ (�,� ′) = Quant(�) (�,� ′). □

Deining the collection of polynomials: Let us now deine the collection of ℓ̄0 = ℓ0 (2ℓ0 + 1) + 1 polynomials.

We irst deine ��,ℓ0 (2ℓ0+1)+1 (�,�) = �TQBFloc (�,�). Then, we recursively construct the collection in ℓ0 blocks
such that each block consists of 2ℓ0 + 1 polynomials. The base case will be block � = ℓ0, and we will decrease �
down to 1. Loosely speaking, in each block � ∈ [ℓ0], starting from the last polynomial in the previous block, we
irst apply a quantiication operator to the ��ℎ variable of the second input� , and then apply 2ℓ0 linearization
operators, one for each variable in the inputs (�,�). Speciically, for the ��ℎ block, we deine the irst polynomial
by ��,� (2ℓ0+1) (�,�) = Quant(�) (��,� (2ℓ0+1)+1) (�,�); and for each � = 1, ..., 2ℓ0, we deine ��,� (2ℓ0+1)− � (�,�) =

DegRed(�) (��,� (2ℓ0+1)− �+1) (�,�).
Note that the claimed Property (3) of the collection holds immediately from our deinition. To see that

Property (4) also holds, note that the irst part (regarding ��,ℓ̄0) holds by Claim 4.7.2; and for the łmoreoverž

part, recall (by the properties of the operators Quant(�) and DegRed(�) that were mentioned above) that each
polynomial ��,� in the collection can be computed in linear space when given access to the łpreviousž polynomial
��,�−1, and also that we can compute the łirstž polynomial ��,ℓ0 (2ℓ0+1)+1 in linear space (since this polynomial is

just �TQBFloc , and relying on Claim 4.7.2). Using a suitable composition lemma for space-bounded computation
(see, e.g., [19, Lem. 5.2]), we can compute any polynomial in the collection in space � (� · ℓ̄0).
We now prove Property (1), which asserts that all the polynomials in the collection are of degree at most

� (� · ℓ0 · 2
2�′

). We prove this by induction on the blocks, going from � = ℓ0 down to � = 1, while maintaining
the invariant that the łlastž polynomial in the previous block � + 1 (i.e., the polynomial ��,� (2ℓ0+1)+1) is of degree

at most � (� · 2�
′
). For the base case � = ℓ0 the invariant holds by our deinition that ��,ℓ0 (2ℓ0+1)+1 = �TQBFloc and

by Claim 4.7.2. Now, for every � = ℓ0, ..., 1, note that the irst polynomial ��,� (2ℓ0+1) in the block is of degree at

most 2�
′
· deg(��,� (ℓ0+1)+1) = � (� · 22�

′
) (i.e., the quantiications operator induces a degree blow-up of 2�

′
), and in

particular the individual degrees of all variables of ��,� (2ℓ0+1) are upper-bounded by this expression. Then, in the
subsequent 2ℓ0 polynomials in the block, we reduce the individual degrees of the variables (sequentially) until all
individual degrees are at most |� | − 1 < 2�

′
(this relies on Fact 4.7.3.2). Thus, the degree of the last polynomial in

the block (i.e., of ��,(�−1) (2ℓ0+1)+1) is at most 2ℓ0 · 2
�′

< � · 2�
′
, and the invariant is indeed maintained.

Finally, to see that Property (2) holds, ix any (�,�) ∈ � ℓ0 × � ℓ0 . Our goal is to show that ��,1 (�,�) = 1 if

� ∈ TQBFloc and ��,1 (�,�) = 0 otherwise (regardless of �). To do so, recall that ��,ℓ̄0 = �TQBFloc , and hence for

any� ′ ∈ � ℓ0 it holds that ��,ℓ̄0 (�,�
′) = 1 if (�,� ′) ∈ R-TQBFloc and ��,ℓ̄0 (�,�

′) = 0 otherwise. Note that the last

polynomial in block � = ℓ0 (i.e., the polynomial ��,ℓ0 (2ℓ0+1)−2ℓ0) is obtained by applying Quant(ℓ0) to ��,ℓ̄0 and then

applying DegRed(�) for each � = 1, ..., 2ℓ0. Using Claim 4.7.3.3, for any� ′ ∈ � ℓ0 , when this polynomial is given input
(�,� ′), it outputs the value 1 if ∃�1∀�2∃�3 ...∀��′ (�,� ′

1...�
′
ℓ0−1

� (�1 ...��′)) ∈ R-TQBFloc, and outputs 0 otherwise.

By repeatedly using Claim 4.7.3.3 for the last polynomial in each block � = ℓ0 − 1, ..., 1, we have that ��,1 (�,�) = 1

if ∃�
(1)
1 ∀�

(1)
2 ...∀�

(1)
�′ ...∃�

(ℓ0)
1 ...∀�

(ℓ0)
�′ : (�,� ′) ∈ R-TQBFloc, where � ′

= (� (�
(1)
1 ...�

(1)
�′), ..., � (�

(ℓ0)
1 ...�

(ℓ0)
�′)); and

��,1 (�,�) = 0 otherwise. In other words, we have that ��,1 (�,�) = 1 if � ∈ TQBFloc and ��,1 (�,�) = 0 otherwise,
as we wanted. □

Combining the polynomials into a Boolean function. Intuitively, the polynomials in our collection are already
downward self-reducible (where łdownwardž here means that ��,� is reducible to ��,�+1) and sample-aided worst-
case to average-case reducible (since the polynomials have low degree, and relying on Proposition B.1). Our goal

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 27

now is simply to łcombinež these polynomials into a single Boolean function � ws : {0, 1}∗ → {0, 1}∗ that will be
�-well-structured.

For every � ∈ N, we deine a corresponding interval of input lengths �� = [�, � + ℓ̄0 − 1], where � =

10�′ · ℓ0 + 11� · ℓ̄0 = � (� · ℓ̄0). Then, for every � ∈ {0, ..., ℓ̄0 − 1}, we deine � ws on input length � + � such
that it computes (a Boolean version of) ��,ℓ̄0−� . Speciically, �

ws : {0, 1}�+� → {0, 1}�+� considers only the irst

10�′ · ℓ0 = 2ℓ0 · log(|F|) = � (�) bits of its input, maps these bits to (�,�) ∈ F2ℓ0 using � , computes ��,ℓ̄0−� (�,�),

and outputs the bit-representation of ��,ℓ̄0−� (�,�) (using �−1), padded to the appropriate length � + � . On input
lengths that do not belong to any interval �� for � ∈ N, we deine � ws in some ixed trivial way (e.g., as the identity
function).
A straightforward calculation shows that the intervals {��}�∈N are disjoint, and thus � ws is well-deined.31

In addition, since the input length to � ws is � = � (� · ℓ̄0) and each polynomial in the collection is computable
in space � (� · ℓ̄0), it follows that �

ws is computable in linear space. To see that TQBF reduces to � ws, recall that
by Claim 4.7.1 we can reduce TQBF to TQBFloc in time � · (log�)� (for some universal constant � ∈ N); and note
that we can then further reduce TQBFloc to � ws by mapping any � ∈ {0, 1}� to an (� + ℓ̄0 − 1)-bit input of the
form (�,�, �), where� is an arbitrary string and � is padding. (This is since � ws on inputs of length � + ℓ̄0 − 1
essentially computes ��,1.) This reduction is computable in deterministic time � · log(�)�+2�+1.

We now want to show that � ws is downward self-reducible in time poly(1/�) and in� ((log�)2�) steps, where

� (�) = 2� /(log�)3� and � denotes the input length. To see this, irst note that given input length � ∈ N we can
ind in polynomial time an input length � such that � ∈ �� , if such � exists. If such � does not exist, then the
function is deined trivially on input length � and can be computed in polynomial time. Otherwise, let �0 ≤ �

be the smallest input length in �� (i.e., �0 = 10 ⌈�/ℓ0 (�)⌉ · ℓ0 (�) + 11� · ℓ̄0 (�)), and denote � = �0 + � , for some
� ∈ {0, ..., ℓ̄0 (�)−1}. Note that �

ws
�

corresponds to the polynomial ��,ℓ̄0 (�)−� , and �
ws
�−1 corresponds to the polynomial

��,ℓ̄0 (�)−(�−1) . By Claim 4.7.3, the former can be computed in time poly(2�
′
) = poly(2�/(log�)

�

) = poly(2� /(log�)3�)

with oracle access to the latter. Lastly, recall that |�� | = ℓ̄0 (�) < � (log�)2� and that � ws
�0

corresponds to ��,ℓ0 (�) ,

which can be computed in time poly(2�
′
); hence, there exists an input length �0 ≥ � −� ((log�)2�) such that

� ws
�0

can be computed in time poly(2�
′
) < poly(1/� (�0)).

To see that � ws is sample-aided worst-case to �-average-case reducible, irst note that computing � ws on any
input length � on which it is not trivially deined is equivalent (up to a polynomial factor in the runtime) to
computing a polynomial F2ℓ0 (�) → F of degree � = � (poly(�) · 22�

′
) in a ield of size � = |F| = 25�

′
, where

� < � /(log�)2� and �′ = ⌈�/ℓ0 (�)⌉.
32 We use Proposition B.1 with parameter � (log(|F2ℓ0 (�) |)) = �0 (�) < � (�),

and note that its hypothesis �0 (�) ≥ 10 ·
︁
�/|F| is satisied since we chose |F| = poly(1/�0 (�)) to be suiciently

large.

4.2 PRGs for uniform circuits with almost-exponential stretch

Let � (�) = 2−�/polylog(�) . The following proposition asserts that if there exists a function that is both �-well-
structured and łhardž for probabilistic algorithms that run in time 2�/polylog(�) , then there exists an i.o.-PRG for
uniform circuits with almost-exponential stretch. That is:

31This is the case since the largest input length in �� is 10 ⌈�/ℓ0 (�) ⌉ · ℓ0 (�) +11� · ℓ̄0 (�) + (ℓ̄0 (�) − 1) < 10�+10ℓ0 (�) + (11�+1) · ℓ̄0 (�) − 1 <

10� + 11(� + 1) · ℓ̄0 (�) − 1, whereas the smallest input length in ��+1 is 10 ⌈ (� + 1)/ℓ0 (� + 1) ⌉ · ℓ0 (� + 1) + 11(� + 1) · ℓ̄0 (� + 1) ≥

10� + 11(� + 1) ℓ̄0 (� + 1) + 10.
32The only potential issue here is that the Boolean function is actually a łpaddedž version of the function that corresponds to polynomial:

It is not immediate that if there exists an algorithm that computes the Boolean function correctly on � > 0 of the �-bit inputs, then there

exists an algorithm that computes the polynomial correctly on the same fraction � > 0 of the� = log(|F2ℓ0 |)-bit inputs. However, the latter

assertion holds in our case since we are interested in probabilistic algorithms.

J. ACM

28 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Proposition 4.8 (almost-exponential hardness of a well-structured function⇒ PRG for uniform

circuits with almost-exponential stretch). Assume that for some constant � ∈ N and for � (�) = 2−�/log(�)
�

there exists a �-well-structured function that can be computed in linear space but cannot be computed by probabilistic

algorithms that run in time 2� (�/log(�)�) . Then, for every � ∈ N and for � (�) = �loglog(�)
�

there exists a (1/�)-i.o.-PRG

for (�, log(�))-uniform circuits that has seed length �̃ (log(�)) and is computable in time �polyloglog(�) .

Proposition 4.8 follows as an immediate corollary of the following lemma. Loosely speaking, the lemma
asserts that for any �-well-structured function � ws, there exists a corresponding PRG with almost-exponential
stretch such that a uniform algorithm that distinguishes the output of the PRG from uniform yields a uniform
probabilistic algorithm that computes � ws. Moreover, the lemma provides a łpoint-wisež statement: For any
� ∈ N, a distinguisher on a small number (i.e., polyloglog(�)) of input lengths in a small interval around � yields

a uniform algorithm for � ws on input length �̃ (log(�)). We will later use this łpoint-wisež property of the lemma
to extend Proposition 4.8 to łalmost everywherež versions (see Propositions 4.11 and 4.12).
In the following statement we consider three algorithms: The pseudorandom generator� ; a potential distin-

guisher for the PRG, denoted �; and an algorithm � for the łhardž function � ws. Loosely speaking, the lemma
asserts that for any � ∈ N, if � is not pseudorandom for � on every input length in a small set of input lengths

surrounding �, then � computes � ws on input length ℓ (�) = �̃ (log(�)). We will irst ix a constant � that de-

termines the target running time of � (i.e., running time �� (ℓ) = 2ℓ/log(ℓ)
�

), and the other parameters (e.g., the
parameters of the well-structured function, and the seed length of the PRG) will depend on � . Speciically:

Lemma 4.9 (distinguishing a PRG based on � ws ⇒ computing � ws). Let � ∈ N be an arbitrary constant,

let � (�) = 2−�/log(�)
�

, and let � : N → N be a polynomial-time computable function such that � (�) ≤ �/2 for
all � ∈ N. Let � ws : {0, 1}∗ → {0, 1}∗ be a (�, �)-well-structured function that is computable in linear space, let

� (�) = �loglog(�)
�

for some constant � ∈ N, and let ℓ (�) =
⌈
log(�) · (loglog�)�

⌉
for a suiciently large constant

� ∈ N. Then, there exist two objects that satisfy the property detailed below:

(1) (Pseudorandom generator). An algorithm�0 that gets as input 1
� and a random seed of length ℓ� (�) = �̃ (ℓ (�)),

runs in time �polyloglog(�) , and outputs a string of length �.
(2) (Mapping of any input length to a small set of surrounding input lengths). A polynomial-time computable

mapping of any unary string 1� to a set �� ⊂
[
�, �2

]
of size |�� | = � (�̃ (log(�))), where � ∈ N is a suiciently

large constant that depends on � .

The property that the foregoing objects satisfy is the following. For every probabilistic time-� algorithm � that
uses log(�) bits of non-uniform advice there exists a corresponding probabilistic algorithm � that runs in time

�� (ℓ) = 2� (ℓ/log(ℓ)�) such that for any � ∈ N we have that: If for every� ∈ �� it holds that �0 (1
�, uℓ�0 (�)) is not

(1/� (�))-pseudorandom for �, then � computes � ws on strings of length ℓ (�).
Moreover, for any function str : N→ N such that str(�) ≤ �, the above property holds if we replace�0 by the al-

gorithm� that computes�0 and truncates the output to length str(�) (i.e.,� (1�, �) = �0 (1
�, �)1, ...,�0 (1

�, �)str(�)).

Observe that Proposition 4.8 indeed follows as a contra-positive of Lemma 4.9 (with str being the identity
function, which means that � = �0): If every probabilistic algorithm � that gets an ℓ-bit input and runs in time
2� (ℓ/log(ℓ)�) fails to compute � ws ininitely-often, then for every corresponding time-� algorithm � there exists an
ininite set of inputs on which � is pseudorandom for �.

Proof of Lemma 4.9. We prove the łmoreoverž part, and it implies the foregoing statement using the function
str(�) = �.

Construction: The generator�0. For any � , � , � , � , � , and � ws that satisfy our hypothesis, let � GL(ws) : {0, 1}∗ →
{0, 1} be deined as follows: For any (�, �) ∈ {0, 1}� × {0, 1}� we let � GL(ws) (�, �) =

∑
�∈[�] �

ws (�)� · �� , where the

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 29

arithmetic is over F2.
33 (We use the notation � GL(ws) since we will use the algorithm of Goldreich and Levin [21]

to transform a circuit that agrees with � GL(ws) on 1/2 + � of the inputs into a circuit that computes � ws on poly(�)
of the inputs.) We will need the following standard deinition:

Definition 4.9.1 (combinatorial designs). An (ℓ, �)-combinatorial design is a collection of sets �1, ..., �� ⊆ [�]
such that for every � ∈ [�] it holds that |�� | = ℓ , and for every distinct �, � ∈ [�] it holds that |�� ∩ � � | ≤ �. We call �
the number of sets, and � the universe size, and � the pairwise-intersection size.

Consider a combinatorial design that has � sets of size ℓ (�) =
⌈
log(�) · (loglog�)�

⌉
(where � is a suiciently

large constant that depends on �) with pairwise-intersection size � · log(�), where � > 0 is a suiciently small

constant, in a universe of size ℓ� (�) = �̃ (ℓ (�)) = �̃ (log(�)) (see, e.g., [58, Prob 3.2] for a polynomial-time
construction of such a design).
The algorithm �0 is the Nisan-Wigderson generator, instantiated with � GL(ws) as the hard function and with

the foregoing design. Since � ws is computable in linear space, the function � GL(ws) (�, �) is computable in time
�polyloglog(�) , and hence �0 is computable in time �polyloglog(�) and has seed length ℓ� (�).

Analysis: Transforming a distinguisher � into an algorithm � for � ws. Let us irst ix some parameters that will
be useful below. Denote ℓ ′ (�) = ℓ (�)/log(ℓ (�))�+1, and ix a suiciently small universal constant � > 0. We

assume that ℓ (�) is suiciently large such that � (�) = �loglog(�)
�

≤ 2� ·ℓ
′ (�) . Recall that, since � ws is downward

self-reducible in � steps, there exists an input length ℓ0 (�) ≥ ℓ (�) − � (ℓ (�)) such that � ws
ℓ0 (�)

is computable in time

poly(1/� (ℓ0 (�))). For �� = {ℓ0 (�), ..., ℓ (�)}, we deine �� = {ℓ−1 (2�) : � ∈ ��}; see Figure 1 for an illustration.

Note that indeed |�� | ≤ � (ℓ (�)) = � (�̃ (log(�))); and relying on the fact that � (ℓ (�)) ≤ ℓ (�)/2, we have that
�� ⊂ [�0, �1] where �0 = ℓ−1 (2ℓ0) ≥ ℓ−1 (ℓ (�)) = � and �1 = ℓ−1 (2ℓ (�)) < �2.

Let � be a probabilistic algorithm that gets input 1� and log(� (�)) bits of non-uniform advice and runs in
time � (�), ix a corresponding advice sequence, and ix a function str(�) ≤ �. Recall that we denote � (1�, �) =
�0 (1

�, �)1,...,str(�) .

We call � ∈ N distinguishable if for every� ∈ �� , when � is given input 1str(�) and the advice bits, with
probability at least 1/� (�) it outputs a circuit �str(�) : {0, 1}str(�) → {0, 1} that (1/� (�))-distinguishes

� (1�, uℓ� (�)) from uniform. We will construct a probabilistic algorithm � ckt that gets input 1ℓ (�) , runs in time

2� (ℓ (�)/log(ℓ (�))�) , and if � is distinguishable, with high probability � ckt outputs a circuit {0, 1}ℓ (�) → {0, 1} that
correctly computes � ws on ℓ (�)-bit inputs. (It follows that a probabilistic algorithm � can decide � ws on {0, 1}ℓ (�)

in time at most 2� (ℓ (�)/log(ℓ (�))�) , by running � ckt and evaluating the circuit at the given input.)

Construction and analysis of � ckt. Given as input 1ℓ (�) , the algorithm � ckt iteratively constructs circuits for � ws� ,

for increasing values of � ∈ �� = {ℓ0 (�), ..., ℓ (�)}. The construction for the base case � = ℓ0 (�) relies on the fact
that � ws

ℓ0 (�)
is computable in time poly(1/� (ℓ0 (�))) (i.e., the circuit for �

ws
ℓ0 (�)

simply implements this algorithm).

For subsequent iterations, the algorithm � ckt will rely on the following procedure:

Claim 4.9.2. There exists an algorithm � step that gets as input � ∈ �� \ {ℓ0 (�)} and a circuit ��−1 : {0, 1}
�−1 →

{0, 1}�−1 that computes � ws�−1, runs in time 2� (�/log(�)�) · poly(|��−1 |), and if � is distinguishable, then with probability

at least 1 − exp(−�/log(�)�+1) the algorithm � step outputs a circuit �� : {0, 1}
� → {0, 1}� of size 2� (�/log(�)�) that

computes � ws� .

Before proving Claim 4.9.2, let us see how is suices for the construction of � ckt. The algorithm � ckt uses
� step with inputs � = ℓ0 (�) + 1, ..., ℓ (�), and thus it runs in time 2� (ℓ (�)/log(ℓ (�))�) . (Note that the size of the output

33On odd input lengths the function � GL(ws) is deined by ignoring the last input bit; that is, � GL(ws) (�, ��) = � GL(ws) (�, �) , where |� | = |� |

and |� | = 1.

J. ACM

30 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

circuit �� in Claim 4.9.2 does not depend on the size of the input circuit ��−1.) The probability that it outputs a
circuit that correctly computes � ws

ℓ (�)
is at least 1 −

∑ℓ
�=ℓ ′ exp(�/log(�)

�+1) ≥ 2/3, assuming that ℓ is suiciently

large. Thus, it remains to prove Claim 4.9.2.

Preliminary step: Constructing a weak learner. Towards constructing � step and proving Claim 4.9.2, our irst step

is to construct an eicient algorithm � lrn that gets input 1ℓ (�) and oracle acess to � GL(ws) on ℓ (�)-bit inputs, uses
a small amount of non-uniform advice, and if� ∈ �� for a distinguishable �, then the algorithm prints a circuit
that computes � GL(ws) on noticeably more than half of the ℓ (�)-bit inputs. The construction and proof follow the
standard eicient uniform reconstruction argument for the Nisan-Wigderson PRG, from [33] (following [44]).

Claim 4.9.3. There exists a probabilistic algorithm � lrn that gets input 1ℓ (�) , and oracle access to � GL(ws) on

ℓ (�)-bit inputs, and 3� · ℓ ′ (�) bits of non-uniform advice, runs in time 2ℓ
′ (�) , and satisies the following. If� ∈ ��

for a distinguishable �, then with probability more than 2−ℓ
′ (�) the algorithm outputs a circuit {0, 1}ℓ (�) → {0, 1}

that computes � GL(ws) correctly on more than 1/2 + 2−ℓ
′ (�) of the inputs.

Proof. Let ℓ = ℓ (�), let ℓ ′ = ℓ ′ (�), and let�′
= str(�) ≤ �. Let us irst assume that�′

=� (i.e., str is the
identity function and �0 = �). In this case, a standard argument (based on [44] and irst noted in [33]) shows
that there exists a probabilistic polynomial time algorithm ���NW that satisies the following: When given as

input a circuit �� : {0, 1}� → {0, 1} that (1/�loglog(�)�)-distinguishes � (1�, uℓ� (�)) from uniform, and also

given oracle access to � GL(ws) on ℓ-bit inputs, with probability at least 1/� (�) the algorithm ���NW outputs a

circuit �ℓ : {0, 1}
ℓ → {0, 1} such that Pr�∈{0,1}ℓ [�ℓ (�) = � GL(ws) (�)] ≥ 1/2 + 1/� (�loglog(�)�).

Towards extending this claim to the setting of an arbitrary�′
= str(�) ≤ �, let us quickly recap the original

construction of ���NW: The algorithm randomly chooses an index � ∈ [�] (for a hybrid argument) and values for
all the bits in the seed of the NW generator outside the ��ℎ set (in the underlying design); then uses its oracle
to query poly(�) values for � GL(ws) (these are potential values for the output indices whose sets in the design
intersect with the ��ℎ set), and łhard-wiresž them into a circuit �ℓ that gets input � ∈ {0, 1}ℓ , simulates the
corresponding�-bit output of the PRG, and uses the distinguisher to decide if � ∈ � GL(ws) . Now, note that if the
output of the PRG is truncated to length�′

< �, the construction above works essentially the same if we choose
an initial index � ∈ [�′] instead of � ∈ [�], and if �ℓ completes � to an�′-bit output of the PRG instead of an
�-bit output. Indeed, referring to the underlying analysis, these changes only improve the guarantee on the
algorithm’s probability of success (we do not use the fact that the guarantee is better).

Thus, there is an algorithm���NW that gets as input 1� and a circuit��′ : {0, 1}�
′
→ {0, 1} that (1/�loglog(�)�)-

distinguishes � (1�, uℓ� (�)) from uniform, and oracle access to �
GL(ws)
ℓ , and with probability at least 1/� (�)

outputs a circuit �ℓ : {0, 1}
ℓ → {0, 1} such that Pr�∈{0,1}ℓ [�ℓ (�) = � GL(ws) (�)] ≥ 1/2 + 1/� (�loglog(�)�).

Now, let � be distinguishable, let� ∈ �� , let ℓ = ℓ (�), and let�′
= str(�). Our probabilistic algorithm � lrn

is given as input 1ℓ and non-uniform advice (�,�′,�) such that |� | = log(� (�)) = log(�) · loglog(�)� = � · ℓ ′;
note that, since�′ ≤ �, the total length of the advice is at most � · ℓ ′ + 2 log(�) < 2� · ℓ ′. The algorithm � lrn

simulates the algorithm � on input 1�
′
with the advice �, feeds the output of � as input for ���NW along with

1� , and outputs the circuit given by ���NW.

Our algorithm � lrn runs in time�� (loglog(�)�)
= 2ℓ

′
. With probability more than (1/�loglog(�)�), the algorithm

� outputs��′ : {0, 1}�
′
→ {0, 1} that (1/�loglog(�)�)-distinguishes� (1�, uℓ� (�)) from uniform, and conditioned

on this event, with probability at least 1/� (�) the algorithm � lrn outputs �ℓ : {0, 1}
ℓ → {0, 1} that correctly

computes � GL(ws) on 1/2 + 1/� (�loglog(�)�) > 1/2 + 2−ℓ
′
of the ℓ-bit inputs. □

Claim 4.9.3 implies that for any distinguishable �, when � lrn gets input 1� where � ∈ 2�� = {2� : � ∈ ��},
it succeeds (with probability ≥ 2−ℓ

′ (�)) in printing a circuit that approximates � GL(ws) on � -bit inputs. (This is

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 31

because, by the deinition of �� , any such input length is of the form ℓ (�) for� ∈ �� .) See Figure 1 for a pictorial
description of the sets �� , 2�� , and �� , and for a reminder about our assumptions at this point.

ℓ0 (�) ℓ (�)

��

2ℓ0 (�) 2ℓ (�)

2��

ℓ−1 (2ℓ0 (�)) ℓ−1 (2ℓ (�))

contains �� = ℓ−1 (2��)

Fig. 1. We want to compute � ws on inputs of length ℓ (�). We define a corresponding interval �� = {ℓ0 (�), ..., ℓ (�)} of input

lengths, where ℓ0 (�) ≥ ℓ (�) − � (ℓ (�)), in which we will use the downward self-reducibility of � ws. We assume that there is a

uniform distinguisher � for the PRG on all input lengths in �� = ℓ−1 (2��), in which case there exists a weak learner �lrn for

� GL(ws) on all input lengths in 2�� .

Proof of Claim 4.9.2. Let �′ = 2�/log(2�)�+1, and let � = |��−1 |. First note that the algorithm can compute � ws� in

time poly(1/� (�), �) (using the downward self-reducibility of � ws and the circuit ��−1) and also compute �
GL(ws)
2�

in time poly(1/� (�), �) (using the fact that � GL(ws) (�, �) =
∑

�∈[�] �
ws
� (�) � · � �). We will construct �� in a sequence

of steps:

1. Simulating the learner for �
GL(ws)
2� . We enumerate over all 23� ·�

′
possible advice strings for � lrn. For each

ixed advice string � ∈ {0, 1}3� ·�
′
, we simulate � lrn on input 12� with advice � for 2� (�′) times (using independent

randomness in each simulation), while answering its queries to �
GL(ws)
2� using ��−1.

Analysis: When � is the łgoodž advice, each simulation of � lrn is successful with probability at least 2−�
′
. Thus,

with probability at least 1− exp(−�′) we obtained a list of 2� (�′) circuits, at least one of which correctly computes

�
GL(ws)
2� on at least 1/2 + 2−�

′
of its inputs.

2. Weeding the list to ind a circuit for �
GL(ws)
2� . We enumerate over the list of 2� (�′) circuits. For each circuit,

we randomly sample 2� (�′) inputs, compute �
GL(ws)
2� at each of these inputs using ��−1, and compare the value of

�
GL(ws)
2� to the output of the candidate circuit. If the circuit agrees with �

GL(ws)
2� on at least 1/2 + 2−�

′
− 2−2�

′
of the

inputs in the sample, we denote this circuit by �
(1)
� and move on to Step 3; otherwise, we continue to the next

circuit in the list. If we enumerated over the entire list and did not ind a suitable circuit �
(1)
� , we abort.

Analysis: For each circuit, with probability at least 1 − 2−� (�′) over the sampled inputs, we correctly estimate

its agreement with �
GL(ws)
2� up to error 2−2�

′−1. Union-bounding over the 2� (�′) circuits, with probability at least

1 − 2−� (�′) , in this step we obtained a circuit �
(1)
� that has agreement at least 1/2 + 2−2�

′
with �

GL(ws)
2� .

3. Conversion to a probabilistic circuit that computes � ws� with success poly(�0). We use the algorithm of Goldreich

and Levin [21] to convert the deterministic circuit �
(1)
� into a probabilistic circuit �

(2)
� : {0, 1}� → {0, 1}� of size

2� (�′) such that Pr[�
(2)
� (�) = � ws� (�)] ≥ 2−� (�′) , where the probability is taken both over a random choice of

� ∈ {0, 1}� and over the internal randomness of �
(2)
� . Speciically, the circuit �

(2)
� gets input � ∈ {0, 1}� , and

simulates the algorithm from [19, Theorem 7.8] with parameter �0 = 2−2�
′
, while resolving the oracle queries of

the algorithm using the circuit�
(1)
� ; then, the circuit�

(2)
� outputs a random element from the list that is produced

by the algorithm from [19].

Analysis: Since E� [Pr� [�
(1)
� (�, �) = �

GL(ws)
2� (�, �)]] ≥ 1/2 + �0, it follows that for at least �0/2 of the inputs

� ∈ {0, 1}� it holds that Pr� [�
(1)
� (�, �) = �

GL(ws)
2� (�, �)] ≥ 1/2 + �0/2. For each such input � , with probability at

J. ACM

32 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

least 1/2 the algorithm of [21] outputs a list of size poly(1/�0) that contains �
ws
� (�), and thus the circuit �

(2)
�

outputs � ws� (�) with probability poly(�0).

4. Fixing randomness for the probabilistic circuit. For � = 2� (�′) attempts we choose a random string for �
(2)
� ,

hard-wire it into the circuit, and estimate the agreement between the resulting deterministic circuit and � ws� ,
with an additive error of �1 = poly(�0) and conidence 1 − 1/poly(�). (The estimation in each attempt is done
using random sampling of inputs, the downward self-reducibility of � ws� and the circuit ��−1, similarly to Step
2.) We proceed to the next step if in one of these attempts yields a deterministic circuit that (according to our
estimations) agrees with � ws� on at least 2�1 of the inputs.

Analysis: With probability at least 1 − exp(−�′) at least one choice of random string yields a deterministic circuit

that agrees with � ws� on at least 3�1 of the inputs, and with probability at least 1 − exp(−�′) all of our � estimates
are correct up to an additive error of �1. Thus, with probability at least 1 − exp(−�′) we proceed to the next step

with a deterministic circuit �
(3)
� of size 2� (�′) that agrees with � ws� on �1 = 2−� (�′)

= 2−� (�/log(�)�+1)
> � (�) of the

inputs.

5.Worst-case to�-average-case reduction for � ws� . Weuse the sample-aidedworst-case to�-average-case reduction
for � ws, generating random labeled samples (�, � ws� (�)) by using the downward self-reducibility of � ws and the
circuit ��−1 to compute � ws� (�).

Analysis: With probability at least 1 − � (�), the uniform reduction outputs a probabilistic circuit �
(4)
� of size

poly(1/� (�)) such that for every � ∈ {0, 1}� it holds that Pr� [�
(4)
� (�, �) = � ws� (�)] ≥ 2/3. 34

6. Fixing randomness for the inal circuit. Applying naive error-reduction to�
(4)
� , we obtain a circuit�

(5)
� of size

poly(1/� (�)) that correctly computes � ws� at any input with probability 1 − 2−� (�) . Then we uniformly choose

randomness for�
(5)
� and łhard-wirež the randomness into it, such that with probability at least 1 − 2−� we obtain

a deterministic circuit �� : {0, 1}
� → {0, 1} that computes � ws� correctly on all inputs.

Having proved Claim 4.9.2, this concludes the proof of Lemma 4.9.

In the last part of the proof of Lemma 4.9, after we converted a distinguisher for � GL(ws) into a weak learner for
� GL(ws) (i.e., after Claim 4.9.3), we used the existence of the weak learner for � GL(ws) on 2�� to obtain a circuit that
computes � ws on �� . This part of the proof immediately implies the following, weaker corollary. (The corollary is
weaker since it does not have any łpoint-wisež property, i.e. does not convert a learner on speciic input lengths
to a circuit for � ws on a corresponding input length.)

Corollary 4.10 (learning � GL(ws) =⇒ computing � ws). Let � ∈ N be an arbitrary constant, let � ws : {0, 1}∗ →
{0, 1}∗ be a �-well-structured function for � (�) = 2−�/log(�)

�

, and let � GL(ws) be deined as in the proof of Lemma 4.9.

Assume that for every ℓ ∈ N there exists a weak learner for � GL(ws) ; that is, an algorithm that gets input 1ℓ and

oracle access to �
GL(ws)
ℓ , runs in time �−1 (ℓ), and with probability more than � (ℓ) outputs a circuit over ℓ bits that

computes � GL(ws) correctly on more than 1/2 + � (ℓ) of the inputs. Then, there exists an algorithm that for every ℓ ,

when given input 1ℓ , runs in time 2� (ℓ/log(ℓ)�) and outputs an ℓ-bit circuit that computes � ws.

We now use the łpoint-wisež property of Lemma 4.9 to deduce two łalmost-alwaysž versions of Proposition 4.8.
Recall that in our construction of a well-structured function � ws, on some input lengths � ws is deined trivially, and

34In Deinition 4.3 the output circuit has oracle gates to a function that agrees with the target function on a � fraction of the inputs. Indeed,

we replace these oracle gates with copies of the circuit�
(3)
�

.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 33

thus it cannot be that � ws is hard almost-always.35 However, since TQBF can be reduced to � ws with a quasilinear
blow-up � : N → N, we can still deduce the following: If TQBF is łhardž almost-always, then for every � ∈ N
there exists �′ ≤ � (�) such that � ws is łhardž on input length �′ (i.e., this holds for the smallest �′ ≥ � of the form
� (�0) for �0 ∈ N).

In our irst łalmost-alwaysž result, the hypothesis is that a well-structured function is łhardž on a dense set of
input lengths as above, and the conclusion is that there exists an łalmost-everywherež HSG for uniform circuits.

Proposition 4.11 (łalmost everywherež hardness of � ws ⇒ łalmost everywherež derandomization of

RP łon averagež). Assume that for some constant � ∈ N and for � (�) = 2−�/log(�)
�

there exists a (�, polylog(�))-

well-structured function and � (�) = �̃ (�) such that for every probabilistic algorithm that runs in time 2�/log(�)
�

,
and every suiciently large � ∈ N, the algorithm fails to compute � ws on input length � = min{� (�0) ≥ � : �0 ∈ N}.

Then, for every � ∈ N and for � (�) = �loglog(�)
�

there exists a (1/�)-HSG for (�, log(�))-uniform circuits that is

computable in time �polyloglog(�) and has seed length �̃ (log(�)).

Proof. We instantiate Lemma 4.9 with the constant � , the function � ws, the parameter 2� instead of � (i.e.,

the parameter � in Lemma 4.9 is � (�) = �loglog(�)
2�
) and with str(�) = � (i.e., str is the identity function). Let

ℓ (�) =
⌈
�̃ (log(�))

⌉
be the quasilogarithmic function given by Lemma 4.9, let� = �0 be the corresponding PRG,

and let ℓ� (�) = �̃ (log(�)) be the seed length of � . From our hypothesis regarding the hardness of � ws, we can
deduce the following:

Corollary 4.11.1. For every� ∈ N there is a polynomial-time-enumerable set �� = ��polyloglog(�) ⊂ [�, �polyloglog(�)]
of size polyloglog(�) such that for every probabilistic algorithm �′ that runs in time �2 and uses 2 log(�) bits of

advice, if � ∈ N is suiciently large then there exists� ∈ �� such that � (1�, uℓ� (�)) is (1/�
2 (�))-pseudorandom

for �′.

Proof. For every � ∈ N, let ℓ (�) = min{� (ℓ0) ≥ ℓ (�) : ℓ0 ∈ N}, and let � = ℓ−1 (ℓ (�)) ∈ [�, �polyloglog(�)]. We

deine �� = �� , where �� is the set from Item (2) of Lemma 4.9 that corresponds to�. Note that �� ⊂ [�, �polyloglog(�)]

and that |�� | ≤ polyloglog(�).
Now, let�′ be a probabilistic algorithm as in our hypothesis, let � ′ be the corresponding probabilistic algorithm

from Lemma 4.9 that runs in time �� ′ (�) = 2�/log(�)
�

, and let � ∈ N be suiciently large. By Lemma 4.9, if there is

no� ∈ �� such that � (1�, uℓ� (�)) is (1/� (�))-pseudorandom for �′, then � ′ correctly computes � ws on input

length ℓ (�) = ℓ (�), which contradicts our hypothesis. □

The HSG, denoted � , gets input 1� , uniformly chooses� ∈ �� , computes� (1�, �) for a random � ∈ {0, 1}ℓ� (�) ,

and outputs the �-bit preix of � (1�, �). Note that the seed length that � requires is �̃ (log(�polyloglog(�))) +

log(|�� |) = �̃ (log(�)), and that � is computable in time at most �polyloglog(�) .
To prove that � is a (1/�)-HSG for (�, log(�))-uniform circuits, let � be a probabilistic algorithm that runs in

time � and uses log(�) bits of advice. Assume towards a contradiction that there exists an ininite set �� ⊆ N such
that for every � ∈ ��, with probability more than 1/� (�) the algorithm � outputs a circuit �� : {0, 1}� → {0, 1}
satisfying Pr� [�� (� (1�, �)) = 0] = 1 and Pr�∈{0,1}� [�� (�) = 1] > 1/� (�). We will construct an algorithm �′

that runs in time less than �2, uses log(�) + log(�) < 2 log(�) bits of advice, and for ininitely-many sets of the

form �� , for every� ∈ �� it holds that � (1�, uℓ� (�)) is not (1/� (�))-pseudorandom for �′. This contradicts
Corollary 4.11.1.
The algorithm �′ gets input 1� , and as advice it gets an integer of size at most�. Speciically, if� is in a set

�� for some � ∈ ��, then the advice will be set to �; and otherwise the advice is zero (which signals to �′ that

35Moreover, in every small interval of input lengths, there is an input length on which � ws can be solved in time poly(1/�) (without using an

oracle).

J. ACM

34 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

it can fail on input length�). For any� ∈ N such that the irst case holds, we know that �(1�) outputs, with
probability more than 1/� (�), a circuit�� : {0, 1}� → {0, 1} satisfying both Pr

�∈{0,1}�̃ (log(�)) [�� (� (1�, �)) = 0] = 1

and Pr�∈{0,1}� [�� (�) = 1] > 1/� (�). The algorithm �′ simulates � on input length �, and outputs a circuit
�� : {0, 1}� → {0, 1} such that �� computes �� on the �-bit preix of its input. By our hypothesis regarding
�� , when ixing the irst part of the seed of � to be the integer�, we have that Pr�′ [�� (� (1�,� ◦ �′)) = 0] =
Pr�′ [�� (� (1�, �′)) = 0] = 1, whereas Pr�∈{0,1}� [�� (�) = 1] > 1/� (�). It follows that �� distinguishes the
�-bit output of � from uniform with advantage 1/� (�) ≥ 1/� (�).

We also prove another łalmost-everywherež version of Proposition 4.8. Loosely speaking, under the same
hypothesis as in Proposition 4.11, we show thatBPP can be derandomized łon averagež using only a small (triple-
logarithmic) amount of advice. In contrast to the conclusion of Proposition 4.11, in the following proposition we
do not construct a PRG or HSG, but rather simulate every BPP algorithm by a corresponding deterministic
algorithm that uses a small amount of non-uniform advice.

Proposition 4.12 (łalmost everywherež hardness of � ws ⇒ łalmost everywherež derandomization

of BPP łon averagež with short advice). Assume that for some constant � ∈ N and for � (�) = 2−�/log(�)
�

there exists a (�, polylog(�))-well-structured function and � (�) = �̃ (�) such that for every probabilistic algorithm

that runs in time 2� (�/log(�)�) , and every suiciently large � ∈ N, the algorithm fails to compute � ws on input length
� = min{� (�0) ≥ � : �0 ∈ N}.

For � ∈ N and � (�) = �loglog(�)
�

, let � ∈ BPTIME[�] and let � be a probabilistic �-time algorithm. Then, there

exists a deterministic machine � that runs in time �polyloglog(�) and gets� (logloglog(�)) bits of non-uniform advice
such that for all suiciently large � ∈ N, the probability (over coin tosses of �) that � (1�) is an input � ∈ {0, 1}� for
which � (�) ≠ �(�) is at most 1/� (�).

Proof. Let us irst prove the claim assuming that � ∈ BPTIME[�] can be decided using only a number
of random coins that equals the input length; later on we show how to remove this assumption (by a padding
argument). For � as in our hypothesis for � as above, let � be a probabilistic �-time algorithm that decides
� and that for every input � ∈ {0, 1}∗ uses |� | random coins, and let � be a probabilistic �-time algorithm.
Consider the algorithm � that, on input 1� , simulates � on input 1� to obtain � ∈ {0, 1}� , and outputs a circuit
�� : {0, 1}� → {0, 1} that computes the decision of� at input � as a function of the random coins of� .

We instantiate Lemma 4.9 with the constant � , the function � ws, and the parameter � . Let ℓ = �̃ (log(�)) be the

quasilogarithmic function given by the lemma, let �0 be the PRG, and let ℓ� = �̃ (log(�)) be the seed length of
�0. We irst need a claim similar to Corollary 4.11.1, but this time also quantifying over the function str:

Corollary 4.12.1. For every� ∈ N there is a polynomial-time-enumerable set �� = ��polyloglog(�) ⊂ [�, �polyloglog(�)]
of size polyloglog(�) that satisies the following. For every str : N → N satisfying str(�) ≤ �, let �str be the

algorithm that on input 1� uses a random seed of length �̃ (log(�)), computes �0, which outputs an �-bit string, and
truncates the output to length str(�). Then, for every probabilistic algorithm�′ that runs in time � and uses log(�) bits

of advice, if � ∈ N is suiciently large then there exists� ∈ �� such that�str (1
�, uℓ� (�)) is (1/� (�))-pseudorandom

for �′.

Proof. For any � ∈ N we deine ℓ (�) and �� as in the proof of Corollary 4.11.1. For any str : N → N

satisfying str(�) ≤ �, let�str be the corresponding function. Now, let�
′ be any probabilistic algorithm as in our

hypothesis, let � ′ be the corresponding probabilistic algorithm from Lemma 4.9 that runs in time �� ′ (�) = 2�/log(�)
�

,

and let � ∈ N be suiciently large. By Lemma 4.9, if there is no� ∈ �� such that �str (1
�, uℓ� (�)) is (1/� (�))-

pseudorandom for �′, then � ′ correctly computes � ws on input length ℓ (�). This contradicts our hypothesis
regarding � ws. □

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 35

The machine � gets input � ∈ {0, 1}� and advice of length � (logloglog(�)), which is interpreted as an index

of an element� in the set �� . Then, for each � ∈ {0, 1}ℓ� (�) the algorithm computes the �-bit preix of �0 (1
�, �),

denoted�� = �0 (1
�, �)1,...,� , and outputs the majority value of {� (�,��) : � ∈ {0, 1}ℓ� (�) }. Note that the machine

� indeed runs in time�polyloglog(�)
= �polyloglog(�) .

Our goal now is to prove that for every suiciently large � ∈ N there exists advice� ∈ �� such that with
probability at least 1 − 1/� (�) over the coin tosses of � (which determine � ∈ {0, 1}� and �� : {0, 1}

� → {0, 1}) it
holds that ��� Pr

� ∈{0,1}�
[�� (�) = 1] − Pr

�
[�� (�0 (1

�, �)1,...,�) = 1]
��� < 1/� (�) , (4.2)

which is equivalent (for a ixed � ∈ {0, 1}�) to the following statement:��� Pr
� ∈{0,1}�

[� (�, �) = 1] − Pr
�
[� (�,��) = 1]

��� < 1/� (�) . (4.3)

Indeed, proving this would suice to prove our claim, since for every � ∈ {0, 1}� such that Eq. (4.3) holds we
have that � (�) = �(�).
To prove the claim above, assume towards a contradiction that there exists an ininite set of input lengths

�� ⊆ N such that for every � ∈ �� and every advice� ∈ �� , with probability more than 1/� (�) over � ← � (1�)

it holds that �� : {0, 1}� → {0, 1} violates Eq. (4.2). Let str : N → N be deined by str(�) = � if� ∈ �� for
some � ∈ ��, and str(�) =� otherwise.36 Then, our assumption implies that for ininitely-many input lengths

� ∈ ��, for every� ∈ �� it holds that �str (1
�, uℓ� (�)) is not (1/� (�))-pseudorandom for �. This contradicts

Corollary 4.12.1.
Finally, let us remove the assumption that � can be decided using a linear number of coins, by a padding

argument. For any � ∈ BPTIME[�], consider a padded version �pad = {(�, 1� (|� |)) : � ∈ �}, and note that
�pad can be decided in linear time using |� | coins on any input �. By the argument above, for every probabilistic
�-time algorithm � pad there exists an algorithm �pad that runs in time ��pad (�) =�polyloglog(�) such that for all
suiciently large� ∈ N it holds that Pr�←� pad (1�) [�

pad (�) ≠ �pad (�)] ≤ 1/� (�).

We deine the algorithm � in the natural way, i.e. � (�) = �pad (�, 1� (|� |)), and note that this algorithm runs in
time �polyloglog(�) . Assume towards a contradiction that there exists a �-time algorithm � and an ininite set of
input lengths �� ⊆ N such that for every � ∈ �� , with probability more than 1/� (�) it holds that � (�) ≠ �(�).
Consider the algorithm � pad that on input of the form 1�+� (�) runs � (1�) to obtain � ∈ {0, 1}� , and outputs (�, 1�)
(on inputs of another form � pad fails and halts), and let �� pad = {� + � (�) : � ∈ �� }. For any� ∈ �� pad we have
that

Pr
�←� pad (1�)

[�pad (�) ≠ �pad (�)] = Pr
�←� (1�)

[� (�) ≠ �(�)] > 1/� (�) > 1/� (�) ,

which yields a contradiction.

Remark 4.13 (a PRG that runs in qasilogarithmic space). The PRG constructed in Lemma 4.9 actually
works in quasilogarithmic space (since � ws is computable in linear space), except for one crucial part: The
construction of combinatorial designs. Combinatorial designs with parameters as in our proof actually can be
constructed in logarithmic space, but these combinatorial designs work only for values of ℓ that are of a speciic
form (since the constructions are algebraic).37 However, in our downward self-reducibility argument we need

36Note that str is well-deined, since we can assume without loss of generality that �� ∩ ��′ = ∅ for distinct �,�′ ∈ �� (i.e., we can assume

without loss of generality that � and �′ are suiciently far apart).
37This can be done using an idea from [29, Lemma 5.5] (attributed to Salil Vadhan), essentially łcomposingž Reed-Solomon codes over�� (�)

of degree �/polylog(�) with standard designs (a-la Nisan and Wigderson [44]; see [29, Lemma 2.2]) with set-size ℓ = polylog(�) .

J. ACM

36 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

such designs for every integer ℓ (such that we can assume the existence of distinguishers on the set �� = ℓ−1 (2��),
and hence of learners for � GL(ws) on 2��).

4.3 Proofs of Theorems 1.1 and 1.2

Let us now formally state Theorem 1.1 and prove it. The theorem follows immediately as a corollary of Lemma 4.7
and Proposition 4.8.

Theorem 4.14 (rETH ⇒ i.o.-PRG for uniform circuits). Assume that there exists � ≥ 1 such that TQBF ∉

BPTIME[2�/log(�)
�

]. Then, for every � ∈ N and for � (�) = �loglog(�)
�

there exists a (1/�)-i.o.-PRG for (�, log(�))-

uniform circuits that has seed length �̃ (log(�)) and is computable in time �polyloglog(�) .

Proof. Let� (�) = 2−�/log(�)
3�
for a suiciently large constant � ∈ N. By Lemma 4.7, there exists (�,� (log(�)6�))-

well-structured function � ws that is computable in linear space, and such that TQBF reduces to � ws in time
ql(�) = � · log(�)2�+� , where � ∈ N is a universal constant. Using our hypothesis, we deduce that � ws cannot be

computed in probabilistic time 2�/log(�)
3�−1

> 2� (�/log(�)3�) ; this is the case since otherwise, TQBF could have been
computed in probabilistic time

2ql(�)/log(ql(�))
3�−1

= 2�·log(�)
2�+� /log(ql(�))3�−1

< 2�/log(�)
�−�−1

, (4.4)

which is a contradiction if � ≥ � + � + 1. Our conclusion now follows from Proposition 4.8.

We also formally state Theorem 1.2 and prove it, as a corollary of Lemma 4.7 and of Propositions 4.11 and 4.12.

Theorem 4.15 (a.a.-rETH⇒ almost-always HSG for uniform circuits and almost-always łaverage-casež

derandomization of BPP). Assume that there exists � ≥ 1 such that TQBF ∉ i.o.-BPTIME[2�/log(�)
�

]. Then,

for every � ∈ N and for � (�) = �loglog(�)
�

:

(1) There exists a (1/�)-HSG for (�, log(�))-uniform circuits that is computable in time �polyloglog(�) and has seed

length �̃ (log(�)).
(2) For every � ∈ BPTIME[�] and probabilistic �-time algorithm � there exists a deterministic machine � that

runs in time �polyloglog(�) and gets � (logloglog(�)) bits of non-uniform advice such that for all suiciently
large � ∈ N the probability (over coin tosses of �) that � (1�) is an input � ∈ {0, 1}� for which � (�) ≠ �(�) is
at most 1/� (�).

Proof. Note that both Proposition 4.11 and Proposition 4.12 rely on the same hypothesis, and that their
respective conclusions correspond to Items (1) and (2) in our claim. Thus, it suices to prove that their hypothesis
holds.
To see this, as in the proof of Theorem 4.14, let � (�) = 2−�/log(�)

3�
for a suiciently large constant � ∈ N, and

let � ws be the (�, polylog(�))-well-structured function that is obtained from Lemma 4.7 with parameter � . Let
� ∈ N be the universal constant from Lemma 4.7, and let ql(�) = � · log(�)2�+� . Note that for every algorithm

that runs in time 2�/log(�)
3�−1

> 2� (�/log(�)3�) and every suiciently large �0 ∈ N, the algorithm fails to compute
� ws on input length � = ql(�0); this is because otherwise we could have computed TQBF on ininitely-often

�0’s in time 2�/log(�)
�−�−1

≤ 2�0/log(�0)
�

, where the calculation is as in Eq. (4.4). This implies the hypothesis of
Propositions 4.11 and 4.12.

5 NETH AND THE EQUIVALENCE OF DERANDOMIZATION AND CIRCUIT LOWER BOUNDS

In this section we prove Theorems 1.4, 1.5, and 1.6. Recall that these results show two-way implications between
the statement that derandomization and circuit lower bounds are equivalent, and a very weak variant of NETH.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 37

Speciically, the latter variant is that E does not have NTIME[�]-uniform circuits of small size; let us now
properly deine this notion:

Definition 5.1 (NTIME[�]-uniform circuits). For �,� : N → N, we say that a set � ⊆ {0, 1}∗ can be
decided byNTIME[�]-uniform circuits of size � if there exists a non-deterministic machine� that gets input 1� ,
runs in time � (�), and satisies the following:

(1) For every � ∈ N there exist non-deterministic choices such that� (1�) outputs a circuit � : {0, 1}� → {0, 1} of
size at most � (�) that decides �� = � ∩ {0, 1}� .

(2) For every � ∈ N and non-deterministic choices,� (1�) either outputs a circuit� : {0, 1}� → {0, 1} that decides
�� , or outputs ⊥.

When we simply say that � can be decided byNTIME[�]-uniform circuits (without specifying a size bound �),
we consider the trivial size bound � (�) = � (�).

The class ONTIME[�], which was deined in [17, 22] and stands for łoblivious NTIME[�]ž, consists of
all sets decidable by non-deterministic time-� machines such that for every input length � ∈ N there exists a
single witness�� that convinces the non-deterministic machine on all �-bit inputs in the set. As mentioned in
Section 2.2, the class of problems decidable by NTIME[�]-uniform circuits is a subclass of ONTIME[�],
which is in turn a subclass of NTIME[�] ∩ SIZE[�]. That is:

Fact 5.2. For� : N→ N, if� ⊆ {0, 1}∗ can be decided byNTIME[�]-uniform circuits, then� ∈ ONTIME[� ′] ⊆

(NTIME[� ′] ∩ SIZE[� ′]), for � ′ (�) = �̃ (� (�)).

Proof. Fix �, and let� be a non-deterministic machine that uniformly constructs circuits for � as in Deini-
tion 5.1. For every � ∈ N, let�� ∈ {0, 1}� (�) be non-deterministic choices such that� (1�,��) is a circuit for �� .
Then, � can be decided by a non-deterministic machine that gets input � ∈ {0, 1}� and witness�� , constructs a
circuit for �� using�� , and evaluates this circuit at input � . The same witness�� leads this non-deterministic
machine to accept all � ∈ �� , and the running time is quasilinear in the size of the circuit (i.e., in �).

Since we will be repeating some technical non-degeneracy conditions on functions throughout the section, let
us deine these conditions concisely at this point:

Definition 5.3 (size functions and time functions). We say that � : N → N is a size function if � is
time-computable, increasing, satisies � (�) = � (2�/�), and for every � ∈ N satisies � (�) > � and � (� + 1) ≤ 2� (�).
We say that� : N→ N is a time function if� is time-computable, increasing, and for every � ∈ N satisies� (�) > �.

We will irst prove, in Section 5.1, the key technical results that underlie the main theorems; these technical
results will be strengthenings of classical Karp-Lipton style theorems. Then, in Section 5.2, we will prove
Theorems 1.4, 1.5, and 1.6.

5.1 Strengthened Karp-Lipton style results

Recall that Babai et al. [3] proved that if EXP ⊂ P/poly then EXP = MA; if we also use an additional
hypothesis that ��BPP = ��P, then we can deduce the stronger conclusion EXP = NP. In the current section
we will prove two strengthenings of this result, which further strengthen the foregoing conclusion: Instead of
deducing that EXP = NP, we will deduce that EXP can be decided by NTIME[�]-uniform circuits of size
� , for small values of �, � .

We irst prove, in Section 5.1.1 a lemma that will be used in one of our proofs; we present this lemma and the
underlying question in a separate section since they might be of independent interest. The two strengthened
Karp-Lipton style results will be subsequently proved in Sections 5.1.2 and 5.1.3, respectively.

J. ACM

38 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

5.1.1 Solving (1, 1/3)-CAPP using many untrusted CAPP algorithms. Recall that in the problem (�, �)-CAPP, we
get as input a description of a circuit, and our goal is to distinguish between circuits with acceptance probability
at least � > 0 and circuits with acceptance probability at most � > 0; we also denote CAPP = (2/3, 1/3)-CAPP
(see Deinition 3.1). Assume that we want to solve CAPP on an input circuit� of description length �, and that we
are guaranteed that an algorithm � solves CAPP on some input length (unknown to us) in the interval [�, � (�)],
for some function � . This problem arises, for example, if we assume that ��BPP ⊂ i.o.��NP (which implies
that CAPP ∈ i.o.��NP), and want to derandomizeMA ininitely-often. (This is because when theMA veriier
gets an input of length�, the derandomization of the veriier corresponds to a CAPP problem on some input
length � = �� , but we are not guaranteed that the CAPP algorithm works on input length �.)38 How can we
solve this problem?
If we invoke the algorithm � on each input length in the interval [�, � (�)], while feeding it � as input each

time (i.e.,� is padded up to the appropriate length), then we obtain a variety of answers, and it is not clear a-priori
how we can distinguish the correct answer from possibly-misleading ones. In this section we show a solution
for this problem in the setting where we only need to solve CAPP with one-sided error, and when � solves a
problem in ��BPP that slightly generalizes CAPP. Intuitively, since we only need to solve (1, 1/3)-CAPP, it will
be possible to prove to us that � is not a YES instance (i.e., that � does not accept all of its inputs); and since
� solves a problem that slightly generalizes CAPP, we will be able to modify it to an algorithm that is able to
provide such a proof when � is not a YES instance. Details follow.
We irst deine the aforementioned variation of (�, �)-CAPP, denoted pCAPP (for łparametrized CAPPž), in

which � and � are speciied as part of the input.

Definition 5.4 (parametrized CAPP). In the promise problem pCAPP[�, ℓ], the input is a triplet (�, �, �),
where � is a Boolean circuit over � variables and of size � (�) and 1 > � > � > 0 are rational numbers speciied with
ℓ (�) bits. The YES instances are such that Pr� [� (�) = 1] ≥ � and the NO instances are such that Pr� [� (�) = 1] ≤ � .

Note that if ℓ (�) = � (log(� (�))), then pCAPP[�, ℓ] ∈ ��BPP. (This is since we can uniformly sample �−2

inputs for � , where � = � − � ≥ 1/poly(� (�)), and estimate Pr� [� (�) = 1] with accuracy (� − �)/2, with high
probability). We now show that solving (1, 1/3)-CAPP for circuits of size � (�) ininitely-often reduces to solving
pCAPP ininitely-often (i.e., on an arbitrary ininite set of input lengths).

Lemma 5.5 (solving CAPP with one-sided error on a fixed input length reduces to solving pCAPP on

an unknown łclosež input length). For any two size functions � (�) , � (�) : N→ N and time function� : N→ N,

assume that pCAPP[� (�) , ℓ] ∈ i.o.DTIME[�], where ℓ (�) = 4 · log(�). Then, there exists an algorithm���RP

that for ininitely-many values of � ∈ N, when given as input (1�,�) such that � a �-bit circuit of size at most

max
{
� (�) (�), � (�) (�)

}
, the algorithm���RP solves (1, 1/3)-CAPP on� in time poly(�) ·� ·�̃ (� (�)) ·� (�̃ (� (�) (�))).

Proof. Let ql(�) = �̃ (�) such that circuits of size � can be described by strings of length ql(�). For any � ∈ N,
we consider inputs of length � (�) (�) that describe �-bit circuits of size � (�) (�). Let �� = [2ql(� (�) (�)), 2ql(� (�) (�+
1)) − 1], and note that any suiciently large integer belongs to a unique interval �� . Let �

pCAPP be a time-�
algorithm that solves pCAPP[� (�) , ℓ] ininitely-often. We will use �pCAPP to construct the following search
algorithm:

Claim 5.5.1 (search-to-decision reduction that preserves the input length). There exists an algorithm

� that gets as input (1�,�,�), where � is a �-bit circuit of size at most max
{
� (�) (�), � (�) (�)

}
and� ∈ �� , runs in

time poly(�) · � ·� (�), and if�pCAPP correctly solves pCAPP[� (�) , ℓ] on input length� and Pr� [� (�) = 1] ≤ 1/3
then � (1�,�,�) ∈ �−1 (0).

38Also, in this setting the function � represents łhow far aheadž (beyond �) we are willing to look in our search for the łgoodž input length.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 39

Proof. In the following we will construct a set of�-bit inputs and run�pCAPP on each of those inputs. Since
all of our inputs will be of the form (�, �, �) where � and � can be speciied with 4 · log(�) bits, each input will
be of size less than 2ql(�� (�) (�)) ≤ �; we will therefore pad each input to be of length exactly�.

First we run�pCAPP on input (�, 1/2, 1/3), and if�pCAPP accepts then we output 0� . Otherwise, when�pCAPP

rejected, we have that Pr� [� (�) = 1] ≤ 1/2; in this case our goal will be to construct a string in�−1 (0), bit-by-bit.
Let ¬� be the circuit that computes � and negates the output, let �0 be the empty string, and for � ∈ [�], in
iteration � we act as follows:

(1) We start with a preix ��−1 ∈ {0, 1}�−1, and with the guarantee that the circuit ¬���−1 , which is obtained by
ixing the irst � − 1 input variables of ¬� to ��−1, satisies Pr� [¬���−1 (�) = 1] ≥ 1/2 − (� − 1) · �−2.

(2) We run�pCAPP at input (¬���−10, 1/2− (�−1) ·�−2, 1/2−� ·�−2). If�pCAPP accepts then we deine �� = ��−10,
and otherwise we deine �� = ��−11.

(3) To see that the guarantee on ¬��� is preserved for iteration � + 1, note that if �pCAPP accepted then
Pr� [¬��� (�) = 1] > 1/2 − � · �−2; and otherwise we have that Pr� [¬���−11 (�) = 0] ≤ 1/2 − (� − 1) · �−2,
which implies (by the guarantee on ¬���−1 from the beginning of the iteration) that Pr� [¬��� (�) = 1] ≥
1/2 − (� − 1) · �−2.

After the � iterations we have that Pr� [¬��� (�) = 1] > 0, and therefore �� ∈ (¬�−1) (1) = �−1 (0) and we output
�� . The running time of each iteration is poly(�) · � ·� (�). □

Our algorithm���RP runs � at inputs {(1�,�, �)}�∈�� , and evaluates � at the outputs of � ; if for some � ∈ ��
it holds that � (� (�, �)) = 0 then ���RP rejects, and otherwise ���RP accepts. The running time of ���RP is

poly(�) · � ·� (2ql(� (�) (� + 1))) · |�� | = poly(�) · �̃ (� (�) (�)) · � ·� (�̃ (� (�) (�))).
Now, ix � ∈ N such that for some � ∈ �� it holds that �pCAPP decides pCAPP[� (�) , ℓ] on inputs of

length �. To see that ���RP correctly solves (1, 1/3)-CAPP on an input circuit � over � bits of size at most
max

{
� (�) (�), � (�) (�)

}
, note that if� accepts all its inputs then���RP always accepts� ; and if� accepts at most

1/3 of its inputs then for the łgoodž� ∈ �� it holds that � (1�,�,�) ∈ �−1 (0), in which case���RP rejects.

5.1.2 A strengthened Karp-Lipton style result for the łlow-endž seting. To prove our irst strengthening of [3], let
� ∈ EXP, and note that by our assumption � ∈ P/poly. Consider an MA veriier � that gets input 1� , guesses
a circuit �� : {0, 1}

� → {0, 1} , and tries to decide if �� correctly computes �� = � ∩ {0, 1}� . The key observation
is that since this decision problem (of deciding whether or not a given �-bit circuit computes ��) is in EXP, we
can apply the original Karp-Lipton style result of [3] to it. The latter result implies that there exists an MA
veriier� that decides whether or not �� computes �� correctly. Our veriier � guesses �� and a witness for� ,
simulates� , and if� conirms that �� computes �� then � outputs �� .
We will derandomize the foregoingMA veriier in one of two ways. The irst relies on a hypothesis of the

form ��BPP ⊆ ��NSUBEXP, which immediately implies that MA ⊆ NSUBEXP. The second relies on a
hypothesis of the form ��BPP ⊂ i.o.��SUBEXP; in this case we derandomize the MA veriier ininitely-
often, relying on the fact that the MA veriier can be assumed to have perfect completeness [18] and on
Lemma 5.5 (which was presented in Section 5.1.1). Note that in both cases, the running time of the resulting
non-deterministic machine is sub-exponential, but the size of the output circuit�� is nevertheless still polynomial.

The following statement and proof generalize the above, using parametrized łcollapsež and derandomization
hypotheses. Speciically, if we assume that E ⊂ SIZE[�] and that ��BPP can be derandomized in time � , we
deduce that E has NTIME[� ′] uniform circuits of size � (�), where � ′ (�) ≈ � (� (� (�))).

Proposition 5.6 (a strengthened łlow-endž Karp-Lipton style result). There exist two constants �, � ′ > 1
such that for any size function � : N→ N and time function � : N→ N satisfying � (�) ≥ ��

′
the following holds.

Let � ′ (�) = �
(
�̄ (�))

)� (1)
where �̄ (�) = �̃ (� (�̃ (� (�)))).

J. ACM

40 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

(1) If DTIME[2�] ⊂ SIZE[�] and pCAPP[�� · � (�), 4 · log(�)] ∈ i.o.��DTIME[�], then any � ∈
DTIME[2�] can be decided on ininitely-many input lengths by NTIME[� ′]-uniform circuits of size
� (�).

(2) IfDTIME[2�] ⊂ SIZE[�] and (1, 1/3)-CAPP[�� ·� (�)] ∈ ��NTIME[�], then any� ∈ DTIME[2�]
can be decided (on all input lengths) by NTIME[� ′]-uniform circuits of size � (�).

Proof. We irst prove Item (1). Fix � ∈ DTIME[2�], and recall that by our hypothesis � ∈ SIZE[�]. We

deine a corresponding problem �-Ckts as the set of size-� circuits that decide �; that is, denoting by ql(�) = �̃ (�)
the description length of size-� circuits, on inputs of length � = � + ql(� (�)) we deine �-Ckts by

�-Ckts� = {(1�,�) : |� | = ql(� (�)) ∧ ∀� ∈ {0, 1}�,� (�) = �(�)} ,

and on inputs of length � that cannot be parsed as � = � + ql(� (�)) we deine �-Ckts trivially. Note that
�-Ckts ∈ DTIME[2�], since we can enumerate the 2� < 2� (�) inputs, and for each � ∈ {0, 1}� compute � (�)
and �(�) in time 2� + poly(|� |) < 2� (�) .

Given input 1� , we irst guess a circuit �
(�)
� of size � (�), in the hope that �

(�)
� decides �� ; note that a suit-

able circuit exists by our hypothesis. Now we consider the problem of deciding if � = (1�,�
(�)
�) ∈ �-Ckts,

where � ∈ {0, 1}�=�+ql(� (�)) . Since �-Ckts ∈ DTIME[2�], we can reduce �-Ckts to the problem �nice

from Proposition 3.12; that is, we compute in time poly(�) an input � ′ ∈ {0, 1}�
′
=� (�) for �nice such that

� ∈ �-Ckts ⇐⇒ � ′ ∈ �nice.
Now, let �̄ = ℓ (� ′) = � (�), where ℓ is the query length of the instance checker IC for �nice. We guess

another circuit, which is of size � (2�̄) and denoted��nice

�̄
: {0, 1}�̄ → {0, 1} , in the hope that��nice

�̄
decides �nice

�̄
;

again, a suitable circuit exists by our hypothesis.39 We then construct a circuit IC
��nice

�̄

� ′ : {0, 1}� (�̄) → {0, 1} that

computes the decision of IC at input � ′ and with oracle��nice

�̄
, as a function of the� (�̄) random coins of IC, and

maps the outputs {0,⊥} of IC to 0, and the output 1 of IC to 1.

Note that the circuit IC
��nice

�̄

� ′ is over � = � (�̄) input bits and of size � (�) (�)
def
== poly(�) · � (2�̄). Also,

measuring the size of IC
��nice

�̄

� ′ as a function of its number of input bits (i.e., of �), the size is upper-bounded

by � (�) (�)
def
== �� · � (�), where � ∈ N is a suiciently large universal constant (and we assume without loss of

generality that � ≥ 2�̄). By the properties of the instance checker, and using the fact that a suitable circuit ��nice

�̄

for �nice
�̄

exists, we have that:

(1) If�
(�)
� decides � then � ′ ∈ �nice, and hence for some guess of��nice

�̄
the circuit IC

��nice

�̄

� ′ will have acceptance

probability one.

(2) If �
(�)
� does not decide � then � ′ ∉ �nice, and hence for all guesses of ��nice

�̄
the circuit IC

��nice

�̄

� ′ accepts at

most 1/6 of its inputs.

Using our hypothesis about pCAPP and Lemma 5.5, there exists an algorithm ���RP that for ininitely-

many values of � ∈ N gets input (1�, IC
��nice

�̄

� ′) and solves (1, 1/3)-CAPP on IC
��nice

�̄

� ′ in time poly(�) · � · �̃ (� (�)) ·

39To see this more formally, let�pad =
{
(�, 1� (log(|�))) : � ∈ �nice

}
. Since�nice ∈ DTIME[�̃ (2�)], we have that�pad ∈ DTIME[2�].

Using our hypothesis, �pad on inputs of length � ′
= �̄ +� (log(�̄)) has circuits of size � (� ′) , and these circuits can be converted (by

hardwiring the last � ′ − �̄ input bits) to �̄ -bit circuits for �nice of size � (� ′) < � (2�̄) .

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 41

�
(
�̃ (� (�) (�)

)
. We run this algorithm on (1�, IC

��nice

�̄

� ′), and if it accepts (i.e., asserts that the acceptance probability

of IC
��nice

�̄

� ′ is larger than 1/3) then we output the circuit �
(�)
� ; otherwise we output ⊥.

Note that the size of the circuit that we output is � (�), and that our running time is at most

poly(�) · � · �̃ (� (�)) ·�
(
�̃ (� (�) (�)

)
= poly(�) · �̃ (� (�))2 ·�

(
�̃ (� (�̃ (� (�))))

)
≤ �

(
�̃ (� (�̃ (� (�))))

)� (1)
,

where the last inequality relied on the fact that � (�) ≥ ��
′
for a suiciently large constant � ′.

Let us now explain how to prove Item (2). We guess �
(�)
� and ��nice

�̄
and construct IC

��nice

�̄

� ′ as above. However,

instead of using Lemma 5.5, we run the hypothesized non-deterministic (1, 1/3)-CAPP[�� · � (�)] machine,

denoted ���RP , on input IC
��nice

�̄

� ′ (the advantage in the current setting being that, in contrast to the proof

of Item (1), the machine ���RP is guaranteed to work on all input lengths). When �
(�)
� decides �� there are

some non-deterministic choices that will cause ���RP to accept, whereas when �
(�)
� does not decide �� , all

non-deterministic choices will cause���RP to reject. Our running time is � (�̃ (� (�) (�))), which can be bounded

as above by �
(
�̃ (� (�̃ (� (�))))

)� (1)
.

Note that in the proof of Proposition 5.6 we did not use the fact that �nice is randomly self-reducible, but only
the facts that �nice is complete for E under linear-time reductions (such that all �-bit inputs are mapped to �′-bit
inputs, for �′ = � (�)) and that it has an instance checker with query length ℓ (�) = � (�).

5.1.3 A strengthened Karp-Lipton style result for the łhigh-endž seting. The result presented next asserts that if
E ∈ SIZE[�] and ��BPP can be derandomized in time � , then E has NTIME[� ′] uniform circuits (with a
trivial size bound of� ′ (�)), where� ′ ≈ � (� (�)). The main diference between this result and the result presented
in Section 5.1.3, other than the diferences in parameters, is that for this result we will need to assume that
��BPP can be derandomized deterministically, rather than only non-deterministically.

Let us briely describe the proof idea. We construct a circuit for an E-complete problem �nice that has an
instance checker and that is randomly self-reducible (see Section 3.5 for deinitions and details). We guess a

circuit ��nice for �nice, which exists by our łcollapsež hypothesis, and randomly check whether or not this circuit

łconvincesž the instance checker on almost all inputs; if it does, we instantiate the instance checker with ��nice

as an oracle, to obtain a łcorruptž version of �nice, denoted �̃. We then construct a probabilistic circuit �′ that

decides �nice, with high probability, using the random self-reducibility of �nice and oracle access to �̃.
Now, under the hypothesis ��BPP ⊆ ��DTIME[�], we can derandomize the two probabilistic steps in

the foregoing construction. Speciically, we derandomize the probabilistic veriication that the circuit ��nice

łconvincesž the instance checker on almost all inputs, and we also derandomize the probabilistic circuit itself (i.e.,
we actually output a deterministic circuit that constructs the probabilistic circuit �′ and applies a deterministic
CAPP algorithm to �′). Details follow.

Proposition 5.7 (a strengthened łhigh-endž Karp-Lipton style result). There exist two constants �, � ′ >
1 such that for any size function � : N → N and time function � : N → N the following holds. Assume that

DTIME[2�] ⊂ i.o.SIZE[�] and that CAPP[��
′
· � (�)] ∈ ��DTIME[�]. Then any � ∈ DTIME[2�] can

be decided on ininitely-many input lengths byNTIME[� ′]-uniform circuits, where � ′ (�) = �̃
(
�
(
�� · � (� · �)

))
.

J. ACM

42 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Note that the actual hypothesis of Proposition 5.7 is weaker than the hypothesis ��BPP ∈ ��DTIME[�],
since we only require an algorithm for CAPP for large circuits (i.e., for �-bit circuits of size poly(�) · � (�)).

Proof of Proposition 5.7. Fixing any � ∈ DTIME[2�], we prove that there exist NTIME[� ′]-uniform
circuits that solve � ininitely-often. In what follows, it will be important to distinguish between the non-
deterministic machine� , and the deterministic circuit � : {0, 1}� → {0, 1} that� constructs. The machine�
gets input 1� and constructs � as follows.

Step 1: Reduce � to �nice. As its irst step, the circuit� computes the linear-time reduction from � to the problem
�nice from Proposition 3.12; that is, � maps its input � ∈ {0, 1}� into � ′ ∈ {0, 1}�

′
, where �′ = � (�), such that

� ∈ � if and only if � ′ ∈ �nice.

Step 2: Guess-and-verify a circuit for �nice�̄ . Let IC be the instance checker for �nice and let �̄ = ℓ (�′) be the
length of queries that IC makes to its oracle on inputs of length �′.

Claim 5.7.1. For ininitely-many input lengths � there exists a circuit ��nice

�̄ : {0, 1}�̄ → {0, 1} of size � (4�̄) that

decides �nice�̄ .

Proof. For every � ∈ N let �� = [2� ·�, 2� · (� + 1) − 1], where � ∈ N is the constant such that �̄ = ℓ (�′) = � ·�.
Note that every suiciently large integer� ∈ N belongs to a unique interval �� (i.e., � = ⌊�/2�⌋). We deine
�′ to be the language that on input length� ∈ �� considers only its irst �̄ = � · � input bits and decides �nice�̄

on those input bits. Since �′ on input length� can be decided in time �̃ (2�) < 2� , by our hypothesis there
exist an ininite set M ⊆ N of input lengths such that for every� ∈ M there exist size-� (�) circuits for �′� .
For every such � ∈ �� , we hard-wire the last � − �̄ input bits (to be all-zeroes), and obtain a circuit of size
� (�) < � (4� · �) = � (4�̄) that decides �nice�̄ . □

Thus, if� is one of the ininitely-many input lengthsmentioned in Claim 5.7.1, then there exists��nice

�̄ : {0, 1}�̄ →

{0, 1} of size � (4�̄) that decides �nice�̄ . The machine� non-deterministically guesses such a circuit. We deine the

corruption of ��nice

�̄ by

Crpt(��nice

�̄) = Pr
�∈{0,1}�

′

[
Pr[IC�

�nice

�̄ (�) =⊥] > 1/6
]
,

where the internal probability is over the random choices of the machine IC. Let Dec be the machine underlying
the random self-reducibility of �nice, and let � ∈ N such that the number of queries that Dec makes on inputs of
length �′ is at most (�′)� . Consider the following promise problem Π:

• The input is guaranteed to be a circuit ��nice

�̄ : {0, 1}�̄ → {0, 1} of size � (4�̄).

• YES instances: The circuit ��nice

�̄ decides �nice�̄ , in which case Crpt(��nice

�̄) = 0.

• NO instances: It holds that Crpt(��nice

�̄) > (�′)−2� .

Now, note that Π ∈ �� -��RP, since a probabilistic algorithm that gets��nice

�̄ as input can decide whether��nice

�̄

is a YES instance or a NO instance by sampling �’s and estimating Pr
[
IC�

�nice

�̄ (�) =⊥
]
for each �. Moreover, using

the sampler from Theorem 3.5, there is a probabilistic ��RP algorithm for Π that on input��nice

�̄ : {0, 1}�̄ → {0, 1}
of size � (4�̄) uses� = � (�) random bits and runs in time poly(�) · � (4�̄). 40

40Speciically, the algorithm uses the sampler from Theorem 3.5 (with a suiciently large �,� > 1 and suiciently small � > 0) to sample

� = poly(�) strings �1, ..., �� ∈ {0, 1}�
′
, and then uses this sampler again to sample � strings �1, ..., �� ∈ {0, 1}�+� (log(�)) to be used as

randomness for the machine IC. The algorithm rejects��nice

�̄ if and only if Pr�∈ [�]

[
Pr� ∈ [�]

[
IC�

�nice

�̄ (�, � �) =⊥

]
≥ .01

]
≥ 1/2(�′)−2� ,

where IC�
�nice

�̄ (�, � �) denotes the simulation of IC�
�nice

�̄ (�) with the ixed randomness � � . This algorithm always accepts YES instances.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 43

Hence, the problem Π is reducible to an instance of (1, 1/3)-CAPP with a circuit �Π on � = � (�) input bits
and of size �� (1) · � (4�̄) = �� (1) · � (�). The machine � runs the hypothesized CAPP[��

′
· � (�)] algorithm on

�Π , which takes time �
(
�� (1) · � (� (�))

)
, and rejects if the CAPP algorithm rejects. Thus, from now on we can

assume that ��nice

�̄ is not a NO instance of Π, or in other words that Crpt(��nice

�̄) ≤ (�′)−2� .

Step 3: Transforming a non-corrupt ��nice

�̄ into a probabilistic circuit for �. Given that Crpt(��nice

�̄) ≤ (�′)−2� ,

the machine � now transforms ��nice into a probabilistic circuit �′ that computes �. In high-level, the circuit
�′ simulates the random self-reducibility algorithm Dec for �, while resolving the random queries of Dec by

instantiating the instance checker with oracle ��nice . Details follow.

Lemma 5.7.2 (non-corrupt ��nice

�̄ ⇒ probabilistic circuit for �nice). There exists an algorithm that gets

as input 1� and a circuit ��nice

�̄ : {0, 1}�̄ → {0, 1} of size � (4�̄) such that Crpt(��nice

�̄) ≤ (�′)−2� , and outputs a

probabilistic circuit �′ : {0, 1}�
′
→ {0, 1} of size poly(�) · � (4�̄) that uses � (�) random coins such that for every

� ′ ∈ {0, 1}�
′
, with high probability over choice of random coins � for �′ it holds that �′ (� ′, �) = �nice (� ′).

Proof. We consider an instantiation of IC on inputs of length �′ and with oracle to ��nice

�̄ , and as a irst step
we reduce the error of this algorithm. Let� = � (�) be the number of random bits that IC uses on inputs of

length �′. Consider the following probabilistic algorithm ÎC : {0, 1}�
′
→ {0, 1,⊥}. Given input � ∈ {0, 1}�

′
, the

algorithm ÎC uses the sampler from Theorem 3.5, instantiated for output length� and with accuracy 1/�, to

obtain a sample of � = poly(�) strings �1, ..., �� ∈ {0, 1}� ; then ÎC outputs the majority vote among the values

{�� }�∈[�] , where �� is the output of IC when instantiated on input � with oracle ��nice

�̄ and ixed randomness �� .

Note that ÎC uses� (�) random bits and runs in time poly(�) ·� (4�̄). We claim that there exists a set� ⊆ {0, 1}�
′

of density 1 − (�′)−2� such that for every � ∈ � , with probability at least 1 − exp(−�) over the randomness of ÎC

it holds that ÎC(�) = �nice (�). To see this, let � be the set of �’s such that Pr[IC�
�nice

�̄ (�) =⊥] ≤ 1/6, and recall

that the density of� is at least 1 − (�′)−2� . Note that for any � ∈ � we have that Pr[IC�
�nice

�̄ (�) = �nice(�) ≥ 2/3,

because Pr[IC�
�nice

�̄ (�) ≠ �nice (�)] ≤ Pr[IC�
�nice

�̄ (�) =⊥] + Pr[IC�
�nice

�̄ (�) = ¬��nice

�̄ (�)] ≤ 1/3. Thus, for any

ixed � ∈ � , the probability (over the random choices of ÎC) that the majority vote of the �� ’s will not equal
�nice (�) is at most exp(−�).
Now, consider a probabilistic circuit �′ : {0, 1}�

′
→ {0, 1} that chooses � (�) random bits to be used as

randomness for ÎC, and simulates the random self-reducibility algorithm Dec on its input � ′ ∈ {0, 1}�
′
, while

answering its queries using the algorithm ÎC with the ixed random bits chosen in advance. Note that the circuit
�′ is of size poly(�) · � (4�̄). We claim that for every � ′ ∈ {0, 1}�

′
, with high probability �′ (�) = �nice(� ′). To

see this, recall that Dec makes at most (�′)� queries such that each query is uniformly-distributed, and thus the
probability that all queries of Dec lie in the set� is at least 1 − (�′)−� . Conditioned on this event, for each ixed
query �, the probability over choice of randomness for ÎC that ÎC(�) does not output �nice(�) is at most exp(−�).
Hence, by another union-bound, with high probability all the queries of Dec are answered correctly, in which
case �′ (� ′) = �nice (� ′). □

Now, assume that��nice

�̄ is a NO instance, and let us call � ∈ {0, 1}�
′
is bad if Pr

[
IC�

�nice

�̄ (�) =⊥

]
≥ 1/6. By the properties of the sampler,

with high probability over the choice of �1, ..., �� , the fraction of bad �’s in our sample is at least 1/2(�′)−2� ; and for any (ixed) bad �, the

probability that Pr� ∈ [�]

[
IC�

�nice

�̄ (�, � �) =⊥

]
< .01 is exp(−�) . Hence, ��nice

�̄ will be rejected with high probability. The bound on the

algorithm’s running time follows from standard quasilinear-time algorithms for the Circuit Eval problem (see, e.g., [38, Thm 3.1]) and since

�̃ (� (4�̄)) < poly(�) · � (2�̄) .

J. ACM

44 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Step 4: Derandomizing �′. The non-deterministic machine guessed-and-veriied a circuit ��nice

�̄ : {0, 1}�̄ →

{0, 1} such that Crpt(��nice

�̄) ≤ (�′)−2� , and transformed it (using the algorithm from Proposition 5.7.2) into a
probabilistic circuit �′. The machine� then constructs the inal circuit � , which gets input � ∈ {0, 1}� and acts
as follows:

(1) Computes the reduction from � to �nice to obtain � ′ ∈ {0, 1}�
′
.

(2) Hard-wires � ′ into�′ to obtain a description of a circuit�′
� ′ : {0, 1}� (�) → {0, 1} such that�′

� ′ (�) = �′ (� ′, �).

(3) Runs the hypothesized CAPP[��
′
· � (�)] algorithm on �′

� and outputs its decision.

Note that�′
� is a circuit with � = � (�) input bits and of size poly(�) · � (4�̄) = �� (1) · � (�), and therefore for an

appropriate choice of constant � ′, the CAPP[��
′
· � (�)] algorithm distinguishes between the case that �′ accepts

� ′ with high probability and the case that �′ rejects � ′ with high probability. Thus, for every � ∈ {0, 1}� it holds
that � (�) = �(�). Finally, both the size of the circuit � and the running time of our non-deterministic machine

are bounded by �̃
(
�
(
(�� (1) · � (� (�))

))
.

5.2 Proof of Theorems 1.4, 1.5, and 1.6

We now prove the main theorems from Section 1.3. We will irst prove Theorem 1.4, which refers to the łlow-endž
parameter setting: Subexponential-time derandomization of ��BPP and lower bounds for polynomial-sized
circuits against EXP.

Theorem 5.8 (Theorem 1.4, restated). Assume that there exists � > 0 such that DTIME[2�] cannot be

decided by NTIME[2�
�

]-uniform circuits of an arbitrarily large polynomial size, even ininitely-often. Then,

denoting ��SUBEXP = ∩�>0��DTIME[2�
�

], we have that

∪�pCAPP[�
� , 4 · log(�)] ∈ i.o.��SUBEXP ⇐⇒ EXP ⊄ P/poly .

Proof. Let us irst prove the irst statement. The ł⇐=ž direction follows from [3], relying on the fact that
∪�pCAPP[�

� , 4 · log(�)] ∈ ��BPP. For the ł=⇒ž direction, assume that for every � ∈ N and every � > 0 it holds
that pCAPP[�� , 4 · log(�)] ∈ i.o.��DTIME[2�

�

]. Assuming towards a contradiction that EXP ⊂ P/poly, we
have that DTIME[2�] ⊂ SIZE[��] for some � ∈ N. We use Item (1) of Proposition 5.6 with parameters
� (�) = �� and � (�) = 2�

�

, where � > 0 is suiciently small. We deduce that DTIME[2�] can be decided
ininitely-often by NTIME[� ′]-uniform circuits of size �� , where

� ′ (�) ≤ � (�̃ (� (�̃ (� (�)))))� (1)
< � (��� (1))� (1)

= 2�
� ·�� (1)

,

which contradicts our hypothesis if � is suiciently small.

We now prove Theorem 5.9, which refers to a łhigh-endž parameter setting (i.e., faster derandomization and
lower bounds for larger circuits). We will in fact show that, conditioned on the hypothesis that E cannot be
decided by NTIME[2Ω (�)]-uniform circuits, even a weaker derandomization hypothesis is already equivalent
to circuit lower bounds. For example, instead of assuming that ��BPP = ��P, we will only need to assume that
CAPP for �-bit circuits of size 2Ω (�) can be solved deterministically in time 2� ·� , for some small constant � > 0. 41

Theorem 5.9 (Theorem 1.5, restated). Assume that there exists � > 0 such that E cannot be decided by

NTIME[2� ·�]-uniform circuits even ininitely-often. Then:

41This is reminiscent of the recent results of Murray and Williams [43], who showed that solving CAPP for �-bit circuits of size 2Ω (�) in time

2.99·� suices to deduce circuit lower bounds. Note that the foregoing CAPP problem can be solved in deterministic polynomial time, since

the input length is 2Ω (�) (i.e., this CAPP problem lies in ��BPTIME[�̃ (�)] ∩ ��P).

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 45

(1) There exists a universal constant � > 1 such that

∃� > 0 : CAPP[2� ·�] ∈ ��DTIME[� (�/�)/�)] ⇐⇒ ∃� > 0 : E ⊄ i.o.SIZE[2� ·�] .

(2) For every ixed constant � > 1 it holds that

∃� > 1 : CAPP[2�
1/�

] ∈ ��DTIME[2� · (log�)
�

] ⇐⇒ ∃� > 0 : E ⊄ i.o.SIZE[2� ·�
1/�

] .

Proof. We irst prove Item (1). The ł⇐=ž direction follows from [34] (or, alternatively, from the more general
Corollary 3.3). Speciically, the hypothesized circuit lower bound implies that ��BPP = ��P, and in particular

that CAPP ∈ ��DTIME[��
′
] for some �′ ∈ N. The conclusion then holds for � <

�
� ·�′ . For the ł=⇒ž direction,

let �, � ′ ∈ N be as in Proposition 5.7, and let � = 2� . Assume that for some � > 0 it holds that CAPP[� ′] ∈

��DTIME[�], where � (�) = � (�/�)/�) , and � (�) = 2� ·�/��
′
, and � ′ (�) = ��

′
· � (�) = 2� ·� . Assuming towards a

contradiction that E ⊂ i.o.SIZE[�], Proposition 5.7 implies thatDTIME[2�] can be decided ininitely-often

by NTIME[� ′]-uniform circuits, where � ′ (�) = �̃
(
� (�� · � (� · �))

)
< 2� ·� ; this is a contradiction.

The proof of Item (2) is similar. The ł⇐=ž follows from Corollary 3.3, instantiated with � (�) = 2� ·�
1/�
, to deduce

that CAPP ∈ ��DTIME[�] for � (�) = 2Δ·�
−1 (�Δ)

= 2(Δ/�)
� · (log�)� . For the ł=⇒ž direction, let � < (�/��)1/�

be suiciently small, let � (�) = 2� ·�
1/�
/��

′
, let � ′ (�) = ��

′
· � (�) = 2�

1/�
, and let � (�) = 2� · (log�)

�

. We use

Proposition 5.7 as above, and rely on the fact that � ′ (�) = �̃
(
� (�� · � (� · �))

)
< 2� ·� .

Next, we prove Theorem 1.6, which asserts that if non-deterministic derandomization implies lower bounds
against EXP, then EXP does not have NP-uniform circuits. We will actually prove a stronger result: First,
we will use a weaker hypothesis than in Theorem 1.6, namely that ��BPP ⊆ ��NP implies circuit lower
bounds against EXP; and secondly, we will deduce the stronger conclusion that EXP ⊈ (NP ∩ P/poly).
(This conclusion is stronger because the class of problems decidable by NP-uniform circuits is a subclass of
NP ∩ P/poly.)

Theorem 5.10 (Theorem 1.6, restated). Assume that there exists� > 0 such thatE does not haveNTIME[2�
�

]-
uniform circuits of an arbitrarily large polynomial size. Then,

��BPP ⊂ ��NSUBEXP =⇒ EXP ⊄ P/poly , (5.1)

where ��NSUBEXP = ∩�>0��NTIME[2�
�

]. In the other direction, if Eq. (5.1) holds,42 then EXP ⊈ (NP ∩
P/poly), and in particular EXP does not have NP-uniform circuits.

Proof. The proof of the irst statement is similar to the proof of Theorem 5.8. We assume that EXP ⊂ P/poly,
and use Item (2) of Proposition 5.6 with parameters � (�) = �� and � (�) = 2�

�

, where � > 0 is suiciently small;
we deduce that any � ∈ E can be decided on all input lengths byNTIME[� ′]-uniform circuits of size �� , where

� ′ (�) < 2� (�3� ·�)
< 2�

�

, which is a contradiction (the last inequality relied on � > 0 being suiciently small).
To prove the łin the other directionž statement, irst recall that ��EXP ⊆ �� (NP ∩ P/poly) ⇐⇒ EXP ⊆

(NP∩P/poly), because every exponential-timemachine that solves a promise problem also induces a language.43

Now, assume towards a contradiction that ��EXP ⊆ �� (NP ∩ P/poly). Since ��BPP ⊆ ��EXP, we have
that ��BPP ⊆ �� (NP ∩ P/poly). By the hypothesized conditional statement, it follows that EXP ⊄ P/poly, a
contradiction.

42In fact, for this statement it suices to assume that ��BPP ⊆ ��NP =⇒ EXP ⊄ P/poly. However, since we will show a result with

tighter relations between the parameters below (see Theorem 5.11), in the current statement we ignore this issue for simplicity.
43 In more detail, the ł=⇒ž direction is trivial, so we prove the ł⇐=ž direction. For every Π ∈ �� EXP, let � be an exponential-time

machine that solves Π, and let �� be the set of inputs that� accepts. Since �� ∈ EXP, there exists an NP-machine that decides �� and

a polynomial-sized circuit family that decides �� , and the foregoing machine and circuit family also solve Π.

J. ACM

46 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

As mentioned in the introduction, by optimizing the parameters we can show tighter two-way implications
between the statement łderandomization and lower bounds are equivalentž and the statement łE does not have
NTIME[�]-uniform circuitsž. Towards proving this result, we deine the following class of growth functions,
which lie łin betweenž quasipolynomial functions and sub-exponential functions. For every two constants
�, � ∈ N, we denote by e(�,�) : N → N the function that applies � logarithms to its input, raises the obtained
expression to the power � , and then takes � exponentiations of this expression. For example, e(1,�) (�) = 2(log�)

�

and e(2,�) (�) ∈ 22
loglog(�)�

. Note that e(�+1,�) grows asymptotically faster than e(�,�
′) for any constants �, �′, and

that e(�,�) is smaller than any sub-exponential function. Then, we have that:

Theorem 5.11 (Theorem 1.6, a tighter version). For any constant � ∈ N we have that:

∃� > 0 : DTIME[2�] does not have NTIME[�]-uniform circuits, for � = 2e
(�,�)

(5.2)ww�
��BPP ⊆ ∩�>0��NTIME[2e

(�,�)

] =⇒ DTIME[2�] ⊄ ∪�0∈NSIZE[e(�,�0)] (5.3)ww�
∀�0 ∈ N,DTIME[2�] ⊄ (NTIME[�] ∩ SIZE[�]), for � (�) = e(�,�0) (5.4)

that is, statement (5.2) implies statement (5.3), which in turn implies statement (5.4).

We stress that the gap between the values of � in statements (5.2) and (5.4) is substantial, but nevertheless
much smaller than an exponential gap. This is since in statement (5.2) the hypothesis is for � that is exponential
in e(�,�) where � > 0 is an arbitrarily small constant, whereas in statement (5.4) the conclusion is for � = e(�,�0)

where �0 is an arbitrarily large constant. For example, for � = 1 this is the diference between quasipolynomial

functions and functions of the form 22
(log�)�

≪ 2�
�

.

Proof of Theorem 5.11. To see that statement (5.2) implies statement (5.3), irst observe that for any two
constants �, �′ ∈ N it holds that (e(�,�))−1 (�) = e(�,1/�) (�) and that e(�,�) (e(�,�

′) (�)) = e(�,��
′) (�). Now, assuming

that ��BPP ⊆ ∩���NTIME[2e
(�,�)

] and thatDTIME[2�] ⊂ ∪�0SIZE[e(�,�0)], we will show that Eq. (5.2)

does not hold. To do so we use Item (2) of Proposition 5.6 with � (�) = e(�,�0) and with � (�) = 2e
(�,�)

(�) for
a suiciently small � > 0, and rely on the fact that for some � ∈ N it holds that � ′ (�) < � (� (� (�)�)�)� <

� (e(�,2�
2 ·�0) (�))� = 2e

(�,2��3 ·�0) (�) .
To see that statement (5.3) implies statement (5.4), assume towards a contradiction that for some �0 ∈ N

it holds that ��DTIME[2�] ⊆ �� (NTIME[�] ∩ SIZE[�]), where � (�) = e(�,�0) (�). Hence, CAPP ∈

DTIME[�̃ (2�)] ⊆ �� (NTIME[� (�̃ (�))] ∩ SIZE[� (�̃ (�))]), and it follows that

��BPP ⊆ ∪�∈N��NTIME[� (��)]

⊆ ∪�∈N��NTIME
[
e(�,�)

]
⊆ ∩�>0��NTIME

[
2e

(�,�)
]
.

By our hypothesis (i.e., by Eq. (5.3)) it follows that DTIME[2�] ⊄ ∪�0∈NSIZE
[
e(�,�0)

]
, which is a contradic-

tion. Finally, to deduce the statement (i.e. bridge the gap between ��DTIME[2�] and DTIME[2�]), we use
the same argument as in Footnote 43.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 47

6 NOT-RETH AND CIRCUIT LOWER BOUNDS FROM RANDOMIZED ALGORITHMS

In this section we prove Theorem 1.7. We irst show the desired BPE lower bounds follow from a weak learning
algorithm for general circuits of quasi-linear size, and then show such an algorithm follows from the 2�/polylog(�) -
time randomized CircuitSAT algorithm for roughly quadratic-size circuits.

We irst generalize the deinition of weak learning algorithms, so that the algorithm is now required to learn
any possible small oracle circuits.

Definition 6.1 (weak learner for general circuits). For � : N → N and � : N → R, we say that a
randomized oracle machine � is a �-weak learner for �-size circuits, if the following holds.

• On input 1� , � is given oracle access to an oracle � : {0, 1}� → {0, 1}, and runs in time �−1 (�).
• If SIZE(�) ≤ � (�), then with probability at least � , � outputs a circuit � on � input bits with size ≤ � (�)
such that � computes � correctly on at least a 1/2 + � fraction of inputs.44

Next, we need the following standard diagonalization argument.

Proposition 6.2 (diagonalization against circuits in Σ4). Let � = 2−�/polylog(�) , �ckt be a constant, and � ws

be the �-well-structured function guaranteed by Lemma 4.7, there is a language �diag which is � · polylog(�)-time

reducible to � ws, and �diag ∉ SIZE[� · (log�)�ckt].

Proof. Let � = � · (log�)�ckt and �′ = � · log�. By standard arguments, there exists an �′-size circuit on � bits
which cannot be computed by �-size circuits.

Consider the following Σ4 algorithm:

• Given an input � ∈ {0, 1}� , we guess a circuit� of size �′ on � input bits, and reject immediately if� (�) = 0.
Then we check the following two conditions and accept if and only if both of them are satisied.

• (A): For all circuits � on � input bits with size ≤ � , there exists an input � ∈ {0, 1}� such that � (�) ≠ � (�).
That is, � cannot be computed by any circuit with size ≤ � .

• (B): For all circuits � on � input bits with size �′ such that the description of � is lexicographically smaller
than that of � , there exists a circuit � with size ≤ � such that for all � ∈ {0, 1}� , � (�) = � (�). That is, � is
the lexicographically irst �′-size circuit which cannot be computed by �-size circuits.

Clearly, the above algorithm can be formulated as an � · polylog(�)-size Σ4��� instance, and therefore also
an � · polylog(�)-size TQBF instance (which can be further reduced to � ws in � · polylog(�) time). Moreover, it
is easy to see that it computes the truth-table of the lexicographically irst �′-size circuit on � input bits which
cannot be computed by any circuit with size ≤ � .
Therefore, we can set �diag to be the language computed by the above algorithm.

Remark 6.3. We remark that the standard Σ3� construction of a truth-table hard for �-size circuits actually

takes �̃ (�2) time: in which one irst existentially guesses an �′-length (where �′ = � · polylog(�)) truth-table �, then
enumerates all possible �-size circuits � and all �′-length truth-tables �′ such that �′ < � (lexicographically), and
checks there exists an input � such that� (�) ≠ �(�), and an �-size circuit�′ computing �′. In the last step, checking

�′ computing �′ requires evaluating �′ on �′ many inputs, which takes �̃ (�2) time.

Now we are ready to show that weak learning algorithms imply non-trivial circuit lower bounds for BPE.

Theorem 6.4 (weak learning algorithms imply BPE lower bounds). For any constant �ckt > 0, there is

another constant �learn = �learn(�ckt), such that letting �learn = 2−�/(log�)
�learn , if there is a �learn-weak learner for

� · (log�)�ckt -size circuits, then BPTIME[2�] ⊄ SIZE[� · (log�)�ckt].
44In Section 3.1 we deined SIZE as referring to languages, whereas here we apply this notation to a ixed �-bit function. The meaning of

SIZE(�) here is the size of the smallest circuit computing� .

J. ACM

48 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Proof. Let � = 2−�/(log�)
�� where �� is a large enough constant depending on �ckt. Let �

ws be the �-well-
structured function guaranteed by Lemma 4.7.
Recall that � ws ∈ SPACE[� (�)]. Hence, the Boolean function � GL(ws) , which is deined as in the proof of

Lemma 4.9, is computable in SPACE[� (�)] as well.
We can safely assume � GL(ws) ∈ SIZE[� · (log�)�ckt] as otherwise the theorem follows immediately. Then,

by our assumption, it follows that there is a �learn-weak learner for �
GL(ws)
� . Applying Corollary 4.10 and setting

�learn = �� , it follows that �
ws can be computed by randomized ��� (�)

def
== 2�/(log�)

�learn−1 .
Let �diag be the language guaranteed by Proposition 6.2 such that �diag ∉ SIZE[� · (log�)�ckt], and � = � (�ckt)

be a constant such that �diag is � · (log�)� -time reducible to � ws. We can then compute �
diag
� in randomized

��� (� · (log�)�) = 2� (�) time, by setting �learn to be large enough. Therefore, it follows that BPTIME[2�] ⊄
SIZE[� · (log�)�ckt].

6.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds

We now prove Theorem 1.7, which asserts that randomized algorithms that solve CircuitSAT in time 2�/polylog(�)

imply circuit lower bounds against BPE. As explained in Section 2.3, we do so by showing that the foregoing
algorithms for CircuitSAT imply the weak learner for quasi-linear size circuits, which enables us to apply
Theorem 6.4.

Reminder of Theorem 1.7. For any constant �ckt ∈ N there exists a constant �sat ∈ N such that the following holds.

If CircuitSAT for circuits over � variables and of size �2 · (log�)�sat can be solved in probabilistic time 2�/(log�)
�sat

,

then BPTIME[2�] ⊄ SIZE[� · (log�)�ckt].

Proof. Let � = � (�) = � · (log�)�ckt . Let �learn and �learn be as in Theorem 6.4 such that a �learn-weak learner
for �-size circuits implies that BPE ⊄ SIZE[�]. In the following we construct such a weak learner � with the
assumed CircuitSAT algorithm. In fact, we are going to construct a stronger learner such that:

• If SIZE(�) ≤ � (�), then with probability at least 2/3, � outputs a circuit � on � input bits with size
≤ � (�) such that � computes � correctly on at least a 0.99 fraction of inputs.

Let �sat = �sat (�ckt) be a constant to be speciied later. The learner � irst draws � = � · (log�)�ckt+2 uniform
random samples �1, �2, . . . , �� from {0, 1}� , and asks � to get �� = � (��) for all � ∈ [�]. Note that � operates
incorrectly if and only if SIZE(�) ≤ � (�) and it outputs a circuit � of size ≤ � (�) such that Pr�∈{0,1}� [� (�) =
� (�)] < 0.99.

We say that a circuit � is bad if it has size ≤ � (�) and Pr�∈{0,1}� [� (�) = � (�)] < 0.99. For a ixed bad circuit

� , by a Chernof bound, with probability at least 1 − 2−Ω (�) , we have � (��) ≠ �� for some � . Since there are at
most �� (�) bad circuits, with probability at least 1 − �� (�) · 2−Ω (�) ≥ 1 − 2−Ω (�)+� (�) ·log�

= 1 − 2−Ω (�) (the last
equality follows as � = � · (log�)�ckt+2), it follows that for every bad circuit � there exists an index � such that
� (��) ≠ �� . In the following we condition on such a good event.
By repeating the CircuitSAT algorithm � (�) times and taking the majority of the outputs, we can assume

without loss of generality that the CircuitSAT algorithm has an error probability of at most 2−� . Now, we
use the randomized CircuitSAT algorithm to construct a circuit � of size ≤ � (�) such that � (��) = �� for all � ,
bit-by-bit (this can be accomplished with the well-known search-to-decision reduction for SAT) with probability
at least 0.99. Note that in each iteration, the length of the input to the CircuitSAT algorithm is the length of the
description of a circuit of size � (�), and hence at most �′ (�) = � (� · (log�)�ckt+1). Setting �sat large enough, it
follows that � runs in randomized (�learn(�))

−1 time.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 49

AssumingSIZE(�) ≤ � (�), such circuits exist, andwe can ind onewith probability at least 0.99. Conditioning
on the good event, this circuit cannot be bad, and therefore it must agree with � on at least a 0.99 fraction of
inputs. Putting everything together, when SIZE(�) ≤ � (�), the algorithm � outputs a circuit � such that
Pr�∈{0,1}� [� (�) = � (�)] ≥ 0.99 with probability at least 0.99 − 2−Ω (�) ≥ 2/3, which completes the proof.

6.2 Randomized Σ2-SAT[�] algorithms imply BPE circuit lower bounds

One shortcoming of Theorem 1.7 is that the hypothesized algorithm needs to decide the satisiability of an �-bit

circuit of size �̃ (�2), rather than the satisiability of circuits (or of 3-SAT formulas) of linear size.45 To address this
shortcoming, we now prove a diferent version of Theorem 1.7, which asserts that randomized algorithms that
solve Σ2-SAT for formulas of linear size in time 2�/polylog(�) imply circuit lower bounds against BPE.

Theorem 6.5 (randomized Σ2-SAT algorithms imply circuit lower bounds against BPE). For any
constant �ckt > 0, there is another constant �sat = �sat (�ckt) such that if Σ2-SAT with � variables and � clauses can

be decided in randomized 2�/(log�)
�sat

time, then BPTIME[2�] ⊄ SIZE[� · (log�)�ckt].

Proof. Let TQBFloc be the function from Claim 4.7.1, and recall that TQBFloc ∈ SPACE[� (�)]. Therefore,
we can safely assume TQBFloc ∈ SIZE[� (�)], for � (�) = � · (log�)�ckt .

Now we describe a randomized algorithm computing a circuit for TQBFloc on inputs of length �. First, it
computes the trivial circuit of size-� (1) for TQBFloc1. Now, suppose we have an � (�)-size circuit �� computing
TQBFloc� where� < �, we wish to ind an � (� + 1)-size circuit for TQBFloc�+1.

By the downward self-reducibility of TQBFloc, we can obtain directly an� (� (�))-size circuit � for TQBFloc�+1.
Our goal is to utilizing the circuit � and our fast Σ2-SAT algorithm to compute an � (� + 1)-size circuit for
TQBFloc�+1. Consider the following Σ2-SAT question: given a preix � , is there an � (� + 1) circuit � whose
description starts with � , such that for all � ∈ {0, 1}�+1 we have � (�) = � (�). This can be formulated by a
Σ2-SAT instance of � · polylog(�) size. By ixing the description bit by bit, we can obtain an � (� + 1)-size circuit
for TQBFloc�+1. The success probability can be boosted to 1 − 2−2� by repeating each call to the Σ2-SAT algorithm
a polynomial number of times and taking the majority.

Let �diag be the language guaranteed by Proposition 6.2, and � be a constant such that �diag is � · (log�)� -time

reducible to TQBFloc. By setting �sat large enough, we can compute TQBFloc�· (log�)� (and therefore also �
diag
�) in

2� (�) time, Therefore, it follows that BPTIME[2�] ⊄ SIZE[� · (log�)�ckt].

Finally, we now use a łwin-winž argument to deduce, unconditionally, that either we have an average-case
derandomization ofBPP, orBPE is łhardž for circuits of quasilinear size (or both statements hold). An appealing
interpretation of this result is as a Karp-Lipton-style theorem: If BPE has circuits of quasilinear size, then BPP
can be derandomized in average-case.

Corollary 6.6 (a łwin-winž result for average-case derandomization of BPP and circuit lower

bounds against BPE). At least one of the following statements is true:

(1) For every constant � ∈ N it holds that BPTIME[2�] ⊄ SIZE[� · (log�)�].

(2) For every constant � ∈ N and for � (�) = �loglog(�)
�

there exists a (1/�)-i.o.-PRG for (�, log(�))-uniform circuits

that has seed length �̃ (log(�)) and is computable in time �polyloglog(�) .

45Since we are interested in algorithms that run in time 2�/polylog(�) for a suiciently large polylogarithmic function, there is no signiicant

diference for us between circuits and 3-SAT formulas of linear (or quasilinear) size. This is since any circuit can be transformed to a formula

with only a polylogarithmic overhead, using an eicient Cook-Levin reduction; and since we can łabsorbž polylogarithmic overheads by

assuming that the polylogarithmic function in the running time 2�/polylog(�) is suiciently large.

J. ACM

50 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

Proof. If for every � ′ ∈ N it holds that Σ2-SAT for �-bit formulas with � (�) clauses can be decided by

probabilistic algorithms that run in time 2�/(log�)
�′

, then by Theorem 6.5 we have that Item (1) holds. Otherwise,
for some � ′ ∈ N it holds that Σ2-SAT for �-bit formulas with � (�) clauses cannot be decided by probabilistic

algorithms that run in time 2�/(log�)
�′

. In particular, since solving satisiability of a given �-bit Σ2 formula with

� (�) clauses can be reduced in linear time to solving TQBF, we have that TQBF ∉ BPTIME[2�/(log�)
�′+1

]. In
this case, Item (2) follows from Theorem 4.14.

We note that to prove Corollary 6.6 we do not have to use Theorem 6.5. An alternative proof relies on the
fact that the Σ4 formula from the proof of Proposition 6.2 can be constructed in polynomial time. In particular,
if TQBF can be decided in probabilistic time 2�/polylog(�) for an arbitrarily large polylogarithmic function, then
for every �ckt we can construct the corresponding Σ4 formula from Proposition 6.2 in polynomial time, and
decide its satisiability in probabilistic time 2� (�) , which implies that �diag ∈ BPE; Item (1) of Corollary 6.6 then
follows. Otherwise, we have that TQBF cannot be solved in probabilistic time 2�/polylog(�) for some polylogarithmic
function; then we can invoke Theorem 4.14 to deduce Item (2) of Corollary 6.6.

ACKNOWLEDGMENTS

We are grateful to Igor Oliveira for pointing us to the results in [46, Sec. 5], which serve as a basis for the proof of
Theorem 1.7. We thank Oded Goldreich, who provided feedback throughout the research process and detailed
comments on the manuscript, both of which helped improve the work. We also thank Ryan Williams for a helpful
discussion, for asking us whether a result as in Theorem 1.7 can be proved, and for feedback on the manuscript.
Finally, we thank an anonymous reviewer for pointing out a bug in the initial proof of Theorem 1.6, which we
ixed.
The work was initiated in the 2018 Complexity Workshop in Oberwolfach; the authors are grateful to the

Mathematisches Forschungsinstitut Oberwolfach and to the organizers of the workshop for the productive and
lovely work environment. Lijie Chen is supported by NSF CCF-1741615, NSF CCF-2127597, a Google Faculty
Research Award, an IBM Fellowship, and a Miller Research Fellowship. Part of this work was done while Lijie
Chen was at MIT. Ron Rothblum is supported in part by a Milgrom family grant, by the Israeli Science Foundation
(Grant No. 1262/18), the Technion Hiroshi Fujiwara cyber center and by the European Union (ERC, FASTPROOF,
101041208). Views and opinions expressed are however those of the author(s) only and do not necessarily relect
those of the European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them. Roei Tell is supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
819702), and by the National Science Foundation under grant number CCF-1445755 and under grant number
CCF-1900460. Part of this work was done while Roei Tell was at the Weizmann Institute of Science and at MIT.
Eylon Yogev is supported by an Alon Young Faculty Fellowship, by the Israel Science Foundation (Grant No.
2893/22), and by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Minister’s Oice.

REFERENCES

[1] Leonard Adleman. 1978. Two theorems on random polynomial time. In Proc. 19th Annual IEEE Symposium on Foundations of Computer

Science (FOCS). 75ś83.

[2] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: A modern approach. Cambridge University Press, Cambridge.

[3] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. 1993. BPP has subexponential time simulations unless EXPTIME has

publishable proofs. Computational Complexity 3, 4 (1993), 307ś318.

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. 2013. On the concrete eiciency of probabilistically-checkable

proofs. In Proc. 45th Annual ACM Symposium on Theory of Computing (STOC). 585ś594.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 51

[5] Charles H. Bennett and John Gill. 1981. Relative to a random oracle �, P� ≠ NP
�
≠ co − NP

� with probability 1. SIAM Journal of

Computing 10, 1 (1981), 96ś113.

[6] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. 1999. Hardness and hierarchy theorems for probabilistic quasi-polynomial time. In Proc.

31st Annual ACM Symposium on Theory of Computing (STOC)). 726ś735.

[7] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. 2016. Nondeterministic

extensions of the strong exponential time hypothesis and consequences for non-reducibility. In Proc. 7th Conference on Innovations in

Theoretical Computer Science (ITCS). 261ś270.

[8] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. 2018. Fine-grained derandomization: from problem-centric to resource-

centric complexity. In Proc. 45th International Colloquium on Automata, Languages and Programming (ICALP). Art. No. 27, 16.

[9] Lijie Chen. 2019. Non-deterministic Quasi-Polynomial Time is Average-case Hard for ACC Circuits. In Proc. 60th Annual IEEE Symposium

on Foundations of Computer Science (FOCS).

[10] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. 2019. Relations and Equivalences Between Circuit Lower Bounds

and Karp-Lipton Theorems. In Proc. 34th Annual IEEE Conference on Computational Complexity (CCC). 30:1ś30:21.

[11] Lijie Chen and Hanlin Ren. 2020. Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization. In Proc. 52th Annual

ACM Symposium on Theory of Computing (STOC).

[12] Lijie Chen, Ron D. Rothblum, and Roei Tell. 2022. Unstructured Hardness to Average-Case Randomness. In Proc. 63rd Annual IEEE

Symposium on Foundations of Computer Science (FOCS).

[13] Lijie Chen and Roei Tell. 2021. Hardness vs randomness, revised: uniform, non-black-box, and instance-wise. In Proc. 62nd Annual IEEE

Symposium on Foundations of Computer Science (FOCS). 125ś136.

[14] Lijie Chen and R. RyanWilliams. 2019. Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity.

In Proc. 34th Annual IEEE Conference on Computational Complexity (CCC). 19:1ś19:43.

[15] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. 2014. Exponential time complexity of the permanent

and the Tutte polynomial. ACM Transactions on Algorithms 10, 4 (2014), Art. 21, 32.

[16] Lance Fortnow and Adam R. Klivans. 2009. Eicient learning algorithms yield circuit lower bounds. Journal of Computer and System

Sciences 75, 1 (2009), 27ś36.

[17] Lance Fortnow, Rahul Santhanam, and Ryan Williams. 2009. Fixed-polynomial size circuit bounds. In Proc. 24th Annual IEEE Conference

on Computational Complexity (CCC). 19ś26.

[18] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. 1989. On Completeness and Soundness in Interactive

Proof Systems. Advances in Computing Research 5 (1989), 429ś442.

[19] Oded Goldreich. 2008. Computational Complexity: A Conceptual Perspective. Cambridge University Press, New York, NY, USA.

[20] Oded Goldreich. 2011. In a World of P=BPP. In Studies in Complexity and Cryptography. Miscellanea on the Interplay Randomness and

Computation. 191ś232.

[21] Oded Goldreich and Leonid A. Levin. 1989. A Hard-core Predicate for All One-way Functions. In Proc. 21st Annual ACM Symposium on

Theory of Computing (STOC). 25ś32.

[22] Oded Goldreich and Or Meir. 2015. Input-oblivious proof systems and a uniform complexity perspective on P/poly. ACM Transactions

on Computation Theory 7, 4 (2015), Art. 16, 13.

[23] Oded Goldreich and Guy N. Rothblum. 2017. Worst-case to Average-case reductions for subclasses of P. Electronic Colloquium on

Computational Complexity: ECCC 26 (2017), 130.

[24] Yuri Gurevich and Saharon Shelah. 1989. Nearly linear time. In Logic at Botik, Symposium on Logical Foundations of Computer Science.

108ś118.

[25] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. 2009. Unbalanced expanders and randomness extractors from Parvaresh-

Vardy codes. Journal of the ACM 56, 4 (2009), Art. 20, 34.

[26] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. 2003. Uniform hardness versus randomness tradeofs for Arthur-Merlin games.

Computational Complexity 12, 3-4 (2003), 85ś130.

[27] Dan Gutfreund and Salil Vadhan. 2008. Limitations of hardness vs. randomness under uniform reductions. In Proc. 12th International

Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM). 469ś482.

[28] Ryan C. Harkins and John M. Hitchcock. 2013. Exact learning algorithms, betting games, and circuit lower bounds. ACM Transactions

on Computation Theory 5, 4 (2013), Art. 18, 11.

[29] Tzvika Hartman and Ran Raz. 2003. On the distribution of the number of roots of polynomials and explicit weak designs. Random

Structures & Algorithms 23, 3 (2003), 235ś263.

[30] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of an easy witness: exponential time vs. probabilistic

polynomial time. Journal of Computer and System Sciences 65, 4 (2002), 672ś694.

[31] Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of �-SAT. Journal of Computer and System Sciences 62, 2 (2001),

367ś375.

J. ACM

52 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

[32] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity? Journal of

Computer and System Sciences 63, 4 (2001), 512ś530.

[33] R. Impagliazzo and A. Wigderson. 1998. Randomness vs. Time: De-Randomization Under a Uniform Assumption. In Proc. 39th Annual

IEEE Symposium on Foundations of Computer Science (FOCS). 734ś.

[34] Russell Impagliazzo and Avi Wigderson. 1999. P = BPP if E requires exponential circuits: derandomizing the XOR lemma. In Proc. 29th

Annual ACM Symposium on Theory of Computing (STOC). 220ś229.

[35] Valentine Kabanets. 2001. Easiness assumptions and hardness tests: trading time for zero error. Vol. 63. 236ś252.

[36] R. Kannan. 1982. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control 55, 1-3 (1982), 40ś56.

[37] Adam Klivans, Pravesh Kothari, and Igor Oliveira. 2013. Constructing Hard Functions Using Learning Algorithms. In Proc. 28th Annual

IEEE Conference on Computational Complexity (CCC). 86ś97.

[38] Richard J. Lipton and Ryan Williams. 2013. Amplifying circuit lower bounds against polynomial time, with applications. Computational

Complexity 22, 2 (2013), 311ś343.

[39] Yanyi Liu and Rafael Pass. 2022. Characterizing Derandomization Through Fine-Grained Hardness of Levin-Kolmogorov Complexity. In

Proc. 37th Annual IEEE Conference on Computational Complexity (CCC).

[40] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2011. Lower bounds based on the exponential time hypothesis. Bulletin of the

European Association for Theoretical Computer Science (EATCS) 105 (2011), 41ś71.

[41] Chi-Jen Lu. 2001. Derandomizing Arthur-Merlin games under uniform assumptions. Computational Complexity 10, 3 (2001), 247ś259.

[42] Carsten Lund, Lance Fortnow, Howard Karlof, and Noam Nisan. 1992. Algebraic methods for interactive proof systems. Journal of the

Association for Computing Machinery 39, 4 (1992), 859ś868.

[43] Cody Murray and Ryan Williams. 2018. Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP

and NQP. In Proc. 50th Annual ACM Symposium on Theory of Computing (STOC).

[44] Noam Nisan and Avi Wigderson. 1994. Hardness vs. randomness. Journal of Computer and System Sciences 49, 2 (1994), 149ś167.

[45] Igor C. Oliveira. 2013. Algorithms versus Circuit Lower Bounds. Electronic Colloquium on Computational Complexity: ECCC 20 (2013),

117.

[46] Igor C. Oliveira and Rahul Santhanam. 2017. Conspiracies between learning algorithms, circuit lower bounds, and pseudorandomness.

In Proc. 32nd Annual IEEE Conference on Computational Complexity (CCC). Vol. 79. Art. No. 18, 49.

[47] Nicholas Pippenger and Michael J. Fischer. 1979. Relations among complexity measures. Journal of the ACM 26, 2 (1979), 361ś381.

[48] Rahul Santhanam. 2009. Circuit lower bounds for Merlin-Arthur classes. SIAM Journal of Computing 39, 3 (2009), 1038ś1061.

[49] Rahul Santhanam and Ryan Williams. 2013. On medium-uniformity and circuit lower bounds. In Proc. 28th Annual IEEE Conference on

Computational Complexity (CCC). 15ś23.

[50] Ronen Shaltiel and Christopher Umans. 2005. Simple extractors for all min-entropies and a new pseudorandom generator. Journal of the

ACM 52, 2 (2005), 172ś216.

[51] Ronen Shaltiel and Christopher Umans. 2007. Low-end uniform hardness vs. randomness tradeofs for AM. In Proc. 39th Annual ACM

Symposium on Theory of Computing (STOC). 430ś439.

[52] Adi Shamir. 1992. IP = PSPACE. Journal of the ACM 39, 4 (1992), 869ś877.

[53] Victor Shoup. 1990. New algorithms for inding irreducible polynomials over inite ields. Math. Comp. 54, 189 (1990), 435ś447.

[54] Madhu Sudan, Luca Trevisan, and Salil Vadhan. 2001. Pseudorandom generators without the XOR lemma. Journal of Computer and

System Sciences 62, 2 (2001), 236ś266.

[55] Roei Tell. 2019. Proving that ��BPP = ��P is as hard as proving that łalmost NPž is not contained in P/poly. Information Processing

Letters 152 (2019), 105841.

[56] Luca Trevisan and Salil P. Vadhan. 2007. Pseudorandomness and Average-Case Complexity Via Uniform Reductions. Computational

Complexity 16, 4 (2007), 331ś364.

[57] Christopher Umans. 2003. Pseudo-random generators for all hardnesses. Journal of Computer and System Sciences 67, 2 (2003), 419ś440.

[58] Salil P. Vadhan. 2012. Pseudorandomness. Now Publishers.

[59] Ryan Williams. 2013. Improving Exhaustive Search Implies Superpolynomial Lower Bounds. SIAM Journal of Computing 42, 3 (2013),

1218ś1244.

[60] Ryan Williams. 2014. Algorithms for circuits and circuits for algorithms: Connecting the tractable and intractable. In Proc. International

Congress of Mathematicians (ICM). 659ś682.

[61] Richard Ryan Williams. 2016. Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch evaluation. In Proc. 31st

Annual IEEE Conference on Computational Complexity (CCC). Vol. 50. Art. No. 2, 17.

[62] Virginia V. Williams. 2015. Hardness of easy problems: basing hardness on popular conjectures such as the Strong Exponential Time

Hypothesis. In Proc. 10th International Symposium on Parameterized and Exact Computation. Vol. 43. 17ś29.

[63] Virginia Vassilevska Williams. 2018. On some ine-grained questions in algorithms and complexity. Accessed at https://people.csail.mit.

edu/virgi/eccentri.pdf, October 17, 2019.

J. ACM

https://people.csail.mit.edu/virgi/eccentri.pdf
https://people.csail.mit.edu/virgi/eccentri.pdf

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 53

[64] Gerhard J. Woeginger. 2003. Exact algorithms for NP-hard problems: a survey. In Combinatorial optimizationÐEureka, you shrink!

Lecture Notes in Computer Science, Vol. 2570. Springer, Berlin, 185ś207.

A ON IMPLICATIONS OF MAETH

Consider the hypothesisMAETH, which asserts that ��-3SAT cannot be solved byMerlin-Arthur protocols running
in time 2� ·� , for some � > 0. Recall that the łstrongž version of this hypothesis is false (since Williams [61] showed

that #CircuitSAT can be solved by a Merlin-Arthur protocol in time �̃ (2�/2)), but there is currently no evidence
against the łnon-strongž version.
As mentioned in Section 1.3, the assumption MAETH can be easily shown to imply strong circuit lower

bounds and derandomization of ��BPP (and thus also of ��MA). Speciically, the following more general (i.e.,
parametrized) result relies on a standard Karp-Lipton-style argument, which originates in [3]. We note in advance
that after the proof of this result we prove another result, which shows a very diferent tradeof betweenMA
lower bounds (speciically, lower bounds for ixed-polynomial-time veriiers) and derandomization.

Theorem A.1 (lower bounds forMA algorithms imply non-uniform circuit lower bounds). There
exists � ∈ E and a constant � > 1 such that for any time-computable function � : N→ N such that � (�) ≥ � the

following holds. Assume that DTIME[2�] ⊈MATIME[� ′], where � ′ (�) = � (� · �)� . Then, � ∉ SIZE[�].

Note that, using Corollary 3.3, under the hypothesis of Theorem A.1 we have thatCAPP ∈ i.o.��DTIME[�],

where � (�) = 2� (�−1 (�� (1))) . In particular, under MAETH (which refers to � (�) = 2Ω (�/log(�))) we have that
��BPP ⊆ i.o.��DTIME[�� (loglog(�))].

Proof of Theorem A.1. Let � be the problem from Proposition 3.12. Assuming towards a contradiction that
� ∈ SIZE[�], we show that DTIME[2�] ⊆ MATIME[� ′].
Let �0 ∈ DTIME[2�]. We construct a probabilistic veriier that gets input �0 ∈ {0, 1}�0 , and if �0 ∈ �0

then for some non-deterministic choices the veriier accepts with probability one, and if �0 ∉ �0 then for all
non-deterministic choices the veriier rejects, with high probability. The veriier irst reduces �0 to �, by computing
� ∈ {0, 1}� of length � = � (�0) such that �0 ∈ �0 if and only if � ∈ �.

Let �′ = ℓ (�) = � (�) = � (�0). By our hypothesis, there exists a circuit over �′ input bits of size � (�′) that
decides ��′ . The veriier guesses a circuit �� : {0, 1}�

′
→ {0, 1} of size � (�′), and simulates the machine� from

Proposition 3.12 on input � , while resolving its oracle queries of using �� . The veriier accepts if and only if�
accepts. Note that if �0 ∈ �0 and the veriier’s guess was correct (i.e., �� decides ��′), then the veriier accepts
with probability one. On the other hand, if �0 ∉ �0, then for every guess of�� (i.e., every oracle for�) the veriier
rejects, with high probability. The running time of the veriier is poly(�) · poly(� (�′)) = � (� (�))� (1) .

In the following result, instead of assuming strong (e.g., super-polynomial) lower bounds for MATIME
against E, we assume ixed polynomial lower bounds for MATIME against P, and deduce both a sub-
exponential derandomization of BPP, and a polynomial-time derandomization of BPP with �� advice, for an
arbitrarly small constant � > 0.46

Theorem A.2 (fixed-polynomial-size lower bounds for MA =⇒ derandomization and circuit lower

bounds). Assume that for every � ∈ N it holds that P ⊈ i.o.MATIME[��]. Then, for every � > 0 it holds that
��BPP ⊆ (��P/�� ∩ ��DTIME[2�

�

]).

Proof. In high-level, we want to use our hypothesis to deduce that there exists a polynomial-time algorithm
that outputs the truth-table of a łhardž function, and then use that łhardž function for derandomization. Loosely

46Recall that, by Adleman’s theorem [1, 5], we can derandomize ��BPP with poly(�) bits of non-uniform advice (and even with� (�) bits,

using Theorem 3.5). However, an unconditional derandomization of ��BPP with � (�) bits of non-uniform advice is not known.

J. ACM

54 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

speaking, the following claim, whose proof is a reinement of on an argument from [10], asserts that if the output
string of every polynomial-time algorithm has circuit complexity at most �� , then all of P can be decided by
MA veriiers running in time �� (�) .

Claim A.2.1. Assume that there exists � ∈ N such that for every deterministic polynomial-time machine �
there exists an ininite set � ⊆ N such that for every � ∈ � the following holds: For every � ∈ {0, 1}� , when the

output string � (�) is viewed as a truth-table of a function, this function has circuit complexity at most �� . Then,

P ⊆ i.o.MATIME[�� (�)].

Proof. Let � ∈ P, and let � be a polynomial-time machine that decides �. Our goal is to decide � in
MATIME[��] on ininitely-many input lengths.
For every � ∈ {0, 1}� , let �� : {0, 1}poly(�) → {0, 1} be a polynomial-sized circuit that gets as input a string Π,

and accepts if and only if Π is the computational history of� (�) and� (�) = 1. Note that the mapping of � ↦→ ��
can be computed in polynomial time (since� runs in polynomial time). Also, ix a PCP system for CircuitSAT
with the following properties: The veriier runs in polynomial time and uses � (log(�)) randomness and � (1)
queries; the veriier has perfect completeness and soundness error 1/3; and there is a polynomial-time algorithm
� that maps any circuit � and a satisfying assignment for � (i.e., � ∈ �−1 (1)) to a PCP proof that the veriier
accepts. For every � ∈ {0, 1}� and every input Π ∈ {0, 1}poly(�) for �� , let� (�� ,Π) be the corresponding PCP
proof that� produces.
Observe that there is a polynomial-time algorithm � that gets as input � ∈ {0, 1}� , produces the computa-

tional history of� (�), which we denote by �� (�) , produces the circuit �� , and inally prints the PCP witness
� (�� , �� (�)). Thus, by our hypothesis, there exists an ininite set � ⊆ N such that for every � ∈ � and every

� ∈ {0, 1}� there exists a circuit �� : {0, 1}� (log(�)) → {0, 1} of size �� whose truth-table is� (�� , �� (�)).

The MA veriier � gets input � , and expects to get as proof a circuit � : {0, 1}� (log(�)) → {0, 1} bits. The
veriier � now simulates the PCP veriier, while resolving its queries to the PCP using the circuit � . Note that for
every � ∈ � and every � ∈ {0, 1}� the following holds: If � (�) = 1 then there exists a proof (i.e., a circuit ��)
such that the veriier accepts with probability one; on the other hand, if� (�) = 0, then�� rejects all of its inputs,
which implies that for every proof, with probability at least 2/3 theMA veriier rejects. □

Using our hypothesis that for every � ∈ N it holds that P ⊈ i.o.MATIME[��], and taking the counter-
positive of Claim A.2.1, we deduce that:

Corollary A.2.2. For every � ∈ N there exists a polynomial-time machine � such that for every suiciently
large � ∈ N there exists an input � ∈ {0, 1}� such that� (�) is the truth-table of a function with circuit complexity

more than �� .

Now, ix � > 0, let � ∈ ��BPP, and let � be a probabilistic polynomial-time machine that decides �. Given
input � ∈ {0, 1}� , we decide whether � ∈ � in polynomial-time and with �� advice, as follows. Consider the
circuit �� that computes the decision of � at � as a function of the random coins of �, and let � > 1 such that the
size of �� is at most �� . We instantiate Corollary A.2.2 with � = �′/� , where �′ > � is a suiciently large constant.
We expect as advice an input � of length �� to the machine� such that� (�) has circuit complexity ��

′
. We then

use� (�) to instantiate Theorem 3.2 with seed length � (log(�)) and error 1/10 and for circuits of size �� (such
that the PRG łfoolsž the circuit ��), and enumerate its seeds to approximate the acceptance probability of �� (and
hence decide whether or not � ∈ �).

We now also show that � ∈ ��DTIME[2�
2�
]. To do so, consider the foregoing algorithm, and assume that it

gets no advice. Instead, it enumerates over all 2�
�

possible advice strings to obtain 2�
�

truth-tables, each of size
poly(�). We know that at least one of these truth-tables has circuit complexity ��

′
. Now the algorithm constructs

the truth-table of a function � over �� +� (log(�)) bits, which uses the irst �� bits to łchoosež one of the 2�
�

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 55

truth-tables, and uses the � (log(�)) bits as an index to an entry in that truth-table (i.e., for � ∈ {0, 1}�
�

and
� ∈ � (log(�)) it holds that � (�, �) = �� (�), where �� is the function that is obtained from the ��ℎ advice string).
Note that, since at least one of the 2�

�

functions had circuit complexity ��
′
, it follows that � also has circuit

complexity ��
′
. Thus, this algorithm can use � to instantiate Theorem 3.2 with seed length �� +� (log(�)) and

for circuits of size �� to łfoolž the circuit �� .

B POLYNOMIALS ARE SAMPLE-AIDED WORST-CASE TO AVERAGE-CASE REDUCIBLE

Recall that in Section 4.1 we deined the notion of sample-aided worst-case to �-average-case-reducible function
(see Deinitions 4.2 and 4.3), following [23]. In this appendix we explain why labeled samples can be helpful for
uniform worst-case to łrare-casež reductions, and show that low-degree polynomials are indeed sample-aided
worst-case to average-case-reducible.

Consider a function � whose truth-table is a codeword of a locally list-decodable code, and also assume that
� is randomly self-reducible (i.e., computing � in the worst-case is reducible to computing � on, say, .99 of the

inputs). Then, for every circuit �̃ that agrees with � on a tiny fraction of inputs (i.e., �̃ computes a łcorruptž

version of �), we can eiciently produce a small list of circuits with oracle gates to �̃ such that one of these
circuits correctly computes � on all inputs. The main trouble is that we don’t know which candidate circuit in
this list to use. This is where the labeled samples come in: We can iterate over the candidates in the list, use the
labeled samples to test each candidate circuit for agreement with � , and with high probability ind a circuit that
agrees with � on (say) .99 of the inputs. Then, using the random self-reducibility of � , we obtain a circuit that
correctly computes � on each input, with high probability.

The crucial property that we need from the code in order to make the foregoing algorithmic approach work is
that the local list-decoding algorithm will eiciently produce a relatively short list. Speciically, recall that by our
deinition, a sample-aided worst-case to �-average-case reduction needs to run in time poly(1/�). Hence, we
need a list-decoding algorithm that runs in time poly(1/�) (and indeed produces a list of such size). A suitable
local list-decoding algorithm indeed exists in the case that the code is the Reed-Muller code, which leads us to
the following result:

Proposition B.1 (low-degree polynomials are uniformly worst-case to average-case reducible with

a self-oracle). Let � : N→ N be a ield-size function, let ℓ : N→ N such that � ≥ ℓ · log(�), and let �, � : N→ N

such that 10
︁
� (�)/�(�) ≤ � (�) ≤ (�(�))−Ω (1)

= � (1). Let � = {�� : {0, 1}� → {0, 1}}�∈N be a sequence of

functions such that �� computes a polynomial F
ℓ (�)
� → F� of degree � (�) where |F� | = �(�). Then � is sample-aided

worst-case to �-average-case reducible.

Proof. We construct a probabilistic machine� that gets input 1� , and oracle access to a function �̃� that agrees
with �� on � (�) of the inputs, and also poly(1/� (�)) labeled samples for �� , and with probability 1− � (�) outputs

a circuit � : Fℓ → F such that for every � ∈ Fℓ it holds that Pr� [�
�̃� (�, �) = �� (�)] ≥ 2/3.

The irst step of the machine � is to invoke the local list-decoding algorithm of [54, Thm 29], instan-
tiated with degree parameter � = � (�) and agreement parameter � = � (�). The algorithm runs in time
poly(ℓ (�), �, log(�(�)), 1/�) = poly(�, 1/�) and outputs a list of� (1/�) probabilistic oracle circuits�1, ...,�� (1/�) :

{0, 1}� → {0, 1}� such that with probability at least 2/3 there exists � ∈ [� (1/�)] satisfying Pr[�
�̃�
� (�) = �� (�)] ≥

2/3 for all � ∈ {0, 1}� . We call any circuit that satisies the latter condition good. By invoking the algorithm
of [54] for poly(1/�) times, we obtain a list of � = poly(1/�) circuits �1, ...,�� such that with probability at least
1 − poly(�) there exists � ∈ [�] such that �� is good.
The second step of the machine is to transform the probabilistic circuits into deterministic circuits such that,

with high probability, the deterministic circuit corresponding to the łgoodž circuit �� will correctly compute ��

J. ACM

56 • Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev

on .99 of the inputs (when given oracle access to �̃�). Speciically, by implementing naive error-reduction in all

circuits, we can assume that for every � ∈ Fℓ it holds that Pr� [�
�̃�
� (�, �) = �� (�)] ≥ .995. Now the machine �

creates � (log(1/�)) copies of each circuit in the list, and for each copy� łhard-wiresž a randomly-chosen ixed
value for the circuit’s randomness. The result is a list of � ′ = poly(1/�) deterministic circuits �1, ..., �� ′ such that

with probability 1 − poly(�) there exists a circuit �� satisfying Pr� [�
�̃�
� (�) = �� (�)] ≥ .99.

The third step of the machine� is to łweedž the list in order to ind a single circuit �� that (when given access

to �̃�) correctly computes � on .95 of the inputs. To do so� iterates over the list, and for each circuit � � estimates

the agreement of �
�̃�
� with �� with error .01 and conidence 1 − poly(�), using the random samples.

The inal step of the machine � is to use the standard random self-reducibility of the Reed-Muller code to
transform the circuit �� into a probabilistic circuit that correctly computes � at each input with probability at
least 2/3. Speciically, the probabilistic circuit implements the standard random self-reducibility algorithm for the
(�, ℓ, �) Reed-Muller code (see, e.g., [2, Thm 19.19]), while resolving its oracle queries using the circuit �� . The

standard algorithm runs in time poly(�, ℓ, �), andworks whenever�� agrees with �� on at least 1−
1−�/�

6 < .95+�/�

of the inputs, which holds in our case since �/� < � = � (1).

C AN E-COMPLETE PROBLEM WITH USEFUL PROPERTIES

In this appendix we prove Proposition 3.12, which asserts the existence of an E-complete problem (under linear-
time reductions) that is randomly self-reducible, has an instance checker with linear-length queries, and such
that both the random self-reducibility algorithm and the instance checker use a linear number of random bits.

Proposition C.1 (an E-complete problem that is random self-reducible and has a good instance

checker). For every � > 0 there exists �nice ∈ DTIME[�̃ (2�)] such that:

(1) Any � ∈ DTIME[2�] reduces to �nice in polynomial time with a multiplicative blow-up of at most 1 + � in
the input length. Speciically, for every � there exists �′ ≤ (1 + �) · � such that any �-bit input for � is mapped
to an �′-bit input for �nice.

(2) The problem �nice is randomly self-reducible by an algorithm Dec that on inputs of length � uses �+polylog(�)
random bits.

(3) There is an instance checker IC for �nice that on inputs of length � uses � +� (log(�)) random bits and makes
� (1) queries of length ℓ (�), where ℓ (�) < (2 + �) · �.

Proof. For a suiciently small � ≤ �/7, let �E
= {(⟨�⟩ , �) : � accepts � in 2 |� | steps}. Let ��E : {0, 1}∗ →

{0, 1}∗ be the low-degree extension of �E such that inputs of length �0 for �
E are mapped to inputs in F� ,

where� = � · �0

⌊log(�0) ⌋
and |F| = 2(1/�+1) · ⌈log(�0) ⌉ , for a polynomial of individual degree � =

⌈
(�0)

1/�
⌉
. Note that

(� + 1)� ≥ 2�0 (i.e., there is a unique extension of �E with these parameters), and that |F| > � · � (i.e., the
polynomial is indeed of low degree). Finally, let �nice be the set of pairs (�, �) ∈ {0, 1}� ·log(|F |) × {0, 1}⌈loglog(|F |) ⌉ ,
such that ��E (�)� = 1 (i.e., the ��ℎ bit in the binary representation of ��E (�) ∈ F equals one).

Note that �E is reducible in polynomial time to ��E , which is in turn reducible in polynomial time to �nice; and
that inputs of length �0 ∈ N for �E are mapped to inputs of length � =� · log(|F|) + ⌈loglog(|F|)⌉ +1 < (1+2�) ·�0
for �nice. Thus any � ∈ DTIME[2�] is reducible in polynomial time to �nice with a multiplicative overhead of

at most 1 + 3� in the input length. Also note that �nice ∈ DTIME[�̃ (2�)], since the polynomial ��E can be
evaluated in such time.

J. ACM

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds • 57

Let us now prove that �nice is randomly self-reducible with at most (1 + �) · � random bits. Let Dec0 be
the standard random self-reducibility algorithm for ��E , which uses less than � random bits.47 Given input
(�, �) ∈ {0, 1}� · ⌈log(|F |) ⌉+⌈loglog(|F |) ⌉ and oracle access to some �′ ⊆ {0, 1}� , we simulate Dec0 at input � and
with oracle access to a function induced by �′ (as detailed below), and then output the ��ℎ bit of its answer.
Speciically, we initially choose a random permutation � of {0, 1}loglog(|F |) , using polylog(�) < � · � random
coins, and whenever Dec0 makes a query �1 ∈ F� , we query �′ at all inputs {(�1, �2)}�2∈{0,1} ⌈loglog(|F|) ⌉ , ordered

according to � , and answer Dec0 accordingly. Note that each of our queries is uniformly distributed: This is since
for every query (�1, �2) we have that �1 is uniform (because Dec0’s queries are uniform) and that �2 is uniform
and independent from �1 (because we chose a random �). Also note that if �′ (�1, �2) = �nice(�1, �2) for every
query (�1, �2), then each query �1 of Dec0 is answered by ��E (�1), in which case we output ��E (�)� = �nice (�, �).

Finally, to see that �nice has an instance checker that uses � +� (log(�)) random bits and issues � (1) queries

of length (2 + 7�) · �, ix a PCP system for DTIME[�], where � (�) = �̃ (2�), with the following speciications:
The veriier � runs in polynomial time, uses � + � (log(�)) bits of randomness, issues � (1) queries, and has
perfect completeness and soundness error 1/6; and there is an algorithm � that gets an input � ∈ {0, 1}� and

outputs a proof for � in this PCP system (or ⊥, if � ∉ �) in deterministic time �̃ (2�) (for a suitable PCP system,
see [4, Thm 1]). We will instantiate this PCP system for the set �nice1 =

{
(�, �, �) : �nice(�, �) = �

}
, which is in

DTIME[�̃ (2�)].
The instance checker IC for �nice gets input (�, �) ∈ {0, 1}� and simulates the veriier � for �nice1 on inputs

(�, �, 0) and (�, �, 1). Whenever � (�, �, �) queries its proof at location � ∈ [�̃ (2�)], the instance checker IC uses its
oracle to try and decide the problem Π at input (�, �, �, �), where Π =

{
((�, �, �), �) : � (�, �, �) � = 1

}
. Speciically,

since Π ∈ DTIME[�̃ (2�/2)] ⊆ DTIME[�̃ (2�)] it holds that Π reduces to �nice in polynomial time and
with multiplicative blow-up of 1 + 3� in the input length; hence, IC reduces ((�, �, �), �) to an input for �nice of
length ℓ (�) ≤ (1 + 3�) · (2� + 1) < (2 + 7�) · � and uses its oracle to try and obtain Π((�, �, �), �). For � ∈ {0, 1} ,
the instance checker IC outputs � if and only if � (�, �, �) = 1 and � (�, �, 1 − �) = 0, and otherwise outputs ⊥.

Note that IC�
nice

(�, �) = �nice (�, �), with probability one; and that IC errs when given oracle �′ ≠ �nice (i.e.,
IC�

′
(�, �) = 1 − �nice (�, �)) only when � accepts (�, �, 1 − �nice (�, �)) ∉ �nice1 , which happens with probability at

most 1/6 for any �′.

47Recall that Dec0 chooses a random vector ®� ∈ F� , which requires� · log(|F |) < � random bits, and queries its oracle on a set of points on

the line corresponding to ®�; see, e.g., [19, Sec. 7.2.1.1].

J. ACM

	Abstract
	1 Introduction
	1.1 Our results: Bird's eye
	1.2 rETH and pseudorandom generators for uniform circuits
	1.3 NETH and an equivalence of derandomization and circuit lower bounds
	1.4 Disproving a version of rETH requires circuit lower bounds
	1.5 Open problems and subsequent work

	2 Technical overview
	2.1 Near-optimal uniform hardness-to-randomness results for TQBF
	2.2 NTIME-uniform circuits for E and an equivalence between derandomization and circuit lower bounds
	2.3 Circuit lower bounds from randomized CircuitSAT algorithms

	3 Preliminaries
	3.1 Complexity classes
	3.2 Two exponential-time hypotheses
	3.3 Worst-case derandomization and pseudorandom generators
	3.4 Average-case derandomization and pseudorandom generators
	3.5 An E-complete problem with useful properties

	4 rETH and near-optimal uniform hardness-to-randomness
	4.1 Construction of a well-structured function
	4.2 PRGs for uniform circuits with almost-exponential stretch
	4.3 Proofs of Theorems 1.1 and 1.2

	5 NETH and the equivalence of derandomization and circuit lower bounds
	5.1 Strengthened Karp-Lipton style results
	5.2 Proof of Theorems 1.4, 1.5, and 1.6

	6 NOT-rETH and circuit lower bounds from randomized algorithms
	6.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds
	6.2 Randomized 2-SAT[n] algorithms imply BPE circuit lower bounds

	Acknowledgments
	References
	A On implications of MAETH
	B Polynomials are sample-aided worst-case to average-case reducible
	C An E-complete problem with useful properties

