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Abstract

Backgrounds and Objectives In silico methods which can generate high-quality physiologically based pharmacokinetic
(PBPK) models for arbitrary drug candidates are greatly needed to select developable drug candidates that escape drug
attrition because of the poor pharmacokinetic profile. The purpose of this study is to develop a novel protocol to preliminar-
ily predict the concentration profile of a target drug based on the PBPK model of a structurally similar template drug by
combining two software platforms for PBPK modeling, the SimCYP simulator and ADMET Predictor.

Methods The method was evaluated by utilizing 13 drug pairs from 18 drugs in the built-in database of the SimCYP soft-
ware. All drug pairs have Tanimoto scores (TS) no less than 0.5. As each drug in a drug pair can serve as both target and
template, 26 sets were studied in this work. Three versions (V1, V2 and V3) of models for the target drug were constructed
by replacing the corresponding parameters of the template drug step by step with those predicted by ADMET Predictor for
the target drug. V1 represents the replacement of molecular weight (MW), V2 includes the replacement of parameter MW,
fraction unbound in plasma (f,), blood-to-plasma partition ratio (B/P), logarithm of the octanol-buffer partition coefficient
(log P,.,,) and acid dissociation constant (pK,). In V3, all above-mentioned parameters as well as human jejunum effective
permeability (P.g), V4 and cytochrome P450 (CYP) metabolism parameters (K, V.., or CL; ) are modified. Normalized
root mean square error (NRMSE) was used for the evaluation of the model performance.

Results We found that the performance of the three versions of the models depends on structural similarity of the drug pairs.
For Group I drug pairs (TS < 0.7), V2 and V3 performed better than V1 in terms of NRMSE; for Group II drug pairs (0.7 <
TS <£0.9), 8 out of 10 V3 models had NRMSE < 0.2, the cutoff we applied to judge whether the simulated concentration-
time (C-T) curve was satisfactory or not. V3 outperformed the V1 and V2 versions. For the two drug pairs belonging to
Group III (TS > 0.9), V2 outperformed V1 and V3, suggesting more unnecessary replacement can lower the performance
of PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as well as its collaboration with
SimCYP influences the quality of PBPK models constructed using SimCYP.

Conclusion In conclusion, we generated practical guidance on applying two mainstream software packages, ADMET Predic-
tor and SimCYP, to construct PBPK models for drugs or drug candidates that lack ADME parameters in model construction.

1 Introduction pharmacokinetic study for the analysis of drug behavior and

dose adjustment. In addition to clinical trials, which always
Pharmacokinetics is the study of the time courses of a drug ~ involve time, cost and ethical considerations, the prediction
administered to the body, which includes the processes of of concentration profiles under various administration condi-
absorption, distribution, metabolism and excretion (ADME) tions can also be achieved by the implementation of physi-
[1]. Usually, it is essential to quantitatively measure the con-  ologically based pharmacokinetic (PBPK) [2-4] modeling.
centration of the drug in plasma at different time points in a Computational tools for both PBPK modeling and pharma-
cokinetic parameter prediction have been developed, further
reducing the experimental expense. By virtue of such tools,
Jingchen Zhai and Beihong Ji contribute equally to this paper. quick and convenient in silico prediction of drug behavior in
the human body can be easily performed without investing
many resources in the experiments, informing further stud-
ies in drug toxicity, dosing strategy and potential drug-drug
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We developed an effective computational protocol for
the generation of valid physiologically-based pharma-
cokinetics (PBPK) models for arbitrary molecules, an
important task in preclinical drug discovery.

This method utilizes ADME Predictor to calculate phar-
macokinetic parameters as inputs for PBPK modeling
and simulation using Simcyp simulator.

More than 60% of compounds have satisfactory perfor-
mance utilizing this method.

interactions. As such, this PBPK modeling can be particu-
larly useful in the preclinical phase and can serve as a tool
to help select drug candidates that are more likely to have
desirable pharmacokinetic profiles.

In the literature, one study predicted the bioavailability
(Fa%) of a structurally diverse group of drugs using theoreti-
cal descriptors and neural network modeling [5]. Another
study applied a genetic algorithm to optimize the prediction
model for drug Fa%, plasma protein binding and urinary
excretion [6]. There are also studies predicting the Fa% of
a chemical series with GastroPlus [7, 8]. Evaluation of the
Fa% prediction performances from different software plat-
forms, SimCYP and GastroPlus, has also been conducted
focusing on low-solubility drugs [9]. Collectively, these
studies focused on the value of Fa% and area under the curve
(AUC) as the most important parameters for drugs after
administration, but these parameters cannot fully explain the
shape of the drug concentration-time (C-T) profile. There-
fore, how a drug is absorbed, distributed, metabolized and
excreted in the course of time still lacks systematic predic-
tion guidance.

This research aims to develop a pure in silico method
to predict the pharmacokinetic profile of a compound effi-
ciently, taking advantage of the available high-quality PBPK
models in the Simcyp compound library and public domain.
This method has potential application in selecting drug can-
didates with favorable pharmacokinetic profiles to enter the
next stage of drug development.

2 Methods

In this study, we developed a novel method to predict the
plasma concentration profile of a target compound based on
PBPK models constructed using the model of a structurally
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similar drug that serves as the template. We utilized the Sim-
CYP simulator (V19, Release 1; Shefeld, UK) [10] soft-
ware to construct PBPK models for a target drug by only
substituting the predicted ADME parameters of the target
drug for those from the PBPK model of the corresponding
template drug. We applied ADMET Predictor (V9.5, Simu-
lation Plus) [11, 12], a software developed by Simulation-
Plus Inc. to predict the ADME properties of target drugs,
which include physiochemical parameters such as fraction
unbound in plasma (f,) and blood-to-plasma partition ratio
(B/P) and ADME input parameters such as volume of dis-
tribution (V,), Michaelis-Menten constant (K,,) and maxi-
mal metabolism rate (V,,,,) of common enzymes. To better
validate our constructed PBPK models as well as evaluate
the performance of the two software tools, we selected 18
drugs from the SimCYP compound library (including sub-
strates and inhibitors) as the template drugs. In total, 13
drug pairs were formed based on their structural similarity.
For each pair of drugs, one serves as the template and the
other serves as the target drug. For the target drug in a drug
pair, we pretended that no PBPK model was available, and
new PBPK models were constructed based on the PBPK
model of the template drug. We tested three protocols by
introducing ADMET Predictor predicted ADME properties
into the template PBPK model and evaluated the model per-
formance using the observed pharmacokinetic profile of the
target drug. The corresponding PBPK models constructed
using the three protocols were called V1, V2 and V3 models.

2.1 Drug Preparation

Drugs selected for the construction of in silico PBPK mod-
els come from the built-in drug database of the SimCYP
software. Simplified Molecular-Input Line-Entry System
(SMILES) [13] strings of all drugs from the SimCYP built-
in library, including substrates and inhibitors, were collected
from the DrugBank database [14]. The SMILES strings of
drugs were used not only for their structural similarity cal-
culation on a web platform, but also as inputs for the genera-
tion of their properties using the ADMET Predictor.

2.2 Structure Similarity Calculation

Tanimoto scoring is a commonly used method to compute
the fingerprint-based similarity between two compounds
[15]. In this study, we applied the maximum common sub-
structure based (MCS) Tanimoto algorithm for the similar-
ity calculation. The Tanimoto score (TS) is defined by the
function below (Eq. 1) [16]:

N.
TSX,Y) = — 2 (1)
NX +NY _NZ
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where Ny and Ny are the numbers of bits in fragment bit
strings of the two compounds and N, is the intersection set,
i.e., the number of common substructures shared by these
two compounds. TS (X, Y) ranges from O to 1, measuring
the structural similarity between two compounds from the
lowest to highest (when the two molecules are identical). TS
scores were calculated using ChemMine for all combinations
of drugs in the SImCYP compound database [17].

2.3 Validation of PBPK Models for Drug Templates

We first validated the PBPK models of all 18 selected drugs
by utilizing their observed data from the literature. In detail,
we utilized the original built-in models of those drugs in
SimCYP to run the simulation. In terms of the trial design,
the dose regimens, simulation time as well as population
information including age, weight and health condition were
the same as those reported in the clinical study of pharma-
cokinetics measurement. Meanwhile, the parameters of the
built-in PBPK model, such as the drug’s ADME proper-
ties, remained the same for all the drugs except fluoxetine.
As a racemate, we adjusted some of its ADME and phar-
macokinetic parameters according to the literature to make
the predicted curve fit the experimental data much better
[18-20]. The key ADME parameters predicted by ADMET
Predictor for the 18 drugs are all listed in Table S1, includ-
ing the details of the adjusted parameters of fluoxetine. The
observed drug concentration data of each template drug
were extracted from published concentration-time (C-T)
curves using WebPlotDigitizer [21]. The C-T curves from
simulations were then overlaid to the observed drug con-
centrations. The predicted pharmacokinetic profiles of each
template drug, including the maximal concentration (Cyy,,).
time at which Cy,, was observed (7},,) and area under the
curve (AUC), were compared to the observed ones.

2.4 Evaluation of Inherent Differences Among
Software Platforms

The quality of models constructed for target drugs is not
only affected by the structural similarity between the tem-
plate drug and the target drug but also relies on the predic-
tion quality of ADMET Predictor and how good the collabo-
ration is between the software. There may be some inherent
differences among different software platforms, including
but not limited to the training set data and algorithms for
constructing models. More importantly, the prediction accu-
racy of ADMET Predictor for an individual ADME param-
eter is unknown. Thus, we utilized parameters predicted by
ADMET Predictor for the 18 drugs to simulate their phar-
macokinetic profiles using SimCYP and then compared
them to those predicted using SimCYP built-in parameters.
Since the calculation of molecular weight (MW) must be

very accurate, the reliability of this parameter from ADMET
Predictor for each drug will not be evaluated (Category I).
The following ADME parameters predicted by ADMET
Predictor belong to Category II: B/P, F,, the logarithm of
octanol-buffer partition coefficient (log P,.,,) and acid dis-
sociation constant (pK,); ADME parameters in Category III
include human jejunum effective permeability (P.g), V4 and
cytochrome P450 (CYP) metabolism parameters (K, V.«
or CL;,,). The prediction accuracy decreases from Category
I to Category II and then to Category III. The values of these
ADME parameters for 18 drugs are listed in Table S1. To
investigate the different qualities of the calculated param-
eters, we modified the template step by step by introducing
more and more ADME predicted parameters. Specifically,
in substitution protocol Version 2 (V2), we replaced log
P...» PK,, B/P and F|, values in the SimCYP drug template
with the calculated results from ADMET Predictor. In sub-
stitution protocol Version 3 (V3), all the above-mentioned
ADME parameters, which not only include the parameters
mentioned by V2 but also P in absorption, V; in distribu-
tion and CYP metabolism parameters of template drug, were
replaced by predicted values of ADMET Predictor.

2.5 Model Construction for Target Drugs

The parameter substitution plan is the same as that for
ADME Predictor software evaluation in Sect. 2.4. In total,
three versions of PBPK models for a target drug were built
by modifying the models of the template drug: (1) in Version
1 (V1), only the MW of template drug was changed to that
of the target one; (2) in Version 2 (V2), in addition to the
MW, other parameters of template drug, which are the same
as in the above-mentioned Version 2, were replaced by those
predicted for the target drug; (3) in Version 3 (V3), in addi-
tion to MW and physiochemical properties, P, V; and CYP
of templates were also replaced with the calculated ones for
the target drug, in accordance with above-mentioned Ver-
sion 3. All the ADME properties of the target drugs are
predicted by ADMET Predictor, a software tool that can
predict > 140 properties based on its built-in quantitative
structure-activity relationship (QSPR) models [22]. Infor-
mation about the experimental subjects and trial design of
each target drug during simulations was derived from the
corresponding clinical reports.

2.6 Evaluation of Models for Target Drugs

To evaluate the performance of PBPK models with input
parameters from ADMET Predictor, the experimental data
of target drugs were overlaid by the simulated C-T curves.
To quantitively evaluate how well the experimental and
simulated curves overlaid each other, we calculated the
root mean square error (RMSE) [23] of the observed and
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predicted concentrations at different time points. The for-
mula for the RMSE calculation is as follows (Eq. 2):

N

RMSE = [2 (Cpi— CO,.)Q/N] : @

i=1

where C,; and C,,; represent the observed and predicted drug
concentration at time point i. N is the number of time points
(N > 1) from the extracted observed data. Specifically, in
this study, to facilitate the comparison between models for
different drugs with various concentration scales, we intro-
duced normalized root mean square error (NRMSE) to eval-
uate the performance of PBPK models, which is calculated
using the following formula (Eq. 3):
RMSE

max min

where C,, and C,;, are the maximum and minimum values
among the observed and predicted concentrations using all
three versions of models.

The flowchart of the experiment protocol is shown in

Fig. 1.

3 Results

3.1 Drug Pair Selection and Validation of PBPK
Models for Drug Templates

Thirteen pairs out of 18 drugs, which have calculated TS >
0.5, were selected for in silico PBPK modeling. Drug pairs

with TS < 0.5 were not considered to be structurally similar
and were excluded in this study. The calculated TS for 13
selected pairs (Groups A—M) is listed in Table 1. Since both
drugs in a pair will in turn serve as the template and target
drug for cross validation, we used X-1 and X-2 to label two
drugs in the pair, respectively, where X can be A to M.

The predicted mean plasma concentration-time profiles
overlaid with observed data of all 18 template drugs are
shown in Fig. 2. Accordingly, Table 2 [20, 24-39] exhib-
its the predicted pharmacokinetic parameters (Cyjaxs Tpaxo
AUC) versus observed values. From Table 2, excluding the
drugs with unavailable observed pharmacokinetic param-
eters (dextromethorphan, mephenytoin and fluoxetine),
the predicted pharmacokinetic parameters of most drugs
are within the standard deviation ranges of their observed
values. The predicted values of Cy,y, Ty and AUC for
theophylline are all slightly beyond the margin of error but
still within the range of two-fold standard deviation. Over-
all, as shown in Fig. 2, the observed C-T profiles are within
the 95% confidence interval (CI) ranges (upper and lower
gray dashed curves) of the simulated C-T curves. Therefore,
the PBPK models for the template drugs have been well
validated.

3.2 Evaluation of Inherent Differences Among
Software Platforms

The predicted pharmacokinetic parameters of the 18 modi-
fied drug templates by replacing the ADME parameters with
those predicted by ADMET predictor are listed in Table 2.
The C-T profiles of those 18 drugs are shown in Fig. 3 (V2)

V2: pKa, LogP, B/P,
F

u

Validation of two
substitution /| V3:pKa, LogP, B/P, F,,
schemes for a 4V, P (CYP)K,,

template drug (CYP)V, =

max’

i

Substitute parameters in a SiImCYP
template with these predicted by ADMET
Predictor for the same drug

V1: Molecular
Weight

V2: Molecular Weight,

Prediction of PK
pKa, LogP, B/P, F,

profiles for a target
drug using three
substitutional schemes

V3: Molecular Weight,
A pKa, LogP, B/P, F,,

max’

ﬁ V.., Pot (CYP)K.,, (CYP)V,

Substitute parameters in a SiImCYP
template with those predicted by ADMET
Predictor for the target drug

Fig. 1 Flowchart of experiment protocol. pK, acid dissociation con-
stant, log P,., logarithm of octanol-buffer partition coefficient, B/P
blood-to-plasma partition ratio, F, fraction unbound in plasma, V
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volume of distribution at steady state, P,z human jejunum effective
permeability, K, Michaelis-Menten constant, V., maximal metabo-

lism rate, VI version 1, V2 version 2, V3 version 3
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Table 1 Calculated Tanimoto coefficient between each pair of drugs

Group Drug 1 Drug 2 Tanimoto score

A Bupropion Dextromethorphan  0.50
B Bufuralol Bupropion 0.52
C Dextromethorphan  Quinidine 0.57
D Lorazepam Midazolam 0.63
E Alprazolam Lorazepam 0.65
F Lorazepam Triazolam 0.69
G Mephenytoin Phenobarbital 0.74
H Atomoxetine Fluoxetine 0.78
I Simvastatin Pravastatin 0.82
J Triazolam Midazolam 0.84
K Midazolam Alprazolam 0.88
L Theophylline Caffeine 0.93
M Imipramine Desipramine 0.95

and Fig. 4 (V3). In V2, most drugs exhibit satisfying predic-
tion results. As Fig. 3 shows, in 14 of 18 drugs most of the
experimental data points lay within the predicted confidence
interval. Only in triazolam, atomoxetine, simvastatin and
pravastatin do nearly or more than half of the data points
exceed the confidence interval, showing poor prediction
performance. V3 shows that bupropion, caffeine and phe-
nobarbital have a very good overlay between the clinical
report and predicted result from the modified drug template,
with the observed data lying within the confidence interval
of predicted curve. For fluoxetine, alprazolam, quinidine and
triazolam, although the predicted results do not show an
excellent overlay with the experimental data, most of the
clinical data points lay within the confidence interval of the
prediction profiles. For lorazepam, although the observed
data were all at or around the upper confidence interval of
the predicted profile, the shape of the predicted curve is
very similar to that of the observed pharmacokinetic profile.
Unfortunately, the other drugs do not show very satisfying
prediction results, using clinical data points as reference.
To quantitatively measure the deviation of predicted con-
centration profiles from the experimental data, the differ-
ence between observed and predicted values was evaluated
by NRMSE (Table 3). The lower the NRMSE value is, the
smaller the difference between the predicted and experimen-
tal concentration profile, i.e., the better the performance of
the created drug model. The average NRMSE of V2 is 0.26
compared with the average value of 0.43 for V3, showing
that V2 can introduce less prediction error when combining
the two software platforms for prediction. Especially for V2,
although dextromethorphan has an NRMSE value as large
as 0.45, this should be caused by the deviation of the curve
from the first data point. All the remaining data points are
very close to the predicted curve. Fourteen of 18 drugs have
NRMSE values < 0.4, and 7 of them are < 0.2, showing

the satisfying prediction and collaboration quality of the
two software tools. For V3, the top three drugs, caffeine,
phenobarbital and bupropion, all have very small NRMSE
values, which is consistent with the fact that the simulated
C-T curves are well overlain with the experimental data
points as shown in Fig. 4. Interestingly, the NRMSE values
of fluoxetine (0.41), alprazolam (0.28), quinidine (0.53) and
triazolam (0.29) are quite different, even though the simu-
lated C-T curves of the four drugs are relatively satisfactory.
Taken together, both the overlay of simulated C-T curves
with the measured C-T data points and NRMSE should be
used to evaluate the quality of the predicted ADME parame-
ters by the ADMET predictor. Overall, the predicted ADME
parameters according to ADMET Predictor can produce sat-
isfactory C—T curves using SimCYP simulator for about half
of the tested drugs.

As illustrated in Figs. 3 and 4, more V2 version models
(Fig. 3) have better performance than V3 version models
(Fig. 4), suggesting log P,.,, pK,, B/P and F, are more accu-
rately predicted by ADMET Predictor than P, Vyand CYP
parameters. Regarding a specific parameter, the prediction
performance varies from one compound to another. Thus, we
recommend adopting a different version of parameter substi-
tution mainly based on the structural similarity between the
template and target drugs. When the structural similarity is
very high (TS > 0.9), fewer parameter substitutions are pref-
ered, while when the structural similarity is not very high,
more parameter substitutions are desirable, as the predic-
tion errors are smaller than the differences of the parameters
between the target and the template.

3.3 Predicted Concentration Profiles for the in Silico
PBPK Models

The C-T profiles predicted by all three versions (Versions 1,
2, and 3) of PBPK models are shown in Fig. 5. The NRMSE
value is also calculated to measure the differences between
observed and predicted values of three versions, respec-
tively, which are summarized in Table 4. The table cell is
marked with “*” if the NRMSE value of V1, V2 or V3 is
< 0.2. In the following, we grouped all 13 drug pairs/26
drug pair sets into three groups according to their Tanimoto
scores for the sake of discussion.

Group I (TS < 0.7). Six drug pairs, A-F, belong to this
group. According to Table 4, the performance of the three
protocols does not show an obvious pattern for Group 1.
V1, V2 and V3 have two (A-1 and D-1), five (A-1, A-2,
D-1, D-2 and F-1) and three (B-2, C-2 and D-2) pair sets
in “*” table cells, respectively. Most of those pair sets also
exhibit a good overlay between experimental data points
and prediction curves as shown in Fig. 5, indicating the col-
laboration between SimCYP and ADMET Predictor is good.
For the other groups from A-1 to F-2, all three protocols
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Fig.2 Predicted concentration

profiles and observed data of all g 12000 Bupropion 150 mg
drugs. Prediction results for all Bioom0 N
drugs except fluoxetine are from % R000 :
the original SimCYP template. § oo
The result for fluoxetine is from é i
the adjusted fluoxetine template. g z:: o,
Upper and lower dashed gray o 00 40 80 120 160 200 240
curves represent 95% confiden- e ()
tial interval -
% 3,500.00 Quinidine 400 mg
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S
E 0020 Alprazolam 0.8 mg
0015 {
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Y 0.005
0000 - + =
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Time (h)

Phenobarbital 216 mg

Time (h)

Simvastatin 10 mg

have NRMSE values > 0.2, and the simulated C-T curves
do not overlay the experimental data points well. Interest-
ingly, for the D-2 drug pair set, although the NRMSE of
the V2 model is the lowest, the predicted C-T curve by the
V3 model has a better shape fitting of the observed data as
shown in Fig. 5. This phenomenon is caused by the devia-
tion of the first data point from the predicted curve of V3,
which caused its NRMSE to be larger than that of V2. When
this outlier is eliminated and the NRMSE value is recalcu-
lated, V3 becomes the best for this pair set (NRMSEs are
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now 0.57, 0.16 and 0.06 for the V1, V2 and V3 protocols,
respectively).

Group I1 (0.7 < TS <£0.9). This group contains five drug
pairs, G-K. As shown in Table 4, most drug pair sets have at
least one version with NRMSE value < 0.2, except H-1 and
I-2. Notably, the NRMSE value of I-2 is only 0.21, and the
predicted C-T curve exhibits good consistency with experi-
mental data (Fig. 5). The failure of the H-1 model is likely
caused by using problematic ADME parameters predicted by
ADMET Predictor for the target drug. The “collaboration”
between the two software tools should not be a problem for
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Table 2 Comparison between

predicted and observed

pharmacokinetic profiles of all

drugs

Drug name Dosage Pred/obs Ty, (h) Chiax (ng/ml) AUC (ng/ml-h)
Bupropion 150 mg  Pred 2.16 61.62 721.88

Pred_V2 1.93 50.04 467.20

Pred_V3 1.86 71.84 614.66

Obs (1.30, 5.10) (34.00, 118.00) (486.00, 1518.00)
Dextromethorphan 60 mg Pred 1.56 13.13 195.70

Pred_V2 1.57 16.31 253.83

Pred_V3  2.69 162.33 3594.67

Obs NA NA NA
Bufuralol 15 mg Pred 1.49 55.62 386.06

Pred_V2 124 41.98 221.18

Pred_V3 1.75 18.66 151.83

Obs (1.84,2.74) (56.00, 72.00) (270.00, 430.00)
Quinidine 400 mg  Pred 1.16 1904.52 11632.95

Pred_V2 1.15 1554.16 9525.60

Pred_V3 1.66 2183.40 18988.42

Obs (0.36, 2.54) (1330.00, 2070.00)  (3800.00, 14860.00)
Lorazepam 2 mg Pred 1.92 18.24 240.28

Pred_V2 192 21.86 314.64

Pred_V3  2.08 32.98 531.29

Obs (0.50, 6.00) (15.80, 25.60) (197.20, 268.80)
Midazolam 7.5 mg Pred 0.60 39.97 99.77

Pred_V2 0.52 25.45 56.18

Pred_V3  0.87 39.58 383.67

Obs (0.22,1.21) (25.90, 80.20) (64.00, 163.70)
Alprazolam 0.8 mg Pred 1.23 12.22 193.14

Pred_V2 144 12.92 323.18

Pred_V3 2.16 7.74 327.10

Obs (0.70, 2.30) (8.20, 14.40) (173.20, 291.60)
Triazolam 0.25mg  Pred 0.72 2.34 13.94

Pred_V2 049 1.26 11.88

Pred_V3 147 1.80 24.95

Obs (0.35,2.15) (1.70, 4.30) NA
Mephenytoin 100mg  Pred 0.61 265.55 2576.76

Pred_V2 0.61 324.97 3089.24

Pred_V3  0.36 299.34 584.59

Obs NA NA NA
Phenobarbital 216 mg  Pred 2.07 5235.78 660577.85

Pred_V2 4.02 5658.75 691539.10

Pred_V3 4.03 4977.22 930922.01

Obs 2.00 5100.00 NA
Fluoxetine 20 mg Pred 4.36 6.50 186.21

Pred_V2 532 6.04 192.74

Pred_V3 2.68 13.89 291.07

Obs NA NA NA
Atomoxetine 20 mg Pred 1.25 169.56 1390.42

Pred_V2 0.74 61.41 192.74

Pred_V3 1.84 35.78 486.50

Obs (0.50, 1.55) (106.16, 178.16) NA
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Table 2 (continued)

Drug name Dosage Pred/obs Ty, (h) Chiax (ng/ml) AUC (ng/ml-h)
Simvastatin 10 mg Pred 1.20 2.11 7.03

Pred_V2 120 0.52 1.69

Pred_V3 1.20 24.03 78.42

Obs (1.00, 1.40) (2.60, 4.60) (7.40, 14.78)
Pravastatin 20 mg Pred 0.96 40.60 130.36

Pred_V2 1.08 206.61 578.24

Pred_V3 1.56 130.85 489.70

Obs (1.00, 1.20) (30.80, 42.20) (92.00, 126.80)
Theophylline 100 mg  Pred 0.75 2589.22 29614.81

Pred_V2 0.62 2372.22 19458.59

Pred_V3 0.62 1897.37 10003.06

Obs (1.38,1.82) (172791, 2036.31)  (21499.55, 24439.65)
Caffeine 100 mg  Pred 1.18 2540.84 13709.29

Pred_V2 1.25 1952.50 10269.04

Pred_V3  1.50 2114.02 12859.90

Obs (0.33,2.00) (1598.00, 2280.00)  (10700.00, 24438.00)
Imipramine 50 mg Pred 3.03 25.37 250.72

Pred_V2 3.13 28.18 300.21

Pred_V3 3.64 83.87 1082.01

Obs (2.80, 3.80) (20.90, 36.90) NA
Desipramine 50 mg Pred 542 13.56 264.97

Pred_V2 6.26 17.10 353.36

Pred_V3 6.25 50.66 1042.14

Obs (2.00,10.00)  (12.1,20.1) (211.60, 413.20)

Pred predicted drug pharmacokinetic parameters from the unchanged SimCYP drug template (except
fluoxetine; for fluoxetine especially, the SImCYP drug template is modified to enable the predicted profile
fit of the clinically reported curve), Pred_V2 predicted drug pharmacokinetic parameters using SimCYP
with input parameters (log P,.,, pK,, B/P and F,) from ADMET Predictor, Pred_V3 predicted drug phar-
macokinetic parameters using SimCYP with input parameters (log P,.,, pK,, B/P, F,, P V4 and CYP
parameters) from ADMET Predictor, Obs drug pharmacokinetic parameter reported by clinical research,
Cy. maximal concentration, T, the time at which Cy,, is observed, AUC area under the curve, pK, acid
dissociation constant, log P,,.,, logarithm of octanol-buffer partition coefficient, B/P blood-to-plasma parti-
tion ratio, F, fraction unbound in plasma, V; volume of distribution at steady state, P,; human jejunum

effective permeability, K,, Michaelis-Menten constant, V,, , maximal metabolism rate

this drug pair since the NRMSE values of H-2 are very low
for both the V2 and V3 models, which are 0.08 and 0.02
for the two models correspondingly. As shown in Table 4,
the V3 version models apparently outperform the V1 and
V2 models for most drug pair sets, as seven out of ten V3
models have NRMSE values < 0.2, while none of the V1
models and 2 V2 models have NRMSE values < 0.2. Inter-
estingly, for drug pair set J-2, the V2 and V3 models have
highly similar performances with good prediction results as
shown in Fig. 5; however, for K-2, all three model versions
do not exhibit satisfying prediction (Fig. 5), even though
the NRMSE values of the V1 and V2 models are equal to or
lower than the cutoff.

Group III (TS > 0.9). This group contains two drug pairs,
L and M. As shown in Table 4, most models have satisfac-
tory NRMSE values. For L-1 and L-2 drug pair sets, the
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predicted profiles of the V2 and V3 models are very close to
the clinical data points. Interestingly, for M-1 and M-2 drug
pair sets, the performance of the V3 models is very poor.
Drug pair M has structural similarity with the TS of 0.95;
interestingly, the V3 models perform poorly while the V1
and V2 models have not only satisfactory NRMSE values
but also very well-overlain C-T curves with measured data
points. This phenomenon may be explained by the prediction
error by ADMET Predictor, and error caused by the inherent
difference between the two software platforms can be com-
pensated by the small difference in the ADME parameters
between the template and target drugs. Indeed, the NRMSE
values of the two drugs in drug pair M, 0.51 and 0.70, are
very large (Table 4).

As shown in Fig. 5, the performance of three parameter
substitution versions varied from one drug pair to another
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mainly depending on the net effect of eliminating two
sources of errors, the prediction errors of ADMET Predictor
and the errors of applying the template model to describe the
target. For the first source of errors, more and more predic-
tion errors are introduced from V1 to V2 and then to V3.
The second source of errors is big for dissimilar drug pairs
(Group I) and small for highly similar drug pairs (Group III).

For a structurally dissimilar drug pair, V2 or V3 are neces-
sary to overcome the large second source errors, even though
more first source errors are introduced. On the other hand,
for a structurally similar drug pair, V1 or V2 is preferrable as
the errors from both sources are small. More discussion on
choosing proper versions of a parameter substitution scheme
is provided below.
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4 Discussion

In this study, we developed a novel approach to construct
in silico PBPK models for target drugs lacking experimen-
tal ADME and other pharmacokinetic parameters using an
established PBPK model of a structurally similar drug as
the model template. We used 18 drugs, which formed 13
drug pairs (A-M) and 26 drug pair sets (each drug in a pair
serves the template and target roles alternatively) to evalu-
ate three ADME parameter substitution protocols, which
are corresponding to three versions of PBPK models. The
performance of the in silico PBPK models was critically
evaluated using experimental pharmacokinetic profiles and
parameters.

4.1 Practical Guidance on Selecting a Suitable Drug
Template

We attempted to obtain guidance on selecting a suitable
template drug for a given target drug. We focused on using
structural similarity to select the template drugs. It was
found that drug pairs with Tanimoto score > 0.70 (Groups II
and IIT) tended to show better prediction performance among
the three versions compared with drug pairs with Taminoto
score < 0.70 (Group I). It is obvious that the higher struc-
tural similarity of two drugs within a drug pair should con-
tribute to the higher possibility of good prediction results.
After comparing the model performance of all three versions
of models, we developed the following guidance: for Group
I drug pairs, V2 or V3 is recommended; for Group II drug
pairs, V3 is recommended; for Group III drug pairs, V2 is
recommended. Following this practical guidance, 16 out of
26 drug pair sets have NRMSE values < 0.2, the threshold to
recognize a good PBPK model. Nevertheless, the prediction
accuracy of ADMET Predictor and the extent of inherent
difference between it and SIimCYP are also crucial factors
that affect the model performance. From the evaluation of
the error caused by combining the two software tools, the
prediction accuracies of each modified drug template varied
from each other, which shows the influence of the introduced
error can be very different for different drugs.

Additional criteria other than structural similarity
between the template and target drugs may be introduced
to further improve the computational protocol since the
prediction performance of drug pairs with the similar/same
TS may have different prediction accuracies as indicated by
Fig. 5. This phenomenon is more obvious for drug pair sets
with low TS. For example, for drug pair set D (lorazepam/
midazolam), the prediction for midazolam by V3 version
of parameter substitution is much more accurate than that
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Table 3 Calculated normalized root mean square error (NRMSE)
between predicted results by modified drug template and experimen-
tal concentration profiles of drugs

Name NRMSE V2 NRMSE V3
Alprazolam 0.26 0.28
Atomoxetine 0.35 0.40
Bufuralol 0.17 0.36
Bupropion 0.18 0.26
Caffeine 0.13 0.13
Desipramine 0.35 0.70
Dextromethorphan 0.45 0.93
Fluoxetine 0.10 0.41
Imipramine 0.21 0.51
Lorazepam 0.25 0.53
Mephenytoin 0.24 0.48
Midazolam 0.27 0.29
Phenobarbital 0.14 0.22
Pravastatin 0.42 0.53
Quinidine 0.08 0.53
Simvastatin 0.56 0.52
Theophylline 0.12 0.29
Triazolam 0.41 0.29

for lorazepam. This discrepancy may come from the failure
of parameter prediction by ADMET Predictor and/or the
imperfect collaboration between the two software platforms.
Fortunately, this inconsistency problem becomes less severe
when the drug pairs share higher structural similarities as for
drug pair sets from G to M.

4.2 Another Possible Method to Evaluate
the Prediction Results of the Three Versions

There is also another method to evaluate the prediction
results of V1, V2 and V3, which is the fold error in the AUC
of the three prediction versions compared to the clinical
data. However, the fold error in the AUC can only show the
difference between the total area under the prediction curve
and the literature-reported pharmacokinetic curve without
delineating the concrete shapes of curves. Contrarily, the
shape of the predicted drug C-T curve can be reflected by the
difference between predicted and observed drug concentra-
tions at each time point when using RMSE as an evaluation
method. Furthermore, the variation of the dosages can con-
tribute to large RMSE discrepancy among drugs. Therefore,
we normalized RMSE to eliminate the influence of dosages
on RMSE values. The utilization of NRMSE can help to
reduce the false-positive rate.
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Fig.4 Predicted concentration
profiles using SimCYP drug
template with input param-
eters from ADMET Predictor
(log Po:w’ pKa’ BlP’ Fu’ Peff’
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fective permeability, V, volume
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4.3 Perspective of Applying in Silico PBPK Modeling
for Compounds Lack Experimental ADME
and Pharmacokinetic Properties

SimCYP simulator is an advanced software with well-con-
structed drug pharmacokinetic models in its built-in drug
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library, with each drug template containing comprehensive
drug parameters. It can intuitively show simulated drug C-T
curves contributed by these parameters under different trial
designs. On the other hand, ADMET Predictor can predict
many pharmacokinetic parameters of an input compound
based on its structural information without giving additional
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Fig.5 Predicted concentration profiles of three versions and observed data of all predicted drugs

information. However, constructing a drug pharmacokinet-
ics model needs full-scale pharmacokinetic parameters, and
some of them cannot be predicted reasonably. Considering
this, we can partially rely on the pharmacokinetic parameters
of another compound which shares high structural similarity
with the unknown target compound. In this study, we put
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forward a novel approach to build PBPK models for a target
drug with a lack of measured ADME and other pharma-
cokinetic parameters using the PBPK model of a template
drug which is structurally similar to the target drug. Also,
we proposed overall guidance on selecting a suitable tem-
plate drug and using its PBPK model as the model template.
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The success of this computational approach depends on two
important factors, the availability of a high-quality PBPK
model for the template compound and accuracy and consist-
ency of the ADME and pharmacokinetic parameters pre-
dicted by ADMET Predictor software for the target drug.
Thus, the performance of two software tools can greatly
contribute to the experimental results of our study. As a
calculator of ADMET properties for compounds, the pre-
diction results of drug properties may not be close enough
to the real state, leading to errors when constructing drug
models. Additionally, not all the ADME/pharmacokinetic
properties can be calculated with the current version of
ADMET Predictor. For example, the prediction of metabo-
lism in ADMET Predictor is limited to only five commonly
used enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19
and CYP3A4), and the prediction results of the transporters
related to the drug can only be reported qualitatively rather
than quantitively. On the other hand, there are currently 70
established compounds in SImCYP’s drug libraries (includ-
ing both the substrate and inhibitor libraries), and the librar-
ies are still under development. We tested 18 compounds
that shared structural similarity, and this study will be filled
out as more clinically validated PBPK models and related
parameters for in-use drugs become available.

At the current stage, application of this proposed method
to construct a PBPK model for a candidate compound may
encounter some difficulties, such as failing to identify a tem-
plate drug in the SimCYP library that shares high structural
similarity with the target compound or several template
drugs being identified in SimCYP library that have similar
structural similarity with the target compound. For the first
problem, a practical solution is to greatly expand the library
of PBPK models, and we are now constructing high-quality
PBPK models for the top-selling drugs. For the second prob-
lem, we can add additional criteria to further prioritize the
templates; those criteria include but are not limited to key
ADME properties (such as aqueous solubility, permeability
and metabolism profile) and drug targets.

Nevertheless, we have proposed a practical approach
to generate PBPK models for a compound lacking experi-
mental ADME/pharmacokinetic properties. This model can
serve as the initial version of the PBPK models for the tar-
get compound, and its performance can be improved using
the measured pharmacokinetic profiles and properties in the
future. The computational protocol introduced in this work
can have important applications in selecting drugs to enter
the drug optimization phase or drug candidates to enter pre-
clinical studies.

Table 4 Calculated normalized root mean square error (NRMSE)
between predicted (three versions) and experimental concentration
profiles of drugs in each drug pair set

Drug group Drug pair set NRMSE (different Tanimoto score

versions vs. obs)

V1 V2 V3

Group I A-1 0.14* 0.13* 049 050
A-2 026 0.19* 050 0.50
B-1 044 049 049 052
B-2 0.67 049 0.07* 0.52
C-1 0.64 034 031 057
C-2 0.68 0.67 0.13* 0.57
D-1 0.14* 0.16% 048 0.63
D-2 0.61 0.16% 0.19*% 0.63
E-1 022 032 035 0.65
E-2 043 056 035 0.65
F-1 024 0.19% 033 0.69
F-2 088 028 027 0.69
Group II G-1 094 094 0.04* 0.74
G-2 0.58 056 0.14* 0.74
H-1 0.56 056 052 078
H-2 044 0.08 0.02* 0.78
I-1 049 036 0.04* 0.82
1-2 034 038 021 0.82
J-1 043 057 0.14% 0.84
J-2 045 0.13% 0.12% 0.84
K-1 0.69 0.67 0.06% 0.88
K-2 020 0.15% 0.38 0.88
Group I L-1 0.34 0.06% 0.12% 0.93
L-2 022 0.19% 0.17* 0.93
M-1 0.08* 0.10* 0.66 0.95
M-2 0.13*% 0.15% 040 0.95

The normalized root mean square errors (NRMSEs) of the target and
template drugs, which are adopted from Table 3, measure the quality
of the ADME prediction using ADMET Predictor and/or the inherent
difference between the two software platforms. The Tanimoto scores
in the last column come from Table 1

Obs, the drug pharmacokinetic parameter reported by clinical
research; V1, version 1; V2, version 2; V3, version 3

5 Conclusions

In this work, we have introduced and tested a novel com-
putational protocol to develop an in silico PBPK model for
a compound lacking measured ADME/pharmacokinetic
properties and pharmacokinetic profiles. The general idea
is to choose a proper PBPK model as the template when the
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corresponding compound, the template drug, is structurally
similar to the target drug. For the target drug, we calculated
the ADME properties using ADMET Predictor of Simula-
tionPlus Inc. We have developed an overall guidance using
this method to build PBPK models for an arbitrary drug.
First, the structural similarity between the template and tar-
get drug is very important; thus, template drugs that have
the highest structural similarity to the target drug should be
considered first; second, once the target drug is selected, the
ADME parameter substitution protocol is selected based on
the Tanimoto score between the target and template drugs.
If TS is £ 0.7, V2 or V3 protocol is recommended; if TS is
> 0.7 but < 0.9, V3 protocol is suggested. If TS is > 0.9, V2
is recommended. Following this guidance, > 60% (16 out of
26) of the PBPK models have satisfactory performance. It is
emphasized that this method relies greatly on the collabo-
ration between SimCYP and ADMET Predictor as well as
the prediction accuracy of ADMET Predictor. The NRMSE
values of the template and target drugs can guide us to select
proper substitution protocols. If the NRMSE values are
small, one can select a protocol with many ADME param-
eters being substituted, such as V3; however, if the NRMSE
values are large, adopting V2 or V1 protocols can minimize
the error due to the poor “collaboration” between the two
software platforms. Unfortunately, the NRMSE value of the
target drug is unknown in practice. A tool which can predict
this NRMSE parameter is thus needed to further improve
this method. While future experimental work is definitely
needed to further improve the model performance, our novel
approach proposed in this work can help identify drug can-
didates with favorable pharmacokinetic profiles, reducing
experimental cost and providing insight into drug discovery
and development.
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