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In this paper, a higher order time-discretization scheme is proposed, where the iterates approximate the
solution of the stochastic semilinear wave equation driven by multiplicative noise with general drift and
diffusion. We employ variational method for its error analysis and prove an improved convergence order
of % for the approximates of the solution. The core of the analysis is Holder continuity in time and
moment bounds for the solutions of the continuous and the discrete problem. Computational experiments
are also presented.
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1. Introduction

Let © C RY, for 1 < d < 3, be a bounded domain. We consider the numerical approximation of the
following stochastic semilinear wave equation perturbed by multiplicative noise of It6 type:

32u + Au = F(u,d,u) + o (u, d,u) 3, W in (0,T) x O,
u(,) =uy, u,:) =y, in O, (1.1)
u(t,) =0 ondO, Ve (0,7),

where A is a strongly elliptic second-order differential operator of the form

d
0 0
Ap(x) = — Z s (aij(x)ago(x)) Vxe O, (1.2)
ij=1 J
with suitably smooth coefficients al-j(x), where df = 4 Vi, J» and for every nonzero £ € R4,

Zi/ aij(x)éié- > y|£|?, for some constant y > 0. Here, F and o are Lipschitz in both arguments.
Let P := (£, F,F,P) be a filtered probability space with F = {F}o_,-7, and {W(1)},- be a finite
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dimensional Wiener process defined on it; the initial data u, and v, are given F,—measurable random
variables.

A strong variational solution to (1.1) exists, see e.g., (Chow, 2015, Section 6.8), and is usually
constructed via the reformulation of (1.1); as a first-order system by setting v = 9d,u,

du = vdr (1.3)
dv = (—Au + F(u,v)) dt + o (u, v) dW (), '

and then using a Faedo—Galerkin method, related uniform energy bounds and a compactness argument;
see Definition 3.1 and Appendix A below. A prototype example is A = — A, for which we associate the
following energy functional

1 1
E,v) =&y (V) +Eq () = E/O|v(x)|2dx+§/o|Vu(x)|2dx, (1.4)

where the first term represents the kinetic energy, and the second the elastic energy of the propagating
wave with pointwise elongation u : [0,7] x O x §2 — R. We begin the further discussion with an
example to motivate the effect of noise.

ExampPLE 1.1 Let O = (0,1), T = 1,A = —A, F = 0in (1.1), and W be of the form (2.2), with
M =3, and ¢;(x) = V2 sin(jrx). The first line in Fig. 1 displays single trajectories of u for different
o = o (u,v). For o = 0, both the amplitude and wavelength remain constant over time in snapshot (A),
as does E(u,v) in (D). For o (u,v) = %u, the amplitude of a single wave realization in snapshot (B)
changes—as do the trajectory-wise energy parts in (E)—while the wavelength remains constant over
time. The computation of the (approximate) total energy uses MC = 103 Monte-Carlo simulations in
snapshot (G): it is conserved and close to (D).

For o (u,v) = %v, both the wavelength and frequency of a single trajectory are heavily affected, see
snapshot (C) and (F), where only t — &, (u(f, )) is smooth. In contrast, the dynamics of Ey[€ (1, v)]
in (H) recovers the exchange of elastic and kinetic energy parts, but the total energy is not conserved
any more. The proper resolution of snapshot (H) required 5 times more Monte-Carlo simulations than
for (G).

The first works to numerically solve (1.1) are Walsh (2006) and (Quer-Sardanyons & Sanz-Solé,
2006), where (semi-)discrete schemes were constructed based on the solution concept of a mild solution
for (1.1): in (Walsh, 2006), which considered O = R, A = — A, Lipschitz nonlinearities F = F(«) and
o = o (u) and white noise, a strong convergence rate O (k'/%) was shown for an explicit finite difference
scheme, where the temporal step size k is equal to the mesh size & of the Cartesian spatial mesh; the
error analysis uses the Green’s function, which is explicitly known in this case, and hence used the mild
solution concept for this Cauchy problem.

A further development in this direction is (Cohen et al., 2013), where O = (0,1),A = —A
in (1.1), and the authors used the explicit representation of (discrete) Green’s function, such that its
implementation crucially hinges on the availability of eigenvalues and eigenfunctions of the Laplacian;
see also (Chow, 2015, Section 5.3), and (Hochbruck & Ostermann, 2010). The stable scheme then allows
independent choices of k and %, and the proof of (Cohen ef al., 2013, Theorem 4.1) provides convergence
rates, both in terms of spatial and temporal discretization. We also mention (Cohen & Quer-Sardanyons,
2015), where O is a bounded convex domain with polygonal boundary, and A = — A in (1.1); the space-
time discretization was proposed with the explicit knowledge of the related (discrete) semigroup, whose
efficient implementation again hinges on the knowledge of the related eigenvalues and eigenfunctions.
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(@) o(u,v) = La, (1) o(u,v) = %v,
with MC = 10° with MC = 5 x 10°

FiG. 1. (Example 1.1) (First line) Single trajectory of u from (1.1), simulated via (@, B)-scheme (@ = 1). (Second line)
Corresponding elastic (Ee135), kinetic (Exin), total energy (£), for mesh sizes h = 2=7 and k = 2710, (Third line) Plots
1 > Eyc[€u(t), v(1))], with MC = 10 in snapshot (G) and MC = 5 x 103 in (H).

Later, in (Anton et al., 2016), the authors addressed the multiplicative noise case with o = o (1), where
o and also the nonlinearity F = F'(u) were assumed to have zero trace. The above mentioned works did
not address the case when F = F(u,v) and 0 = o (u, v).

In engineering applications for elastic and acoustic wave propagations, which may be described by
(1.1), the considered domains @ C R? are typically complicated, and/or the propagating medium is
heterogeneous, with layers, anisotropies, cavities (e.g., in seismology, or material testing) or may even
be random. Moreover, models of type (1.1) often require nonconstant and nonself-adjoint operators,
such as those in (1.2), which may even have random coefficients. Therefore, such engineering problems
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often exclude the efficient use of semigroup based methods through spectral theory as discussed above.
This motivates us to aim for the following goals in this work:

(1) Use an implicit method in time (below referred to as (&, 8) —method, where @ = 0; see Scheme 2)
to approximate (1.1) with F = F(u, d,u) and 0 = o (u, d,u), and employ variational methods for
its error analysis. This part is motivated by (Dupont, 1973) for the deterministic linear wave
equation, i.e., F = o = 0. For finite dimensional noise of type (2.2), we use energy arguments to
obtain O(k) for the temporal error—which coincides with the order obtained in (Walsh (2006),
Theorem 4) and (Cohen et al., 2013, Theorem 4.1) for an exponential integrator, in the case
o = o (u), F = F(u) and trace-class noise in (1.1). We obtain (’)(k%) for the temporal error in the
general case 0 = o (u,v) and F' = F(u, v), which has not been addressed in the existing literature.

(2) Foro = o(u) and F = F(u), in fact, we improve the (&, 8)—method to a higher-order method
that yields improved convergence order O (k%/?) for approximates of u in I.?; see Theorem 5.1.
The additional term that arises for @ = 1 is motivated by Itd’s formula, and uses increments

In+1 Int1
Aanz/ (s —,) dW(s) =/ sdW(s) — 1,4, W. (1.5)
ty In

(3) Computational experiments in Section 6 show that these results are sharp w.r.t. the used noise,
i.e., there are examples for ¢ = o (u,v) where the error converges only in order O (k)—rather
than O(k>/?) in the case o = o (u).

In this work, we focus on proper time discretizations for (1.1), which we consider to be the essential
part of an overall discretization, and leave a related finite element error analysis for future work. The
results will be derived for (1.1) with A = —A to simplify the technical setup, but easily generalize
to A in (1.2), even with random coefficients there. Moreover, the (@, 8)—method is neither a spectral
Galerkin method nor does its implementation hinge on related semigroups.

While being inspired by the second-order time-stepping scheme of (Dupont, 1973) for the

. . 1 _ .
deterministic wave equation, where u™2 := %(u”“ +u" 1), we propose the following scheme for (1.1):

ScHEME 1. ((a, B)—scheme) Fix o € {0,1} and 8 € [0,1/2). Let {tn}ﬁlv=0 be a mesh of size k > 0
covering [0, T], and {(", v”)n:O’ 1} be given ]-',n—measurable, [H(l)]2—valued r.v.’s. For every n > 1, find
[H(])]z-valued, Fi,.,-measurable r.v.’s ("1, v 1 such that P-a.s.

W =) =k g) Vg e L2, ] (1.6)
O =) = —k(VE"2, VYY) + (o (W' V'72) AW, )

+a (Do (", v"f%) v Z;V/V, V)
+§(3F(u",v") —F "Wl y) vy e H), (1.7)

where

nl o 14 BkP 1—-BKkP
22 . n+1 n—1
Ug” 1= s u +—2 u o,

S
1=

(1.8)

<)
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and

1

n—x 1 n n—1
AW =W, ) — W(,) and V72 = E(V +Vvi0).

Note that 72 = ™ for B = 0. Also, in the case when F = F(u), 0 = o(u) and 8 = 0, the
(a, B)—scheme simplifies to (for n > 1)

Wt = ) = k(" 9) Vo e L2, (1.9)
W V) = —k (VUL V) + (o) AW, Y) + & (Do W AW, Y)  (1.10)
]_C ny _ n—1 1
+2(3F(u ) —FW'"™"),¢) Vi eH).

Scheme 1 involves the increment A, W from (1.5). Since it is not computable, we use 1t6’s formula
to write A, W as

o~ Int tht1
AW = / 1 [W(t, ) — W(s)] ds = kW (1, ) —/ W(s) ds. (1.11)
In In

We then approximate the last term by k> z]z:l W(t, ) to get a computable approximation of Z;V/V by
k—l
AW = kW (1, ) —kZZW(tM), (1.12)

=1

Ko . . . S 1
where {W(tn,e)} s is the piecewise affine approximation of W on [z,,7,,] on an equidistant mesh

t :] , of step size k? := —t,,. The identity (1.11) leads to
{ n,Z}lg_l nl+1 nt
— Int1 » 3
E[|AnW| ] gk/ E[|W(tn+1) — W) ] ds < CK3,
tn

and the identity (1.12) infers forg = 1,2

k—l
E [|A/,,W|24] < CKME [|W(tn+1)|2q] + K S E [|W(w)|2q] < CK3 4+ CK* < K.
=1

Hence, the approximation of Z,:V/V by A/HVV maintains the mean property of the former. This is the very
reason to use k> as the step size to approximate the last term in (1.11). We also note that the estimation

of the distance between A, W and A/nVV will be useful in the convergence analysis to be presented
in (5.11).
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&, & &, -
i e o g W -7 Ptae
J -7 =12 error foru 02 -7 —=L2 error for V u 102 //’// =12 error for v
-7 order 1/2 _- order 1/2 order 1/2
——order 1 ——order 1 ——order 1
— — order 3/2 — — order 3/2 — — order 3/2
o z ! o 0% 10 o 10"
Time step Time step Time step
(A) L2-error for u (B) L*-error for (¢) L2-error for v
(@ =0 case) Vu (@ =0 case) (@ = 0 case)
100 10° 100 T
g, } g, 5, e T
& & = - -

P order 1/2
r ~~order 1
— — order 3/2

——=L2 error foru

e L2 error for Vu
- order 1/2
—~order 1
— — order 3/2

- —=L2 error for v
order 1/2

—~order 1

— — order 3/2

10 10!
Time step

(D) L2-error for u
(@ =1 case)

10
Time step

(E) L*-error for
Vu (@ =1 case)

10!
Time step

(r) L%-error for v
(@ =1 case)

FiG. 2. (Example 1.2) Temporal rates of convergence for the schemes (1.9)—(1.10) with F = 0 and o (1) = 2sin(u); @ = 0 in

(A), B), (C) and @ = 1 in (D), (E), (F); discretization parameters: h =27 k = {273,... 2~

61 MC = 3000.

SCHEME 2. ((a, B)—scheme) Cons1der Scheme 1. We refer to (1.6)—(1.7) as (&, 8)—scheme, when &
and A W are replaced by @ and A W, respectively.

The following example motivates that the convergence rate for the (1,0)—scheme is boosted from
O(k) to O(k*/?), in case 0 = o' (u) and F = F(u).

EXaMPLE 1.2 Let O = (0,1), T = 1,A = —A, F = 0, o (u) = 2 sin(u) in (1.3). Let

ug(x) = sin(2mx) and vo(x) = sin(3mx),

and W as in Example 1.1. Figure 2 displays convergence studies for the schemes (1.9)—(1.10): fora = 0,
the plots (A)—(C) show LL2-errors in u, Vu, evidencing convergence order O (k), and those for v evidence
convergence order OKkY?). Fora = 1, the convergence order improves to O3/?) for u, Vu and O(k)
for v; see plots (D)—(F). See Section 6 for more details.

The rest of the paper is organized as follows. In Section 2, we precise the data requirements in (1.3)
with A = — A, and provide the structure assumptions on F and o. In Section 3, we recall the concept
of a strong variational solution for the problem (1.3) and discuss its regularity. In Section 4, we prove
stability results for the (a, 8)—scheme. In Section 5, we prove strong rates of convergence for the above
mentioned schemes. In Section 6, we present comparative computational studies that evidence the role
of noise in various cases and validate the proved error estimate results.
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2. Preliminaries and assumptions
2.1 Notation and useful results

Let (L7 (O), || - l;p) and (W™ (O), || - lyym,) be the Lebesgue and Sobolev spaces, respectively, endowed
with usual norms for m € Nand 1 < p < co. We denote I := [P(O) and WP := W™ (QO). For
p =2, let (-, -) be the inner-product in L2, and H™ := W™2. We define H(l) ={ueH: ulyon = 0}.

Let X, Y be two separable Hilbert spaces. Let £(X, Y) denote the space of all linear maps from X to
Y, and £,, (X, Y) denotes the space of all multi-linear maps from X x - - - x X (m-times) to Y for m > 2.
Throughout this paper, for some @ : H} x H} — L2, we use the notation D, ® (u,v) € L(H],L?) for
the Gateaux derivative w.r.t. #, whose action is seen as

h+ D,®(u,v)(h), forh e H).
We denote the second derivative w.r.t. u by Diqb (w,v) € L, (H!}, 1L2), whose action can be seen as
(h, k) > D2 (u,v)(h, k) := (D2® (u, k) (k) for (h,k) € [HY]’.
Similarly, we define D, ® (u,v), D2® (u,v).

2.1.1 A quadrature formula. The following quadrature formula will be crucially used in our error
analysis (see (Dragomir & Mabizela, 2000, Theorem 2)).

LEMMA 2.1 Letf € Ccly ([0, T]; R), for some y € (0, 1]. Then there holds

fO+fm 1 [T ' C L4y
2 T/o ] T K

where C > 0 satisfies

If'0) —f )| <Clt—s”  V¥s,te[0,T]. (2.1)

2.2 Assumptions

In this section, we list all the assumptions and hypotheses that are imposed throughout this paper.

2.2.1 Domain and initial data. ~'We make the following assumptions.
(Al Let O C R4, for 1 < d < 3, be a bounded domain

(i) with 9O of class C', and (u, v) € H} x L2,

(ii) with dO of class C2, and (ug, vy) € (H) NH?) x H},
(iii) with 9O of class C3, and (uy,vy) € (H) NH?) x (H) NH?),
(iv) with 30 of class C*, and (uy, vy) € (H) NH*) x (H} N H3).
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8 X. FENG ET AL.

2.2.2  Probability set-up. For simplicity, let W be a finite-dimensional Wiener process.
(A2) Let B := (.Q, F AF 0 H”) be a stochastic basis with a complete filtration {,},., € F. For
some M € N, let W be a K-valued Wiener process on ‘B of the form

M
W(t,x,0) = Y B(t,w)e;x), 2.2)

J=1

where K C H(l)ﬂH3 is a Hilbert space, and { ,Bj(t, w);t > O} are mutually independent Brownian motions
relative to {F},-(, and {ej}jni | be an orthonormal basis of K.

2.2.3  The nonlinearities of the model. Let F : []Hl(l)]2 —~L%?ando : [IHI(I)]2 — H(l).

(A3) Assume F(u,v) = F|(u) + F5(v) and o (4, v) = o (u) + 0,(v), where F, and o, are linear, i.e.,
there exist constants By, B, € R such that F,(v) = Bpv and 0,(v) = B, v. For any u,ii € H, there is a
constant C;, > 0 such that the Lipschitz condition holds:

1Fy () — Fy@ 2 + lloy(w) — oy (@2 < Cp llu— ullp2.
(A4) There exists a constant C . > 0 such that
”DgFl(‘)”LOO(H});LH(H(I),LZ)) + HDZ’GI(')”LOO(HQ);L,,,(H(I),H}J)) = Cg (m=1,2,3).

We assume that F(u, v) may not have a zero trace. For example, F(u,v) = u+v + |x|2 + 1. Thus, we
introduce the following notation.

(AS) Let F(u,v) := F(u,v) — F(0,0) = F|(u) + F,(v) — F(0,0), and assume F(0,0) € H" for
m=1,2,3.

3. Definition and properties of solution

We recall the concept of a strong variational solution for (1.3) with A = —A and establish stability
results in higher spatial norms, and bounds in temporal Hélder norms.

DEFINITION 3.1 Assume (A1);, (A2) and (A3). We call the tuple (u,v) a strong variational solution of
(1.3) with A = — A on the interval [0, T if

(i) (u,v)isan H(l) x L2-valued, {F,} — adapted process;
(i) (u,v) € L* (£2;C([0, TT; HY)) x L? (2; C([0,T];L?)) ; and

t
(u(n), 9) =/0 (v(s), $) ds + (up, ¢) V¢ € 12, (3.1
t
0@, ¥) = _/o [(Vu(s), Vi) + (F(u,v)(s), ¥)] ds
t
+/0 (W, 0 (u,v)(5) AW (s)) + (v, ¥) VY € Hy, (3.2

holds for each r € [0, T] IP-a.s.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 9

(iii) There exists a constant C > 0, depending on 7', C;, and initial data such that there holds

E|: sup S(u(t),v(t)):| <C.

0<t<T

The existence of a unique strong variational solution was shown in (Chow, 2015, Section 6.8,
Theorem 8.4).

LeEmMA 3.2 Let (u,v) be the strong (variational) solution to the problems (3.1)—(3.2). For p € N, there
holds P-a.s.
(i) under the hypotheses (A1);, (A2) and (A3), the {F,},.,—adapted process (u,v) € L% (SZ; L>(0,T;
H! x ]Lz)), and there exists K; = K, (p) > 0, such that

E[ sup_([lu(o) I + ||v(r)||f{;)} <K (3.3)

0<t<T

(if) under the hypotheses (A1), (A2), (A3) and (A4), (AS) for m = 1, the {F,},.,—adapted process
(u,v) € L% (£2;L°°(0, T; H? x H')), and there exists K, = K, (p) > 0, such that

E [ sup_(Ilulizh + ||v(r>||§§.)} <Ky (3.4)

0<t<T

(iii) under the hypotheses (A1);;, (A2), (A3) and (A4), (AS) form = 1, 2, the {F,} tzo-adapted process
(u,v) € L% (.Q;LOO o,T; H3 x Hz)), and there exists K3 = K5(p) > 0, such that

E [ sup_(Jlulizh + ||v(r>||§§;)} < Ky; (3.5)

0<t<T

(iv) under the hypotheses (A1);,, (A2), (A3) and (A4), (AS) for m = 1,2,3, the {]-",}IZO -adapted
process (u,v) € L (£2;1°°(0, T; H* x H*)), and there exists K, = K, (p) > 0, such that

2, 2,
E[ sup (Ilu(t)llﬂﬁl + ||v(t)||mf3)] < K,. (3.6)
0<t<T
Proof. The proof is given in Appendix A. (]

3.1 Holder continuity in time

In this subsection, we derive temporal Holder continuity estimates for the solution pair (u,v) of the
problems (3.1)—(3.2) with respect to different norms, which will be useful in the error analysis in a later
section.
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10 X. FENG ET AL.

LeEMMA 3.3 Let (u,v) be the strong (variational) solution to the problems (3.1)—(3.2). Then, for any
s,t € [0,T], we have forp > 1

(i) under the hypotheses (A1);, (A2) and (A3), there holds P-a.s.

5 1/2p
(E [ sup [lu(r) — u(s)||L1;D < C(K)) |t —sl;

S<r<t

(i) under the hypotheses (Al);;, (A2), (A3) and (A4), (AS) for m = 1, there holds P-a.s.

i’

1/2p
(E[wpmmo—wmﬁq) +E[wpw@»wmm@]scmyv—m

S<r=t S<r<t

(iii) under the hypotheses (A1)..., (A2), (A3) and (A4), (AS) for m = 1, 2, there holds P-a.s.

iii>

1/2p
(E |: sup [lu(r) — M(S)llﬁz]) +E |: sup [[v(r) — V(S)ll]%p:| < C(K3) |t —sl;

S<r<t S<r<t

(iv) under the hypotheses (A1),,, (A2), (A3) and (A4), (AS) for m = 1,2, 3, there holds P-a.s.

v’

1/2p
(E [ sup [lu(r) — M(S)Ilifg}) +E [ sup [|v(r) — V(S)Ilﬂzﬂz] < C(Ky) |t — s,

S<r=<t S<r=<t

where the positive constants C(K;) for i = 1,---,4, depend on the constants K;, defined in
Lemma 3.2.
Proof. The proof is given in Appendix B. g

4. Discrete stability analysis for the (&, 8)—scheme

i 1. ~ . - .
If compared to the term —Au'>2, the term —A%'>2 in the (o, 8)—scheme fortifies stability properties of
the method: in fact, the identity

B
wwzw%+ﬂ%@”hw“5=wé+&”%”% .1

creates an additional ‘numerical dissipation’ term scaled by Sk**# in (1.3), which suffices to control
general noises 0 = o (1, v),incase 0 < B < % (see Lemma 4.1 below); for o = o (1) only, the schemes
(1.9)—(1.10) yield a stable scheme.

In this section, we discuss the discrete stability analysis for the (&, 8)—scheme and we make a
remark on the stability results of the schemes (1.9)—(1.10), as this is a sub-case of the (@, 8) —scheme.
We recall (1.4), where the energy functional is stated.

(B1) For the stability results, we need the following assumptions on the iterates (u!, v!):

(i) Along with (A1), assume (u!,v!) € L?" (2;[H]1?) forp > 1.

(i) Along with (A1);;, assume (u',v!) € L¥ (£2; [H} N H?]?) forp > 1.

i’
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 11

LemMa 4.1 Let@ € {0, 1}. Assume (A1);;, (A2), (A3), (A4) for m = 1 and (B1);. Then, there exists an
[H(l)]z-valued {(F, )o<n<n}—adapted solution {(u",v"); 0 < n < N} of the (@, B)—scheme. Moreover,

for0 < 8 < %, and k < ky(Cy, Cg) sufficiently small, there exists a constant C; = C;(8) > 0 that does
not depend on k > 0 such that

1<n<N-1

N—1

max E[£@" v ]+ g2t S E [II vVt Hiz] <C. (4.2)
n=1

In addition, there exists a further constant Cz,p = C2’p (B) > 0 such that we have

1<€1n<a1i](71E[52p (u”+1,vn+l)] <Gy, > 1. 4.3)

Additionally, assume 0,(v) = 0 = F,(v) in (A3) and 8 = 0. For k < ky(C;, Cg) sufficiently small,
there exists a constant C; > 0 independent of k > 0 such that

1 n ) 2
12¥NE[||W”£2]+ZE kEUWHIL2 <C, (4.4)
j:

There exists further constant C, , > 0 such that we have
ny 2P
max E[Iw)%2] < Chp (o= 1), 4.5)

Before presenting the long proof, we give some remarks about the scheme to help understanding the
technicalities in the proof.

REMARK 4.2 1. Unlike parabolic stochastic partial differential equations (SPDEs), no numerical
dissipation is introduced by the (&, 0)—scheme for the stochastic wave equation (1.3). This creates a
major difficulty after (4.11) in the proof to numerically handle the noise term, which is solved by the
‘B-term’ in the (&, 8) —scheme to settle (4.2).

2. The last term in (4.1) is the reason to evaluate o and D o at (u", v”_%), instead of at (", V"), in
the scheme. See (4.10) and how the terms _# 1" 21 . F 1'5’12 and 7 1"”22 are estimated in the proof given below.

3. The high moment estimates in (4.3) will be used in Section 5 to derive improved rates of
convergence; see Theorem 5.1.

4. The reason for using Z,FV to approximate the noise term is explained in (1.12) and (1.11); itis a
crucial component of the scheme to achieve the optimal rate of convergence.

5. In the case 0,(v) = 0 = F,(v) in (A3) and choose 8 = 0, the stability estimates for the schemes
(1.9)—~(1.10) can be simplified and shortened. We skip the details to save space and leave it to the
interested reader to verify. However, it should be noted that the techniques used for this special case
would not work for the general case 0 = o (u,v). Hence, new techniques must be used in the proof
given below.

Proof of Lemma 4.1. The P-a.s. solvability easily follows from Lax—Milgram lemma and (A3). Using
the IL2-regularity theory for elliptic equations on regular domains (see [10, Section 15.5]), the system
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12 X. FENG ET AL.

in Scheme 1 holds strongly Leb ® P—a.s. The proof of Lemma 4.1 is split into the following three
steps (1)-(3).
(1) Proof of (4.2). We use the test function ¢ = 2ot = k("™ 4+ ") in (1.7), to get

k (||v"+1 12, — ||v”||i2) — 22 (v;z"’%, W’+%) + 2k (a (", V'73) AW, v"+%)

— 1

+2ka (Dua(u", v"_%)v" AW, v"+7)

e (3F(u", VY — Fa=" v, v”+7) . (4.6)

In (4.1), we deduced that ’ﬁ”’% = u"% + ,Bk“ﬁ v”+%. Using this, we can rewrite the first term on the
right-hand side of (4.6) as

—24? (Vi3 V) = <2k (VT V) < 2P O e, @.7)

Using (4.7) in (4.6), multiplying both sides with ﬁ,

the terms, we obtain

taking expectation on both sides and rearranging

1 1 1 1
EE |:||Vn+1 ||]Izg - ||Vn||ﬁ2] + kE [(Vu”’Z, Vv"+2)] + BKHPE [”an+2 ||£2]
=k [(U (un’vn_%) AW, Vn+%) +@ (Dua (”n’V”_%)V” ﬁ/, V”+%)

3
n (3F(u", VY — F=" v, v"+5)] = ;E [ 7], (4.8)

NS

Next, we use (1.6) in strong form, sum it for two subsequent steps and multiply this equation with
1 .
¢ = —Au2; we then arrive at

(196112, = 1V 2, | = ke (Va3 w03 *.9)

Bl

Since the right-hand side of (4.9) is equal to the second term on the left-hand side of (4.8), we
conclude that

1 1 _
SE [V — 02 |+ 2B [V 2, — 1V

3

+ BR[| v ti 2] = S B[] (4.10)

i=1
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 13

Now we estimate each term on the right-hand side of (4.10). Using properties of the increments A, W,
we get E[ (o (u”, v”’%)AnW, V)] = 0. Using this, we infer

We use (1.7)—in modified form as stated in Scheme 2—to replace Vit — 2 Hence,

E[77] = %]E [(U(Mn,vnf%)AnW, kAu’l’%)] + %IE [(a(u”,v”*%)AnW, ’3k2+ﬁAvn+%)]

1
+ 5B [lo @) |Fa1a, W]

\S)

—

+ %E [(U (u",v”_%)AnW,Dua(u",v’ _%)V" A W)]

n

5
+ SE [(o (v =2) A, W, 3w = P v )]) | = ; M@

In the following parts (a)—(c), we independently bound E [ _#}"] through E [ _#]'] in (4.8).
(a) Estimation of E[_#/"] in (4.11). We estimate the five terms _#/"', i = 1,---,5, on the right-
hand side of (4.11). Let D,o = Do (u",v"~7) € L(H}, H}) and D, = D,o u",v""1) € L(H), H)).

By integration by parts and using o (1", v"_%) = 0 on 00, we infer

1 1
S =3E [ (Do vura, Woavumt) | + SE [ (Do v 24, W kvt |

- 1",’11 + fl’f;. (4.12)

Using (A4) for m = 1 and the It6 isometry, we get

1 12
i< CE[IV12,14,W2) + CRE[ [Vt |]

< C2kE [||w"||ftz] + CKE [||Vu"+1 12, + Vi ”iz] . (4.13)
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14 X. FENG ET AL.

Using (A4) for m = 1, the independence property of the increment A, W, the It6 isometry and the
identity 2kv"t1/2 = 4+ — =1 we estimate

1
/172 =

k
E [— (Dvo VVITIAW, 3 V][ut! - u”—l])}

N =

1 ] ]
= SE |- (K50 vy =24, W k5 vy )|

3 _ _1m2 B 12
g5 IR [v=2]3.] + 6k2+ﬂxa[||w+z 2] (4.14)

IA

The terms on the right-hand sides of (4.13) and (4.14) may now be controlled by those on the left-hand

1
side of (4.10) after summation over 1 < n < N—1, provided that k < (é) =2 for B < % is sufficiently
small. :
Now we turn to 1"’2 in (4.11): integration by parts and using the fact that o (¢",v*"2) =0 o0n 00,

we get

1
[?=ZE - (K+5D,0 Vu A, W, p kI vit1)]
E

B B
+ S E[- (K*iD0 v A, w gkt E vt | = T+ (4.15)

N =

Using (A4) for m = 1 and the independence property of A, W, we estimate
p 12
lrf,12 < C,B k3+,3 E I:”vun”]iz] + g k2+/3 E I:” vyt ”]]_,2] ,

where the second term in the right-hand side can be be controlled by the corresponding term on the
left-hand side of (4.10). Again, using (A4) for m = 1, we obtain for the second term in (4.15)

3 _1p2 B !
17 < BSCHIE[ [V L | + SRV E[Ivvi, ),

where the right-hand side can be managed with the left-hand side of (4.10) for 8 < 1/2.
We continue with the next term ¢ 1"’3 in (4.11): by Itd isometry and (A3),

1 1
3 —Ig2 -
1% = SE[ o (w72 [F214, W] = CRE[14+ 1V + V12 + 112
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 15

where C > 0 depends on C;,. Next comes ¢ ]"’4: using (A3), (A4) for m = 1 and item 4. of Remark 4.2,
we infer

=~2
_1 2 o — 2
14 < B [Jo () 212, w2] + & 2B [, 2,7
=~2
_ o
< CRE[1+ IV, + 12 + V13| + R E (3] @16
where C > 0 depends on C;,. The last term is ¢ 1" S, by (A3), we obtain

1 < CE [[o (@', 70) |71 4, WP + CRE [IFG v 12, + IF@ v 2,

< CKE[ 1+ IVa I, + 1V 12 + 1712 + 113, ] (4.17)

where the constant C > 0 depends on C; . Thus, the estimate of ¢|" through those of ¢ 1"’] through

" is complete.
(b) Estimation of E [ /2”] in (4.8). By (A4) for m = 1, item 4. of Remark 4.2 and the independence

property of Z,ZTV ,
1 _1 2 =502 L2

o< azz R [||Du0 (u",vn z)vn ||L2|AHW| ] + CkE [||vn+2 ”]LZ]

< @ RE[IV12.] + CKE[ IV 12, + 12 ]
(c) Estimation of E [_#7'] in (4.8). By (A3), we estimate
k
= kE [(F(u",v”),v”%)] +5E [(F(u”,v”) —F v, v"+%)]
1 _ _
< CKE [V 312, | + CKE[14+ V612, + 1V 12, + 12, + 1% @18)

Now, we may use the parts (a) through (¢) to bound the terms on the right-hand side of (4.10).
Summation over all 1 <n <N — 1, fork < kg = ky(C;,, C g) sufficiently small, leads to

E [E(uN, vN)] n /34—11 PR [HWN+% Hiz]

B

% [5(u0,v)]+ﬂ—1{«:[”w/2”y]+ ZE[1va! ||L2]+CkNZIIE @V, 4.19)

n=1

By (B1);, the implicit version of the discrete Gronwall lemma then shows (4.2) for 8 € (0, %).

€202 Ae\ ¥z uo Jasn saleiqI] 98ssauus | Jo ANSISAIUN AQ v7L 191 Z/yZ0PBIPp/WNUBWISE0 L 0 | /10p/3|o1e-e0ueApe/eulewl/woo dnooiwsapese//:sdny woJ) papeojumoq



16 X. FENG ET AL.

(2) Proof of (4.3) for p = 1. To simplify technicalities, we put F = 0. Let us denote
v = 1| Vurt! ||]i2 + 2|t ||i2]. Arguing as before (4.10) then leads to

I:e(un+l,vn+l) _ @(unfl,vn)il + BIEHH || vyits “i2
= (U (u", v”_%)AnW, v"+%) +a (D”a (u", v"_%)v" ﬂ/, v"+%) . (4.20)
Now fix % < 4;,6, < 1, then multiply (4.20) with
8 €@ vty 45, (@(u”“,v"“) + @(u”fl,v”)) ,
and take the expectation, to get
@E [62(un+l’vn+l) - GZ(Mnfl’vn):I + %E [|€(un+]’vn+l) _ e(unfl’vn)|2]
+ BR[|V 21 [6) + sp et v + s8] |
_E [(a (W V""1) AW, v"+%) 6, + spE@ vt 8,8, v")]]
+aE [(Dua (u", v”_%)v” A/HVV, v”+%) . [(81 + 82)(‘3(u"+1, VD 4 8203(14"_1, v")]]

= "+ @.21)

We independently estimate the terms .# ™! and .7 "2
(a) Estimation of #"! in (4.21). This term may be written as the sum of two others:

A= (8, + 6,)E [(0 (") AW, v"+%) (e vy - Q‘S(u"_l,v"))]

+(8; +28)E [(o (VD) AW, v”+%) e, v”)] =" o (422
We consider ;i/l"’l first. By E[]4,W[*] = O(k%), and (A3), we find

A = G E[o () a, Wyt 2] + DR [lewrt v - eartanf]

IA

C
—IE [l (v =2) {14, W1 ]+ Cy kB [ |42 ||;2]+%E [lea v —ew " v ]

IA

1

5

Cs, kE [1 + > e, v"“)} +E [lé(u"“,v"“) - G(u”‘l,v”)f] :
{=—1

where the last term on the right-hand side can be absorbed on the left-hand side of (4.21).
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 17
We continue with %/2"’1: on using the independence property of A, W, and equation (1.7),

Ji/zn’l <3 ‘E [(0 (u”,v"_%) AWV v") . G(u"_l,v")])

=3 ‘E [(U(u”,v"*%)AnW, kAﬁ"’%) . @(u”fl,v”)]‘+3 ‘E [“a(u",v”*%)AnWHiz G(u"il,v")]‘

+3 ‘E [(a (u",v"_%)AnW,DuU(u",v"_%)v"m) . Qf(u"_l,v”)]‘ =: Ji’zr”l’l + L%/z'jz’l + ,%/2',13’1.

: ) 1.
We split %"il = Jifz"]’l’A + %"{I’B because of (4.1); here, %"{I’A is as Ji/z"]’l, where %7 is replaced

by W3 . We use integration by parts, and the fact that a(u",v”’%) = 0on 30, (A4) for m = 1, the
independence property of A, W and that E [|AnW|4] = O(k?), to conclude

t)i/}’l 1, A ‘E [ ( (Mn,vni%)AnW, kv[un+1 _ unfl]) . e(ul’lfl,vl’l):H
=9 ‘E [— (VU(IA”,V’“%)A,,W,klfgk“rg Vv”%) . @(u"il,v")])
C(SZ 3-8 ny2 n—1 n C52 3-8 n—112 n—1 n
< KPR [||Duo Vi | €W v )] + KPR [”Dva vz ey )]
8
I %k”ﬂ E [” vyt Hiz !, Vn)]
< C5,C4CIPE [Gz(un,v”) T ozz(u"*‘,v")] + Gy, C4CI PR [HW’*% 12, e(u"*‘,v")]
8
i %kzﬂs E [” vyt ”iz !, vn)] ’
where C 8 > 0 is a constant dependent on B for 0 < 8 < % We use a similar idea to estimate %f'il’B,
%n 1, B _ ‘E [ ( (un’ Vn_%)AnW, IBkZ—HSerH—%) . (@(un—l’vn))]’
< C62k3+ﬁE HD Vi 2 ¢ n—1 _n C52k3+/3E DoV n—% 2 ¢ n—1 _n
=5 w0 Vi 2 €(u VI + [Dyo vV 2 [ ew v
é
n ﬂZZkHﬂ E |:”an+% ”HZL2 ew vn)]
< C, LI €2w' v + €™ v | + G, Gy [ Vw3 L e v
é
i ﬂzzkzw E [”an+% HEZ @(un—l’vrz)] ’

where the last two terms in the right-hand sides of Jifznll * and Hy; 1B may be controlled by those on
the left- hand side of (4.21) after summation over 1 <n < N — 1, prov1ded that k is sufficiently small
and 8 < —.
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18 X. FENG ET AL.
Similarly, using (A3), and E [|AnW|4] = O(k?), we estimate
1 0
E[fo (@ = 3)[114,W1*] + CkE[ €@~ v | < ckE [1 +> e2(u"“,v"“>] :
=—1

Using E[|A,W|*] = O(KS), and (A3), gives

55 < TR[ o5 4, WL [y (v 3] + CHE [ ]
C 0 on—Lly;4 4 Cg nnd 1A o4 2, n—1 _n
< ZE[lo ) [La1a,wi ]+ —EE[ V1| 2,7 + ckE[ 2w v
<

0
CkE [1 + > 62(u"+€,v"+€)]

l=—1

(b) Estimation of 72 in (4.21). By (A4) for m = 1 and using the fact that 1E[|A/,FV|4] = O(°),
we infer

=~2
H? < CE[|Dyo (I AW [+ ]

+ CKE [(‘Ez(u"H, v"“)] + CKE [(’Ez(u”_l, v”)]

at 1
= %E [”Du‘7 (”‘n’vni%)vn ||12 |m|4] + CkE [HV”JF% ||;2] + CkE |: z @2(un+z,vn+e):|
(=—1

1
< a4 Cg k3 E [Gz(un’ vn)] + CkE |: z Gz(un+ﬁ’ vn+ﬁ):| )
{=—1

Now we insert the estimates from parts (a) and (b) into (4.21), and sum over 1 < n < N — 1. Then, for
all k < ky = kO(CL,Cg), there exists C = C(B) > 0 for 8 € (0, %), such that the assertion (4.3) for
p = 1 follows from the implicit version of the discrete Gronwall lemma.

(3) Proof of (4.3) for p > 2. Starting from the identity (4.21), we multiply §, 2! @ vy
52[€2p_] @+ @ o, v")] on both sides, and then take expectations. We may then follow
the same argument as in (2) to settle the assertion.

(4) Proof of (4.4). Let @ = 1. Suppose 0,(v) = 0 = F,(v) in (A3) and 8 = 0. We combine both
equations in the schemes (1.9)—(1.10), to get

[ — ] = [uf — "] = AtV 4 ko (') AW + @k Do (ub)E AW

2
+ % [3F™) — Fu"™h)] (4.23)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 19

forall 1 < ¢ < N. Now sum over the first n steps, and define #'+! := > uttl to get

n n
[t — "] = A7 = [u! =)+ kD> o uHAW + Gk D Do AW
=1 =1
k2 - 4 —1
+ 5 [3F@") — F"h]. (4.24)
(=1

Multiply both sides with «"!/2 and use integration by parts, to get

I:”un-‘rl ”]iz _ ”ul’l”ﬁ‘z] + kZ(Vﬁn,l/Z’ Vun+l/2)

| =

n n
= (u1 - uo,u"+1/2) + k(Za(uZ)AeW, u”'H/Z) —I—&k(z Dua(ue)va/[VV, u"'H/z)

(=1 =1

K <
+5 > BFu’) — F@™",u™1?) =: /] + &5 + 8] + K. (4.25)
=1

We observe that the last term in the left-hand side may be written as
k? k?
kz(vﬁn,l/Z’ Vun+l/2) — Z (V[ﬁn+1 + ﬁl’t*l]’ V[ﬁn+l _ ﬁnfl]) — Z I:llvﬁn+1 ”]:[242 _ ”Vl/—tnfl ”iz] .
Taking expectation on both sides leads to

1 K? _ e :
SE [ 12, = 112, | + TE[vE g — v s | = DUE[R] @26
j=1

Since u' — uy = kv', by (B1);, we infer

E[®] < -E [Hu] - uoniz] + CkE [||u"+‘/2||ﬁ2] < Ck+ CKE [||u”+1/2||i2] . 4.27)

1=

Using the It6 isometry and (A3), we infer

n
E[85] <k D E[lo G214, WP |+ CRE [ /22, |
(=1
n
2> E [1 n ||u"||i2] + CKE [||u"+1/2||i2] . (4.28)
=1

IA
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20 X.FENG ET AL.
Using item 4. of Remark 4.2, and (A4) for m = 1, we infer
- 2 1 512
E[f] <kDE [||Duo(u‘f)v‘f 12,2, W| ] + CKE [||u”+1/2||]i2]
=1

n
<KHCSE [||vf||§2] + CkE [||u"+1/2||i2] . (4.29)
=1

Since vt = % [u‘Z - 1/‘1], we further estimate (4.29) by

n
< CE Y E[ 112, + It~ 12| + CRE [ 11212,
=1
Using (A3), we estimate E [ﬁﬁ] by
n
B[R] = 2D B[+ 1, + 112, | + CRE [ w22, (4.30)

=1

We insert these estimates into (4.26) and sum over 1 < n < N — 1. Then, for all k < ky = ky(Cy,, Cg)
and by the implicit version of the discrete Gronwall lemma, there exists a constant C > 0 such that the
assertion (4.4) holds. _

(5) Proof of (4.5) for p = 1. To simplify technicalities, we put F = 0. Let us denote ", u") :=

[% ||un||£2 + % ||Vﬁ"||]i2]. Then we can rewrite (4.26) as
Ewrtlath) — B, @) = & + 8 + R, @30

Multiply both sides with E ! wth, using binomial formula and taking expectation, we obtain

1= _ S T T U i
EE [@2(un+l’un+l) _ @2(un’un l)] + E]E |:|€(un+l’un+l) _ 62(’11’!,”1’! 1)| ]
=E[& @t | + B[/ € w ] + B [ €t 4.32)

Using Young’s inequality, and arguing similarly to (4.27), shows

~ 1 ~
E I:ﬁrll Qf(un-‘rl’ﬁn-i-l)il < k_3E [l'ul _ MO”‘th] + kZ]E |:||un+1/2”4£2] +kE I:sz(un+l,ﬁn+l)]

< Ck+ CkE [”éz(u"“,ﬁ"“) + éz(u",ﬁ")] . (4.33)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 21

By adding and subtracting E", @), and using (A3), we estimate the second term on the right-hand
side of (4.32) by

B[ (Gt ot — &) |+ B[ 8 &)
=< E[Iﬁglz] + %E [|@2(un+1’ﬁn+1) _ @(un’ﬁn_l)’z]

n
+ RS E [1 + ||u‘||§_2] + CKE [||u"+‘/2||i2] 1 CkE [éz(u",u"—l)]
=1
n o~ o~
<Y E [1 n ez(uﬁ,#)] + CKE [ez(u",ﬁ"*)]
=1

+ %E [|@2(u”+l,ﬁ"+1) _ E(un’ﬁ"—l)}z] , (4.34)

where the last term in the right-hand side may be absorbed on the left-hand side of (4.32).
By item 4. of Remark 4.2, and (A4) for m = 1, we estimate

E I:ﬁgl @(un+1,ﬁn+l)] < %E[Lﬁg'z] + CkE [@2(un+l’ﬁn+l)]

n
= C‘Z,‘ ZE [||v£||j£2|A[W\4] + CkE [||un+1/2||ﬁz] + CKE [@Z(un+l,ﬁn+l)i|
=1
1 n
g
=1

IA

O TR [l + It | + chE [ @) + @t 7t

n
S E [@2@/,#) 4 Ez(ue—l,#—l)] + CkE ["é%”,u") 4 éz(u"“,u"“)] . (435)

IA

o~
—

Now we insert the estimates into (4.32), and sumover 1 <n < N—1.Then, forall k < ky = ky(C;, Cg),
assertion (4.5) for p = 1 follows from the implicit version of the discrete Gronwall lemma.

(6) Proof of (4.5) for p > 2. Starting from the identity (4.32), we multiply €2 (+!,v"+1) in
both sides, and then take the expectation. We may then follow the same argument as in (5) to settle the
assertion. (]

5. Strong rates of convergence for (&, 8) —scheme

We prove convergence rate O(k'/?) for the iterates {(u", v}, of the (a, B)—scheme for @ € {0, 1}; if
additionally o, (v) = 0 = F,(v) in (A3) holds, we may put § = 0, and

(a) the convergence rate improves to O(k) for iterates {u"}nzl in case @ = 0, and

(b) to OK3?) incase@ = 1.
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22 X. FENG ET AL.

For the convergence analysis, we need the following assumption on (u!, v!).
(B2) Along with (A1);; and (B1),;, let u® = u(0) and v* = v(0), and (u',v!) satisfy

1/2
(B[l = '3 + v = [5]) = 0k 7).

THEOREM 5.1 Let (u,v) be the strong solution of (1.3) with A = —A. Let {(«",V")},-, be the iterates

from (&, B)—scheme for k < ko(Cy, Cg) sufficiently small, @ € {0,1},and 0 < B < % Then, under

the hypotheses (A1);.., (A2), (A3) and (A4), (AS) for m = 1,2, and (B2), there exists C = C(8) > 0
such that

i’
np2 np2 172 1/2
max (E[lutt,) "I + v, = "IE:]) < Cr'P2 (5.1)

For the following, additionally suppose o,(v) = 0 = F,(v) in (A3) and that the initial data u®,ul V0

satisfy

(& [ ']

1 K?
+5E |:Hkv0 — ' =) + 5 Aug + K F (ug) + ko (ug) AgW

2 1/2
} ) =0("?). (2
]LZ

(i) Consider the (0,0)—scheme and assume (A1)
(B2). Then there exists C > 0 such that

(A2), (A3) and (A4), (AS) form = 1,2, and

iii»

12 1 " . 172
max (& [ Jut,) - [2.])" + E(E[kz [ [ut.) uJ]||szD <k (53
j=1

1<n<N

(ii) Consider the (1, 0)—scheme and assume (A1)
(B2). Then, there exists C > 0 such that

n 1/2
max (n«: [”u(z‘n, ) —u" Hiz])l/z + %(E[kz |V [u;, ) — ] ||12L2]) <C¥?. (54
j=1

(A2), (A3) and (A4), (AS) form = 1,2,3, and

v’

1<n<N

The following remark discusses the realizability of (5.2), and key tools to verify this theorem.

REMARK 5.2 1. In Section 6, we choose (u°,9) = (1(0), v(0)), together with

{ul =uy+kvy + %Auo + K*F(ug) + (k + k%) 0 (uy) Ay W, 5.5)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 23

By the choice of v!, the verification of (B2) is straightforward. We now prove that (5.2) holds in this
case: first, we consider (1.3) in integral form on [0, #, ],

{ uty) = ug + [y v(s) ds (5.6)

v(s) = vy + Jo Au(r)dt + [ F(u(r))dt + [j o(u(r))dW(r), 0=<7 <s,

and insert (5.6), into (5.6),; a change of order of integration then gives

1 N 3] N 3] s
u(t)) =ug+1tvg+ / / Au(t)drds + / / F(u(t))drds + / / o(u(r))dW(r)ds
0 Jo 0o Jo 0 Jo

151 151 1 1 4] f
=u0+kvo+/0 / dsAu(r)dt+/O / dsF(u(r))dt+/O / dso (u(r))dW(r).

(5.7)
Thus, 1 1
u(ty) = uy + kvy +/ (t; — 1)Au(r)dr +/ (t; — )F(u(r))dr
0 0
1
+/ (t; — 7)o (u(r)) dW(T). (5.8)
0
Subtracting (5.5), from (5.8), we infer
H k2 H
u(t)) — u = / (t; — v)Au(r)dr — ?Auo — k2F(u0) +/ (t, — 1)F(u(r))dr
0 0
n
+ /0 (t, — D)o (1)) AW (x) — (k + o (ug) (W(t)) — W(0)).
By (A1), (A3), It6 isometry, Lemma 3.2 (i), (ii) and Lemma 3.3 (i), we infer
2 f
E [”u(tl) — ! ULZ] <K /0 E [||Au(r)||i2] dt + CK*E [||u0||]12{2] + CK*E [||F(u0)||§L2]
2 [ 2 3 2
+ Ck /O E[IF@@)IZ; | de + K E [ lo w2, ]
t
e / 'E [||o(u(t)) — o(u0)||]i2] ds < CK°. (5.9)
0
Similarly, by (5.5);, (A1), and It0 isometry, we get
12 2
E [ kvg — (u' — u®) + - dug + K2F (1) + ko (uy) AgW }

]LZ

<K'E [uo(uo)nﬁzmovvﬁ] < CK. (5.10)

Thus, combining (5.9) and (5.10), we get the assertion (5.2) for u'.
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24 X. FENG ET AL.

2 Fora # 0, the additional noise term in (1.10) improves the accuracy of the (@, 0)—scheme, where
A W is appr0x1mated by A w. By (1.12), (1.11) and the fact that 7, , .y — 1, , = k%, we estimate the

distance between A W and A W as

2
— — In+1 k!
E[yAnW— Anwﬂ —E||- W(s)ds + k> W, ,)
I e=1
B 2
Ine+1
=E Z / (W(s) — W(t,,)) ds
Ine
By the independence property of the increment A, W, we further estimate
k! Ine+1 Ine+1 4
ka/ I:’W(S) W(tne)| ds<k2/ (s — ) ds < Ck*. (5.11)
=1 tn,[

3. The basic estimate is (5.1), which will be given in part (1) in the proof below. Its derivation uses
the Holder estimates in Lemma 3.3 for (u, v) in strong norms. The strategy of proof is similar to the one
used in the stability analysis for (&, 8)—scheme in Section 4; see item 1. in Remark 4.2: the central term

(n) - n+1

to estimate is 7, ~ in (5.15), in which we replace the increments e;™" — e} via the error equation (5.13)

to obtain terms that are scaled by k, or the stochastic increments A, W and Z;V/V . The order limiting
term is then Ti’l]"‘) in (5.18), which may be traced back to the noise term o, which may depend on v as

well. In this case (only), the additional term —k*tP Av"H1/2 in Scheme 1 is needed to control the effect
of noise: see the additional term on the left-hand side of (5.14) to, e.g., bound the corresponding term
in (5.16).

The verification of assertions (5.3) and (5.4) differs completely from this strategy: it starts with the
reformulation (5.19) that leads to the error identity (5.22), which is then tested with e"+1/ 2
part may here be estimated in a straight manner.

4. Part (2) in the proof below is conceptually motivated from arguments in (Baker, 1976); however,
their realization in the stochastic setting differs considerably. We remark that estimate (5.1) is needed
to verify assertion (5.3)—next to Lemma 2.1 to bound the quadrature error of the trapezoidal rule for
integrands with limited regularity; see term If’" in (5.26).

5. If @ = 0, the estimate (5.28) for term Ig’" in (5.26) restricts the order, and assertion (5.3) follows;

the improvement (5.4) uses @ = 1, s.t. this term Ig’” gives way to the sum of new terms in (5.33), which
are of higher order; see (a)-(e) in part (3) in the proof below.

6. For 0 = o(u,v) or F = F(u,v), neither assertion (5.3) nor (5.4) in Theorem 5.1 may be
concluded, due to the restricted Holder regularity properties of v opposed to u.

In this setting, either o or F in (5.19) in the proof below would depend on v as well, and thus would
modify corresponding terms in (5.22). For o = o (4, v), (a modified version of) (A3) would additionally
create a term Ck> =1 ]E[||ef||i2] on the right-hand side of (5.27), which may not be handled via
Gronwall’s lemma to lift the order. For F = F(u, v), the argument in (5.31) fails, which rests on Lemma
2.1, and the Holder continuity of v = 9,u.

; the noise
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 25

7. In the proof of (5.1), where 0 = o (u,v) and F = F(u,v), we do not require the discrete energy
bounds proved in Lemma 4.1. We only require the energy bounds proved in Lemma 3.2. This is possible,
since we can add and subtract Vu(t,) or v(t,) whenever L>-norm of Vu" or v appears. However, the
higher moment bounds in energy norm (proved in Lemma 4.1) are required to show the improved
convergence order O(k>/?) in the proof of (5.4) of Theorem 5.1.

Proof of Theorem 5.1. (1) Proof of (5.1). For simplicity, we here give the proof for F = 0.
Correspondingly, let (u,v) solve (1.3), and {(u",v")}, solves (@, B)—scheme. We denote by e}, :=
u(t,) —u" and €]} := v(t,) — V" error iterates, which are zero on the boundary and solve

Int1
et o = ket +/ (v(s) = v(t,,1)) ds, (5.12)
tll
In+1 2u(s) — [u(t + u(t,_
eﬁ“—eﬁ:kAeﬁ’l/z—}—/ A|: ©-1 (n';) (i 1)]]ds
n

248 4 ts KT
— BK*TP Ae, 2 + ﬂT Alv(t,, ) +v(@,)]

—

In1 1 . 1
+/ [0 (s V() = o (W', 72) | AW () ~ @D, ("' 72) V" AW (5.13)
In

1
We multiply (5.13) with e::+2 and use (5.12), to get

1 1 1
S[lert 12 = letla ] + 5 [1vert' 5, = [9es 3] + e |ver

5

2

L= 514
=1

where

Int1 "
i [ (700 vl vl ass [ (v -] vt o
t th—1

Té") o /t,z+] (V |:2u(s) — [u(t, ) + u(zn_l)]] ’ Ve"f—k;) 0.
In

2
248
T = ,BkT (v vty +v(@)], Ve:+£) ,
Tnt1 1 n+i
Tim = (/ ’ [a u(s),v(s)) — o (", v”_f)] dW(s),ev+é) ,
In

o
TS(") = (Duo (u",vn_f)vn AW, e:H_z) .

We estimate the expectation of each term on the right-hand side of (5.14). By Lemma 3.3 (iii),
we infer

B[+ 70"] < 08 + kB[ Ve |2 + Ve 2] + KB e |2 + e 2]
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26 X. FENG ET AL.
We use Lemma 3.2 (i) to estimate

n+%

E[1("] < ﬁ@ﬂ@ [va

: } 4+ Cove,
2] B

By properties of A, W, we rewrite the term Ti") as

E[Tf‘")] = % E [([a (u(tn), v(tn—l/Z)) — a(u",v"71/2)] AW, eC’H - eﬁ)]

Iny
+ %E [(/ 1 [0 (u(s), v(s)) — 0(u(tn),v(tn_1/2))] dW (s), eﬁ‘H — e’ﬁ)]
In

) ()
=T, +T,5. (5.15)

In order to estimate Tin]), we use equation (5.13) to write

i = %]E [([o (e v, ) = o @ =) | 4, W ke 2) |

1

2u —[u(t, )+ u(tn_l)]] ds)i|
2

o 3 1
+ > E |:([a (u(tn),v(tnfl/z)) —oW" V' l/2)] A,W.D,o (u",v" 2) V! AnW]
. pnl) (n,2) (n,3) (n,4) (n,5)
=T T AT AT T

We consider Tffl’]) first; to properly address the dependence of o on v, we first restate it with the help of
(5.12) and use the fact that o (u(tn), v(tnfl/Z)) = o ", v"1/2) = 0 on 90, to obtain

i = 3E [([“ (t)s vty 2)) = U(M"N"_”z)] A,W. kA [e{‘,“ —~ eﬁ_l])]

[\

E [(V [U (uz,), V(fnfl/z)) —o@", v"_l/z)] AW, ZkZVeCH/Z)]

1
—E[(V [ (w01 ) = o @D | A, WAVR) | = 7D+ T,
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 27

where RCH” = ft:”“ (v(s) = v(t,41)) ds+ fz:",l (v(s) — v(z,)) ds. By chain rule, and (A4) for m = 1,
we obtain

)1 _
T < -E [cg{znwa,,)uy + 2 V(tyy Dl + Vel + 1Ver 22} A, W]

_B 2
i kl 2k1+2 ||Ve<)l+1/2”]Lz] )

We apply Young’s inequality, Ito isometry, (4.2) and Lemma 3.2 (@), (ii) to further bound Tg’l’g by

CZ
L1 — 2
i SRR {21V 12, +209v6, 12 + Ve

+ [ver 2L 1a,we] + Lo e vt |]

< ok P+ CgPE (| Vel|L | + ooy P E [ Vel )

+ £ B[ v, .16

where Cp = C(B) > 0 is a constant for 8 € (0, %), and the last two terms on the right-hand side may
be absorbed on the left-hand side of (5.14) for k < k, sufficiently small, and 8 < % Arguing similarly

and by Lemma 3.3 (iii), we infer
B — - —1/2)2
T{ih = O 4+ CLEPE[| Ve 2L | + ke, (5.17)
where the second term on right-hand side may be absorbed on the left-hand side of (5.14) for k < k

sufficiently small, and 8 < %

We now estimate Tﬂl): by properties of A, W, (A3) and Lemma 3.3 (iii), we get

2 2 _
7" < C kE [(|| Vut,) — Vi |2y + v,y ) = V" l/2||@2L2) |AnW|2]

Iyl 2
+c["e '
In L2

< CRE[|Veilfa + eslf + i[5 ] + o

A [u(s) VTS RV u(tn_l):|

2

Using similar arguments as for the estimate of (5.16), we infer

C2
3 7 2
o < ngHﬁE 19012 + 20990, I3 + 19612, + | Vel ™2 |
,3 2
+ e[|, + 193000 1]

Cg —1292 B 2
< SRR (Ve 2] + SRP R Ve 22 + cpb.

€202 Ae\ ¥z uo Jasn saleiqI] 98ssauus | Jo ANSISAIUN AQ v7L 191 Z/yZ0PBIPp/WNUBWISE0 L 0 | /10p/3|o1e-e0ueApe/eulewl/woo dnooiwsapese//:sdny woJ) papeojumoq



28 X. FENG ET AL.

Using (A3), Lemma 3.3 (ii) and properties of A, W, we estimate
T < CE [ o @), v, 2 — o (""" )2, 14,WP]
Tyl 2
+ C/ E [”a (u(s),v(s)) — a(u(tn),v(tn_l/z)) ”]LZ] ds
In
< CE[ | Vel + el + e[
tht1 2 2
+c / E IVl = a2, + 11y = v(t, g )11 |
In

= CKE[[[Ver|: + er]2: + i 72 ] + v (5.18)

Using (A3), (A4) for m = 1, item 4. of Remark 4.2, and using Lemma 3.2 (i) (due to addition and
subtraction of v(z,) term to V"), we estimate

=2
1 < KE o (utt).v(t,012) = o @2 | + T E[ Do (=) v

~2
< CKE[| Vet + e 2 1 | + S R E[ b7 | + e,

Similar arguments, in combination with the Holder estimates in Section 3.1, may be used to estimate
T&) in (5.15). Now, we estimate the last term in the right-hand side of (5.14).

Using (A4) for m = 1, It6 isometry and Lemma 3.2 (i) (due to addition and subtraction of v(¢,) term
to V"), we obtain

~

2 —_—
B[1$"] = B [|D,o (") 22| 8, W[ | + CKE[ e [ + [k
<@ CRE[ |V ]+ CKE[ et [, + el ] = o + CRE[ el 7, + er].].

We now insert these estimates into (5.14), for which we apply expectations, and sum over iteration steps.
The implicit version of the discrete Gronwall lemma along with (B2) then yields the assertion, again
provided k < k is sufficiently small and 8 € (0,1/2).

(2) Proof of (5.3). Suppose o, (v) = 0 = F,(v) in (A3), and @ = 0. We combine both equations in
the (0, 0)—scheme,

k2
[0 —u] = [u* —u" "] = K Aut? + 5 Bre - F"™ Y] +kowhHa,w (5.19)
forall 1 < ¢ < N.Now sum over the first n steps, and define 't = 22:1 utt!, We arrive at
k2 n n
[t —u'] = a2 = [u' =]+ = D [BF’) = Fa ™ D]+ kD owHA,W.  (520)
2 =1 =1
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 29

We proceed correspondingly with (3.2), which we integrate in time: thanks to (3.1), we get (0 < A <
nw=T

wors
[u(p) —u(d)] — A /0 Au(§) dg ds
w s [T
=[n — Alvy —i—/k /0 F (u(&)) d& ds +/x /0 o u(€)) dW(¢)ds, 5.21)

where s € [1,, 1,

41 Setting w = ¢, |, A =1, in (5.21), subtracting (5.20) from (5.21) then leads to

Iny1 s n
[ent! —el] — k22201 = kv — (' — u°) +/t /0 o (u(&) dW(E)ds —k Do) AW
n (=1

= T

In K n
+/ +1/ Au(E) de ds—kzz A[u(t@H)Z—i— u(ty_]
In 0 =

:= II

ty s 2 n
+/ “/ F (u(§)) de ds — %Z[M(#)—F(#‘l)]. (5.22)
70 =1

:= III

We first rewrite the term I in a form that is more suitable to obtain error estimates. Consider the term

s n—1 te+1 s
/0 o &) dw(E)ds = Z/ +/ o (u(&)) dW(§)ds. (5.23)
=0 ty tn

By rearranging the terms, we can rewrite I as the sum of five terms that are suitable to obtain error
estimates

n R Ll S
I :kZ[a (u(te))—o(u‘)] AZW+/ " Z/ " [0 (&) — o (u(ty))] dW(&) ds
=1 n g1l
Int1 N Iny1 N
+/ /[a €)) — o (u(,))] dW(g)ds—l—/ /G(u(tn)) dw (&) ds
tn tn ty ty
Int1 n
+ / / o (u(€)) dW (&) ds. (5.24)
th to

Term IT gives the quadrature error, for which we aim to apply Lemma 2.1. This result cannot directly
be applied here, as the second term involves the evaluation of u at times £, 11 and #,_;, which are at
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30 X. FENG ET AL.

distance 2k. Thus, we rewrite the following integral as (f, = 0)

S et 1 LI | In+1 Int1
/ Au() dg = / ! / 41 / - / Au(E) dt, (5.25)
0 te—1 2 fo 2 th K}

where the first term on the right-hand side is now suitable to use Lemma 2.1.

We are now ready for the error analysis. We multiply both sides of (5.22) with ¢,
that

12
"+1/2 and observe

2 2
@ (vep2 vy = - (vert 1 et v [~ ]) = S [Ivar | - [ ve ).

Using this, and rearranging the terms on the right-hand side of (5.22), leads to the following error
equation

1 K2
5 [ttt 2 = etz ] + 5 [Ivet 15 - va ]

= (kvo [u! — u], "+1/2) +k(z [0 (u(tp) — o] a,W, e"+1/2)

=1

n—1

. (/1n+1 5

/ [0 &) — o (u(t))] dW(&) ds, e"+1/2)

+ n+1 / [0 @) — o (u,))] dW(s)ds,eg“ﬂ)

tn+l Int1 4]
/ o (u(ty) dW(S)ds,e”H/z) +( [ [ owe dW(s)ds,e’;“”)
In 1)

( Int1 /S Vi) dé ds — 2 Z v [“(t€+1) + ”(tl—l)] i VeZH/Z)
0

+

2
(=1
Int1 n—l T4 1
+ Z/ (F(u) ~3 [3F (u(zy) — F(“(fz_l))],eﬁ“/z) déds
o g=1Yt
k2 n—1
+ 3 ( [F (u(ty) — F(uf)] — [Flut,_1) - F(u“l)],eZ“/z)

/Zn+l /11 F(M(E))’E’H_l/z dEds+/mH/ F(u(%')),en+l/2) dEds

_ % ([3F(Mn) _ F(un—l)]’ez-ﬁ—l/z)

£, £,
=N +L"+.. . +13. (5.26)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 31

We take the expectation on both sides and estimate all the terms on the right-hand side of (5.26)
separately. We begin with the term If’".
(a) Estimation of ]E[Iﬁ”] By It6 isometry, and (A3), we have

n 2
E[5"] = CKE[[eit 2L | + kB | |3 [0 (utp) - o )] 4w
(=1 L2
n
< CKE|lle 212, | + Ck D E [l - (5.27)
=1

(b) Estimation of E[Ig’"]. The term 1§’" can be controlled by It6 isometry, (A3) and Lemma 3.3 (i)
as

In+1 n—1 /AN
]E[Ifn] = E |:(/t Z/t[ [o mE) —o (“(té))] dw (&) ds, 62+1/2)i|
no =17

IA

. ot " ety 2 /212
&[S [ B[l - w0 e os e e 7
I g=1 vl

C + CRE[ el 2 + il |- (5.28)

IA

(c) Estimation of E[1;""]. We use the similar arguments as for E[13"], to get

E[’f’"]=E[(/tn+ [ [0 (@) — o (u(z,))] dW(s)ds,eg“/Z)]

- Tnt1 §
<& / / [ fute) — utr |22 ] e as + CkE[ e 2| ]

= K+ CRE[ 2|7, ]

(d) Estimation of E[Ig ’"]. By independence of stochastic increments,

E[I4"] = kE [(o (u(t,)) (W(s) — W(z,)) ,eg“/z)] = SE [(a (u(t,)) (W(s) — W(z,) e — eZ)].

Using (5.12), we rewrite

E[IY"] = gE [(o (u(t,)) (W(s) — W(z,)) ,ke';“)]

k Int1
+5E [(a (u(,) (W(s) — W(1,) / (v($) = v(t,1) ds)} = B[] + E[155].
In
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32 X. FENG ET AL.
Using (A3), (5.1) and the It6 isometry,

E[I51] = CRE[ o (ut) 72| E[ W) - W) ] + cRE[ ]3] < k.
Using the similar arguments and by Lemma 3.3 (ii), we infer

E[14%] < CKE [”o (u(t,)) szu] E [lW(s) - W(tn)|2] + CKE [||v(s) - v(tn+1)||i2] < i,

(e) Estimation of ]E[Ié’"]. We add and subtract the term o (1), to get

" e n+1/2
Rl = E[ (/, /,0 (0 @ @) = o (o)) dW(&) ds ] ) }
" ' n+1/2 . £.n
+E[ (‘/t /t o (MO) dW (&) ds, e, ):| = E[Iﬁzl] +E[16;2],
n 0

where the term E[Ié’f] will follow the similar arguments as for E[7;"] in step (c), to yield
E [zg;';] < Ck* + CKE [||eg+1/2||ﬁ2] .

The term E[Ié?g] =kE [(a (“0) AW, eZH/Z)] will be merged with I’l’ .

(f) Estimation of E[Ii"] We will apply the quadrature formula (Lemma 2.1) to handle this term as
mentioned above for the term II. To get suitable terms for the error bounds, we use the identity (5.25)
and again rearrange the terms by splitting the integral ft:‘“ -ds into fti -ds + f Yl”“ -ds, to get

=117

n

=17
K 1 toy1 n s Int1
| vuere=3|> | Vu<e)ds+(/ w[ - )w@)ds BENCED)
= i1 0] ty N

1

Below, we handle the terms separately.
(f;) Lemma 2.1 (with T = 2k) now applies to handle I,. For this, we choose f(§) =

E[(Vu(é),VeZH/z)] for all £ € [1,,1,,,]. Using integration by parts, by Lemma 3.3 (iv), we have
y =1in.1),

‘E [(V[v(t) — ()], Veg“/z)]( <cC (]E [|| vertl/2 ||12L2])1/2 It — 5|2,

‘We know that
i le41 fo) +f(E_y) _ i Te+1 _f(teJrl) +f (1)
2k Jiy,, o= 2 2%k |:/lzl {f@) 2 } dE:|
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 33

Asa consequence,

1] fles u(topy) +uty_y) n+1/2

e [ (v - ] o) ] e
B i fo41 _f(te+1)+f(t,3_1) C 3/2 n+1/2]2 12
=%/ f(&)d& 5 < (%+2)(%+3)(2k) (]E[”Veu ||L2]) :

Using (5.1), we can finally bound the term with the integral from ¢, to ¢, , | by

1/2
< K (IE [||Vez+l/2||i2]) < CK’E [||Ve$+l/2||i2] + o < ck.

f,) Consider the difference of the last two terms in II,. By adding and subtracting the terms
L[ P Vu(,) dg dsand § [ [ Vu(r,) dg ds, we get

N

1 th+1 N Tnt1
! / ( / Vu(€) dé — / w@)d&) ds
2 I I s

II74 II7p

1 th+1 s 1 Int1 Int1
= —/ / \Y (u(é) — u(tn)) dé ds — —/ / \Y (u(é) — u(tn)) dé ds
2 tn tn 2 tn s

1 tht1 s Iny1 Int1
+ —Vu(tn)(/ / dé ds —/ / d&¢ ds),
2 ty ty tn s

where the last term on the right-hand side vanishes as f;”“ [(s —t,)— (1 — s)] ds = 0. So, we
estimate the first two terms only. By standard estimation,

Int1
/ IE[(IIM,VeZH/Z)] ds
In

In+1
<@ [T B[V ) ] 1] dé + o [ ver 2]
In

= CK + CKE [ |[vert 2|1,

thanks to Lemma 3.3 (ii). Similarly, one may handle the term that involves II; ;. The only term left to
handle from the right-hand side of (5.29) is ftg' Vu(¢) dé. We can rewrite the term fti"“ zf)l Vu(€) dé ds
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34 X. FENG ET AL.

as ft;"“ 'y [u(s ) — ”0] déds+ kZVuo. To estimate the first term, we proceed as before, to conclude

fo
Int1 1 n
/ E[(—/ V () — up) dg,Ve;“/z)}ds
th 2 Io

th t
< C/ i / ' €2 dg ds + CKE [[ver12]3.] < ot + am [ vert 2| ]
ty fo

Now, we only need to handle the term E[(%szuo, AR 2)] This term will now be combined with the
term I”.
1

(g) Estimation of E[[ﬁ’"]. As a first step, we split it into two parts,

n—1

Int1 (/AN 1
E["] = / Z/ E |:(F (u(€)) — 3 [F (u(t) + F (utyy )] ,ez+l/2):| d& ds
In (=1 ty

K
+ 5 B[ (F () = 2F (u@) + F (utr,_p) i) | = E[1 + 15
=1

To handle these two terms, we use Lemma 2.1 with f(§) = E[(F (u§)), eﬁ+1/2)] where § € [1,,2,,,],

and verify y = % in (2.1): by (A4) for m = 1, 2, the chain-rule and the mean-value theorem

’(DIF (u() — D,F (u(s)), €Z+1/2) ’
- ‘ (DuF (@) v(t) = D, F (u(s)) v(s), 63“/2) ‘

((DF(®) = D,Fu()) v(0) + D Fu(s) 00 — vis), it 12))|

((%(u(t) - u(s))) (1)) + D,F(u(s))(v(t) — V(s)),eZ“/z)

< C, llu(® — u@ g VO gt [ ?] 2 + Cp v = vl [€f ]2 (5.30)

where DF = DF(i,) and i, := pu(t) + (1 — p)u(s), for some p € [0,1]. Lemma 3.3 (ii) then
establishes y = % in (2.1), and so Lemma 2.1 yields

B[] < o e (B[|e2%]) < okt + kB[22,
In order to estimate E[Ié;g], we may write for some 6 € (0, 1)

Fu(ty, ) = F(u(ty)) + D, Fu(ty))(u(t, ) — u(t,))

1
+ E (DﬁF (u(t[) + 9(“(%4_1) - u(fg))) (u(te.;_l) - M(fg))) (u(f[_H) - M(tg))a
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 35
and

F(u(t,_1) = F(u(t,)) + D, F(u(t,))w(t,_q) — u(t,))

1
+ 5 (DiF (u(t@) + H(M(tz_l) - M(Q))) (u(tg_l) - u(te))) (u(tg_1) - u(t[))‘

Then, adding the above two terms, we get

F (u(tyyy)) = 2F (u(t) + F (u(t,_))

1
F (u(tg41) = 20t0) + u(ty_) + 5 (DEF () = u(ty)) () = ut)

+ 5 (DRF wlt_y) = u(@)) (ulty_y) = utty)),

1
2
where D,F := D,F(u(t,)), DaF := D2F (u(t,) +0(u(t,,) — u(t,))) and DZF := D2F(u(t,) +

Ou(t,_y)— u(tz))). We begin with the first term on the right-hand side: first, by the mean value theorem,
there exist 1, ¢, € [0, 1], such that

u(tpy) —ult) =kv (&t + 0= 8dtp) . = [ul) —ul_p] = —kv (&t + 1= &),

Hence, Lemma 3.3 (ii) settles (’)(k%) for this term. If combined with Lemma 3.3 (i), (A4) form = 1,2,
we can conclude

E[13] = k' + kE[ e 27, ]
(h) Estimation of ]E[Ig’”]. Finally, by (A3), we infer

n
R O F A P P ) )

=1

(i) Estimation of E[/{;']. Adding and subtracting F(uy) to the term, we get,

bid] - [/ / (e~ Fug]. i) | as 2 [ (@Fg. ) |

Using previous arguments as before by (A3) and Lemma 3.3 (i), we bound the first term on the right-

hand side by Ck* + CkIE[H ntl/ 2 ] The second term on the right-hand side will now be combined
with the term I7.
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36 X. FENG ET AL.

i) Estimation of E[75"+1%"]. Here, we consider the estimation of 7" and %" together. We subtract
11 T2 11 12 tog
the term % [3F (u(,)) — F (u(tn_l))] from If’ln and add the corresponding term with If’zn. Then, the new

decomposition can be estimated similarly as E[Ié’"] and E[lg’"] (see steps (g) and (h), respectively) to
finally get

E[17 +1{3] < Ck* + Ck(IE (sl + e 152 +E [Ile’;“/zllﬁz]).

(k) Estimation of E [1}]. To estimate this term, we need to combine the terms ko (i) AyW, %Auo

and kK*F (1), which are coming from the steps (e), (f,) and (i), respectively. By the assumption (5.2),
we infer

k2
E [(kvO — =1+ - Ay + B Gg) + ko (ug) AW, e;ﬂ/ZH

2

2
<‘E |:Hkv0 e %Auo + K2 F(ug) + ko (ug) oW } + CKE [ |t 27,
L2

< Gk + CRE[ el 27 ]

Now we combine all the above estimates in (5.26) in summarized form, then the implicit version of
the discrete Gronwall lemma yields assertion (5.3).
(3) Proof of (5.4). Similar to (5.20), we have for o = 1

[un-i-l _ un] _ szﬁ”’l/z _ [ul _ MO]
2o (5.31)

n n
= k;U(M[)Azw+&k;Dua(uz)v[AeW-|- 5 ;[31:(”6) _ F(uefl)],

So the additional term on the right-hand side of the error equation (5.22) is

n n
@k > —D,o W AW +ak D —D,o W [(AW — A,W)] = T5h + 3% (5.32)
=1 =1
n+1/2

‘We now follow the argumentation in (2): multiplication with ¢, of the modified error equation (5.22)
then leads to (5.26), where jgzg is merged with Ig’". Then, the sum Iﬁ’" + If’" + Ig’" may be rewritten as
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the following sums

41 n— toy1
(/ /e [D,o (u(t)) v(tp) = Do W] — 1) AW(§) ds, e"+1/2)

_én
=l

ot "2 e "
+ / Z/ [0 (&) — o (u(t) — Do (uty) v(t)(E — t,)] dW (&) ds, T/
n =1 ty

_gtn
_13,A2

In N
+ (/ + / [DMU (u(l‘n)) v(t,) — Dud(u")v"] (& —1,)dW(£) ds, €Z+1/2)
In ty

_qtn
_13,A3

t)l
(/ +l/ [0 &) — o (u(t,) — Do (u(t,) v(t,)E —1,)] dW(g)ds,e"“/z). (5.33)

_gbtn
713,A4

We independently bound the other error terms in (5.26) in this modified setting:
(a) To bound E[Ié;]';] in (5.33), we use Itd isometry, the mean-value theorem, (A4) form = 1,2,
to get

1 a1 "1 pteg
]E[Ifzgl] <kE |:z . ”/t Z/t [Dua (u(tp) v(t,) — Duo(ul)ve]
n =1""%

(€ — te)dW(E)dsH;} FKE [||e';+1/2 Hiz]

n—1

In+1
/ Z |:/ |D o (M(tg)) V(t[) Dua(uz)vl ”]Lz

X (& — 1) dE dsi| +RE[[er 2|2, ]

n—1
< ok Y E[[D,0 (ut) vt — Do |1 ] + KE[ert 127, ]
=1

n—1

< ok 3 (B[ el ] + EI5A 1) + KB [[ert 23] (534)

=1
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38 X. FENG ET AL.

where Igzgl = “ [D,o (u(te)) D a(u’z) (t[) ”]Lz In order to handle the first term in the right-hand
side, we estimate (5.34) further by
n—1 .
< O3 (B[lebl2 + e 122 ]+ RELZ, 1) + B[ 1722 ]
=1

We estimate the second term in the right-hand side as

n—1

Ck4ZE 1] = O S E[ e v iR

=1

n—1

< Gk 3B [eloalel iz v 12+ ]

=1

n—1 n—1

=3 E [lebl22 ]+ ce SB[ ek ] + S e [relix]. 639

=1 =1

where the last term on the right-hand side is bounded by Ck> due to Lemma 3.2 (iii). The second term
on the right-hand side is bounded further by Cko Zz;ll IE[Hu(t,Z) ||;It2 + ||ut ||‘th], which may be bounded

by Ck>, thanks to Lemma 3.2 (i) for p = 2 and (4.5).

(b) Now consider ]E[I§ 22 Let & € [t,,1,,,]; we use the mean-value theorem twice, (A4) for m =
1,2, to conclude

lo () — o (u(ty) — Do (utp) vie)E — 1)

§ £
:H[Dua(ﬁg)—Duo (u(tl))]/ v(n) dn + Do (u(te))/ [van) — v(tp)]

Iy Iy

< CIVuE) — Vupllt, + K sup  [v(E) — v(ip12s, (5.36)

tg<E<tp4

where ﬁg = ¢u(€) + (1 — $)u(t,), for some ¢ € [0, 1]. Thus, we have

tp<E<tyy)

E[lﬁ;;;]scm[ sup (||Vu(s>—Vu(tg>||§‘Lz+k2||v(s)—v<tg)||iz)]+kE[||e’;+‘/2nsz]

< CK 4 KE[ 2|3 ]

(¢) We now consider E[Igfz';]. This term can be estimated by using the same arguments as for

E[Iﬁ;gl ]; see (5.34) and (5.35). Since we do not have the summation in this term, we will get

B[5,] < kO + CRE[ e[, + e[ ]

€202 Ae\ ¥z uo Jasn saleiqI] 98ssauus | Jo ANSISAIUN AQ v7L 191 Z/yZ0PBIPp/WNUBWISE0 L 0 | /10p/3|o1e-e0ueApe/eulewl/woo dnooiwsapese//:sdny woJ) papeojumoq



HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 39

(d) Then, we consider E[/ 15 Z4] which will follow the same arguments as for IE)[I3

get the estimate

A ]; see (5.36). We

E[55,] < 0 + okB [ 2)L .

(e) To estimate the term involving jg”é, which is defined in (5.32), we use Young’s inequality to
write

2

- @’ 2
el (5. ar?)] = TR | Feelian)

Then, we use (A4) for m = 1, and independence of increments A, W, to get

n
‘Zbuaw‘f)vf[ﬂv - A,W]
=1

<a C2k ZE [“D o ||]L2|Ae ZFV| ] +kE [”enH/anZ] .

Finally, we use (5.11) and (4.2) of Lemma 4.1, to obtain

n
@ S B[]+ ke[l < o k[ 2] s
=1

(f) We may modify the argument in part (2) to improve the order for the for the order limiting term
I5in Ie’"; see step (f;). Using integration by parts and using Lemma 3.3 (iv) instead, we verify (2.1) of

Lemma 2.1 for y = 1/2 (by choosing f(£) = E[(Vu(€), Vel t'/?)] for all € € [1,,1,,,1), to get

’E[( (1) — v(s)], Ve"+1/2)]‘ < C(IE[||eg+1/2||iz])l/2 It —s|2.

Using this estimate, we may bound the term in (f;) by

<okl (B[ 2]) " = ckr e + ot

Thanks to the above estimates, and after summation over all iteration steps in (5.26), we may then
conclude assertion (5.4). [l

6. Computational experiments
In this section, we provide computational studies to check

e how essential the assumptions (A1)—(AS) and (B1)-(B2) (i.e., needed in Sections 3-5) are in
actual computations. In this respect, we computationally study the impact of rough initial data
(g, vo) on the discrete dynamics, as well as of drift nonlinearities F' (see Example 6.2).
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e If the diffusion o = o (v) and the drift F = 0, then there is a reduction of convergence order as
proved in (5.1) of Theorem 5.1; see Example 6.1.

e The diffusion 0 = o (u,v) = 0 on the boundary, and satisfies (A3). Example 6.3 discusses the
effect that noise has, which is nonhomogeneous on the boundary, or violates (A3).

e By Theorem 4.1, B in the (@, 8) —scheme needs be chosen from (0, 1/2) to ensure stable, accurate
simulation of (1.3) with 0 = o (u,v) and F = F(u,v). The simulations in Example 6.4 evidence
a small choice for g for faster Monte Carlo approximation.

We use the lowest order conforming finite element method to simulate the (a, 8)—scheme on a
regular triangulation 7, of O; see (Brenner & Scott, 2008). Let the finite element space be

Vo= fw e By lge P VR T

where P, (K) denotes the space of polynomials of degree one on K € 7.
As initial data, we choose u! and v! as

Iu1 = uy+kvy + %Auo + K2F (ug) + (k + k) 0 (up) AW, ©.1)

v =y + ko (uy) W(t,),

where u, v, (not finite element valued) satisfy assumptions (A1);, and (B2). Recall the definitions for

w"1/? and A/nTV in (4.1) and (1.12), respectively. We implement the following scheme:

ScHEME 3. Let@ € {0,1},and 0 < B < % Let {tn}f;/:o be a mesh of size k > 0 covering [0, 7], and
(6.1). Forevery n > 1, find a [Vh]z—valued, ]-',n+ . -measurable random variable (uZ‘H, vZ'H) such that

(i = ¢p) = k(v ) Vo € Vs (6.2)
n+l on — k(v Y 0o %
U Vi ¥y) = ( u, ', wh) + o |4y, AW, ¥,
_l —_—
+a (Dua (uz,vz 2) vy AW, I/fh)
k no.n n—1 _n—1
+ 5 (3F (v} = Fy ™" i) wy) YU, eV,  (63)

6.1 Convergence rates

The numerical experiments are performed using MATLAB. In this section, for all the examples, we
choose O = (0,1), T =1, A = —A in (1.3). We choose uy(x) = sin(2mwx) and vy(x) = sin(3mwx),
and u',v! are chosen as in (6.1). A reference solution is computed with a step size k.. = 27/ and
Npes = 277 to approximate the exact solution and the sample Wiener processes W. The expected values
are approximated by computing averages over MC = 3000 number of samples. The plots are shown for
the time steps k = {273, .- ,27°}.

Example 1.2 in Section 1 provides computational evidence for the improved convergence rate
O(K>3'?) for the schemes (1.9)—(1.10) with @ = 1 in the situations where o = o («). In the following
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——L2 error for u
order 1/2

——order 1

— — order 3/2

Time step

Error

——L2 error for Vu
order 1/2

——order 1

— — order 3/2

Time step

Error

—=L2 error for v
order 1/2

——order 1

— — order 3/2

Time step

(a) L2-error for u (B) L2-error for Vu (¢) L*-error for v

FiG. 3. (Example 6.1) Rates of convergence of the (1, %)—scheme with o (v) = %v and F = 0.

example, we consider 0 = o (v), and find a convergence rates of O(k'/?) in simulations (A)—~(C)
of Fig. 3, which validates (5.1) of Theorem 5.1. So we observe a reduction of convergence order if
compared to Example 1.2, where o = o (u).

ExampPLE 6.1 Consider o(v) = %v and F = 0. Figure 3 displays convergence studies for the
(a, B)—scheme fora = 1 and B = 1/4 : the plots (A)—~(C) of L2-errors in u, Vu and v, respectively,
confirm convergence order Ok 2); see (5.1) of Theorem 5.1.

In the following example, we discuss four different cases where

(i) F = F(u,v) has nonzero trace, but is Lipschitz and o = o (u);
(if) F = F(u,v) is only Holder continuous and o = o (u);
(fiiy F = F(u,v) is same as (i) and 0 = o (u, v) satisfying (A3);
(iv) F = F(u,v) is same as (ii) and 0 = o (4, v) satisfying (A3).

We observe that, although F = F(u, v) violates (A3) in (if), we still get improved convergence rates,
but if ¢ = o (u,v), we get the convergence order O(k'/?) as shown in (5.1) of Theorem 5.1.

ExaMPLE 6.2 We consider the following cases:
(i) o(u) =uand F(u,v) = cos(u) + 2v;

(iiy o) =wuand F(u,v) = /u+Vv+2;
(iiily o(u,v) = -5 +vand F(u,v) = cos(u) + 2v;

1+u?
@) ou,v) = 1+”u2 +vand F(u,v) = Ju+v+2.

The errors are computed via the (@, 8)—scheme with @ = 1 for 8 = 1/4 : the plots (A)—(C) for the
problem: (i) evidence the convergence order O(K3/?) for u, Vu, and O(k) for v. We observe the same
convergence rates for the problem; (i7) despite the lack of Lipschitzness of F, which violates (A3); see
plots (D)—(F) of Fig. 4. The plots (G)—(I) of LL>-errors in u, Vu and v, respectively, for the problem;
(iii) and evidence the convergence order Ok"2) as shown in (5.1) of Theorem 5.1. We observe the
same order of convergence for the problem; (iv) see plots (J)-(L) of Fig. 4. Thus, the above two
examples verify that the estimate (5.1) is sharp in the case of diffusion o = o (u, v).
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FiG. 4. (Example 6.2) Rates of convergence of the (1, %) —scheme.

Time step
(L) L*
error for
v in (iv)

In the next example, we drop the assumption on o = o (1) to be Lipschitz, and of zero trace to see
which of these violations spot the reduction of the convergence order of schemes (1.9)—(1.10).

ExaMPpLE 6.3 Let F = 0. Consider the following cases:

M) o =l

(i) o (u) = /Iul.

In Fig. 5, the errors are computed via the schemes (1.9)—(1.10) with @ = 1. For problem (i) (nonzero
boundary), the plots (A)—(B) for LL2-errors in u, Vu, respectively, show the convergence order O(k3/ 2)
and the plot (C) for LL2-error in v shows (k). For the problem (ii) (non-Lipschitz), the convergence
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Fic. 5. (Example 6.3) Rates of convergence of the schemes (1.9)—(1.10) fora = 1.
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FiG. 6. (Example 6.4)(a@, 8)—scheme with o (v) = 5v, and F = 0.

rates for L2-errors in u, Vu are reduced to O(k); see plots (D)—(E), but L2-error in v remains same as
O(k); see plot (F).

6.2 Choice of B and required number of MC

ExamPLE 6.4 Let O = (0,1), T = 05,A = —A, F =0, 0(v) = 5v. We compute W on the mesh
of size k = 2712 covering [0, 0.5]. In the (@, 8)—scheme, the term W =yt + BkItA V13 involves
B, where the last term creates an additional numerical dissipation term in (1.3) to control discretization
effect of the noise. For 8 = 0 with ¢ = o (1) and F = F(u), the schemes (1.9)—(1.10) are stable, but
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44 X. FENG ET AL.

for general case we require 8 € (0, 1/2) for the stability of the (&, 8)—scheme; see Lemma 4.1. For
increased value of 8, stabilization effect vanishes for small k. Thus, a smaller choice of 8 is preferred
to have the stability of the scheme. The snapshot (A) in Fig. 6 shows for § = 0, }‘, %, %, 1, that at least
MC = 400, 600, 800, 1000, 1400, are needed to have a steady energy £ at time T = 0.5. The snapshot

(B) evidence a higher number of MC as we increase f to have a steady energy curve.
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A. Proof of Lemma 3.2

We exploit the linearity of the drift operator to decompose the solution u of (1.3) with A = — A in the
form u = u; + u,, where u; solves the following partial differential equation (PDE)

dit, — Au; dt = F(0,0)dr  in (0,T) x O,
(0, =0, 3u;0,)=0 inO, (A.1)
uy(t,) =0 on 90, Vi e (0,7T),
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where ‘-’ denotes the time derivative, while u, solves the SPDE

dity — Au, dt = F(u,v)dt + o w,v)dW@ in(0,T) x O,
u(0,) = ug, 0,uy(0,) = v in O, (A.2)
uy(t,-) =0 ond0, Vi e (0,7),

where I?(u, V) := F(u,v) — F(0,0), and v = 0,u := 9,u; + 0,u,. The reason for introducing F is to make
the drift term has zero trace in (A.2),. To prove the regularity results, we use the framework of Evans
(2010) for (A.1) and we use the Galerkin-based proof for (A.2); see, e.g., (Chow, 2015, Ch. 6). We need
some extra assumptions on F and o (e.g., (A3)-(AS)) and use different arguments than (Chow, 2015) as
we require improved regularity results.

For the argumentation below to work, for the improved regularity, we assume that ¢ has zero trace,

but not F. If this is not assumed, then the subproblem (A.1) will have an extra term ( fot 0 (0,0)dW(s), ¢))
in the right-hand side, and in (A.2), o (1, v) will be replaced by & (1, v) := o (u,v) — (0, 0), which has
zero trace. In the next step to prove the higher regularity of the modified (A.1), we need to consider the
following transformation, y(f) = u;(¢) — fot fos 0(0,0) dW(r) ds. Now, y solves a randomized PDE with

y = h on the boundary, where h(¢) := fot fos o (0,0)dW(r) ds. Since A is of class Cl’% with respect to the
time variable, the standard PDE techniques to show the improved regularity may not be applied. This
motivates us to assume that o has zero trace.

Proof of Lemma 3.2 We first prove the improved regularity results for #; and use a bootstrapping
argument to prove the improved regularity results for u,.

(a) Improved regularity of «;. By (Evans (2010), Section 7.2), there exists a unique solution u; €
C([0, TI; H}) and d,u; € C([0, T];L?) to (A.1). By (Evans (2010), Section 7.2), for m = 1,2, 3, under
the assumption (AS5), we get (ul, 8tu1) e L*(0,T; ]HI’"H) x L°*°(0, T;H™), and we have the following
estimate

sp_ (Il (11 + 10, Ol ) = Cr IFO.0N (2 2). (A3)

0<t<T

We will use this result to prove the improved regularity for u,.

(b) Improved regularity of u,. By (Chow, 2015, Theorem 8.4), there exists a unique
{F,};=0—adapted process (u,,d,u,) € L*(2;C([0,T];HY)) x L? (2; C([0, T];1L?)), which satisfies
(A.2) P—as. The proof uses a Galerkin approximation, with {p;}7°, the orthonormal basis of
L2, composed of eigenfunctions of —A. For any n € N, we define the finite dimensional space
H,, := Span{py, - - - ,,on}/,\and P, be the prgiection from I onto H,. We define A, :=P, A : H, — H,
and use the mappings F,(u,,v,) = P,Fu,,v,) € H, and o,(u,,v,) = P,0(u,,v, € H, for
(u,,v,) € [H,], such that u, = u,, + u,,, where u,, := P,u;, v, := vy, + Vo, := d,uy, + d,u,, with
Uy, (0) = P,uy and v,,(0) = P,v,, where u,, and v,, satisfy the following approximated system

du2n = V2n dt
. (A4)
dVZn = (Anu2n + Fn (uln + Uzp>Vin + V2n)) dr + Oy (uln + Upps>Vin + VZn) dW(@).

By (ksendal (2003), there exists a unique {F,},-o—adapted process (i, v5,) on (2, F,{F,}0.P)
such that for each n € N, (u,,v,,) € L? (£2; C([0, T1; [H,,1?)) for (P,uq, P,v,) € [H,]1.
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(1) Bounds: Let £ € {O, 71,5 }, which correspond to the parts (i)-(iv) of Lemma 3.2, respectively.

Define the map @, : H, x H, — R, where
5 2 2
Pylun) = & |:HA Zu”Lz—l—”AﬁvHLz]
Thus, D, ®,(u,v), D, ®,(u,v) € L(H,,R). For any ¢ € H,,, we have
z+ o+
D, ®,(u,v)(¢) = ( 2u, Ay 2¢) and D, @, (u,v)(¢) = (ALy, ALg).
Applying It6’s formula to the process @,, we obtain
o
D, (112, (1), V2, (1)) = D (14,(0), v, (0)) + ; Ap Uy, (s), A v2n(s)
t
+/0 (Aﬁvz,l(s), Afl+1u2n(S) + Af;Fn (un (5), vn(s))) ds
t
+/ (A Vs (5), Ao, (4, (5),v,,()) dW(s))
/ | ALo,, (1, (), v, () |22 s, (A.5)

where u, = u;, +u,, and v, = v, +v,,. We use different arguments for the cases £ = 0, ; 1,3 5, which
represent the parts (i)-(iv) of Lemma 3.2, respectively.

(b1) F = F(u,v) and o = o (u,v) for £ = 0. Since P,o (u,,v,) = >i_; (o (u,,v,) . p;) p;> using
(A3), a standard argument gives

lon Gt v) 52 = o o) 2 = € {14 10300022 + I,

2
= G {UH Vi 12 + w02} = € {1 a0, |F + v )

A similar estimate will hold for ||fn (,,v,) ||i2.
(b2) F = F(u,v) and o = o (u,v) for £ = 1/2. Proceeding similarly as before for £ = 0, and using
(A4), we infer

n
|43 0w vz = 245l (0w 0) < [0 (10, 2

j=1

C{l + Haua (un,vn) (Vu,) + 0,0 (un,vn) (an)||iz} < C{l + ||Anbtn||]i2 + || A,]/zvn “]Iz}}

A similar estimate will hold for HAI/ 2F ( vn) ||]i2. The other terms in the right-hand side of (A.5)
can be dealt similarly by the use of Cauchy—SchwarZ inequality.
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Using the above estimates in (b1) and (b2) (for £ = 0 and %, respectively) in (A.5), we obtain

t 1 2
Py (13 (1,v2,(0) = Py (13,(0),75,(0)) + € /0 [1 + AL, )52 + |40 a0 Lz} ds

, (A.6)
+ / (Aflvzn(s), Ao, (1,(5), v, (s)) dW(s)) .
0

Using the definition of @,, raising the power p in both sides of the inequality for some p > 2, taking the
supremum over time and then taking expectation and using the regularity results in (a), we get

E |: sup (Dg (u2n(s)’ V2n(s))]

0<s<t

0<r<s

t
<C+ 3P71E [455 (”2n(0)’v2n(0))] + 3]’71 / E |: sup dbf (u2n(r),v2n(r)):| dr
0

+ 3”_IIE|: sup

0<s<t

S P
/ (Aﬁvn(r), Ao, (1, (1), v,(r)) dW(r)) ] (A7)
0

Using the Burkholder—Davis—Gundy inequality and previous estimates for £ = 0, %, and using the
regularity results in (a), we obtain
l

t p/2
< e[ ([ Vot s, 0,0 )

/s (48v2,(), AL, (1,0, v,(1) AW
0

IE[ sup

0<s<t

t
<C+ CIE|: sup @7 (uy,(5), vzn(s))i| + C/ IE[ sup @Y (un,(5), v, (5)) i| ds. (A.8)
0

0<s<t 0<s<t

Using (A.8) in (A.7) and using the Gronwall lemma, we get £ = 0, % andp > 2,

E[ sup @Y (uzn(s),vzn(s)):| < CE [®) (45,(0),v,,(0)] €T < CE [®) (ug.vg)] . (A.9)

0<s<t

(b3) Dealing of cases ¢ = 1, % We assume (A3) for these two cases. If we treat o, (v) and F,(v)
as general functions, then the chain rule and the product rule formula of calculus will lead us to higher
order derivative terms with higher moments in v in the right-hand side as compared to the left-hand
side; see (A.10) and (A.11) below for the similar estimates in v. Then, the Gronwall lemma may not be
applied. Thus, F = F(u) and 0 = o (u) are treated as general functions, but F = F(v) and 0 = o (v) are
assumed to be only linear in v in (A3), i.e., F(v) = Bpv and o (v) = B, v for some constants By, B, € R.

Case-1: Let us consider the case o = o (4) and F = F (1), which can be dealt as general functions.
Take £ = 1 in (A.5). Then, using product formula, and chain rule for general functions and by (A4) for
m = 1,2, we infer

n
2 ~
14,0, = D" 47| (0. )| < 1A @72 < Co (V)2 (172 + Cll Au,lIF.. (A.10)
j=1
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Now, using Ladyzhenskaya inequality and Poincaré inequality, we estimate the term
2
|(Vu)? 2 < ClIVu 7211 Au, 125 < ClIVi,IIT 211 Au, |17 2 + Cll A, |17
< CIIVu, I} + Cll Auy I, + CIIV Auy |17 (A.11)

Similar estimates will hold for ||Anfn(un) ||i2. Now, we take £ = % in (A.5). Using the chain rule, (A4)
form =1, 2,3, we infer

2 - ~
| 8520, ) 12 < 1A% Po @I, < Co 1(Vu,)’ 172 + Co Vi, Au, 172 + C,lIV A, I 5. (A.12)

Using the Sobolev embeddings, we further estimate

1(Vu,) 12, < ClIVu, 18 < CllAu,|IS,, (A.13)
and
1/2 3/2 1/2 3/2
IV, A, |12, < C IV 241l Auy 120 < C UV Il 51 Auy 521 Ay 11571V A,y 1
< ClIVu, |, + ClAu, |3, + CIV A3 ,. (A.14)
Similar estimates will hold for || A?,/ ZFH (u,) ||]i2.
Case-2: Let 0 = 0,(v) and F= F,(v), such that (AS5) holds. For £ = 1, we have
n
2
14,0, = D A2 (0,). 0)]” < 140 IF2 < CollAv, 7., (A.15)
j=1
and for £ = % we have
2
14720, |12 < 18720 @)1, < C,lIV AV, |7, (A.16)

Similar estimates will hold for || 43 °F, (v,)I2,.

Using the estimates (A.10), (A.14), (A.15) and (A.16) in (A.5) for £ =1, %, and using the regularity
results proved so far for u;, and u,, and their time derivatives, we get (A.7) for £ = 1, % Finally, the

use of Burkholder—Davis—Gundy inequality yields the assertion for £ = 1, %
(2) Convergence: By step (1), forp > 2

(s Vo) C LP(2;L%°(0, T; HAH 5 H2)) N 1P (2, L2(0, T; H2T % H2Y)

is bounded for £ = 0, %, 1, % Here, we need to argue the convergence case by case. First, consider £ = 0.
Then, there exist subsequences (u,,,),, and (v,,/),,, which converge weakly to u), and v}, respectively.
Then, using the standard arguments (see Chow, 2015), it can be shown that (u/z, v/z) is a weak solution
of (A.2). By the uniqueness of the weak solution, we have (1/2, v/z) = (u,v). By Fatou’s lemma, passing
to the limit in (A.9) yields

E[ sup @ (uz(s),vz(s))} < CE [@F (ug,vp)] T, (A.17)

0<s<t

for £ = 0. Now, consider £ = % Then, there exist subsequences (u,,,/),» and (v,,,),» that converge
weakly to some i1, and V,, respectively. By using the standard arguments and the uniqueness of the
solution of the system (A.2), we claim that (i, v,) = (Vu,, Vv,). Thus, by passing to the limit, (A.17)
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holds for £ = 1/2. Similar arguments will yield the result for £ = 1, % Combining (A.17) with (A.3),
we get the assertions in Lemma 3.2. (]

B. Proof of Holder continuity in time

The proof of Lemma 3.3 uses the regularity results for the variational solution of (3.1)—(3.2) in
Lemma 3.2. We obtain a Holder regularity in time for u, which is double the one for v: the reason
for it is the occurrence of the Itd integral in (3.2), but not in (3.1).

Proof of Lemma 3.3 Proof of (i). Let r,s € [0,7T], and fix p € N. By Lemma 3.2 (i), we have v €
L2 (.Q;Loo O, T; ILZ)). Therefore, fsr v(€) d€ is well-defined for a.e. x € O and P-a.s. Thus, we can
write the weak formulation (3.1) in strong form P-a.s. as

u(r)y —u(s) = /V v(§)dé, fora.e.x e O, forr,s € [0,T].

Then, the Holder inequality yields

r 2p r
||u<r>—u(s)||§f;s( / ||v<s>||des) <lr—s! / V)12, de.

We fix s, t € [0, T], and take supremum w.r.t. r, and then take expectation, to get

t
E[S“P ”W)—"(S)lli’i] < lt—slz”‘lE[ / ||v(s>||f§ds] < It—s|2pE|: sup ||v(r)||§§]

S<r<t 0<t<T

Hence, (i) holds by applying (3.3) in Lemma 3.2. (I

Proof of (ii). Let r,s € [0,T], and fix p € N. The first part follows as (i). By Lemma 3.2 (ii), we
have u € L? (2;L%°(0,T;H?)). Therefore, [ Au(&) d§ is well-defined for a.e. x € O and P-a.s. By
Lemma 3.2 (i), we have (u,v) € L* (£2;1°°(0, T; H? x H')). Therefore, by (A3), [/ F (u(§),v(§)) d&
is well-defined for a.e. x € O for s,r € [0,T] and P-a.s. Similarly, by (A3) and Itd isometry,
fSr o (u(),v(€))dW(€) is well-defined for a.e. x € O for s,r € [0, T] and P-a.s. Now, from the weak
formulation (3.2) and using the above conclusion, we may rewrite the equation in the strong form as
(see (Evans, 2010, Section 6.3, Remark (ii)))

W) — v(s) = / Au(€) d& + / F (u(®), v(€)) dé + / o WE).VE)AWE). (B

By Holder inequality, we estimate
Ivr) Vo)1 = €0 =) [ NAUE) IR, &5 + =) [ IF (e v 1 o

r 2
e /O ( / o (). v(E)) dW(é)) . (B2)
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We fix s, € [0, T], and take supremum w.r.t. r, then take expectation. Using (A3), Itd isometry, Lemma
3.2 (i) and (ii), we infer

s<r<t 0<t<T O=t=T

E[sup ||v(r)—v<s>||iz] < CE[ sup ||Au<r)||ﬁz} (t—s)*+ C(t—s)%C]E[ sup ||Vu(t)||§2] (t—s)*

t
+CE{ sup ||v<r)||§z} (t—5)°+ CE [ / (1+ Ivu@2, + ||v<é)||ﬁ2)}

0<t<T

=Ct—ys). O

Proof of (iii). Let r,s € [0,T], and fix p € N. The first part follows as (i). In order to verify
the bound for E[ SUP;<,<; IVIv(r) — v(s)]||i2], consider the equation (B.1). By Lemma 3.2, we have

(u,v) € L? (£2;L%°(0, T; H* x H?)). Thus, by (A3), (A4), we can take the gradients in (B.1), since it
is a closed operator on H'. Then, the terms are well-defined. Proceeding similarly as part (ii), we get

E[sup ||V[v<r>—v<s>]||i2}sclﬁ [ [ivaueiz, ds] <r—s>+CJE[ [Ivra@aenll, ds} (t-5)

S<r<t

+CE [ / [Vo @@.v@) |- dg] .

By (A4), | Vo (u(€),v(£)) Hiz <C (||Vu(sg)||§Lz + ||Vv($)||i2). Then, using Lemma 3.2 (i), (ii) and
(iii), we further estimate

t
< C(t— 5>+ CE [ / (Ivu@12, + ||Vv(§>||i2)} <Ct—s).

Proof of (iv). Let r,s € [0,T], and fix p € N. The first part follows as (i). To verify the bound for
IE[ SUPy << [[A[v(r) — v(s)] ||]i2], consider (B.1). Argue similarly as part (ii) to apply the Laplacian to
(B.1) due to (A3), (A4), and proceed similarly, to obtain

t t
E[sup ||A[v<r)—v(s)]||§2} < CE[ / 12420112, ds] (t—5)+CE [ / | AF w(©), v} ds] (t—s)

s<r<t

+CE [ / | A0 (&), v©) |2, ds} .

To bound the last two terms requires (A3) to, e.g., write o (u(§),v(§)) = oy (u(&))+o0, (v(§)), where o,
is only linear in v, i.e., there exists a constant B, € R such that 0,(v) = B, v. Then, Ao (u(§),v(§)) =
Ao (u(§)) and we can follow the steps of (A.10)—(A.14) to bound it. Similar techniques may be used
to deal with ||AF (u(&),v(§)) ||%L2. Lemma 3.2 then settles the assertion. Thus, the proof is complete. [
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