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In this paper, a higher order time-discretization scheme is proposed, where the iterates approximate the
solution of the stochastic semilinear wave equation driven by multiplicative noise with general drift and
diffusion. We employ variational method for its error analysis and prove an improved convergence order
of 3

2 for the approximates of the solution. The core of the analysis is Hölder continuity in time and
moment bounds for the solutions of the continuous and the discrete problem. Computational experiments
are also presented.
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1. Introduction

Let O ⊂ Rd, for 1 ≤ d ≤ 3, be a bounded domain. We consider the numerical approximation of the
following stochastic semilinear wave equation perturbed by multiplicative noise of Itô type:⎧⎪⎨⎪⎩

∂2t u + Au = F(u, ∂tu) + σ(u, ∂tu) ∂tW in (0,T) × O,

u(0, ·) = u0, ∂tu(0, ·) = v0 in O,

u(t, ·) = 0 on ∂O, ∀ t ∈ (0,T),

(1.1)

where A is a strongly elliptic second-order differential operator of the form

Aϕ(x) = −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
ϕ(x)

)
∀ x ∈ O, (1.2)

with suitably smooth coefficients aij(x), where aij = aji ∀i, j, and for every nonzero ξ ∈ Rd,∑d
i,j aij(x)ξiξj ≥ γ |ξ |2, for some constant γ > 0. Here, F and σ are Lipschitz in both arguments.

Let P := (Ω ,F ,F,P) be a filtered probability space with F = {Ft}0≤t≤T , and {W(t)}t≥0 be a finite
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2 X. FENG ET AL.

dimensional Wiener process defined on it; the initial data u0 and v0 are given F0−measurable random
variables.

A strong variational solution to (1.1) exists, see e.g., (Chow, 2015, Section 6.8), and is usually
constructed via the reformulation of (1.1)1 as a first-order system by setting v = ∂tu,{

du = v dt

dv = (−Au + F(u, v)) dt + σ(u, v) dW(t),
(1.3)

and then using a Faedo–Galerkin method, related uniform energy bounds and a compactness argument;
see Definition 3.1 and Appendix A below. A prototype example is A = −Δ, for which we associate the
following energy functional

E(u, v) := Ekin(v) + Eela(u) = 1

2

∫
O

|v(x)|2 dx + 1

2

∫
O

|∇u(x)|2 dx, (1.4)

where the first term represents the kinetic energy, and the second the elastic energy of the propagating
wave with pointwise elongation u : [0,T] × O × Ω → R. We begin the further discussion with an
example to motivate the effect of noise.

Example 1.1 Let O = (0, 1), T = 1, A = −Δ, F ≡ 0 in (1.1), and W be of the form (2.2), with
M = 3, and ej(x) = √

2 sin(jπx). The first line in Fig. 1 displays single trajectories of u for different
σ ≡ σ(u, v). For σ ≡ 0, both the amplitude and wavelength remain constant over time in snapshot (A),
as does E(u, v) in (D). For σ(u, v) = 1

2u, the amplitude of a single wave realization in snapshot (B)
changes—as do the trajectory-wise energy parts in (E)—while the wavelength remains constant over
time. The computation of the (approximate) total energy uses MC = 103 Monte-Carlo simulations in
snapshot (G): it is conserved and close to (D).

For σ(u, v) = 1
2v, both the wavelength and frequency of a single trajectory are heavily affected, see

snapshot (C) and (F), where only t �→ Eela(u(t,ω)) is smooth. In contrast, the dynamics of EMC[E(u, v)]
in (H) recovers the exchange of elastic and kinetic energy parts, but the total energy is not conserved
any more. The proper resolution of snapshot (H) required 5 times more Monte-Carlo simulations than
for (G).

The first works to numerically solve (1.1) are Walsh (2006) and (Quer-Sardanyons & Sanz-Solé,
2006), where (semi-)discrete schemes were constructed based on the solution concept of a mild solution
for (1.1): in (Walsh, 2006), which considered O = R, A = −Δ, Lipschitz nonlinearities F ≡ F(u) and
σ ≡ σ(u) and white noise, a strong convergence rateO(k1/2) was shown for an explicit finite difference
scheme, where the temporal step size k is equal to the mesh size h of the Cartesian spatial mesh; the
error analysis uses the Green’s function, which is explicitly known in this case, and hence used the mild
solution concept for this Cauchy problem.

A further development in this direction is (Cohen et al., 2013), where O = (0, 1),A = −Δ

in (1.1), and the authors used the explicit representation of (discrete) Green’s function, such that its
implementation crucially hinges on the availability of eigenvalues and eigenfunctions of the Laplacian;
see also (Chow, 2015, Section 5.3), and (Hochbruck &Ostermann, 2010). The stable scheme then allows
independent choices of k and h, and the proof of (Cohen et al., 2013, Theorem 4.1) provides convergence
rates, both in terms of spatial and temporal discretization. We also mention (Cohen & Quer-Sardanyons,
2015), whereO is a bounded convex domain with polygonal boundary, and A = −Δ in (1.1); the space-
time discretization was proposed with the explicit knowledge of the related (discrete) semigroup, whose
efficient implementation again hinges on the knowledge of the related eigenvalues and eigenfunctions.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 3

Fig. 1. (Example 1.1) (First line) Single trajectory of u from (1.1), simulated via (̂α,β)-scheme (̂α = 1). (Second line)
Corresponding elastic (Eela), kinetic (Ekin), total energy (E), for mesh sizes h = 2−7 and k = 2−10. (Third line) Plots
t �→ EMC[E(u(t), v(t))], with MC = 103 in snapshot (G) and MC = 5 × 103 in (H).

Later, in (Anton et al., 2016), the authors addressed the multiplicative noise case with σ ≡ σ(u), where
σ and also the nonlinearity F ≡ F(u) were assumed to have zero trace. The above mentioned works did
not address the case when F ≡ F(u, v) and σ ≡ σ(u, v).

In engineering applications for elastic and acoustic wave propagations, which may be described by
(1.1), the considered domains O ⊂ Rd are typically complicated, and/or the propagating medium is
heterogeneous, with layers, anisotropies, cavities (e.g., in seismology, or material testing) or may even
be random. Moreover, models of type (1.1) often require nonconstant and nonself-adjoint operators,
such as those in (1.2), which may even have random coefficients. Therefore, such engineering problems
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4 X. FENG ET AL.

often exclude the efficient use of semigroup based methods through spectral theory as discussed above.
This motivates us to aim for the following goals in this work:

(1) Use an implicit method in time (below referred to as (̂α,β)−method, where α̂ = 0; see Scheme 2)
to approximate (1.1) with F ≡ F(u, ∂tu) and σ ≡ σ(u, ∂tu), and employ variational methods for
its error analysis. This part is motivated by (Dupont, 1973) for the deterministic linear wave
equation, i.e., F ≡ σ ≡ 0. For finite dimensional noise of type (2.2), we use energy arguments to
obtain O(k) for the temporal error—which coincides with the order obtained in (Walsh (2006),
Theorem 4) and (Cohen et al., 2013, Theorem 4.1) for an exponential integrator, in the case

σ ≡ σ(u), F ≡ F(u) and trace-class noise in (1.1). We obtain O(k
1
2 ) for the temporal error in the

general case σ ≡ σ(u, v) and F ≡ F(u, v), which has not been addressed in the existing literature.

(2) For σ ≡ σ(u) and F ≡ F(u), in fact, we improve the (̂α,β)−method to a higher-order method
that yields improved convergence order O(k3/2) for approximates of u in L2; see Theorem 5.1.
The additional term that arises for α̂ = 1 is motivated by Itô’s formula, and uses increments

Δ̃nW :=
∫ tn+1

tn
(s − tn) dW(s) =

∫ tn+1

tn
s dW(s) − tnΔnW. (1.5)

(3) Computational experiments in Section 6 show that these results are sharp w.r.t. the used noise,
i.e., there are examples for σ ≡ σ(u, v) where the error converges only in order O(k)—rather
than O(k3/2) in the case σ ≡ σ(u).

In this work, we focus on proper time discretizations for (1.1), which we consider to be the essential
part of an overall discretization, and leave a related finite element error analysis for future work. The
results will be derived for (1.1) with A = −Δ to simplify the technical setup, but easily generalize
to A in (1.2), even with random coefficients there. Moreover, the (̂α,β)−method is neither a spectral
Galerkin method nor does its implementation hinge on related semigroups.

While being inspired by the second-order time-stepping scheme of (Dupont, 1973) for the

deterministic wave equation, where un,
1
2 := 1

2 (u
n+1+un−1), we propose the following scheme for (1.1):

Scheme 1. ((̃α,β)−scheme) Fix α̃ ∈ {0, 1} and β ∈ [0, 1/2). Let {tn}Nn=0 be a mesh of size k > 0
covering [0,T], and {(un, vn)n=0,1} be given Ftn-measurable, [H1

0]
2-valued r.v.’s. For every n ≥ 1, find

[H1
0]

2-valued, Ftn+1
-measurable r.v.’s (un+1, vn+1) such that P-a.s.

(un+1 − un,φ) = k(vn+1,φ) ∀φ ∈ L2, (1.6)
(vn+1 − vn,ψ) = −k

(∇ũn,
1
2 ,∇ψ

)+ (
σ
(
un, vn−

1
2
)
ΔnW,ψ

)
+α̃

(
Duσ

(
un, vn−

1
2
)
vn Δ̃nW,ψ

)
+ k

2

(
3F(un, vn) − F

(
un−1, vn−1),ψ) ∀ψ ∈ H1

0, (1.7)

where

ũn,
1
2 ≡ ũ

n, 12
β := 1 + β kβ

2
un+1 + 1 − β kβ

2
un−1, (1.8)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 5

and

ΔnW := W(tn+1) − W(tn) and vn−
1
2 := 1

2
(vn + vn−1).

Note that ũn,
1
2 = un,

1
2 for β = 0. Also, in the case when F ≡ F(u), σ ≡ σ(u) and β = 0, the

(̃α,β)−scheme simplifies to (for n ≥ 1)

(un+1 − un,φ) = k(vn+1,φ) ∀φ ∈ L2, (1.9)

(vn+1 − vn,ψ) = −k
(∇un,

1
2 ,∇ψ

)+ (
σ(un)ΔnW,ψ

)+ α̃
(
Duσ(un)vnΔ̃nW,ψ

)
(1.10)

+ k

2

(
3F(un) − F(un−1),ψ

) ∀ψ ∈ H1
0 .

Scheme 1 involves the increment Δ̃nW from (1.5). Since it is not computable, we use Itô’s formula

to write Δ̃nW as

Δ̃nW =
∫ tn+1

tn

[
W(tn+1) − W(s)

]
ds = kW(tn+1) −

∫ tn+1

tn
W(s) ds. (1.11)

We then approximate the last term by k2
∑k−1

�=1W(tn,�) to get a computable approximation of Δ̃nW by

Δ̂nW := kW(tn+1) − k2
k−1∑
�=1

W(tn,�), (1.12)

where
{
W(tn,�)

}k−1

�=1 is the piecewise affine approximation of W on [tn, tn+1] on an equidistant mesh

{tn,�}k
−1

�=1, of step size k
2 := tn,�+1 − tn,�. The identity (1.11) leads to

E

[
|Δ̃nW|2

]
≤ k

∫ tn+1

tn
E

[
|W(tn+1) − W(s)|2

]
ds ≤ Ck3,

and the identity (1.12) infers for q = 1, 2

E

[
|Δ̂nW|2q

]
≤ Ck2q E

[
|W(tn+1)|2q

]
+ Ck2q+1

k−1∑
�=1

E

[
|W(tn,�)|2q

]
≤ Ck3q + Ck4q ≤ Ck3q.

Hence, the approximation of Δ̃nW by Δ̂nW maintains the mean property of the former. This is the very
reason to use k2 as the step size to approximate the last term in (1.11). We also note that the estimation
of the distance between Δ̃nW and Δ̂nW will be useful in the convergence analysis to be presented
in (5.11).
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6 X. FENG ET AL.

Fig. 2. (Example 1.2) Temporal rates of convergence for the schemes (1.9)–(1.10) with F ≡ 0 and σ(u) = 2 sin(u); α̂ = 0 in
(A), (B), (C) and α̂ = 1 in (D), (E), (F); discretization parameters: h = 2−7, k = {2−3, · · · , 2−6}, MC = 3000.

Scheme 2. ((̂α,β)−scheme) Consider Scheme 1. We refer to (1.6)–(1.7) as (̂α,β)−scheme, when α̃

and Δ̃nW are replaced by α̂ and Δ̂nW, respectively.

The following example motivates that the convergence rate for the (1, 0)−scheme is boosted from
O(k) to O(k3/2), in case σ ≡ σ(u) and F ≡ F(u).

Example 1.2 Let O = (0, 1), T = 1, A = −Δ, F ≡ 0, σ(u) = 2 sin(u) in (1.3). Let

u0(x) = sin(2πx) and v0(x) = sin(3πx),

andW as in Example 1.1. Figure 2 displays convergence studies for the schemes (1.9)–(1.10): for α̂ = 0,
the plots (A)–(C) show L2-errors in u, ∇u, evidencing convergence orderO(k), and those for v evidence
convergence order O(k1/2). For α̂ = 1, the convergence order improves to O(k3/2) for u, ∇u and O(k)
for v; see plots (D)–(F). See Section 6 for more details.

The rest of the paper is organized as follows. In Section 2, we precise the data requirements in (1.3)
with A = −Δ, and provide the structure assumptions on F and σ . In Section 3, we recall the concept
of a strong variational solution for the problem (1.3) and discuss its regularity. In Section 4, we prove
stability results for the (̂α,β)−scheme. In Section 5, we prove strong rates of convergence for the above
mentioned schemes. In Section 6, we present comparative computational studies that evidence the role
of noise in various cases and validate the proved error estimate results.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 7

2. Preliminaries and assumptions

2.1 Notation and useful results

Let (Lp(O), ‖·‖Lp) and (Wm,p(O), ‖·‖Wm,p) be the Lebesgue and Sobolev spaces, respectively, endowed
with usual norms for m ∈ N and 1 ≤ p ≤ ∞. We denote Lp := Lp(O) and Wm,p := Wm,p(O). For
p = 2, let (·, ·) be the inner-product in L2, and Hm := Wm,2. We define H1

0 := {u ∈ H1 : u|∂O = 0}.
Let X,Y be two separable Hilbert spaces. Let L(X,Y) denote the space of all linear maps from X to

Y, and Lm(X,Y) denotes the space of all multi-linear maps from X×· · ·×X (m-times) to Y for m ≥ 2.
Throughout this paper, for some Φ : H1

0 × H1
0 → L2, we use the notation DuΦ(u, v) ∈ L(H1

0,L
2) for

the Gateaux derivative w.r.t. u, whose action is seen as

h �→ DuΦ(u, v)(h), for h ∈ H1
0.

We denote the second derivative w.r.t. u by D2
uΦ(u, v) ∈ L2(H

1
0,L

2), whose action can be seen as

(h, k) �→ D2
uΦ(u, v)(h, k) := (

D2
uΦ(u, v)h

)
(k) for (h, k) ∈ [H1

0

]2.
Similarly, we define DvΦ(u, v),D2

vΦ(u, v).

2.1.1 A quadrature formula. The following quadrature formula will be crucially used in our error
analysis (see (Dragomir & Mabizela, 2000, Theorem 2)).

Lemma 2.1 Let f ∈ C1,γ ([0, T];R), for some γ ∈ (0, 1]. Then there holds∣∣∣∣ f (0) + f (T)

2
− 1

T

∫ T

0
f (ξ) dξ

∣∣∣∣ ≤ C̃

(γ + 2)(γ + 3)
T1+γ ,

where C̃ > 0 satisfies ∣∣f ′(t) − f ′(s)
∣∣ ≤ C̃|t − s|γ ∀ s, t ∈ [0,T]. (2.1)

2.2 Assumptions

In this section, we list all the assumptions and hypotheses that are imposed throughout this paper.

2.2.1 Domain and initial data. We make the following assumptions.
(A1) Let O ⊂ Rd, for 1 ≤ d ≤ 3, be a bounded domain

(i) with ∂O of class C1, and (u0, v0) ∈ H1
0 × L2,

(ii) with ∂O of class C2, and (u0, v0) ∈ (H1
0 ∩ H2) × H1

0,

(iii) with ∂O of class C3, and (u0, v0) ∈ (H1
0 ∩ H3) × (H1

0 ∩ H2),

(iv) with ∂O of class C4, and (u0, v0) ∈ (H1
0 ∩ H4) × (H1

0 ∩ H3).
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8 X. FENG ET AL.

2.2.2 Probability set-up. For simplicity, let W be a finite-dimensional Wiener process.
(A2) Let P := (

Ω ,F , {Ft}t≥0,P
)
be a stochastic basis with a complete filtration {Ft}t≥0 ⊆ F . For

some M ∈ N, let W be a K-valued Wiener process on P of the form

W(t, x,ω) :=
M∑
j=1

βj(t,ω)ej(x), (2.2)

whereK ⊆ H1
0∩H3 is a Hilbert space, and

{
βj(t,ω); t ≥ 0

}
are mutually independent Brownian motions

relative to {Ft}t≥0, and {ej}Mj=1 be an orthonormal basis of K.

2.2.3 The nonlinearities of the model. Let F : [H1
0]

2 → L2 and σ : [H1
0]

2 → H1
0.

(A3) Assume F(u, v) = F1(u)+F2(v) and σ(u, v) = σ1(u)+ σ2(v), where F2 and σ2 are linear, i.e.,
there exist constants BF ,Bσ ∈ R such that F2(v) = BFv and σ2(v) = Bσ v. For any u, ũ ∈ H1

0, there is a
constant CL > 0 such that the Lipschitz condition holds:

‖F1(u) − F1(ũ)‖L2 + ‖σ1(u) − σ1(ũ)‖L2 ≤ CL ‖u − ũ‖
L2 .

(A4) There exists a constant Cg > 0 such that∥∥Dm
u F1(·)

∥∥
L∞(H1

0;Lm(H1
0,L

2)
) + ∥∥Dm

u σ1(·)
∥∥
L∞(H1

0;Lm(H1
0,H

1
0)
) ≤ Cg (m = 1, 2, 3).

We assume that F(u, v) may not have a zero trace. For example, F(u, v) = u + v + |x|2 + 1. Thus, we
introduce the following notation.

(A5) Let F̂(u, v) := F(u, v) − F(0, 0) = F1(u) + F2(v) − F(0, 0), and assume F(0, 0) ∈ Hm for
m = 1, 2, 3.

3. Definition and properties of solution

We recall the concept of a strong variational solution for (1.3) with A = −Δ and establish stability
results in higher spatial norms, and bounds in temporal Hölder norms.

Definition 3.1 Assume (A1)i, (A2) and (A3). We call the tuple (u, v) a strong variational solution of
(1.3) with A = −Δ on the interval [0, T] if

(i) (u, v) is an H1
0 × L2-valued, {Ft} − adapted process;

(ii) (u, v) ∈ L2
(
Ω;C([0, T];H1

0)
)× L2

(
Ω;C([0, T];L2)

)
; and

(u(t),φ) =
∫ t

0
(v(s),φ) ds + (u0,φ) ∀φ ∈ L2, (3.1)

(v(t),ψ) = −
∫ t

0
[(∇u(s),∇ψ) + (F(u, v)(s),ψ)] ds

+
∫ t

0
(ψ , σ(u, v)(s) dW(s)) + (v0,ψ) ∀ψ ∈ H1

0, (3.2)

holds for each t ∈ [0,T] P-a.s.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 9

(iii) There exists a constant C > 0, depending on T ,CL and initial data such that there holds

E

[
sup

0≤t≤T
E(u(t), v(t))

]
≤ C.

The existence of a unique strong variational solution was shown in (Chow, 2015, Section 6.8,
Theorem 8.4).

Lemma 3.2 Let (u, v) be the strong (variational) solution to the problems (3.1)–(3.2). For p ∈ N, there
holds P-a.s.

(i) under the hypotheses (A1)i, (A2) and (A3), the {Ft}t≥0−adapted process (u, v)∈L2p
(
Ω; L∞(0,T;

H1 × L2)
)
, and there exists K1 ≡ K1(p) > 0, such that

E

[
sup

0≤t≤T

(
‖u(t)‖2p

H1 + ‖v(t)‖2p
L2

)]
≤ K1; (3.3)

(ii) under the hypotheses (A1)ii, (A2), (A3) and (A4), (A5) for m = 1, the {Ft}t≥0−adapted process
(u, v) ∈ L2p

(
Ω; L∞(0,T;H2 × H1)

)
, and there exists K2 ≡ K2(p) > 0, such that

E

[
sup

0≤t≤T

(
‖u(t)‖2p

H2 + ‖v(t)‖2p
H1

)]
≤ K2; (3.4)

(iii) under the hypotheses (A1)iii, (A2), (A3) and (A4), (A5) form = 1, 2, the {Ft}t≥0-adapted process
(u, v) ∈ L2p

(
Ω; L∞(0,T;H3 × H2)

)
, and there exists K3 ≡ K3(p) > 0, such that

E

[
sup

0≤t≤T

(
‖u(t)‖2p

H3 + ‖v(t)‖2p
H2

)]
≤ K3; (3.5)

(iv) under the hypotheses (A1)iv, (A2), (A3) and (A4), (A5) for m = 1, 2, 3, the {Ft}t≥0 -adapted
process (u, v) ∈ L2p

(
Ω; L∞(0,T;H4 × H3)

)
, and there exists K4 ≡ K4(p) > 0, such that

E

[
sup

0≤t≤T

(
‖u(t)‖2p

H4 + ‖v(t)‖2p
H3

)]
≤ K4. (3.6)

Proof. The proof is given in Appendix A. �

3.1 Hölder continuity in time

In this subsection, we derive temporal Hölder continuity estimates for the solution pair (u, v) of the
problems (3.1)–(3.2) with respect to different norms, which will be useful in the error analysis in a later
section.
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10 X. FENG ET AL.

Lemma 3.3 Let (u, v) be the strong (variational) solution to the problems (3.1)–(3.2). Then, for any
s, t ∈ [0,T], we have for p ≥ 1

(i) under the hypotheses (A1)i, (A2) and (A3), there holds P-a.s.(
E

[
sup
s≤r≤t

‖u(r) − u(s)‖2p
L2

])1/2p

≤ C(K1) |t − s|;

(ii) under the hypotheses (A1)ii, (A2), (A3) and (A4), (A5) for m = 1, there holds P-a.s.(
E

[
sup
s≤r≤t

‖u(r) − u(s)‖2p
H1

])1/2p

+ E

[
sup
s≤r≤t

‖v(r) − v(s)‖2
L2

]
≤ C(K2) |t − s|;

(iii) under the hypotheses (A1)iii, (A2), (A3) and (A4), (A5) for m = 1, 2, there holds P-a.s.(
E

[
sup
s≤r≤t

‖u(r) − u(s)‖2p
H2

])1/2p

+ E

[
sup
s≤r≤t

‖v(r) − v(s)‖2
H1

]
≤ C(K3) |t − s|;

(iv) under the hypotheses (A1)iv, (A2), (A3) and (A4), (A5) for m = 1, 2, 3, there holds P-a.s.(
E

[
sup
s≤r≤t

‖u(r) − u(s)‖2p
H3

])1/2p

+ E

[
sup
s≤r≤t

‖v(r) − v(s)‖2
H2

]
≤ C(K4) |t − s|,

where the positive constants C(Ki) for i = 1, · · · , 4, depend on the constants Ki, defined in
Lemma 3.2.

Proof. The proof is given in Appendix B. �

4. Discrete stability analysis for the (̂α,β)−scheme

If compared to the term −Δun,
1
2 , the term −Δ̃un,

1
2 in the (̂α,β)−scheme fortifies stability properties of

the method: in fact, the identity

ũn,
1
2 = un,

1
2 + β

kβ

2

(
un+1 − un−1) = un,

1
2 + βk1+βvn+

1
2 (4.1)

creates an additional ‘numerical dissipation’ term scaled by βk2+β in (1.3), which suffices to control
general noises σ ≡ σ(u, v), in case 0 < β < 1

2 (see Lemma 4.1 below); for σ ≡ σ(u) only, the schemes
(1.9)–(1.10) yield a stable scheme.

In this section, we discuss the discrete stability analysis for the (̂α,β)−scheme and we make a
remark on the stability results of the schemes (1.9)–(1.10), as this is a sub-case of the (̂α,β)−scheme.
We recall (1.4), where the energy functional is stated.

(B1) For the stability results, we need the following assumptions on the iterates (u1, v1):

(i) Along with (A1)i, assume (u1, v1) ∈ L2
p (

Ω; [H1
0]

2
)
for p ≥ 1.

(ii) Along with (A1)ii, assume (u1, v1) ∈ L2
p (

Ω; [H1
0 ∩ H2]2

)
for p ≥ 1.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 11

Lemma 4.1 Let α̂ ∈ {0, 1}. Assume (A1)ii, (A2), (A3), (A4) for m = 1 and (B1)i. Then, there exists an[
H1

0

]2
-valued {(Ftn)0≤n≤N}−adapted solution {(un, vn); 0 ≤ n ≤ N} of the (̂α,β)−scheme. Moreover,

for 0 < β < 1
2 , and k ≤ k0(CL,Cg) sufficiently small, there exists a constant C1 ≡ C1(β) > 0 that does

not depend on k > 0 such that

max
1≤n≤N−1

E
[
E(un+1, vn+1)

]+ βk2+β
N−1∑
n=1

E

[∥∥∇vn+
1
2
∥∥2
L2

]
≤ C1. (4.2)

In addition, there exists a further constant C2,p ≡ C2,p(β) > 0 such that we have

max
1≤n≤N−1

E
[
E2p(un+1, vn+1)

] ≤ C2,p (p ≥ 1). (4.3)

Additionally, assume σ2(v) ≡ 0 ≡ F2(v) in (A3) and β = 0. For k ≤ k0(CL,Cg) sufficiently small,
there exists a constant C3 > 0 independent of k > 0 such that

max
1≤n≤N

E

[
‖un‖2

L2

]
+ 1

4
E

⎡⎣k n∑
j=1

∥∥∇uj
∥∥2
L2

⎤⎦ ≤ C3. (4.4)

There exists further constant C4,p > 0 such that we have

max
1≤n≤N

E

[
‖un‖2p

L2

]
≤ C4,p (p ≥ 1). (4.5)

Before presenting the long proof, we give some remarks about the scheme to help understanding the
technicalities in the proof.

Remark 4.2 1. Unlike parabolic stochastic partial differential equations (SPDEs), no numerical
dissipation is introduced by the (̂α, 0)−scheme for the stochastic wave equation (1.3). This creates a
major difficulty after (4.11) in the proof to numerically handle the noise term, which is solved by the
‘β-term’ in the (̂α,β)−scheme to settle (4.2).

2. The last term in (4.1) is the reason to evaluate σ and Duσ at (un, vn− 1
2 ), instead of at (un, vn), in

the scheme. See (4.10) and how the terms J n,1
1,2 , J

n,2
1,1 and J n,2

1,2 are estimated in the proof given below.
3. The high moment estimates in (4.3) will be used in Section 5 to derive improved rates of

convergence; see Theorem 5.1.
4. The reason for using Δ̂nW to approximate the noise term is explained in (1.12) and (1.11); it is a

crucial component of the scheme to achieve the optimal rate of convergence.
5. In the case σ2(v) ≡ 0 ≡ F2(v) in (A3) and choose β = 0, the stability estimates for the schemes

(1.9)–(1.10) can be simplified and shortened. We skip the details to save space and leave it to the
interested reader to verify. However, it should be noted that the techniques used for this special case
would not work for the general case σ ≡ σ(u, v). Hence, new techniques must be used in the proof
given below.

Proof of Lemma 4.1. The P-a.s. solvability easily follows from Lax–Milgram lemma and (A3). Using
the L2-regularity theory for elliptic equations on regular domains (see [10, Section 15.5]), the system
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12 X. FENG ET AL.

in Scheme 1 holds strongly Leb ⊗ P−a.s. The proof of Lemma 4.1 is split into the following three
steps (1)–(3).

(1) Proof of (4.2).We use the test function ψ = 2kvn+ 1
2 = k(vn+1 + vn) in (1.7), to get

k
(
‖vn+1‖2

L2 − ‖vn‖2
L2

)
= −2k2

(
∇ũn,

1
2 ,∇vn+

1
2

)
+ 2k

(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
+ 2k α̂

(
Duσ

(
un, vn−

1
2
)
vn Δ̂nW, vn+

1
2

)
+ k2

(
3F(un, vn) − F(un−1, vn−1), vn+

1
2

)
. (4.6)

In (4.1), we deduced that ũn,
1
2 = un,

1
2 + βk1+βvn+ 1

2 . Using this, we can rewrite the first term on the
right-hand side of (4.6) as

−2k2
(
∇ũn,

1
2 ,∇vn+

1
2

)
= −2k2

(
∇un,

1
2 ,∇vn+

1
2

)
− 2βk3+β

∥∥∇vn+
1
2
∥∥2
L2 . (4.7)

Using (4.7) in (4.6), multiplying both sides with 1
2k , taking expectation on both sides and rearranging

the terms, we obtain

1

2
E

[
‖vn+1‖2

L2 − ‖vn‖2
L2

]
+ kE

[(∇un,
1
2 ,∇vn+

1
2
)]+ β k2+βE

[
‖∇vn+

1
2 ‖2

L2

]
= E

[(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
+ α̂

(
Duσ

(
un, vn−

1
2
)
vn Δ̂nW, vn+

1
2

)
+ k

2

(
3F(un, vn) − F(un−1, vn−1), vn+

1
2

)]
=:

3∑
i=1

E
[
J n

i

]
. (4.8)

Next, we use (1.6) in strong form, sum it for two subsequent steps and multiply this equation with

φ = −Δun,
1
2 ; we then arrive at

1

4

[
‖∇un+1‖2

L2 − ‖∇un−1‖2
L2

]
= k

(
∇un,

1
2 ,∇vn+

1
2

)
. (4.9)

Since the right-hand side of (4.9) is equal to the second term on the left-hand side of (4.8), we
conclude that

1

2
E

[
‖vn+1‖2

L2 − ‖vn‖2
L2

]
+ 1

4
E

[
‖∇un+1‖2

L2 − ‖∇un−1‖2
L2

]
+ β k2+βE

[∥∥∇vn+
1
2
∥∥2
L2

]
=

3∑
i=1

E
[
J n

i

]
. (4.10)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 13

Now we estimate each term on the right-hand side of (4.10). Using properties of the increments ΔnW,

we get E
[(

σ(un, vn− 1
2 )ΔnW, vn

)] = 0. Using this, we infer

E
[
J n

1

] = E

[(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)]
= E

[(
σ
(
un, vn−

1
2
)
ΔnW,

vn+1 + vn

2

)]

= 1

2
E

[(
σ
(
un, vn−

1
2
)
ΔnW, vn+1 − vn

)]
.

We use (1.7)—in modified form as stated in Scheme 2—to replace vn+1 − vn. Hence,

E
[
J n

1

] = 1

2
E

[(
σ
(
un, vn−

1
2
)
ΔnW, kΔun,

1
2

)]
+ 1

2
E

[(
σ
(
un, vn−

1
2
)
ΔnW,βk2+βΔvn+

1
2

)]
+ 1

2
E

[∥∥σ (un, vn− 1
2
)∥∥2

L2 |ΔnW|2
]

+ α̂

2
E

[(
σ
(
un, vn−

1
2
)
ΔnW,Duσ

(
un, vn−

1
2
)
vn Δ̂nW

)]

+ k

4
E

[(
σ
(
un, vn−

1
2
)
ΔnW,

[
3F(un, vn) − F

(
un−1, vn−1)])] =:

5∑
i=1

J n,i
1 . (4.11)

In the following parts (a)–(c), we independently bound E
[
J n

1

]
through E

[
J n

3

]
in (4.8).

(a) Estimation of E
[
J n

1

]
in (4.11). We estimate the five terms J n,i

1 , i = 1, · · · , 5, on the right-

hand side of (4.11). Let Duσ ≡ Duσ(un, vn− 1
2 ) ∈ L(H1

0,H
1
0) and Dvσ ≡ Dvσ(un, vn− 1

2 ) ∈ L(H1
0,H

1
0).

By integration by parts and using σ(un, vn− 1
2 ) = 0 on ∂O, we infer

J n,1
1 = 1

2
E

[
−
(
Duσ ∇unΔnW, k∇un,

1
2

)]
+ 1

2
E

[
−
(
Dvσ ∇vn−

1
2 ΔnW, k∇un,

1
2

)]
= J n,1

1,1 + J n,1
1,2 . (4.12)

Using (A4) for m = 1 and the Itô isometry, we get

J n,1
1,1 ≤ C2

g E

[
‖∇un‖2

L2 |ΔnW|2
]

+ Ck2 E
[∥∥∇un,

1
2
∥∥2
L2

]
≤ C2

g kE
[
‖∇un‖2

L2

]
+ Ck2 E

[
‖∇un+1‖2

L2 + ‖∇un−1‖2
L2

]
. (4.13)
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14 X. FENG ET AL.

Using (A4) for m = 1, the independence property of the increment ΔnW, the Itô isometry and the
identity 2kvn+1/2 = un+1 − un−1, we estimate

J n,1
1,2 = 1

2
E

[
−
(
Dvσ ∇vn−

1
2 ΔnW,

k

2
∇[un+1 − un−1])]

= 1

2
E

[
−
(
k1−

β
2 Dvσ ∇vn−

1
2 ΔnW, k1+

β
2 ∇vn+

1
2

)]
≤ 3

8β
C2
g k1+(2−β) E

[∥∥∇vn−
1
2
∥∥2
L2

]
+ β

6
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2

]
. (4.14)

The terms on the right-hand sides of (4.13) and (4.14) may now be controlled by those on the left-hand

side of (4.10) after summation over 1 ≤ n ≤ N−1, provided that k ≤ ( 4
3C2

g

) 1
1−2β for β < 1

2 is sufficiently

small.
Now we turn to J n,2

1 in (4.11): integration by parts and using the fact that σ(un, vn− 1
2 ) = 0 on ∂O,

we get

J n,2
1 = 1

2
E

[
−
(
k1+

β
2 Duσ ∇un ΔnW,β k1+

β
2 ∇vn+

1
2

)]
+ 1

2
E

[
−
(
k1+

β
2 Dvσ ∇vn−

1
2 ΔnW,β k1+

β
2 ∇vn+

1
2

)]
=: J n,2

1,1 + J n,2
1,2 . (4.15)

Using (A4) for m = 1 and the independence property of ΔnW, we estimate

J n,2
1,1 ≤ Cβ k3+β E

[
‖∇un‖2

L2

]
+ β

6
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2

]
,

where the second term in the right-hand side can be be controlled by the corresponding term on the
left-hand side of (4.10). Again, using (A4) for m = 1, we obtain for the second term in (4.15)

J n,2
1,2 ≤ β

3

8
C2
g k k

2+β E

[∥∥∇vn−
1
2
∥∥2
L2

]
+ β

6
k2+β E

[
‖∇vn+

1
2 ‖2

L2

]
,

where the right-hand side can be managed with the left-hand side of (4.10) for β < 1/2.
We continue with the next term J n,3

1 in (4.11): by Itô isometry and (A3),

J n,3
1 = 1

2
E

[∥∥σ (un, vn− 1
2
)∥∥2

L2 |ΔnW|2
]

≤ CkE
[
1 + ‖∇un‖2

L2 + ‖vn‖2
L2 + ‖vn−1‖2

L2

]
,
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 15

where C > 0 depends on CL. Next comes J n,4
1 : using (A3), (A4) for m = 1 and item 4. of Remark 4.2,

we infer

J n,4
1 ≤ CE

[∥∥σ (un, vn− 1
2
)∥∥2

L2 |ΔnW|2
]

+ α̂2

4
C2
g E

[
‖vn‖2

L2

∣∣Δ̂nW
∣∣2]

≤ CkE
[
1 + ‖∇un‖2

L2 + ‖vn‖2
L2 + ‖vn−1‖2

L2

]
+ α̂2

4
C2
g k

3 E

[
‖vn‖2

L2

]
, (4.16)

where C > 0 depends on CL. The last term is J n,5
1 : by (A3), we obtain

J n,5
1 ≤ CE

[∥∥σ (un, vn− 1
2
)∥∥2

L2 |ΔnW|2
]

+ Ck2 E
[
‖F(un, vn)‖2

L2 + ‖F(un−1, vn−1)‖2
L2

]
≤ CkE

[
1 + ‖∇un‖2

L2 + ‖∇un−1‖2
L2 + ‖vn‖2

L2 + ‖vn−1‖2
L2

]
, (4.17)

where the constant C > 0 depends on CL. Thus, the estimate of J n
1 through those of J n,1

1 through

J n,5
1 is complete.
(b) Estimation of E

[
J n

2

]
in (4.8). By (A4) for m = 1, item 4. of Remark 4.2 and the independence

property of Δ̂nW,

J n
2 ≤ α̂2 1

k
E

[∥∥Duσ
(
un, vn−

1
2
)
vn
∥∥2
L2

∣∣Δ̂nW
∣∣2]+ CkE

[∥∥vn+ 1
2
∥∥2
L2

]
≤ C2

g α̂2 k2 E
[
‖vn‖2

L2

]
+ CkE

[
‖vn+1‖2

L2 + ‖vn‖2
L2

]
.

(c) Estimation of E
[
J n

3

]
in (4.8). By (A3), we estimate

J n
3 = kE

[(
F(un, vn), vn+

1
2

)]
+ k

2
E

[(
F(un, vn) − F(un−1, vn−1), vn+

1
2

)]
≤ CkE

[
‖vn+ 1

2 ‖2
L2

]
+ C kE

[
1 + ‖∇un‖2

L2 + ‖∇un−1‖2
L2 + ‖vn‖2

L2 + ‖vn−1‖2
L2

]
. (4.18)

Now, we may use the parts (a) through (c) to bound the terms on the right-hand side of (4.10).
Summation over all 1 ≤ n ≤ N − 1, for k ≤ k0 ≡ k0(CL,Cg) sufficiently small, leads to

1

4
E

[
E(uN , vN)

]
+ β

1

4
k2+β E

[∥∥∇vN+ 1
2
∥∥2
L2

]
≤ 1

4
E

[
E(u0, v

1)
]

+ β
k2+β

4
E

[∥∥∇v1/2
∥∥2
L2

]
+ 1

4
E

[
‖∇u1‖2

L2

]
+ Ck

N−1∑
n=1

E
[
E(un, vn)

]
. (4.19)

By (B1)i, the implicit version of the discrete Gronwall lemma then shows (4.2) for β ∈ (0, 12 ).
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16 X. FENG ET AL.

(2) Proof of (4.3) for p = 1. To simplify technicalities, we put F ≡ 0. Let us denote
E(un+1, vn+1) := 1

4

[‖∇un+1‖2
L2 + 2‖vn+1‖2

L2

]
. Arguing as before (4.10) then leads to

[
E(un+1, vn+1) − E(un−1, vn)

]
+ βk2+β

∥∥∇vn+
1
2
∥∥2
L2

=
(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
+ α̂

(
Duσ

(
un, vn−

1
2
)
vn Δ̂nW, vn+

1
2

)
. (4.20)

Now fix 1
4 ≤ δ1, δ2 ≤ 1, then multiply (4.20) with

δ1E(un+1, vn+1) + δ2

(
E(un+1, vn+1) + E(un−1, vn)

)
,

and take the expectation, to get

δ1 + 2δ2
2

E

[
E2(un+1, vn+1) − E2(un−1, vn)

]
+ δ1

2
E

[∣∣E(un+1, vn+1) − E(un−1, vn)
∣∣2]

+ βk2+βE

[∥∥∇vn+
1
2
∥∥2
L2

[
(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
= E

[(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
· [(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
+ α̂ E

[(
Duσ

(
un, vn−

1
2
)
vn Δ̂nW, vn+

1
2

)
· [(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
=: K n,1 + K n,2. (4.21)

We independently estimate the terms K n,1 and K n,2.
(a) Estimation of K n,1 in (4.21). This term may be written as the sum of two others:

K n,1 = (δ1 + δ2)E
[(

σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
· (E(un+1, vn+1) − E(un−1, vn)

)]
+ (δ1 + 2δ2)E

[(
σ
(
un, vn−

1
2
)
ΔnW, vn+

1
2

)
· E(un−1, vn)

]
:= K n,1

1 + K n,1
2 . (4.22)

We consider K n,1
1 first. By E

[|ΔnW|4] = O(k2), and (A3), we find

K n,1
1 ≤ Cδ1

E

[∥∥σ (un, vn− 1
2
)
ΔnW

∥∥2
L2

∥∥vn+ 1
2
∥∥2
L2

]
+ δ1

4
E

[∣∣E(un+1, vn+1) − E(un−1, vn)
∣∣2]

≤ Cδ1

k
E

[∥∥σ (un, vn− 1
2
)∥∥4

L2 |ΔnW|4
]
+Cδ1

kE
[∥∥vn+ 1

2
∥∥4
L2

]
+ δ1

4
E

[∣∣E(un+1, vn+1)−E(un−1, vn)
∣∣2]

≤ Cδ1
kE

[
1 +

1∑
�=−1

E2(un+�, vn+�)

]
+ δ1

4
E

[∣∣E(un+1, vn+1) − E(un−1, vn)
∣∣2] ,

where the last term on the right-hand side can be absorbed on the left-hand side of (4.21).
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 17

We continue with K n,1
2 : on using the independence property of ΔnW, and equation (1.7),

K n,1
2 ≤ 3

∣∣∣E [(σ (un, vn− 1
2

)
ΔnW, vn+1 − vn

)
· E(un−1, vn)

]∣∣∣
= 3

∣∣∣E [(σ (un, vn− 1
2
)
ΔnW, kΔ̃un,

1
2

)
· E(un−1, vn)

]∣∣∣+3
∣∣∣E [∥∥σ (un, vn− 1

2
)
ΔnW

∥∥2
L2 E(un−1, vn)

]∣∣∣
+ 3

∣∣∣E [(σ (un, vn− 1
2
)
ΔnW,Duσ(un, vn−

1
2 )vnΔ̂nW

)
· E(un−1, vn)

]∣∣∣ =: K n,1
2,1 + K n,1

2,2 + K n,1
2,3 .

We split K n,1
2,1 := K n,1,A

2,1 + K n,1,B
2,1 because of (4.1); here, K n,1,A

2,1 is as K n,1
2,1 , where ũn,

1
2 is replaced

by un,
1
2 . We use integration by parts, and the fact that σ(un, vn− 1

2 ) = 0 on ∂O, (A4) for m = 1, the
independence property of ΔnW and that E

[|ΔnW|4] = O(k2), to conclude

K n,1,A
2,1 = 9

2

∣∣∣E [− (∇σ
(
un, vn−

1
2
)
ΔnW, k∇[un+1 − un−1]

)
· E(un−1, vn)

]∣∣∣
= 9

∣∣∣E [− (∇σ
(
un, vn−

1
2
)
ΔnW, k1−

β
2 k1+

β
2 ∇vn+

1
2

)
· E(un−1, vn)

]∣∣∣
≤ Cδ2

β
k3−β E

[
‖Duσ ∇un‖2

L2E(un−1, vn)
]

+ Cδ2

β
k3−β E

[∥∥Dvσ ∇vn−
1
2
∥∥2
L2E(un−1, vn)

]
+ βδ2

4
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2 E(un−1, vn)

]
≤ Cδ2

CβC
2
gk

3−βE

[
E2(un, vn) + E2(un−1, vn)

]
+ Cδ2

CβC
2
g k

3−β E

[∥∥∇vn−
1
2
∥∥2
L2 E(un−1, vn)

]
+ βδ2

4
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2 E(un−1, vn)

]
,

where Cβ > 0 is a constant dependent on β for 0 < β < 1
2 . We use a similar idea to estimate K n,1,B

2,1 ,

K n,1,B
2,1 = 9

2

∣∣∣E [− (∇σ
(
un, vn−

1
2
)
ΔnW,βk2+β∇vn+

1
2

)
· (E(un−1, vn)

)]∣∣∣
≤ Cδ2

β
k3+β E

[∥∥Duσ ∇un
∥∥2
L2E(un−1, vn)

]
+ Cδ2

β
k3+β E

[∥∥Dvσ ∇vn−
1
2
∥∥2
L2E(un−1, vn)

]
+ β

δ2

4
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2 E(un−1, vn)

]
≤ Cδ2

CβC
2
g k

3+β E

[
E2(un, vn) + E2(un−1, vn)

]
+ Cδ2

CβC
2
g k

3+β E

[∥∥∇vn−
1
2
∥∥2
L2E(un−1, vn)

]
+ β

δ2

4
k2+β E

[∥∥∇vn+
1
2
∥∥2
L2 E(un−1, vn)

]
,

where the last two terms in the right-hand sides of K n,1,A
2,1 and K n,1,B

2,1 may be controlled by those on
the left-hand side of (4.21) after summation over 1 ≤ n ≤ N − 1, provided that k is sufficiently small
and β < 1

2 .
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18 X. FENG ET AL.

Similarly, using (A3), and E
[|ΔnW|4] = O(k2), we estimate

K n,1
2,2 ≤ C

k
E

[∥∥σ (un, vn− 1
2
)∥∥4

L2 |ΔnW|4
]

+ CkE
[
E2(un−1, vn)

]
≤ CkE

[
1 +

0∑
�=−1

E2(un+�, vn+�)

]
.

Using E
[|Δ̂nW|4] = O(k6), and (A3), gives

K n,1
2,3 ≤ C

k
E

[∥∥σ (un, vn− 1
2
)
ΔnW

∥∥2
L2

∥∥Duσ
(
un, vn−

1
2
)
vnΔ̂nW

∥∥2
L2

]
+ CkE

[
E2(un−1, vn)

]
≤ C

k
E

[∥∥σ (un, vn− 1
2
)∥∥4

L2 |ΔnW|4
]

+ C4
g

k
E

[
‖vn‖4

L2

∣∣Δ̂nW
∣∣4]+ CkE

[
E2(un−1, vn)

]
≤ CkE

[
1 +

0∑
�=−1

E2(un+�, vn+�)

]
.

(b) Estimation of K n,2 in (4.21). By (A4) for m = 1 and using the fact that E
[|Δ̂nW|4] = O(k6),

we infer

K n,2 ≤ α̂2

k
E

[∥∥Duσ
(
un, vn−

1
2
)
vn Δ̂nW

∥∥2
L2

∥∥vn+ 1
2
∥∥2
L2

]
+ CkE

[
E2(un+1, vn+1)

]
+ CkE

[
E2(un−1, vn)

]
≤ α̂4

k3
E

[∥∥Duσ
(
un, vn−

1
2
)
vn
∥∥4
L2

∣∣Δ̂nW
∣∣4]+ CkE

[∥∥vn+ 1
2
∥∥4
L2

]
+ CkE

[
1∑

�=−1

E2(un+�, vn+�)

]

≤ α̂4 C4
g k

3 E

[
E2(un, vn)

]
+ CkE

[
1∑

�=−1

E2(un+�, vn+�)

]
.

Now we insert the estimates from parts (a) and (b) into (4.21), and sum over 1 ≤ n ≤ N − 1. Then, for
all k ≤ k0 ≡ k0(CL,Cg), there exists C ≡ C(β) > 0 for β ∈ (0, 12 ), such that the assertion (4.3) for
p = 1 follows from the implicit version of the discrete Gronwall lemma.

(3) Proof of (4.3) for p ≥ 2. Starting from the identity (4.21), we multiply δ1E
2p−1

(un+1, vn+1) +
δ2
[
E2p−1

(un+1, vn+1) + E2p−1
(un−1, vn)

]
on both sides, and then take expectations. We may then follow

the same argument as in (2) to settle the assertion.
(4) Proof of (4.4). Let α̂ = 1. Suppose σ2(v) ≡ 0 ≡ F2(v) in (A3) and β = 0. We combine both

equations in the schemes (1.9)–(1.10), to get

[
u�+1 − u�

]− [
u� − u�−1] = k2Δu�,1/2 + k σ(u�)Δ�W + α̂k Duσ(u�)v�Δ̂�W

+ k2

2

[
3F(un) − F(un−1)

]
(4.23)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 19

for all 1 ≤ � ≤ N. Now sum over the first n steps, and define un+1 := ∑n
�=1 u

�+1, to get

[
un+1 − un

]− k2Δun,1/2 = [
u1 − u0

]+ k
n∑

�=1

σ(u�)Δ�W + α̂k
n∑

�=1

Duσ(u�)v�Δ̂�W

+ k2

2

n∑
�=1

[
3F(u�) − F(u�−1)

]
. (4.24)

Multiply both sides with un+1/2 and use integration by parts, to get

1

2

[
‖un+1‖2

L2 − ‖un‖2
L2

]
+ k2

(∇un,1/2,∇un+1/2)
= (

u1 − u0, un+1/2)+ k

(
n∑

�=1

σ(u�)Δ�W, un+1/2

)
+ α̂k

(
n∑

�=1

Duσ(u�)v�Δ̂�W, un+1/2

)

+ k2

2

n∑
�=1

(
3F(u�) − F(u�−1), un+1/2) =: Kn

1 + Kn
2 + Kn

3 + Kn
4. (4.25)

We observe that the last term in the left-hand side may be written as

k2
(∇un,1/2,∇un+1/2) = k2

4

(∇[un+1 + un−1],∇[un+1 − un−1]
) = k2

4

[
‖∇un+1‖2

L2 − ‖∇un−1‖2
L2

]
.

Taking expectation on both sides leads to

1

2
E

[
‖un+1‖2

L2 − ‖un‖2
L2

]
+ k2

4
E

[
‖∇un+1‖2

L2 − ‖∇un−1‖2
L2

]
=

4∑
j=1

E
[
Kn
j

]
. (4.26)

Since u1 − u0 = kv1, by (B1)i, we infer

E
[
Kn
1

] ≤ 1

k
E

[∥∥u1 − u0
∥∥2
L2

]
+ CkE

[
‖un+1/2‖2

L2

]
≤ Ck + CkE

[
‖un+1/2‖2

L2

]
. (4.27)

Using the Itô isometry and (A3), we infer

E
[
Kn
2

] ≤ k
n∑

�=1

E

[
‖σ(u�)‖2

L2 |Δ�W|2
]

+ CkE
[
‖un+1/2‖2

L2

]

≤ Ck2C2
L

n∑
�=1

E

[
1 + ‖u�‖2

L2

]
+ CkE

[
‖un+1/2‖2

L2

]
. (4.28)
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20 X. FENG ET AL.

Using item 4. of Remark 4.2, and (A4) for m = 1, we infer

E
[
Kn
3

] ≤ k
n∑

�=1

E

[∥∥Duσ(u�)v�
∥∥2
L2

∣∣Δ̂�W
∣∣2]+ CkE

[
‖un+1/2‖2

L2

]

≤ k4C2
g

n∑
�=1

E

[
‖v�‖2

L2

]
+ CkE

[
‖un+1/2‖2

L2

]
. (4.29)

Since v� = 1
k

[
u� − u�−1

]
, we further estimate (4.29) by

≤ k2C2
g

n∑
�=1

E

[
‖u�‖2

L2 + ‖u�−1‖2
L2

]
+ CkE

[
‖un+1/2‖2

L2

]
.

Using (A3), we estimate E
[
Kn
4

]
by

E
[
Kn
4

] ≤ Ck2C2
L

n∑
�=1

E

[
1 + ‖u�‖2

L2 + ‖u�−1‖2
L2

]
+ CkE

[
‖un+1/2‖2

L2

]
. (4.30)

We insert these estimates into (4.26) and sum over 1 ≤ n ≤ N − 1. Then, for all k ≤ k0 ≡ k0(CL,Cg)

and by the implicit version of the discrete Gronwall lemma, there exists a constant C > 0 such that the
assertion (4.4) holds.

(5) Proof of (4.5) for p = 1. To simplify technicalities, we put F ≡ 0. Let us denote Ẽ(un, un) :=[
1
2‖un‖2L2 + k2

4 ‖∇un‖2
L2

]
. Then we can rewrite (4.26) as

Ẽ(un+1, un+1) − Ẽ(un, un−1) = Kn
1 + Kn

2 + Kn
3. (4.31)

Multiply both sides with Ẽ(un+1, un+1), using binomial formula and taking expectation, we obtain

1

2
E

[
Ẽ2(un+1, un+1) − Ẽ2(un, un−1)

]
+ 1

2
E

[∣∣Ẽ(un+1, un+1) − Ẽ2(un, un−1)
∣∣2]

= E

[
Kn
1 Ẽ(un+1, un+1)

]
+ E

[
Kn
2 Ẽ(un+1, un+1)

]
+ E

[
Kn
3 Ẽ(un+1, un+1)

]
. (4.32)

Using Young’s inequality, and arguing similarly to (4.27), shows

E

[
Kn
1 Ẽ(un+1, un+1)

]
≤ 1

k3
E

[
‖u1 − u0‖4L2

]
+ k2E

[
‖un+1/2‖4

L2

]
+ kE

[
Ẽ2(un+1, un+1)

]
≤ Ck + CkE

[
Ẽ2(un+1, un+1) + Ẽ2(un, un)

]
. (4.33)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 21

By adding and subtracting Ẽ(un, un−1), and using (A3), we estimate the second term on the right-hand
side of (4.32) by

E

[
Kn
2

(
Ẽ(un+1, un+1) − Ẽ(un, un−1)

)]
+ E

[
Kn
2 Ẽ(un, un−1)

]
≤ E

[|Kn
2|2
]+ 1

4
E

[∣∣Ẽ2(un+1, un+1) − Ẽ(un, un−1)
∣∣2]

+ Ck2C2
L

n∑
�=1

E

[
1 + ‖u�‖4

L2

]
+ CkE

[
‖un+1/2‖4

L2

]
+ CkE

[
Ẽ2(un, un−1)

]

≤ Ck2C2
L

n∑
�=1

E

[
1 + Ẽ2(u�, u�)

]
+ CkE

[
Ẽ2(un, un−1)

]
+ 1

4
E

[∣∣Ẽ2(un+1, un+1) − Ẽ(un, un−1)
∣∣2] , (4.34)

where the last term in the right-hand side may be absorbed on the left-hand side of (4.32).
By item 4. of Remark 4.2, and (A4) for m = 1, we estimate

E

[
Kn
3 Ẽ(un+1, un+1)

]
≤ 1

k
E
[|Kn

3|2
]+ CkE

[
Ẽ2(un+1, un+1)

]
≤ C̃4

g

n∑
�=1

E

[
‖v�‖4

L2

∣∣Δ̂�W
∣∣4]+ CkE

[
‖un+1/2‖4

L2

]
+ CkE

[
Ẽ2(un+1, un+1)

]

≤ C4
gk

6 1

k4

n∑
�=1

E

[
‖u�‖4

L2 + ‖u�−1‖4
L2

]
+ CkE

[
Ẽ2(un, un) + Ẽ2(un+1, un+1)

]

≤ Ck2
n∑

�=1

E

[
Ẽ2(u�, u�) + Ẽ2(u�−1, u�−1)

]
+ CkE

[
Ẽ2(un, un) + Ẽ2(un+1, un+1)

]
. (4.35)

Now we insert the estimates into (4.32), and sum over 1 ≤ n ≤ N−1. Then, for all k ≤ k0 ≡ k0(CL,Cg),
assertion (4.5) for p = 1 follows from the implicit version of the discrete Gronwall lemma.

(6) Proof of (4.5) for p ≥ 2. Starting from the identity (4.32), we multiply Ẽ2p−1
(un+1, vn+1) in

both sides, and then take the expectation. We may then follow the same argument as in (5) to settle the
assertion. �

5. Strong rates of convergence for (̂α,β)−scheme

We prove convergence rate O(k1/2) for the iterates {(un, vn)}n≥1 of the (̂α,β)−scheme for α̂ ∈ {0, 1}; if
additionally σ2(v) ≡ 0 ≡ F2(v) in (A3) holds, we may put β = 0, and

(a) the convergence rate improves to O(k) for iterates {un}n≥1 in case α̂ = 0, and

(b) to O(k3/2) in case α̂ = 1.
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22 X. FENG ET AL.

For the convergence analysis, we need the following assumption on (u1, v1).
(B2) Along with (A1)ii and (B1)ii, let u

0 = u(0) and v0 = v(0), and (u1, v1) satisfy(
E

[∥∥u(t1) − u1
∥∥2
H1 + ∥∥v(t1) − v1

∥∥2
L2

])1/2 = O
(
k1/2

)
.

Theorem 5.1 Let (u, v) be the strong solution of (1.3) with A = −Δ. Let {(un, vn)}n≥1 be the iterates
from (̂α,β)−scheme for k ≤ k0(CL,Cg) sufficiently small, α̂ ∈ {0, 1}, and 0 < β < 1

2 . Then, under
the hypotheses (A1)iii, (A2), (A3) and (A4), (A5) for m = 1, 2, and (B2), there exists C ≡ C(β) > 0
such that

max
1≤n≤N

(
E
[‖u(tn) − un‖2

H1 + ‖v(tn) − vn‖2
L2

])1/2 ≤ Ck1/2. (5.1)

For the following, additionally suppose σ2(v) ≡ 0 ≡ F2(v) in (A3) and that the initial data u0, u1, v0

satisfy(
E

[∥∥u(t1) − u1
∥∥2
L2

]
+ 1

k2
E

[∥∥∥∥kv0 − (u1 − u0) + k2

2
Δu0 + k2F(u0) + kσ(u0)Δ0W

∥∥∥∥2
L2

])1/2

= O
(
k3/2

)
. (5.2)

(i) Consider the (0, 0)−scheme and assume (A1)iii, (A2), (A3) and (A4), (A5) for m = 1, 2, and
(B2). Then there exists C > 0 such that

max
1≤n≤N

(
E

[∥∥u(tn, ·) − un
∥∥2
L2

])1/2 + 1

2

(
E

[
k

n∑
j=1

∥∥∇[u(tj, ·) − uj
]∥∥2

L2

])1/2

≤ Ck. (5.3)

(ii) Consider the (1, 0)−scheme and assume (A1)iv, (A2), (A3) and (A4), (A5) for m = 1, 2, 3, and
(B2). Then, there exists C > 0 such that

max
1≤n≤N

(
E

[∥∥u(tn, ·) − un
∥∥2
L2

])1/2 + 1

2

(
E

[
k

n∑
j=1

∥∥∇[u(tj, ·) − uj
]∥∥2

L2

])1/2

≤ Ck3/2. (5.4)

The following remark discusses the realizability of (5.2), and key tools to verify this theorem.

Remark 5.2 1. In Section 6, we choose (u0, v0) = (u(0), v(0)), together with{
u1 = u0 + k v0 + k2

2 Δu0 + k2F(u0) + (k + k2) σ (u0)Δ0W,

v1 = v0 + k σ(u0)Δ0W.
(5.5)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 23

By the choice of v1, the verification of (B2) is straightforward. We now prove that (5.2) holds in this
case: first, we consider (1.3) in integral form on [0, t1],{

u(t1) = u0 + ∫ t1
0 v(s) ds

v(s) = v0 + ∫ s
0 Δu(τ ) dτ + ∫ s

0 F(u(τ )) dτ + ∫ s
0 σ(u(τ )) dW(τ ), 0 ≤ τ ≤ s,

(5.6)

and insert (5.6)2 into (5.6)1; a change of order of integration then gives

u(t1) = u0 + t1v0 +
∫ t1

0

∫ s

0
Δu(τ ) dτ ds +

∫ t1

0

∫ s

0
F(u(τ )) dτ ds +

∫ t1

0

∫ s

0
σ(u(τ )) dW(τ ) ds

= u0 + kv0 +
∫ t1

0

∫ t1

τ

dsΔu(τ ) dτ +
∫ t1

0

∫ t1

τ

ds F(u(τ )) dτ +
∫ t1

0

∫ t1

τ

ds σ(u(τ )) dW(τ ).

(5.7)

Thus,
u(t1) = u0 + kv0 +

∫ t1

0
(t1 − τ)Δu(τ ) dτ +

∫ t1

0
(t1 − τ)F(u(τ )) dτ

+
∫ t1

0
(t1 − τ)σ (u(τ )) dW(τ ). (5.8)

Subtracting (5.5)1 from (5.8), we infer

u(t1) − u1 =
∫ t1

0
(t1 − τ)Δu(τ ) dτ − k2

2
Δu0 − k2F(u0) +

∫ t1

0
(t1 − τ)F(u(τ )) dτ

+
∫ t1

0
(t1 − τ)σ (u(τ )) dW(τ ) − (k + k2)σ (u0)

(
W(t1) − W(0)

)
.

By (A1)iii, (A3), Itô isometry, Lemma 3.2 (i), (ii) and Lemma 3.3 (i), we infer

E

[∥∥u(t1) − u1
∥∥2
L2

]
≤ Ck2

∫ t1

0
E

[
‖Δu(τ )‖2

L2

]
dτ + Ck4 E

[
‖u0‖2H2

]
+ Ck4 E

[
‖F(u0)‖2L2

]
+ Ck2

∫ t1

0
E

[
‖F(u(τ ))‖2

L2

]
dτ + k3 E

[
‖σ(u0)‖2L2

]
+ Ck2

∫ t1

0
E

[
‖σ(u(τ )) − σ(u0)‖2L2

]
ds ≤ Ck3. (5.9)

Similarly, by (5.5)1, (A1)i and Itô isometry, we get

E

[∥∥∥∥kv0 − (u1 − u0) + k2

2
Δu0 + k2F(u0) + k σ(u0)Δ0W

∥∥∥∥2
L2

]
≤ k4 E

[
‖σ(u0)‖2L2 |Δ0W|2

]
≤ Ck5. (5.10)

Thus, combining (5.9) and (5.10), we get the assertion (5.2) for u1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad024/7164144 by U
niversity of Tennessee Libraries user on 24 M

ay 2023



24 X. FENG ET AL.

2. For α̃ �= 0, the additional noise term in (1.10) improves the accuracy of the (̂α, 0)−scheme, where
Δ̃nW is approximated by Δ̂nW. By (1.12), (1.11) and the fact that tn,�+1 − tn,� = k2, we estimate the

distance between Δ̃nW and Δ̂nW as

E

[∣∣Δ̃nW − Δ̂nW
∣∣2] = E

⎡⎢⎣
∣∣∣∣∣∣−
∫ tn+1

tn
W(s) ds + k2

k−1∑
�=1

W(tn,�)

∣∣∣∣∣∣
2
⎤⎥⎦

= E

⎡⎢⎣
∣∣∣∣∣∣
k−1∑
�=1

∫ tn,�+1

tn,�

(
W(s) − W(tn,�)

)
ds

∣∣∣∣∣∣
2
⎤⎥⎦ .

By the independence property of the increment ΔnW, we further estimate

≤ k
k−1∑
�=1

∫ tn,�+1

tn,�
E

[∣∣W(s) − W(tn,�)
∣∣2] ds ≤ k

k−1∑
�=1

∫ tn,�+1

tn,�
(s − tn,�) ds ≤ Ck4. (5.11)

3. The basic estimate is (5.1), which will be given in part (1) in the proof below. Its derivation uses
the Hölder estimates in Lemma 3.3 for (u, v) in strong norms. The strategy of proof is similar to the one
used in the stability analysis for (̂α,β)−scheme in Section 4; see item 1. in Remark 4.2: the central term
to estimate is T(n)

4 in (5.15), in which we replace the increments en+1
v − env via the error equation (5.13)

to obtain terms that are scaled by k, or the stochastic increments ΔnW and Δ̃nW. The order limiting

term is then T(n,4)
4,1 in (5.18), which may be traced back to the noise term σ , which may depend on v as

well. In this case (only), the additional term −k2+βΔvn+1/2 in Scheme 1 is needed to control the effect
of noise: see the additional term on the left-hand side of (5.14) to, e.g., bound the corresponding term
in (5.16).

The verification of assertions (5.3) and (5.4) differs completely from this strategy: it starts with the
reformulation (5.19) that leads to the error identity (5.22), which is then tested with en+1/2

u ; the noise
part may here be estimated in a straight manner.

4. Part (2) in the proof below is conceptually motivated from arguments in (Baker, 1976); however,
their realization in the stochastic setting differs considerably. We remark that estimate (5.1) is needed
to verify assertion (5.3)—next to Lemma 2.1 to bound the quadrature error of the trapezoidal rule for
integrands with limited regularity; see term I�,n7 in (5.26).

5. If α̃ = 0, the estimate (5.28) for term I�,n3 in (5.26) restricts the order, and assertion (5.3) follows;

the improvement (5.4) uses α̃ = 1, s.t. this term I�,n3 gives way to the sum of new terms in (5.33), which
are of higher order; see (a)–(e) in part (3) in the proof below.

6. For σ ≡ σ(u, v) or F ≡ F(u, v), neither assertion (5.3) nor (5.4) in Theorem 5.1 may be
concluded, due to the restricted Hölder regularity properties of v opposed to u.

In this setting, either σ or F in (5.19) in the proof below would depend on v as well, and thus would
modify corresponding terms in (5.22). For σ ≡ σ(u, v), (a modified version of) (A3) would additionally
create a term Ck2

∑n
�=1 E

[‖e�
v‖2L2

]
on the right-hand side of (5.27), which may not be handled via

Gronwall’s lemma to lift the order. For F ≡ F(u, v), the argument in (5.31) fails, which rests on Lemma
2.1, and the Hölder continuity of v = ∂tu.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 25

7. In the proof of (5.1), where σ ≡ σ(u, v) and F ≡ F(u, v), we do not require the discrete energy
bounds proved in Lemma 4.1. We only require the energy bounds proved in Lemma 3.2. This is possible,
since we can add and subtract ∇u(tn) or v(tn) whenever L

2-norm of ∇un or vn appears. However, the
higher moment bounds in energy norm (proved in Lemma 4.1) are required to show the improved
convergence order O(k3/2) in the proof of (5.4) of Theorem 5.1.

Proof of Theorem 5.1. (1) Proof of (5.1). For simplicity, we here give the proof for F ≡ 0.
Correspondingly, let (u, v) solve (1.3), and {(un, vn)}n∈N solves (̂α,β)−scheme. We denote by enu :=
u(tn) − un and env := v(tn) − vn error iterates, which are zero on the boundary and solve

en+1
u − enu = k en+1

v +
∫ tn+1

tn

(
v(s) − v(tn+1)

)
ds, (5.12)

en+1
v − env = kΔen,1/2u +

∫ tn+1

tn
Δ

[
2u(s) − [u(tn+1) + u(tn−1)]

2

]
ds

− βk2+β Δe
n+ 1

2
v + β

k2+β

2
Δ
[
v(tn+1) + v(tn)

]
+
∫ tn+1

tn

[
σ (u(s), v(s)) − σ

(
un, vn−

1
2
)]

dW(s) − α̂Duσ
(
un, vn−

1
2
)
vn Δ̂nW. (5.13)

We multiply (5.13) with e
n+ 1

2
v and use (5.12), to get

1

2

[∥∥en+1
v

∥∥2
L2 − ∥∥env∥∥2L2

]
+ 1

4

[∥∥∇en+1
u

∥∥2
L2 − ∥∥∇en−1

u

∥∥2
L2

]
+ βk2+β

∥∥∥∇e
n+ 1

2
v

∥∥∥2
L2

≤
5∑

j=1

T(n)
j , (5.14)

where

T(n)
1 :=

∫ tn+1

tn

(
∇ [v(s) − v(tn+1)

]
,∇e

n, 12
u

)
ds +

∫ tn

tn−1

(
∇ [v(s) − v(tn)

]
,∇e

n, 12
u

)
ds,

T(n)
2 := −

∫ tn+1

tn

(
∇
[
2u(s) − [u(tn+1) + u(tn−1)]

2

]
,∇e

n+ 1
2

v

)
ds,

T(n)
3 := β

k2+β

2

(
∇ [v(tn+1) + v(tn)

]
,∇e

n+ 1
2

v

)
,

T(n)
4 :=

(∫ tn+1

tn

[
σ (u(s), v(s)) − σ(un, vn−

1
2 )
]
dW(s), e

n+ 1
2

v

)
,

T(n)
5 := − α̂

(
Duσ

(
un, vn−

1
2
)
vn Δ̂nW, e

n+ 1
2

v

)
.

We estimate the expectation of each term on the right-hand side of (5.14). By Lemma 3.3 (iii),
we infer

E

[
T(n)
1 + T(n)

2

]
≤ Ck2 + CkE

[∥∥∇en+1
u

∥∥2
L2 + ∥∥∇en−1

u

∥∥2
L2

]
+ CkE

[∥∥en+1
v

∥∥2
L2 + ∥∥env∥∥2L2

]
.
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26 X. FENG ET AL.

We use Lemma 3.2 (ii) to estimate

E
[
T(n)
3

] ≤ β
k2+β

6
E

[∥∥∥∇e
n+ 1

2
v

∥∥∥2
L2

]
+ C

β
k2+β .

By properties of ΔnW, we rewrite the term T(n)
4 as

E
[
T(n)
4

] = 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ
(
un, vn−1/2)]ΔnW, en+1

v − env
)]

+ 1

2
E

[(∫ tn+1

tn

[
σ (u(s), v(s)) − σ

(
u(tn), v(tn−1/2)

)]
dW(s), en+1

v − env

)]
:= T(n)

4,1 + T(n)
4,2 . (5.15)

In order to estimate T(n)
4,1 , we use equation (5.13) to write

T(n)
4,1 = 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW, kΔen,1/2u

)]
+ 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW,

∫ tn+1

tn
Δ

[
2u − [u(tn+1) + u(tn−1)]

2

]
ds

)]

+ 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW,−k2+β Δvn+

1
2

)]
+ 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW,

∫ tn+1

tn

[
σ(u, v) − σ

(
un, vn−

1
2

)]
dW(s)

)]

+ α̂

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW,Duσ

(
un, vn−

1
2
)
vn Δ̂nW

]
:= T(n,1)

4,1 + T(n,2)
4,1 + T(n,3)

4,1 + T(n,4)
4,1 + T(n,5)

4,1 .

We consider T(n,1)
4,1 first; to properly address the dependence of σ on v, we first restate it with the help of

(5.12) and use the fact that σ
(
u(tn), v(tn−1/2)

) = σ(un, vn−1/2) = 0 on ∂O, to obtain

T(n,1)
4,1 = 1

2
E

[([
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW, kΔ

[
en+1
u − en−1

u

])]
= −1

2
E

[(
∇
[
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW, 2k2∇en+1/2

v

)]
−1

2
E

[(
∇
[
σ
(
u(tn), v(tn−1/2)

)− σ(un, vn−1/2)
]
ΔnW, k∇Rn+1/2

v

)]
=: T(n,1)

4,1,A + T(n,1)
4,1,B,
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 27

whereRn+1/2
v := ∫ tn+1

tn

(
v(s) − v(tn+1)

)
ds+∫ tntn−1

(
v(s) − v(tn)

)
ds. By chain rule, and (A4) for m = 1,

we obtain

T(n,1)
4,1,A ≤ −E

[
Cg

{
2‖∇u(tn)‖L2 + 2‖∇v(tn−1/2)‖L2 + ‖∇enu‖L2 + ‖∇en−1/2

v ‖
L2

}|ΔnW|
· k1− β

2 k1+
β
2 ‖∇en+1/2

v ‖
L2

]
.

We apply Young’s inequality, Ito isometry, (4.2) and Lemma 3.2 (i), (ii) to further bound T(n,1)
4,1,A by

T(n,1)
4,1,A ≤ C2

g

β
k2−β E

[{
2‖∇u(tn)‖2L2 + 2‖∇v(tn−1/2)‖2L2 + ∥∥∇enu

∥∥2
L2

+ ∥∥∇en−1/2
v

∥∥2
L2

}
|ΔnW|2

]
+ β

6
k2+β E

[∥∥∇en+1/2
v

∥∥2
L2

]
≤ Cβk

3−β + Cβk
3−βE

[∥∥∇enu
∥∥2
L2

]
+ C2

gCβ k3−β E

[∥∥∇en−1/2
v

∥∥2
L2

]
+ β

6
k2+β E

[∥∥∇en+1/2
v

∥∥2
L2

]
, (5.16)

where Cβ ≡ C(β) > 0 is a constant for β ∈ (0, 12 ), and the last two terms on the right-hand side may

be absorbed on the left-hand side of (5.14) for k ≤ k0 sufficiently small, and β < 1
2 . Arguing similarly

and by Lemma 3.3 (iii), we infer

T(n,1)
4,1,B ≤ Ck3−β + C2

g k
3−β E

[∥∥∇en−1/2
v

∥∥2
L2

]
+ Ck2+β , (5.17)

where the second term on right-hand side may be absorbed on the left-hand side of (5.14) for k ≤ k0
sufficiently small, and β < 1

2 .

We now estimate T(n,2)
4,1 : by properties of ΔnW, (A3) and Lemma 3.3 (iii), we get

T(n,2)
4,1 ≤ CLkE

[(∥∥∇u(tn) − ∇un
∥∥2
L2 + ‖v(tn−1/2) − vn−1/2‖2

L2

)
|ΔnW|2

]
+ C

∫ tn+1

tn
E

[∥∥∥∥Δ [u(s) − u(tn+1) + u(tn−1)

2

]∥∥∥∥2
L2

]
≤ CkE

[∥∥∇enu
∥∥2
L2 + ∥∥env∥∥2L2 + ∥∥en−1

v

∥∥2
L2

]
+ Ck3.

Using similar arguments as for the estimate of (5.16), we infer

T(n,3)
4,1 ≤ C2

g

β
k3+βE

[
‖∇u(tn)‖2L2 + 2‖∇v(tn−1/2)‖2L2 + ‖∇un‖2

L2 + ∥∥∇en−1/2
v

∥∥2
L2

]
+ β

6
k2+β E

[∥∥∇en+1/2
v

∥∥2
L2 + ‖∇v(tn+1/2)‖2L2

]
≤ C2

g

β
k3+β E

[∥∥∇en−1/2
v

∥∥2
L2

]
+ β

6
k2+β E

[∥∥∇en+1/2
v

∥∥2
L2

]
+ Cβk

2+β .
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28 X. FENG ET AL.

Using (A3), Lemma 3.3 (ii) and properties of ΔnW, we estimate

T(n,4)
4,1 ≤ CE

[∥∥σ(u(tn), v(tn−1/2)) − σ
(
un, vn−1/2)∥∥2

L2 |ΔnW|2
]

+ C
∫ tn+1

tn
E

[∥∥σ (u(s), v(s)) − σ
(
u(tn), v(tn−1/2)

)∥∥2
L2

]
ds

≤ CkE
[∥∥∇enu

∥∥2
L2 + ∥∥env∥∥2L2 + ∥∥en−1

v

∥∥2
L2

]
+ CL

∫ tn+1

tn
E

[
‖∇[u − u(tn)]‖2L2 + ‖[v − v(tn−1/2)]‖2L2

]
≤ CkE

[∥∥∇enu
∥∥2
L2 + ∥∥env∥∥2L2 + ∥∥en−1

v

∥∥2
L2

]
+ Ck2. (5.18)

Using (A3), (A4) for m = 1, item 4. of Remark 4.2, and using Lemma 3.2 (i) (due to addition and
subtraction of v(tn) term to vn), we estimate

T(n,5)
4,1 ≤ kE

[∥∥σ (u(tn), v(tn−1/2)
)− σ(un, vn−1/2)

∥∥2
L2

]
+ α̂2

4
k3 E

[∥∥Duσ
(
un, vn−

1
2
)
vn
∥∥2
L2

]
≤ CLkE

[∥∥∇enu
∥∥2
L2 + ∥∥en−1/2

v

∥∥2
L2

]
+ α̂2

4
C2
g k

3 E

[∥∥env∥∥2L2

]
+ Ck3.

Similar arguments, in combination with the Hölder estimates in Section 3.1, may be used to estimate
T(n)
4,2 in (5.15). Now, we estimate the last term in the right-hand side of (5.14).
Using (A4) for m = 1, Itô isometry and Lemma 3.2 (i) (due to addition and subtraction of v(tn) term

to vn), we obtain

E
[
T(n)
5

] ≤ α̂2

k
E

[∥∥Duσ
(
un, vn−

1
2
)
vn
∥∥2
L2

∣∣Δ̂nW
∣∣2]+ CkE

[∥∥en+1
v

∥∥2
L2 + ∥∥env∥∥2L2

]
≤ α̂2 C2

g k
2 E

[∥∥vn∥∥2
L2

]
+ CkE

[∥∥en+1
v

∥∥2
L2 + ∥∥env∥∥2L2

]
≤ Ck2 + CkE

[∥∥en+1
v

∥∥2
L2 + ∥∥env∥∥2L2

]
.

We now insert these estimates into (5.14), for which we apply expectations, and sum over iteration steps.
The implicit version of the discrete Gronwall lemma along with (B2) then yields the assertion, again
provided k ≤ k0 is sufficiently small and β ∈ (0, 1/2).

(2) Proof of (5.3). Suppose σ2(v) ≡ 0 ≡ F2(v) in (A3), and α̂ = 0. We combine both equations in
the (0, 0)−scheme,

[
u�+1 − u�

]− [
u� − u�−1] = k2Δu�,1/2 + k2

2

[
3F(un) − F(un−1)

]+ kσ(u�)Δ�W (5.19)

for all 1 ≤ � ≤ N. Now sum over the first n steps, and define un+1 := ∑n
�=1 u

�+1. We arrive at

[
un+1 − un

]− k2Δun,1/2 = [
u1 − u0

]+ k2

2

n∑
�=1

[
3F(u�) − F(u�−1)

]+ k
n∑

�=1

σ(u�)Δ�W. (5.20)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 29

We proceed correspondingly with (3.2), which we integrate in time: thanks to (3.1), we get (0 ≤ λ ≤
μ ≤ T)

[u(μ) − u(λ)] −
∫ μ

λ

∫ s

0
Δu(ξ) dξ ds

= [μ − λ]v0 +
∫ μ

λ

∫ s

0
F (u(ξ)) dξ ds +

∫ μ

λ

∫ s

0
σ (u(ξ)) dW(ξ) ds, (5.21)

where s ∈ [tn, tn+1]. Setting μ = tn+1, λ = tn in (5.21), subtracting (5.20) from (5.21) then leads to

[
en+1
u − enu

]− k2Δen,1/2u = kv0 − (u1 − u0) +
∫ tn+1

tn

∫ s

0
σ (u(ξ)) dW(ξ) ds − k

n∑
�=1

σ(u�)Δ�W︸ ︷︷ ︸
:= I

+
∫ tn+1

tn

∫ s

0
Δu(ξ) dξ ds − k2

n∑
�=1

Δ
[
u(t�+1) + u(t�−1)

]
2︸ ︷︷ ︸

:= II

+
∫ tn+1

tn

∫ s

0
F (u(ξ)) dξ ds − k2

2

n∑
�=1

[
3F(u�) − F(u�−1)

]
︸ ︷︷ ︸

:= III

. (5.22)

We first rewrite the term I in a form that is more suitable to obtain error estimates. Consider the term

∫ s

0
σ (u(ξ)) dW(ξ) ds =

(
n−1∑
�=0

∫ t�+1

t�
+
∫ s

tn

)
σ (u(ξ)) dW(ξ) ds. (5.23)

By rearranging the terms, we can rewrite I as the sum of five terms that are suitable to obtain error
estimates

I = k
n∑

�=1

[
σ
(
u(t�)

)− σ(u�)
]
Δ�W +

∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
σ (u(ξ)) − σ

(
u(t�)

)]
dW(ξ) ds

+
∫ tn+1

tn

∫ s

tn

[
σ (u(ξ)) − σ

(
u(tn)

)]
dW(ξ) ds +

∫ tn+1

tn

∫ s

tn
σ
(
u(tn)

)
dW(ξ) ds

+
∫ tn+1

tn

∫ t1

t0
σ (u(ξ)) dW(ξ) ds. (5.24)

Term II gives the quadrature error, for which we aim to apply Lemma 2.1. This result cannot directly
be applied here, as the second term involves the evaluation of u at times t�+1 and t�−1, which are at
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30 X. FENG ET AL.

distance 2k. Thus, we rewrite the following integral as (t0 = 0)

∫ s

0
Δu(ξ) dξ =

(
1

2

n∑
�=1

∫ t�+1

t�−1

+1

2

∫ t1

t0
+1

2

∫ tn+1

tn
−
∫ tn+1

s

)
Δu(ξ) dξ , (5.25)

where the first term on the right-hand side is now suitable to use Lemma 2.1.
We are now ready for the error analysis. We multiply both sides of (5.22) with en+1/2

u , and observe
that

k2
(
∇en,1/2u ,∇en+1/2

u

)
= k2

4

(
∇en+1

u + ∇en−1
u ,∇

[
en+1
u − en−1

u

])
= k2

4

[∥∥∇en+1
u

∥∥2
L2 − ∥∥∇en−1

u

∥∥2
L2

]
.

Using this, and rearranging the terms on the right-hand side of (5.22), leads to the following error
equation

1

2

[∥∥en+1
u

∥∥2
L2 − ‖enu‖2L2

]
+ k2

4

[∥∥∇en+1
u

∥∥2
L2 − ∥∥∇en−1

u

∥∥2
L2

]
=
(
kv0 − [u1 − u0], en+1/2

u

)
+ k

(
n∑

�=1

[
σ
(
u(t�)

)− σ(u�)
]
Δ�W, en+1/2

u

)

+
(∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
σ (u(ξ)) − σ

(
u(t�)

)]
dW(ξ) ds, en+1/2

u

)

+
(∫ tn+1

tn

∫ s

tn

[
σ (u(ξ)) − σ

(
u(tn)

)]
dW(ξ) ds, en+1/2

u

)
+
(∫ tn+1

tn

∫ s

tn
σ
(
u(tn)

)
dW(ξ) ds, en+1/2

u

)
+
(∫ tn+1

tn

∫ t1

t0
σ (u(ξ)) dW(ξ) ds, en+1/2

u

)

−
(∫ tn+1

tn

∫ s

0
∇u(ξ) dξ ds − k2

n∑
�=1

∇ [u(t�+1) + u(t�−1)
]

2
,∇en+1/2

u

)

+
∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

(
F(u) − 1

2

[
3F
(
u(t�)

)− F
(
u(t�−1)

)]
, en+1/2

u

)
dξds

+ k2

2

n−1∑
�=1

(
3
[
F
(
u(t�)

)− F(u�)
]− [

F(u(t�−1)) − F(u�−1)
]
, en+1/2

u

)
+
∫ tn+1

tn

∫ t1

t0

(
F (u(ξ)) , en+1/2

u

)
dξds +

∫ tn+1

tn

∫ s

tn

(
F (u(ξ)) , en+1/2

u

)
dξds

− k2

2

([
3F(un) − F(un−1)

]
, en+1/2

u

)
=: In1 + I�,n2 + . . . + I�,n12 . (5.26)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad024/7164144 by U
niversity of Tennessee Libraries user on 24 M

ay 2023



HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 31

We take the expectation on both sides and estimate all the terms on the right-hand side of (5.26)
separately. We begin with the term I�,n2 .

(a) Estimation of E
[
I�,n2

]
. By Itô isometry, and (A3), we have

E
[
I�,n2

] ≤ CkE
[∥∥en+1/2

u

∥∥2
L2

]
+ kE

⎡⎣∥∥∥∥∥
n∑

�=1

[
σ
(
u(t�)

)− σ(u�)
]
Δ�W

∥∥∥∥∥
2

L2

⎤⎦
≤ CkE

[
‖en+1/2

u ‖2
L2

]
+ C̃Lk

2
n∑

�=1

E

[
‖e�

u‖2L2

]
. (5.27)

(b) Estimation of E
[
I�,n3

]
. The term I�,n3 can be controlled by Itô isometry, (A3) and Lemma 3.3 (i)

as

E
[
I�,n3

] = E

[(∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
σ (u(ξ)) − σ

(
u(t�)

)]
dW(ξ) ds, en+1/2

u

)]

≤ C̃L

∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�
E

[∥∥u(ξ) − u(t�)
∥∥2
L2

]
dξ ds + CkE

[∥∥en+1/2
u

∥∥2
L2

]
≤ C̃Lk

3 + CkE
[∥∥en+1

u

∥∥2
L2 + ∥∥enu∥∥2L2

]
. (5.28)

(c) Estimation of E
[
I�,n4

]
.We use the similar arguments as for E

[
I�,n3

]
, to get

E
[
I�,n4

] = E

[(∫ tn+1

tn

∫ s

tn

[
σ (u(ξ)) − σ

(
u(tn)

)]
dW(ξ) ds, en+1/2

u

)]
≤ C̃L

∫ tn+1

tn

∫ s

tn
E

[∥∥u(ξ) − u(tn)
∥∥2
L2

]
dξ ds + CkE

[∥∥en+1/2
u

∥∥2
L2

]
≤ Ck4 + CkE

[∥∥en+1/2
u

∥∥2
L2

]
.

(d) Estimation of E
[
I�,n5

]
. By independence of stochastic increments,

E
[
I�,n5

] = kE
[(

σ
(
u(tn)

) (
W(s) − W(tn)

)
, en+1/2

u

)]
= k

2
E

[(
σ
(
u(tn)

) (
W(s) − W(tn)

)
, en+1

u − enu
)]

.

Using (5.12), we rewrite

E
[
I�,n5

] = k

2
E

[(
σ
(
u(tn)

) (
W(s) − W(tn)

)
, ken+1

v

)]
+ k

2
E

[(
σ
(
u(tn)

) (
W(s) − W(tn)

)
,
∫ tn+1

tn

(
v(s) − v(tn+1)

)
ds

)]
= E

[
I�,n5;1

]+ E
[
I�,n5;2

]
.
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Using (A3), (5.1) and the Itô isometry,

E
[
I�,n5;1

] ≤ Ck2 E
[∥∥σ (u(tn)) ∥∥2L2

]
E

[
|W(s) − W(tn)|2

]
+ Ck2E

[∥∥en+1
v

∥∥2
L2

]
≤ Ck3.

Using the similar arguments and by Lemma 3.3 (ii), we infer

E
[
I�,n5;2

] ≤ Ck2 E
[∥∥σ (u(tn)) ∥∥2L2

]
E

[
|W(s) − W(tn)|2

]
+ Ck2E

[
‖v(s) − v(tn+1)‖2L2

]
≤ Ck3.

(e) Estimation of E
[
I�,n6

]
.We add and subtract the term σ(u0), to get

E
[
I�,n6

] = E

[(∫ tn+1

tn

∫ t1

t0

(
σ (u(ξ)) − σ

(
u0
))

dW(ξ) ds, en+1/2
u

)]
+ E

[(∫ tn+1

tn

∫ t1

t0
σ
(
u0
)
dW(ξ) ds, en+1/2

u

)]
:= E

[
I�,n6;1

]+ E
[
I�,n6;2

]
,

where the term E
[
I�,n6;1

]
will follow the similar arguments as for E

[
I�,n4

]
in step (c), to yield

E

[
I�,n6;1

]
≤ Ck4 + CkE

[
‖en+1/2

u ‖2
L2

]
.

The term E
[
I�,n6;2

] = kE
[(

σ
(
u0
)
Δ0W, en+1/2

u

)]
will be merged with In1 .

(f) Estimation of E
[
I�,n7

]
.We will apply the quadrature formula (Lemma 2.1) to handle this term as

mentioned above for the term II. To get suitable terms for the error bounds, we use the identity (5.25)
and again rearrange the terms by splitting the integral

∫ tn+1
tn

· ds into ∫ stn · ds + ∫ tn+1
s · ds, to get

∫ s

0
∇u(ξ) dξ = 1

2

⎛⎜⎜⎜⎝
:=I7︷ ︸︸ ︷

n∑
�=1

∫ t�+1

t�−1

∇u(ξ) dξ +

:=II7︷ ︸︸ ︷(∫ t1

t0
+
∫ s

tn
−
∫ tn+1

s

)
∇u(ξ) dξ

⎞⎟⎟⎟⎠ . (5.29)

Below, we handle the terms separately.
(f1) Lemma 2.1 (with T = 2k) now applies to handle I7. For this, we choose f (ξ) =

E
[
(∇u(ξ),∇en+1/2

u )
]
for all ξ ∈ [tn, tn+1]. Using integration by parts, by Lemma 3.3 (iv), we have

γ = 1
2 in (2.1),

∣∣∣E [(∇[v(t) − v(s)],∇en+1/2
u

)]∣∣∣ ≤ C
(
E

[∥∥∇en+1/2
u

∥∥2
L2

])1/2 |t − s| 12 .

We know that

1

2k

∫ t�+1

t�−1

f (ξ) dξ − f (t�+1) + f (t�−1)

2
= 1

2k

[ ∫ t�+1

t�−1

{
f (ξ) − f (t�+1) + f (t�−1)

2

}
dξ

]
.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 33

As a consequence,

1

2k

∣∣∣∣ ∫ t�+1

t�−1

E

[(
∇
[
u(ξ) − u(t�+1) + u(t�−1)

2

]
,∇en+1/2

u

)]
dξ

∣∣∣∣
=
∣∣∣∣ 12k

∫ t�+1

t�−1

f (ξ) dξ − f (t�+1) + f (t�−1)

2

∣∣∣∣ ≤ C̃( 1
2 + 2

)( 1
2 + 3

) (2k)3/2 (E [∥∥∇en+1/2
u

∥∥2
L2

])1/2
.

Using (5.1), we can finally bound the term with the integral from tn to tn+1 by

≤ Ck5/2
(
E

[
‖∇en+1/2

u ‖2
L2

])1/2 ≤ Ck2E
[
‖∇en+1/2

u ‖2
L2

]
+ Ck3 ≤ Ck3.

f2) Consider the difference of the last two terms in II7. By adding and subtracting the terms
1
2

∫ tn+1
tn

∫ s
tn

∇u(tn) dξ ds and
1
2

∫ tn+1
tn

∫ tn+1
s ∇u(tn) dξ ds, we get

1

2

∫ tn+1

tn

(∫ s

tn
∇u(ξ) dξ −

∫ tn+1

s
∇u(ξ) dξ

)
ds

=

II7,a︷ ︸︸ ︷
1

2

∫ tn+1

tn

∫ s

tn
∇ (u(ξ) − u(tn)

)
dξ ds−

II7,b︷ ︸︸ ︷
1

2

∫ tn+1

tn

∫ tn+1

s
∇ (u(ξ) − u(tn)

)
dξ ds

+ 1

2
∇u(tn)

(∫ tn+1

tn

∫ s

tn
dξ ds −

∫ tn+1

tn

∫ tn+1

s
dξ ds

)
,

where the last term on the right-hand side vanishes as
∫ tn+1
tn

[
(s − tn) − (tn+1 − s)

]
ds = 0. So, we

estimate the first two terms only. By standard estimation,

∫ tn+1

tn
E

[(
II7,a,∇en+1/2

u

)]
ds

≤ C k2
∫ tn+1

tn
E

[∥∥∇ [u(ξ) − u(tn)
] ∥∥2

L2

]
dξ + CkE

[∥∥∇en+1/2
u

∥∥2
L2

]
≤ C k5 + CkE

[∥∥∇en+1/2
u

∥∥2
L2

]
,

thanks to Lemma 3.3 (ii). Similarly, one may handle the term that involves II7,b. The only term left to

handle from the right-hand side of (5.29) is
∫ t1
t0

∇u(ξ) dξ . We can rewrite the term
∫ tn+1
tn

∫ t1
t0

∇u(ξ) dξ ds
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as
∫ tn+1
tn

∫ t1
t0

∇ [u(ξ) − u0
]
dξ ds+ k2∇u0. To estimate the first term, we proceed as before, to conclude

∣∣∣∣ ∫ tn+1

tn
E

[(
1

2

∫ t1

t0
∇ [u(ξ) − u0

]
dξ ,∇en+1/2

u

)]
ds

∣∣∣∣
≤ C

∫ tn+1

tn

∫ t1

t0
ξ2 dξ ds + CkE

[∥∥∇en+1/2
u

∥∥2
L2

]
≤ Ck4 + CkE

[∥∥∇en+1/2
u

∥∥2
L2

]
.

Now, we only need to handle the term E
[( 1

2k
2Δu0, e

n+1/2
u

)]
. This term will now be combined with the

term In1 .

(g) Estimation of E
[
I�,n8

]
. As a first step, we split it into two parts,

E
[
I�,n8

] =
∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�
E

[(
F (u(ξ)) − 1

2

[
F
(
u(t�)

)+ F
(
u(t�+1)

)]
, en+1/2

u

)]
dξ ds

+ k2

2

n∑
�=1

E

[(
F
(
u(t�+1)

)− 2F
(
u(t�)

)+ F
(
u(t�−1)

)
, en+1/2

u

)]
=: E

[
I�,n8;1 + I�,n8;2

]
.

To handle these two terms, we use Lemma 2.1 with f (ξ) = E
[(
F (u(ξ)) , en+1/2

u
)]

where ξ ∈ [tn, tn+1],
and verify γ = 1

2 in (2.1): by (A4) for m = 1, 2, the chain-rule and the mean-value theorem∣∣∣(DtF (u(t)) − DtF (u(s)) , en+1/2
u

)∣∣∣
=
∣∣∣(DuF (u(t)) v(t) − DuF (u(s)) v(s), en+1/2

u

)∣∣∣
=
∣∣∣((DuF(u(t)) − DuF(u(s))

)
v(t) + DuF(u(s))(v(t) − v(s)), en+1/2

u

)∣∣∣
=
∣∣∣((D2

uF(u(t) − u(s))
)

(v(t)) + DuF(u(s))(v(t) − v(s)), en+1/2
u

)∣∣∣
≤ C̃g ‖u(t) − u(s)‖

H1‖v(t)‖H1

∥∥en+1/2
u

∥∥
L2 + C̃g ‖v(t) − v(s)‖

L2

∥∥en+1/2
u

∥∥
L2 , (5.30)

where D2
uF := D2

uF(̃uρ) and ũρ := ρu(t) + (1 − ρ)u(s), for some ρ ∈ [0, 1]. Lemma 3.3 (ii) then

establishes γ = 1
2 in (2.1), and so Lemma 2.1 yields

E
[
I�,n8;1

] ≤ Ck
5
2C
(
E

[∥∥en+1/2
u

∥∥2
L2

]) 1
2 ≤ Ck4 + kE

[∥∥en+1/2
u

∥∥2
L2

]
.

In order to estimate E[I�,n8;2], we may write for some θ ∈ (0, 1)

F(u(t�+1)) = F(u(t�)) + DuF(u(t�))(u(t�+1) − u(t�))

+ 1

2

(
D2
uF
(
u(t�) + θ(u(t�+1) − u(t�))

)
(u(t�+1) − u(t�))

) (
u(t�+1) − u(t�)

)
,
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and

F(u(t�−1)) = F(u(t�)) + DuF(u(t�))(u(t�−1) − u(t�))

+ 1

2

(
D2
uF
(
u(t�) + θ(u(t�−1) − u(t�))

)
(u(t�−1) − u(t�))

) (
u(t�−1) − u(t�)

)
.

Then, adding the above two terms, we get

F
(
u(t�+1)

)− 2F
(
u(t�)

)+ F
(
u(t�−1)

)
= DuF

(
u(t�+1) − 2u(t�) + u(t�−1)

)+ 1

2

(
D2
uF (u(t�+1) − u(t�))

)
(u(t�+1) − u(t�))

+ 1

2

(
D2
uF (u(t�−1) − u(t�))

)
(u(t�−1) − u(t�)),

where DuF := DuF(u(t�)), D
2
uF := D2

uF
(
u(t�) + θ(u(t�+1) − u(t�))

)
and D2

uF := D2
uF
(
u(t�) +

θ(u(t�−1)−u(t�))
)
. We begin with the first term on the right-hand side: first, by the mean value theorem,

there exist ζ1, ζ2 ∈ [0, 1], such that

u(t�+1) − u(t�) = kv
(
ζ1t� + [1 − ζ1]t�+1

)
, − [u(t�) − u(t�−1)

] = −kv
(
ζ2t�−1 + [1 − ζ2]t�

)
.

Hence, Lemma 3.3 (ii) settles O(k
3
2 ) for this term. If combined with Lemma 3.3 (i), (A4) for m = 1, 2,

we can conclude

E
[
I�,n8;2

] ≤ Ck4 + kE
[∥∥en+1/2

u

∥∥2
L2

]
.

(h) Estimation of E
[
I�,n9

]
. Finally, by (A3), we infer

E
[
I�,n9

] ≤ Ck2
(

n∑
�=1

E

[∥∥e�
u

∥∥2
L2 + ∥∥e�−1

u

∥∥2
L2

]
+ E

[∥∥en+1/2
u

∥∥2
L2

])
.

(i) Estimation of E
[
I�,n10

]
. Adding and subtracting F(u0) to the term, we get,

E
[
I�,n10

] = E

[ ∫ tn+1

tn

∫ t1

t0

([
F(u(ξ)) − F(u0)

]
, en+1/2

u

) ]
dξ ds + E

[(
k2F(u0), e

n+1/2
u

)]
.

Using previous arguments as before, by (A3) and Lemma 3.3 (i), we bound the first term on the right-
hand side by Ck4 + CkE

[‖en+1/2
u ‖2

L2

]
. The second term on the right-hand side will now be combined

with the term In1 .
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(j) Estimation ofE
[
I�,n11 +I�,n12

]
.Here, we consider the estimation of I�,n11 and I�,n12 together. We subtract

the term 1
2

[
3F(u(tn)) − F(u(tn−1))

]
from I�,n11 and add the corresponding term with I�,n12 . Then, the new

decomposition can be estimated similarly as E
[
I�,n8

]
and E

[
I�,n9

]
(see steps (g) and (h), respectively) to

finally get

E
[
I�,n11 + I�,n12

] ≤ Ck4 + Ck

(
E

[∥∥enu∥∥2L2 + ∥∥en−1
u

∥∥2
L2

]
+ E

[
‖en+1/2

u ‖2
L2

])
.

(k) Estimation of E
[
In1
]
. To estimate this term, we need to combine the terms kσ

(
u0
)
Δ0W, k2

2 Δu0
and k2F(u0), which are coming from the steps (e), (f2) and (i), respectively. By the assumption (5.2),
we infer

E

[(
kv0 − [u1 − u0] + k2

2
Δu0 + k2F(u0) + kσ

(
u0
)
Δ0W, en+1/2

u

)]

≤ C

k
E

[∥∥∥∥kv0 − [u1 − u0] + k2

2
Δu0 + k2F(u0) + kσ

(
u0
)
Δ0W

∥∥∥∥2
L2

]
+ CkE

[∥∥en+1/2
u

∥∥2
L2

]
≤ Ck4 + CkE

[∥∥en+1/2
u

∥∥2
L2

]
.

Now we combine all the above estimates in (5.26) in summarized form, then the implicit version of
the discrete Gronwall lemma yields assertion (5.3).

(3) Proof of (5.4). Similar to (5.20), we have for α̂ = 1

[
un+1 − un

]− k2Δun,1/2 − [
u1 − u0

]
= k

n∑
�=1

σ(u�)Δ�W + α̂k
n∑

�=1

Duσ(u�)v�Δ̂�W + k2

2

n∑
�=1

[
3F(u�) − F(u�−1)

]
.

(5.31)

So the additional term on the right-hand side of the error equation (5.22) is

α̂k
n∑

�=1

−Duσ(u�)v�Δ̃�W + α̂k
n∑

�=1

−Duσ(u�)v�
[
(Δ̂�W − Δ̃�W)

]
:= I

�,n
3,A + I

�,n
3,B. (5.32)

We now follow the argumentation in (2): multiplication with en+1/2
u of the modified error equation (5.22)

then leads to (5.26), where I�,n
3,A is merged with I�,n3 . Then, the sum I�,n3 + I�,n4 + I�,n5 may be rewritten as
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 37

the following sums(∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
Duσ

(
u(t�)

)
v(t�) − Duσ(u�)v�

]
(ξ − t�) dW(ξ) ds, en+1/2

u

)
︸ ︷︷ ︸

:=I�,n3,A1

+
(∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
σ (u(ξ)) − σ

(
u(t�)

)− Duσ
(
u(t�)

)
v(t�)(ξ − t�)

]
dW(ξ) ds, en+1/2

u

)
︸ ︷︷ ︸

:=I�,n3,A2

+
(∫ tn+1

tn

∫ s

tn

[
Duσ

(
u(tn)

)
v(tn) − Duσ(un)vn

]
(ξ − tn) dW(ξ) ds, en+1/2

u

)
︸ ︷︷ ︸

:=I�,n3,A3

+
(∫ tn+1

tn

∫ s

tn

[
σ (u(ξ)) − σ

(
u(tn)

)− Duσ
(
u(tn)

)
v(tn)(ξ − tn)

]
dW(ξ) ds, en+1/2

u

)
︸ ︷︷ ︸

:=I�,n3,A4

. (5.33)

We independently bound the other error terms in (5.26) in this modified setting:
(a) To bound E[I�,n3;A1

] in (5.33), we use Itô isometry, the mean-value theorem, (A4) for m = 1, 2,
to get

E
[
I�,n3;A1

] ≤ kE

[
1

k
·
∥∥∥ ∫ tn+1

tn

n−1∑
�=1

∫ t�+1

t�

[
Duσ

(
u(t�)

)
v(t�) − Duσ(u�)v�

]

×(ξ − t�) dW(ξ) ds
∥∥∥2
L2

]
+ kE

[∥∥en+1/2
u

∥∥2
L2

]

≤
∫ tn+1

tn

n−1∑
�=1

E

[ ∫ t�+1

t�

∥∥Duσ
(
u(t�)

)
v(t�) − Duσ(u�)v�

∥∥2
L2

× (ξ − t�)
2 dξ ds

]
+ kE

[∥∥en+1/2
u

∥∥2
L2

]

≤ Ck4
n−1∑
�=1

E

[∥∥Duσ
(
u(t�)

)
v(t�) − Duσ(u�)v�

∥∥2
L2

]
+ kE

[∥∥en+1/2
u

∥∥2
L2

]

≤ Ck4
n−1∑
�=1

(
E

[∥∥e�
v

∥∥2
L2

]
+ E

[
Ĩ�,n3;A1

])+ kE
[∥∥en+1/2

u

∥∥2
L2

]
, (5.34)
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38 X. FENG ET AL.

where Ĩ�,n3;A1
:= ∥∥[Duσ

(
u(t�)

) − Duσ(u�)]v
(
t�
)∥∥2

L2 . In order to handle the first term in the right-hand
side, we estimate (5.34) further by

≤ Ck2
n−1∑
�=1

(
E

[∥∥e�
u

∥∥2
L2 + ∥∥e�−1

u

∥∥2
L2

]
+ k2E

[
Ĩ�,n3;A1

])+ kE
[∥∥en+1/2

u

∥∥2
L2

]
.

We estimate the second term in the right-hand side as

Ck4
n−1∑
�=1

E
[
Ĩ�,n3;A1

] ≤ Ck4
n−1∑
�=1

E

[∥∥e�
u

∥∥2
L2‖v(t�)‖2L∞

]

≤ Ck · k3
n−1∑
�=1

E

[∥∥e�
u

∥∥
L2

∥∥e�
u

∥∥
L2‖v(t�)‖2L∞

]

≤ Ck2
n−1∑
�=1

E

[∥∥e�
u

∥∥2
L2

]
+ Ck6

n−1∑
�=1

E

[∥∥e�
u

∥∥4
L2

]
+ Ck6

n−1∑
�=1

E

[∥∥v(t�)∥∥8L∞
]
, (5.35)

where the last term on the right-hand side is bounded by Ck5 due to Lemma 3.2 (iii). The second term
on the right-hand side is bounded further by Ck6

∑n−1
�=1 E

[‖u(t�)‖4L2 + ‖u�‖4
L2

]
, which may be bounded

by Ck5, thanks to Lemma 3.2 (i) for p = 2 and (4.5).
(b) Now consider E[I�,n3;A2

]. Let ξ ∈ [tn, tn+1]; we use the mean-value theorem twice, (A4) for m =
1, 2, to conclude∥∥σ (u(ξ)) − σ

(
u(t�)

)− Duσ
(
u(t�)

)
v(t�)(ξ − t�)

∥∥2
L2

=
∥∥∥[Duσ (̃uζ ) − Duσ

(
u(t�)

)] ∫ ξ

t�
v(η) dη + Duσ

(
u(t�)

) ∫ ξ

t�

[
v(η) − v(t�)

]
dη
∥∥∥2
L2

≤ C‖∇u(ξ) − ∇u(t�)‖4L2 + Ck2 sup
t�≤ξ≤t�+1

‖v(ξ) − v(t�)‖2L2 , (5.36)

where ũζ = ζu(ξ) + (1 − ζ )u(t�), for some ζ ∈ [0, 1]. Thus, we have

E
[
I�,n3;A2

] ≤ CkE

[
sup

t�≤ξ≤t�+1

(∥∥∇u(ξ) − ∇u(t�)
∥∥4
L2 + k2 ‖v(ξ) − v(t�)‖2L2

)]
+ kE

[∥∥en+1/2
u

∥∥2
L2

]
≤ Ck4 + kE

[∥∥en+1/2
u

∥∥2
L2

]
.

(c) We now consider E[I�,n3;A3
]. This term can be estimated by using the same arguments as for

E[I�,n3;A1
]; see (5.34) and (5.35). Since we do not have the summation in this term, we will get

E
[
I�,n3;A3

] ≤ Ck6 + CkE
[∥∥en+1

u

∥∥2
L2 + ∥∥enu∥∥2L2

]
.
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 39

(d) Then, we consider E[I�,n3;A4
], which will follow the same arguments as for E[I�,n3;A2

]; see (5.36). We
get the estimate

E
[
I�,n3;A4

] ≤ Ck5 + CkE
[∥∥en+1/2

u

∥∥2
L2

]
.

(e) To estimate the term involving I
�,n
3,B, which is defined in (5.32), we use Young’s inequality to

write

E

[(
I

�,n
3,B, e

n+1/2
u

)]
≤ α̂2

k
k2 E

⎡⎣∥∥∥∥∥
n∑

�=1

Duσ(u�)v�
[
Δ̂�W − Δ̃�W

]∥∥∥∥∥
2

L2

⎤⎦+ kE
[∥∥en+1/2

u

∥∥2
L2

]
.

Then, we use (A4) for m = 1, and independence of increments ΔnW, to get

≤ α̂2 C2
g k

n∑
�=1

E

[∥∥Duσ(u�)v�
∥∥2
L2

∣∣Δ̂�W − Δ̃�W
∣∣2]+ kE

[∥∥en+1/2
u

∥∥2
L2

]
.

Finally, we use (5.11) and (4.2) of Lemma 4.1, to obtain

≤ α̂2 C2
g k

5
n∑

�=1

E

[
‖v�‖2

L2

]
+ kE

[∥∥en+1/2
u

∥∥2
L2

]
≤ Ck4 + kE

[∥∥en+1/2
u

∥∥2
L2

]
. (5.37)

(f) We may modify the argument in part (2) to improve the order for the for the order limiting term
I7 in I�,n7 ; see step (f1). Using integration by parts and using Lemma 3.3 (iv) instead, we verify (2.1) of

Lemma 2.1 for γ = 1/2 (by choosing f (ξ) = E
[
(∇u(ξ),∇en+1/2

u )
]
for all ξ ∈ [tn, tn+1] ), to get∣∣∣E [(∇[v(t) − v(s)],∇en+1/2

u

)]∣∣∣ ≤ C
(
E

[∥∥en+1/2
u

∥∥2
L2

])1/2 |t − s| 12 .

Using this estimate, we may bound the term in (f1) by

≤ Ck
5
2

(
E

[∥∥en+1/2
u

∥∥2
L2

])1/2 ≤ CkE
[∥∥en+1/2

u

∥∥2
L2

]
+ Ck4.

Thanks to the above estimates, and after summation over all iteration steps in (5.26), we may then
conclude assertion (5.4). �

6. Computational experiments

In this section, we provide computational studies to check

• how essential the assumptions (A1)–(A5) and (B1)–(B2) (i.e., needed in Sections 3–5) are in
actual computations. In this respect, we computationally study the impact of rough initial data
(u0, v0) on the discrete dynamics, as well as of drift nonlinearities F (see Example 6.2).
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40 X. FENG ET AL.

• If the diffusion σ ≡ σ(v) and the drift F ≡ 0, then there is a reduction of convergence order as
proved in (5.1) of Theorem 5.1; see Example 6.1.

• The diffusion σ ≡ σ(u, v) = 0 on the boundary, and satisfies (A3). Example 6.3 discusses the
effect that noise has, which is nonhomogeneous on the boundary, or violates (A3).

• By Theorem 4.1, β in the (̂α,β)−scheme needs be chosen from (0, 1/2) to ensure stable, accurate
simulation of (1.3) with σ ≡ σ(u, v) and F ≡ F(u, v). The simulations in Example 6.4 evidence
a small choice for β for faster Monte Carlo approximation.

We use the lowest order conforming finite element method to simulate the (̂α,β)−scheme on a
regular triangulation Th of O; see (Brenner & Scott, 2008). Let the finite element space be

Vh :=
{
uh ∈ H1

0 : uh
∣∣
K∈ P1(K) ∀K ∈ Th

}
,

where P1(K) denotes the space of polynomials of degree one on K ∈ Th.
As initial data, we choose u1 and v1 as{

u1 = u0 + k v0 + k2
2 Δu0 + k2F(u0) + (k + k2) σ (u0)Δ0W,

v1 = v0 + kσ(u0)W(t1),
(6.1)

where u0, v0 (not finite element valued) satisfy assumptions (A1)iv and (B2). Recall the definitions for
ũn,1/2 and Δ̂nW in (4.1) and (1.12), respectively. We implement the following scheme:

Scheme 3. Let α̂ ∈ {0, 1}, and 0 ≤ β < 1
2 . Let {tn}Nn=0 be a mesh of size k > 0 covering [0,T], and

(6.1). For every n ≥ 1, find a [Vh]
2-valued, Ftn+1

-measurable random variable (un+1
h , vn+1

h ) such that

(
un+1
h − unh,φh

) = k
(
vn+1
h ,φh

) ∀φh ∈ Vh, (6.2)

(vn+1
h − vnh,ψh) = −k

(∇ũn,1/2h ,∇ψh

)+
(

σ

(
unh, v

n− 1
2

h

)
ΔnW,ψh

)
+ α̂

(
Duσ

(
unh, v

n− 1
2

h

)
vnh Δ̂nW,ψh

)
+ k

2

(
3F
(
unh, v

n
h

)− F
(
un−1
h , vn−1

h

)
,ψh

)
∀ψh ∈ Vh. (6.3)

6.1 Convergence rates

The numerical experiments are performed using MATLAB. In this section, for all the examples, we
choose O = (0, 1), T = 1, A = −Δ in (1.3). We choose u0(x) = sin(2πx) and v0(x) = sin(3πx),
and u1, v1 are chosen as in (6.1). A reference solution is computed with a step size kref = 2−7 and
href = 2−7 to approximate the exact solution and the sample Wiener processesW. The expected values
are approximated by computing averages over MC = 3000 number of samples. The plots are shown for
the time steps k = {2−3, · · · , 2−6}.

Example 1.2 in Section 1 provides computational evidence for the improved convergence rate
O(k3/2) for the schemes (1.9)–(1.10) with α̂ = 1 in the situations where σ ≡ σ(u). In the following
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 41

Fig. 3. (Example 6.1) Rates of convergence of the
(
1, 14

)−scheme with σ(v) = 3
2 v and F ≡ 0.

example, we consider σ ≡ σ(v), and find a convergence rates of O(k1/2) in simulations (A)–(C)
of Fig. 3, which validates (5.1) of Theorem 5.1. So we observe a reduction of convergence order if
compared to Example 1.2, where σ ≡ σ(u).

Example 6.1 Consider σ(v) = 3
2v and F ≡ 0. Figure 3 displays convergence studies for the

(̂α,β)−scheme for α̂ = 1 and β = 1/4 : the plots (A)–(C) of L2-errors in u,∇u and v, respectively,
confirm convergence order O(k1/2); see (5.1) of Theorem 5.1.

In the following example, we discuss four different cases where

(i) F ≡ F(u, v) has nonzero trace, but is Lipschitz and σ ≡ σ(u);

(ii) F ≡ F(u, v) is only Hölder continuous and σ ≡ σ(u);

(iii) F ≡ F(u, v) is same as (i) and σ ≡ σ(u, v) satisfying (A3);

(iv) F ≡ F(u, v) is same as (ii) and σ ≡ σ(u, v) satisfying (A3).

We observe that, although F ≡ F(u, v) violates (A3) in (ii), we still get improved convergence rates,
but if σ ≡ σ(u, v), we get the convergence order O(k1/2) as shown in (5.1) of Theorem 5.1.

Example 6.2 We consider the following cases:

(i) σ (u) = u and F(u, v) = cos(u) + 2v;

(ii) σ (u) = u and F(u, v) = √
u + √

v + 2;

(iii) σ (u, v) = u
1+u2

+ v and F(u, v) = cos(u) + 2v;

(iv) σ (u, v) = u
1+u2

+ v and F(u, v) = √
u + √

v + 2.

The errors are computed via the (̂α,β)−scheme with α̂ = 1 for β = 1/4 : the plots (A)–(C) for the
problem: (i) evidence the convergence order O(k3/2) for u,∇u, and O(k) for v. We observe the same
convergence rates for the problem; (ii) despite the lack of Lipschitzness of F, which violates (A3); see
plots (D)–(F) of Fig. 4. The plots (G)–(I) of L2-errors in u,∇u and v, respectively, for the problem;
(iii) and evidence the convergence order O(k1/2) as shown in (5.1) of Theorem 5.1. We observe the
same order of convergence for the problem; (iv) see plots (J)–(L) of Fig. 4. Thus, the above two
examples verify that the estimate (5.1) is sharp in the case of diffusion σ ≡ σ(u, v).
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42 X. FENG ET AL.

Fig. 4. (Example 6.2) Rates of convergence of the
(
1, 14

)−scheme.

In the next example, we drop the assumption on σ ≡ σ(u) to be Lipschitz, and of zero trace to see
which of these violations spot the reduction of the convergence order of schemes (1.9)–(1.10).

Example 6.3 Let F ≡ 0. Consider the following cases:

(i) σ (u) = 1
1+u2

;

(ii) σ (u) = √|u|.
In Fig. 5, the errors are computed via the schemes (1.9)–(1.10) with α̂ = 1. For problem (i) (nonzero

boundary), the plots (A)–(B) for L2-errors in u,∇u, respectively, show the convergence order O(k3/2)
and the plot (C) for L2-error in v shows O(k). For the problem (ii) (non-Lipschitz), the convergence
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 43

Fig. 5. (Example 6.3) Rates of convergence of the schemes (1.9)–(1.10) for α̂ = 1.

Fig. 6. (Example 6.4)(̂α,β)−scheme with σ(v) = 5v, and F ≡ 0.

rates for L2-errors in u,∇u are reduced to O(k); see plots (D)–(E), but L2-error in v remains same as
O(k); see plot (F).

6.2 Choice of β and required number of MC

Example 6.4 Let O = (0, 1), T = 0.5, A = −Δ, F ≡ 0, σ(v) = 5v. We compute W on the mesh

of size k = 2−12 covering [0, 0.5]. In the (̂α,β)−scheme, the term ũn,
1
2 = un,

1
2 + βk1+βvn+ 1

2 involves
β, where the last term creates an additional numerical dissipation term in (1.3) to control discretization
effect of the noise. For β = 0 with σ ≡ σ(u) and F ≡ F(u), the schemes (1.9)–(1.10) are stable, but
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44 X. FENG ET AL.

for general case we require β ∈ (0, 1/2) for the stability of the (̂α,β)−scheme; see Lemma 4.1. For
increased value of β, stabilization effect vanishes for small k. Thus, a smaller choice of β is preferred
to have the stability of the scheme. The snapshot (A) in Fig. 6 shows for β = 0, 14 ,

1
2 ,

3
4 , 1, that at least

MC = 400, 600, 800, 1000, 1400, are needed to have a steady energy E at time T = 0.5. The snapshot
(B) evidence a higher number of MC as we increase β to have a steady energy curve.
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A. Proof of Lemma 3.2

We exploit the linearity of the drift operator to decompose the solution u of (1.3) with A = −Δ in the
form u = u1 + u2, where u1 solves the following partial differential equation (PDE)

⎧⎪⎨⎪⎩
du̇1 − Δu1 dt = F(0, 0) dt in (0,T) × O,

u1(0, ·) = 0, ∂tu1(0, ·) = 0 in O,

u1(t, ·) = 0 on ∂O, ∀ t ∈ (0,T),

(A.1)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 45

where ‘·’ denotes the time derivative, while u2 solves the SPDE⎧⎪⎨⎪⎩
du̇2 − Δu2 dt = F̂(u, v) dt + σ(u, v) dW(t) in (0,T) × O,

u2(0, ·) = u0, ∂tu2(0, ·) = v0 in O,

u2(t, ·) = 0 on ∂O, ∀ t ∈ (0,T),

(A.2)

where F̂(u, v) := F(u, v)−F(0, 0), and v = ∂tu := ∂tu1 + ∂tu2. The reason for introducing F̂ is to make
the drift term has zero trace in (A.2)1. To prove the regularity results, we use the framework of Evans
(2010) for (A.1) and we use the Galerkin-based proof for (A.2); see, e.g., (Chow, 2015, Ch. 6). We need
some extra assumptions on F and σ (e.g., (A3)–(A5)) and use different arguments than (Chow, 2015) as
we require improved regularity results.

For the argumentation below to work, for the improved regularity, we assume that σ has zero trace,

but not F. If this is not assumed, then the subproblem (A.1) will have an extra term
(∫ t

0 σ(0, 0) dW(s),φ
)

in the right-hand side, and in (A.2), σ(u, v) will be replaced by σ̂ (u, v) := σ(u, v) − σ(0, 0), which has
zero trace. In the next step to prove the higher regularity of the modified (A.1), we need to consider the
following transformation, y(t) = u1(t) − ∫ t

0

∫ s
0 σ(0, 0) dW(r) ds. Now, y solves a randomized PDE with

y = h on the boundary, where h(t) := ∫ t
0

∫ s
0 σ(0, 0) dW(r) ds. Since h is of class C1, 12 with respect to the

time variable, the standard PDE techniques to show the improved regularity may not be applied. This
motivates us to assume that σ has zero trace.

Proof of Lemma 3.2 We first prove the improved regularity results for u1 and use a bootstrapping
argument to prove the improved regularity results for u2.

(a) Improved regularity of u1. By (Evans (2010), Section 7.2), there exists a unique solution u1 ∈
C([0, T];H1

0) and ∂tu1 ∈ C([0, T];L2) to (A.1). By (Evans (2010), Section 7.2), for m = 1, 2, 3, under
the assumption (A5), we get

(
u1, ∂tu1

) ∈ L∞(0,T;Hm+1) × L∞(0,T;Hm), and we have the following
estimate

sup
0≤t≤T

(
‖u1(t)‖qHm+1 + ‖∂tu1(t)‖qHm

)
≤ Cq,T ‖F(0, 0)‖q

Hm (q ≥ 2). (A.3)

We will use this result to prove the improved regularity for u2.
(b) Improved regularity of u2. By (Chow, 2015, Theorem 8.4), there exists a unique

{Ft}t≥0−adapted process (u2, ∂tu2) ∈ L2
(
Ω;C([0, T];H1

0)
) × L2

(
Ω;C([0, T];L2)

)
, which satisfies

(A.2) P−a.s. The proof uses a Galerkin approximation, with {ρi}∞i=1 the orthonormal basis of
L2, composed of eigenfunctions of −Δ. For any n ∈ N, we define the finite dimensional space
Hn := Span{ρ1, · · · , ρn}, and Pn be the projection from L2 ontoHn. We define Δn := PnΔ : Hn → Hn
and use the mappings F̂n(un, vn) := PnF̂(un, vn) ∈ Hn and σn(un, vn) := Pnσ(un, vn) ∈ Hn for
(un, vn) ∈ [Hn]

2, such that un = u1n + u2n, where u1n := Pnu1, vn := v1n + v2n := ∂tu1n + ∂tu2n with
u2n(0) = Pnu0 and v2n(0) = Pnv0, where u2n and v2n satisfy the following approximated system{

du2n = v2n dt

dv2n = (
Δnu2n + F̂n

(
u1n + u2n, v1n + v2n

))
dt + σn

(
u1n + u2n, v1n + v2n

)
dW(t).

(A.4)

By Øksendal (2003), there exists a unique {Ft}t≥0−adapted process (u2n, v2n) on
(
Ω ,F , {Ft}t≥0,P

)
such that for each n ∈ N, (u2n, v2n) ∈ L2

(
Ω;C([0, T]; [Hn]

2)
)
for (Pnu0,Pnv0) ∈ [Hn]

2.
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(1) Bounds: Let � ∈
{
0, 12 , 1,

3
2

}
, which correspond to the parts (i)-(iv) of Lemma 3.2, respectively.

Define the map Φ� : Hn × Hn → R, where

Φ�(u, v) :=
1

2

[∥∥Δ�+ 1
2

n u
∥∥2
L2 + ∥∥Δ�

nv
∥∥2
L2

]
.

Thus, DuΦ�(u, v),DvΦ�(u, v) ∈ L(Hn,R). For any φ ∈ Hn, we have

DuΦ�(u, v)(φ) =
(

Δ
�+ 1

2
n u,Δ

�+ 1
2

n φ

)
and DvΦ�(u, v)(φ) = (

Δ�
nv,Δ

�
nφ
)
.

Applying Itô’s formula to the process Φ�, we obtain

Φ�

(
u2n(t), v2n(t)

) = Φ�

(
u2n(0), v2n(0)

)+
∫ t

0

(
Δ

�+ 1
2

n u2n(s),Δ
�+ 1

2
n v2n(s)

)
ds

+
∫ t

0

(
Δ�

nv2n(s),Δ
�+1
n u2n(s) + Δ�

nF̂n

(
un(s), vn(s)

))
ds

+
∫ t

0

(
Δ�

nv2n(s),Δ
�
nσn

(
un(s), vn(s)

)
dW(s)

)
+ 1

2

∫ t

0

∥∥Δ�
nσn

(
un(s), vn(s)

) ∥∥2
L2 ds, (A.5)

where un = u1n +u2n and vn = v1n +v2n. We use different arguments for the cases � = 0, 12 , 1,
3
2 , which

represent the parts (i)-(iv) of Lemma 3.2, respectively.
(b1) F ≡ F(u, v) and σ ≡ σ(u, v) for � = 0. Since Pnσ(un, vn) = ∑n

i=1

(
σ
(
un, vn

)
, ρi
)
ρi, using

(A3), a standard argument gives∥∥σn (un, vn) ∥∥2L2 ≤ ∥∥σ (un, vn) ∥∥2L2 ≤ CL

{
1 + ‖∇un‖2L2 + ‖vn‖2L2

}
≤ CL

{
1 + ‖∇un‖2L2 + ‖vn‖2L2

}
≤ C

{
1 + ∥∥Δ1/2

n un
∥∥2
L2 + ‖vn‖2L2

}
.

A similar estimate will hold for ‖F̂n(un, vn)‖2L2 .
(b2) F ≡ F(u, v) and σ ≡ σ(u, v) for � = 1/2. Proceeding similarly as before for � = 0, and using

(A4), we infer

∥∥Δ1/2
n σn(un, vn)

∥∥2
L2 =

n∑
j=1

λj

∣∣(σ (un, vn), ρj)∣∣2 ≤ ∥∥∇σ
(
un, vn

) ∥∥2
L2

≤ C
{
1 + ∥∥∂uσ (un, vn) (∇un) + ∂vσ

(
un, vn

)
(∇vn)

∥∥2
L2

}
≤ C

{
1 + ‖Δnun‖2L2 + ∥∥Δ1/2

n vn
∥∥2
L2

}
.

A similar estimate will hold for
∥∥Δ1/2

n F̂n

(
un, vn

) ∥∥2
L2 . The other terms in the right-hand side of (A.5)

can be dealt similarly by the use of Cauchy–Schwarz inequality.
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Using the above estimates in (b1) and (b2) (for � = 0 and 1
2 , respectively) in (A.5), we obtain

Φ�

(
u2n(t), v2n(t)

) ≤ Φ�

(
u2n(0), v2n(0)

)+ C
∫ t

0

[
1 + ∥∥Δ�

nvn(s)
∥∥2
L2 +

∥∥∥Δ�+ 1
2

n un(s)
∥∥∥2
L2

]
ds

+
∫ t

0

(
Δ�

nv2n(s),Δ
�
nσn

(
un(s), vn(s)

)
dW(s)

)
.

(A.6)

Using the definition of Φ�, raising the power p in both sides of the inequality for some p > 2, taking the
supremum over time and then taking expectation and using the regularity results in (a), we get

E

[
sup
0≤s≤t

Φ
p
�

(
u2n(s), v2n(s)

)]

≤ C + 3p−1E
[
Φ

p
�

(
u2n(0), v2n(0)

)]+ 3p−1
∫ t

0
E

[
sup
0≤r≤s

Φ
p
�

(
u2n(r), v2n(r)

)]
dr

+ 3p−1E

[
sup
0≤s≤t

∣∣∣∣ ∫ s

0

(
Δ�

nvn(r),Δ
�
nσn

(
un(r), vn(r)

)
dW(r)

) ∣∣∣∣p]. (A.7)

Using the Burkholder–Davis–Gundy inequality and previous estimates for � = 0, 12 , and using the
regularity results in (a), we obtain

E

[
sup
0≤s≤t

∣∣∣∣ ∫ s

0

(
Δ�

nv2n(r),Δ
�
nσn

(
un(r), vn(r)

)
dW(r)

) ∣∣∣∣p]

≤ CE

[(∫ t

0
‖Δ�

nv2n(s)‖2L2

∥∥Δ�
nσn

(
un(s), vn(s)

) ∥∥2
L2 ds

)p/2]
≤ C + CE

[
sup
0≤s≤t

Φ
p
�

(
u2n(s), v2n(s)

) ]+ C
∫ t

0
E

[
sup
0≤s≤t

Φ
p
�

(
u2n(s), v2n(s)

) ]
ds. (A.8)

Using (A.8) in (A.7) and using the Gronwall lemma, we get � = 0, 12 and p ≥ 2,

E

[
sup
0≤s≤t

Φ
p
�

(
u2n(s), v2n(s)

) ] ≤ CE
[
Φ

p
�

(
u2n(0), v2n(0)

)]
eCT ≤ CE

[
Φ

p
�

(
u0, v0

)]
eCT . (A.9)

(b3) Dealing of cases � = 1, 32 . We assume (A3) for these two cases. If we treat σ2(v) and F2(v)
as general functions, then the chain rule and the product rule formula of calculus will lead us to higher
order derivative terms with higher moments in v in the right-hand side as compared to the left-hand
side; see (A.10) and (A.11) below for the similar estimates in v. Then, the Gronwall lemma may not be
applied. Thus, F ≡ F(u) and σ ≡ σ(u) are treated as general functions, but F ≡ F(v) and σ ≡ σ(v) are
assumed to be only linear in v in (A3), i.e., F(v) = BFv and σ(v) = Bσ v for some constants BF ,Bσ ∈ R.

Case-1: Let us consider the case σ ≡ σ1(u) and F̂ ≡ F1(u), which can be dealt as general functions.
Take � = 1 in (A.5). Then, using product formula, and chain rule for general functions and by (A4) for
m = 1, 2, we infer

‖Δnσn(un)‖2L2 =
n∑

j=1

λ2j

∣∣(σ(un), ρj
)∣∣2 ≤ ‖Δσ(un)‖2L2 ≤ C̃2

g ‖(∇un)
2‖2

L2 + Cg‖Δun‖2L2 . (A.10)
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48 X. FENG ET AL.

Now, using Ladyzhenskaya inequality and Poincaré inequality, we estimate the term∥∥(∇un)
2
∥∥2
L2 ≤ C‖∇un‖2L2‖Δun‖2L2 ≤ C‖∇un‖4L2‖Δun‖2L2 + C‖Δun‖2L2

≤ C‖∇un‖8L2 + C‖Δun‖4L2 + C‖∇Δun‖2L2 . (A.11)

Similar estimates will hold for ‖ΔnF̂n(un)‖2L2 . Now, we take � = 3
2 in (A.5). Using the chain rule, (A4)

for m = 1, 2, 3, we infer∥∥Δ3/2
n σn(un)

∥∥2
L2 ≤ ‖Δ3/2σ(un)‖2L2 ≤ C̄2

g ‖(∇un)
3‖2

L2 + C̃2
g ‖∇unΔun‖2L2 + Cg‖∇Δun‖2L2 . (A.12)

Using the Sobolev embeddings, we further estimate

‖(∇un)
3‖2

L2 ≤ C ‖∇un‖6L6 ≤ C ‖Δun‖6L2 , (A.13)

and

‖∇unΔun‖2L2 ≤ C ‖∇un‖2L4‖Δun‖2L4 ≤ C ‖∇un‖1/2L2 ‖Δun‖3/2L2 ‖Δun‖1/2L2 ‖∇Δun‖3/2L2

≤ C‖∇un‖2L2 + C‖Δun‖8L2 + C‖∇Δun‖3L2 . (A.14)

Similar estimates will hold for ‖Δ3/2
n F̂n(un)‖2L2 .

Case-2: Let σ ≡ σ2(v) and F̂ ≡ F2(v), such that (A5) holds. For � = 1, we have

‖Δnσn(vn)‖2L2 =
n∑

j=1

λ2j

∣∣(σ(vn), ρj
)∣∣2 ≤ ‖Δσ(vn)‖2L2 ≤ Cg‖Δvn‖2L2 , (A.15)

and for � = 3
2 we have ∥∥Δ3/2

n σn(vn)
∥∥2
L2 ≤ ‖Δ3/2σ(vn)‖2L2 ≤ Cg‖∇Δvn‖2L2 . (A.16)

Similar estimates will hold for ‖Δ3/2
n F̂n(vn)‖2L2 .

Using the estimates (A.10), (A.14), (A.15) and (A.16) in (A.5) for � = 1, 32 , and using the regularity
results proved so far for u1n and u2n and their time derivatives, we get (A.7) for � = 1, 32 . Finally, the
use of Burkholder–Davis–Gundy inequality yields the assertion for � = 1, 32 .

(2) Convergence: By step (1), for p ≥ 2

(u2n, v2n)n ⊂ Lp
(
Ω; L∞(0,T;H2�+1 × H2�)

) ∩ Lp
(
Ω; L2(0,T;H2�+1 × H2�)

)
is bounded for � = 0, 12 , 1,

3
2 . Here, we need to argue the convergence case by case. First, consider � = 0.

Then, there exist subsequences (u2n′)n′ and (v2n′)n′ , which converge weakly to u′
2 and v′

2, respectively.
Then, using the standard arguments (see Chow, 2015), it can be shown that (u′

2, v
′
2) is a weak solution

of (A.2). By the uniqueness of the weak solution, we have (u′
2, v

′
2) = (u, v). By Fatou’s lemma, passing

to the limit in (A.9) yields

E

[
sup
0≤s≤t

Φ
p
�

(
u2(s), v2(s)

) ] ≤ CE
[
Φ

p
�

(
u0, v0

)]
eCT , (A.17)

for � = 0. Now, consider � = 1
2 . Then, there exist subsequences (u2n′′)n′′ and (v2n′′)n′′ that converge

weakly to some ũ2 and ṽ2, respectively. By using the standard arguments and the uniqueness of the
solution of the system (A.2), we claim that (ũ2, ṽ2) = (∇u2,∇v2). Thus, by passing to the limit, (A.17)
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HIGHER ORDER TIME DISCRETIZATION FOR THE STOCHASTIC SEMILINEAR WAVE EQUATION 49

holds for � = 1/2. Similar arguments will yield the result for � = 1, 32 . Combining (A.17) with (A.3),
we get the assertions in Lemma 3.2. �

B. Proof of Hölder continuity in time

The proof of Lemma 3.3 uses the regularity results for the variational solution of (3.1)–(3.2) in
Lemma 3.2. We obtain a Hölder regularity in time for u, which is double the one for v: the reason
for it is the occurrence of the Itô integral in (3.2), but not in (3.1).

Proof of Lemma 3.3 Proof of (i). Let r, s ∈ [0,T], and fix p ∈ N. By Lemma 3.2 (i), we have v ∈
L2
(
Ω; L∞(0,T;L2)

)
. Therefore,

∫ r
s v(ξ) dξ is well-defined for a.e. x ∈ O and P-a.s. Thus, we can

write the weak formulation (3.1) in strong form P-a.s. as

u(r) − u(s) =
∫ r

s
v(ξ) dξ , for a.e. x ∈ O, for r, s ∈ [0,T].

Then, the Hölder inequality yields

‖u(r) − u(s)‖2p
L2 ≤

(∫ r

s
‖v(ξ)‖

L2 dξ

)2p

≤ |r − s|2p−1
∫ r

s
‖v(ξ)‖2p

L2 dξ .

We fix s, t ∈ [0,T], and take supremum w.r.t. r, and then take expectation, to get

E

[
sup
s≤r≤t

‖u(r) − u(s)‖2p
L2

]
≤ |t − s|2p−1 E

[∫ t

s
‖v(ξ)‖2p

L2 dξ

]
≤ |t − s|2p E

[
sup

0≤t≤T
‖v(t)‖2p

L2

]
.

Hence, (i) holds by applying (3.3) in Lemma 3.2. �
Proof of (ii). Let r, s ∈ [0,T], and fix p ∈ N. The first part follows as (i). By Lemma 3.2 (ii), we

have u ∈ L2
(
Ω; L∞(0,T;H2)

)
. Therefore,

∫ r
s Δu(ξ) dξ is well-defined for a.e. x ∈ O and P-a.s. By

Lemma 3.2 (i), we have (u, v) ∈ L2
(
Ω; L∞(0,T;H2 × H1)

)
. Therefore, by (A3),

∫ r
s F (u(ξ), v(ξ)) dξ

is well-defined for a.e. x ∈ O for s, r ∈ [0,T] and P-a.s. Similarly, by (A3) and Itô isometry,∫ r
s σ (u(ξ), v(ξ)) dW(ξ) is well-defined for a.e. x ∈ O for s, r ∈ [0,T] and P-a.s. Now, from the weak
formulation (3.2) and using the above conclusion, we may rewrite the equation in the strong form as
(see (Evans, 2010, Section 6.3, Remark (ii)))

v(r) − v(s) =
∫ r

s
Δu(ξ) dξ +

∫ r

s
F (u(ξ), v(ξ)) dξ +

∫ r

s
σ (u(ξ), v(ξ)) dW(ξ). (B.1)

By Hölder inequality, we estimate

‖v(r) − v(s)‖2
L2 ≤ C(r − s)

∫ r

s
‖Δu(ξ)‖2

L2 dξ + C(r − s)
∫ r

s
‖F (u(ξ), v(ξ)) ‖2

L2 dξ

+ C
∫
O

(∫ r

s
σ (u(ξ), v(ξ)) dW(ξ)

)2

dx. (B.2)
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We fix s, t ∈ [0,T], and take supremum w.r.t. r, then take expectation. Using (A3), Itô isometry, Lemma
3.2 (i) and (ii), we infer

E

[
sup
s≤r≤t

‖v(r)−v(s)‖2
L2

]
≤ CE

[
sup

0≤t≤T
‖Δu(t)‖2

L2

]
(t−s)2+ C(t−s)2+CE

[
sup

0≤t≤T
‖∇u(t)‖2

L2

]
(t−s)2

+ CE

[
sup

0≤t≤T
‖v(t)‖2

L2

]
(t − s)2+ CE

[∫ t

s

(
1 + ‖∇u(ξ)‖2

L2 + ‖v(ξ)‖2
L2

)]
≤ C(t − s). �

Proof of (iii). Let r, s ∈ [0,T], and fix p ∈ N. The first part follows as (i). In order to verify
the bound for E

[
sups≤r≤t ‖∇[v(r) − v(s)]‖2

L2

]
, consider the equation (B.1). By Lemma 3.2, we have

(u, v) ∈ L2p
(
Ω; L∞(0,T;H4 × H3)

)
. Thus, by (A3), (A4), we can take the gradients in (B.1), since it

is a closed operator on H1. Then, the terms are well-defined. Proceeding similarly as part (ii), we get

E

[
sup
s≤r≤t

‖∇[v(r)−v(s)]‖2
L2

]
≤CE

[∫ t

s
‖∇Δu(ξ)‖2

L2 dξ

]
(t−s)+CE

[∫ t

s

∥∥∇F (u(ξ), v(ξ))
∥∥2
L2 dξ

]
(t−s)

+ CE

[∫ t

s

∥∥∇σ (u(ξ), v(ξ))
∥∥2
L2 dξ

]
.

By (A4),
∥∥∇σ (u(ξ), v(ξ))

∥∥2
L2 ≤ C2

g

(
‖∇u(ξ)‖2

L2 + ‖∇v(ξ)‖2
L2

)
. Then, using Lemma 3.2 (i), (ii) and

(iii), we further estimate

≤ C(t − s)2 + CE

[∫ t

s

(
‖∇u(ξ)‖2

L2 + ‖∇v(ξ)‖2
L2

)]
≤ C(t − s).

Proof of (iv). Let r, s ∈ [0,T], and fix p ∈ N. The first part follows as (i). To verify the bound for
E
[
sups≤r≤t ‖Δ[v(r) − v(s)]‖2

L2

]
, consider (B.1). Argue similarly as part (ii) to apply the Laplacian to

(B.1) due to (A3), (A4), and proceed similarly, to obtain

E

[
sup
s≤r≤t

‖Δ[v(r)−v(s)]‖2
L2

]
≤ CE

[∫ t

s
‖Δ2u(ξ)‖2

L2 dξ

]
(t−s)+CE

[∫ t

s

∥∥ΔF (u(ξ), v(ξ))
∥∥2
L2 dξ

]
(t−s)

+ CE

[∫ t

s

∥∥Δσ (u(ξ), v(ξ))
∥∥2
L2 dξ

]
.

To bound the last two terms requires (A3) to, e.g., write σ (u(ξ), v(ξ)) = σ1 (u(ξ))+σ2 (v(ξ)), where σ2
is only linear in v, i.e., there exists a constant Bσ ∈ R such that σ2(v) = Bσ v. Then, Δσ (u(ξ), v(ξ)) =
Δσ1 (u(ξ)) and we can follow the steps of (A.10)–(A.14) to bound it. Similar techniques may be used
to deal with ‖ΔF (u(ξ), v(ξ)) ‖2

L2 . Lemma 3.2 then settles the assertion. Thus, the proof is complete. �
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