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In silico binding affinity prediction for
metabotropic glutamate receptors using both
endpoint free energy methods and a machine
learning-based scoring function†
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Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal

pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to

Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved

that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other

diseases. However, the application of structure-based drug design to identify small molecules to

regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure.

In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and

then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The

HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD)

simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4

from a set of screening compounds using HVS. The predicted active ligands based on binding affinities

can almost cover all the experiment-determined active ligands, with only one ligand missed. The

correlation between the measured and predicted binding affinities is significantly improved for the MM-

PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified

hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity

of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We

also recognized other 5 key residues that are critical for ligand potency. The difference of the binding

profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators.

Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine

learning algorithm on residue–ligand interaction profiles, in guiding drug lead optimization. The cross-

validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and

the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus,

machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of

actives/inactives are not big, a typical scenario in drug discovery projects.

Introduction

G-protein coupled receptor (GPCR) is a major therapeutic drug
target class in today’s drug discovery and development. Meta-
botropic glutamate receptors (mGluRs),1–4 which belong to the
Class C GPCRs, are widely distributed in both the central nervous
system and the periphery.5 The mGluRs have been considered
as predominant mediators of glutamatergic signaling in many
cancers, and the abnormal expression level of mGluRs contributes
to many diseases,6 including Parkinson’s disease, Alzheimer’s
disease and other brain disorder diseases.7,8 There are three
subgroups of mGluRs, termed Group I (mGluR1 and mGluR5),
Group II (mGluR2 and nGluR3), and Group III (mGluR4,
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mGluR6, mGluR7, andmGluR8).9 Among all themGluRs,5 mGluR4
is the most widely expressed in the periphery while both the
inhibition and the activation of this receptor can trigger thera-
peutic effects. For example, the activation of mGluR4 may reduce
glucagon production for patients with diabetes and reduce cell
proliferation in medulloblastoma conditions,9,10 whereas the inhi-
bition of mGluR4 receptors can decrease cell survival and invasive-
ness as well as improve response to other chemotherapies for
patients with colorectal carcinoma.11,12 Growing evidence has
shown that the regulation of mGluR4 is of great therapeutic
interest.1,4–6,13–15 However, our availability of the active ligands
targeting mGluR4 is relatively limited due to many factors includ-
ing the absence of a resolved mGluR4 protein structure. The
availability of experimental structures for mGLURs is summarized
in Table S1 (ESI†).

Computer-aided drug design (CADD) has exerted great
influence as technologies evolve. Among the widely used CADD
methods, some possess the advantages of high efficiency, such
as molecular docking, and some can predict protein–ligand
binding affinity with high accuracies, such as the free energy-
based methods in conjunction with molecular dynamics (MD)
simulation. Thus, employing different types of scoring func-
tions for virtual screening in a hierarchical way can greatly
balance computational efficiency and accuracy. Our hierarchi-
cal virtual screening (HVS) scheme consists of two types of
scoring functions. First of all, Glide docking,16 a popular
molecular docking program implemented in the Schrodinger
software package, is utilized to screen a large compound library
effectively. After the tree is pruned, the hits of docking screen-
ing are further prioritized by the MM-PB/GBSA (molecular
mechanics Poisson–Boltzmann/Generalized Born surface area)
filter.17,18 Prior to the MM-PB/GBSA free energy calculation, MD
simulation is usually performed to confirm the stability of
protein–ligand binding and to sample the conformations of a
ligand residing in the binding pocket of the drug target. The
MDsimulation step is necessarywhen a ligandbinding triggers a
significant conformational change. In this study, we conducted an
HVS study for mGluR4 using a compound library with various
measured activities. A homology modeling technique will be first
utilized to build the structural model of mGluR4 with a crystal
structure of mGluR8 as the template. Recently, the structure of
mGluR4 has been published for the first time with a resolution of
4.00 Å (PDB ID: 7E9H).19 The structure difference between the
published one and the one we built reports a root-mean-square-
deviation (RMSD) value of 2.03 Å (435 residues aligned and 3304
atoms compared). The small RMSDvalue indicates the reliability of
our homology modeling result. Besides the endpoint MM-PBSA-
WSASandMM-GBSA-WSASmethods,wewill explore thepossibility
of applying interaction profile scoring function (IPSF),20 recently
developed by us in a drug lead optimization procedure for a typical
drug target. IPSF has been successfully applied in a drug lead
identification procedure for multiple drug targets.20 The findings
of this work will not only facilitate the discovery of novel inhibitors
selectively targeting an mGLUR by providing the structures of
receptors and an adequate screening protocol, but also demon-
strate the potential of applying IPSF in drug lead optimization.

Method
Homology modeling

Both mGluR7 and mGluR8 in the group III mGluRs have
available crystal structures, which might be adopted as a
template for building a homology model of mGluR4. However,
so far in the ChEMBL database (https://www.ebi.ac.uk/chembl/,
accessed on 08/01/2020) there is only one ligand with the
reported Ki value o100 000 nM targeting mGluR7.21 On the
contrary, the mGLuR8 protein has a series of ligands with the Ki

values ranging from 61 nM to over 300 000 nM. Given the fact
that mGluR4 shares 78.98% secondary structure similarity with
mGluR8 (Fig. S1, ESI†), it is expected that a high-quality
homology model of mGluR4 can be generated using the
mGluR8 structure as a template. The protein sequence of
mGluR4 was downloaded from Uniprot (https://www.uniprot.
org) and sequence alignment between mGluR4 and mGluR8
was conducted using the PROMALS3D webserver (https://pro
data.swmed.edu/promals3d/promals3d.php).22,23 After a crystal
structure of mGluR8 (PDBID: 6BT5, resolution: 2.92 Å) was
downloaded from the Protein Data Bank (https://www.rcsb.org/),24

we used Modeller 9.20 to build the homology model of mGluR4
in this study.25,26 Among the 1000 homology models of mGluR4
generated by Modeller, both the discrete optimized protein
energy (DOPE) scores and the main chain root-mean-square
deviations (RMSDs) between the template and models were
taken into consideration to select a set of top models.27 Among
these top-ranked models, the homology model in which the
experimental binding free energies and Glide docking scores of
mGluR4 ligands had the best correlation was selected for
further studies.28,29

Molecular docking

Molecular docking was performed to preliminarily identify
high-affinity ligands from a compound library. The flexible-
ligand docking simulations were performed using the Glide
docking module in the Schrodinger software suite with the
standard precision (SP) version of the Glide docking scoring
function.28 The correlation between the predicted docking
scores and the experimental binding affinities for the ligands
being successfully docked to the binding pocket is utilized to
evaluate the performance of the scoring function in docking
screening. The experimental binding free energy DGbinding is
converted from reported Ki data according to the following
equation:

DGbinding = �RT lnKi (1)

where R is the gas constant (8.314 J mol�1 K�1) and T is the
room temperature with the value of 298.15 K. We first down-
loaded all the ligands for both mGlurR4 and mGluR8 from the
ChEMBL database and built the ligand libraries for each
receptor, respectively. The Ligprep module of the Schrodinger
software (Maestro version 11.2)30 was utilized for ligand pre-
paration: generating possible ligand states at target pH ranging
from 5.0 to 9.0, determining chirality from the 3D structure,
and writing out at most 32 states per ligand. Next, we used the
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Protein Preparation Wizard module to prepare protein recep-
tors with default settings including hydrogen adding, water and
co-crystallized solvents removing, and energy minimization for
hydrogen atoms of the receptors. The selected top-ranked
mGluR4 homology models and mGluR8 crystal structure were
prepared at this step. The refined mGlur4 models were aligned
to the refined mGluR8 model so that the binding pockets of
both receptors are well overlapped. For each receptor, the grid
file was generated using the Receptor Grid Generation module
with the center of the binding grid being located at the
geometric center of the co-crystallized binding ligand (Residue
Name E7P) of mGluR8 and the default values of other para-
meters being kept unchanged. There were no other constraints
and rotatable groups defined at this step. Flexible docking
simulation was performed with the Glide Docking module,
with the scaling factor of van der Waals radius and partial
charge cutoff value of 0.80 and 0.15, respectively, and intra-
molecular hydrogen bonds being rewarded. At most 10 poses
per ligand were written out. For each compound, the docking
pose with the best docking score was selected to enter the next
stage of HVS.

System setup for MD simulations

Because our flexible docking method only calculates the dock-
ing score of a ligand to a static receptor, we conducted MD
simulations to study the conformational change of the receptor
triggered by ligand binding. The collected MD snapshots were
then applied to calculate the protein–ligand binding free energy
using an endpoint method. MD simulation is a method to
mimic the dynamics of ligand binding under the sub-cellular
environment. For this reason, the prediction results of MD
simulation, which were reflected by the calculated binding free
energy values, are closer to the real state. During the MD
simulation process, the protein–ligand complexes are immersed
in the NaCl solvent and finally come to a dynamic balance
governed by the AMBER forcefields.

Each MD system consists of one copy of the mGluR4 or
mGluR8 receptor and one docked ligand within a rectangular
box with approximately 9000 TIP3P water molecules and about
50 Na+ and Cl� ions depending on the charge state of the
ligand.31 The whole system was neutralized. The starting con-
formation of the ligand in the corresponding receptor–ligand
complex was from the selected best docking pose. For the force
field parameters, the partial atomic charges of ligands were
derived using the RESP program to fit the HF/6-31G* electro-
static potentials generated using the Gaussian 16 software
package,32,33 and the other force field parameters for ligands
is the General Amber force field (GAFF) in AMBER 18.34,35 The
Antechamber module was utilized to generate residue topo-
logies of ligands.36 The AMBER FF14SB force field was
employed to model protein receptors.37

Molecular dynamics (MD) simulations

MD simulations were performed to produce isothermal–isobaric
ensembles by the PMEMD.mpi and PMEMD.cuda modules in the
AMBER 18 package.31 The pressure was set to 1 atm, regulated by

the Berendsen barostat.38 Five steps of energy minimization
were performed with the mainchain atoms of the receptor and
the bound ligand being restrained, using the harmonic
restraint force constraints decreased from 20 to 10, 5, 1, and
finally 0 kcal mol�1 Å�2 progressively. After minimizations, the
temperature of each system was heated from 50 K to 298.15 K
within 3 ns, and then kept at 298.15 K, which was regulated by
Langevin dynamics with a collision frequency of 5 ps�1,39 to
simulate the physiological environment. After undergoing the
equilibrium phase for 50 ns, each system kept running MD
simulation for another 150 ns for sampling. In total, a 203 ns
MD simulation was performed on each ligand with a time step
of 2 fs. The trajectories were saved every 10 ps for post-analysis,
including the calculations of MM-PB/GBSA binding free energy
and root-mean-square deviation (RMSD) fluctuations of ligands
and receptors.

MM-PB/GBSA binding free energy calculations

Molecular mechanics-Poisson Boltzmann/Generalized Born
surface area (MM-PB/GBSA) is a widely used endpoint method
in solvent binding free energy calculations.39–46 In this study,
the MM-PB/GBSA binding free energy of each ligand was
calculated with the following equations:

DGMM-PB/GBSA = DH � TDS = DEMM + DGsol � TDS (2)

DEMM = DEvdw + DEele + DEinter (3)

DGsol = DGsol
p + DGsol

np (4)

where DEvdw and DEele are the changes of van der Waals energy
and electrostatic energy, respectively. DEinter is the change of
internal energy (bond, angle, and dihedral energies) upon
ligand binding. The gas phase MM energy change, DEMM, is
the sum of the above three energy terms. DGsol, the solvation
free energy, is the sum of electrostatic solvation energy DGsol

p and
the non-electrostatic solvation energy DGsol

np. DGsol
p , the polar

component of solvation free energy, is calculated by solving the
Poisson Boltzmann or the Generalized Born equations. DGsol

np, the
nonpolar component of the solvation free energy is usually
estimated using the solvent-accessible surface area (SASA). TDS,
the change of entropy upon ligand binding, can be predicted by
normal mode analysis. However, in this work, we applied a
weighted solvent accessible surface (WSAS) model to estimate
the DS term.43 As such, this free energy method is called MM-PB/
GBSA-WSAS. The contribution from internal energies DEinter
cancels out in the ‘‘Single Trajectory’’ protocol,40,47 and the DEvdw,
DEele, and TDS are the same in MM-PBSA and MM-GBSA binding
free energy calculation.

DGMM-PB/GBSA = DEvdw + DEele + DGsol
p + DGsol

np � TDS (5)

450 snapshots were evenly collected from the MD sampling
phase of each system for the subsequent MM-PB/GBSA binding
free energy calculation.
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Machine learning (ML)-based IPSF scoring functions

To develop interaction profile (IP) based scoring functions, the
first step is to accurately calculate the ligand–residue inter-
action energies. We calculated the MM-GBSA free energies
between the ligand and all receptor residues for 4000 snapshots
collected in the sampling phase of MD simulations. An internal
program was applied to analyze the outputs of Sander decom-
position jobs and conduct statistical analysis on each compo-
nent of the MM-GBSA free energy. The regression learner
module in the MATLAB software (version R2020b) was used
for constructing regression models. The applied ML algorithms
include linear regression models, regression trees, support
vector machines (SVM), Gaussian process regression models,
and ensembles of trees. Five-fold validation and ten-fold valida-
tion were both considered with or without principal component
analysis (PCA) of IP data. For PCA, two modes were investi-
gated, one set the explained variance to be 95%, the other
explicitly specified the number of principal components, X,
where X ranged from 1 to 5.

Results and discussion
1 Molecular docking and MD simulation of mGluR8

The molecular docking result of mGlur8 showed a weak
correlation between the docking score and the experimental
DG. We first evaluated the practicability of a crystal structure of
mGluR8 in a VHS study, as this structure was applied by us to
construct the homology models of mGluR4. To uncover the
preliminary correlation between the experimental DG and pre-
dicted binding affinity using the Glide docking scoring function
for mGluR8 and its ligands, we built the ligand library of
mGlur8 consisting of 20 ligands, which include all available
compounds from the ChEMBL database with reported

experimental Ki values (Table S1, ESI†). The experimental DG
calculated from the reported Ki value and the docking score of
each ligand in the library docked to the mGlur8 receptor are
listed in Table 1. The correlation between docking scores
and experimental DG of ligands is shown in Fig. 1(A), with a
correlation coefficient R of 0.30. Interestingly, there were 2
ligands, CHEMBL39338 and CHEMBL40123, that achieved very
low docking scores, which mean a high predicted binding
affinity, and actually had rather large Ki values (low experi-
mental binding affinity). Both compounds possess benzene
rings in their chemical structures. After excluding these two
ligands, the R-value was increased to 0.45. This phenomenon
further showed the lower accuracy of the molecular docking
method in ligand–protein affinity prediction. Nevertheless,
molecular docking is an efficient screening method and is
suitable for screening large compound libraries at the early
stage of VHS. All the 20 ligands for mGluR8 in the library were
further evaluated using the following more accurate screening
filters.

MD simulations and MM-PB/GBSA-WSAS binding free
energy calculation for mGluR8 showed an elevated correlation
with the experimental DG. The RMSDs of the ligand and the
mGluR8 receptor during the simulation process are shown in
Fig. S2, S3 (ESI†), and the predicted binding free energy by
different PB or GB models of each ligand is listed in Table 1.
The 7 experimental top-ranked ligands (experimental Ki o
10 000 nM, DG o �6.8 kcal mol�1) were considered as active
ligands, whereas the rest of the ligands with Ki equal to or
larger than 10 000 nM were regarded as inactive ones. Six out of
the 7 active ligands were predicted to have very low binding
free energy (thus high binding affinity) during MM-PB/GBSA
binding free energy calculation under different PG/GB models
except for CHEMBL277475. The binding stability of a ligand
is evaluated using the time courses of root-mean-square

Table 1 The list of ligand experimental binding free energies, glide docking scores and MM-PB/GBSA-WSAS binding free energies (in kcal mol�1)
for ligands binding to mGlur8 receptor. The R-value reflects the correlation between experimental binding free energies and glide docking score or
MM-PB/GBSA-WSAS binding free energies for ligands

Molecule ID DGExperimental Docking score DGMM-GBSA1 DGMM-GBSA2 DGMM-GBSA5 DGMM-PBSA

CHEMBL33567 �9.81 �7.34 �81.95 �83.01 �100.89 �33.35
CHEMBL432038 �9.21 �5.51 �67.80 �60.50 �53.64 �16.02
CHEMBL277475 �9.08 �7.47 �24.88 �10.12 �2.17 11.55
CHEMBL275079 �7.85 �8.27 �67.10 �66.43 �82.01 �30.84
CHEMBL280563 �7.44 �6.77 �60.91 �61.12 �85.62 �27.01
CHEMBL88999 �6.99 �7.52 �61.79 �53.28 �54.21 �27.16
CHEMBL575060 �6.83 �6.36 �73.93 �69.41 �83.83 �34.36
CHEMBL229429 �6.80 �5.79 0.02 4.10 12.33 3.41
CHEMBL1672288 �6.80 �5.82 �9.21 0.05 16.72 14.73
CHEMBL8759 �6.69 �7.56 �60.66 �47.40 �35.63 �26.59
CHEMBL330097 �6.56 �7.63 �51.52 �31.79 5.74 �16.20
CHEMBL34453 �5.91 �7.53 �45.33 �18.53 5.58 �13.41
CHEMBL40086 �5.44 �7.24 �18.33 6.61 54.82 18.49
CHEMBL327783 �5.44 �4.96 �5.67 �0.10 13.38 2.62
CHEMBL66654 �5.44 �4.25 �14.76 �7.84 6.35 6.96
CHEMBL88553 �5.44 �4.54 7.04 8.49 10.14 9.40
CHEMBL88612 �5.44 �3.96 �9.21 �4.52 9.02 10.63
CHEMBL39338 �4.79 �7.18 �63.94 �45.67 �42.88 �11.98
CHEMBL40123 �4.79 �7.61 �27.52 �11.02 16.24 8.59
CHEMBL39221 �4.08 �5.83 53.16 68.96 96.42 102.86
R — 0.30 0.60 0.66 0.67 0.55
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deviations (RMSDs) in MD simulations for atom subsets includ-
ing mainchain atoms of the receptor, the ligand w/wo least-square
fittings. To calculate the RMSD of a ligand without least-square
fitting, we first conducted the least-square fitting for the main
chain atoms of the receptor, and the resulting translation and
rotation matrixes were applied to the ligand, and the RMSD was
calculated directly. As such, a No-Fit RMSDs measure not only the
conformational change of a ligand, but its translational and
rotational movement in the binding pocket. All the 6 active
ligands had all types of RMSDs smaller than 6 Å and came to a
stable state for at least half of the simulation time. The small
fluctuation of the RMSDs of the active ligands demonstrates the
stable binding of the ligands to their receptor protein. Among
those considered inactive ligands, some of them tended to have
extremely unstable binding conformations in the binding pocket,
thus caused very large RMSD fluctuation. In an extreme scenario,
some inactive ligands which include CHEMBL1672288 and

CHEMBL88553 even drifted out of the protein binding site,
leading to extremely large values of the ligand’s Non-Fit RMSDs.
All inactive ligands were predicted to have a higher binding free
energy, although some of them may seem to remain stable in the
ligand–protein binding complexes, with a lower RMSD fluctuation
of each subject, suggesting the MD simulation filter itself cannot
screen out all the inactive compounds in HVS.

The last filter in our HVS is endpoint binding free energy
calculations. We found that the predicted MM-PBSA-WSAS
binding free energies and experimental DG of the total 20
ligands showed an improved correlation with R of 0.55, com-
pared to R of 0.3 for the docking screening. Interestingly,
all three MM-GBSA-WSAS scoring functions achieved a better
correlation than MM-PBSA-WSAS for this system. The correlation
coefficients are 0.60, 0.66, and 0.67 for MM-GBSA1 (igb = 1),48

MM-GBSA2 (igb = 2),49 and MM-GBSA5 (igb = 5),49 respectively.
The correlation analysis graphs between the predicted versus the

Fig. 1 The correlation analysis between experimental ligand-binding affinities and docking scores for mGluR8 (A) and mGluR4 (B) receptors.

Fig. 2 The correlation between experimental and the predicted binding free energies for mGluR8 ligands using different endpoint models. (A) MM-
PBSA, (B) MM-GBSA1, (C) MM-GBSA2, and (D) MM-GBSA5. The entropy contribution (TDS) was estimated using the WSAS model.
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measured binding affinities for different PB/GBmodels are shown
in Fig. 2. The above results show that our HVS method has a high
practicability in identification of active ligands for the mGluR8
structure, thus laying a solid foundation for us to identify active
ligands of mGluR4 with a homology model constructed using the
mGluR8 structure as the template.

2 Homology modeling, molecular docking and MD
simulation for mGluR4

Evaluation of homology models of mGluR4 and selection of
ligands for the subsequent VHS study. We collected 76 ligands
from the CHEMBL website to build the library of mGluR4
ligands. Among the 1000 homology models generated for
mGluR4, three models with the best DOPE scores, three models
with the smallest RMSDs and three models with both top-
ranking DOPE and RMSE scores were selected as top-ranked
models. Among these nine models, the one leading to the best
correlation between predicted docking scores and experimental
DG of the mGluR4 ligand library (R = 0.15) was selected for the
subsequent study. For this selected mGluR4 model, we ranked
the ligands by their docking score from low to high, and

selected the first half which includes most of the real active
ligands for further MD simulation experiments. This kind
of strategy is commonly adopted in real scenarios of virtue
screening, i.e., selecting top-ranked ligands from docking for
further studies, either experimental measurement or virtual
screening by more accurate CCAD methods. The R value
between the measured binding affinities and docking scores
of the selected ligands is only 0.02 (Fig. 1(B)), suggesting more
accurate methods are needed to discriminate those ligands.

MD simulation results and MM-PB/GBSA-WSAS binding free
energy calculation results for mGluR4. The plots of the RMSD
time courses for every ligand binding to mGluR4 protein are
shown in Fig. S4 and S5 (ESI†). It is observed that all 29 ligands
have RMSD values lower than 6 Å, the cutoff (Fig. S4, ESI†),
while 8 ligands have some values of their No-Fit ligand RMSDs
larger than the cutoff (Fig. S5, ESI†). All ligands with reported Ki

values larger than 10 000 nM were considered as inactive
ligands. All the four experimental top-ranked ligands with Ki

values smaller than 10 000 nM (DG o �6.80 kcal mol�1,
considered as active ligands) have only mild RMSD fluctuations
and the predicted MM-PBSA binding free energies are very low,

Table 2 The list of ligand experimental binding free energies, glide docking scores, and MM-PB/GBSA binding free energies (in kcal mol�1) for ligands
binding to the mGlur4 homology model. The R-value reflects the correlation between experimental binding free energies and glide docking scores or
MM-PB/GBSA binding free energies for ligands

Molecule ID DGExperimental Docking score DGMM-GBSA1 DGMM-GBSA2 DGMM-GBSA5 DGMM-PBSA

CHEMBL33567 �8.61 �6.48 �79.18 �93.17 �123.59 �37.85
CHEMBL575060 �7.88 �5.51 �59.43 �48.42 �37.11 �21.43
CHEMBL277475 �7.19 �5.52 �37.47 �23.32 �14.03 �1.12
CHEMBL329236 �6.88 �9.32 �66.73 �58.31 �53.19 �23.57
CHEMBL229429 �6.80 �6.06 �12.75 �1.94 20.44 8.47
CHEMBL1672288 �6.80 �5.64 �12.83 �3.74 14.48 7.47
CHEMBL275079 �6.36 �6.99 �62.95 �52.81 �47.62 �26.09
CHEMBL432038 �6.33 �6.82 �71.52 �61.55 �50.90 �17.90
CHEMBL330097 �6.33 �6.64 �8.55 3.29 34.94 5.68
CHEMBL90501 �6.31 �7.36 �65.29 �47.04 �39.49 �24.53
CHEMBL39573 �5.85 �7.73 �71.77 �71.12 �84.86 �29.14
CHEMBL280563 �5.85 �6.88 �29.72 �24.40 �8.40 �1.02
CHEMBL230951 �5.81 �6.06 �69.14 �77.99 �104.51 �28.18
CHEMBL279838 �5.52 �5.88 �69.69 �40.08 1.77 �7.02
CHEMBL34453 �5.45 �8.18 �60.06 �38.31 �26.28 �23.39
CHEMBL8759 �5.44 �6.86 �65.55 �57.85 �64.99 �28.72
CHEMBL327783 �5.44 �5.74 �8.45 11.11 51.74 8.82
CHEMBL305406 �5.44 �5.96 �19.39 1.84 46.32 10.62
CHEMBL279956 �5.37 �7.66 �23.43 0.61 40.14 1.45
CHEMBL2115159 �4.83 �6.56 �30.64 �20.75 �1.27 4.34
CHEMBL2114110 �4.83 �7.24 �15.57 �12.35 �3.56 4.40
CHEMBL2114109 �4.83 �5.75 �24.48 �16.13 3.35 3.86
CHEMBL2114106 �4.83 �7.66 �24.08 �17.80 �2.94 6.59
CHEMBL40123 �4.79 �6.77 �68.10 �45.38 �16.34 �13.48
CHEMBL40086 �4.79 �8.25 �64.29 �27.04 6.60 �24.07
CHEMBL39338 �4.79 �7.43 �71.09 �66.05 �66.47 �9.04
CHEMBL389558 �4.79 �5.76 �23.13 �28.86 �43.70 5.56
CHEMBL88184 �4.08 �6.49 �38.34 �12.53 23.34 4.64
CHEMBL467234 �4.08 �5.58 �43.37 �15.33 15.91 8.34
CHEMBL448885 �4.08 �5.53 �29.90 �0.29 58.81 2.96
CHEMBL444718 �4.08 �5.56 �20.11 0.00 42.91 0.08
CHEMBL315032 �4.08 �7.21 �36.12 �9.80 32.89 �8.84
CHEMBL313938 �4.08 �6.60 �27.25 �19.07 5.32 �7.80
CHEMBL297150 �4.08 �7.39 �35.88 �6.17 34.77 �7.97
CHEMBL284895 �4.08 �7.72 �30.35 �5.79 34.82 5.41
CHEMBL2021372 �4.08 �5.71 �37.54 �14.91 41.30 �4.71
CHEMBL126608 �4.08 �6.69 �35.63 1.19 55.01 8.36
R — 0.02 0.31 0.50 0.57 0.45
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indicating the predicted high affinities between ligands and the
protein. The correlation between predicted MM-PBSA binding
free energies and experimental DG is higher than that of the
docking method, with the R-value equal to 0.45. Meanwhile, the
correlation between experimental DG and the calculation MM-
GBSA binding free energies have R-values of 0.31, 0.50, and
0.57 for MM-GBSA1, MM-GBSA2, and MM-GBSA5 models,
respectively. Therefore, all the endpoint MM-PB/GBSA-WSAS
models achieved a higher correlation between the experimental
and predicted binding affinities compared to the Glide docking
scoring function. The predicted binding affinities of ligands
using different models are listed in Table 2. It is indicated that
the most active ligands which have the lowest measured Ki all
have very low predicted binding free energies under different
MM-PB/GBSA-WSAS models. The performance of each model
revealed by correlation analysis is shown in Fig. 3.

During MM-PB/GBSA-WASA binding energy calculation, we
tried different energy scales such as setting the inner dielectric
constant up to 4 considering that the binding site can partially
be accessed by solvent and some polar residues exist.41

However, the correlations between predicted MM-PBSA-WSAS
binding free energies and experimental DG did not have
significant improvement compared to the result with the inner
dielectric constant equal to 1 for both mGluR8 and mGluR4
receptor–ligand systems. Consequently, we kept the default
dielectric constant during binding energy calculation.

3 The performance of IPSF-based scoring functions on
predicting binding affinities for mGluR8 and mGluR4 proteins

For one ligand binding to mGluR4 or mGluR8, we calculated
its IP descriptor using 4000 snapshots collected during the

sampling phase of MD simulations. We then applied the
‘‘Regression Learner’’ module implemented in Matlab to con-
struct regression models. The performances of all regression
models to predict ligand binding affinity to the receptors are
summarized in Table 3. For mGluR8, all the models which have
a reported cross validation R-square equal to or larger than 0.25
are listed in the table. There are a series of models for the
mGluR8 protein, including SVM, Gaussian process regression
and Linear regression models, appearing in both the five-fold
and ten-fold cross-validation categories, which might suggest
SVM and Gaussian process are good ML algorithms for this
problem. The best-performing model using five-fold cross-
validation is a squared exponential Gaussian process regression
model without conduction PCA (R-square = 0.63, RMSE =
1.2066 kcal mol�1), while the best-performing model using
ten-fold cross-validation is a cubic SVM model with PCA
(R-value = 0.63, RMSE = 1.2173 kcal mol�1), with PCA for
dimensional reduction (the explained variance is equal to or
larger than 95%). However, for the mGluR4 protein, there are
only three models with their R-squares equal to or larger than
0.2 combining all the models trained under five-fold and ten-fold
cross-validation categories, which are much fewer than the
models for mGluR8. Two models are medium Gaussian SVM
models and the best model is a boosted tress model (R-square =
0.51, RMSE = 1.0293 kcal mol�1). The reason that mGluR4
protein has fewer predictable models lies in the fact that
mGluR4 has more inactive ligands than active ones, leading
to the unbalanced training data. With more active ligands
identified for mGluR4, it is expected that the model perfor-
mance can be improved. Overall, for both mGluR8 and
mGluR4, the predicted RMSEs of cross-validations are smaller

Fig. 3 The correlation between experimental and the predicted binding free energies for mGluR4 ligands using different endpoint models. (A) MM-PBSA,
(B) MM-GBSA1, (C) MM-GBSA2, and (D) MM-GBSA5. The entropy contribution (TDS) was estimated using the WSAS model.
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than those by MM-PB/GBSA-WSAS, while the correlation coeffi-
cients are comparable.

4 The structure–activity relationship of the predicted active
ligands for both mGluR8 protein and mGluR4 protein

The predicted ligands with high binding affinities for both
mGluR8 and mGluR4 proteins are shown in Fig. 4. Because of
the high homology between mGluR8 and mGluR4 proteins, it is
not a surprise that some compounds (CHEMBL33567 and
CHEMBL575060) are predicted as active ligands for both pro-
tein targets. CHEMBL575060 is the glutamic acid, which can be
considered as the endogenous ligand of both mGluR8 and
mGluR4. Other ligands in Fig. 4 possess structures that are
analogous to the glutamic acid, which explains why those
compounds have a high predicted binding affinity. To under-
stand the structure–activity relationship (SAR) of these ligands,
we collected the representative conformations of these ligands
and showed them in Fig. 5. Three aggregations of ligand

functional groups in the binding pocket of mGluR8 and
mGluR4 proteins can be identified: carboxyl groups (–COO�)
and amino groups (–NH3

+) tend to overlap at the left and the
top of the binding pocket, and another negatively charged
center, represented by functional groups of –COO�, –SO3

�,
and –HPO3

�, shows up at the right side of the binding pocket
(Fig. 5).

CHEMBL33567, which not only serves as the native ligand of
the mGluR8 crystal structure but also is the ligand with the
lowest Ki value in our datasets for both mGluR8 and mGluR4.
Encouragingly, this compound was predicted as the most active
ligand for both receptors under each endpoint free energy model.
The reason for the outstanding potency of CHEMBL33567 com-
pared with other glutamic acid analogs can be speculated from
Fig. 6 and 7, which show the binding modes of CHEMBL33567
and CHEMBL575060 correspondingly using their representative
conformations collected during MD simulation. The representa-
tive conformation for a receptor–ligand complex has the lowest

Table 3 The list of machine-learning trained IPSF models to predict ligand binding activity to mGluR8 and mGluR4 proteins

mGluR8, 5-fold cross validation

PCA Model type Model detail RMSE R-value

Without PCA SVM Quadratic SVM 1.2722 0.57
Gaussian process regression Squared exponential GPR 1.2066 0.63

PCA (specify explained variance = 95) Linear regression Linear 1.2704 0.57
SVM Cubic SVM 1.3228 0.53

PCA (specify number of components = 1) Linear regression Linear 1.3163 0.53
SVM Linear SVM 1.3309 0.52

PCA (specify number of components = 2) Linear regression Robust linear 1.3476 0.50
Stepwise linear regression Stepwise linear 1.3444 0.50
SVM Medium Gaussian SVM 1.2974 0.55
Gaussian process regression Squared exponential GPR 1.3473 0.50
Gaussian process regression Rational quadratic GPR 1.3473 0.50

PCA (specify number of components = 3) SVM Quadratic SVM 1.2711 0.57
PCA (specify number of components = 4) Linear regression Linear 1.2463 0.60

mGluR8, 10-fold cross validation

PCA Model type Model detail RMSE R-value

Without PCA SVM Cubic SVM 1.3194 0.55
Gaussian process regression Squared exponential GPR 1.2814 0.58

PCA (specify explained variance = 95) SVM Cubic SVM 1.2173 0.63
PCA (specify number of components = 1) Linear regression Linear 1.3472 0.52

Linear regression Interactions linear 1.3472 0.52
Stepwise linear regression Stepwise linear 1.3472 0.52
SVM Linear SVM 1.3608 0.51
SVM Coarse Gaussian SVM 1.3585 0.51

PCA (specify number of components = 2) SVM Medium Gaussian SVM 1.3528 0.51
Gaussian process regression Rational quadratic GPR 1.315 0.55

PCA (specify number of components = 3) Linear regression Interactions linear 1.2766 0.58
PCA (specify number of components = 4) Linear regression Linear 1.3309 0.54
PCA (specify number of components = 5) SVM Cubic SVM 1.2427 0.62

mGluR4, 5-fold cross validation

PCA Model type Model detail RMSE R-value

Without PCA SVM Medium Gaussian SVM 1.0749 0.47

mGluR4, 10-fold cross validation

PCA Model type Model detail RMSE R-value

Without PCA SVM Medium Gaussian SVM 1.066 0.45
Ensemble Boosted trees 1.0293 0.51
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RMSD value of the mainchain atom coordinate compared to the
average coordinate of the mainchain atom during the sampling
phase. All functional groups within the three regions shown in
Fig. 5 can form H-bonds with surrounding residues. However, at
the right side of the binding pocket, the negatively charged
functional group of CHEMBL33567, –HPO3

� has more polar
interactions with surrounding residues than that of CHEMBL
575060, –COO�. Overall, there are more H-bonds for mGluR8
than mGluR4 for both ligands, consistent with the observation
that both ligands bind more tightly to mGluR8 than to mGluR4.
We also observed that CHEMBL33567 forms more H-bonds with
the surrounding residues than CHEMBL575060, also consistent
with the experimental finding that CHEMBL33567 is more potent
than CHEMBL575060.

Besides, we have also compared our findings with the
literature.50 According to the research investigating the struc-
ture–activity relationship of ligands serving as agonists and
antagonists of mGluRs, the agonists and antagonists identified
during in vitro tests for mGluR4 all have a structure pattern in
accordance with our findings. To summarize their structural
feature, favorable ligands are all amino acid analogs. The pseudo
side-chains consist of Ca (alpha carbon), Cb (beta carbon), Cg
(gamma carbon), and the D (delta) position either has a –COO� or

a –HPO3
�. As a result, the functional groups at the top, right and

left side of the ligand binding pocket tend to interact with
surrounding residues. For example, at the left side of the binding
pocket, the –COO� of an amino acid analog can form H-bonds
with SER178 (mGluR8)/SER157 (mGluR4). At the top part of the
binding pocket, ALA177 (mGluR8)/ALA180 (mGluR4) can form an
H-bond with the –NH3

+ functional group of the amino acid
analog. The ASP309 (mGluR8)/ASP312 (mGluR4) at the right side
of the binding pocket can also have H-bond interactions with the
functional group at the D (delta) position of the ligand pseudo
side-chain.

Fig. 4 Predicted active ligands with top-ranking binding affinities for receptor mGluR8 and receptor mGluR4.

Fig. 5 Functional groups of advantageous ligands from mGluR8 (A) and
mGluR4 (B). The binding poses of each ligand are from representative
conformations of the collected MD snapshots.

Fig. 6 Interaction between CHEMBL33567 and two receptors. The polar
interaction between ligand and binding-pocket residues is shown in yellow
dashed lines and ligand atoms are colored by elements. Residues within
5 Å to the ligands are shown in lines. The red color of residues represents
strong residue–ligand interaction, grey color represents medium residue–
ligand interaction and cyan represents low residue–ligand interaction.
(A) Overall view of the ligand–receptor complex of CHEMBL33567 and
mGluR8. (B) Overall view of the ligand–receptor complex of CHEMBL
33567 and mGluR4. (C) Detailed interaction between CHEMBL33567 and
binding-site residues of mGluR8. (D) Detailed interaction between
CHEMBL33567 and binding-site residues of mGluR4.
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Though the above preliminary speculation is useful in novel
drug development, it is still unclear how to develop highly
potent, and selective modulators for mGluR8 or mGluR4. To
further understand the mechanisms which govern the binding
potency and selectivity between the two receptors, we con-
ducted binding free energy decomposition using MM-GBSA2.
Although the correlation between the predicted binding free
energies from MM-GBSA5 and the experiment reported Ki

values shows the best result under different prediction models,
the calculated energies also pose the highest standard errors
(SD) (Tables S2–S9, ESI†), and that’s the reason we chose the
MM-GBSA2 model, the runner-up scoring function in correla-
tion analysis, to conduct the energy decomposition analysis.

According to the MM-PB/GBSA binding free energy calcula-
tion results, we selected 7 ligands which are experimentally
reported the most active as well as predicted with a high
binding affinity for both mGluR8 and mGluR4 for analyzing
hotspot residues. For each receptor–ligand complex, 4000 snap-
shots were collected from the sampling phase during MD
simulation to conduct the MM/GBSA free energy decomposi-
tion calculation. The mean values of the interaction energy
between receptors and ligands were calculated from the snap-
shots and hotspot residues were identified with the cutoff value
of �0.3 kcal mol�1. All the hotspot residues that have ligand–
residue interaction energy no larger than �0.3 kcal mol�1 are
shown in Fig. 8 and 9 for mGluR8 protein and mGluR4 protein,
respectively.

From the heatmaps for both receptors, the key residues of
mGluR8 and mGluR4 share a high similarity as expected.
ARG75 (mGluR8)/ARG78 (mGluR4), SER156 (mGluR8)/SER159

(mGluR4), ASP309 (mGluR8)/ASP312 (mGluR4), LYS314 (mGluR8)/
LYS317 (mGLuR4), and LYS401 (mGluR8)/LYS405 (mGluR4) show
very strong interaction energies with each ligand, reflected by a
darker color. These shared hotspot residues can explain why
mGluR8 and mGluR4 proteins share many binding ligands.
Besides, among the hotspot residues not recognized by both
receptors, ALA154 and ALA155 of mGluR8, and SER157 and
GLY158 of mGluR4 show outstanding interactions with ligands,
demonstrating that these residues may be the most impor-
tant hotspot residues responsible for the selectivity between
mGluR8 and mGluR4. Therefore, the binding free energy
decomposition analysis can quantitively identify hotspot resi-
dues that contribute most to the potency and selectivity of
ligand binding. The binding profile resulting from MM-GBSA
decomposition analysis can guide us to develop potent and
selective ligands targeting mGluR4 or mGluR8.

5 The application of homology modeling-docking-MD
simulation-binding free energy prediction protocol and
machine learning prediction

In this study, we applied a three-step HVS method to screen the
active ligand for mGluR4, which does not have a resolved
crystal structure, and which has only a limited number of
ligands with experimental binding affinities. By comparing
the prediction result and the reported experimental DG value
of ligands ranging from a high binding affinity to low, along
with the correlation level reflected by the R-value, we demon-
strated that flexible docking and MD simulation followed by
MM-PB/GBSA-WSAS analysis can both predict the binding
affinity for a ligand, with MD simulation and subsequent
binding free energy prediction and decomposition coming up
with more precise prediction results. The experimentally
reported active ligands can be successfully identified by this
hierarchical screening protocol, which demonstrates the prac-
ticability of applying HVS in searching for potential hits or
leads of mGluR4 through a larger-scale screening study. We are
in the process of conducting HVS using druglike screening
libraries for the mGluR4 target and the result will be reported
elsewhere.

For the three-step HVS method, Glide docking can be
performed first to make the preliminary selection of active
ligands from an extremely large library which contains even
millions of small molecules within days and followed by MD
simulation for more accurate calculations of binding free
energies for the top hits. The final yielded active ligands with
predicted high affinities should be very promising to be devel-
oped into drug leads and candidates. Besides, although this
study is aimed at developing a virtual screening method for
ligands targeting mGluR4, this method may also be applied to
study another pair of Group III mGluRs, mGluR6 and mGluR7,
for which there is a high homology between them and mGluR6
has no experimental structure available while mGluR7 has
two PDB entries (Table S1, ESI†). Furthermore, this modeling
protocol, which consists of homology modeling, fast docking
simulations, MD simulations for testing ligand–protein
binding stability, and endpoint free energy calculations using

Fig. 7 Interaction between CHEMBL575060 and two receptors. The polar
interaction between ligand and binding-pocket residues is shown in yellow
dashed lines and ligand atoms are colored by elements. Residues
within 5 Å to the ligands are shown in lines. The red color of residues
represents strong residue–ligand interactions, the grey color represents
medium residue–ligand interaction and cyan represents low residue–
ligand interaction. (A) Overall view of the ligand–receptor complex of
CHEMBL575060 and mGluR8. (B) Overall view of the ligand–receptor
complex of CHEMBL575060 and mGluR4. (C) Detailed interaction
between ligand and binding-site residues of mGluR8. (D) Detailed inter-
action between ligand and binding-site residues of mGluR4.
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MM-PB/GBSA-WSAS can be applied to other proteins for which
no resolved crystal structures are available.

Molecular docking is an efficient method which can be
much quicker but less accurate than MD to predict possible
binding poses of a ligand binding to the receptor with docking
scores to measure its binding affinity. Unlike MD simulations
which study the dynamics of ligand-target interaction in an
aqueous solution which mimics the physiological condition of
the human body, docking uses only static conformations to
predict a ligand’s binding affinity to the protein. Literature
studies have shown that docking methods can successfully
predict near-native binding poses, but the binding affinities
predicted by the corresponding docking scores are much less
satisfactory.51–53 However, with the docking poses generated
from Glide docking as the starting conformations of the MD

processes, the unfavorable ligands will be filtered out through
post-MD trajectory analysis and binding free energy calculation.
The final simulation result from MD is thus reliable.

IPSF is an advanced technique which can address the
heterogeneity issue of protein–ligand binding using a machine
learning algorithm. However, its limitation lies in that a large
number of active and inactive ligands with measured binding
affinities must be known to construct the drug target-specific
IPSF. This requirement may limit the usage of IPSF for a new
drug target which typically does not have a large number of
active and inactive ligands. In this work, we have demonstrated
that for a typical drug target like mGluR4 or mGluR8 which has
tens of ligands with relatively diverse binding affinities, high-
quality target-specific IPSF can be constructed to identify new
binders through virtual screenings.

Fig. 8 The heatmap of mGluR8 protein. The Y-axis labels are the names and ID numbers of key residues. The X-axis labels are seven selected ligands
and the predicted MM-GBSA2 binding affinities are consistent with experimental results and with low Ki values for mGluR8. The bar on the right is a color
map measuring the strength of a ligand–residue interaction.
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After validating IPSF scoring functions in drug lead identifi-
cation for six drug targets,20 we evaluated the potential application
of IPSF in a typical drug lead optimization project as mGluR4 or
mGluR8. Unlike the endpoint methods, the model performance
of IPSF models was evaluated using cross-validation RMSE and
correlation coefficient R. As expected, the RMSE values, around
1.0 to 1.4 kcal mol�1, are much smaller than those predicted
by the endpoint methods. As to the correlation coefficient R, the
IPSF scoring functions achieved comparable values achieved by
the best endpoint method for both mGluRs. Considering the

performance of IPSF is not sensitive to the sampling methods,20

we expect machine learning-based IPSF scoring function can
efficiently guide lead optimization without the need of doing long
MD simulations to construct a conformation ensemble.

Conclusion

In this study, we tested the practicability of an HVS method on
drug lead identification for mGluR8 and mGluR4 proteins, and

Fig. 9 The heatmap of mGluR4 protein. The Y-axis labels are the names and numbers of key residues. The X-axis labels are seven selected ligands which
the predicted MMGBSA2 binding affinities are consistent with experimental results and with low Ki values for mGluR4. The bar on the right is a color map
measuring the strength of a ligand–residue interaction.
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the latter does not have a resolved crystal structure so far. The
docking and MD simulation screening results of mGluR8
demonstrated the applicability of an HVS method for screening
active ligands with regard to a resolved crystal structure of this
protein receptor. The application result of this HVS method on
the homology model of mGluR4 further demonstrated the
practicability of this screening protocol and at the same time
validated the homology model we built for mGluR4 using
mGluR8 as the template. What’s more, with the preliminary
screening by molecular docking which can be finished within
days and more precise screening by MD simulation, we suc-
cessfully balanced the computational efficiency and accuracy,
which is promising to help improve the success rate and reduce
the cost during new drug development. With the initially
predicted docking scores for all the ligands in the library and
the further prediction of binding free energies for a series of
ligands with top-ranked docking scores, active ligands with
high binding affinities are prone to be screened out. As such,
this VHS protocol which well balances the screening efficiency
and accuracy, has high practicability and broad applicability by
covering drug targets without solved structures. Moreover, the
MM-GBSA decomposition analysis provided guidance on the
development of potent and selective ligands targeting a specific
receptor, as well as serving as inputs of machine learning to
construct IPSF scoring functions to guide drug lead optimiza-
tion for mGluR8 and mGluR4 drug targets.
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