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Abstract
Modern hydrologic models have extraordinary capabilities for representing complex process in surface-

subsurface systems. These capabilities have revolutionized the way we conceptualize flow systems, but how
to represent uncertainty in simulated flow systems is not as well developed. Currently, characterizing model
uncertainty can be computationally expensive, in part, because the techniques are appended to the numerical
methods rather than seamlessly integrated. The next generation of computers, however, presents opportunities to
reformulate the modeling problem so that the uncertainty components are handled more directly within the flow
system simulation. Misconceptions about quantum computing abound and they will not be a “silver bullet” for
solving all complex problems, but they might be leveraged for certain kinds of highly uncertain problems, such
as groundwater (GW). The point of this issue paper is that the GW community could try to revise the foundations
of our models so that the governing equations being solved are tailored specifically for quantum computers. The
goal moving forward should not just be to accelerate the models we have, but also to address their deficiencies.
Embedding uncertainty into the models by evolving distribution functions will make predictive GW modeling
more complicated, but doing so places the problem into a complexity class that is highly efficient on quantum
computing hardware. Next generation GW models could put uncertainty into the problem at the very beginning
of a simulation and leave it there throughout, providing a completely new way of simulating subsurface flows.

Introduction
Models of groundwater (GW) flow processes have

continuously evolved in their efficiency and complexity
over the last several decades, and the greater GW
community now has at our disposal a set of tools
that can represent, in some way, nearly every kind
of physical interaction important for water resources
applications. Advances in parallelization (multithreading
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and multiprocessing) have also drastically increased the
speed of the solvers so these complex, physics-based
models (e.g., Kollet et al. 2010; Rasmussen et al. 2011;
Clark et al. 2015) are no longer mere speculation. The
tradeoff is that more cells and variables means more
parameters and this is where GW has some issues
to deal with. A classic example is that the hydraulic
conductivity, K [L/T ], field cannot be known with much
confidence away from direct measurements in boreholes,
and the same is valid for any other physical properties
or parameters. Another example is recharge, which can
vary heavily over short distances. Recharge into an aquifer
reflects a balance between precipitation, infiltration,
runoff, evaporation, and transpiration; all depend heavily
on soil and vegetation types and all can be quite difficult
to measure accurately. GW modeling is plagued by
uncertainty yet it is not common to see articles or model
reports that formally present the uncertainty associated
with a simulation and/or prediction (Tartakovsky 2013);
there may be good reason for this in some cases, but it
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is an issue. Some publications present the K field (or any
other parameter field) as if it is a deterministic quantity,
uniquely resulting from inverse modeling, adding only
brief notes, if any, to suggest that it might be a non-
unique field. Calibration and sensitivity analyses can
be conflated with uncertainty quantification (UQ) when
reporting results to stakeholders. For example, perturbing
inputs by plus or minus some amount shows sensitivity
not uncertainty, but the layperson is unlikely to recognize
the distinction. Hydrologic simulations are becoming
increasingly important for large-scale water resources
planning and it is important to ensure that their limitations
are accurately reported. As many authors have stated
before, the balance between realism, runtime, parsimony,
and uncertainty in models remains an important topic
for debate, but after several decades devoted primarily
to making more realistic (i.e., complex) and faster
models, it is worth assessing how we can do better
regarding uncertainty modeling and reporting in the future
(e.g., Hunt et al. 2007; Hunt 2017; White 2017). Next
generation GW models are going to play important roles
in future water resources management, and the task of
building new kinds of models that can do a better job of
including uncertainties should at least be equal to building
ones that run faster. Interestingly, these two outcomes
might not be mutually exclusive.

The objective of this article is to ponder briefly when
assessing uncertainty is important in increasingly com-
plex GW simulations, and then explore how we might
do a little better with new kinds of models that could
potentially do more than just run faster. The structure
of this issue paper loosely follows that of a talk given
at the 2022 Modflow and More conference titled “An
uncertain future for hydrogeological modeling” but com-
ments, feedback, and lesson learned since have added new
dimensions to the message of that presentation. Most of
the discussion will be general and citations of example
models (be they superlative or nefarious) are kept to a
minimum to avoid any perception of this being a criti-
cal review or of it being an attack on any subset of the
literature; this article is nothing more than the author’s
perspective on how GW modelers might best embrace a
potential revolution in computational technology. There
is no one answer to the question of what future GW
models will look like, but the argument made herein is
that if the fundamentals of the computers are going to
be changing (i.e., quantum computing) then the mathe-
matical approaches to the GW simulation problem should
change too.

Confidence in Groundwater Simulations
Uncertainty is a tricky issue to address. Many areas

of the physical sciences require reporting of confidence
bounds on all results, but GW is unique in that what we
might consider “abundant data” is still extremely sparse in
all other disciplines. Given the vastness of the subsurface
and its inaccessibility, is it really that important to quantify
uncertainty in all GW models in the first place? If one

inspects the literature, it becomes clear that there are
far fewer examples of GW models where uncertainty is
reported than those that do not, so it would seem that the
answer is no, but it is worth at least a little pondering as
to why. UQ is an entire discipline (see Tartakovsky 2013)
and uncertainty modeling has been given a great deal
of attention in many of the industry standard textbooks
on GW modeling (e.g., Domenico and Schwartz 1998;
Anderson et al. 2015; Fetter 2018). The approaches range
from stochastic perturbation methods (e.g., Rubin 2003;
Fiori et al. 2015), Monte-Carlo simulations (e.g., Ballio
and Guadagnini 2004; Engdahl et al. 2010), to more recent
techniques like the method of distributions (Boso and
Tartakovsky 2016) and integrated ensemble smoothing
(White 2018; White et al. 2020). The reason UQ is
not more widespread in GW modeling is most likely
that all of these methods require significantly more
effort and resources than just running or calibrating a
GW model. This effort might not be possible given
time and budget constraints of a client, or certain
application/design scenarios might have sufficient margins
built in that the likely range of uncertainty would not
be expected to change a decision (see Hunt 2017;
Barnett et al. 2020). Other cases where UQ is commonly
omitted are numerical hypothesis testing studies. These
kinds of studies use models to explore system responses,
often focusing on relative change due to a perturbation
(Engdahl and Maxwell 2015; Wilusz et al. 2017; Visser
et al. 2019), or the investigation of feedbacks (Condon
and Maxwell 2014; Kollet et al. 2017; Maina and
Siirila-Woodburn 2020). It is not that these examples
do not have uncertainty, or that given enough time and
resources it should not be quantified, rather that the
circumstances/conclusions are not expected to change if
that uncertainty were to be explored. The catch is that,
obviously, this expectation cannot be confirmed for sure
without the uncertainty analysis. It would be worthwhile
for some new studies to explore this in more detail to
provide stronger guidance, but a lack of UQ in applied
problems it is generally not considered to be a serious
concern.

There is at least one broad class of studies where
better UQ could be hugely beneficial in water resources
modeling: predictive models. Every calibrated model will
contain uncertainty and this will be propagated into
predictions, compounding with whatever uncertainty there
is regarding model conditions during the prediction phase.
Some applications within this arena where uncertainty can
make an enormous difference include transport models in
systems with preferential flow paths, predictions in the
face of unknown climate conditions, unknown timing and
severity of abrupt changes like wildfires, and countless
others involving a wide range of things we simply cannot
know for sure or place reasonable margins on “acceptable”
responses. The models currently used to make predictions
in many of these cases are either overly simplified or
excessively parameterized, depending quite subjectively
on who is criticizing the work. Annoyingly, both positions
are often valid assessments. For example, travel times
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in systems with highly preferential flow can never be
reasonably approximated by a homogenized, effective
model, and UQ cannot be performed on models will
billions of degrees of freedom that take weeks to run one
realization on a supercomputer. Both of these examples
are systems that involve high degrees of uncertainty where
that uncertainty significantly impact predictions, plans,
lives, etc. and it is within these areas where improving
the connections between uncertainty and forecasts could
have the biggest impact given the inevitable time and
resource constraints. Progress has been made in this area
(e.g., White et al. 2020), but it continues to be difficult
to see how we might breakthrough and achieve drastic
improvements in predictive UQ given the limitations of
current modeling techniques and computers.

What Are the Next Generation Computers?
Next generation means completely different and right

now that means quantum. Quantum computers (QCPs) are
difficult to define precisely but the unifying feature is that
they manipulate “digital” states in ways that follow the
rules of quantum mechanical systems, as first proposed
by Benioff (1980). This is contrasted to classical binary
digital computers (BDCs) that strictly follow rules that
can be considered to be based on logic (Deutsch 1985).
Conceptually, a BDC is a yes/no engine whereas a QCP
can say maybe, similar to the way a person might not
always choose to do what appears to be the most logical
thing (obviously this is not an exact analogy). Information
in a BDC is stored as binary digits, or bits, that may
only exist in a state of 1 or 0, meaning that a single
bit represents one state. Any information can be built up
and stored in this way, from numeric values to pictures,
within a certain level of precision dictated by the number
of bits used to represent that information. The quantum
version of this is a quantum bit, termed a qubit, and it
is helpful to consider the two, classical, binary outcomes
as each representing one of two orthogonal basis vectors
(in bra-ket notation): | 0〉 = [1 0]T and | 1〉 = [0 1]T ,
where T denotes a transpose to create column vectors.
A qubit is made from a linear combination of these basis
vectors. Denoting the state of the qubit as ψ , the vector
representation of this is:

| ψ〉 = a | 0〉 + b | 1〉 (1)

where a and b are complex numbers, so | ψ〉 is best
considered as a sort of mixed state. According to the
Born rule (Born 1926), the complex coefficients represent
the probability of obtaining each state so |a|2 + |b|2 = 1
and, for example, |a|2 is the probability of being found in
the state | 0〉. But strangely, unless |a|2 = 1 or |b|2 = 1,
when we observe the state of | ψ〉 it can only be either
| 0〉 or | 1〉. Thus, there is an indeterminate nature to
the system’s information. If the system is re-prepared in
the same state and measured a large number of times
the probabilities become apparent, but any individual
measurement only results in one of the possible states.

This is called quantum superposition which is a stark
contrast to classical superposition where the outcome of
the measurement would be intermediate between | 0〉 and
| 1〉 forming a weighted average of the vectors instead.

A QCP encodes information using a collection of
qubits, called a register, that represents 2n possible states,
where n is the number of qubits. Mathematically, the
QCP manipulates this information using the same kinds
of linear operators used in quantum mechanics (analogous
to matrices of square dimension 2n in order to operate
on n qubits), so the QCP can be considered a “reduced
basis, physical analog” to a quantum mechanical system.
QCP-based manipulations have some curious require-
ments such as the fact measuring a state causes it to
assume a determinate state, destroying the quantum part
of the state, and that all operators must be reversible. For
example, x2 is not a reversible operation since its inverse,√

x, has a two possibilities. Because of these and other
properties, QCPs are suited to an entirely different class
of computational complexity problems than most of the
algorithms used today in GW flow and transport problems.
A key difference is that the QCP is inherently random
because of the indeterminate nature of the qubits. This
has implications for how deterministic problems can be
solved and that the efficiency of something implemented
on QCP hardware depends on the computational com-
plexity of the task. For example, many algorithms exist
for solving a linear system of equations using BDCs and
the same algorithm (e.g., Gaussian elimination, etc . . . )
translated onto QCP is seldom (if ever) efficient. How-
ever, sometimes a randomized algorithm can be developed
and in these cases a QCP can offer significant speedup
for some problems. Additional notes on QCPs that are
intended for a broad scientific audience can be found in
Giani and Goff-Eldredge (2022).

Avoiding a lengthy, jargon riddled discussion, the
important summary points are that very little about how a
QCP works is the same as how our current BDCs work,
and that only specific complexity classes of problems
are suited to QCP implementation (e.g., non-deterministic
polynomial, etc . . . ). The architectural, conceptual, and
operational differences from contemporary tools are
unfamiliar to most of us, but this is always the case with
new technologies. Next generation GW models should
not just mimic our current models but should instead
address frustrations or deficiencies while building new
capabilities, like better UQ for predictions. The fact that a
QCP is inherently uncertain could be immensely powerful
for embedding uncertainty into GW simulations, but, to
date, no recipes for doing so have been proposed.

Toward Next Generation GW Models
The main issues under consideration here are (1)

what are next generation GW models going to look like
(supposing that the next generation computers are indeed
quantum), and (2) can we develop GW models that do
a better job of dealing with predictive uncertainty. There
are already several possible avenues by which QCPs and
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QM concepts might find their way into GW workflows.
Each of these involves some conceptual and/or technical
challenges, but these seem surmountable given a bit of
focused research. This section outlines three options for
bringing GW models to QCP hardware each with a
slightly different goal: option 1 is solving the same linear
(or linearized) systems as done today, option 2 is solving
a different kind of classical mechanical system that could
represent GW flow but in a way conducive to QCPs, and
option 3 is creating an “effective quantum model” that
uses properties of QM to create new ways of representing
complex process in aquifers. These sections by no means
comprise an exhaustive list of the possibilities and are
only meant as brief overviews of what currently seem
like some promising options for GW modeling on QCPs
to stimulate further conversation, discussion, and research.

Solving Linear Systems
Suppose for a moment that the goal is just to start

running some relatively simple GW models, like those
in use today (e.g., confined, Darcy flow), on quantum
hardware. Conceptually and mathematically this problem
is well defined and it is the solution of a (potentially)
large and sparse linear system. An algorithm has already
been developed by Harrow et al. (2009) for solving linear
systems on QCP systems that requires time proportionate
to log(N)s2κ2/ε, where N is the size of the linear system,
s is the sparsity, κ is the condition number, and ε is the
numerical tolerance. Interestingly, the number of qubits
required, m, is generally m = log2N (Hidary 2019), so a
1024 × 1024 system can, theoretically, be solved with 20
qubits, and a 3d domain with 1024 × 1024 × 1024 cells
should require only 30 qubits. Using conjugate gradients
to solve the same problem requires time proportionate
to Nsκ log

(
ε−1) so the HHL algorithm (HHL is an

abbreviation of the authors names) can exhibit speedup
relative to current methods under many circumstances,
but the speedup is not guaranteed and can rapidly
breakdown (Aaronson 2015). The HHL algorithm has
been improved and generalized several times (e.g., Childs
et al. 2017; Wossnig et al. 2018) but even 20 fault tolerant
(error correcting) qubits are out of reach for current
gate-based QCP hardware. However, as the technology
improves, these techniques will almost certainly become
available. Another potential path forward related to the
HHL algorithm can be found in Berry (2014) where a
method for solving general linear differential equations is
presented, but the current limitation is again hardware. A
crucial distinction is that all of these techniques would
allow solution of the same equations currently in use,
using an inherently random QCP to solve deterministic
problems (to be fair, “randomized” solutions can be more
efficient sometimes, but there is ultimately one solution).
It is possible that the potential speedup might accelerate
solutions of GW flow systems sufficiently that ensemble-
based UQ could be less cost prohibitive, but it would
not directly incorporate uncertainty into the governing
equations. The HHL algorithm could be a useful stepping
stone but it is not clear that this path would provide the

kind of speedup that would be necessary to allow robust,
ensemble-based UQ to become standard.

Koopman-von Neumann Dynamics
The most efficient QCP implementation for GW

models on QCP hardware is likely a model that behaves
more like a QM system, yet is not quite quantum. The
argument being that, since a QCP obeys QM rules, the
more “quantum-like” the quantities being simulated are
the less overhead they will incur on a QCP. The result
of this should be outstanding speedup if they are in the
right class of computational complexity. One way this
might be achieved with relatively little discomfort is the
connection between the Schrödinger equation and the less
familiar Koopman-Von Neumann equation. The latter was
developed by Koopman (1931) and von Neumann (1932a,
1932b) in an effort to use the same mathematical
framework to describe quantum and classical systems.
Compare their equations

i�
∂ψ

∂t
= Ĥψ (2a)

i�
∂ψ

∂t
= L̂ψ (2b)

where ψ is a complex (ψ ∈ C) state function, i = √−1,
the operator Ĥ is the Hamiltonian operator (Schrödinger
equation, abbreviated “SE”) and L̂ is the Liouville
operator (Koopman-von Neumann equation, abbreviated
“KvN”) from statistical mechanics (see McQuarrie 2000;
Mann 2018) or L̂ may be replaced with a generalized KvN
operator (Chirikov et al. 1988). The constant � is typically
the reduced Planck’s constant, but more generally it
represents a fundamental scale of quantization. Choosing
(2a) or (2b) and solving for the abstract state function
allows one to compute expected values of observables
or dynamic quantities in quantum or classical systems
(Bohm 1951; Cvitanovic et al. 2005). The main difference
between (2a) and (2b) is that Ĥ is usually second order
and L̂ is first order, but closer inspection shows more.
Define a trial solution for ψ such that ψ = A exp iS,
where A and S are arbitrary real-valued functions of space
and time. Substitution into (2) for typical definitions of
Ĥ and L̂ reveals that A and S (termed the amplitude
and phase, respectively) are decoupled in KvN but
coupled in SE, meaning phase interference and other
uniquely quantum effects are not possible using KvN
(Mann 2018), which is good because they are not observed
in classical mechanical systems. The KvN is also posed
in a “phase space” representation where the independent
variables are position and conjugate momenta, whereas
SE is not, but this also means that classical probabilistic
systems have workloads similar to quantum systems
since the latter is described by a complex probability
amplitude (C has twice the dimensionality as R). There
are also differences in how the results are interpreted, but
these details are not germane to the present discussion.
Functional and conceptual differences aside, classical
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and quantum systems can be represented using state-
function based operator notation, so classical systems
that can be represented by KvN can be solved on QCP
hardware using tools similar to those for the SE. Recent
research suggests this is practical and could be highly
efficient even for nonlinear dynamics (Joseph 2020), so
this is a promising avenue if an associated conceptual
picture for ψ can be built up for GW systems. The
KvN approach is also more general than HHL since it
is able to handle nonlinear and non-Hamiltonian systems,
meaning that Richard’s equation and coupled/integrated
systems simulations (e.g., Hammond et al. 2014; Painter
et al. 2016; Kuffour et al. 2020) might even have a path
to QCP implementation. What is needed to realize this
is to pose GW flow in phase space and map its evolution
operators, boundary conditions, and initial conditions onto
KvN operators, but doing so seems to be reasonably
within grasp.

An Effective Quantum Model
The suggested HHL approach could only address the

UQ issue when combined with ensemble simulations, so
let us finally consider what a model framework might
look like that requires the modeler to evolve distribu-

tions of properties instead of our current paradigm, for
example, one value per cell. Working with distributions
directly (or a superposition of distinct states) has direct
connections to QM, specifically Heisenberg’s uncertainty
principle which dictates tradeoffs in the precision with
which observables like position and momentum can be
known. Abstracting somewhat, consider that when the cell
size of a model is defined it now represents an averag-
ing volume where a single mean velocity, for example,
is considered, but in reality there should be a distribu-
tion of velocities within every cell. Mainstream GW flow
models deal in terms of only the average over a cell and
the implied assumption is that any distribution within that
cell is narrow (small fluctuations about the mean) and/or
is Gaussian. However, these are the same reasons why
stochastic perturbation approaches are limited to small
variance fields and why dispersivities are needed for trans-
port simulations; the sub-grid velocity distribution does
not exist in the GW flow model, yet we know the sub-
grid variability influences transport and must re-introduce
the distribution via spreading operators. Rather than try
new “fixes” to our existing flow and transport workflows,
the suggested course of action is (1) to build a new kind
of GW model framework that works in terms of veloc-
ity distributions to embed uncertainty into the problem,
and (2) to build it with the target of implementation on
QCP hardware from the outset. It may be possible to do
much of this within the KvN framework, but here we
consider an even more general option that could lever-
age uniquely quantum aspects of the hardware. Note that
quantum annealers, a simpler cousin to general QCPs,
have already been used for inverse problems in hydro-
geology (O’Malley 2018), but annealers are designed for
optimization and are not as well suited to the simulation of
distributions.

The mathematical framework laid out by
Dirac (1981), and the earlier version of Heisenberg
(1925), are generic linear operator frameworks, often
called matrix mechanics, and it may be possible to use
these tools to define a set of operators to represent GW
flow mechanics. These are alternatives that encompass the
SE so the core-concept is still the evolution of an abstract
state function, ψ , that allows computation of observables
(Bohm 1951), but there are some differences in how
this ψ is interpreted relative to the same ψ in the KvN
framework (Joseph 2020). Requirements for this new
method should be developed following lines of reasoning
similar to those used to develop QM. At a minimum,
the new equations should be required to recover the
classical GW flow equations in their “limiting behavior”
and should be able to reproduce observations. Regarding
the limit, good models for how to achieve this are the
correspondence principle (Bohr 1920) and the Ehrenfest
theorem (Ehrenfest 1927), which provide the conditions
under which the behavior of a QM system adheres to
Newton’s laws. The point is that the time evolution of
the mean of a QM system (i.e., expected position of a
particle) does not necessarily follow classical mechanics,
but in some important cases, like quadratic potentials
or small fluctuations about the mean (Messiah 1962),
the classical equations of motion are recovered exactly.
Regarding the reproduction of observations, application
of measurement operators to the state function ψ should
be able to honor all observations to within the precision
of the measurement. The uncertainty of the ψ field
away from conditioning points would likely yield a map
similar to that of prediction variances from kriging, for
example, but all the uncertainty of all the properties,
measurements, and observations could be embedded in
the simulated distribution functions. The distributions
represented in these fields would not be restricted to
well-behaved (i.e., Gaussian) distributions because the
quantum version of superposition allows distinct states
to persist when they are combined, and the superposition
affects the probabilities of every state. Consider a
fractured aquifer made up of small, high K preferential
pathways and large volumes of low K aquifer. The
classical approach would force us to average these two
into a single volume averaged unit but a quantum-like
superposition would allow preservation of the bi-modal
nature of this system, evolving all the unique distributions
over time. Conceptually, this is similar to the method of
distributions of Boso and Tartakovsky (2016), but posed
using quantum-like mathematics.

A model as suggested here will be more complicated
than the GW models commonly seen in the literature but
increasing the complexity is sometimes necessary (Hunt
et al. 2007), especially if the goal is to embed UQ (e.g.,
Boso and Tartakovsky 2016) instead of assuming it away.
This may seem like a massive increase in complexity but
only when comparing to a deterministic model. In reality,
stochastic Monte-Carlo methods have similar resource
requirements to quantum systems (Joseph 2020). A key
difference relative to the development of recent GW
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models is that this suggested increase in complexity
is solely to describe the uncertainty and not to add
more processes or to accelerate current solution methods.
Regarding how to build such a model, it seems reasonable
to start with a KvN implementation of a GW model. If
that does not achieve all the modeling objectives, the KvN
model could be used as a stepping stone to develop a
“quantum-like effective model.” The latter could evolve a
discretized version of ψ using matrix mechanics that are
naturally suited to QCP hardware. Quantum phenomena
like entanglement and tunneling could be used to represent
long range correlation effects and statistically rare events,
and the indeterminate nature of the model would render it
stochastic from the outset. These new QCP-based models
would still be similar to a large Monte-Carlo ensemble that
includes all parameter uncertainties, but the acceleration
of truly quantum problems on a QCP is excellent, ranging
from polynomial to exponential speedup (Hidary 2019).
Contrast this with the requirements for classical Monte-
Carlo ensembles on a BDC which are (at best) linear
with the number of realizations in the ensemble and
consider that the number of realizations needed increases
quadratically with the desired accuracy. The potential
speedup on QCPs and the potential ability to embed an
arbitrary level of uncertainty into GW models makes
this kind of effective model an enticing prospect, but
the idea has, literally, just been proposed and is in
its infancy.

Discussion
Statements about how QCPs might transform science

are increasingly common but often lacking are the
specifics regarding how this will be achieved for general
problems rather than toy problems. This issue paper also
lacks detailed specifics, but is at least less vague than
previous presentations. The intent is to present some food
for thought and stress that the methods of the past need not
be those of the future. Throughout, it has been emphasized
that translating our current models to QCP hardware is not
likely to be an efficient approach and that it is time to try
unconventional approaches, even if many of them will
not work. As new approaches are tested, the limitations
and deficiencies of current generation GW models should
be assessed so that the next generation GW models can
be conceptual and computational advances over those of
the past. Indeed, many issues exist in typical proceedures
used for GW modeling but the most underrepresented in
the literature seems to be robust UQ for predictions. The
indeterminate nature of QCPs seems naturally suited to
the UQ problem if GW simulations can be posed in the
natural language of a QCP. The assessment of (Sposito
2001) may ultimately be correct in that quantum-like
methods might not offer any new insights in the field of
GW, but QCPs are promising tools for providing new
ways of efficiently solving the problems and, perhaps,
simultaneously embedding uncertainty or even unresolved
heterogeneities in our models (Engdahl 2021). Right now,
the most promising approach toward implementing GW

models on QCP hardware may be the KvN equation
from which the more quantum-like effective model
might naturally emerge. Treating GW flow systems at
the quantum level (i.e., at the scale of electrons) is
obviously impractical, and unnecessary, but aquifers
are systems where statistically rare events can have
massive impacts on the range of simulated outcomes.
With this relatively minor abstraction, aquifers have
many properties that are surprisingly similar to QM
systems. Preferential flow paths are a classic example
that is vaguely reminiscent of quantum tunneling, where
an electron passes through a potential barrier that is
classically prohibited. Further, what is happening in one
area of a model can impact more than the adjacent
model cells, which could be represented using a sort of
entanglement or correlation. These “effective quantum”
ideas are just beginning to be formed, but they could
lead to rapid solution schemes beyond anything seen
in GW modeling to date where uncertainty is front
and center.

The question to resolve going forward is: do we
want to keep running the same kinds of GW models
we use today in the future or do we want to work
with new kinds of models that can overcome some of
the limitations of the current workflows and enhance
predictions? If the latter is the affirmative, now is the time
to start engaging with computer scientists and quantum
computing researchers to help them understand the unique
needs and challenges presented by GW flow and transport
modeling; GW is plagued by uncertainty in ways other
fields are not and we should not assume practitioners
in other fields understand this. Some disciplines with
similarly high levels of uncertainty in specific problems
(molecular biology, chemistry, etc . . . ) are already turning
to quantum tools and QCPs to solve the problems that
have been vexing them for decades, but these are truly
quantum systems. The missing link for GW is to separate
the conceptual pictures of common QM systems from their
scales and to then focus on applying the mathematical
tools of QM, either to solve our current frameworks or
to move beyond them. The skeptical reader might note
that indeed QM and GW systems are uncertain but one is
aleatoric and one is epistemic, thus their uncertainties are
not the same. Yet, the mathematics used to describe QM
systems do not require such distinctions. Instead they only
require certain properties (granularity, indeterminancy,
etc . . . ) relative to the scale of the problem . At its
mathematical core, QM simply requires one to speak
in terms of distributions and distinct probabilities rather
than the illusion of certainties, which seems to be an
appropriate position for the GW modeler to take given
the extraordinary uncertainty in GW flow and transport
problems. Our current workflows do not make UQ easy
to include, but new models could allow us to incorporate
uncertainty in new ways if we so choose. QM was
designed to be uncertain from the outset and it seems
as logical a parallel as any to build next generation
GW models for QCPs that are also uncertain from
the outset.
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K. Arsenault, V. Grubišić, G. Thompson, and E. Gutmann.
2011. High-resolution coupled climate runoff simulations
of seasonal snowfall over Colorado: A process study of
current and warmer climate. Journal of Climate 24, no. 12:
3015–3048.

Rubin, Y. 2003. Applied Stochastic Hydrogeology . Oxford,
United Kingdom: Oxford University Press.

Sposito, G. 2001. Methods of quantum field theory in the
physics of subsurface solute transport. In Dispersion in

Heterogeneous Geological Formations , 181–198. New
York, United States: Springer.

Tartakovsky, D.M. 2013. Assessment and management of risk in
subsurface hydrology: A review and perspective. Advances
in Water Resources 51: 247–260.

Visser, A., M. Thaw, A. Deinhart, R. Bibby, M. Safeeq,
M. Conklin, B. Esser, and Y. Van der Velde. 2019.
Cosmogenic isotopes unravel the hydrochronology and
water storage dynamics of the southern sierra critical zone.
Water Resources Research 55, no. 2: 1429–1450.

White, J.T. 2018. A model-independent iterative ensemble
smoother for efficient history-matching and uncertainty
quantification in very high dimensions. Environmental

Modelling & Software 109: 191–201.
White, J.T. 2017. Forecast first: An argument for groundwater

modeling in reverse. Groundwater 55, no. 5: 660–664.
White, J. T., R. Hunt, M. Fienen, and J. Doherty (2020).

Approaches to Highly Parameterized Inversion: PEST++
Version 5, A Software Suite for Parameter Estimation,
Uncertainty Analysis, Management Optimization and Sen-
sitivity Analysis. U.S. Geological Survey Techniques and
Methods, Book 7, Section C.

Wilusz, D.C., C.J. Harman, and W.P. Ball. 2017. Sensitivity of
catchment transit times to rainfall variability under present
and future climates. Water Resources Research 53, no. 12:
10231–10256.

Wossnig, L., Z. Zhao, and A. Prakash. 2018. Quantum linear
system algorithm for dense matrices. Physical Review

Letters 120, no. 5: 050502.

8 N.B. Engdahl Groundwater NGWA.org

 17456584, 0, D
ow

nloaded from
 https://ngw

a.onlinelibrary.w
iley.com

/doi/10.1111/gw
at.13325, W

iley O
nline Library on [29/05/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License


	Next Generation Computers Warrant Next Generation Groundwater Models
	Introduction
	Confidence in Groundwater Simulations
	What Are the Next Generation Computers?
	Toward Next Generation GW Models
	Solving Linear Systems
	Koopman-von Neumann Dynamics
	An Effective Quantum Model
	Discussion
	Acknowledgments
	Author's Note
	References

