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Feeling the tension: the bacterial mechanosensitive 
channel of large conductance as a model system and 
drug target
Junmei Wang1 and Paul Blount2

The drug-resistance crisis has become dire and new antibiotic 
targets and strategies are required. Mechanosensitive channel 
of large conductance (MscL) is a conserved bacterial 
mechanosensitive channel that plays the role of ‘osmotic- 
emergency-release-valve. It has the largest-gated pore known 
allowing osmoprotectants out, and other compounds into the 
cell. Inappropriate gating of the channel can lead to 
slow growth, decreased viability, and an increase in potency for 
many antibiotics. The ‘membrane permeability’ observed for 
some antibiotics, including streptomycin, is mediated by 
directly binding to and activating MscL. Novel compounds that 
are MscL agonists have also recently been isolated. Although 
the compounds are diverse, the binding sites of all 
characterized MscL-specific agonists are within the same 
general region of the MscL complex, leading to an in silico 
screening for compounds that bind this region. In sum, these 
studies demonstrate that MscL is a viable drug target that may 
lead to a new generation of antibiotics and adjuvants.
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Introduction
Bacterial mechanosensitive channels were first identified 
by patch clamp of Escherichia coli native membranes [1]. 
We now know that there are two families of channels 
within bacteria, mechanosensitive channel of large 

conductance (MscL) and those genetically such as the E. 
coli small or smaller conductance (MscS); the latter fa
mily is large and diverse and often has several paralogs 
within any given species (E. coli has six [2]). The MscS 
family members appear to have variations on the theme, 
for example, MscK in E. coli is only active in high-po
tassium concentrations [3], and for many, their exact 
physiological conditions in which they function in vivo 
remain obscure [2]. In contrast, MscL is highly con
served [4] and although is found in the vast majority of 
bacteria, has only a single member per species [5].

The physiological function of bacterial mechan
osensitive channels is that of biological emergency re
lease valves [5]. In high osmolarity, compatible solutes 
are accumulated as osmoprotectants within the cyto
plasm to keep cell turgor high, which is required for cell 
growth (for E. coli, about 2–4 atmospheres cytoplasmic 
pressure [6], but see Ref. [7]). Upon acute decreases in 
external osmolarity, the pressure within the cell climbs, 
leading to membrane tension that gates the channels and 
a rapid efflux of the accumulated solutes as well as other 
metabolites ([8–10] and reviews [5,11–17]). The MscS- 
styled channels within the cell open at lower membrane 
tensions [18], and MscL is the last-ditch-effort to release 
excess turgor. MscL forms the largest-gated pore known, 
estimated to be close to 30 Å [19,20], thus allowing re
lease of larger, more valuable metabolites, making it a 
more desirable drug target; it is therefore the topic of 
this review.

MscL is a homopentamer (structure/function reviewed 
here: [17•]). To date, there are only two species with 
valid X-ray crystal structures [21–23] and none from 
cryo-EM. The Mycobacterium tuberculosis structure is 
shown in Fig. 1. At the N-terminus is an amphipathic α- 
helix, S1, that serves as a ‘slide helix’ stabilizing the first 
transmembrane domain (TM1) upon gating [17,24–26], 
S1 is connected via a glycine hinge to the pore-forming 
TM1 [27] constricting at the cytoplasm [21–23], the 
periplasmic loop serves as a spring element [17,28–31], 
and TM2 interacts with the lipids [32•–34] and ends in 
with a series of charged residues or ‘knot in the rope’ 
that guides TM2 movements [35]. Finally, the subunit 
ends in a helical bundle that does not separate upon 
channel gating [36,37]. Although there are currently no 
structures of the open state, evidence suggests that it 
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forms a huge pore size of about 30 Å [19,20], and TM1 
and TM2 angles, thinning the membrane [19,38], and 
corkscrewing within it [19,39,40]. Of special interest 
here are interactions between the S1/TM1 region of one 
subunit with TM2 of another at the cytoplasmic inter
face: these change substantially upon gating [41•]. It is 
this interface that is the binding site of all known spe
cific MscL agonists found to date.

The arguments for mechanosensitive channel 
of large conductance as a drug target
From the first observation, it appeared that bacterial 
mechanosensitive channels sensed tension in the 
membrane [1]: this has been well substantiated [42,43]. 
While interactions with specific lipid headgroups 
have been proposed in some systems [44,45], they do not 
appear to be necessary in most species. It is the changes 
in the membrane tension profile that are important [42]. 
Microbial mechanosensitive channels were the first 
poster-children for what has been coined as the ‘Force 
From Lipid’ (FFL) hypothesis: upon membrane ten
sion, it is the changing lipid interactions with the protein 
that serve as the energy for channel gating (see Ref. [46]
for a recent historical perspective and review). Recently, 
the structural elements for ion passage through MscL 
have been identified by a series of equilibrium and 
steered molecular dynamics simulations [47•], and the 
FFL model has been supported by cryo-EM structures 
for MscS under membrane tension [48••].

Given the physiological function of MscL and the size of 
its open pore, it makes sense that it is tightly regulated. 
Amphipaths and other compounds change the tensions 
within the membrane-gated bacterial channels and were 
detrimental to the cell, but were also nonspecific [17,49]. 
An early forward-genetics study isolating gain-of-func
tion mutants demonstrated that inappropriate MscL 
gating slowed cell growth and decreased viability [27]. 
Because the MscL pore is so large, it essentially per
meabilizes the cell when it opens, allowing metabolisms 
out, and possibly drugs in. This led to the questions: 
could this be done pharmacologically? Could “specific” 
MscL agonists be found? And could they lead to novel 
antibiotics that would help to alleviate the antibiotic- 
resistance crisis?

In addition to the observation that inappropriate gating 
of the channel was detrimental to bacteria, there are 
other reasons to believe that MscL is a viable drug 
target. There are indications that bacterial mechan
osensitive channels play a role in pathogen virulence, 
host colonization, and transitioning between the host 
and environment and back (reviewed in Ref. [50••]). 
MscL is unique to microbes, not found in mammals, is 
highly conserved, and found in most bacterial species, 
including pathogens [5]. MscL channels are expressed in 
all phases of bacterial growth, even upregulated in sta
tionary phase [51], and do not require cellular metabo
lism or any cellular energy source; consequently, 
stationary-phase cultures, biofilms, quiescent cells, and 

Figure 1  
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Structure of the M. tuberculosis MscL derived from X-ray crystallography. (a) MscL pentamer shown from a periplasmic view (left) and a side view 
(right) in which the approximate membrane location is indicated by gray lines. (b) A single isolated subunit is represented in which different MscL 
domains are indicated: N-terminal helix, called S1 helix (green), TM1 (blue), periplasmic loop (cyan), second transmembrane domain TM2 (red), and C- 
terminal helix (orange). Figure and legend originally published in Ref. [17], Copyright © 2020 American Society for Microbiology.  
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nodules should be susceptible. One study identified 
MscL as one of the top 20 potential drug targets [52].

We believe the most effective way to target MscL would 
be by agonists that increase channel gating, rather than 
antagonists or blockers that may decrease pathogen 
transmission. As shown in Fig. 2, there are three po
tential modes by which an agonist may serve an anti
microbial function: (1) allow efflux of valuable 
metabolites; (2) allow the passage of the agonist into the 
cytoplasm where it may have other targets, that is, dual- 
targeting compounds; (3) allow passage of other drugs/ 
antibiotics that have cytoplasmic targets, thus increasing 
their specificity and potency and serving as an adjuvant. 
As shown in the following sections, each of these have 
been observed.

A high-throughput screen
To find MscL agonists, we performed a high-throughput 
screen (HTS) and ultimately assayed for compounds 
that decreased E. coli growth in a MscL-dependent 
manner [53]. Many compounds that also decreased 
growth in a MscS-dependent manner were discarded 
because of nonspecificity that indicated the compound 
may simply change membrane tension.

Known antibiotics are mechanosensitive 
channel of large conductance agonists?
Surprisingly, four known antibiotics, including the ami
noglycosides spectinomycin and dihydrostreptomycin 
(DHS), were MscL-specific ‘hits’ at the concentration 
used in the HTS. Upon scrutiny, it became clear that 
MscL expression increased the potency of the drugs 
[53]. Further study of DHS solved two 50-year-old 
mysteries [54••]. First, how does this bulky and highly 
charged compound cross the membrane? Some me
chanisms were previously proposed, but this work 

showed that MscL is a primary pathway into the cyto
plasm. Second, in the early 1960s, it was shown that 
upon streptomycin treatment, an efflux of potassium 
occurred before any decrease in viability [55]. We 
showed that this early efflux, as well as that of glutamate, 
another accumulated osmoprotectant, was MscL-de
pendent. In sum, the data demonstrated that DHS di
rectly and specifically binds to and activates MscL. The 
binding site is deep within the pore, near the cyto
plasmic interface where S1/TM1 of one subunit slides 
along the TM2 of another. After DHS causes effluxes of 
potassium and glutamate via the open MscL, the drug 
then uses the open pore to pass into the cytoplasm [54]. 
Consistent with these findings, there is also recent evi
dence that MscL is gated upon cell freezing, which can 
induce aminoglycoside uptake and potentiation [56]. 
MscL is likely a pathway to the cytoplasm for other 
antibiotics [53].

Novel compounds from the high-throughput 
screen
Thus far, two compounds identified from the HTS have 
been well characterized: 011A [57,58] and K05 [59]. In 
both instances, E. coli cell growth and viability decrease 
upon treatment, they increase MscL activity as de
termined by patch clamp, they work on multiple species, 
they can act as adjuvants increasing the potency of an
tibiotics, and they bind to the same general location, 
close to where S1/TM1 slides along the TM2 of another 
subunit upon channel opening — the hydrophobic 
nature of the compounds appears to allow them to pass 
through the membrane for the initial access to this site 
[57]. However, there are differences between the two 
agonists in structure and in vivo and computational stu
dies where even a single binding in the homopentamer 
triggered movements consistent with initial gate 
opening [57,59]. These data were the first to indicate 

Figure 2  

Current Opinion in Physiology

Three mechanisms by which a MscL agonist could have antibacterial activity. To the left, the MscL channel is normally tightly regulated and thus 
closed, unless there is gating tension within the membrane. The second panel shows that a MscL agonist can lead to undesirable fluxes of osmolytes 
and metabolites from the cell. The third panel shows that the MscL agonist can enter the cell through MscL where it can potentially have a second 
mode of action. The fourth and final panel shows that other antibiotics that target cytoplasmic proteins can enter the cell through MscL, thus, the 
agonist can serve as an adjuvant that increases potency and specificity of other antibiotics.  
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that there may be multiple families of compounds that 
bind the same general location but have slightly dif
ferent agonist properties.

Dual-targeting compounds
One of the ways to avoid drug resistance is to combine 
drugs with different modes of action, or better yet, 
combine two modes of action within a single compound. 
We have been on the lookout for these ‘dual-targeting’ 
compounds where one of the modes of action involves 
the specific ‘permeabilization’ of membranes by some 
undefined mechanism. This has led to two discoveries 
where MscL activation is one of the modes of action, 
leading to membrane permeabilization: one is curcumin, 
the other is SCH-79797 and related compounds.

Curcumin is a flavonoid polyphenol isolated from the 
rhizome of turmeric (Curcuma longa) that has been shown 
to have antibacterial properties [60]. It has three phy
siological effects in bacteria: an apoptosis-like response 
involving RecA [61], inhibiting septation [62], and 
membrane permeabilization [63]. It also works sy
nergistically with other antibiotics [64–66]. We found 
that both MscL and RecA are required for curcumin- 
dependent decreases in growth and viability, but that 
even though little if any decrease in growth is observed 
in RecA-minus/MscL-plus cells, curcumin treatment 
still led to potassium and glutamate fluxes as well as 
increases in potency of other antibiotics, consistent with 
curcumin opening the MscL channel [67•]. Curcumin’s 
membrane permeabilization, inhibition of septation, and 
ability to work in synergy with other antibiotics, are all 
dependent upon MscL expression [67•]. The pKa 

Figure 3  
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2D structures of some known agonists and antibiotics. Most agonists shown in this figure allosterically bind to the S1/TM1 region to facilitate MscL 
channel open. Note that the leftmost portion of SCH-79797 and IRS-16 is associated with disrupting the folate pathway, while the rightmost ‘cumene’ 
of the former and the dibenzyl structure in IRS-16 (both highlighted in red) are thought to be associated with MscL activation and thus membrane 
permeabilization. Direct binding and potential binding sites for curcumin have yet to be determined.  
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values of the three acidic functional groups were de
termined to be 7.8, 8.5, and 9.0, respectively; at neural 
pH, about 14% of curcumin is ionized, making it a 
possible membrane thinner [68]. A binding site has not 
yet been identified, so it is possible that it could work by 
membrane thinning [69]; more research is needed in 
this area.

The dual-action SCH-79797 compound [70] is effective 
against antibiotic-resistant strains and it is very difficult 
for bacteria to develop resistance to it. It inhibits the 
dihydrofolate reductase pathway, and ‘increases mem
brane permeability’ causing depolarization [71]. A deri
vative, Irresistin-16 (IRS-16), has increased potency, less 
toxicity, and was effective against Neisseria gonorrhoeae in 
a mouse vaginal infection model. We found that SCH- 

79797 and IRS-16 permeabilize the membrane by di
rectly activating MscL [72]. In addition, we showed that 
the component of the SCH-97979 compound re
sponsible for permeabilization, cumene, was also MscL- 
dependent [72]. These findings strongly suggest that 
addition of a chemical moiety that serves as a MscL 
agonist onto an antibiotic could significantly increase the 
potency and efficacy of the drug. The binding pocket for 
SCH-79797 is in the same location as other agonists [72].

Other possibilities?
We would be delinquent if we did not point out that 
there are other possibilities, described in the literature, 
where compounds could work by directly binding to 
and/or specifically activating MscL. For example, 
Bacillus subtilis strain 168 produces the lantibiotic 

Figure 4  
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The agonists (011A, K05, IRS-16, SCH-79797, and 262) bind to MscL at the same S1/TM1 region (Panel A), but demonstrate different binding modes 
(Panel B). Panel A shows the docking poses that have the best binding-free energies in the subsequent molecular dynamics simulations and free- 
energy analysis. The agonists are shown as red, blue, green, yellow, and magenta sticks, respectively. The docking scores are − 7.1, − 7.2, − 8.4, − 8.8, 
and − 11.3 kcal/mol for the agonists, respectively. Panel B is the heatmap of the binding profiles with the ligand-residue-binding free energies being 
smaller than − 0.1 kcal/mol. Panel C, on the other hand, illustrates the cytoplasmic binding site of DHS. The antibiotics stably resided the binding site 
during a 100-nanosecond MD simulation. Most of the surrounding residues are glutamate residues.  
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sublancin 168, and a previous study demonstrated that 
MscL expression is required for its antibacterial activity 
in vivo [73]. However, no MscL channel activation or 
direct interactions have thus far been shown.

Antibacterial agents that affect ‘membrane permeabili
zation’ by undefined mechanisms are also candidates. 
Given the findings with aminoglycosides, curcumin, and 
SCH-79797 described above, MscL activation by anti
biotics may be much more common than previously 
anticipated.

Finally, one study suggests decreases in extracellular 
ions or osmolytes increase potency of aminoglycosides in 
a MscL- and MscS-dependent manner: MscS may even 
directly bind to the antibiotics [74]. Because the MscS 
family is more diverse and less conserved than MscL, 
the discovery of MscS-specific agonists could serve to 
target specific bacterial species, thus leading to narrow- 
spectrum antibiotics and adjuvants.

Commonalities and an in silico screen
There are now several MscL agonists identified that 
facilitate channel opening. As illustrated in Fig. 3, these 
compounds are structurally diverse. In all instances 
characterized, the binding sites are at the S1/TM1 and 
TM2 cytoplasmic interface region and, as determined by 
static molecular docking, have some affinity to the 
closed channel even though they appear to destabilize 
the closed state. However, using an endpoint free-en
ergy method called MM-GBSA [75], it is clear that it 
adopts different ligand-residue-interaction profiles and 
binding modes (Fig. 4). The most common hotspot re
sidues are hydrophobics/aromatics, and many interac
tions have been confirmed in vivo by multiple 
mutagenesis experiments [54,57,59,72,76].

An in silico screening approach was used to discover 
potential MscL agonists that bind to the cononical site. 
First, a virtual docking screen was conducted using a 
homology of the E. coli MscL model [54] and a subset of 
ZINC drug-like database chosen by ‘fingerprint-based 
similarity’ [77]. From the hits, we found a new family of 
compounds, exemplified by 262, which are MscL ago
nists: molecular dynamics simulations, free-energy ana
lysis, and mutagenesis verify that the compound stably 
binds the canonical site with a decent binding affinity 
[76••]. These findings yield promise that additional 
compounds with higher potency and efficacy will be 
identified using this approach.

Conclusions
In sum, MscL is a very promising drug target that can be 
applied to develop novel antibiotics and adjuvants at this 
critical time of the antibiotic-resistance crisis. Recent 
studies demonstrate that MscL agonists slow growth and 

viability and increase the potency of antibiotics, and 
there is promise that MscL-agonist potency and efficacy 
can be improved. There are several challenges in MscL 
drug discovery. It is extremely difficult to rationally 
design agonists without knowing details of the under
lying molecular mechanisms to achieve the final active 
state, and valid structures are limited: no crystal or cryo- 
EM structure of E. coli MscL has been reported, and 
none exist for the open state for any species, presumably 
because of its small size and dynamics. Thus, there is an 
urgent need to understand the gating mechanisms of 
MscL gating using variable experimental and molecular 
simulation approaches. For example, a computational 
protocol to simulate the passage of antibiotics through 
MscL, which is accelerated by an external electric field 
applied to the antibiotics, has been developed [57,58]. 
This ‘virtual passage’ approach can quantitatively mea
sure a potential agonist’s ability to induce conforma
tional changes that enhance this passage. There are also 
accelerated sampling techniques such as microbubble 
cavitation [78] and Gaussian-accelerated molecular dy
namics simulations [79] that have yet to be applied to 
study MscL gating. With further study using an array of 
approaches, high-quality open-channel structures can be 
modeled and serve as receptors for virtual screening and 
de novo design.
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