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Feeling the tension: the bacterial mechanosensitive
channel of large conductance as a model system and

drug target
Junmei Wang' and Paul Blount?

The drug-resistance crisis has become dire and new antibiotic
targets and strategies are required. Mechanosensitive channel
of large conductance (Mscl) is a conserved bacterial
mechanosensitive channel that plays the role of ‘osmotic-
emergency-release-valve. It has the largest-gated pore known
allowing osmoprotectants out, and other compounds into the
cell. Inappropriate gating of the channel can lead to

slow growth, decreased viability, and an increase in potency for
many antibiotics. The ‘membrane permeability’ observed for
some antibiotics, including streptomycin, is mediated by
directly binding to and activating MscL. Novel compounds that
are MscL agonists have also recently been isolated. Although
the compounds are diverse, the binding sites of all
characterized MscL-specific agonists are within the same
general region of the MscL complex, leading to an in silico
screening for compounds that bind this region. In sum, these
studies demonstrate that MscL is a viable drug target that may
lead to a new generation of antibiotics and adjuvants.
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Introduction

Bacterial mechanosensitive channels were first identified
by patch clamp of Escherichia coli native membranes [1].
We now know that there are two families of channels
within bacteria, mechanosensitive channel of large

conductance (MscL) and those genetically such as the E.
coli small or smaller conductance (MscS); the latter fa-
mily is large and diverse and often has several paralogs
within any given species (E. co/i has six [2]). The MscS
family members appear to have variations on the theme,
for example, MscK in E. ¢o/i is only active in high-po-
tassium concentrations [3], and for many, their exact
physiological conditions in which they function 7 vivo
remain obscure [2]. In contrast, MscLl. is highly con-
served [4] and although is found in the vast majority of
bacteria, has only a single member per species [5].

The physiological function of bacterial mechan-
osensitive channels is that of biological emergency re-
lease valves [5]. In high osmolarity, compatible solutes
are accumulated as osmoprotectants within the cyto-
plasm to keep cell turgor high, which is required for cell
growth (for E. coli, about 2—4 atmospheres cytoplasmic
pressure [6], but see Ref. [7]). Upon acute decreases in
external osmolarity, the pressure within the cell climbs,
leading to membrane tension that gates the channels and
a rapid efflux of the accumulated solutes as well as other
metabolites ([8-10] and reviews [5,11-17]). The MscS-
styled channels within the cell open at lower membrane
tensions [18], and MscL is the last-ditch-effort to release
excess turgor. MscL forms the largest-gated pore known,
estimated to be close to 30 A [19,20], thus allowing re-
lease of larger, more valuable metabolites, making it a
more desirable drug target; it is therefore the topic of
this review.

MscL. is a homopentamer (structure/function reviewed
here: [17¢]). To date, there are only two species with
valid X-ray crystal structures [21-23] and none from
cryo-EM. The Mycobacterium  tuberculosis structure is
shown in Fig. 1. At the N-terminus is an amphipathic a-
helix, S1, that serves as a ‘slide helix’ stabilizing the first
transmembrane domain (TM1) upon gating [17,24-26],
S1 is connected via a glycine hinge to the pore-forming
TM1 [27] constricting at the cytoplasm [21-23], the
periplasmic loop serves as a spring element [17,28-31],
and TM2 interacts with the lipids [32¢-34] and ends in
with a series of charged residues or ‘knot in the rope’
that guides TM2 movements [35]. Finally, the subunit
ends in a helical bundle that does not separate upon
channel gating [36,37]. Although there are currently no
structures of the open state, evidence suggests that it
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Structure of the M. tuberculosis MscL derived from X-ray crystallography. (a) MscL pentamer shown from a periplasmic view (left) and a side view
(right) in which the approximate membrane location is indicated by gray lines. (b) A single isolated subunit is represented in which different MscL
domains are indicated: N-terminal helix, called S1 helix (green), TM1 (blue), periplasmic loop (cyan), second transmembrane domain TM2 (red), and C-
terminal helix (orange). Figure and legend originally published in Ref. [17], Copyright © 2020 American Society for Microbiology.

forms a huge pore size of about 30 A [19,20], and 'TM1
and TM2 angles, thinning the membrane [19,38], and
corkscrewing within it [19,39.40]. Of special interest
here are interactions between the S1/TM1 region of one
subunit with TM2 of another at the cytoplasmic inter-
face: these change substantially upon gating [41e]. It is
this interface that is the binding site of all known spe-
cific MscL, agonists found to date.

The arguments for mechanosensitive channel
of large conductance as a drug target

From the first observation, it appeared that bacterial
mechanosensitive channels sensed tension in the
membrane [1]: this has been well substantiated [42,43].
While interactions with specific lipid headgroups
have been proposed in some systems [44,45], they do not
appear to be necessary in most species. It is the changes
in the membrane tension profile that are important [42].
Microbial mechanosensitive channels were the first
poster-children for what has been coined as the ‘Force
From Lipid’ (FFL) hypothesis: upon membrane ten-
sion, it is the changing lipid interactions with the protein
that serve as the energy for channel gating (see Ref. [46]
for a recent historical perspective and review). Recently,
the structural elements for ion passage through MscL
have been identified by a series of equilibrium and
steered molecular dynamics simulations [47¢], and the
FFL model has been supported by cryo-EM structures
for MscS under membrane tension [48ee].

Given the physiological function of MscL. and the size of
its open pore, it makes sense that it is tightly regulated.
Amphipaths and other compounds change the tensions
within the membrane-gated bacterial channels and were
detrimental to the cell, but were also nonspecific [17,49].
An early forward-genetics study isolating gain-of-func-
tion mutants demonstrated that inappropriate Mscl.
gating slowed cell growth and decreased viability [27].
Because the Mscl. pore is so large, it essentially per-
meabilizes the cell when it opens, allowing metabolisms
out, and possibly drugs in. This led to the questions:
could this be done pharmacologically? Could “specific”
MscL. agonists be found? And could they lead to novel
antibiotics that would help to alleviate the antibiotic-
resistance crisis?

In addition to the observation that inappropriate gating
of the channel was detrimental to bacteria, there are
other reasons to believe that Mscl. is a viable drug
target. There are indications that bacterial mechan-
osensitive channels play a role in pathogen virulence,
host colonization, and transitioning between the host
and environment and back (reviewed in Ref. [50ee]).
MscL. is unique to microbes, not found in mammals, is
highly conserved, and found in most bacterial species,
including pathogens [5]. MscL. channels are expressed in
all phases of bacterial growth, even upregulated in sta-
tionary phase [51], and do not require cellular metabo-
lism or any cellular energy source; consequently,
stationary-phase cultures, biofilms, quiescent cells, and

Current Opinion in Physiology 2023, 31:100627

www.sciencedirect.com



Figure 2

MscL as a drug target Wang and Blount 3

) MscL Agonist

periplasm

cytoplasm

Closed MscL Induced Metabolite Efflux

I wuﬂﬂ@u

:} Antibiotic

Other Antlblotlc Enters
Current Opinion in Physiology

e ©

o 00

MscL Agonist Enters

Three mechanisms by which a MscL agonist could have antibacterial activity. To the left, the MscL channel is normally tightly regulated and thus
closed, unless there is gating tension within the membrane. The second panel shows that a MscL agonist can lead to undesirable fluxes of osmolytes
and metabolites from the cell. The third panel shows that the MscL agonist can enter the cell through MscL where it can potentially have a second
mode of action. The fourth and final panel shows that other antibiotics that target cytoplasmic proteins can enter the cell through MscL, thus, the
agonist can serve as an adjuvant that increases potency and specificity of other antibiotics.

nodules should be susceptible. One study identified
MscL. as one of the top 20 potential drug targets [52].

We believe the most effective way to target Mscl. would
be by agonists that increase channel gating, rather than
antagonists or blockers that may decrease pathogen
transmission. As shown in Fig. 2, there are three po-
tential modes by which an agonist may serve an anti-
microbial function: (1) allow efflux of valuable
metabolites; (2) allow the passage of the agonist into the
cytoplasm where it may have other targets, that is, dual-
targeting compounds; (3) allow passage of other drugs/
antibiotics that have cytoplasmic targets, thus increasing
their specificity and potency and serving as an adjuvant.
As shown in the following sections, each of these have
been observed.

A high-throughput screen

To find MscL. agonists, we performed a high-throughput
screen (HTS) and ultimately assayed for compounds
that decreased E. co/i growth in a Mscl.-dependent
manner [53]. Many compounds that also decreased
growth in a MscS-dependent manner were discarded
because of nonspecificity that indicated the compound
may simply change membrane tension.

Known antibiotics are mechanosensitive

channel of large conductance agonists?

Surprisingly, four known antibiotics, including the ami-
noglycosides spectinomycin and dihydrostreptomycin
(DHS), were MscL-specific ‘hits’ at the concentration
used in the HTS. Upon scrutiny, it became clear that
Mscl. expression increased the potency of the drugs
[53]. Further study of DHS solved two 50-year-old
mysteries [54e¢]. First, how does this bulky and highly
charged compound cross the membrane? Some me-
chanisms were previously proposed, but this work

showed that MscL. is a primary pathway into the cyto-
plasm. Second, in the early 1960s, it was shown that
upon streptomycin treatment, an efflux of potassium
occurred before any decrease in wviability [55]. We
showed that this early efflux, as well as that of glutamate,
another accumulated osmoprotectant, was Mscl.-de-
pendent. In sum, the data demonstrated that DHS di-
rectly and specifically binds to and activates MscL.. The
binding site is deep within the pore, near the cyto-
plasmic interface where S1/TM1 of one subunit slides
along the TM2 of another. After DHS causes effluxes of
potassium and glutamate via the open Mscl, the drug
then uses the open pore to pass into the cytoplasm [54].
Consistent with these findings, there is also recent evi-
dence that MscL. is gated upon cell freezing, which can
induce aminoglycoside uptake and potentiation [56].
MscL. is likely a pathway to the cytoplasm for other
antibiotics [53].

Novel compounds from the high-throughput
screen

Thus far, two compounds identified from the HTS have
been well characterized: 011A [57,58] and KO5 [59]. In
both instances, E. co/i cell growth and viability decrease
upon treatment, they increase Mscl. activity as de-
termined by patch clamp, they work on multiple species,
they can act as adjuvants increasing the potency of an-
tibiotics, and they bind to the same general location,
close to where S1/TM1 slides along the TM2 of another
subunit upon channel opening — the hydrophobic
nature of the compounds appears to allow them to pass
through the membrane for the initial access to this site
[57]. However, there are differences between the two
agonists in structure and 7z vivo and computational stu-
dies where even a single binding in the homopentamer
triggered movements consistent with initial gate
opening [57,59]. These data were the first to indicate
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2D structures of some known agonists and antibiotics. Most agonists shown in this figure allosterically bind to the S1/TM1 region to facilitate MscL
channel open. Note that the leftmost portion of SCH-79797 and IRS-16 is associated with disrupting the folate pathway, while the rightmost ‘cumene’
of the former and the dibenzyl structure in IRS-16 (both highlighted in red) are thought to be associated with MscL activation and thus membrane
permeabilization. Direct binding and potential binding sites for curcumin have yet to be determined.

that there may be multiple families of compounds that
bind the same general location but have slightly dif-
ferent agonist properties.

Dual-targeting compounds

One of the ways to avoid drug resistance is to combine
drugs with different modes of action, or better yet,
combine two modes of action within a single compound.
We have been on the lookout for these ‘dual-targeting’
compounds where one of the modes of action involves
the specific ‘permeabilization’ of membranes by some
undefined mechanism. This has led to two discoveries
where Mscl. activation is one of the modes of action,
leading to membrane permeabilization: one is curcumin,
the other is SCH-79797 and related compounds.

Curcumin is a flavonoid polyphenol isolated from the
rhizome of turmeric (Curcuma longa) that has been shown
to have antibacterial properties [60]. It has three phy-
siological effects in bacteria: an apoptosis-like response
involving RecA [61], inhibiting septation [62], and
membrane permeabilization [63]. It also works sy-
nergistically with other antibiotics [64-66]. We found
that both Mscl. and RecA are required for curcumin-
dependent decreases in growth and viability, but that
even though little if any decrease in growth is observed
in RecA-minus/MscL.-plus cells, curcumin treatment
still led to potassium and glutamate fluxes as well as
increases in potency of other antibiotics, consistent with
curcumin opening the MscL. channel [67¢]. Curcumin’s
membrane permeabilization, inhibition of septation, and
ability to work in synergy with other antibiotics, are all
dependent upon Mscl. expression [67¢]. The pKa
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The agonists (011A, K05, IRS-16, SCH-79797, and 262) bind to MscL at the same S1/TM1 region (Panel A), but demonstrate different binding modes
(Panel B). Panel A shows the docking poses that have the best binding-free energies in the subsequent molecular dynamics simulations and free-
energy analysis. The agonists are shown as red, blue, green, yellow, and magenta sticks, respectively. The docking scores are —-7.1,-7.2, - 8.4, - 8.8,
and - 11.3 kcal/mol for the agonists, respectively. Panel B is the heatmap of the binding profiles with the ligand-residue-binding free energies being
smaller than — 0.1 kcal/mol. Panel C, on the other hand, illustrates the cytoplasmic binding site of DHS. The antibiotics stably resided the binding site
during a 100-nanosecond MD simulation. Most of the surrounding residues are glutamate residues.

values of the three acidic functional groups were de-
termined to be 7.8, 8.5, and 9.0, respectively; at neural
pH, about 14% of curcumin is ionized, making it a
possible membrane thinner [68]. A binding site has not
yet been identified, so it is possible that it could work by
membrane thinning [69]; more research is needed in
this area.

The dual-action SCH-79797 compound [70] is effective
against antibiotic-resistant strains and it is very difficult
for bacteria to develop resistance to it. It inhibits the
dihydrofolate reductase pathway, and ‘increases mem-
brane permeability’ causing depolarization [71]. A deri-
vative, Irresistin-16 (IRS-16), has increased potency, less
toxicity, and was effective against Neisseria gonorrhoeae in
a mouse vaginal infection model. We found that SCH-

79797 and IRS-16 permeabilize the membrane by di-
rectly activating MscL. [72]. In addition, we showed that
the component of the SCH-97979 compound re-
sponsible for permeabilization, cumene, was also Mscl.-
dependent [72]. These findings strongly suggest that
addition of a chemical moiety that serves as a MscL
agonist onto an antibiotic could significantly increase the
potency and efficacy of the drug. The binding pocket for
SCH-79797 is in the same location as other agonists [72].

Other possibilities?

We would be delinquent if we did not point out that
there are other possibilities, described in the literature,
where compounds could work by directly binding to
and/or specifically activating Mscl.. For example,
Bacillus  subrilis strain 168 produces the lantibiotic
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sublancin 168, and a previous study demonstrated that
MscL. expression is required for its antibacterial activity
i vivo [73]. However, no MscL. channel activation or
direct interactions have thus far been shown.

Antibacterial agents that affect ‘membrane permeabili-
zation’ by undefined mechanisms are also candidates.
Given the findings with aminoglycosides, curcumin, and
SCH-79797 described above, MscL. activation by anti-
biotics may be much more common than previously
anticipated.

Finally, one study suggests decreases in extracellular
ions or osmolytes increase potency of aminoglycosides in
a MscL.- and MscS-dependent manner: MscS may even
directly bind to the antibiotics [74]. Because the MscS
family is more diverse and less conserved than Mscl,
the discovery of MscS-specific agonists could serve to
target specific bacterial species, thus leading to narrow-
spectrum antibiotics and adjuvants.

Commonalities and an in silico screen

There are now several MsclL agonists identified that
facilitate channel opening. As illustrated in Fig. 3, these
compounds are structurally diverse. In all instances
characterized, the binding sites are at the S1/TM1 and
"T'M2 cytoplasmic interface region and, as determined by
static molecular docking, have some affinity to the
closed channel even though they appear to destabilize
the closed state. However, using an endpoint free-en-
ergy method called MM-GBSA [75], it is clear that it
adopts different ligand-residue-interaction profiles and
binding modes (I'ig. 4). The most common hotspot re-
sidues are hydrophobics/aromatics, and many interac-
tions have been confirmed /i ovivo by multiple
mutagenesis experiments [54,57,59,72,76].

An i silico screening approach was used to discover
potential Mscl. agonists that bind to the cononical site.
First, a virtual docking screen was conducted using a
homology of the E. co/i Mscl. model [54] and a subset of
ZINC drug-like database chosen by ‘fingerprint-based
similarity’ [77]. From the hits, we found a new family of
compounds, exemplified by 262, which are MscL. ago-
nists: molecular dynamics simulations, free-energy ana-
lysis, and mutagenesis verify that the compound stably
binds the canonical site with a decent binding affinity
[76ee]. These findings yield promise that additional
compounds with higher potency and efficacy will be
identified using this approach.

Conclusions

In sum, MscL is a very promising drug target that can be
applied to develop novel antibiotics and adjuvants at this
critical time of the antibiotic-resistance crisis. Recent
studies demonstrate that MscL. agonists slow growth and

viability and increase the potency of antibiotics, and
there is promise that Mscl.-agonist potency and efficacy
can be improved. There are several challenges in Mscl
drug discovery. It is extremely difficult to rationally
design agonists without knowing details of the under-
lying molecular mechanisms to achieve the final active
state, and valid structures are limited: no crystal or cryo-
EM structure of E. co/i Mscl has been reported, and
none exist for the open state for any species, presumably
because of its small size and dynamics. Thus, there is an
urgent need to understand the gating mechanisms of
MscL. gating using variable experimental and molecular
simulation approaches. For example, a computational
protocol to simulate the passage of antibiotics through
MscL., which is accelerated by an external electric field
applied to the antibiotics, has been developed [57,58].
This ‘virtual passage’ approach can quantitatively mea-
sure a potential agonist’s ability to induce conforma-
tional changes that enhance this passage. There are also
accelerated sampling techniques such as microbubble
cavitation [78] and Gaussian-accelerated molecular dy-
namics simulations [79] that have yet to be applied to
study Mscl. gating. With further study using an array of
approaches, high-quality open-channel structures can be
modeled and serve as receptors for virtual screening and
de novo design.
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