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Abstract. In this paper, a stable and accurate algorithm to compute all so-
lutions of the inverse kinematics problem of a 6 revolute manipulator chain
is presented. A system of equations is constructed based on the fundamental
closure conditions, leading to a closed algebraic system of 20 equations involv-
ing 16 quantities, composed of trigonometric functions of five among the six

unknown joint angles. Two among these five are stably eliminated using sin-
gular value decomposition (SVD) avoiding the need to consider special cases.
The resulting system of equations involving three unknowns is solved by con-
version to a generalized eigenvalue problem. The remaining three unknown
angles are obtained using the previously computed pseudoinverse. In this for-
mulation we exploit the inherently complex form of the system reducing it to
10 complex equations in 9 quantities, which substantially accelerates the SVD
computation. The method’s robustness is demonstrated through a comparison
to current methods and several examples including known problematic cases

where some axis or link lengths vanish, or some joint angles are 180 degrees,
as well as cases where multiple eigenvalues arise.

1. Introduction. The Inverse Kinematics (IK) problem of a linkage, that is po-
sitioning the end effector (Arm) given a fixed (Reference) position of the base, is
central in the theory of mechanisms and has been extensively studied, both in ro-
botics where the accurate control of robot arms is critical in diverse areas such as
medicine, industry and the International Space Station, see e.g. [2] and references
therein, as well as in computational structural biology where loop closure analysis
has been used in the study of protein loops [9, 19, 20, 6, 16] and large flexible mul-
ticyclic molecules [27, 5]. The workspace of a linkage is the set of positions and
orientations of the end effector attainable through variation of the linkage degrees
of freedom (DoF). It is well known that at least six DoF are required to achieve

2020 Mathematics Subject Classification. Primary: 65H14; Secondary: 65H10.
Key words and phrases. 6R manipulator, Inverse Kinematics, Complex singular value decom-

position, Multiple eigenvalues, Molecular chains.
The first two authors are supported by NIH RM1GM135136, NSF DMS2054251.
∗Corresponding author: Evangelos Coutsias.

123



124 XIN CAO, EVANGELOS COUTSIAS AND SARA POLLOCK

a workspace that forms a (union of) open neighborhood(s) in R
3 × SO(3). The

problem may be realized without loss of generality as a chain of rigid bodies con-
nected through revolute pairs (R-pairs) between fixed end positions. In this paper
we consider the IK problem for a linkage formed by a kinematic chain of N ≥ 6
rigid objects connected by revolute joints. The linkage may be a loop with fixed
base and end effector or a closed ring (Fig. 1).

For simplicity we focus on the N = 6 ring problem, while the extension to
redundant linkages ofN > 6 joints and molecular chains is given in Appendix A. The
6 joint angles are the variables defining the linkage configuration. Together with the
twist angles between successive axes and the joint and axis lengths of the resulting
orthogonal system, they constitute the Denavit-Hartenberg (DH) coordinates [8]
of the linkage. The transformation of an open 6R robot arm to a closed system is
accomplished by introducing a virtual link as depicted in the right of Fig. 1.

The first fully algebraic solution of the 6R problem was given by Lee and Liang
[14, 13]. Subsequently, several authors ([18], [21]) have commented on the algebraic
complexity of the Lee-Liang method and proposed simplifications. All methods
are based on the idea that certain of the variables may be eliminated, eventually
resulting in a generalized eigenproblem or a univariate polynomial in one of the
variables. Key differences among methods are in the details of the elimination
process and the precise method of arriving at a univariate system.

As noted by Angeles [2], current algorithms share some robustness issues under
certain conditions, such as the occurrence of infinite eigenvalues associated with
π angles. In fact, robustness problems may arise at different stages in a typical
method: (1) The first stage of the algorithm requires the elimination of some of
the variables. The choice of the specific equations to be solved may lead to the
inversion of singular matrices. (2) Assuming successful elimination, the solution
of the resulting generalized eigenvalue problem may lead to infinite or multiple
eigenvalues. (3) The algebraic manipulations for deriving the remaining DoF, once
the eigenproblem has been solved may also introduce singularities.

The Lee-Liang method in its original form suffered from its somewhat arbitrary
choices for eliminating or back-substituting variables that in special cases lead to
singular matrices or vanishing denominators. Specifically, the 16 among the 20
equations chosen for the initial elimination ([13], eq.(50)) are not guaranteed to
result in a nonsingular matrix inversion. Moreover, when solving for the remaining
variables, vanishing lengths of either axis 3 or axis 4 results in the vanishing of the
denominator of expressions F9 and F10 in [13], causing the method to fail. Although
most current methods avoid some of the pitfalls in the original algorithm by Lee
and Liang, they may still fail for special combinations of the problem parameters
which nevertheless do correspond to well posed configurations. As discussed in [2],
the method by Raghavan and Roth [21] will fail if the first link length vanishes.
Although this problem may be addressed by reindexing generically, this will fail if
all link lengths vanish. The method by Renaud [22] achieves efficiency by utilizing
a specific linear combination of the equations for the inversion, which again fails
for vanishing link lengths. In the Kohli and Osvatic approach [12], the elimination
step involves the inverse of a 6× 6 matrix whose singularity is not determined, for
instance that matrix becomes singular when the twist angle at the sixth link is π
in a closed linkage. Liu and Zhu [15] follow a similar approach but switch order of
solution if singularity is detected.
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In addition, the strategy followed by various methods to address possible singu-
larities could deteriorate performance. For example, the methods by [18, 15] use
singular value decomposition (SVD) to detect ill conditioning of various inversions,
either at the elimination stage or for converting the generalized eigenproblem to
an ordinary one, and reformulate in various ways until well conditioned matrices
are found. Moreover, some methods arrive at eigenvalue problems of higher dimen-
sionality, again leading to deterioration in performance. The method by Manocha
and Canny [18] results in a generalized eigenproblem of size 24 × 24, while as was
proven by [13] the system may be reduced to optimal size 16× 16, as also obtained
by [21, 12, 22, 15]. More recently, Husty et al. [10] added clarity to the geomet-
rical structure of the problem, and proposed an elegant algorithm. However the
eventual reduction to a univariate polynomial gives a high degree resultant of size
48×48 whose resolution substantially increases execution timings. Moreover, as the
authors also state, a reformulation may be required until a non-degenerate system
may be found, which could further hinder performance. A comparative analysis
of the implementation of [10] to that in [15] performed by Angerer and Hofbaur
[3] establishes that the former is indeed substantially more robust, but at a high
operation time cost, roughly an order of magnitude slower compared to the latter.

The goal of this paper is to formulate a numerically robust algorithm for the
solution of the 6R IK problem. Although an earlier version of the algorithm was
implemented as part of the BRIKARD molecular modeling suite [5], implementa-
tion details were never published. The version of R6B6 presented here incorpo-
rates substantial improvements and it is essentially a new algorithm. Contrasted to
previous algorithms, R6B6 includes modifications in the elimination and solution
process that optimally stabilize the method, avoiding well known pitfalls. Starting
with the standard set of equations [2], complex SVD is applied to perform the first
elimination. Writing the original real-valued 20 × 16 system as a complex-valued
10 × 8 system accelerates the computation by a factor of 50%. The resultant is
then obtained efficiently by multiplication with the left null vectors. By properly
accounting for the projective character of the matrix pair formulation in the re-
sulting generalized eigenproblem, infinite eigenvalues are dealt with directly, while
the resulting process is augmented to handle cases of multiple eigenvalues. When
computing the remaining variables, the singular vectors from the SVD and some
symbolic expressions are applied. Utilizing the pseudoinverse as opposed to invert-
ing a subset of the equations lends stability to the computation and solves the issue
of accidental singularities in the first elimination, which may require costly reformu-
lations to resolve. We must note here that for 6R systems exhibiting flexibility so
that a continuum of solutions may exist, all methods (including the one presented
here) designed to determine a finite number of solutions will fail. Such cases require
further geometrical analysis, as can be found in [4], [23].

The remainder of the paper is organized as follows: In Sec. 2 we give a brief
overview of the key steps in the algorithm, with details provided in the following
subsections. Sec. 2.1 presents the fundamental closure equations and introduces
the main formalism used throughout the paper. Sec. 2.2 presents the details of
the first elimination via complex SVD. In Sec. 2.3 we discuss the resultant of the 4
polynomial equations in the half-tangents of the three remaining variables, extended
as 8 equations in the same three variables and then posed as a 16× 16 generalized
eigenvalue problem. In Sec. 2.4 the procedure for extracting the remaining variables
and giving the complete solution is presented. In Sec. 3 we discuss implementation
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Figure 1. The transformation from cyclic molecule (left) and
open manipulator (right) to closed 6R ring. In the left, the atoms
in the selected axes are filled and the coordinate systems of com-
plete system show the relationship between reference (R) and arm
(A) frames.

details of the solution process, with focus on special cases, such as infinities in the
half-tangent variables and multiple eigenvalues. Sec. 4 discusses numerical examples
that demonstrate code performance in various exceptional cases, as well as singular
cases that may lead to failures. Sec. 5 gives a summary and concluding remarks.
In the Appendices we present the details of the DH transformation App. A, give
the details of the system of equations App. B, discuss the relation between real
and complex SVD App. C and discuss the treatment necessary in the presence of
multiple eigenvalues App. D.

2. The loop closure equations: algebraic solution. As preparation for our
algorithm, an open chain is firstly converted to a closed 6R chain. In a redundant
chain of N > 6 rotors, six rotors are selected (associated with unknown joint angles)
and the intervening structure between two consecutive rotors is rigidified by fixing
all intervening joint angles (or torsions in a molecular chain) and then replaced by
a common normal link of the two axes of rotors. The DH transformation places a
Cartesian frame at either end of each joint (Fig. 2). For an open 6R robot arm, we
only need to add one virtual link between the sixth and first joints as shown in the
right figure of Fig. 1. This results in a closed 6R DH system as shown in the left
figure of Fig. 1. The details can be found in App. A. The closed kinematic chain
of six rotors is decomposed into two subchains, in which two joints are selected,
separated by two joints along either subchain. We set one as the reference, denoted
by a subscript R, and the second as the arm, denoted by a subscript A. Here R
can be assigned to any joint 1, ..., 6 in the chain with the others assigned in cyclic
succession. The six unknown joint angles are θi, i = R,R+1, A− 1, A,A+1, R− 1.
Applying the notation of [21, 26], we denote ci = cos θi, si = sin θi and half-tangent
ti = tan(θi/2).

We then can formulate closure conditions for the closed DH system and solve
the problem accordingly. A set of fourteen closure conditions (Sec. 9.2.2 in [2]),
involving the 10 quantities given in Table 1 each evaluated in terms of the unknown
θA, or more precisely its half-tangent tA, and the sines and cosines of θA+1, θR−1
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Figure 2. Denavit-Hartenberg coordinate frames are at w±
j , θj is

the joint angle and αj is the twist angle.

E1 〈zR,xA−1 + iy−
A〉

E2 〈 1
2
〈r, r〉zR − 〈r, zR〉r,xA−1 + iy−

A〉
E3 〈zR × r,xA−1 + iy−

A〉
E4 〈r,xA−1 + iy−

A〉
E5 〈zR, zA〉
E6 〈 1

2
〈r, r〉zR − 〈r, zR〉r, zA〉

E7 〈zR × r, zA〉
E8 〈r, zA〉
E9 〈r, zR〉
E10 〈r, r〉/2

Table 1. The fourteen quantities used in closure conditions, pre-
sented in complexified form as 4 complex and 6 real expressions.
Evaluating these along both subchains joining reference R and arm
A results in the fundamental closure equations. Eqs. E5 – E10 are
duplicated after multiplication by tA, resulting in 20 real equations.

and θR+1, θA−1, are extended into a set of twenty equations with respect to the
unknowns. The closure conditions are set up so the unknown θR is absent from
all evaluations, and is eliminated by default. Then we can solve the system by
following three more steps. The overview of the procedure is as follows and further
description of every step will be given in the following subsections:
A. Formulation of the system of equations. Based on the closure conditions,
we can construct and arrange the twenty equations through symbolic preprocessing
as

Bb = Pc+qtA+r =
(
PαtA + Pβ

)( c′

1

)
, where b =

(
tAb

′

b′

)
, c =

(
tAc

′

c′

)
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where B,P,q, r, Pα and Pβ are coefficient matrices: B,P are 20×16, q, r are 20×1
and Pα, Pβ are 20× 9. The components in b′, c′ are given by

b′ = [cR+1cA−1, sR+1cA−1, cA−1, cR+1sA−1, sR+1sA−1, sA−1, cR+1, sR+1]
T , (1)

c′ = [cA+1cR−1, sA+1cR−1, cR−1, cA+1sR−1, sA+1sR−1, sR−1, cA+1, sA+1]
T . (2)

B. First elimination using SVD. The SVD of B is calculated as B = UΣV T ,
and the transpose of the left null-vectors of B (denoted as UT

N which is 4 × 20)
is multiplied on both sides of the system to eliminate the terms on the left side
completely which contain the variables θR+1 and θA−1. Then the resulting right
side has four equations and can be arranged as follows:

UT
NBb = 0 =

(
UT
NPαtA + UT

NPβ

)( c′

1

)
=
(
PU
α tA + PU

β

)( c′

1

)
,

where PU
α , PU

β are coefficients matrices with dimension 4 × 9. We note that the

SVD is performed in complex form, resulting in a 50% speedup, and the results are
converted back into real form.
C. Formulation of generalized eigenvalue problem. The sines and cosines
of θR−1 and θA+1 in the resulting 4 × 9 system above are firstly converted by the
half-tangent identities sj = 2tj/(1+ t2j ) and cj = (1− t2j )/(1+ t2j ). Multiplying this
first set of equations by tR−1 yields a second set which is cubic in tR−1 , quadratic
in tA+1 and linear in tA. Then the expanded system is sorted into three coefficient
matrices by powers of tA+1 as

(
t2A+1H2 + tA+1H1 +H0

)
v = 0, where H2, H1, H0

are 8× 8 and

v = (tAh,h)
T ;h = [t3R−1, t

2
R−1, tR−1, 1]

T . (3)

Then we construct the 16× 16 generalized eigenvalue problem with notations Λ :=
tA+1, v1 := v and v2 := tA+1v,

(
O I

−H0 −H1

)(
v1

v2

)
= Λ

(
I O
O H2

)(
v1

v2

)
.

where O denotes an 8×8 block of zeros and I is the 8×8 identity block. The variables
θA+1, θR−1 and θA can be obtained from the real eigenvalues and eigenvectors. We
also check for multiple eigenvalues and apply extra treatment when necessary.
D. Solving for remaining variables. The vector b is acquired by multiplying

the pseudoinverse B† = V̂ Σ̂−1ÛT on both sides of the original system:

b = B† (PαtA + Pβ)

(
c′

1

)
.

Then θR+1 and θA−1 can be solved with selection of appropriate components of b
to achieve accurate solutions, and θR is computed with symbolic expressions.

2.1. Formulation of closure conditions and system of equations. In this
section we describe the formulation of closure conditions for the closed DH system.
The arm axis zA has two associated frames: the first locates at the head of zA con-
necting to link axis xA, Q

+
A = {xA,yA, zA} and the second is Q−

A = {xA−1,y
−
A , zA},

where the tail of zA connects to link axis xA−1. Let r be the vector connecting the
tail of the reference axis zR to the tail of arm axis zA, so that r and zR are coterminal
and r connects zR to the frame origin of Q−

A (left in Fig. 1).
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Let us first consider the rotation about θA relating the frame Q−
A to Q+

A, where

xA−1 = xA cos θA − yA sin θA,

y−
A = xA sin θA + yA cos θA.

Taking the inner product between an appropriate vector w, and the coordinate
vectors xA−1, and y−

A , we obtain

〈w,xA−1〉 = 〈w,xA cos θA − yA sin θA〉,
〈w,y−

A〉 = 〈w,xA sin θA + yA cos θA). (4)

The sines and cosines of θA are next converted to half-tangent relations through the
identities for tA = tan(θA/2) as sin θA − tA cos θA = tA, and tA sin θA + cos θA = 1.
Multiplying each of the inner-product relations (4) by tA, and adding (respectively
subtracting) the other replaces the two unknowns sin θA and cos θA with single
unknown tA = tan(θA/2) at the cost of coupling the equations (4), resulting in the
pair of relations

〈w,xA−1tA − y−
A〉 = 〈w,−yA − xAtA〉,

〈w,y−
AtA + xA−1〉 = 〈w,xA − yAtA〉. (5)

Equations in (5) are equivalently expressed in the matrix form
(
〈w,xA−1〉 −〈w,y−

A〉
〈w,y−

A〉 〈w,xA−1〉

)(
tA −1
1 tA

)
=

(
−〈w,yA〉 −〈w,xA〉
〈w,xA〉 −〈w,yA〉

)(
1 −tA
tA 1

)
,

(6)

which is the matrix representation of the complex equation
(
〈w,xA−1〉+ i〈w,y−

A〉
)
(tA + i) = − (〈w,yA〉 − i〈w,xA〉) (1 + i tA). (7)

The observation of the complex form of the coupled equations is used to cut the
computation by 50% for the first elimination step where the SVD of the matrix of
coefficients corresponding to the left-hand side unknowns is computed as a complex
10× 8 matrix rather than a real 20× 16 matrix.

The displacement of the arm frame Q−
A with respect to the reference axis zR

is fully and redundantly described by 10 quantities in Table 1 and the vectors
xA−1,y

−
A , zA, zR and r, relating zR and connecting vector r to the arm frame Q−

A.
Six of the quantities, those without imaginary parts (E5 − E10), are already in
suitable form to evaluate along both sides of the loop connecting zR to zA to form
a set of closure conditions posed as a system of 6 equations where the unknowns
are partitioned into two sets: the sines and cosines of θR+1, θA−1 and the sines and
cosines of θA+1, θR−1.

Equating real and imaginary parts of (7), or the first column of the matrix
relation (6) with w = zR for (E1), w = 1

2
〈r, r〉zR−〈r, zR〉r for (E2), w = zR×r for

(E3), and w = r for (E4), we can obtain the other set of 8 equations by writing the
real and imaginary parts separately as E1,R, E1,I , ..., E4,R, E4,I . Details of all the
equations are given in App. B. Then the real-valued relations between EL, the left-
hand expansion into the constants multiplying the sines and cosines of θR+1, θA−1,
and ER, and the right-hand expansion into the sines and cosines of θA+1, θR−1,
coupled by the half-tangent of θA can be evaluated below. The left evaluation EL is
formulated by orthogonal transformations through which the vectors xR, . . . ,xA−1

and zR, . . . , zA−1 can be expressed in the coordinates of the arm frame Q−
A. The
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right evaluation ER is similarly formulated by expressing the vectors xA, . . . ,xR−1

and zA, . . . , zR−1 in the coordinates of the arm frame Q+
A.

The orthogonal transformation between frames connected by a joint axis zi
is given by the rotation u−

i = Aa,iu
+
i , where u−

i = (〈u,xi−1〉, 〈u,y−
i 〉, 〈u, zi〉)T

contains the coordinates of unit vector u expressed in the frame Q−
i , and u+

i =
(〈u,xi〉, 〈u,yi〉, 〈u, zi〉)T contains the coordinates of u expressed in the frame Q+

i .

Similarly, u+
i = A−1

a,iu
−
i rotates the opposite direction about an axis, with A−1

a,i =

AT
a,i, the transpose of the forward rotation. The transformations either way about

a link xi are given by u+
i = Al,iu

−
i+1, and u−

i+1 = A−1
l,i u

+
i . The orthogonal matrices

Aa,i and Al,i are the 3× 3 rotation matrices

Aa,i =




ci −si 0
si ci 0
0 0 1


 , and Al,i =




1 0 0
0 λi −µi

0 µi λi


 , (8)

where λi = cosαi and µi = sinαi and αi is the given twist angle.
Composing transformations in (8), u−

i = Aiu
−
i+1; and transforming the opposite

direction around the loop, u−
i+1 = A−1

i u−
i , with

Ai = Aa,iAl,i =




ci −siλi siµi

si ciλi −ciµi

0 µi λi


 , and A−1

i = AT
i . (9)

The left evaluation EL proceeds by writing

u−
A = A−1

A−1A
−1
R+1A

−1
l,Ru

+
R, (10)

u−
A = A−1

A−1A
−1
R+1u

−
R+1, (11)

u−
A = A−1

A−1u
−
A−1. (12)

Then the coordinates of zR in frame Q−
A are found by setting u+

R = [0, 0, 1]T in (10);

in other words, in the third column of A−1
A−1A

−1
R+1A

−1
l,R. The connecting vector in

terms of the axis lengths Sj and link lengths aj is given by

r = SRzR + aRxR + SR+1zR+1 + aR+1xR+1 + SA−1zA−1 + aA−1xA−1.

Each term in the expansion is transformed to the coordinates of Q−
A with zR from

(10), xR, zR+1 from (11) and xR+1, zA−1 from (12).
The right evaluation ER proceeds by writing

u+
A = Al,AAA+1AR−1u

−
R, (13)

u+
A = Al,AAA+1u

−
R−1, (14)

u+
A = Al,Au

−
A+1. (15)

Then the coordinates of zR in the frame Q+
A are found in the third column of

Al,AAA+1AR−1, that is by setting u−
R = [0, 0, 1]T in (13). In the right evaluation,

the connection vector r is written as the vector sum proceeding the other way
around the loop

r = −(aR−1xR−1 + SR−1zR−1 + aA+1xA+1 + SA+1zA+1 + aAxA + SAzA).

Each term in this expansion is then written in the coordinate frame of Q+
A, with

xR−1 from (13), zR−1,xA+1 from (14) and zA+1 from (15).
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After deriving the vectors and equations symbolically using MAPLE, we seek to
eliminate all terms involving monomials in cR+1, cA−1, sR+1, sA−1 and their prod-
ucts with tA. There are a total of 16 such terms and only 14 equations in the
system. An additional six equations, (E11) − (E16), are formulated by multiply-
ing both sides of equations (E5) − (E10) by tA. This process does not introduce
additional monomials as (E5) − (E10) do not involve tA. To perform an optimally
conditioned first elimination, we compute the SVD [25] of the left coefficient matrix
and multiply both sides of the equation by its left null-vectors. We proceed by
describing a procedure for computing the null-vectors using a complex version of
the SVD, taking advantage of the inherently complex structure of the system.

2.2. Complexifying the first elimination. The entire system of equations (E1)−
(E16) is written as a 20 × 16 matrix equation Bb = Pc + qtA + r, given in block
form as


B1 B2

B3 0
−B2 B1

0 B3



(

tAb
′

b′

)
=




P1 P2

P3 0
P2 −P1

0 P3



(

tAc
′

c′

)
+




q1

q2

q3

0


 tA +




r1
0
r3
r4


 ,

(16)

where b′, c′ are given in (1) and (2). The matrix B denoted in block form with
4 × 8 blocks B1 and B2 from the left evaluations of (E1,R) − (E4,R); and the 6 ×
8 block B3 from the left evaluations of (E5) − (E10), each holding the constant
coefficients multiplying the vector of unknowns b. Similarly for the right-hand
side coefficient matrix P and vector of unknowns c, corresponding to the sines and
cosines of θA+1, θR−1. Finally, the 20 × 1 vector q holds all coefficients of each
equation that multiply only the unknown tA and r holds all constants. The four
equations (E1,R) − (E4,R) are written as

(
B1 B2

)
b =

(
P1 P2

)
c + q1tA +

r1; the six equations (E11) − (E16) are written as B3tAb
′ = P3tAc

′ + q2tA; the
equations (E1,I) − (E4,I) are written as the subsequent four rows of the system,(
−B2 B1

)
b =

(
P2 −P1

)
c+q3tA+r3; and the last six rows of (16), namely

B3b
′ = P3c

′+r4 hold equations (E5)− (E10). This particular ordering of equations
is chosen to reveal the complex structure of B.

The coefficient matrix B on the left-hand side of (16) is the real representation
of the complex matrix C

B =




B1 B2

B3 0
−B2 B1

0 B3


 , C =

(
B1

B3

)
− i

(
B2

0

)
.

We proceed by computing the complex SVD of C, then block multiplying both sides
of (16) by the left singular vectors of B reconstructed from the left singular vectors
of C. This technique is motivated by the observation that the set of singular values
of B are the set of singular values of C, each with twice the multiplicity; moreover,
the singular vectors of B are rearrangements of the real and imaginary parts of the
singular vectors of C. The reduction of a 20× 16 to a 10× 8 matrix decomposition
justifies the use of complex arithmetic, as the calculation of the SVD is one of the
computationally intensive steps in the entire algorithm. The full description of the
relation between the SVD of complex matrix and that of its real representation is
discussed in the App. C.
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The SVD of C is obtained for instance by the routine ZGESVD in LAPACK [1].
Assume C = UCΣCV

H
C , with UC and VC complex unitary, and V H

C the Hermitian
conjugate of VC . ΣC is the real 10 × 8 matrix whose upper left-hand block is
the diagonal matrix containing the singular values of C in descending order, with
remaining entries of zero. Write UC in explicit complex form as

UC =
(
UR,1 + iUI,1 · · · UR,10 + iUI,10

)
.

Assume B = UΣV T where U and V are real orthogonal matrices, and Σ is the real
20×16 matrix whose upper left-hand block is the diagonal matrix of singular values
of B in descending order, with remaining entries of zero. Then U can be obtained
from UC as

U =

(
UR,1 −UI,1 · · · UR,10 −UI,10

UI,1 UR,1 · · · UI,10 UR,10

)
.

The left null-vectors of B are the last 4 columns of U , denoted here as the 20 × 4
matrix UN ,

UN =

(
UR,9 −UI,9 UR,10 −UI,10

UI,9 UR,9 UI,10 UR,10

)
.

Define the 20×9 coefficient matrix Pα from the first 8 columns of P concatenated
with q, and the 20× 9 matrix Pβ from the last 8 columns of P concatenated with
r,

Pα =




P1 q1

P3 q2

P2 q3

0 0


 , Pβ =




P2 r1
0 0

−P1 r3
P3 r4


 .

Equation (16) can now be written more compactly as

Bb =
(
PαtA + Pβ

)( c′

1

)
. (17)

Since UT
NB = 0, left-multiplying (17) with UT

N eliminates the sines and cosines of
θR+1 and θA−1, as contained in b. The resulting 4× 9 system

(
UT
NPαtA + UT

NPβ

)( c′

1

)
=
(
PU
α tA + PU

β

)( c′

1

)
= 0, (18)

is optimally conditioned, and the process allows a stable elimination of the first set
of variables and computation of the resultant for the remaining ones. c′ was defined
in (2).

2.3. Formulation of the generalized eigenvalue problem. The next step in
the solution process is the conversion of the sines and cosines of θA+1 and θR−1

to their respective half-tangents in order to reformulate the system as a 16 × 16
generalized eigenvalue problem for eigenvalue tA+1. The two remaining unknown
half-tangents corresponding to (18), tA and tR−1, are extracted from the correspond-
ing eigenvector for each real eigenvalue. First, the 4× 9 system (18) is transformed
into an 8×8 polynomial system in the half-tangents of θA, θA+1 and θR−1 as follows.
The sines and cosines of θA+1 and θR−1 in c′ (2) are converted by the half-tangent
identities sj = 2tj/(1 + t2j ) and cj = (1 − t2j )/(1 + t2j ). Multiplying through by

(1 + t2A+1)(1 + t2R−1) to clear denominators transforms the system (18) to a system
of four polynomial equations. Each of these is quadratic in tA+1, quadratic in tR−1

and linear in tA. Multiplying this first set of equations by tR−1 yields a second set
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which is cubic in tR−1, quadratic in tA+1 and linear in tA. The coefficients of (18)
are thereby sorted into three coefficient matrices by powers of tA+1, namely the
8× 8 matrices H2, H1 and H0 which satisfy

(
t2A+1H2 + tA+1H1 +H0

)
v = 0, (19)

with the unknowns held in vector v given in (3).
The matrix polynomial problem (19) is rewritten as the generalized eigenvalue

problem
(

O I
−H0 −H1

)(
v1

v2

)
= Λ

(
I O
O H2

)(
v1

v2

)
. (20)

An in-depth discussion of the solution to the matrix polynomial (19) posed as the
generalized eigenvalue problem (20) may be found in [7, 17, 18], and the references
therein. In particular, it is established that {Λk}16k=1, the set of eigenvalues of (20)
are the solutions of (19), and the real eigenvalues correspond to solutions of the
physical problem. Equation (20) is solved for instance using the LAPACK routine
DGGEV. The structure of (20) with respect to (19) is revealed by expanding (20) by
blocks, yielding

v2 = Λv1, (21)

−H0v1 −H1v2 = ΛH2v2. (22)

For the eigenvalue Λ = tA+1, applying (21) to (22), we obtain
(
t2A+1H2 + tA+1H1 +H0

)
v1 = 0, (23)

that is, for each real eigenvalue tA+1, the components of v1 are the unknowns of
v in (3). To obtain the correct normalization, take for instance tA = v2,4/v2,8,
and tR−1 = v2,7/v2,8, where v2,j is the jth component of vector v2 = Λv1. The
generalized eigenproblem has the optimal size of 16× 16, and it allows handling of
exceptional cases, such as joint angle values equal to π. We also remark that the
choice of multiplying tR−1 with the first set of equations and expanding the matrix
polynomial (19) in terms of tA+1 is arbitrary.

2.4. Solving for remaining three variables. The remaining variables θR+1 and
θA−1 may be obtained by taking advantage of the previously computed SVD of B
in system (17) where the left-singular vectors and right-singular vectors were found.
For the last variable θR, we will calculate the joint angle among three vectors by
using the expressions in (10)-(15). Since the numerical values of the sines and
cosines of θA, θA+1 and θR−1 are now considered known, they can be used in the
following calculations.

To find θR+1 and θA−1, we first substitute three known variables tA, θA+1, θR−1

into the system (17) and now the right hand side of (17) is a known 20 × 16
matrix. We next form the pseudo-inverse B† of the coefficient matrix B = UΣV T ,
where the factors U,Σ, V have already been computed in the first elimination step.

From the economy SVD, B = Û Σ̂V̂ T where Û contains the left singular vectors

of B, V̂ contains the right singular vectors of B, and Σ̂ is the (square) diagonal
matrix containing the singular values of B, the pseudo-inverse B† is given by B† =

V̂ Σ̂−1ÛT , and satisfies B†Bb = b, revealing the remaining unknowns residing on
the left-hand side of (17) by

b = B† (PαtA + Pβ)

(
c′

1

)
. (24)
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As the right hand side in the equation above is known, we extract the values for
sines and cosines of θR+1, θA−1 by selecting appropriate components of b. Applying
the arctangent function atan2, we then can get the values for θR+1, θA−1. Take for
instance θR+1 = arctan(b16, b15) and θA−1 = arctan(b14, b11).

The last unknown θR is recovered using three vectors xR−1, zR,xR expressed
in the same frame. From equations (10)-(15), we already have the expressions of
the vectors zR,xR in the frame Q−

A and x+
R−1, the expression of the vector xR−1

in the frame Q+
A. Then we only need to apply one more transformation to xR−1

and express it in the frame Q−
A: x

−
R−1 := Aa,A x+

R−1. Now all the three vectors are

expressed in the same frame Q−
A and the joint angle θR may be computed among

x−
R−1, zR,xR and then all 6 of the unknown joint angles may be identified for each

real solution of the generalized eigenvalue problem (20).

3. Computational details and discussion of special cases. The stable imple-
mentation of the method requires further consideration. Let us start from the first
identified variable tA+1. The solutions for θA+1 will be obtained once we get the
eigenvalues. After obtaining the eigenvalues tA+1, we will use eigenvectors (which
have 16 components) to calculate tA, tR−1. In the case of a simple eigenvalue the
eigenvector V is comprised of constant multiples of various monomials in these
variables:

V = [v1 ;v2 = tA+1v1] , v1 = [tAh ;h] , h =
[
t3R−1, t

2
R−1, tR−1, 1

]T
.

The key here is that in the eigenproblem solver the eigenvector will be scaled by the
largest component. To obtain the solution as accurately as possible, we will select
the octad containing the maximal component. Either the first 8 components v1 or
the last 8 components v2 will be used.

If |tA+1| > 1, the maximum is found among the last 8 components and v2 will
be selected to calculate tA, tR−1. Otherwise, v1 will be chosen. This holds also in
the limits |tA+1| → ∞ and |tA+1| → 0. Here we denote the 8 component vectors
as vm,m = 1 or 2. The index of the maximal component in vm depends on the
magnitude of |tA|, |tR−1| as shown in Table 2 where details of the computation for
each case are given. Cases where at least one of the variables θA, θA+1, θR−1 is
close to π and the corresponding tA, tA+1, tR−1 goes to ∞ require no additional
treatment.

After solving for the first three variables, the pseudoinverse is used to calculate
θA−1, θR+1 in (24). Since the vector b also contains tA which might be large in
magnitude, the maximal component of b must be determined. If |tA| < 1 and
the maximal entry appears among the last 8 components of b, we will calculate
θR+1, θA−1 as θR+1 = arctan(b16, b15) and θA−1 = arctan(b14, b11). Otherwise we
will apply the first 8 components of b. One more test is needed to determine
which components are selected. If |b3| > |b6| (that is, |cA−1| > |sA−1|), then
θR+1 = arctan(b2/b3, b1/b3). Otherwise θR+1 = arctan(b5/b6, b4/b6). If |b7| > |b8|
(that is, |cR+1| > |sR+1|) then θA−1 = arctan(b4b7, b1/b7). Otherwise θA−1 =
arctan(b5/b8, b2/b8). The results are summarized in the last four columns of Table 2.
The procedures given above will produce the final solutions correctly for all regular
cases.

Discussion of the difficulty of the possible singular case where one variable is
close to π without further analysis has appeared e.g. in [18, 20, 10], and this case
can spontaneously arise in the study of macromolecular chains [6, 16] as was also
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Max |tA| |tR−1| tA tR−1 b θR+1 b θA−1

|vm,1| ≥ 1 ≥ 1
vm,1

vm,5

vm,1

vm,2

|b3| > |b6| atan

(

b2

b3
,
b1

b3

)

|b7| > |b8| atan

(

b4

b7
,
b1

b7

)

|vm,4| ≥ 1 < 1
vm,4

vm,8

vm,3

vm,4

|b3| < |b6| atan

(

b5

b6
,
b4

b6

)

|b7| < |b8| atan

(

b5

b8
,
b2

b8

)

|vm,5| < 1 ≥ 1
vm,1

vm,5

vm,5

vm,6

atan(b16, b15) atan(b14, b11)

|vm,8| < 1 < 1
vm,4

vm,8

vm,7

vm,8

”” ””

Table 2. Computing variables. Double vertical lines indicate
separate tests, with all cases hinging on the magnitude of |tA| : first,
tA and tR−1 found from eigenvector components, depending on the
magnitude of |tR−1|; then θR+1 and θA−1 are found depending on
relative sizes of certain components in b.

pointed out in [11]. Following the method in [12], Kim and Chirikjian [11] introduce
a Jacobian-based method to handle this issue, presumably due to failure of the basic
method. However, in the present formulation, the case where certain joint angles
are equal to π is naturally handled by the general approach.

In contrast, the presence of multiple eigenvalues requires special consideration.
It was mentioned in [18] that multiple eigenvalue cases may arise in exceptional
situations. The key difficulty, given a stable computation of the invariant subspace
of a multiple eigenvalue, is that the corresponding eigenvectors may not follow the
algebraic monomial pattern as expected and the formulas above will not produce the
correct solutions. One way to address this problem is to change the reference (R)
and arm (A) in the 6R6B system: there exist 6 possible choices for the reference
and the eigenproblem might be simple for one of them. However, as shown in
the examples, special cases can exist for which regardless of reference some of the
eigenvalues are still multiple. Then we must resort to the modification procedures
as discussed in the Appendix. LAPACK 3.10.0 used in the computations presented
here can handle multiple eigenvalues stably, while that was not the case for earlier
versions. As a result, it is now possible to take advantage of basic linear space theory
to transform the eigenvector basis of the invariant subspace to a basis vector set that
is congruent to the required monomial structure from which the other variables may
be extracted. In robotics, continuous movement of the system is desired as a result
of parameter perturbation. When changes in the system may cause an instance
of a multiple crossing of eigenvalues, our method can still maintain accuracy so
that different solutions could be tracked continuously through the crossing. By
comparison, the Jacobian continuation method discussed in [11] can identify the
changing process of specific eigenvalues and correctly follow the movement of the
system, however at the price of increased computational cost.

Consider a double eigenvalue ρ1 ≈ ρ2 as an example. One tolerance tol1, typically
less than 1e-14, is used to determine the equality of eigenvalues. Numerical accuracy
can also be at issue, as the tolerance to identify equality may be dependent on the
matrix pencil of the eigenproblem. The solver will produce two basis vectors V1

and V2 for the two dimensional subspace, and in general we will need to apply extra
treatment in order to uncover the unique basis pair possessing the required algebraic
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monomial structure. An additional complication results from the presence of several
variables of higher multiplicity or the presence of infinity and zero in tA, tR−1. Then
we need to determine if it is a special case by checking certain components inV1,V2.
Here we only show the determination for ‘regular double’ and ‘double-double’ cases
where tA, tR−1 are not zero or infinity. The detailed description and pseudocode for
the determination of all cases is given in the App. D. The ‘regular double’ means
that the eigenvalue tA+1 is double and tR−1 is not, while ‘double-double’ means
tR−1 is double as well. Because of our construction, the double eigenvalue with
only double tA is treated as regular double. Double-double cases are identified
by checking if certain ratios between components in V1,V2 are within another
tolerance tol2 (typically 5e-12), as follows:

! Test if eigenvalues ρ1, ρ2 are equal, define DIFij =

∣∣∣∣
V1,i

V1,j

− V2,i

V2,j

∣∣∣∣

IF |ρ1 − ρ2| < tol1 or

∣∣∣∣
1

ρ1
− 1

ρ2

∣∣∣∣ < tol1

IF DIF78, DIF58, DIF34, DIF14 < tol2,

∣∣∣∣
V1,3

V1,4

− V1,7

V1,8

∣∣∣∣ < tol2 THEN

apply treatment for double-double case
ELSE

apply treatment for regular double cases

This method also works for the triple case: tol1 will be applied to test if ρ3
is equal to ρ1 and ρ2. In regard to higher multiplicity, we have only considered
as far as the triple-double case and provided special treatment. The ‘triple’ in
triple-double means the eigenvalue tA+1 is triple and ‘double’ means that among
the corresponding three solutions for tR−1 two have equal values. Our method to
handle triple-double case however is different from double-double case above. The
treatment for regular triple case will be applied first and three solutions for tR−1 will
be obtained, denoted as DT1. Next we choose any two eigenvectors and apply the
regular double treatment to them and get two solutions for tR−1, denoted as DT2.
If two values of DT2 are in DT1, then it is actually triple-double case, otherwise it
is regular triple. The logic introduced to treat triple cases is as follows:

! Test if eigenvalues ρ1, ρ2, ρ3 are equal

IF |ρi − ρj | < tol1 or

∣∣∣∣
1

ρi
− 1

ρj

∣∣∣∣ < tol1, for all i < j ≤ 3

apply regular triple treatment, get DT1

apply regular double treatment to Vi,Vj , get DT2

IF DT2 in DT1 THEN
apply treatment for triple-double case

ELSE
apply treatment for regular triple case

We note that cases where all half-tangent variables are simultaneously double
– representing a common first-order tangency of the surfaces associated with the
underlying polynomial system – can not be treated by this method, as a double
eigenvalue would then be defective with only a single eigenvector which cannot be
handled by the eigensolver. As a result, defective cases are typically not identifiable
by checking the eigenvectors from the solver or solvable by the method. However one
special case might be identified through the components in eigenvectors, specifically
if tA, tR+1 are both double infinity. Such a case will be discussed in Example 5 below.
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4. Numerical results. In our method, we employ the left null vectors of matrix
B (16) as obtained from the SVD to efficiently arrive at the resultant (18) while
complexifying the SVD increases computational efficiency. The pseudoinverse B† is
used to stably determine the eliminated variables. The 16 dimensional generalized
eigenvalue problem as derived in our method as well as in [13, 21, 12, 15, 22]
corresponds to the smallest possible dimension of the problem. The solver for the
generalized eigenvalue problem is used in our method, as well as in [18, 21]. An
alternative approach is to multiply the inverse of the right matrix (like in [12, 15]) to
convert into an ordinary eigenvalue problem. The key advantage of the generalized
eigenproblem approach is in enabling the correct handling of the case of infinite
eigenvalues, corresponding to a joint angle equal to π. In this section, we first
compare the performance of our method with the results from two state of the art
methods as analyzed in [3]. Then several special cases are designed to show the
stability of our method, for instance the presence of π in the solution and the case
of multiple eigenvalues. Two special singular cases are discussed at the end.

4.1. General Performance. To benchmark the performance of R6B6 in compar-
ison to what may be considered the state of the art methods, we examine four
manipulators discussed in [3]: Raghavan and Roth Manipulator (abbreviated as
RRM), IACE Laboratory Manipulator (ILM), Paint Manipulator (PTM) and the
Manocha and Canny Manipulator (MCM). Detailed description of manipulators
can be found in [3]. In that paper, two methods [10, 15] were compared using 2500
tuples of 6 joint angles. The 6-tuples were first randomly chosen and used to con-
struct the end effectors. Based on the end effectors, the two methods were applied
respectively to check if the corresponding 6-tuples of joint angles can be recovered.
Here we follow the same logic to check the performance of R6B6 with respect to
the above manipulators. We choose 2500 random tuples of joint angles in the range
[−π, π] to construct the end effectors and then solve the inverse kinematics using
our algorithm written in C++. The program is compiled on Mac using Clang ver-
sion 12.0.0. LAPACK 3.10.0 routines written in Fortran 90 are compiled by gfortran
version GNU 8.2.0.

All the cases tested were solved correctly by our method. The timings are given
in Table. 3. The timings for the three major steps are given separately. The timing
of conversion contains the transformation between open chain and closed ring and
the timing for calculating the remaining variables. The SVD timing is for the SVD
function and the eigenvalue step is for the generalized eigenvalue computation. As
can be seen in the table, the average total time for all the manipulators is around
0.5 ms and the average errors for all the joint angles are 8.1e-12, 1.6e-13, 1.3e-12,
6.7e-14 respectively. The maximum errors (not shown in table) are 1.4e-8, 1.1e-10,
1.3e-9, 5.0e-11. To further demonstrate the stability of the algorithm, the closest
solution found in each case to the input joint angles was used to compute the closure
error, i.e. the difference between the posed end effector and the one found from these
angles with a forward kinematic construction. The average Frobenius matrix norm
[25] of the difference between the posed and reconstructed end effectors is 1.3e-12,
8.6e-14, 3.8e-13, 3.7e-14 (with maximum values at 1.7e-9, 3.5e-11, 2.2e-10, 6.4e-
12), thus verifying the stability of the solution and reconstruction processes. The
computations were performed on a Macbook with Intel Core i5 Dual-Core, 2.7 GHz
and 8GB RAM.

According to the results in [3] (performed on a PC with AMD Phenom processor,
3.2 GHz and 4 GB RAM), the timing for the manipulators with the method in [10]
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and [15] is more than 10 ms and 1 ms respectively. We note that the error results for
the later two methods refer to solved cases, while both methods fail for certain cases.
The timings, corresponding smallest errors and failure rate (%) of Liu-Zhu (LZ)
method and Husty-Pfurner (HP) method are included in Table 4. No failures were
observed for our method, even after repeating the test for 25000 random 6-tuples.
We discovered one intrinsically singular case in MCM, as discussed in example 7
below.

Steps RRM ILM PTM MCM

Conversion 97.38 97.99 96.87 110.57

SVD 102.56 103.24 103.76 107.71

Eigenvalue 165.80 154.76 170.28 166.16

Total (avg.) 482.85 454.33 491.75 507.67

Total (max.) 2222.0 2878.0 2389.0 2526.0

Total (min.) 405.0 388.0 403.0 403.0

Table 3. Computation times (in µs) for the various stages of
R6B6 algorithm.

RRM ILM PTM MCM

Average
execution
time (ms)

R6B6 0.5 0.5 0.5 0.5

LZ 1.2 2.4 2.4 1.9

HP 9.7 9.7 9.6 9.7

Error

(rad.)

R6B6 8.1e-12 1.6e-13 1.3e-12 6.7e-14

LZ 1.7e-11 4.3e-5 2.8e-6 1.6e-8

HP 1.4e-7 3.9e-8 8.6e-6 2.3e-4

Failure

rate (%)

R6B6 0 0 0 0

LZ 0.1 100 100 0

HP 0 0.3 0.32 3.7

Table 4. Comparative results for R6B6, LZ and HP algorithms.
Average computation time (in ms), average errors of solved angles
in radians and failure rates are given. The results shown for the
other two methods are as reported in [3]. The LZ method failed
100% on the ILM and PTM manipulators, so the error reported
corresponds to slightly perturbed manipulator parameters.

We next continue testing for some special examples. The list of seven examples
is given in Table 5. The first example, involving tA+1 = ∞, is shown to follow
the general case with no additional treatment, although three of the unknown joint
angles in one solution take the value π. We then give four multiple eigenvalues
examples, including instances of double and triple eigenvalues with additional mul-
tiple variables. The second example, where a double infinite eigenvalue is discussed,
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Example # Description # solution

π case 1 θA+1, θA, θR−1 in one solution are π 6

Multiple

2 Double ∞ eigenvalue 8

3 Special double eigenvalues 8

4 Special triple eigenvalues 8

5 Double 0 eigenvalue, adjacent double ∞ 4

0 inputs
6 One zero-length parameter 2

7 Many zero-length parameters 10

Table 5. List of information for all special examples.

is shown to be amenable to the method in App. D.1. There follow two examples,
the third one with a double and the fourth with a triple eigenvalue, both including
additional double variables, for which the modifications given in App. D.2,D.3,D.4
will suffice. In the fifth example, a case is considered where there exists a double
eigenvalue tA+1 = 0 with tA = tR−1 = ∞. This case appears to be defective, as
discussed in App. D.2. Finally, the sixth and seventh examples discuss the cases of
zeros in the input parameters, and possible failures related to singular axes systems.
The numerical analysis and discussion of the special features are provided in the
corresponding examples.

4.2. Example 1: simple π case. If one of the variables θA, θA+1, θR−1 involved
in the eigenproblem through a half-tangent representation is close to π, it is stated
in [18] and [11] that the system will be singular and extra iterations are needed to
improve the accuracy. This is because the half-tangent of a joint angle approaching
π goes to infinity which may introduce errors in the solution process. On the
other hand, seen from the perspective of projective space, the point at infinity is
just another regular point. In the eigenvalue solver in LAPACK as an example, an
eigenvalue is represented by the ratio of a pair of parameters α and β. A vanishing β
with nonzero α indicates an infinite eigenvalue, and no additional iterative method
is required to obtain an accurate solution. Our method takes advantage of this: as
outlined above, we only need to identify appropriate components in the computed
eigenvectors to achieve accurate solutions. The input linkage parameters for the
first example are shown in Table 6 and solutions are given in Table 7. In the first
solution, the 4th, 5th and 6th variables are −π which correspond to A,A+1, R− 1
respectively for reference R = 1. This case shows that the eigenvalue goes to ∞
while other two variables obtained from the eigenvector also go to ∞. For example
1, the 4× 4 end effector matrix is

[
x y z d

0 0 0 1

]
, (25)

with x = [0.935729747639523,−0.104687021946279, 0.336824088833465]T ,

y = [−0.266206316527123,−0.836082865520739, 0.479687021946279]T ,

z = [0.231395843574460,−0.538522115997707,−0.810215955259964]T ,

d = [−4.712089111505835,−10.150881856679735, 8.892349540785121]T .
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Joint i ai Si αi(deg)
1 1.00 9.00 90.00
2 4.00 1.00 -90.00
3 8.00 2.00 40.00
4 1.25 3.00 90.00
5 2.00 7.00 30.00
6 3.00 3.00 50.00

Table 6. Linkage parameters of example 1.

No. θ1 θ2 θ3 θ4 θ5 θ6
1 80.0000 80.0000 110.0000 180.0000 -180.0000 180.0000
2 -108.4903 -65.5094 -130.2246 -129.6402 -157.3853 -168.0230
3 119.0163 -152.6296 131.2120 7.9542 -148.4491 5.1112
4 146.9569 -80.0075 155.6435 -11.9434 104.8319 -179.3449
5 6.8777 81.0330 -172.4691 165.2536 -9.9985 -61.1845
6 -126.9544 -42.7833 -64.5878 -141.2330 -63.8036 70.0651

Table 7. Solutions of joint angles (in degrees) for example 1.

4.3. Examples 2-5: Multiple eigenvalues. The chains in examples 2-4 are
closed chains involving 6 rotors with vanishing links. Here the end effector reaches
the origin so its orientation is given by a 4 × 4 identity matrix. We use internal
parameters, i.e. bond lengths bl, bond angles ba and torsional angles ta as defined
in App. A, to pose these three examples, where the first two parameters define the
linkage while the torsional angles are to be determined in the solutions. Example 2
entails a double eigenvalue, demonstrating in addition that an infinite double eigen-
value poses no special difficulties. Examples 3 and 4 correspond to double and triple
eigenvalues respectively, both with additional double variables. Example 5 exhibits
a case where the variables adjacent to the double eigenvalue are both infinite.

4.3.1. Example 2: Double π case. Example 2 shows a case containing an infinite
eigenvalue of multiplicity two. The internal parameters and transformed DH pa-
rameters of the system are given in Table 8 where the torsions ta are left unspecified
because they will not be used in the solution process. The solutions are given in
Table 9. The system is solved by setting the reference as R = 1. The fifth variable
in solutions 7 and 8 is π, so that we have a double eigenvalue at infinity. This case
can be handled by the treatment for regular double eigenvalues in App. D.1.

4.3.2. Example 3: Special double eigenvalue case. The internal parameters and
transformed DH parameters of example 3 are given in Table 10. Solving the sys-
tem, we get 8 solutions as in Table 11. It may be verified that the second, third,
fifth and sixth variables of the solutions have two values that are double. Setting
the reference R as any of 1, 2, 4, 5 results in double eigenvalues, while for refer-
ences 3 or 6 the system can be solved as a regular case. With varying references,
the constructed system and the matrix pencil would change, requiring adjustments
to the tolerances for determining the equality of eigenvalues. The tolerances for
references R = 1, 2, 4, 5 are 112e-16, 103e-16, 44e-16, 34e-16, respectively. In fact,
this example is a double-double case where two consecutive variables can be both
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Index i bli bai
tai

ai Si αi

1 3.00 90.00 – 0.00 3.00 -90.00

2 2.00 90.00 – 0.00 2.00 -90.00

3 2.00 90.00 – 0.00 2.00 -90.00

4 1.00 90.00 – 0.00 1.00 -90.00

5 3.00 90.00 – 0.00 3.00 -90.00

6 1.00 90.00 – 0.00 1.00 -90.00

Table 8. Example 2. Left: Internal parameters; Right: DH parameters.

No. θ1 θ2 θ3 θ4 θ5 θ6
1 99.6641 -64.8363 118.1837 -93.2078 116.6642 -63.2178
2 -99.6641 64.8363 -118.1837 93.2078 -116.6642 63.2178
3 -122.1432 51.4420 35.6079 -100.2152 42.2821 42.5890
4 47.9564 50.6006 -135.6256 77.1011 36.0662 -66.6271
5 122.1432 -51.4420 -35.6079 100.2152 -42.2821 -42.5890
6 -47.9564 -50.6006 135.6256 -77.1011 -36.0662 66.6271
7 0.0000 70.5288 0.0000 -70.5288 180.0000 -38.9424
8 0.0000 -70.5288 0.0000 70.5288 180.0000 38.9424

Table 9. Solutions of joint angles for example 2.

Index i bli bai
tai

ai Si αi

1 3.00 90.00 – 0.00 3.00 -60.00

2 2.00 120.00 – 0.00 2.00 -140.00

3 2.00 40.00 – 0.00 2.00 -60.00

4 3.00 120.00 – 0.00 3.00 -90.00

5 1.00 90.00 – 0.00 1.00 -80.00

6 1.00 100.00 – 0.00 1.00 -90.00

Table 10. Example 3. Left:Internal parameters; Right: DH parameters.

double. In Table 11, the double value in 5th variable correspond to double value in
the 6th variable. For reference R = 1 (resp. R = 4), the eigenvalue (A + 1) is the
5th (resp 2nd) variable and the 6th (resp. 3rd) variable, R − 1, is obtained from
the eigenvectors. In these cases, we need one more tolerance check to decide the
double-double case by testing equality of certain components in the two eigenvectors
(see Appendix, section D.2). The tolerance is 5e-13 and 4e-14 for references 1 and
4 respectively. The reason is that these cases involve a double value for tR−1 which
requires special treatment. On the other hand references R = 2 and R = 5 involve
a double value for tA which is in fact treatable by the regular double approach.

4.3.3. Example 4: Special triple eigenvalue case. The parameters of example 4 are
given in Table 12 and the 8 solutions are given in Table 13, as computed in ref-
erence R = 1. Any other reference frame, with the exception of reference 4 (see
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No. θ1 θ2 θ3 θ4 θ5 θ6
1 27.7358 -79.8312 79.8312 -27.7358 -87.5627 87.5627
2 -27.7358 79.8312 -79.8312 27.7358 87.5627 -87.5627
3 107.6847 -79.8312 79.8312 -107.6847 87.5627 -87.5627
4 -107.6847 79.8312 -79.8312 107.6847 -87.5627 87.5627
5 111.3982 36.4769 -36.4769 -111.3982 -41.2381 41.2381
6 -111.3982 -36.4769 36.4769 111.3982 41.2381 -41.2381
7 169.2944 36.4769 -36.4769 -169.2944 41.2381 -41.2381
8 -169.2944 -36.4769 36.4769 169.2944 -41.2381 41.2381

Table 11. Solutions of joint angles for example 3.

Index i bli bai
tai

ai Si αi

1
√
3 30.00 – 0.00

√
3 -120.00

2
√
3 60.00 – 0.00

√
3 -150.00

3 1.00 30.00 – 0.00 1.00 -120.00

4 1.00 60.00 – 0.00 1.00 -120.00

5 1.00 60.00 – 0.00 1.00 -120.00

6 1.00 60.00 – 0.00 1.00 -150.00

Table 12. Example 4. Left:Internal parameters; Right: DH parameters.

No. θ1 θ2 θ3 θ4 θ5 θ6
1 -98.8994 98.8994 -34.7781 -145.2219 145.2219 34.7781
2 98.8994 -98.8994 34.7781 145.2219 -145.2219 -34.7781
3 -98.8994 98.8994 -98.8994 145.2219 -145.2219 98.8994
4 98.8994 -98.8994 98.8994 -145.2219 145.2219 -98.8994
5 -98.8994 -34.7781 98.8994 -145.2219 -81.1006 98.8994
6 98.8994 34.7781 -98.8994 145.2219 81.1006 -98.8994
7 34.7781 98.8994 -98.8994 81.1006 145.2219 -98.8994
8 -34.7781 -98.8994 98.8994 -81.1006 -145.2219 98.8994

Table 13. Solutions of joint angles for example 4.

below), could have been used, producing solutions of comparable accuracy. From
Table 13, we can see that every variable of the solutions has two values that are
triple. Consider solution 2, 4 and 6: the first variable 98.8994 is triple, the second
variable in solutions 2 and 4 are double, and the sixth variable in solutions 4 and 6
are double as well. The other variables display a similar pattern. We note that no
three consecutive variables exhibit simultaneous double values, which as mentioned
earlier would result in an ill-posed system. We refer to this as a triple-double case
where extra treatment will be applied to obtain the correct solutions as discussed in
the App. D.4. There also exists tolerance for deciding equality of eigenvalues as in
example 3 above. The tolerances here are 147e-16, 25e-16, 23e-16, 14e-16, 29e-16,
54e-16 for references R = 1 through R = 6, respectively. Here we must point out
that the accuracy of the eigenvalue solver in C++ is not adequate for R = 4, in
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Figure 3. Triple multiplicity solutions in example 4. Indices I-VI
label the joints, subscripts denote the corresponding solutions.

which some small intermediate values become zero and NaN appears in the final
solutions. The tolerance under which this issue arises will vary in other systems
or software. To illustrate the triple multiplicity solutions, the reconstructed loops
corresponding to solutions 2, 4 and 6 from Table 13 are pictured in Fig. 3 with solid
grey, dotted red and dot-dashed black lines respectively. In this diagram, indices
I-VI label the joints, which are connected by bonds. The first, second and the sixth
bonds coincide because the first torsional angles in the illustrated solutions are equal
for three rings. The third bond in the first two solutions and the fifth bond in the
first and third still coincide because of double multiplicity of the second and sixth
respective variables in the solutions.

Next we explore the impact of small perturbations on the equal eigenvalues and
the tolerances (discussed in Sec. 3). Setting R = 1, the eigenvalues correspond to
the fifth variable θ5. Perturbing the second bond length in the input parameter,
the effect on the eigenvalues corresponding to θ5 (Table 13, solutions 1, 4 and 7)
is shown in Fig. 4. As seen in the figure, the eigenvalues coalesce linearly as the
parameter is varied, and the slopes of their trajectories are approximately 4.8, 2.4
and 0. Without perturbations, the condition numbers of these eigenvalues are 4.36,
7.66 and 1125.98 calculated by using the eigenvectors from the solver. For the
condition number ν of an eigenvalue Λ we used the expression for regular matrix
pairs given in [24] (p. 294), ν = ||x||2||y||2/|yHx|, where x and y are the right
and left eigenvectors of the matrix pair corresponding to Λ. The condition numbers
for the perturbed system with perturbation 1e-10 are 9.67, 55.39, 48.65, which
shows one of the eigenvalues becomes moderately more sensitive as they coalesce.
However, the low condition numbers indicate the eigenvectors are stable with respect
to this perturbation. Then the method gives an accurate solution for eigenvectors
whose components are structured as in (3). As the perturbation increases, the
three eigenvalues will diverge and the problem eventually becomes a simple case.



144 XIN CAO, EVANGELOS COUTSIAS AND SARA POLLOCK

-1 -0.5 0 0.5 1
Perturbation 10

-8

3.19314142

3.19314144

3.19314146

3.19314148

3.1931415

E
ig

e
n

v
a

lu
e

s

 E1

 E2

 E3

-5 0 5  10
-14

Figure 4. Converging process of three equal eigenvalues in exam-
ple 4.

We manually set a large tolerance to let close eigenvalues be treated as equal and
apply the triple case treatment. When the perturbation to the second length is 1e-
13, the tolerance is set to 5e-13 and the correct solutions can be obtained through
the treatment to triple double case, while a small tolerance can not produce closed
solutions. As the perturbation is up to 1e-10, it becomes a simple case where the
closed solutions can be obtained without applying extra treatment. However we
can set the tolerance as 5e-10 which will result in the triple case treatment being
applied and closed solutions are again found. The difference of the solutions with
treatment is on average 1e-5 from the ones without using the treatment. A similar
observation appears for larger perturbations and tolerances. Therefore, a tolerance
value on the order of 1e-14 which works well for the original, pure triple case may be
too small to identify equality of eigenvalues for the slightly perturbed system while
too large a value will induce unnecessary treatment that slows down the calculation.
Setting the tolerance to a larger value 5e-11 works well for this triple case and the
double case above, both in original form as well as under a small perturbation.

4.3.4. Example 5: a special double 0 case. Besides the double-double case with finite
values above, we may encounter a special case where the eigenvalue is double and
corresponding eigenvector contains double infinity. Given two eigenvectors V1, V2,
we may detect this special case from the components in V1, V2 and distinguish two
main categories. The first category which is actually a double-double case, contains
tR−1 as double infinity so that only the first and fifth components in V1, V2 are
nonzero and it has three subcases: 1. tA has two finite values; 2. tA has one finite
and one infinity; 3. tA has double infinity as well, a defective case as discussed
above. When we substitute tA+1, tR−1 back into the original system, if we can
identify zero in the last two components of vector B†Pα(c

′, 1)T , this implies tA is
double infinity and we assign tA = ∞. Otherwise, tA has two finite values that can
be handled by our modification. However we may not be able to distinguish the last
two subcases and we simply set tA as double infinity, and that presents a limitation
of this method. The other category contains tA as double infinity where the last 4
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Joint i ai Si αi

1 0.00 1.00 -90.00
2 1.00 2.00 0.00
3 0.00 1.00 -63.43494882292196

4 1.00
√
5 116.5650511770780

5 2.00 4.00 90.00
6 3.00 2.00 -180.00

Table 14. Linkage parameters of example 5.

No. θ1 θ2 θ3 θ4 θ5 θ6
1 180.0000 180.0000 36.8699 -180.0000 36.8699 180.0000
2 177.5864 98.2537 81.1589 -177.3732 0.5874 179.9358
3 -180.0000 90.0000 90.0000 180.0000 0.0000 -180.0000
4 -180.0000 90.0000 90.0000 180.0000 0.0000 -180.0000

Table 15. Solutions of joint angles for example 5.

components in V1, V2 are zero. If tR−1 is not double ∞, this is a regular case that
can be handled by choosing different components to calculate tR−1 as shown in the
App. D.1.

We designed example 5 to demonstrate a case where the eigenvalue is double and
there is a single eigenvector containing both tR−1, tA as double ∞. The DH system
parameters are shown in Table 14. Solutions, using reference R = 5, in which the
variables involved in the eigensystem are not all simultaneously double, are given in
Table 15. When R = 1, the fifth variable corresponds to the eigenvalue which has
double 0, and corresponding 4th and 6th variables are double π, so this is the first
category discussed above. This is actually a defective case: as expected, we can
detect the double ∞ in tR−1, tA by checking components in the eigenvectors and
assign ∞ values. The calculation for remaining variables θR+1, θA−1 will be done
accordingly, leading to two identical solutions.

4.4. Example 6-7: Zero parameters. In the last two examples, we want to
explore the possible singularity when there exist zeros in the input parameters. In
example 6, the length of one link is close to zero and the twist angle at this link is
π. The parameters for lengths and angles, given in Table 16, were adopted from an
instance of the 19-atom molecular ring shown in the left of Fig. 1, here converted to
an open chain with end effector constructed with joint angles in degrees by [150◦,
120◦, −100◦, −130◦, −50◦, 170◦] and the end effector is in same format as (25) with

x = [0.633701650686384, 0.306727455336273,−0.710169336187001]T ,

y = [0.772570825541157,−0.297759233174306, 0.560779598935362]T ,

z = [−0.039452977581008,−0.904023067848594,−0.425659200954952]T ,

d = [1.763571453982034, 6.200325108507339, 8.700810576520498]T .

In this singular case, a small modification may cause large deviations in the
solutions. With the parameters in Table 16 and the given end effector, the system
is not solvable, becoming solvable only when a small positive value is assigned to
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Joint i ai Si αi

1 1.00 6.00 90.00

2 5.00 1.00 150.00

3 0.00 0.60 180.00

4 1.00 3.40 80.00

5 1.40 2.40 30.00

6 2.30 3.00 −110.00

Table 16. Linkage parameters of example 6.

a3 θ1 θ2 θ3 θ4 θ5 θ6
1e-6 150.0000 120.0000 -100.0000 -130.0000 -50.0000 170.0000
1e-7 150.0000 120.0000 -100.0000 -130.0000 -50.0000 170.0000
1e-8 150.0000 120.0000 -100.0002 -130.0002 -50.0000 170.0000
1e-9 150.0000 120.0000 -100.0013 -130.0013 -50.0000 170.0000
1e-10 150.0000 120.0000 -100.0026 -130.0026 -50.0000 170.0000
1e-11 150.0000 120.0000 -100.0422 -130.0422 -50.0000 170.0000
1e-12 150.0000 120.0000 -104.2283 -134.2283 -50.0000 170.0000
1e-13 150.0000 120.0000 -42.8374 -72.8374 -50.0000 170.0000
1e-14 N/A

Table 17. One solution of joint angles for example 6 as length of
a3 decreases.

the third link. We want to explore the lower limit of the length where the method
may fail. Starting from a small positive length 1e-6 for the third link a3, we record
one solution of the system in Table 17 as the length is decreased. As can be seen,
the system is still solvable when the length is 1e-13. The method fails when the
length is 1e-14. Moreover, as the length decreases, the third and fourth variables
exhibit large changes, while the other four variables remain quite stable. Because
the joint angle at the third link is 180◦, the axes 3 and 4 become collinear as the
length of the third link approaches zero. Geometrically, the joint angles at axes 3
and 4 will combine into one and the system now has actually 5 DoF. As can be seen,
the third and fourth joint angles maintain a 30◦ difference, therefore producing the
same net rotation. Since at least 6 DoF are required to achieve a workspace of open
neighborhoods, the system will become unsolvable if a small change is made to the
end effector in this example. We can expect that the case where a link is close to
zero length combined with 0◦ twist angle is also singular with behavior similar to
that shown here.

Example 7 is Manocha-Canny Manipulator from [18] and the parameters are
shown in Table. 18. By specifying the values [22◦, 34◦, 56◦, 90◦, 90◦,−120◦] to the
joint angles, we can get the end effector. However, the set of angles above cannot be
recovered because of singularity. The singularity comes from two consecutive 90◦

in α3, θ4 and θ5, α5, and from consecutive zero lengths S5, a5, causing the vectors
of axes s3, s6 to be collinear. Then the part between s3, s6 will be combined into
one continuum unit and only the summation of θ3, θ6 can have direct impact on the
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Joint i ai Si αi

1 0.3 0.0 90.0

2 1.0 0.0 1.0

3 0.0 0.2 90.0

4 1.5 0.0 1.0

5 0.0 0.0 90.0

6 0.0 0.0 1.0

Table 18. Linkage parameters of example 7.

No. θ1 θ2 θ3 θ4 θ5 θ6
1 22.0000 34.0000 -66.8696 90.0000 90.0000 2.8696
2 22.0000 34.0000 64.7411 90.0000 90.0000 -128.7411

Table 19. Two solutions of joint angles for example 7.

end effecor. In the Table. 19, we choose two solutions from our method where the
fourth and fifth angles are 90◦. As can be seen, the summation of the third and
sixth joint angles is −64◦ which is consistent with the initial joint angles above.
In fact, any two values whose summation is −64◦ can reach the proposed end
effector. This is the similar situation in example 6, where one DoF is dropped and
the manipulator shows flexibility to some extent. In both examples, the matrix
pencil in the generalized eigenvalue problem may become singular, the rank of the
matrices is reduced by one and one of the eigenvalues is infinite. There may exist
higher-order degenerate cases such as Bricard’s examples [4], in which the rank
of the matrices in generalized eigenvalue problem drops by 2 or more. For these
flexible cases, working on the polynomial equations will give more hints and it will
be the subject of future research.

5. Conclusion. In this paper, we have presented a novel algorithm for the 6R
problem of Inverse Kinematics. It can solve the problem stably even under special
conditions which can cause failure in previous methods. As our motivation for this
work resulted from the kinematic analysis of arbitrarily long constrained molecular
chains such as protein loops and large cyclic molecules, we also included a discussion
of the reduction of such chains to DH coordinates. In our method, an arbitrary
chain of rotors will be first transformed into a closed chain for which we may easily
change the order of solving the 6 variables. The first elimination is performed by
computing an SVD of a complex-valued system formed by the full set of closure
conditions, and utilizing the pseudoinverse. In addition, the null vectors allow an
efficient derivation of the resultant, arriving at an optimally sized 16×16 generalized
eigenvalue problem. Three joint angles can be determined from the eigenvalues and
eigenvectors, even in cases of infinite or multiple eigenvalues. The remaining three
angles are subsequently solved using the SVD information. Two types of special
cases were discussed in detail. In the first, at least one variable in one solution is π.
The second describes cases of higher multiplicity eigenvalues. Although it may be
argued that linkage systems may be carefully designed to avoid cases which could
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challenge previous algorithms, such cases do in fact arise for special manipulators,
as discussed in the examples.

In order to reach broader audience, three different kinds of inputs are accepted
in our code: DH parameters, Cartesian coordinates of the joint junctions or internal
parameters, with outputs consistent with the inputs. Since it is developed based on
closed chain and accepts different kinds of inputs, our method can find applications
to both robotics and conformational sampling of biopolymers. The open source
algorithm, R6B6, is freely available from the authors. In addition, the MAPLE

symbolic derivation of the equations as used by our algorithm is also available.

Acknowledgments. XC and EAC acknowledge support from the Laufer Center
for Physical and Quantitative Biology at Stony Brook University. We acknowledge
helpful conversations with Drs. Robert Lewis and Michael Wester. We thank an
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Appendix A. Formulating the 6R loop from an arbitrary chain. The algo-
rithm presented here can be applied in the context of transforming an open chain or
a redundant chain into closed 6R Denavit-Hartenberg (DH) system or in sampling
the alternative conformations of cyclic macromolecules and flexible loop regions of
proteins as shown in Fig. 1. That is consistent with the fact that molecular bond
lengths and angles are relatively “hard” DoF, while torsional angles among succes-
sive tetrads are deformable with low energetic cost. For an arbitrary chain, we need
to select six rotor axes as pivots for the solution. The remaining N − 6 rotor angles
are set to fixed values thus rigidifying the structure and the intervening structure
between two selected axes will be replaced by a link orthogonal to both axes as
shown in the left of Fig. 5. For an open 6R robot arm we only need to do this once
to find the link between the sixth axis and first axis. Following shows the detailed
procedures to finish the conversion. As the following discussion is mostly useful for
the reduction of long molecular chains to DH coordinates, we shall be referring to
the rotor angles as “torsions”, keeping the terms “joint angles” and “twist angles”
for the system reduced to DH parameters. The notations in this and in each of the
subsequent sections are self-contained, relevant only to each particular section.

Consider a chain of n−1 vectors {b1, . . . ,bn−1}. Denote the vertices of the chain
{v1, . . . , vn} where vector bi = vivi+1 joins vertex vi to vertex vi+1, i = 1, . . . , n−1.
An arbitrary chain may be considered as a closed loop by constructing link bn con-
necting vertex vn to vertex v1, and we have a closed loop with n vectors connecting
n vertices. For ease of notation we continue the indices cyclically around the loop so
that vn+1 ↔ v1, etc. Suppose there are 6 unknown torsions in the chain indexed by
ij , j = 1, . . . , 6, and denote the axis vectors pj := bij . Assume we are given the re-

maining n−6 torsions T̄i = sgn ([bi−1,bi,bi+1])∠(bi−1×bi,bi×bi+1), i 6∈ {ij}6j=1

where [a,b, c] = a × b · c. Also assumed knowns are {|b1|, . . . , |bn|} the lengths
of the vectors and {Ā1, . . . , Ān} the (interior) angles: Āi = ∠(−bi−1,bi). In the
context of a molecular chain, the lengths |bi| would be the bond lengths with Āi

being the bond angles.
Throughout, we will use the following notation for torsions in terms of the angle

between two vectors, τ = ∠(a,b) = cos−1((a/|a|) · (b/|b|)) ∈ [0, π], and a sign:

t = σ∠(a,b) = atan(s, c) with σ = ±1, c = ((a/|a|) · (b/|b|)) and s = σ
√
1− c2.

Here a , b are normal vectors on two oriented planes and the torsion refers to one of
the dihedrals between the planes. In the typical situation, we have a vector triplet
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Figure 5. Left: Replacing intervening structure by equivalent or-
thogonal linkage. Right: Simplified loop with a virtual link and
offset for angles.

a,b, c and the torsion at b is computed by a variant of the formula torsion(a,b, c) =
sgn ([a,b, c])acos((a× b) · (b× c)/(|a× b||b× c|)).

We proceed by transforming the original loop into a simplified loop with 6 axes,
(at most) 6 links. Any existing structure between the vertices vij+1 and vij+1

(structure between the axes) may be replaced by a “virtual” link lj := vij+1vij+1

as shown in the right of Fig. 5 so that we now have a loop with at least 6 and
at most 12 edges {p1, l1, . . . ,p6, l6} (since some or all of the links might vanish).
This loop may be parametrized by the lengths {|p1|, . . . , |p6|, |l1|, . . . , |l6|}, the 6
angles between axes and links, Bj = ∠(−pj , lj); the 6 angles between links and
axes, Aj+1 = ∠(−lj ,pj+1); the 6 known torsions about the links, Tj ; and the 6
unknown torsions about the axes,

φj := sgn (νj)∠(lj−1 × pj ,pj × lj) ,

νj := [lj−1,pj , lj ] , j = 1, . . . , 6 .

For each of the missing torsions in the original problem there holds

T̄ij = φj − δj := φj − δ−j − δ+j ,

where δ−j , δ+j are offsets found in the transformation to the 6-axis/6-link loop:

δ−j := sgn (γ−
j )∠(lj−1 × pj ,bij−1 × pj),

δ+j := sgn (γ+
j )∠(bij+1 × pj , lj × pj) .

where

γ−
j =

[
lj−1,bij−1,pj

]
, γ+

j =
[
bij+1, lj ,pj

]
.

We transform once more to DH coordinates as shown in Fig. 6. Consider the two
(in general oblique) lines in space defined by the vectors pj and pj+1. We introduce
the unit vectors along the pj : p̂j = pj/|pj |. Let µj be the mutual moment of the
axes (also the reciprocal product of their Plücker coordinates), of sign σj , where

µj = p̂j · lj × p̂j+1 , σj = sgn (µj).

The torsion at the link lj is given by

Tj := σj∠(p̂j × lj , lj × p̂j+1) .
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Figure 6. Transformation of a simplified loop into the DH pa-
rameters at a link.

Each link lj is replaced by the unique link orthogonal to both pj and pj+1,
intersecting an extension of pj at w

+
j and pj+1 at w

−
j+1. Define the DH axis vectors

sj = w−
j w

+
j , the length sj = |sj | and the unit axis vectors zj := sj/sj , j = 1, . . . , 6,

collinear with the pj . Define the DH link-vectors aj = w+
j w

−
j+1, the length aj = |aj |

and the unit-links xj = aj/aj . The coordinate systems centered at each w−
j and

w+
j are Q−

j := {xj−1,y
−
j := zj × xj−1, zj} and Q+

j := {xj ,yj := zj × xj , zj}
respectively, which are all right-handed orthogonal systems by definition.

We note that the orientation of the axes zj of the orthogonal systems may not
coincide with the orientation of the axes p̂j of the original reduced system since
they depend on the placement of both adjacent axes p̂j±1. As a result, the mutual
moments of adjacent axes may have different signs in the original and DH systems.
On the other hand, the orthogonal links xj are unaffected as they depend only on
each pair of adjacent axes with no reference to the links adjacent at each side of the
pair. The twist angles αj are the rotations between axes sj and sj+1 about link aj
and the joint angles θj are the rotations between links aj−1 and aj about axis sj .
As such, these depend on the orientations of the orthogonal axes zj so the quadrant
in which they fall may only be determined after the entire system of orthogonal
links has been constructed. We have

zj = ζjp̂j , ζj = ±1

so that the mutual moments of the zj are

µ̂j := [zj ,xj , zj+1] = ζjζj+1µj

and with uj := p̂j · p̂j+1 we have

cosαj := zj · zj+1 = ζjζj+1uj ,

sinαj = ζjζj+1σj

√
1− u2

j ,
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where ζj , the orientations of the zj with respect to the p̂j , need to be determined.
Among the selected 12 atoms/nodes in the reduced linkage, we denote the points

by Aj := vij and Bj := vij+1. To determine the location of the orthogonal links we

introduce quantities t+j (resp. t−j ), the oriented distances along the p̂j from the point

Bj (resp. Aj) to the orthogonal link junction w+
j (resp. w−

j ). Substitute Bjw
+
j =

t+j p̂j and Aj+1w
−
j+1 = t−j+1p̂j+1 into the equation Bjw

+
j +w+

j w
−
j+1+w−

j+1Aj+1 = lj
to get expressions in terms of the p̂j :

t+j p̂j + aj,j+1 − t−j+1p̂j+1 = lj .

Taking dot products with p̂j and p̂j+1 and using the orthogonality of the link,

t+j − ujt
−
j+1 = −lj cosBj ,

ujt
+
j − t−j+1 = −lj cosAj+1.

with solutions

t+j = lj (uj cosAj+1 − cosBj) /(1− u2
j ),

t−j+1 = lj (cosAj+1 − uj cosBj) /(1− u2
j ).

Special care must be taken in case the axis vectors are parallel or antiparallel,
when the denominator in the above formulas vanishes. In that case, the orthogonal
link may be situated arbitrarily. In general, when the mutual moment vanishes we
have three cases: (1) parallel/antiparallel axes; (2) coplanar, non-parallel axes; (3)
co-terminal axes. We discuss these special cases below. The idea is to choose a
unique convention that allows unique forward and inverse DH transformation. We
continue with the generic case discussion and we will follow by detailed analysis of
the special cases.

In the generic case discussed above, we have for the signed length of the DH axis
vector:

Sj = −t−j + pj + t+j , ζj = sgnSj .

Then sj = Sjp̂j = ζjsjp̂j .
The length of the linkage, aj is found from the invariant triple product as

aj = lj · xj = (lj/(1− u2
j ))
√
1− u2

j − cos2 Aj+1 − cos2 Bj+1 + 2uj cosAj+1 cosBj .

Defining σ̂j = sgn (µ̂j) where µ̂j is the mutual moment of the axes (also the re-
ciprocal product of their Plücker coordinates) defined above µ̂j := ζjζj+1µj , we
have

xj =





σ̂j(zj+1 × zj)/|zj+1 × zj |, σ̂j 6= 0
(zj+1 × zj)/|zj+1 × zj |, σ̂j = 0, non-parallel, co-terminal/coplanar
(zj × lj)× zj/|(zj × lj)× zj |, σ̂j = 0, parallel/antiparallel

so that the twist angle at the orthogonal link is

αj = sgn ([zj ,xj , zj+1])∠(zj × xj ,xj × zj+1) = −sgn ([zj ,xj , zj+1])∠(yj ,y
−
j+1) .

By orthogonality, cosαj = zj ·zj+1 , sinαj = sgn ([zj ,xj , zj+1])|zj ×zj+1|. Finally,
the (unknown) joint angles about the axes with respect to the orthogonal links,

θj = sgn ([xj−1, zj ,xj ])∠(xj−1 × zj , zj × xj)

are related to the torsions about the axes in the reduced linkage system,φj , by

φj = θj −∆j := θj −∆−
j −∆+

j
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in terms of the offsets ∆±
j given by:

∆−
j = sgn ([xj−1, lj−1, zj ])∠(xj−1 × zj , zj × (−lj−1)) ,

∆+
j = sgn ([xj , lj , zj ])∠(xj × zj , zj × (−lj)) .

Using the moment equation, it is seen also that

lj · xj

|lj |
= sinBj cos∆

+
j = sinAj+1 cos∆

−
j+1 .

Appendix B. Details of the system of equations. Introducing the expression
g := 1

2
〈r, r〉zR − 〈r, zR〉r, the equations can be written as

(E1,R) EL{〈zR,xA−1〉tA − 〈zR,y−
A〉} = ER{−〈zR,yA〉 − 〈zR,xA〉tA},

(E1,I) EL{〈zR,y−
A〉tA + 〈zR,xA−1〉} = ER{〈zR,xA〉 − 〈zR,yA〉tA},

(E2,R) EL
{
〈g,xA−1〉 tA −

〈
g,y−

A

〉}
= ER{− 〈g,yA〉 − 〈g,xA〉 tA},

(E2,I) EL{
〈
g,y−

A

〉
tA + 〈g,xA−1〉} = ER{〈g,xA〉 − 〈g,yA〉 tA},

(E3,R) EL{〈zR × r,xA−1〉tA − 〈zR × r,y−
A〉} = ER{−〈zR × r,yA〉−

〈zR × r,xA〉tA},
(E3,I) EL{〈zR × r,y−

A〉tA + 〈zR × r,xA−1〉} = ER{〈zR × r,xA〉−
〈zR × r,yA〉tA},

(E4,R) EL{〈r,xA−1〉tA − 〈r,y−
A〉} = ER{−〈r,yA〉 − 〈r,xA〉tA},

(E4,I) EL{〈r,y−
A〉tA + 〈r,xA−1〉} = ER{〈r,xA〉 − 〈r,yA〉tA},

(E5) EL{〈zR, zA〉} = ER{〈zR, zA〉},
(E6) EL {〈g, zA〉} = ER{〈g, zA〉},
(E7) EL{〈zR × r, zA〉} = ER{〈zR × r, zA〉},
(E8) EL{〈r, zA〉} = ER{〈r, zA〉},
(E9) EL{〈r, zR〉} = ER{〈r, zR〉},
(E10) EL{〈r, r〉/2} = ER{〈r, r〉/2}. (26)

The first eight are combined into 4 complex equations while the remaining six are
used as given.

Appendix C. Relation between the SVD of a complex matrix and its real

representation. Here we recall the relation between the SVD of a general n×m
complex matrix B = B1 + iB2 and that of its real representation, the 2n × 2m
matrix

AB =

(
B1 −B2

B2 B1

)
. (27)

The SVD of AB is the matrix decomposition AB = UAΣAV
T
A where UA and VA

are real orthogonal matrices, and ΣA is the real 2n× 2m matrix whose upper left-
hand block is the diagonal matrix of singular values of AB in descending order,
with remaining entries of zero. The SVD of B = UΣV H , with U and V complex
unitary, and V H the Hermitian conjugate of V . Σ is the real n×m matrix whose
upper left-hand block is the diagonal matrix containing the singular values of B in
descending order, with remaining entries of zero. The singular values of B are the
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square roots of the nonzero eigenvalues of BBH , or equivalently of BHB, and the
singular values of AB are the square roots of the eigenvalues of ABA

T
B or AT

BAB .
To compute the SVD of AB by means of the smaller computation, the SVD of

B, we first apply the similarity transformation

AB = Sn

(
B 0
0 B

)
SH
m , (28)

for Sn =
1√
2

(
In −iIn

−iIn In

)
, Sm =

1√
2

(
Im −iIm

−iIm Im

)
,

where In and Im are the n × n and m × m identity matrix respectively, B is the
complex conjugate of B, and SH

n Sn = I2n, S
H
mSm = I2m. Applying the SVD of B

to (28), noting V
H

= V T

AB = Sn

(
UΣV H 0

0 UΣV T

)
SH
m

= Sn

(
U 0
0 U

)(
Σ 0
0 Σ

)(
V H 0
0 V T

)
SH
m

=

(
Sn

(
U 0
0 U

)
SH
n Pn

)(
PT
n Sn

(
Σ 0
0 Σ

)
SH
mPm

)

×
(
PT
mSm

(
V H 0
0 V T

)
SH
m

)
, (29)

where Pn, Pm are permutation matrices, PnP
T
n = I2n, PmPT

m = I2m. The first term
in the right-hand side product of (29) is UA, the second is ΣA, and the third is VA,
as verified below. Block multiplying to verify ΣA

PT
n Sn

(
Σ 0
0 Σ

)
SH
mPm

= PT
n

1√
2

(
In −iIn

−iIn In

)(
Σ 0
0 Σ

)
1√
2

(
Im iIm
iIm Im

)
Pm

= PT
n

(
Σ 0
0 Σ

)
Pm = ΣA,

where the permutation Pn, Pm are chosen to rearrange the singular values in de-
scending order with zeros at the end to satisfy the last equality. Block multiplying
again to verify UA, denote the real and imaginary parts of U by U = UR + iUI .

Sn

(
U 0
0 U

)
SH
n Pn =

1√
2

(
In −iIn

−iIn In

)(
U 0
0 U

)
1√
2

(
In iIn
iIn In

)
Pn

=
1

2

(
U + U i(U − U)

−i(U − U) U + U

)
Pn

=

(
UR −UI

UI UR

)
Pn

=

(
UR,1 −UI,1 · · · UR,n −UI,n

UI,1 UR,1 · · · UI,n UR,n

)
= UA,

where UR,j and UI,j are indexed in the last line to indicate agreement with the n sin-
gular values σ1, . . . , σn, each with two corresponding left-singular vectors. Similarly
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for V H
A , denoting the real and imaginary part V H = V H

R + iV H
A and multiplying by

blocks

PT
mSm

(
V H 0
0 V T

)
SH
m

=
1√
2
PT
m

(
Im −iIm

−iIm Im

)(
V H 0

0 V
H

)
1√
2

(
Im iIm
iIm Im

)

=
1

2
PT
m

(
V

T
+ V T i(V

T − V T )

i(−V
T
+ V T ) V

T
+ V T

)

= PT
m

(
V T
R V T

I

−V T
I V T

R

)
= VA,

where left multiplication reorders the rows in agreement with ΣA.

Appendix D. The case of multiple eigenvalues. By solving the generalized
eigenvalue problem, we can get tA+1 from eigenvalues and tA, tR−1 from corre-
sponding eigenvectors, by taking advantage of the special structure, whereas the
components are constant multiples of monomials involving the tA, tR−1. However,
when higher multiplicity occurs, the numerically computed eigenvectors may no
longer have such structure, although they will still form a basis of the invariant
subspace of the multiple eigenvalue tA+1. We present the necessary modifications
to extract a basis whose elements have the monomial structure from which the
remaining variables can be obtained.

D.1. Regular double case. In the case of one double eigenvalue, suppose two
eigenvectors (8 components vm) from the solver are

Vi =
[
Gi, Fi, Ei, Di, Ci, Bi, Ai, Li

]T
, i = 1, 2.

Assume two solutions for tR−1 are t1, t3, and two corresponding solutions of tA are
t2, t4. Then the two expected eigenvectors are:

V̂1 =
[
t31t2, t

2
1t2, t1t2, t2, t

3
1, t

2
1, t1, 1

]T
, V̂2 =

[
t33t4, t

2
3t4, t3t4, t4, t

3
3, t

2
3, t3, 1

]T
.

Since V1,V2 are one set of basis for the two dimensional subspace, we want the
vectors V̂1, V̂2 to be the basis for the subspace as well. Assume t1 6= t3, while the
special case t1 = t3 will be discussed in next subsection. Suppose there exist four
real numbers α1, β1, α2, β2 satisfying

α1 V̂1 + β1 V̂2 = V1 , α2 V̂1 + β2 V̂2 = V2 . (30)

Based on the monomial pattern in V1,V2, there are five possibilities for regular
double case in total: 1. all t1, t2, t3, t4 are finite values; 2. one of t1, t3 is∞ and other
three will have finite values; 3. one of t2, t4 is ∞; 4. both of t1, t2 or both of t3, t4
are ∞, and other two are finite values; 5. t1, t4 are ∞ and t2, t3 are finite values,
or vice versa. The cases may become more complicated when there exist 0 in the
eigenvectors. We will order them by difficulty and show the corresponding treatment
for each case below. The corresponding pattern in the expected eigenvectors are in
Table. 20 including two special cases, and the case number with an additional letter
means the case has extra conditions. The finite values (f) in each case are assumed
to be nonzero. In the pseudocode Box 1 below, we summarize the determination of
all possible double cases based on the components in V1,V2.
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No. t1 t2 t3 t4 V̂1 V̂2

1 f f f f [t2h1,h1] [t4h3,h3]

2 ∞ f f f [t2, 0, 0, 0, 1, 0, 0, 0] [t4h3,h3]

2a ∞ f 0 f [t2, 0, 0, 0, 1, 0, 0, 0] [0, 0, 0, t4, 0, 0, 0, 1]

3 f ∞ f f [h1, [0, 0, 0, 0]] [t4h3,h3]

3a f ∞ 0 0 [h1, [0, 0, 0, 0]] [0, 0, 0, 0, 0, 0, 0, 1]

3b 0 ∞ f 0 [0, 0, 0, 1, 0, 0, 0, 0] [[0, 0, 0, 0],h3]

3c f ∞ f 0 [h1, [0, 0, 0, 0]] [[0, 0, 0, 0],h3]

4 ∞ ∞ f f [1, 0, 0, 0, 0, 0, 0, 0] [t4h3,h3]

4a ∞ ∞ 0 0 [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1]

4b ∞ ∞ f 0 [1, 0, 0, 0, 0, 0, 0, 0] [[0, 0, 0, 0],h3]

5 ∞ f f ∞ [t2, 0, 0, 0, 1, 0, 0, 0] [h3, [0, 0, 0, 0]]

5a ∞ f 0 ∞ [t2, 0, 0, 0, 1, 0, 0, 0] [0, 0, 0, 1, 0, 0, 0, 0]

6 f f f f [t2h1,h1] [t4h1,h1]

6a∗ 0 n 0 f [0, 0, 0, t2, 0, 0, 0, 1] [0, 0, 0, t4, 0, 0, 0, 1]

6b∗ ∞ n ∞ n [t2, 0, 0, 0, 1, 0, 0, 0] [t4, 0, 0, 0, 1, 0, 0, 0]

6c ∞ 0 ∞ 0 defective case

7 ∞ ∞ f ∞ [1, 0, 0, 0, 0, 0, 0, 0] [h3, [0, 0, 0, 0]]

Table 20. Possible double cases and monomial patterns. ‘n’ indi-

cates nonzero which can be finite or infinite.

First, we test the 8th components L1, L2. If both are nonzero, then this can be
case 1-4. The equality and following equality between terms are determined within
one tolerance. Define the ratio Ri

jk := Vi,j/Vi,k, i = 1, 2. If R1
78 = V1,7/V1,8 6=

R2
78 = V2,7/V2,8, then it is case 1 and the treatment is given as follows. We can first

pick out the last three rows from either equation in (30)

αi




t21
t1
1


+ βi




t23
t3
1


 =




Bi

Ai

Li


 , i = 1, 2.

Using the last row to delete the terms of t1 and t21, we get

βi

(
t23 − t21
t3 − t1

)
=

(
Bi − Lit

2
1

Ai − Lit1

)
, i = 1, 2.

Substitute the second row into the first row to remove β1 and obtain

t3 + t1 =
Bi − Lit

2
1

Ai − Lit1
, and then t3 =

Bi −Ait1
Ai − Lit1

, i = 1, 2.

With two equalities containing two variables, one quadratic equation in terms of t1
is obtained: (A1L2−A2L1)t

2
1+(B2L1−B1L2)t1+(A2B1−A1B2) = 0. Notice that

t3 is also one solution to this equation. Two solutions correspond to t1, t3. With
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t1, t3, we could select the third, fourth and last two rows from the first equation in
(30) to solve t2, t4:

α1




t1t2
t2
t1
1


+ β1




t3t4
t4
t3
1


 =




E1

D1

A1

L1


 .

Then use the last row to delete the term t2 in the second row and use the second
to last row to delete the term t1t2 in the first row,

β1

(
t3t4 − t3t2
t4 − t2

)
=

(
E1 −A1t2
D1 − L1t2

)
.

With these two row, we obtain t3 = E1−A1t2
D1−L1t2

and then t2 = E1−D1t3
A1−L1t3

. Also, t4 =
E1−D1t1
A1−L1t1

.

For the 2nd case, if R1
78 = R2

78, we then check the ratios Ri
58 in V1,V2. If

R1
58 6= R2

58, we can expect one of t1, t3 goes to ∞. We set t1 as ∞ and t3 = R1
78,

t4 = R1
48, t2 = G1−F1t3

C1−B1t3
.

For the 3rd case, if R1
78 = R2

78, R
1
58 = R2

58, we next calculate the ratios Ri
34.

If R1
34 6= R2

34, we know that one of t2, t4 is ∞ and we set it as t2 and t3 = R1
78.

Then we can pick out the second to fourth rows from the either equation in (30) to
calculate two values for tR−1 as follows:

αi




t21t2
t1t2
t2


+ βi




t23t4
t3t4
t4


 =




Fi

Ei

Di


 , i = 1, 2

βi

(
t4(t

2
3 − t21)

t4(t3 − t1)

)
=

(
Fi −Dit

2
1

Ei −Dit1

)
, i = 1, 2.

Substitute the second row into the first row above to remove βi and t4,

t3 + t1 =
Fi −Dit

2
1

Ei −Dit1
, and then t3 =

Fi − Eit1
Ei −Dit1

, i = 1, 2.

With two equalities containing two variables, one quadratic equation in terms of t1
is obtained: (E1D2−E2D1)t

2
1+(D1F2−D2F1)t1+(F1E2−F2E1) = 0. Notice that

t3 is also one solution to this equation. Then by solving this equation we can get
t1, t3. One of two values will be equal to t3 and the other is t1, then t4 = E1−D1t1

A1−L1t1
.

For the 4th case, if R1
78 = R2

78, R
1
58 = R2

58, R
1
34 = R2

34, we check the ratios Ri
14.

If they are not equal, we can set t1, t2 as ∞, t3 = R1
78 and t4 = R1

48. Otherwise, we
may have special cases as discussed in the next subsection.

In the 5th case, we will see zero in the 8th components. Zeros in the 8th com-
ponents can also appear in the special double cases discussed in next subsection. If
the 8th components are zero, we check the 4th and 5th components. If they are not
zero, we then check the ratios Ri

34. It is case 5 if they are equal and we set t1, t4 as
∞. If the ratios Ri

34 are both 0, then t3 = 0, t2 = R1
15. Otherwise, t3 = R1

34 and
t2 = G1−F1t3

C1−B1t3
.
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! Define Ri
jk = Vi,j/Vi,k

IF Vi,8 6= 0, i = 1, 2 THEN
IF R1

78 = R2
78 THEN

IF Ri
78 = 0, i = 1, 2 THEN

IF Vi,5 = 0, i = 1, 2 THEN
IF Vi,3 = 0, i = 1, 2 THEN
IF Vi,1 = 0, i = 1, 2 THEN
case 6a∗, t1 = t3 = 0

ELSE case 4a, t3 = t4 = 0
ELSE case 3a, t3 = t4 = 0, t1 = R1

34(= R2
34)

ELSE
case 2a, t3 = 0, t2 = R1

15(= R2
15), t4 = R1

48(R
2
48)

ELSE ! can be regular case 2, 3, 4
IF R1

58 = R2
58 THEN

IF Vi,4 = 0, i = 1, 2 THEN
case 4b, t4 = 0, t3 = R1

78(= R2
78)

ELSE
IF R1

34 = R2
34 THEN

IF Ri
34 = 0, i = 1, 2 THEN

case 3b, t1 = t4 = 0, t3 = R1
78(= R2

78)
ELSE

IF R1
14 = R2

14 THEN
IF R1

14 = R1
58 THEN

case 6
ELSE 3c, t4 = 0, t1 = R1

34(= R2
34), t3 = R1

78(= R2
78)

ELSE case 4
ELSE case 3

ELSE
IF Vi,1 = 0, i = 1, 2 THEN
case 2b, t2 = t4 = 0, t3 = R1

78(= R2
78)

ELSE case 2
ELSE case 1

ELSE
IF Vi,5 = 0, i = 1, 2 THEN

IF R1
34 = R2

34 THEN
case 7, t1, t2, t4 = ∞, t3 = R1

34(= R2
34)

ELSE case 3d, t2, t4 = ∞
ELSE

IF Vi,4 6= 0, i = 1, 2 THEN
IF Ri

34 = 0, i = 1, 2 THEN
case 5a, t3 = 0, t2 = R1

15(= R2
15)

ELSE case 5, t3 = R1
34(= R2

34)
ELSE

IF Vi,1 6= 0, i = 1, 2 THEN
case 6b∗, t1 = t3 = ∞

ELSE case 6c∗, t1 = t3 = ∞, t2 = t4 = 0

BOX 1: Procedures to determine double eigenvalue cases from the eigenvector
components.
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D.2. Special double case. Besides the regular double cases, we may face further
complications. Based on the check in case 4 of the regular double case above,
we need to do more testing on the components in the vectors. Now we have:
R1

78 = R2
78, R

1
58 = R2

58, R
1
34 = R2

34, R
1
14 = R2

14. We need to distinguish it from the
regular case where t2 = ∞ and t4 = 0 by checking the ratios. If R1

14 6= R1
58, we have

a regular case 3b where t2 = ∞, t4 = 0, t1 = R1
34 and t3 = R1

78. Otherwise it is a
double-double case (case 6) and t1, t3 are identical while t1 = t3 = R1

78. t2, t4 cannot
be obtained correctly because the eigenvalue problem is degenerate. Therefore, by
substituting tR−1, tA+1 into system (17) and multiplying the pseudoinverse of matrix
B from SVD on both sides, we can obtain the system as follows:

b =

(
tAb1

b1

)
= MAtA +MB . (31)

Taking advantage of the relationship among the components in the last 8 rows of
(31), we have

[MA,14tA +MB,14][MA,16tA +MB,16] = MA,13tA +MB,13.

Two solutions of this quadratic equation correspond to t2, t4. One more special
double-double case is needed to consider. If the 8th components are nonzero, the
7th, 5th, 3rd and 1st components are zero, then this is case 6a where the tR−1 has
double 0. However, we may not be able to resolve two subcases by checking the
components in eigenvectors: 1. t2, t4 are finite; 2. t2 = ∞, t4 is finite. We need
to substitute tA+1, tR−1 back into the system obtaining (31) containing tA. If both
t2, t4 are finite, the modification above can solve it. But if the last two components
in vector MA are 0, then at least one of t2, t4 is infinity and we set both of them
as infinity because the finite t4 in subcase 2 cannot be extracted, representing one
limitation of our method.

Based on case 5 of the regular double case, if 4th and 8th components are zero
and 5th component is nonzero, then we can identify that both t1, t3 will be infinity,
and there may exist three subcases (case 6b) as discussed in the main text: 1. both
of t2, t4 are finite; 2. one of t2, t4 is finite and the other is infinity; 3. both of t2, t4 are
infinity. In this subcase 1, if t2, t4 are nonzero, it can be fixed by the modification
above for double-double case. However, if t2, t4 are both zero (case 6c), then the
first component Vi,1 would be zero leading to a defective case that may not be
identified through the eigenvector. Substituting tA+1, tR−1 back into system may
resolve the problem without a guarantee, another limitation of the method. We
can not distinguish subcases 2 and 3 because the last two components in MA are
zero. Then t2, t4 will be set as infinity, indicating a third limitation of the method.
On the other hand, if 5th and 8th components are zero, and 4th component is not
zero, then we check the ratios Ri

34. The equality indicates that it is case 7 where
t2, t4 are infinity and one of t1, t3 is infinity. We set t1 as infinity and t3 = R1

34.
If ratios Ri

34 are not equal, then we expect t2, t4 are infinity and both of t1, t3 are
finite values. This is case 3d and we use the treatment for case 3 in regular double
to calculate t1, t3.

D.3. Regular triple case. For the triple eigenvalue case, one more eigenvector

will be given from the solver as V3 = [G3, F3, E3, D3, C3, B3, A3, L3]
T
. Assume the

third solution for tR−1, tA is t5, t6 and t1 6= t3 6= t5. The expected third eigenvector

is V̂3 =
[
t35t6, t

2
5t6, t5t6, t6, t

3
5, t

2
5, t5, 1

]T
. Suppose there exist nine real numbers
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αi, βi, γi, i = 1, 2, 3 such that

αi V̂1 + βi V̂2 + γi V̂3 = Vi, i = 1, 2, 3. (32)

We first pick out last four rows from each of the equations in (32):

αi




t31
t21
t1
1


+ βi




t33
t23
t3
1


+ γi




t35
t25
t5
1


 =




Ci

Bi

Ai

Li


 , i = 1, 2, 3.

By deleting the terms t1, t
2
1, t

3
1, we get

βi




t33 − t23t1
t23 − t21
t3 − t1


+ γi




t35 − t25t1
t25 − t21
t5 − t1


 =




Ci −Bit1
Bi − Lit

2
1

Ai − Lit1


 . (33)

Substitute the last equality βi(t3 − t1) = (Ai − Lit1) − γi(t5 − t1) into the second
equality

[(Ai − Lit1)− γi(t5 − t1)] (t3 + t1) + γi(t5 − t1)(t5 + t1) = Bi − Lit
2
1,

γi(t5 − t1) =
Bi − Lit

2
1 − (Ai − Lit1)(t3 + t1)

t5 − t3
.

Then substituting βi(t3 − t1), γi(t5 − t1) into the first equality in (33) and sim-
plifying the expression, we have

t23
Ait5 − L1t1t5 −Bi +Ait1

t5 − t3
+ t25

Bi −Ait3 + Lit1t3 −Ait1
t5 − t3

= Ci −Bit1.

Finally, we simplify equality above as

Bi(t1 + t3 + t5)−Ai(t1t3 + t1t5 + t3t5) + Lit1t3t5 = Ci, i = 1, 2, 3.

By treating the quantities t1+ t3+ t5, t1t3+ t1t5+ t3t5, t1t3t5 as three unknowns
here, we solve the linear system of three equations and get

K1 = t1 + t3 + t5,
K2 = t1t3 + t1t5 + t3t5,
K3 = t1t3t5.

(34)

where K1,K2,K3 are constants involving Li, Ai, Bi, Ci, i = 1, 2, 3. From system
(34) it follows that t1, t3, t5 are the three roots of the cubic

t3 −K1t
2 +K2t−K3 = 0.

Having obtained t1, t3, t5, we use them to calculate t2, t4, t6. Take out six rows
containing t2, t4, t6 from the first equation in (32) as follows:

α1




t21t2
t1t2
t2
t21
t1
1




+ β1




t23t4
t3t4
t4
t23
t3
1




+ γ1




t25t6
t5t6
t6
t25
t5
1




=




F1

E1

D1

B1

A1

L1




.

Applying some basic algebraic computations, we have

β1




t23(t4 − t2)
t3(t4 − t2)
t4 − t2


+ γ1




t25(t6 − t2)
t5(t6 − t2)
t6 − t2


 =




F1 −B1t2
E1 −A1t2
D1 − L1t2


 .
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By deleting β1, we have

γ1t
2
5(t6 − t2)− γ1t3t5(t6 − t2) = F1 −B1t2 − t3(E1 −A1t2),

γ1t5(t6 − t2)− γ1t3(t6 − t2) = E1 −A1t2 − t3(D1 − L1t2).

Taking the ratio of the first over the second equality, we obtain

t5 =
F1 −B1t2 − t3(E1 −A1t2)

E1 −A1t2 − t3(D1 − t2)
=

F1 − E1t3 − (B1 −A1t3)t2
E1 −D1t3 − (A1 − L1t3)t2

,

t2 =
t5(E1 −D1t3)− (F1 − E1t3)

(A1 − L1t3)t5 − (B1 −A1t3)
.

Repeating the procedure for t4, t6 we find

t4 =
t1(E1 −D1t5)− (F1 − E1t5)

(A1 − L1t5)t1 − (B1 −A1t5)
, t6 =

t3(E1 −D1t1)− (F1 − E1t1)

(A1 − L1t1)t3 − (B1 −A1t1)
. (35)

D.4. Special triple case. For the triple eigenvalue case we assumed t1, t3, t5 are
not identical, but two among these three roots can be equal, such as t1 = t3, causing
the method above to fail. For this case, following the previous formulation for the
general triple case, we can get 3 roots from the cubic equation denoted as DT1. We
then test if there exist equal roots among them. Using any pair of eigenvectors such
as V1,V2 and applying the regular double case treatment, we can get two different
solutions denoted as DT2. If the two solutions in DT2 are also in DT1, we conclude
that two of t1, t3, t5 are equal, indicating a triple-double case; otherwise, the three
roots are unequal and we have a regular triple case. For the equal roots, two in DT2

are the two roots and then we need to identify which root is double by substituting
both of the two roots into (18). The root that makes the matrices degenerate is
the double value. Once t1, t3, t5 are obtained, we substitute three roots into Eq.(35)
above to get t2, t4, t6, but only one of them t6 would be correct because we assumed
t1 = t3. Then for the other two roots t2, t4 we need one more step to substitute
tR−1 (= t1) and tA+1 into (17) to get two additional solutions similarly as in the
special double case.
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