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Abstract:Debris is one of the most challenging cascading effects posed by hurricane events, causing large financial and logistical burdens to
coastal communities. Moreover, disaster debris can have cascading consequences on the safety and functionality of infrastructure, inhibit
community recovery efforts, and lead to public health concerns. However, existing debris predictive models have shown an unsatisfactory
performance, with errors up to 50% in debris estimates, and only consider a limited set of predictive variables. Given the importance of debris
in coastal community resilience, this study leveraged a convergent research strategy to propose a knowledge-informed data-driven meth-
odology by developing a comprehensive database that expands across human-built–natural systems to inform a probabilistic data-driven
model of debris volume. A Gaussian process model was used to generate the debris volume model from a debris removal database for
Hurricane Ike and the human-built–natural systems predictors. Moreover, different spatial resolutions (500, 250, and 125 m) were tested
to analyze their effect on the model performance. Results showed that the low-resolution (500 m) and the intermediate-resolution (250 m)
models have the best performance with a normalized root-mean squared error (RMSE) of 0.49 and 0.50, respectively. These two models were
then used to explore the relative variable importance of the predictive variables in the model in order to get insights on the drivers of the debris
process and propose more flexible lower-dimensionality models. The influence of different predictors and the trade-offs of resolution and
model performance were also discussed before demonstrating application of the model for a synthetic storm in the Galveston, Texas, region.
The proposed methodology and the probabilistic estimates of debris quantities are key to develop comprehensive risk estimates of storm
impacts on coastal communities and can support informed decision making and mitigation planning strategies. DOI: 10.1061/NHREFO.
NHENG-1705. © 2023 American Society of Civil Engineers.

Introduction

The debris generated in the aftermath of hurricane events is a prime
example of cascading consequences that presents significant chal-
lenges for the resilience of coastal communities now and into the
future. Considering cascading effects is key for the performance
evaluation of the built and natural environment and the subsequent
consequences on communities. These consequences can range
from impaired accessibility to critical facilities due to damages
to infrastructure systems caused by debris loading or accumulation
(Gonzalez Duenas et al. 2019; Green et al. 2017) to health hazards
due to improper disposal or prolonged exposure to toxic debris
(Luther and Science Resources and Industry Division 2006; Reible
et al. 2006). Moreover, debris collection and disposal activities can
account for up to 30% of disaster recovery funds in the aftermath of

a hurricane event (FEMA 2019), causing a large financial distress
to coastal communities that struggle to recover from the impact of
the storm.

The multiple hazards with potential to generate debris during a
hurricane event and their interaction with a dynamic coastal land-
scape make hurricane-induced debris behavior a very complex phe-
nomenon. This complexity derives from the interconnected nature of
human-built–natural systems in coastal regions and the multihazard
effects of the storm in these systems, which makes debris manage-
ment strategies a challenging task. Thus, to properly model the debris
generation and spreading process, it is necessary to understand
the different factors involved, their interactions, and their effect on
the process. However, physics-based debris modeling from coastal
multihazard storms, and in particular waterborne debris modeling,
is at present an emerging field (Kameshwar et al. 2021; Park
and Cox 2019; Stolle et al. 2018), for which data-driven models
have been used as a promising alternative to forecast debris accu-
mulation and spreading in coastal regions (Marchesini et al. 2021).

For instance, Escobedo et al. (2009) proposed a regression model
to estimate the amount of tree debris and damage from hurricane
events leveraging data from the 2004 and 2005 hurricane season in
Florida. The Hazards US (HAZUS) method (FEMA 2012) esti-
mates hurricane-induced debris quantities using damage-related
measures of the built environment and trees, making it one of the
most widespread methodologies for debris management. Never-
theless, current debris predictive models have shown an unsatis-
factory performance, with errors up to 30% to 50% on average
in debris estimates (H-GAC 2011; USEPA 2008) and use a limited
set of predictors, usually focusing on a specific characteristic
(Marchesini et al. 2021) such as the type of debris [e.g., vegetative
debris (Thompson et al. 2011)] or wind-field characteristics
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(Escobedo et al. 2009; FEMA 2012; Umpierre and Margoles
2005; USACE 2017), failing to capture the multidimensionality
of hurricane-induced debris behavior.

Knowledge-informed data science strategies can be leveraged
to select and interpret relevant features in the debris process using
domain knowledge. Domain knowledge can be used to inform
machine learning models in several ways, including model selec-
tion, regularization of the model, and feature engineering strategies
(Hoffer et al. 2022). Feature engineering, in particular, leverages
domain knowledge to define, select, and transform the predictive
variables of the regression model to improve its predictive capacity
and interpretability (Hoffer et al. 2022). Moreover, feature engi-
neering strategies can also be used to perform feature selection,
identifying important variables in the model that can be used to
propose a more flexible model by reducing the number of predic-
tors needed to inform it.

In this regard, convergent research approaches offer an ideal
baseline for knowledge-informed data-driven models, by facilitat-
ing multidisciplinary knowledge sharing and coproduction, which
can be directed not only to enhance model performance but also to
define model characteristics needed to address a certain problem
(Peek et al. 2020). In the case of debris management, projections
of probabilistic estimates of debris can help stakeholders by sup-
porting risk-informed decision making.

The objective of this study is to derive a knowledge-informed
data-driven model that can capture the multidimensional aspects
involved in the debris generation process and that can provide con-
fidence levels on the debris estimations. As a proof of concept, a
comprehensive database of potential factors affecting the debris
process was collected in Galveston Island, Texas, under Hurricane
Ike conditions. This database expands on multihazard storm and
land-cover parameters (González-Dueñas et al. 2022) by including
factors related to human-built–natural systems.

Moreover, composite predictors were also tested, such as the
ones related to the fragility of the built environment, and second-
order storm intensity parameters, such as momentum flux. The
derived set of predictors leveraged physics-informed variables and
engineering knowledge, setting the basis to identify potential driv-
ers of the debris generation process. This comprehensive database
was then used to develop probabilistic estimates of debris volume
in the study area, leveraging a Gaussian process model (Rasmussen
and Williams 2006). This machine learning technique provides
not only the mean estimates of debris volume but also provides
the confidence intervals of the prediction. Moreover, Gaussian
processes maintain spatial correlations, which is of extreme impor-
tance while analyzing debris spread at a regional scale. The effects
of spatial resolution were also investigated by performing a sensi-
tivity analysis across three different grid cell sizes: 500, 250,
and 125 m.

In the next section, the methodological approach of this study
is presented, followed by the description of the different sets of
predictors used to inform the regression model. Then, the debris
volume predictive model is introduced, starting with the general
definition of the Gaussian process model. In this section, the sen-
sitivity of the model performance with respect to the spatial res-
olution is also explored, along with the analysis of the relative
importance of the different predictors in the model. The variable
importance analysis is then leveraged to propose more flexible mod-
els with a reduced set of predictors. An application example of
the model in Galveston Island using present conditions (Galveston
Central Appraisal District 2020) and a scenario 500-year storm is
then introduced, followed by a discussion of the applicability of
the model and potential policy implications. This paper finishes with
a summary and general conclusions of the study.

Methodology

This study aims to identify potential drivers of the debris generation
and spreading process and provide probabilistic estimates of debris
quantities over coastal regions by modeling the coupled effect of
human-built–natural systems. The methodology proposed in this
study is presented in Fig. 1. The methodology starts by defining the
area of study, which was divided into subregions using a grid in
order to provide spatial-varying estimations of debris and facilitate
geospatial analysis tasks. In this study, square grid cells were used
to subdivide the region of analysis.

The second step of the methodology consists of the identifica-
tion and characterization of relevant predictive features to effec-
tively inform the debris regression model. A convergent research
approach was followed to build a comprehensive database with
parameters related to the multihazard storm effects and built, natu-
ral, and human systems, and to propose features at the intersection
of these systems. To complete the database, a debris removal data
set was used to inform the response variable—the debris volume.
A detailed description of the debris volume database and the
predictive parameters, their relevance, and characterization is pre-
sented in the following section.

Once the database was complete, geographic information sys-
tem (GIS) software was used to couple the data in each cell of the
grid. The preprocessing of the database was pursued in the third
step of the methodology. In this step, feature selection techniques
were leveraged to discard rows of data (each row represents a grid
cell with their respective predictors and debris volume) that have
missing information and features that do not present significant
variation across the area (i.e., variables with low variance).

In the fourth step of the methodology, the processed database
was used to train a Gaussian regression model. Gaussian processes
are nonparametric models that are flexible enough to model differ-
ent types of data, maintain spatial correlations, and have the advan-
tage of providing probabilistic estimates of the response variable
(Gelfand and Schliep 2016; Rasmussen and Williams 2006). With
the trained model, the relative importance of each one of the pre-
dictors was computed and used to select and analyze the variables
with a higher influence on the debris predictive model. Finally, these
variables were used to train a lower-dimension model to facilitate
its implementation and analyze the effect of feature selection on
the performance of the model.

Knowledge-Informed Data Science: Modeling
Human-Built–Natural Systems Interactions

In the debris process, the interactions of the storm with human-
built–natural systems depend both on the spatial characteristics
of the region and the time in which individual component or system
fails. As the storm moves along the region, system components
such as houses and trees will react to both the loads imposed by
the storm at that time instant, as well as the loads of any component
dragged by the storm (either by water or wind). These loads might
be direct loads, as in the case of an impact (Gonzalez Duenas et al.
2019; Stolle et al. 2020), or indirect loads, such as the ones imposed
on bridge foundations by accumulation of debris (i.e., damming
loads) (Mauti et al. 2020).

Spatial characteristics such as the urban form of a region and the
topography can also influence the loading and debris spreading pro-
cess. For instance, during hurricane events, gaps between houses
can become channels in which the water flows, augmenting the flow
velocity and leading to problems such as scour in adjacent structures
(FEMA 2009). The diversity and coverage of natural systems are
also directly related to development patterns, which can ultimately
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influence storm debris presence and location (Beatley 2012). For
example, woody debris from vegetated and forested areas can be
transported through existing stream channels and result in large
accumulations of natural environment–derived debris (West et al.
2011). Human systems parameters such as socioeconomic variables
are also related to hazard damage patterns and are interdependent of
built and natural system patterns (Santi et al. 2011). For instance,
low-income and vulnerable populations may reside in homes that
were constructed under older building code requirements or in
mobile homes, which are at higher risk of suffering substantial dam-
age in a storm event and potentially become direct sources of debris.

In this study, convergent engineering knowledge was leveraged
to identify and characterize human-built–natural system’s variables
with potential effects on the debris generation and spreading process
during hurricane events. Convergent engineering knowledge is
defined herein as the process of knowledge coproduction that enables
convergent research. This study adopted the definition of conver-
gent research proposed by Peek et al. (2020), in which convergent
studies are understood as a dynamic process in which experts from

different disciplines come together to identify, characterize, and
pose solutions and actions to unravel complex problems in the con-
text of natural disasters. The different variables used in this study as
predictors are given in Table 1.

Debris Collection Database
Hurricane Ike made landfall in Galveston Island, Texas, in 2008
and was predominately characterized as a storm surge and wave
event, leading to a vast destruction in the Houston–Galveston area
(FEMA 2009; Stearns and Padgett 2012). The storm also produced
large quantities of debris in the region, and its removal accounted
for approximately $752 million in recovery expenditures (FEMA
2019; González-Dueñas et al. 2022). In this study, a debris removal
database from Hurricane Ike was used to inform the response var-
iable of the model, the debris volume. The database, provided by the
Houston-Galveston Area Council (H-GAC 2022) and the engineer-
ing firm Tetra Tech (2022), is part of the FEMA Public Assistance
Project Worksheets (FEMA 2019). The worksheets are needed to
receive support for debris removal activities from FEMA, and

Fig. 1. Knowledge-informed data-driven methodology. (Base maps from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)
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contain information related to debris quantities, type, pick-up
address, and disposal site.

To geocode the database, a data processing workflow was devel-
oped leveraging Google APIs, Jupyter notebooks, and the Design-
Safe CI platform (Dukes 2019; Molina et al. 2019; Rathje et al.
2017). In order to facilitate the data aggregation process, Jupyter
notebooks were also developed to automate geospatial analysis tasks
(e.g., visualization, projection) in the GIS software. More details
on the workflow have been given by Dukes (2019). After the

preprocessing of the debris volume database, 24,685 unique debris
pick-up geographic locations were identified in Galveston Island,
along with their respective debris volume.

Multihazard Storm Parameters
Hurricanes are a combination of multiple hazards such as wind,
storm surge, and heavy rainfall. These hazards create different load-
ing conditions on the built and natural environments, interacting
with them to create different types of debris. These debris are in turn

Table 1. Human-built–natural environment predictive variables with the mean and coefficient of variation of the intermediate-resolution data (250 m grid
cell size)

No. Type of predictive variable Variable description Mean COV (%) Units

1 Multihazard storm parameters Surge depth 2.7 52 m
2 Bathymetry −0.01 23,867 m
3 Significant wave height 1.2 65 m
4 Wave period 8.0 74 s
5 Wave direction 249.8 37 Degrees
6 Water velocity in the x-direction 0.46 84 m=s
7 Water velocity in the y-direction 0.37 62 m=s
8 Wind speed 37.3 4 m=s
9 Wind direction 228.6 14 Degrees
10 Wind steadiness 0.17 38 —
11 Wind duration 3.2 39 h
12 Momentum flux 2.0 239 N=m2

13 Built-systems parameters Number of buildings 3.9 311 —
14 Total building footprint area 688.3 300 m2

15 Number of accessory structures 12.6 298 —
16 Total area of accessory structures 397.7 304 m2

17 Number of mobile homes 0.81 329 —
18 Weighted probability of failure 1 56.0 632 m2

19 Weighted probability of failure 2 72.4 629 m2

20 Development total 22.1 162 %
21 Development open 3.8 284 %
22 Development low 5.5 205 %
23 Development medium 7.7 222 %
24 Development high 5.0 280 %
25 Number of households 460.2 64 —
26 Number of housing units 1,021.3 73 —
27 Occupied housing units 460.2 64 —
28 Vacant housing units 561.1 94 —
29 Urban lag 0.22 141 %
30 Road density 0.0027 188 %
31 Average distance to the seawall 8,292.0 100 m
32 Average angle to the seawall −5.2 1,208 Degrees

33 Natural-systems parameters Open water 49.9 91 %
34 Barren land 4.8 342 %
35 Herbaceous 3.9 311 %
36 Woody wetlands 0.69 737 %
37 Emergent wetlands 18.5 163 %
38 Wetlands 19.2 162 %
39 Vegetation 23.3 149 %
40 Minimum elevation −1.8 191 m
41 Maximum elevation 0.87 347 m
42 Average elevation −0.52 567 m
43 Average distance to the shoreline 581.1 104 m
44 Average angle to the shoreline 21.4 487 Degrees
45 Vegetation lag 0.23 125 %
46 Wetland lag 0.19 131 %

47 Human-systems parameters Total population 1,025.7 54 —
48 Population density 774.9 253 —
49 Median household income 42,555.9 47 $
50 Median family income 80,826.6 63 $
51 Average family income 74,839.3 45 $
52 Percentage renters 0.28 67 %

Note: COV = coefficient of variation.

© ASCE 04023015-4 Nat. Hazards Rev.
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transported by the wind and/or storm surge, which leads to cascad-
ing damages and their spreading over the region. In this study, these
effects were captured through the multihazard intensity parameters
of the storm. The wind field intensity parameters were defined using
risk management solutions (RMS) HWind data (Powell et al. 1998),
and the storm surge intensity parameters (e.g., surge depth, wave
height, and water velocity) were obtained from advanced circulation
model (ADCIRC) + simulating waves nearshore (SWAN) simula-
tions of Hurricane Ike (CGH 2017).

Moreover, the momentum flux, a composite intensity parameter,
was also tested in the context of hurricane-induced debris. This in-
tensity parameter is a function of the surge depth and flow velocity,
and has been correlated to the hydrodynamic forces imposed on
structures during tsunami events and subsequent damage (Charvet
et al. 2017; Park et al. 2013; Song et al. 2017). However, its effect
on hurricane-induced hydrodynamic loading and debris is yet to be
explored. At the grid cell level, the intensity parameters were com-
puted as the average value in the grid cell.

Built-Systems Parameters
Predictors associated with the built environment were included by
considering the spatial patterns of the urban landscape, its charac-
teristics, and its potential vulnerability to hurricane hazard. The per-
centages of developed areas (developed open, low, medium, high,
and total) within each grid cell were calculated using the 2008
National Land Cover Data Set (NLCD) at a 30-m resolution (US
Geological Service 2008). To capture potential shielding effects re-
lated to the built environment, the urban lag and the relative angle
and distance from the centroid of the grid cell to Galveston Island’s
12.47-km seawall were computed. Urban lag variables were calcu-
lated using a spatial weights matrix of adjacent cells’ percentage of
developed land cover (GeoDa 2018). These variables quantified
proximity relationships between grid cells and other important
aspects of the built environment.

Road networks are another important component of the built
environment and help determine development patterns by provid-
ing connecting infrastructure. Therefore, the road density in each
grid cell was calculated as the total length of roads divided by the
total area of the grid cell. The road network spatial data sets were
obtained from the Texas Department of Transportation (TxDOT
2022).

The likelihood of damage or total failure of different structures or
structural components not only adds to the composition of the debris,
but also leads the cascading failure of other systems impacted by the
generated construction debris. Thus, to approximately capture the
effect of the physical vulnerability of the built environment on debris
behavior, two variations of the constructed weighted failure proba-
bility of a grid cell φ were proposed

φ1 ¼
Xn
i¼1

Ai · Pfi ð1Þ

φ2 ¼
Xn
i¼1

Ai · Pfi · Nfi ð2Þ

where Ai = footprint area of the ith building; Pfi = structural prob-
ability of failure of the ith building;Nfi = number of floors of the ith
building; and n = total number of buildings in a grid cell.

To define these variables, a housing unit inventory developed for
Galveston Island was used to characterize the built environment in
the region (Fereshtehnejad et al. 2021). This database contains in-
formation on more than 14,000 housing units and features such as
geographical coordinates, type of foundation, year of construction,

and elevation of the house with respect to the ground. To incorporate
the footprint area, the database was coupled with the 2018 building
footprint data for Galveston Island (H-GAC 2018). The empirical
fragility model (Variant 5) proposed by Tomiczek et al. (2014)
for wood-framed residences in the Galveston area following Hurri-
cane Ike was used in this study to predict the probability of failure of
the building stock.

Moreover, to explore the influence of different built systems
components on the debris process, variables related to the number
of residential houses, the number of accessory structures (i.e., structures
in a parcel that are not for living purposes), and their associated areas
were computed at the grid cell level. Examples of accessory struc-
tures include greenhouses, detached garages, and storage sheds,
among others. The number of mobile homes per grid cell was also
included because they can become moving debris in the event of a
storm or hurricane event. The information related to the accessory
structures (number and respective area) and the number of mobile
homes was obtained by spatially joining tax appraisal data of
Galveston County to the building database (Galveston Central
Appraisal District 2020). Only the houses and accessory structures
constructed in or before 2008 were considered in this study.

To complete the built systems parameters within the Galveston
Island landscape, the total number of households, housing units,
occupied housing units, and vacant housing units were computed
based on the 2009 American Community Survey (ACS) 5-year pop-
ulation estimates at the census block group resolution (US Census
Bureau 2009). For each grid cell, the block group that covered the
most area in the cell was assumed to represent its statistics.

Natural-Systems Parameters
Spatial patterns of the natural environment capture natural compo-
nents within the landscape of the study area. Spatial coverage and
diversity measurements were made for each grid cell as a percent-
age of coverage and were computed using the 2008 NLCD data
(US Geological Service 2008). The percentage of coverage within
each grid cell for each of the natural environment land-cover classes
was quantified and then reviewed for sufficient statistical variation
to include in the debris model. Due to a low variance, classifica-
tions of shrub/scrub, hay/pasture, cultivated crops, mixed forests,
and deciduous forests were omitted. Aggregated sums of percent-
age coverage within each grid cell were also computed for all veg-
etative land-cover classes and all wetland land-cover classes. These
aggregated sum values were included in an attempt to capture ad-
ditive effects that the natural environment could potentially have
on storm debris presence.

Furthermore, the vegetation lag and wetland lag variables were
used to calculate averages of adjacent cells’ vegetation and wet-
land coverages per grid cell using the same queen-based adjacency
matrix methodology used to create the urban lag variables (GeoDa
2018). Beyond the quantification of natural environment land-
cover classes, relative shoreline proximity variables and elevation
statistics were included based on National Oceanic and Atmos-
pheric Administration (NOAA) digital elevation models (NOAA
2007, 2022). Shoreline proximity variables were computed by meas-
uring the relative angle and distance from the centroid of each grid
cell to the nearest shoreline. The shoreline proximity, vegetation
lag, and wetland lag variables were included to explore quantitative
natural shielding measures. Finally, the minimum, maximum, and
mean elevation values were calculated for each grid cell to include
topographic effects.

Human-Systems Parameters
Whereas the built and natural environments may constitute the
physical landscape of a coastal socioecological system, the human
environment is inherently and directly affected by natural hazards

© ASCE 04023015-5 Nat. Hazards Rev.
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and hurricane-induced debris. Furthermore, socioeconomic param-
eters of the human environment can influence the level of damages
and impact from other natural hazards (Cutter et al. 2012). There-
fore, a suite of relevant demographic and socioeconomic variables
was included in the analysis (Table 1). The variables were collected
at the census block group resolution from the 2009 ACS 5-year
estimate, which represent the closest population statistics to our
study’s period (i.e., 2008) at the smallest spatial resolution available
(US Census Bureau 2009).

Geospatial Analysis

With all the predictive variables defined, a geospatial analysis was
conducted to aggregate and join the data based on its geographical
location. As mentioned in the “Methodology” section, Galveston
Island was divided into subregions using a grid to couple the different
predictors and the response variable (i.e., debris volume). Three dif-
ferent models with varying spatial resolution were used in this study
to analyze the effect of the spatial aggregation in the results: a low-
resolution model with square grid cells of 500 m, an intermediate-
resolution model with 250 m cells, and a high-resolution model with
125-m cells. For each model, the debris volume at each grid cell was
computed as the total sum of the volume of all the debris pick-up
points lying in the grid cell. The human-built–natural systems predic-
tive variables at the grid cell level were estimated as described in the
previous section.

Debris Volume Predictive Model

Gaussian Process Regression
In general, a Gaussian process can be defined as a collection of
random variables whose joint probability density function follows
a Gaussian distribution, and therefore is completely defined by its
mean and covariance functions (Rasmussen and Williams 2006).
For the general case of a regression model with noisy observations,
we can define

y ¼ fðxÞ þ ε ð3Þ

where y = observed target value (i.e., dependent variable); f =
mapping function; fð·Þ = function value; x is the input vector
(i.e., vector of explanatory variables); and ε ∼ Nð0;σ2

noiseÞ = zero-
mean Gaussian noise with variance σ2

noise. Thus, we can define a
Gaussian process fðxÞ as follows:

fðxÞ ∼ GPðmðxÞ; kðx; x 0ÞÞ ð4Þ

where mðxÞ = mean function; and kðx; x 0Þ = covariance function
(i.e., covariance between fðxÞ and fðx 0Þ). For a training set D with
n observations, D ¼ fðxi; yiÞji ¼ 1; : : : ; ng, where xi is the input
vector of the ith observation (i.e., predictors) and yi represents the
dependent variable of the ith observation (e.g., one observation of
debris volume), the prior distribution of the vector of dependent
variables can be represented

y ∼ NðmðXÞ;KðX;XÞ þ σ2
noiseIÞ ð5Þ

where y = vector of dependent variables; X ¼ ½x1; x2; : : : ; xn�T =
matrix of explanatory variables; KðX;XÞ is the n × n covariance
matrix (Ki;j ¼ kðxi; xjÞÞ; and I = identity matrix of size n × n.
Then, to make an inference on a test set X�, a random Gaussian
vector f� is defined, and the prior joint distribution is computed

�
y

f �

�
∼
��

mðXÞ
mðX�Þ

�
;

�
KðX;XÞ þ σ2

noiseI KðX;X�Þ
KðX�;XÞ KðX�;X�Þ

��
ð6Þ

Finally, the prediction equations can be written (Rasmussen and
Williams 2006)

f �jX; y;X� ∼ Nðf �; covðf �ÞÞ ð7Þ

f � ¼ KðX�;XÞ½KðX;XÞ þ σ2
noiseI�−1ðy −mðXÞÞ þmðX�Þ ð8Þ

covðf �Þ ¼ KðX�;X�Þ − KðX�;XÞ½KðX;XÞ þ σ2
noiseI�−1KðX;X�Þ

ð9Þ
More details on Gaussian process regression have been given by

Rasmussen and Williams (2006). In Gaussian process regression,
special consideration should be given to the selection of the mean
and covariance functions. The mean function can be expressed as
mðXÞ ¼ hðXÞβ, where hðXÞ is the basis function whose form de-
pends on the type of mean function (zero-mean, constant mean,
linear mean, or quadratic mean), and β is the respective coefficients.
The mean function can make a model more interpretable and also
has implications on predictions that are out of the ranges of the
training data (DeltaIV 2017).

The covariance function kðx; x 0Þ, also known as the kernel func-
tion, is parameterized by a set of parameters θ and determines the
similarity between two inputs (Guo 2021). This is important,
because a Gaussian process will give similar predictions for in-
puts that are similar, thereby maintaining spatial correlations
(i.e., correlation of nearby points). Typical kernel functions include
the exponential quadratic kernel, rational quadratic kernel, and
periodic kernel, among others (Guo 2021; Jia et al. 2019; Rasmussen
andWilliams 2006). Alternatively, custom kernels can be formulated
by combining different kernel functions. During the training phase,
the parameters θ, β, and σ2

noise were optimized.

Debris Volume Predictive Model
The final data set comprised 52 predictors and 1 response variable
denoting the total volume of debris per grid cell. From the 52 pre-
dictive variables, 12 were multihazard storm parameters, 16 built-
environment parameters, 14 natural-environment parameters, and
10 human-environment parameters. There were in total 837 obser-
vations (i.e., grid cells) for the low-resolution model, 3,565 for the
intermediate-resolution model, and 13,790 for the high-resolution
model. In each case, the data were split into 50% training and 50%
test data for the subsequent regression analysis. This was done to
augment the test set and to try to avoid any geographical and data
availability bias.

The python package GPflow version 2.7.0 (Matthews et al.
2017) was used to build the Gaussian process (GP) model. Different
mean functions, including zero-mean, constant mean, linear mean,
and quadratic mean were tested along with different kernel functions
such as rational quadratic kernel, exponential kernel, radial basis
function kernel, and Matérn kernel. The parameters θ, β, and σ2

noise
were optimized by adopting the maximum likelihood estimation
method. In GPflow the loss function (i.e., negative of the log mar-
ginal likelihood) is minimized using the limited-memory Broyden-
Fletcher-Goldfarb-Shanno with bound constraints (L-BFGS-B)
algorithm (Zhu et al. 1997). The normalized RMSE was used to
compare the performance of the three varying-resolution models.
The performance results and the optimum model definition for the
three models are presented in Tables 2, S1, and S2, respectively. The
rational quadratic kernel provided the best results for the high-
resolution (125 m) and intermediate-resolution (250 m) models,
whereas the exponential kernel was selected for the low-resolution

© ASCE 04023015-6 Nat. Hazards Rev.
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(500 m) model. The kernel parameters θExp for the exponential ker-
nel include the signal variance σ2

signal and the separate length scales
lm of each predictor m ¼ 1; 2; : : : ; d. The rational quadratic kernel
parameters θRQ include the signal variance and separate length
scales, as well as the positive-valued scalar mixture parameter α.

Results

The performances of the low- and intermediate-resolution models
were comparable, with a percent difference of approximately 3%,
whereas the high-resolution model showed a lower performance in
terms of normalized RMSE when compared with the other two
models. For instance, there was an approximate 43% and 38%
increase in the normalized RMSE value of the high-resolution
model with respect to the low- and intermediate-resolution models,
respectively. Moreover, to analyze the spatial characteristics of the
predictive model, Fig. 2 shows the comparison between the col-
lected (i.e., actual debris volume) and predicted debris volumes in
the test set for the three models. The models were able to capture
the spatial distribution of debris in the region quite accurately
when compared with the actual debris data. Moreover, the models
were able to identify regions with high debris accumulation, which
is key for poststorm response and for debris-mitigation plans. Also,
the areas with the highest levels of debris volume in the region were
constructed areas, which indicates a relationship between debris
accumulation and urban development.

In addition to the spatially distributed debris estimations, esti-
mates of the total debris volume are helpful when planning and
budgeting disaster debris policies and removal contracts (Luther
and Resources and Industry Division 2006). For this purpose, the
percent error between the total predicted debris volume and the
actual debris volume in the test data set was computed for the three
models (Table 3). The high-resolution model presented the highest
percent error (10%) with an increase of 9% and 10% on average
when compared with the intermediate- and low-resolution models,
respectively. The intermediate- and low-resolution models showed
the best predictive performance and had a very good agreement of
estimated total debris volume in the test data set, showing the prom-
ise of implementing the proposed models when planning hurricane-
induced debris removal strategies in coastal regions.

Variable Importance

In order to gain insights on the influence of the different predictive
variables in the debris generation and spreading process, automatic
relevance determination (ARD) was used to perform feature selec-
tion by evaluating the relative importance of the variables in the
regression model (Paananen et al. 2020). The relative importance of
each predictive variable was computed as the inverse of the length
scale lm. A low value of 1=lm for the dth feature implies that the
prediction of the target value (i.e., debris volume) does not vary sig-
nificantly when moving across the dth dimension. This allowed us

to rank the different variables in terms of their predictive capacity
and select the ones that contribute the most to the regression model
using a predetermined threshold.

The classification of the variables by predictive power also
allows feature selection to be implemented by proposing alternative
models with a reduced number of predictors. Models with a lower
dimensionality are not only more interpretable, but also easier to
implement for other scenarios or in other regions. The intermediate-
and low-resolution models were selected for further analysis and
leveraged to propose more flexible models using feature selection
strategies because they presented a better performance. In this study,
a qualitative threshold of 30 variables was adopted for both models
to promote the flexibility of its application while maintaining the
sufficient range of information needed for the good performance
of the regression model. In the future, a one-by-one analysis will be
performed to find the optimum number of parameters based on their
relative importance.

Figs. 3 and 4 show the relative importance of the predictive var-
iables in the intermediate-resolution (250 m) and low-resolution
(500 m) models, respectively. In general, the built-systems param-
eters showed the highest influence in the intermediate-resolution
model when compared with the other sets of parameters, whereas
different multihazard storm, built- and natural-environment param-
eters showed relevance in the low-resolution model. In the low-
resolution model, features that capture general characteristics of the
built environment, such as the total development and the total area
of accessory structures, had a relatively higher influence in the
model, whereas at the intermediate-resolution of 250 m, more spe-
cific structure-dependent features such as the weighted probability
of failure and the number of buildings and accessory structures
started to show importance in the regression model.

The developed-land categories of total development and devel-
oped open space (less than 20% impervious) showed importance in
both models, and the urban lag—a parameter that quantifies urban
land coverage in adjacent grid cells—showed a high relative im-
portance in the intermediate-resolution model. In both models, the
surge, wave height, and water velocity appeared as important param-
eters, emphasizing the significance of considering the multihazard
effects of the storm when analyzing debris behavior in coastal
regions. It is key to highlight the importance of second-order features
such as the damage-related measures and the momentum flux in the
intermediate-resolution model.

The weighted probability of failure appeared as a one of the var-
iables with the highest relative importance in the model, showing
the link between structural behavior and capacity in the debris-
generation process. Moreover, the momentum flux, which has been
observed to have an influence on the damage during tsunami events,
also showed importance within the multihazard storm parameters,
demonstrating the relevance of considering coupled storm effects on
debris behavior studies.

Within the natural-environment parameters, an important similar-
ity between the twomodels was the shared importance of open water
as a predictor of debris volume. This finding suggests that water can
be a method of transport for debris from a storm, especially when the
storm has significant storm surge. Natural systems variables dis-
played less relative importance on debris volume in the intermediate-
resolution model when compared with the low-resolution model.
A potential reasoning for this discrepancy could be related to the
spatial resolution of the natural-environment data sets. The larger
grid cells in the low-resolution model allowed for more spatial varia-
tion in vegetative land coverages within each grid and provided a
more robust exploration of the relationship between debris volume
and the natural environment. Also, the relative importance of the
distance/angle to the seawall and shoreline in both models suggests

Table 2. Gaussian-process model performance in terms of normalized
RMSE

No. of variables Model resolution Normalized RMSE

52 Low (500 m) 0.49
Intermediate (250 m) 0.50

High (125 m) 0.69

30 Low (500 m) 0.51
Intermediate (250 m) 0.54
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Fig. 2. Comparison of the actual debris volume collected in the aftermath of Hurricane Ike with the predicted debris volume at a spatial res-
olution of (a) 125 m (high-resolution model); (b) 250 m (intermediate-resolution model); and (c) 500 m (low-resolution model). (Base maps
from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User
Community.)
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an important relationship between hurricane-induced debris and
potential shielding parameters.

The human-systems parameters did not consistently appear as
important variables in the models, possibly due to data resolution
obstacles and a relative lack of spatial variation. However, popu-
lation density, which also correlates with the importance trend
of development and highly constructed areas, appeared as an im-
portant variable in the two models. Moreover, the percentage of
renter-owned households and median household income displayed

Table 3. Percent error in the aggregated debris volume estimation for the
test data

No. of variables Model resolution Error (%)

52 Low (500 m) 0.23
Intermediate (250 m) 1.39

High (125 m) 10.11

30 Low (500 m) 2.96
Intermediate (250 m) 0.74

Fig. 3. Relative variable importance for the intermediate-resolution (250 m) model.

Fig. 4. Relative variable importance for the low-resolution (500 m) model.
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importance in the intermediate-resolution model. One potential ex-
planation could be that renters and lower-income population are
more likely to reside in structures of older construction built under
less effective building codes, ultimately resulting in more debris.

Feature Selection

As previously mentioned, the 30 most significant variables were
selected to propose two new lower-dimensionality models at the
intermediate and low resolutions. Table S3 presents the selected var-
iables for each model. In order to compare the impact of excluding
features in the model, the performance of the lower-dimensionality
models was compared with the original models (i.e., models with the
full set of predictors). Both models maintained a high accuracy (less
than 3% error) when estimating the total volume of debris in the
region (Table 3). Comparisons of the intermediate-resolution model
with the HAZUS model (USACE 2017) showed an improvement of
approximately 81% when compared with the actual debris removed
in Galveston Island in the aftermath of Hurricane Ike.

When analyzing the change in performance, the low-resolution
resolution model performed better than the intermediate-resolution
one (Table 2). There was an approximate change in performance of
6% and 8% for the low- and intermediate-resolution models, re-
spectively, with respect to the models with the full set of predictors.
This shows that removing some of the features does not signifi-
cantly hinder the performance of the regression model. Tables S1
and S4 provide the parameters of the lower-dimensionality models.

In this regard, it is important to analyze the potential trade-offs
among model resolution, resources available (e.g., data, computa-
tional resources, and time), and performance requirements, as well
as their implication in policy development. When proposing debris
management and predisaster debris planning strategies, it is impor-
tant for local governments and stakeholders to consider the avail-
ability of data for the region and the key factors driving the decision
process. For instance, if one of the main objectives is to reduce any
connectivity issues between the local community and critical facili-
ties in the aftermath of the storm, a higher resolution model will
provide more information on the state of arterial roads. On the other
hand, if overall estimates of debris are required to determine if ex-
isting landfills provide the necessary infrastructure to collect the
debris generated by the storm or if temporary disposal sites are nec-
essary, a compromise can be made between spatial resolution and
the confidence on the estimates.

Moreover, to enhance the resilience of coastal communities ex-
posed to hurricane events, it is necessary to consider the couple
coupled effects of human development patterns and land-use pol-
icies on storm induced debris. As seen in the variable importance
analysis of the intermediate- and low-resolution models, different
types of urban development have an influence on predicted debris
volume. Thus, the effect of development patterns on debris volume
should be considered when proposing future land-use policies.
Moreover, given the influence of the weighted probability of failure
and the number of mobile homes, it is key to consider the retrofitting
of non-code-compliant structures and guidelines for mobile-home
owners during storm events. The relationship of variables related
to housing quality with the socioeconomic characteristics of the
region should be also considered in debris management strategies.

It is also important to promote the acquisition and digitalization
of data in underresourced and rural areas. The lack of good-quality
data can jeopardize the ability of these communities to prepare and
respond to natural disasters, for which platforms and policies that
support data acquisition and free access to it in the context of natu-
ral hazards research should be promoted (Rathje et al. 2017).

Model Application

To showcase how the proposed models can be implemented, the
lower-dimensionality model (i.e., model with 30 variables) at the
intermediate resolution (250 m) was selected to predict the ex-
pected amount of debris in Galveston Island under present condi-
tions when exposed to a scenario storm. To inform the multihazard
storm features, ADCIRC+SWAN simulations of Storm FEMA 36
(SSPEED Center 2022) were used to estimate the surge depth, wave
height and direction, flow velocity, momentum flux, and wind field
characteristics. Storm FEMA36 is a probabilistic storm that approx-
imately produces still-water elevation equivalent to a 500-year re-
turn period storm in the Houston-Galveston region (Ebersole et al.
2015).

The wind steadiness was computed using the hourly wind veloc-
ity estimates from the numerical simulation of the storm leveraging
the procedure proposed by Berkovic (2018). The wind direction
was obtained as the angle between the two velocity components
of the wind field. Finally, the built-environment features were esti-
mated using the totality of the building-stock data (i.e., not filtered
for 2008 conditions) as described in the “Built Systems Parameters”
section (Fereshtehnejad et al. 2021; Galveston Central Appraisal
District 2020). Urban land cover and urban lag were collected using
updated 2020 NLCD and calculated following the same workflow
described in the “Built Systems Parameters” section (US Geological
Service 2020). The road density was also computed as described
in the “Built-Systems Parameters” section. Finally, the built-
systems parameters associated with demographic data (i.e., number
of households, housing units, and vacant and occupied houses)
were collected from the most recent complete ACS 5-year estimate
data (US Census Bureau 2019).

The natural-systems and human-systems parameters were
computed as described in the “Natural-Systems Parameters” and
“Human-Systems Parameters” sections using complete and up-
dated data sets (GeoDa 2018; NOAA 2018; US Census Bureau
2019; US Geological Service 2020).

Fig. 5 shows the mean debris estimates in Galveston Island and
the associated standard deviation of the prediction for the present
conditions when subjected to FEMA36. Due to the influence of
built-systems parameters in the model, highly developed and con-
structed areas in Galveston Island showed the highest debris accu-
mulation. Comparatively, these areas also exhibited a larger value
of standard deviation with respect to other regions; however, their
magnitude was very low (less than 90 m3) when considering that
the predictive mean volumes are in the range of the thousands.
Moreover, the large ranges of debris volume can be attributed to
the more intense effects of the storm and the inclusion of more
buildings in the model.

Beyond these spatial distributions, the total debris volume for
the island was predicted to be 1.9 × 106 m3—a 59% increase
in debris relative to what was produced in Hurricane Ike. Such a
predictive model—with the ability to provide uncertainty on the
estimates—can be used to test the impact of alternative storm
scenarios or development policies in the region.

Conclusions

This paper proposed a knowledge-informed data-driven methodol-
ogy to explore the drivers of the debris process and assess debris
accumulation and spreading in coastal regions exposed to hurricane
and storm events. The methodology leverages domain knowledge
to study the influence of human-built–natural systems and their
interactions on debris behavior and makes use of these insights
to develop a probabilistic data-driven model of debris volume.
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A comprehensive database of relevant human-built–natural sys-
tems features was developed for Galveston Island, Texas, under
Hurricane Ike conditions to inform the predictive debris volume
model.

Moreover, a data-processing framework was developed to in-
form debris volume using a debris removal database from Hurricane
Ike. Gaussian process regression was leveraged to develop the debris
predictive model due to its ability to capture spatial correlations and
provide uncertainty in debris estimates, setting the basis for informed
decision making and policy development on resilient debris manage-
ment. Probabilistic estimates of debris quantities are key to develop
risk estimates, support informed decision-making and mitigation
planning strategies, as well as to evaluate different scenarios and
potential consequences of debris accumulation on coastal commun-
ities. The effect of spatial resolution on the debris estimates was
also investigated by proposing three different models at the reso-
lutions of 500 m (low resolution), 250 m (intermediate resolution),
and 125 m (high resolution).

Results showed that the model performance was better at the
low and intermediate resolutions with a normalized RMSE of 0.49
and 0.59, respectively. Comparisons of the performance of the
models in estimating the total debris volume in Galveston Island
were also presented, with errors of less than 2% for the low- and
intermediate-resolution models, and a percent error of approximately
10% for the high-resolution model. These models improve upon
existing models, which can add up to errors of 50% in debris es-
timation and include a limited set of predictors, failing to capture
the complex interactions on multihazard storm with human-built–
natural systems on coastal regions.

Due to the better performance of the intermediate- and low-
resolution models, they were leveraged to analyze the relative im-
portance of the different predictors in the model. The built-systems
parameters showed a high influence on the intermediate-resolution
model, especially the ones related to damage-dependent predictors
and urban features. In the case of the low-resolution model, param-
eters that captured the general built and natural characteristics of
the region showed a higher influence, along with the multihazard
storm parameters. The human-systems parameters showed a lower

relative importance in the models when compared with the storm,
built-systems, and natural-systems variables. The variables with a
higher relative importance were then used to propose two lower di-
mensionality models at the 500- and 250-m scales using feature
selection strategies. Results showed that reducing the number of
variables does not hinder the performance of the predictive model
significantly, with changes in the RMSE in the range of 8%.

To showcase how the proposed models can be implemented, an
example of the expected debris accumulations and distributions in
Galveston Island under present conditions and a 500-year return
period storm were presented. The intermediate-resolution (250 m)
model was selected to lay the foundation for future debris cascad-
ing impacts studies, such as the loss of connectivity in the aftermath
of a storm due to road closures attributed to debris accumulation.
Even though models with different spatial resolutions can show
similar predictive performance, the selection of the model depends
on multiple factors including the availability of data in the region,
the computational resources, the time span given for the database
collection and model development, as well as the end goal of the
model implementation. In this regard, there is a need to improve data
acquisition, data digitalization, and automation prior to the onset of
natural disasters, especially in communities with low resources.

This study also showcased how convergent studies can help to
develop strategies and methodologies that can give a holistic and
comprehensive understanding of natural disasters, focusing on the
risk drivers and the potential requirements and modeling techniques
needed for resilient and inclusive decision making. Future studies
should aim to include data from different storms and from different
regions in order to improve the predictive capabilities of the model
and its reliability. Moreover, given the flexibility of Gaussian pro-
cess regression, opportunities also exist to develop customized
kernel functions that can model different trends in the data by com-
bining standard kernel functions or adding constraints to them.
Ongoing work is investigating the coupled effects of a changing
climate, human development patterns, and policies on storm-induced
debris, and the cascading effects and consequences of hurricane-
induced debris on distributed infrastructure systems and vulnerable
populations.

Fig. 5. (a) Mean debris volume prediction; and (b) associated uncertainty (standard deviation) for present conditions in Galveston Island, Texas.
(Base maps from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User
Community.)
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Data Availability Statement
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(wind field intensity parameters and the debris removal database).
Direct requests for these materials may be made to the provider
as indicated in the Acknowledgments. All the other data (human-
built–natural system parameter database), models, and codes that
support the findings of this study are available from the correspond-
ing author upon reasonable request.
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