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A  Data-Driven Approach to Hurricane Debris Modeling
Catalina González-Dueñas1; Carl Bernier2; and Jamie E.  Padgett, M.ASCE 3

Abstract: The large amount of debris generated in the aftermath of hurricane and storm events can cause severe financial and logistical
burdens to coastal communities. Existing debris estimation models mainly focus on wind-induced debris and produce estimates with errors of
nearly 50%, highlighting the importance of developing more comprehensive models that can account for other types of debris while im-
proving accuracy. Therefore, the objective of this study is to develop a probabilistic framework to estimate the presence and amount of wa-
terborne debris following a severe storm using machine learning (ML) techniques as a function of relevant storm and landcover parameters.
Machine learning techniques are leveraged to generate debris presence and volume models, employing pre- and post-event aerial and satellite
imagery and a debris removal database for Hurricane Ike, respectively. The results show that the ensemble learning algorithms perform the
best for both tasks, with a misclassification error of 5.56% for the debris presence predictive model, and a normalized root mean squared error
(RMSE) value of 11.98 for the debris volume model, the lowest RMSE of the tested algorithms. Dual-layer ML models are also investigated,
incorporating the debris presence as a predictor in the debris volume model. The results show a percent error of 11.29% for the dual-layer
model and an approximately 5.4% increase in performance with respect to the model that does not incorporate debris presence. The generated
debris volume and presence models will provide useful tools to inform decision-making, evaluate mitigation strategies, facilitate recovery
efforts, and improve resource allocation following a storm event. DOI: 10.1061/JWPED5.WWENG-1945. © 2023 American Society of
Civil Engineers.

Introduction

Debris is one of the most challenging cascading impacts for coastal
communities in the aftermath of hurricane events. Communities
along the United States coasts frequently experience storm and
flood events generating a large amount of debris, and their removal
poses an important financial and logistical burden to local, state,
and federal governments. For instance, of the $2.2 billion total Pub-
lic Assistance funds granted to the state and local government agen-
cies following Hurricane Ike (2008), nearly $752 million (34%)
were dedicated to debris removal activities (FEMA 2019). The
presence of debris around households as well as on roads and brid-
ges not only slows down recovery efforts but can also cause signif-
icant disruptions to transportation networks, jeopardizing the
accessibility of vulnerable communities to critical facilities such
as hospitals or shelters (Balomenos et al. 2019; Kameshwar et al.
2021; Kocatepe et al. 2019; Yin et al. 2017). These debris can
cause damage to critical infrastructure systems in case of impacts
or damming (Bernier and Padgett 2020; Gonzalez Duenas et al.
2019; Ma et al. 2021; Mauti et al. 2020; Stolle et al. 2020). More-
over, during flood events, hazardous chemical materials commonly
stored in households, fuel and oil in flooded automobiles, and con-
struction material such as plywood can become sources of debris
and therefore affect public health due to immediate spreading or
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improper disposal after the storm event (Luther 2006; Reible
et al. 2006).

Even though estimates of the total amount of debris produced by
natural hazards are useful to allocate resources and to plan required
infrastructure such as waste management plants or landfills, infor-
mation on the distribution of debris over a region is essential for
formulating a disaster response (e.g., loss of connectivity on trans-
portation networks), for coordinating disaster cleanup operations
(Özdamar et al. 2014), and for planning temporary disaster waste
management sites, which are critical for minimizing the costs and
duration of cleanup operations (Cheng et al. 2022). Moreover, hav-
ing information on the geographic location of the debris can also
help minimize the exposure of the community to potentially toxic
debris. For instance, during Hurricane Katrina, Federal Emergency
Management Agency (FEMA) supported the collection of debris
from private property in certain regions of Louisiana, Alabama,
and Mississippi due to the concerns raised by local governments
on the health risk posed to the community by the uncollected debris
in these areas (Luther 2006). Some methodologies have been pro-
posed in the literature that are able to capture the spatial distribution
of debris over a region. However, these methodologies either focus
solely on windborne debris (FEMA 2012; Marchesini et al. 2021;
Umpierre and Margoles 2005) and vegetative debris (Escobedo
et al. 2009; Karaer et al. 2021; Thompson et al. 2011) or focus
on post-storm response using images (Gazzea et al. 2021; Schaefer
et al. 2020; Yoo et al. 2017).

Debris mitigation and management strategies are key to the re-
silience of coastal communities under hurricane hazards, and to
support them, it is critical to evaluate the risk of debris accumula-
tion from future storms. Nevertheless, hurricane-induced debris
predictive methodologies, independent on their ability to capture
the spatial characteristics of the debris, have shown suboptimal pre-
dictive performance and focus on specific types of debris. Predic-
tive debris methods such as the ones proposed by FEMA (Hazus)
(FEMA 2012) and the United States Army Corps of Engineers
(USACE) (Drenan and Treloar 2014), which are commonly used
for debris management plans in the United States, consider only
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windborne debris and have shown errors of nearly 50% between es-
timated and observed debris quantities in past hurricane events
(H-GAC 2011; USEPA 2008). For instance, the Hazus method
considers debris sources from tree blowdown and damaged build-
ings but specifies overestimations in the range of 41%–90% for
hurricane-induced debris volume (FEMA 2012; Marchesini et al.
2021). Thompson et al. (2011) proposed a statistical model to pre-
dict hurricane-induced tree debris in the Houston area leveraging
aerial imagery from Hurricane Ike (2008), with overestimations
up to 27%. While focusing on vegetative debris, the authors
found that the storm predictor variables were not really strong pre-
dictors of the debris, corroborating the results of previous studies
(Stanturf et al. 2007; Staudhammer et al. 2009; Thompson et al.
2011). However, in these studies, only the wind field characteristics
were used to describe the storm. Hurricanes are multihazard events in
which the combined action of wind, surge, and waves, interact with
the built and natural environment to generate and spread debris. For
instance, Hurricane Ike was characterized by large surge and waves,
causing widespread damage in the Houston–Galveston region, espe-
cially in the area of Bolivar Peninsula where the hurricane made land-
fall (FEMA 2009). In this area, multiple houses sustained large levels
of damage due to the combined effect of surge and wave action, as
well as the impact of waterborne debris (FEMA 2009). Therefore,
there is a need to propose more accurate predictive methods that
can incorporate other types of debris (multihazard action), while con-
sidering the spatial characteristics of the debris process.

While most of the hurricane debris predictive models have fo-
cused on windborne debris, waterborne debris modeling has been
an active area of research in the last decade in the tsunami hazard
community. Due to the complexity of the waterborne debris accu-
mulation and motion process, modeling has been mostly focused
on experimental work with recent advancements in the incorpora-
tion of numerical modeling for tsunami risk assessments. Several
laboratory experiments have been conducted to understand water-
borne debris impact and damming loads (Mauti et al. 2020;
Shekhar et al. 2020; Stolle et al. 2018a, 2020), motion (Nistor
et al. 2017; Stolle et al. 2018b), and interactions among debris
and between debris and the environment (von Häfen et al. 2021;
Park et al. 2021). Recently, efforts to model waterborne debris
spreading at a community level have been proposed using advec-
tion models (Park and Cox 2019). Nevertheless, not much is
known about the genesis and waterborne debris motion under hur-
ricane conditions, and predictive models that consider this specific
type of debris are lacking in the literature. Considering this, the po-
tential of historical data from previous hurricane events can be le-
veraged to forecast waterborne debris accumulation using
data-driven modeling. Data-driven models allow discovering pat-
terns in the data and making predictions even when the process
or system behind it is not well understood. These models also
have the advantage of requiring less computational effort and
allow an efficient evaluation of different scenarios, facilitating in-
formed decision-making.

Therefore, the objective of this study is to develop a data-driven
framework to predict the amount of waterborne debris following a
severe storm using machine learning techniques. Models to predict
waterborne debris presence and volume are developed as a function
of relevant predictors of the physical process while accounting for

its spatial characteristics. As a proof of concept, the proposed ap-
proach is applied to the Houston–Galveston region using data
from Hurricane Ike, which made landfall in 2008 and was predom-
inantly characterized as a surge-wave event. First, a data processing
workflow to obtain the necessary predictors and response variables
for the model is introduced. Then, a computational framework to
test the performance of a dual-layer model is presented along
with the individual predictive debris presence and volume models.
Several machine learning techniques are applied and compared to
select the debris presence and volume predictive models with the
best performance. This paper ends with a discussion of the results
and general conclusions.

Data-Driven Framework for Waterborne Debris
Modeling

The debris generated in the aftermath of natural hazards can affect
communities in various aspects, from disruptions of transportation
networks due to the presence of debris to challenges with disposal
due to saturation of landfills. Acknowledging this, two different
waterborne debris models are proposed, one to predict debris pres-
ence and one for estimating debris volume over a region. The wa-
terborne debris presence predictive model allows one to predict the
existence of debris in a specified area in the aftermath of the storm
event in regions that experienced flooding. Similarly, the water-
borne debris volume model estimates the total amount of debris
(in m3) expected in a delimited area in the aftermath of the storm
in regions that experienced flooding. With the aim of enhancing
the model predictive capability, the nesting of the two models is
also explored by investigating the effect that observations regard-
ing debris presence have on the performance of the debris volume
model. This is important, since incorporating information on the
existence of debris in a particular area can help inform the debris
volume model of important characteristics of that area that favor
debris accumulation. To address these points, a computational
framework, shown in Fig. 1, is proposed to develop the two water-
borne debris predictive models (presence and volume) and to ana-
lyze the effect of including debris presence as a predictor in the
debris volume model.

To formulate a predictive model, two basic components are
needed, the predictors and the response. The former refers to the
input parameters of the model, which need to be chosen as variables
that might have an influence on the phenomenon under study. The
response is the predicted variable, in this case, the debris presence
and the debris volume, and that constitutes the output of the model.
The combined predictors and the response variable form a data set
in which the different machine learning algorithms are tested. The
data set is divided into three groups, namely, a training and valida-
tion data set, a test data set, and a blind test data set. The training
and validation data set is used to train the machine learning
model and further perform hyperparameter tuning. The test set is
a data set never seen by the model during the training phase and
is used to select the model class having the best performance. A
blind test set is also included in this study to evaluate the perfor-
mance of the proposed dual-layer framework. Because the data
have associated spatial characteristics, a geographic information

Fig. 1. Proposed computational framework. The dashed line represents the data needed as inputs for the models and the solid line denotes the data
outputs of the predictive model.
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system (GIS) software (version ArcMap 10.5.1) is needed to map
the data, analyze it, visualize it, and couple the different data
sets. The methodology to process the different data sets and formu-
late the waterborne debris predictive models is detailed subse-
quently and summarized in Fig. 2.

Data Processing Workflow

Identification of the Surge Zone
First, the potential area affected by waterborne debris is delimited
using the surge zone of the hurricane. For the case study, the

surge zone is obtained from ADCIRC + SWAN computer simula-
tions for Hurricane Ike (CGH 2017). Hurricane Ike made landfall in
the Houston–Galveston region in 2008 and generated large storm
surge and waves in the area, with the highest surge levels reaching
5 m (Sebastian et al. 2014). The hindcast model for Hurricane Ike
was validated against measured high water marks along the Gulf
Coast (Hope et al. 2013; Sebastian et al. 2014). The storm simula-
tion provides hourly estimates of different surge, wave, and wind
intensity parameters for 4 days (96 h), which are extracted for the
Houston–Galveston region and used to define the surge zone and
relevant storm intensity parameters. In the second step, the surge

Fig. 2. Methodology to formulate a waterborne debris dual-layer model. (Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX,
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)
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zone is further divided into regions for geospatial analysis pur-
poses. This is done by creating a grid in GIS software. In this
study, a grid cell size of 0.5 km by 0.5 km is employed. The grid
size is determined by performing a sensitivity analysis with squared
grid cell sizes of 1, 0.5, and 0.25 km; a 0.5 km grid cell size offers
the best performance in terms of predictive capability.

Waterborne Debris Presence and Volume Databases
The third step consists of obtaining and preprocessing the debris
presence and volume databases. A data processing workflow is de-
veloped leveraging aerial imagery and historical data from Hurri-
cane Ike to form the response data. For the debris presence data,
pre- and post-event aerial and satellite imagery (NOAA 2008;
USGS 2017; USACE 2017) are used to manually identify cells
in the 0.5 km grid with debris accumulation in the aftermath of
Hurricane Ike. Leveraging the pre- and post-imagery, polygons
are manually drawn around regions with debris accumulation.
The polygons are then overlayed with the 0.5 km × 0.5 km grid.
A cell fully enclosed in the polygon or in which 25% of its area
is enclosed in the polygon is considered as having a debris accumu-
lation. In the future, image segmentation algorithms can be ex-
plored to automate the process of debris identification from
images. However, this is out of the scope of the present study.
Using GIS software, if debris is identified in the region, the respec-
tive grid cell is marked with 1 or 0 otherwise.

For the debris volume model, a database consisting of more than
200,000 locations in the Houston–Galveston region, with informa-
tion such as debris removal quantities and location for Hurricane
Ike, is used in this study as input for the model. This database relies
on the FEMA Public Assistance Project Worksheets (FEMA 2017).
To receive FEMA assistance, local governments must provide de-
tails of their debris removal projects such as debris quantities, type
of debris, the location where debris is removed, among others. The
worksheets for Hurricane Ike were provided by the Houston–Gal-
veston Area Council (H–GAC) and the consulting and engineering
firm Tetra Tech (H–GAC 2022; Tetra Tech 2022). Therefore, the
debris removal database for Hurricane Ike provides information
on the addresses where the debris was picked up. However, geo-
graphical coordinates are needed to process the data in a GIS anal-
ysis software. Therefore, an automated workflow in DesignSafe-CI
(Rathje et al. 2017) is leveraged to preprocess, analyze, and visual-
ize the data. Python scripts are developed to geocode each debris
point using web scraping techniques through Google application
programming interfaces (APIs). These codes are then used to de-
velop Jupyter Notebooks to connect directly with the GIS software
for visualization and geographic analyses purposes (Dukes 2019;
Molina et al. 2019). The total debris volume per region is then ob-
tained as the sum of the volume of all the points lying in each grid
cell of the surge zone. Given the large uncertainty in the debris ac-
cumulation and spreading process, as well as the need for a suffi-
cient amount of data to leverage surrogate modeling techniques,
debris points within a radius of 0.25 km outside the surge zone
boundary are assigned to the closest grid point. This boundary rep-
resents an approximated perimeter of the Hurricane Ike surge zone
based on the hindcast storm simulations.

Model Predictors
In the fourth step, predictors with a potential influence on the wa-
terborne debris process are obtained. On previous studies and ob-
servations during past hurricane events (Karaer et al. 2021;
Thompson et al. 2011), the storm and land cover parameters
have shown significance in predicting debris in the aftermath of
the event. The loads imposed during hurricane events on the built
and natural environment can make vulnerable components such

as houses and trees potential sources of debris. Therefore, it is ex-
pected that the storm intensity parameters will influence the debris
accumulation process. Likewise, potential sources and types of de-
bris can be identified in a region based on urban development pat-
terns, and the coastal landscape is also expected to have an
influence on the debris-spreading process.

Eleven storm predictors for storm surge and wind characteristics
are obtained from the ADCIRC + SWAN hindcast simulation of
Hurricane Ike and RMS HWind data (Powell et al. 1998): (1)
surge depth, (2) surge velocity in the x- and (3) y-directions, (4)
bathymetry, (5) wave height, (6) wave period, (7) wave direction,
(8) wind velocity, (9) wind steadiness, (10) wind duration, and
(11) wind direction. In order to couple the storm predictors with
the debris presence and volume response variables, the mean
value of each one of the storm parameters per grid cell is obtained.
In future studies, second-order predictors such as momentum flux
and wave force will be tested.

The 2008 land cover features are obtained from the National
Land Cover Data Set (MRLC 2008). Given that in each region
more than one type of land cover might be present, the ratio of
each land cover type per grid cell is obtained. For our case study,
nine land cover features are identified in the area: (1) open water,
(2) emergent herbaceous wetlands, (3) grassland/herbaceous, (4)
woody wetlands, (5) pasture/hay, (6) developed open space, (7) de-
veloped low intensity, (8) developed medium intensity, and (9) de-
veloped high intensity The final data set consists of 20 predictors
(11 storm variables and 9 land cover features corresponding to
the ratio of each land cover type identified in the area) and 2 re-
sponse variables, debris presence (1 or 0) and debris volume (in
cubic meters), per grid cell.

Final Data Set
The final data set consists of 1,074 observations (i.e., 1,074 grid
cells) of debris presence (binary-value) and debris volume (real-
value) in cubic meters along with the 20 predictors. From these ob-
servations, 174 observations are randomly selected as the blind test
set and the remaining 900 observations are further utilized as train-
ing, validation, and test sets. The 900 observations are randomly
split into 80% training and validation data set and 20% test data
set. The training and validation data set is used to perform hyper-
parameter tuning of various machine learning models adopting
10-fold cross-validation, whereas the test set is used to select the
best predictive model for debris presence and debris volume. The
blind test data set is used to evaluate the performance of the pro-
posed dual-layer framework in the debris volume predictive task
(Fig. 1). The blind test data set was separated initially from the
data to avoid any potential bias originating from the training and
validation phase of the models. Fig. 3 shows the division of the
original data set as explained previously.

Predictive Models for Debris Presence and Debris Volume

Debris Presence Predictive Model
The objective of this section is to formulate a predictive model that
can provide estimates of the total volume of debris at a particular
region leveraging debris presence data, multihazard storm intensity
parameters, and land-cover features. First, a machine learning
model that can predict the presence or the absence of debris is de-
veloped. Such a task can be achieved by adopting a binary classi-
fication model whose response is a binary label (1 or 0) having a
20-dimensional input (predictors). Several classes of machine
learning models are adopted and compared to select the model
with the highest accuracy in predicting the class label.
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Table 2. Misclassification error for the debris presence model

No. Methods

1 Logistic regression
2 Logistic regression with LASSO
3                       Support vector machines
4 Ensemble learning
5 Artificial neural network

Misclassification error

0.2667
0.3056
0.1167
0.0556a

0.1000

aClassification model with the highest accuracy.

Fig. 3. Division of a debris data set.

The models tested include logistic regression (Hosmer et al.
2013), logistic regression with LASSO (Wu et al. 2009), support
vector machines (SVMs) (Gunn 1998), ensemble learning (Sagi
and Rokach 2018), and artificial neural network (ANN) (Jain
et al. 1996). The hyperparameters of the individual machine learn-
ing models are tuned by performing 10-fold cross-validation using
the training and validation data set. The different hyperparameters
for each one of the classification models are listed in Table 1. The
Statistics and Machine Learning Toolbox (MathWorks 2021)
within MATLAB (version R2018a) is used to perform the training
and tuning of the machine learning models. Once the tuning param-
eters are optimized, the performance of the trained models is com-
pared by evaluating the misclassification error on the test data set.
Table 2 compares the misclassification errors of the different
trained machine learning models. From this table, the trained en-
semble learning model displays the best performance for predicting
the presence or absence of debris. The tuned hyperparameters of the
ensemble learning model with the weak learners as decision trees
are (1) method: AdaBoost, (2) number of learning cycles: 471,
(3) learning rate: 0.18179, (4) minimum leaf size: 7, (5) maximum
number of splits: 684, and (6) split criterion: deviance.

The high accuracy (94.44%) of the ensemble learning algorithm
in predicting debris presence highlights the ability of machine
learning algorithms to capture debris behavior in the aftermath of
storm events. This means that the model can provide high

confidence estimates on the areas that debris will be located in
the aftermath of storm events, facilitating disaster response efforts,
planning of debris removal activities, transportation and accessibil-
ity analysis, as well as allocation of resources. For instance, if the
potential spreading of debris is known before a hurricane makes
landfall, stakeholders can plan for rapid debris removal from criti-
cal roads to ensure accessibility of the community to critical facil-
ities and allow first responders to reach high-risk facilities such as
oil refineries (e.g., fires can be triggered in oil refineries in the af-
termath of hurricane events).

Further insights can be gained when analyzing which variables
are more significant for predicting debris presence in a region.
Fig. 4 shows the relative importance of each one of the predictors
in the debris classification model. Overall, the storm variables have
a higher significance relative to the land-cover predictive variables.
The predictors associated with the wind field show the highest im-
portance, with the wind steadiness showing the maximum relative
importance, followed by the wind direction, wind speed, and wind
duration. Nevertheless, the surge depth, wave height, and wave di-
rection also appear as important predictive variables in the model.
This emphasizes the need to consider the multihazard characteris-
tics of hurricane and storm events when analyzing debris behavior
in coastal regions. The land-cover features, even when showing the
least relative importance, can also offer key insights into the debris
accumulation and spreading process. For example, within the land-
cover variables, the ones associated with development characteris-
tics stand as important predictors. Developed land-cover areas are
characterized by some presence of constructed materials (e.g.,
housing units) and a considerable percentage of impervious sur-
face. This suggests a relationship with the debris process and the
built environment and can help inform future urban planning strat-
egies in coastal areas.

Debris Volume Predictive Model
Several regression models are evaluated and compared in order to
formulate a predictive model for waterborne debris volume. Two

Table 1. Machine learning classification and regression algorithms and their respective hyperparameters tested for the debris presence and volume models

Model

Logistic regression

Logistic regression with
LASSO

Hyperparameters

Regularization parameter.

Sparse regularization parameter.

Support vector machines

Ensemble learning

Neural network

Ridge regression
Lasso regression
Elastic net

Real-valued box constraint, kernel function (linear, Gaussian, or polynomial), kernel scale in case of Gaussian kernel, and
polynomial order (2, 3, or 4) in case of the polynomial kernel.

Methods of bagging (random forest) or boosting, number of learning cycles, minimum leaf size, and maximum number of
splits. For the boosting method, further hyperparameters include the learning rate and the choice of the boosting algorithm
(adaptive boosting, gentle adaptive boosting, adaptive logistic regression, linear programming boosting, robust boosting, and
random under sampling boosting). The weak learners are chosen as decision trees.

Number of neurons in the hidden layer, activation function (sigmoid, hyperbolic tangent, or rectified linear unit), and
regularization parameter.
Regularization parameter.
Regularization parameter.
Regularization parameter.

© A S C E 04023012-5 J.  Waterway, Port, Coastal, Ocean Eng.
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Fig. 4. Relative importance of predictors in a debris classification model.

machine learning models using the training and validation data set
are proposed; one model estimates the debris volume without the
debris presence data (20 predictors), and the other model estimates
the debris volume with the debris presence data, leveraging the de-
bris presence data as one of the predictors (21 predictors). Ridge
regression (Friedman et al. 2001), LASSO (Friedman et al.
2001), elastic net (Friedman et al. 2001), SVM regression (Gunn
1998), ensemble learning (Sagi and Rokach 2018), and ANN
(Jain et al. 1996) are trained using the training and validation
data set. The hyperparameters of each one of the models are listed
in Table 1.

The normalized root mean squared error (RMSE), obtained on
the data belonging to the test set, is used to compare the goodness
of fit of the individual regression models. The normalized RMSE is
a dimensionless metric that estimates the standard deviation of the
residuals (i.e., difference between the predicted values and the ob-
served ones). Lower values (toward zero) of RMSE indicate a bet-
ter model performance. Table 3 compares the performance of the
trained machine learning models (on the test data set) for the
tasks of predicting the debris volume with and without the debris
presence data. The ensemble learning regression model with deci-
sion trees as weak learners performs the best for both tasks, having
the lowest normalized RMSE value of the regression models.
Table 4 lists the tuned hyperparameters of the ensemble learning
models, both considering and not considering the debris presence

Table 3. Debris volume model performance in terms of normalized RMSE

Normalized RMSE

No. Methods Without DP With DP

1                                 Ridge                                14.3126                 14.2689
2                               LASSO                              14.4376                 14.3870
3                             Elastic net                            14.3081                 14.2732
4                 Support vector machines                 14.6940                 14.6082
5                      Ensemble learning                      12.6985                 11.9807a

6                  Artificial neural network                 14.0019                 14.1293
aRegression model with the best performance.

data. The predictive model for debris volume that leverages debris
presence as one of its predictors performs better than the one with-
out debris presence information. Debris accumulation and spread-
ing is a complex process, in which the factors of the natural and
built environment interact with each other in space and time. Hav-
ing information on debris presence in the aftermath of a storm, for
example, can provide insights into regions that, due to topograph-
ical characteristics or presence of barriers, promote debris accumu-
lation. For instance, if a region presents a large number of dunes or
man-made barriers such as fences, it is more likely that debris will
accumulate on their perimeter. Moreover, given that the debris is
transported by the water, low-lying areas will be more prone to de-
bris settlement. The debris presence data help to capture these char-
acteristics of the debris process, informing the debris volume model
of places that are more likely to present debris accumulation. This
is of great importance in modeling complex processes in which the
physics of the problem have not yet been well understood (like the
waterborne debris process) in helping to identify important charac-
teristics of the process in an indirect manner. In this application, for
example, the binary classification helps give more weight to re-
gions where debris has been observed, thereby improving the per-
formance of the debris volume model. Future studies can explore
these interactions of debris settlement with topographic, natural,
and constructed barriers or shields.

Fig. 5 shows the relative variable importance for the best per-
forming regression model (i.e., ensemble learning model leverag-
ing debris presence data) in the debris volume predictive task. In

Table 4. Best hyperparameters of the ensemble learning models for the
debris volume predictive task

Hyperparameter Without DP With DP

Method LS boost LS boost
Number of learning cycles                                156                             499
Learning rate                                                   0.0905                       0.00778
Minimum leaf size                                              4                                 3
Maximum number of splits                              542                             657
Number of variables to sample                           2                                 1
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Fig. 5. Relative importance of predictors in a debris volume regression model.

general, the storm predictive variables show a more consistent rel-
ative importance in the model than the land cover features. How-
ever, the two highest ranked variables in the regression model are
land cover features, developed medium and developed high.
These variables are followed by the wind steadiness and the
surge depth in relative importance. When examining the storm var-
iables, predictive variables such as the water velocity and wave di-
rection have a relative importance similar to the wind field
predictive variables (i.e., wind speed, duration, and direction).
This reiterates the need for incorporating the surge and wave char-
acteristics when analyzing the debris spreading and accumulation
process. From the land cover predictive variables, the ones associ-
ated with development show the best relative importance. There-
fore, areas with varying levels of urban development and
imperviousness will have an effect on the amounts of
hurricane-induced debris, as observed in the debris presence pre-
dictive model. It is noteworthy that the debris presence does not
show a preeminent significance in the debris volume model. Nev-
ertheless, and as mentioned previously, including the debris pres-
ence data improves the predictive capability of the model
(improvement of 5.7% with respect to the best predictive model
that does not include the debris presence data).

It is important to mention that the predictive debris presence and
volume models were trained with the data collected in the aftermath
of a single hurricane event (Hurricane Ike in 2008). It is expected
that with a more robust data set that incorporates debris presence
and volume data from different storms and hurricane events, the
model performance will be improved. Therefore, platforms to
share debris data should be promoted to enhance the prediction ca-
pabilities of waterborne debris models (Rathje et al. 2017; Wartman
et al. 2020).

Performance of the Proposed Framework: A Dual-Layer
Model

The effectiveness of the framework (a dual-layer model) to predict
waterborne debris volume is assessed by comparing its perfor-
mance with two alternative model approaches: only using the
trained debris volume model without including debris presence

as a predictor and using actual debris presence data as a predictor
in the debris volume model. Fig. 6 shows a scheme to compare
the predictive capabilities of the three model approaches. The
blind test data set, which is not part of either the training, hyper-
parameter tuning, or model class selection step, is used to perform
an unbiased evaluation of the models. The final predictive ensem-
ble learning–based classification and regression models are trained
using the combined training and validation and test data set, with
the selected values of the corresponding hyperparameter presented
in the previous section. The overfitting of the trained model is
averted by keeping the values of hyperparameters in this training
step the same as the ones obtained through 10-fold cross-validation
in the previous step.

As mentioned previously, 174 data points are kept aside as the
blind test data set from the original data. The percent error is used to
estimate the performance of each one of the model approaches, by
comparing the actual debris volume with the predicted debris vol-
ume corresponding to the blind test data set. As seen in Table 5, the
dual-layer model shows the best performance with an error percent-
age of 11.29. This percentage is significantly lower than that of the
existing models in the literature for hurricane-induced debris, high-
lighting the potential of dual-layer machine learning models and the
incorporation of multihazard storm parameters for predicting com-
plex phenomena such as estimating the final location and amount of
debris following storm events. Moreover, to provide insights re-
garding the robustness of the trained machine learning algorithms
adopted in each of the three model approaches, 1,000 instances
of bootstrap samples (Efron and Tibshirani 1994) are generated
from the 174 blind test data points. Each of the bootstrap samples
(having 174 data points) is generated by adopting random sampling
with replacement from the original blind test data set. Subse-
quently, the normalized RMSE is evaluated for each of the 1,000
samples per model approach.

The mean and the coefficient of variation (COV) of the evalu-
ated normalized RMSE are reported in Table 5 for the three
model approaches. The model approaches that take into account
the presence of debris either using the available data or using the
trained debris presence model perform better than the one that
does not consider the presence of debris as a predictor. For
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Fig. 6. Proposed scheme to compare dual-layer model performance.

Table 5. Comparative performance of the proposed framework in terms of
normalized RMSE and the percentage of error with respect to the collected
debris data

Normalized
RMSE

Modeling approach Mean COV % Error

Debris volume model combined with the     11.3216a       0.1505     11.2910a

debris presence model (dual-layer model)
Debris volume model using debris 11.3712 0.1484     13.2292
presence data
Debris volume model without debris 11.9737 0.1029     18.2311
presence
aModeling approach with the best performance.

instance, the dual-layer debris volume model shows an improve-
ment rate of approximately 5.4% over the debris volume model
that does not include debris presence information. Moreover, the
difference in performance between the model that considers the

debris presence data and the dual-layer model (combination of
the debris presence and debris volume model) is marginal, indicat-
ing that the adoption of the predictive debris presence model does
not hinder the performance of the framework. A histogram plot of
the normalized RMSE evaluated using the 1,000 bootstrap in-
stances is shown in Fig. 7, along with the fitted probability density
function for a normal distribution having parameters, as reported in
Table 5. The low coefficients of variation corroborate the robust-
ness of the proposed data-driven framework to predict the amount
of waterborne debris.

As an illustration of the applicability of the proposed frame-
work, the dual-layer predictive model is leveraged to forecast
the expected amount of debris for Galveston Island, TX, if im-
pacted by a storm with an approximate 500-year return period
and assuming 2020 land cover conditions. Storm FEMA36 is a
probabilistic storm developed as part of the Flood Insurance
Study (FEMA 2013) that approximately provides still water ele-
vations of a 500-year return storm event in the Houston–Galves-
ton region (Ebersole et al. 2015). The ADCIRC + SWAN

Fig. 7. Histograms of the normalized RMSE evaluated using 1,000 bootstrap samples: (a) debris volume (DV) predictive model without using debris
presence (DP) as a predictor; (b) debris volume predictive model combined with the debris presence predictive model (dual-layer model); and (c)
debris volume predictive model using debris presence data.
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Fig. 8. Application of the proposed framework to Galveston Island, TX, under FEMA36 storm conditions and 2020 land cover parameters. [Sources:
Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, TomTom.]

simulation of the FEMA36 (SSPEED Center 2022) storm is used
to inform 8 of the 11 storm predictors: the surge depth, surge ve-
locity in the x- and y-directions, the bathymetry, wave height,
wave period, wave direction, and wind velocity. To estimate
the wind steadiness at each point, the methodology proposed
by Berkovic (2018) is leveraged to compute the wind steadiness
parameter using the hourly wind velocities of the storm. The
wind duration is computed based on the duration of high winds
over a wind velocity threshold at each point using the wind
field output of the storm simulation. Details on the computation
of the high wind velocity threshold and its duration can be
found in Kopp et al. (2021). Lastly, the wind direction is obtained
as the angle between the two wind velocity components. More-
over, the nine land cover predictors are informed by the 2020
land cover parameters of the area (MRLC 2020). Fig. 8 presents
the forecasted debris volume and distribution over Galveston Is-
land, TX, leveraging the dual-layer predictive model. It can be
seen that the largest amounts of debris are on the urban core of
the island, and that in the South-West region of the island,
much of the accumulation is concentrated along the coast. It
is important to notice that the forecasted debris accumulation
correlates well with the building distribution in the region. As
mentioned in the previous section, the land cover features asso-
ciated with development are important variables for predicting
both debris presence and debris volume. More specifically, in
the debris volume model, the developed medium and developed
high land cover features present the highest relative variable im-
portance. These two land cover features are characterized by the
presence of constructed materials such as single-family housing
(more predominant for developed medium) and apartment com-
plexes or industrial/commercial areas (developed high) (MRLC
n.d.). Thus, it is expected that highly constructed areas will

have larger levels or debris volume. This showcases the ability
of the model to spatially characterize the debris distribution
and accumulation over a region, which is of extreme importance
for developing debris management plans and effective mitigation
strategies in the aftermath of storm events. Machine learning
models also have the advantage of being fast and easy to use,
which can be of benefit to local governments and stakeholders,
not only on the planning side but also for initiating immediate re-
sponse after a storm.

Conclusions

This study explores the capabilities of data-driven models to fore-
cast waterborne debris presence and volume over a region in the af-
termath of storm events. A computational framework is proposed to
estimate the presence and volume of waterborne debris and explore
the effectiveness of using dual-layer models, incorporating the de-
bris presence as a predictor of the debris volume predictive model.
The framework is applied to the Houston–Galveston region by le-
veraging data from the 2008 Hurricane Ike, which was character-
ized by large surges and wave loads. A methodology is also
proposed to process spatially distributed waterborne debris data
to inform the predictive models. The presence or absence of debris
is assessed using pre- and post-aerial images of the event. For each
region (i.e., grid cell), a binary label is assigned, with 1 representing
the presence of debris and 0 its absence. Further, an automated data
processing framework is leveraged to geocode a debris removal da-
tabase collected in the aftermath of Hurricane Ike. The framework
is coupled with GIS to preserve the spatial characteristics of the
data. To approximately capture some of the physics of the debris
process, land cover and multihazard storm intensity parameters
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are chosen as predictors of the model, given their relevance in the
composition and accumulation of hurricane-induced debris and ob-
servations during past storm events.

Leveraging these data sets, different machine learning classifi-
cation and regression models are evaluated and compared to find
the ones with the best performance to predict the presence and vol-
ume of waterborne debris. The results show that the ensemble
learning models have the best goodness of fit for both the classifi-
cation of debris presence or absence and for the regression task of
predicting debris volume. Moreover, two different modeling ap-
proaches of computing waterborne debris volume are compared,
with the debris volume predictive model that incorporates evidence
on debris presence showing the best performance. The robustness
of the methods is also investigated by creating 1,000 bootstrap sam-
ples. The results show that the model that incorporates debris data
as a predictor performs the best with a normalized RMSE of 11.32
and a percent error of 11.29%. These results are considered satis-
factory when compared with existing hurricane-induced debris
models in the literature, which can lead to errors up to 50%. More-
over, an analysis of the relative importance of the predictive vari-
ables in the models highlights the relevance of considering surge-
and wave-related intensity parameters in the debris accumulation
process, which existing models fail to address. The land cover fea-
tures related to development also show significance in both the de-
bris presence and debris volume predictive models, hinting at
important correlations of building performance and the debris
accumulation process.

While the results of this study show the feasibility of data-driven
models to predict waterborne debris presence and volume, future
studies should aim to address data constraints and quality, automate
processing tasks such as debris presence labeling, perform sensitiv-
ity analyses, and expand the set of predictors. Moreover, in the fu-
ture, the debris transport analysis and the relationship between
debris generation and accumulation can be pursued using the forc-
ing from the ADCIRC + SWAN model and relevant characteristics
of the built and natural environment. Future studies can also ex-
plore the cascading consequences of debris, including subsequent
damage to structures or functionality impairment of distributed in-
frastructure. Moreover, given that changes in the climate are mak-
ing flood and storm surge events more frequent, it is important to
establish effective methodologies to analyze the potential risks
for coastal communities under this cascading effect. Therefore, ex-
perimental and numerical work on the waterborne debris process
for hurricane hazard and varying conditions is also needed, as
well as a more comprehensive set of predictors that can explain
this complex process. In this regard, ongoing research is exploring
feature engineering techniques informed by engineering knowl-
edge that can increase our understanding of the debris process,
help identify important variables, and provide probabilistic esti-
mates of debris accumulation over a region.
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