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Covering entropy for types in tracial W*—-algebras

DAVID JEKEL

Abstract: We study embeddings of tracial W*-algebras into a ultraproduct of
matrix algebras through an amalgamation of free probabilistic and model-theoretic
techniques. Jung implicitly and Hayes explicitly defined 1-bounded entropy
h through the asymptotic covering numbers of Voiculescu’s microstate spaces,
that is, spaces of matrix tuples (XEN),XEN), ...) having approximately the same
+—moments as the generators (X, Xz, ...) of a given tracial W*-algebra. We study
the analogous covering entropy for microstate spaces defined through formulas
that use suprema and infima, not only *x—algebra operations and the trace-formulas
which arise in the model theory of tracial W*-algebras initiated by Farah, Hart,
and Sherman. By relating the new theory with the original 1-bounded entropy, we
show that if M is a separable tracial W*—algebra with A(N : M) > 0, then there
exists an embedding of M into a matrix ultraproduct Q =[], ., M,(C) such that
h(N : Q) is arbitrarily close to A(N : M). We deduce that if all embeddings of
M into Q are automorphically equivalent, then M is strongly 1-bounded and in
fact has /(M) < 0.

2020 Mathematics Subject Classification 03C66 (primary); 46L51, 46L.54, 94A17
(secondary)

Keywords: model theory, von Neumann algebra, free entropy, random matrix,
strongly 1-bounded, ultraproduct

1 Introduction

1.1 Overview

The study of W*-algebras or von Neumann algebras is a deep and challenging subject
with many connections to fields as diverse as ergodic theory, geometric group theory,
random matrix theory, quantum information, and model theory. Our present goal
is to bring together two of these facets—the model theory of tracial W*-algebras
studied in the work of Farah, Hart, and Sherman [7, 8, 9] and Voiculescu’s free entropy
theory which, roughly speaking, quantifies the amount of matrix approximations for
the generators of W*-algebra (see eg Voiculescu [32, 33], Ge [12], Jung [25] and
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2 David Jekel

Hayes [16]). On the free entropy side, we will work in the framework of Hayes’
1-bounded entropy £ [16] which arose out of the work of Jung [25]; for history and
motivation, refer to Hayes, Jekel, Nelson, and Sinclair [18, §2]. The sibling paper of
this one [23] develops the analog of Voiculescu’s free microstate entropy for the setting
of model-theoretic types.

We adapt the framework of 1-bounded entropy from Jung [25] and Hayes [16] to capture
data about the generators’ model-theoretic fype and not only their non-commutative
law. The non-commutative law of a tuple (X;);cy from M = (M, 7) encodes the joint
moments 7(p(X)) for non-commutative x—polynomials p; laws thus describe tracial
von Neumann algebras with chosen generators up to generator-preserving isomorphism.
The type includes the values of more complicated formulas that involve not only the
addition, adjoint, product, and trace operations, but also taking suprema and infima
in auxiliary variables over an operator norm ball in M. For instance, the type would
include the value of the formula
sup inf [7(X; YX,Z)* + T(X%YS)]

zepM YEBM(O,1)
where D{M denotes the closed unit ball with respect to operator norm. The entropy
Ent (1) of a type 1 is defined in terms of the exponential growth rates of the covering
numbers of microstate spaces (spaces of matrix tuples with approximately the same
type as our chosen generators, as in Voiculescu’s work), just like Jung and Hayes’
1-bounded entropy except with types instead of laws. However, we prefer the term
“covering entropy” rather than “1-bounded entropy” as a more intrinsic description of
the definition. The superscript &/ denotes the fact that we take limits with respect to a
fixed non-principal ultrafilter ¢/ on N.

Just as in the original definition of the 1-bounded entropy, a key property of the covering
entropy Ent”/(y1) is that it is invariant under change of coordinates (see §4.3). More
precisely, if X and Y are tuples from M with W*(X) = W*(Y), then their types
tpM(X) and tp™(Y) have the same covering entropy (Corollary 4.10). This allows
us to define the entropy Ent/(A : M) of a separable tracial W*—algebra ' C M as
the entropy of the type of any generating set. As suggested in Hayes, Jekel, Nelson,
and Sinclair [18], we streamline the proof of this invariance property using the result
that every tuple Y from W*(X) can be expressed as f(X) for some quantifier-free
definable function (see Jekel [22, § 13]). More generally, we can extend the definition
of Ent/(N : M) to the case where ' C M is not separable by setting it to be the
supremum of Ent(\p : M) over separable W*—subalgebras Ny C N or equivalently,
the supremum of Ent/ (tpM (X)) over all tuples X € L>®(N W (see Definition 4.11).
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Covering entropy for types in tracial W*-algebras 3

The covering entropy Ent/(\/ : M) can be viewed intuitively as a measurement of the
amount of tracial W*—embeddings of N into the matrix ultraproduct Q = [],_,,, M,(C)
that extend to elementary embeddings of M (compare §4.4). This is the analog of the
idea that the 1-bounded entropy A(N : M) of N in the presence of M quantifies
the amount of W*—embeddings of N into Q that extend to any embedding of M.
Thus, our work is motivated in part by the study of embeddings into ultraproducts,
which is one theme of recent work on von Neumann algebras; for instance, see Popa
[28], Goldbring [14], Ioana and Spaas [20], Atkinson and Kunnawalkam Elayavalli [2],
Atkinson, Goldbring, and Kunnawalkam Elayavalli [1], Gao [11].

We make a precise connection between Ent/(N : M) and 1-bounded entropy as
follows. There is a canonical projection 7y from the space of types to the space
of non-commutative laws, since a non-commutative law describes the evaluation of
quantifier-free formulas (rather than all logical formulas) in a tuple X. Given a non-
commutative law (or quantifier-free type) 1, the 1-bounded entropy 4“(u) can be
expressed through the following variational principle (Corollary 5.4):

(1-1) M (u) = sup Ent!(v)
vemg' ()

Thus, the 1-bounded entropy is the quantifier-free version of the entropy for types.

In a similar way, the 1-bounded entropy of N in the presence of M is the version
using existential types. Entropy in the presence is described using microstates for a
tuple X in V such that there exist compatible microstates for a tuple Y that generates
M. In the model-theoretic framework, the existence of such microstates for M is
described through the evaluation of existential formulas in the original generators and
their microstates (see §5.4). Similar to the quantifier-free setting, there is a projection
73 from the space of types into the space of existential types, and a similar variational
principle expressing the covering entropy of an existential type u as the supremum of
Ent(v) over full types v € 5 l(,u) (Lemma 5.13).

Altogether these ingredients allow us to prove the following result about ultraproduct

embeddings, which is restated and proved in Theorem 5.24:

Theorem 1.1 Letc € R. Let N' C M be an inclusion of separable tracial W*~algebras
W (N : M) > c. Then there exists an embedding « of M into the matrix ultraproduct
Q = [1,,_.yy Ma(C) such that Ent’(L(N) : Q) > ¢, hence also i (L(N) : Q) > c.

The hypotheses of the theorem hold for instance when A/ = M is a nontrivial
free product by Voiculescu [33, Proposition 6.8] and Jung [25, Corollary 3.5] and
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4 David Jekel

Hayes [16, Proposition A.16] since #(M : M) = oco. They also hold for the von
Neumann algebras of groups with non-approximately-inner cocycles by Shlyakhtenko
[30, Theorem 3] and Jung [25, Corollary 3.5] and Hayes [16, Proposition A.16].

In particular, since there exists M with (M : M) = oo, the theorem implies
that there exist types in Q with arbitrarily large covering entropy, and therefore,
M(Q : Q) = oco. Similarly, the entropy Ent(Q : Q) given by Definition 4.11 is
infinite.

Corollary 1.2 Let U be a free ultrafilter on N and let Q = [], _uMy(C). Then
M(Q: Q) = oo and Entu(Q : Q) = 0o0. Hence, Q is not strongly 1—bounded.

The following corollary of Theorem 1.1 was communicated to me by Ben Hayes.

Corollary 1.3 Let N C M be an inclusion of separable tracial W*-algebras h(M) > 0
such that N is a 11| factor (it has trivial center). Then there exists a free ultrafilter V
and an embedding 1 : M — [] M, (C) such that N" N ]| M, (C)=C.

n—Yy n—Yy

Proof The 1-bounded entropy A(M) is the supremum of hY (M) over free ultrafilters
V. Hence, there exists some free ultrafilter ¢/ such that #Y (M) > 0 and by Theorem
1.1 there is an embedding ¢p : M — Q =[] M,,(C) with i (1o(M) : Q) > 0.

n—U

A general fact about 1-bounded entropy is that if A C B and A’ N B is diffuse, then
h(A : B) <0. Indeed, if A" N B is diffuse, it contains a diffuse amenable subalgebra C.
Let

N = W*(u € Q unitary: uCu* N C is diffuse)

(this is known as the step 1 wg-normalizer of C and was introduced in Gatalan and Popa
[10]). Note that A C A. Hence, by Hayes [16, Property 1, page 10],

WA B) <MW : B).
By Hayes [16, Theorem 2.8 and Proposition 3.2],
N B)=1*(C: B).
Then using Hayes [16, Property 1, page 10] again,
n(C: B) < H(C:C) =)
which is zero since C is amenable. Hence, h(A : B) < 0.

By the contrapositive, since in our case A(u(M) : Q) > K (1o(M) : Q) > 0, then
to(M)' N Q is not diffuse. Therefore, it contains a minimal projection p. Let pQp be
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Covering entropy for types in tracial W*-algebras 5

the compression of Q by p equipped with the trace 7,0,(x) = To(pxp)/7(p), and let
t: M — pQp be the map t(x) = pro(x)p = to(x). Since p commutes with ¢o(M), it
follows that ¢y is a x—~homomorphism, and since M is a II| factor and hence has a
unique trace, the map ¢ must be trace-preserving. Because p was a minimal projection
in to(M) N Q, we know (M)’ N pQp has no nontrivial projections and hence is C.

Finally, note that pQp is a matrix ultraproduct [[,_,,, M,(C) for some ultrafilter V.
Indeed, by stability of projections there exist projections p, in M,(C) such that p is
the equivalence class of (p,),cn in Q. Let k(n) be the rank of p,. One can check that
P9Op = [y PiMn(O)py = 11,10 Mky(C), which is simply a matrix ultraproduct
for a different ultrafilter V. |

As shown in Jekel [23, Theorem 1.2], the analogous result holds for free entropy rather
than 1-bounded entropy without having to change the ultrafilter ¢/ to the ultrafilter V.

1.2 Embeddings into Ultraproducts

Our results relate to recent work and questions about embeddings into ultraproducts.
Jung [24] used the study of microstates to show that a separable tracial W*—algebra
A is amenable if and only if all embeddings of A into RY are unitarily conjugate.
Atkinson and Kunnawalkam Elayavalli [2] strengthened this result by showing that A is
amenable if and only if all embeddings of A into RY are ucp-conjugate (meaning they
are conjugate by an automorphism of RY that lifts to a sequence of unital completely
positive maps R — R). Atkinson, Goldbring, and Kunnawalkam Elayavalli [1] later
showed that if a separable 1I; factor M is Connes-embeddable and all embeddings of
M into MY are automorphically conjugate, then M = R.

One can ask similar questions for embeddings into the ultraproduct Q = [],_,,;; M(C)
for some fixed free ultrafilter /. Atkinson and Kunnawalkam Elayavalli [2] showed
that if A is a separable Connes-embeddable tracial W*—algebra and the space of unitary
orbits of embeddings A — Q is separable in a certain metric, then .4 must be amenable.
In particular, if all embeddings A — Q are unitarily conjugate, then A is amenable. It
is an open question whether this result still holds when “unitarily conjugate” is replaced
by “automorphically conjugate.” However, Theorem 1.1 implies the following result,
which was pointed out to me by Srivatsav Kunnawalkam Elayavalli:

Corollary 1.4 Let A be a tracial W*—algebra. Suppose that any two embeddings
A — Q =11,y Ma(C) are conjugate by an automorphism of Q. Then i (A) < 0.
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6 David Jekel

Proof We proceed by contradiction. Suppose that 2/(A) > 0. By Theorem 1.1, there
exists an embedding o : A — Q with A(a(A) : Q) > 0. Moreover, since A is
Connes-embeddable, so is R®.A, so there exists some embedding 5 : RRA — Q.
In particular, S(R) C S(A) N Q. If we assume for contradiction that o and 3|4
are conjugate by an automorphism, then a(.A)’ N Q also contains a copy of R, so in
particular, a(A) N Q is diffuse. As pointed out in the proof of Corollary 1.3, this
implies that h(a(A) : Q) = 0, which contradicts our choice of «. m]

Intuitively, the corollary says that if the space of embeddings modulo automorphic
conjugacy is trivial, then the space of embeddings modulo unitary conjugacy is not
too large, since h*/(A) quantifies the “amount” of embeddings .A — Q up to unitary
conjugacy. The conclusion that #“(A) = 0 is a weakening of amenability since by
Jung’s theorem [24] amenability is equivalent to the space of embeddings modulo
unitary conjugacy being trivial.

We remark that the free entropy techniques used here to study embeddings into Q
cannot be directly applied to study embeddings into RY. For instance, Theorem 1.1
does not make sense with Q replaced by RY. Indeed, RY has property Gamma
by Farah Hart and Sherman [9, §3.2.2], and every tracial W*—algebra with property
Gamma has 1-bounded entropy zero (this is a special case of Hayes [16, Corollary
4.6] and it is shown explicitly in Hayes, Jekel, Nelson, and Sinclair [18, § 1.2, Example
4]). Thus, h(RY) = 0 and therefore, for any subalgebra M of RY, we also have
(M : RY) = 0 by Hayes [16, §2, Property 1]. Hence, Theorem 1.1 would not hold
with RY instead of Q. By contrast, many other operator-theoretic and model-theoretic
techniques are more easily applied to RY than to Q since RY is an ultrapower; see for
instance the following works of Goldbring [14, 15, 13].

1.3 Outline

In large part, our goal is to establish communication between the free probabilistic
and model theoretic subgroups of operator algebras, and to show that many of the
notions in free probability (such as non-commutative laws, microstates spaces in the
presence, and relative microstate spaces) arise naturally from the model-theoretic
framework. Therefore, we strive to make the exposition largely self-contained and use
model-theoretic language throughout.

We start out by explaining the model-theoretic framework for operator algebras in §2.
In particular, we give a more detailed explanation than current literature of the languages
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Covering entropy for types in tracial W*-algebras 7

and structures for multiple sorts and multiple domains of quantification for each. Next,
in § 3, we give a self-contained development of definable predicates and functions of
infinite tuples, including the result that every element of a tracial W*-algebra can be
realized by applying a quantifier-free definable function to the generators which was
observed in the author’s thesis [22, 18].

§4 develops the framework of covering entropy for types. We show the invariance of
entropy under change of coordinates in §4.3, describe the relationship with ultraproduct
embeddings in §4.4, and finally show that adding variables in the (model-theoretic)
algebraic closure of given tuple X does not change its entropy in §4.5.

In §5, we describe the quantifier-free and existential versions of entropy, showing that
they agree with the 1-bounded entropy of Hayes. We conclude the proof Theorem 1.1
there.

In § 6, we describe a generalization to conditional (or “relative”) entropy, which focuses
on quantifying the embeddings N' — Q which restrict to a fixed embedding ¢ : A — Q
on a given W*—subalgebra A. The existential version of the conditional covering
entropy was studied by Hayes explicitly for A diffuse abelian and implicitly for A
diffuse amenable [16], in which case it agrees with the unconditional version. However,
the conditional covering entropy (for full, quantifier-free, or existential types) makes
sense for any diffuse .4 with a specified embedding o : A — Q (though, as far as we
know, it may depend on the embedding «’). Moreover, conditional entropy is natural
from the model-theoretic perspective, since it arises from replacing formulas in the
original language with formulas that have coefficients from the subalgebra A.
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8 David Jekel

2 Continuous model theory for tracial W*-algebras

This section sketches the setup of continuous model theory, or model theory for metric
structures of Ben Yaacov, Berenstein, Henson, and Usvyatsov [3, 4] and its application
to operator algebras by Farah, Hart, and Sherman [7, 8, 9]. We strive to present a
self-contained exposition for two reasons: First, some readers may not be familiar with
the model-theoretic terminology. Second, we are following the treatment in [8] which
introduces “domains of quantification” to cut down on the number of “sorts,” which
means that some of the statements need to modified from their original form in [3].

2.1 Background on operator algebras

We start by giving some basic terminology and background on operator algebras. For
further detail and history, we suggest consulting the following references: Kadison and
Ringrose [26], Dixmier [6], Sakai [29], Takesaki [31], Blackadar [5], and Zhu [34].

*—algebras:

(1) A (unital) algebra over C is a unital ring A with a unital inclusion map C — A.

(2) A (unital) x—algebra is an algebra A equipped with a conjugate linear involution
* such that (ab)* = b*a*.

(3) A unital C*-algebra is a x—algebra A equipped with a complete norm ||-|| such
that ||ab|| < ||a||||b| and ||a*a|| = ||a||* for a,b € A.

A collection of fundamental results in C*—algebra theory establishes that C*—algebras
can always be represented as algebras of operators on Hilbert spaces. If H is a Hilbert
space, the algebra of bounded operators B(H) is a C*—algebra. Conversely, every unital
C*—algebra can be embedded into B(H) by some unital and isometric *—homomorphism
p. By isometric, we mean that ||p(a)|| = ||a||, where ||p(a)|| is the operator norm on
B(H) and ||a|| is the given norm on the C*—algebra A.

Wr-algebras: A von Neumann algebra is a x—subalgebra of B(H) (for some Hilbert
space H) that is closed in the strong operator topology, the topology of pointwise
convergence as functions on H. A W*-algebra is a C*—algebra that admits a predual
(that is, it is the dual of some Banach space). A deep result of Sakai showed that for
a C'-algebra A is a W*-algebra if and only if it is isomorphic to a von Neumann
algebra; moreover, the weak-* topology on a W*-algebra A is uniquely determined by
its C*—algebra structure as shown by Sakai [29, Corollary 1.13.3].
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Covering entropy for types in tracial W*-algebras 9

Tracial W*-algebras: A tracial W*-algebra is a W*-algebra M together with a linear
map 7 : M — C satistying:

e positivity: T(x*x) > 0 forall x e M

* unitality: (1) =1

e traciality: T(xy) = 7(yx) forx,y € A

* faithfulness: T(x*x) = 0 implies x = 0 for x € A.

* weak-x continuity: T : M — C is weak-x continuous.

We call 7 a faithful normal tracial state.

The standard representation: Given a tracial W*-algebra (M, 7), we can form a
Hilbert space L*(M,7) as the completion of M with respect to the inner product
(x,y)r = T(x*y); if x € M, then we denote the corresponding element of L>(M, )
by x. There is a unique unital *~homomorphism 7, : M — B(L*>(M, 7)) satisfying
m-(x)y = xy for x,y € M. Now 7, is a *~homomorphism isometric with respect to the
operator norm, and its image is a von Neumann algebra. The construction of L>(M, T)
and 7, is a special case of the GNS (Gelfand—Naimark—Segal) construction and 7, is
also known as the standard representation of (M, 7). Note the convergence of a net x; to
x in M with respect to the strong operator topology in B(L>(M, 7)) implies convergence
of % = m-(x))1 to ¥ = m(x)1 in L2(M, 7). (It turns out that the converse is true if
(x;)ier is bounded in operator norm, but we will not need to use this fact directly.)

«—polynomials and generators: Given an index set /, we denote by C(x;, x; : i € I) the
free unital algebra (or non-commutative polynomial algebra) generated by indeterminates
x; and x; for i € I. We equip C(x;,x] : i € I) with the unique *—operation sending x; to
x;, thus making it into a =—algebra. If A is a unital *—algebra and (a;);es a collection of
elements, there is a unique unital x—homomorphism p : C{x;, x* : i € I) — A mapping
x; to a; for each i € I. We refer to the elements of C(x;, x : i € I) as non-commutative
s—polynomials, and if p € C(x;,x7 :i € I) and p: C{x;,x] : i € I) — A is as above,
we denote p(p) by p(a; : i € I). Moreover, the image of p is the x—algebra generated
by (aiier .

If A is a C*—algebra and (a;);; is a collection of elements of /, then the C*—algebra
generated by (a;);e; is the norm-closure of the x—algebra generated by (a;)ic;. Similarly,
if M is a von Neumann algebra and (a;);cs is a collection of elements of M, then the
von Neumann subalgebra or W*—subalgebra generated by (a;);c; is the strong operator
topology closure of the x—algebra generated by (a;);c;. In particular, we say that (a;);es
generates M if the strong operator topology closure is all of M.
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2.2 Languages and structures

Next, let us sketch the setup of continuous model theory, or model theory for metric
structures from Ben Yaacov, Berenstein, Henson, and Usvyatsov [3, 4]. We will
follow the treatment in Farah, Hart, and Sherman [8] which introduces “domains of
quantification” to cut down on the number of “sorts” needed.

A language L consists of:

A set S whose elements are called sorts.

For each § € &, a privileged relation symbol ds (which will represent a metric)
and a set Dy whose elements are called domains of quantification for S.

For each S € S and D, D’ € Ds an assigned constant Cpp -

A countably infinite set of variable symbols for each sort S. We denote the
variables by (x;)ieN-

A set of function symbols.

For each function symbol f, an assigned tuple (Sy,...,S,) of sorts called the
domain, another sort S called the codomain. We call n the arity of f.

For each function symbol f with domain (S, ...,S,) and codomain S, and for
every D = (Dy,...,D,) € Ds, x --- x Dg,, there is an assigned Dyp € Dy
(representing a range bound), and assigned moduli of continuity wrp 1, ...,
wrp,n. (Here “modulus of continuity” means a continuous increasing, zero-
preserving function [0, o) — [0, 00)).

A set of relation symbols.

For each relation symbol R, an assigned domain (S, ..., S,) as in the case of
function symbols.

For each relation symbol R and for every D = (Dy,...,D,) € Ds, x --- X Dg,,
an assigned bound Ng p € [0, co) and assigned moduli of continuity wgp,1, .- .,
WRD,n-

Given a language £, an L—structure M assigns an object to each symbol in L, called
the interpretation of that symbol, in the following manner:

Each sort § € S is assigned a metric space S, and the symbol dy is interpreted
as the metric d! on SM.

Each domain of quantification D € Ds is assigned a subset DM C S, such that
DM is complete for each D, SM = Upens DM, and SUPyep yep! aMx,v) <
CD,D’ .

Each function symbol f with domain (S1, . . ., S,) and codomain S is interpreted as
afunctionfM : S{V‘ X oo XS,/th — sM, Moreover, foreach D = (Dy,...,D,) €
Dg, X --- x Ds, , the function f* maps D{V‘ X oo X D,/l\/‘ into DJ{:/I‘). Finally,

1
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fM restricted to D{V‘ x --- x DM is uniformly continuous in the ith variable
with modulus of continuity of wyp ;.

* Each relation symbol R with domain (S, ..., S,) is interpreted as a function RM .
S{Vl X - X SnM — R. Moreover, foreach D = (Dy,...,D,) € Ds, x---x Dg,,
fM is bounded by Ngp on M(Dy) X --- x M(D,) and uniformly continuous in
the ith argument with modulus of continuity of wg p,;.

The language Ly of tracial W*-algebras can be described as follows. We will also
simultaneously describe how a tracial W*—algebra (M, 7) gives rise to an Ly—structure
M, that is, how each symbol will be interpreted.

* A single sort, to be interpreted as the W*—algebra M. If M = (M, 7) is a tracial
W+-algebra, we denote the interpretation of this sort by L°°(M) because of the
intuition of tracial W*-algebras as non-commutative measure spaces.

* Domains of quantification {D, },¢(0,00), to be interpreted as the operator norm
balls of radius r in M.

* The metric symbol d, to be interpreted as the metric induced by ||-||2,7 .

* A binary function symbol +, to be interpreted as addition.

* A binary function symbol -, to be interpreted as multiplication.

* A unary function symbol *, to be interpreted as the adjoint operation.

* For each A € C, a unary function symbol, to be interpreted as multiplication
by A.

* Function symbols of arity 0 (in other words constants) 0 and 1, to be interpreted
as additive and multiplicative identity elements.

* Two unary relation symbols Retr and Imtr, to be interpreted the real and
imaginary parts of the trace 7.

* For technical reasons explained by Farah, Hart, and Sherman [8], we also introduce
for each d—variable non-commutative polynomial p a symbol 7, : L (M)?
representing the evaluation of p, along with the appropriate range bounds N, y
given by the supremum of ||p(Xy,...,X,)| over all (X1,...,Xy) in a tracial
W+-algebra M.

Each function and relation symbol is assigned range bounds and moduli of continuity
that one would expect, eg multiplication is supposed to map D, X D,s into D,,» with
Wi, pp 1) =r'tand wip py, = rt.

Although not every L—structure comes from a tracial W*—algebra, one can formulate
axioms in the language such that any structure satisfying these axioms comes from a

tracial W*-algebra [8, §3.2]. In order to state this result precisely, we first have to
explain formulas and sentences.
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2.3 Syntax: Terms, formulas, conditions, and sentences

Terms in a language L are expressions obtained by iteratively composing the function
symbols and variables. For example, if x;, x;, ...are variables in a sort S and
f:SxS—Sand g:S§ xS — S are function symbols, then f(g(x1,x2),x1) is a term.
Each term has assigned range bounds and moduli of continuity in each variable which
are the natural ones computed from those of the individual function symbols making up
the composition. Any term f with variables x; € S1, ..., xx € S; and output in S can
be interpreted in an £—structure as a function S{V‘ X e X S,/{” — SM._ For example, in
the language L, the terms are expressions obtained from iterating scalar multiplication,
addition, multiplication, and the *—operation on variables and the unit symbol 1. If
(M, ) is a tracial W*—algebra, then the interpretation of a term in M is a function
represented by a *—polynomial.

Basic formulas in a language are obtained by evaluating relation symbols on terms. In
other words, if Ty, ..., Ty are terms valued in sorts Sy, ..., S, and R is a relation
Sy x -+ xS = R, then R(T,,...,T,) is a basic formula. The basic formulas have
assigned range bounds and moduli of continuity similar to the function symbols. In an
L—structure M, a basic formula ¢ is interpreted as a function ¢ : S{Vt X XS,{VI — R.
In L, a basic formula can take the form Re tr(f) or Im tr(f) where f is an expression
obtained by iterating the algebraic operations. Thus, when evaluated in a tracial W*-
algebra, it corresponds to the real or imaginary part of the trace of a non-commutative
x—polynomial.
Formulas are obtained from basic formulas by iterating several operations:
* Given a formulas ¢1, ..., ¢, and F : R" — R continuous, F(¢1,...,¢,) isa
formula.
e If ¢ is a formula, D is a domain of quantification for some sort S, and x is one
of our variables in S, then inf,cp ¢ and sup,.p, ¢ are formulas.
Each occurrence of a variable in ¢ is either bound to a quantifier sup ., or inf,e¢p, or
else it is free. We will often write ¢(x1,...,x,) for a formula to indicate that the free
variables are xq, ..., x,.

All these formulas also have assigned range bounds and moduli of continuity. The moduli
of continuity of F(¢y, ..., ¢,) are obtained by composition from the moduli of continuity
of F and ¢; asin [3, §2 Appendix and Theorem 3.5]. Next, if ¢ : §1 x --- x §, = §
and for D € D,

/l/}(-xlu R 7xn—1) - Sup ¢(X1, ER 7xn—laxn)
xn€D

then W, (Dy ... Dy 1)y = W (Di,....Dp—1,D)-
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Covering entropy for types in tracial W*-algebras 13

Each formula has an interpretation in every L—structure M, defined by induction on
the complexity of the formula. If ¢ = F(¢1,. .., d,), then oM = F(pM, ... oM.
Similarly, if (x1, ..., x,—1) = sup, cp Y (x1, ..., %), then

PMX L X, X)) = supMQSM(Xl,...,X,,,l).
XHGD

Here X, ..., X, are elements of the sorts in the £L—structure M, rather than formal
variables.

Example 2.1 In L, some terms are:
x1x2,  (1x2)x3 4 (Gx3)(x1x3)"

A basic formula is:
Re tr(xjxy + x3(x2x1)")

Another formula is:
Re tr(x;xy) + e™ i (x3) Retr(x)

We can also write a formula:

sup [Re tr(xjxy) + Mt (2x3) Retrxa))
x1€D;
which will be interpreted as the supremum of the previous formula over x; in the ball
of radius 2. In this formula, x; is bound to the quantifier sup, ., and the variables x,
and x3 are free.

For convenience, we will assume that our formulas do not have two copies of the same
variable (ie, if a variable is bound to a quantifier there is no other variable of the same
name that is free or bound to a different quantifier). For instance, in the formula

Imtr(x;) sup Retr(xjxy + x3x7)
xX1€D,

the first occurrence of x; is free while the latter two occurrences are bound to the
quantifier sup, ., , but we can rewrite this formula equivalently as

Imtr(x;) sup Retr(yjxy + x3y7).
€Dy

We will typically denote the free variables by (x;);en and the bound variables by (;)ieN-
Lowercase letters will be used for formal variables while uppercase letters will be
used for individual operators in operator algebras (or more generally elements of an
L—structure).
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14 David Jekel

2.4 Theories, models, and axioms

A sentence is a formula with no free variables. If ¢ is a sentence, then the interpretation
#»™ in an L—structure is simply a real number.

A theory T in a language L is a set of sentences. We say that an £—structure M models
the theory T, or M = T if ¢! = 0 forall ¢ € T.

If M is an L—structure, then the theory of M, denoted Th(M) is the set of sentences
¢ such that ™ = 0. As observed by Farah, Hart, and Sherman [8], the theory of M
also uniquely determines the values ¢ of all sentences ¢ since ¢ — c is a sentence
for every constant ¢ € R.

More generally, if C is a class of L—structures, then Th(C) is the set of all sentences ¢
such that ¢ = 0 for all M in C. The class C is said to be axiomatizable if every
L—structure that models Th(C) is actually in C.

Farah, Hart, and Sherman [8, §3.2] showed that the class of L —structures that
represent actual tracial W*—algebras is axiomatizable. The axioms, roughly speaking,
encode the fact that M is a x—algebra, the fact that 7 is a tracial state, the fact that
vzt < Fllyllzzca for x € DM, the relationship between the distance and the trace,
the fact that Di\" is contained in Df}’t for r < /' (that is, sup,. p, infyep , d(x,y) = 0),
and the fact that 7, agrees with the evaluation of the non-commutative polynomial p.

The theory of tracial W*-algebras will be denoted Ty;. It is also shown in [8] that II;
factors (infinite-dimensional tracial W*—algebras with trivial center) are axiomatizable
by a theory Ty, .

2.5 Ultraproducts

An important construction for continuous model theory and for W*-algebras is the
ultraproduct. Ultraproducts are a way of constructing a limiting object out of arbitrary
sequences (or more generally indexed families) of objects. In order to force limits to
exist, one uses a device called an ultrafilter.

Let / be an index set. An ultrafilter U on [ is a collection of subsets of I such that
s T&U.
e fACBC/lIandA ceU,then Be U.
e fA,BelU,thenANBelUL.
 Foreach A CI,either AU or A°clU.
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If U is an ultrafilter on /, €2 is a topological space, and f : I — 2 is a function, then
we say that

T N
fi 0 = w
if for every neighborhood O > w in €2, the preimage f~!(0) is an element of /. Now if

i € I, there is an ultrafilter I; := {A C I:i € A}, which is called a principal ultrafilter.
All other ultrafilters are called non-principal or free ultrafilters.

The set of all ultrafilters on / can be identified with the Stone-Cech compactification
of I, where I is given the discrete topology (see eg Hindman and Strauss [19, §3]).
The principal ultrafilters correspond to the points of the original space /. In particular,
this means that if 2 is a compact Hausdorff space and f : I — 2 is a function, then
lim; ;4 f (i) exists in 2.

Now consider a language £. Let I be an index set, I/ an ultrafilter on 7, and for
each i € I, let M be an L—structure. The ultraproduct [[,_,,, M, is the L—structure
M defined as follows (see [3, §5]). For each sort S, consider tuples (X;);c; where
X; € S’Mi .

e Let’s call (X;);c; confined if there exists D € Dg such that X; € DMi for all i.

e Let’s call (X;)ics and (Y;)ie; equivalent if lim;_; d3"(X;, Y;) = 0.

* For a confined tuple (X;);c;, let [X;]ic; denote its equivalence class.
We define SM to be the set of equivalence classes of confined tuples (X;);c;. The metric
dé"’ on SM is then given by

d$" (Xilier, [Yidie) = lim d3(X;, Y.
i—U

This is independent of the choice of representative for the equivalence classes because
of the triangle inequality, and it is finite because if X; € DMi and Y; € (D))Mi for
all i, then dé\/l"(X,-, Y;) < Cp,p . Then SM is a metric space and sM = UDGDS DM,
where DM is the set of classes [X;ilicr with X; € DM for all i. Moreover, DM is
automatically complete [3, Proposition 5.3].

Each function symbol f : §; x --- x S, — S receives its interpretation f™ through
X diers - Xnidien) = PV X, - X)) lier

which is well-defined because of the uniform continuity of f on each domain of
quantification, and similarly, each relation receives its interpretation in M through

RUIX lier, - X lien) = lim RM X, X ).
One can verify by the same reasoning as [3, § 5] that M is indeed an L—structure.

One of the reasons ultraproducts are so important is because of the following result,
known as (the continuous analog of) Los’s theorem. See [3, Theorem 5.4].
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16 David Jekel

Theorem 2.2 Let £ be a language, U an ultrafilter on an index set I, and M, an
L—structure for each i € I. Let M = [],_,;, M. If ¢ is a formula with free variables

X1 €S81,..., X, €8,, then for any [X1 ;lic; € S{V‘, oo [Xailier € S,{V‘, we have
MUK lier, - X ilier) = lim o™Xy X)),

Corollary 2.3 In the situation of the previous theorem, if T is an L—theory, and if
M; =T forall i, then M =T.

In particular, this shows that an ultraproduct of Ly —structures that are tracial W*—
algebras will also be an L—structure that is a tracial W*-algebra. One can verify that
the model-theoretic ultraproduct agrees in this case with the ultraproduct of tracial
W+-algebras.

3 Definable predicates and functions

This section describes types, definable predicates, and definable functions. The material
in §3.1 — §3.4 is largely a mixture of folklore and adaptations of [3]; our main
contribution is to write down the results in the setting of infinite tuples and domains of
quantification. In §3.5, we give a characterization of quantifier-free definable functions
in L based on Jekel [22, § 13] and Hayes, Jekel, Nelson, and Sinclair [18, §2].

3.1 Types

Definition 3.1 Let S = (S;);en be an N—tuple of sorts in L. Let Fg be the space of
L—formulas with free variables (xj)jen with x; from the sort S;. If M is an L—structure
and X € [ ;e S]-M, then the type of X is the map:

p"X): Fs - R, ¢ ¢oM(X)

Definition 3.2 Let S = (S))jeny be an N—tuple of sorts in £, and let T be an £—
theory. If D € HjeN Dys;, then we denote by Sp(T) the set of types tpM(X) of all

X € [[jen DM forall M = T.

Definition 3.3 If S is an N—tuple of L—sorts, the set Fs of formulas defines a real
vector space. For each L—structure M and X € HjeN SM. the type tp™(X) is a (real)
linear map Fs — R. Thus, for each L—theory T and D € HJEN Dy; , the space Sp(T)
is a subset of the dual ]-"ST. We equip Sp(T) with the weak-* topology (also known as
the logic topology).
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Covering entropy for types in tracial W*-algebras 17

The following observation is well known in continuous model theory; see [3, Corollary
5.12, Proposition 8.6]

Observation 3.4 Sp(T) is compact in the weak-* topology.

Proof Each formula ¢ has a range bound N p such that [¢(X)| < N, p for all £L-
structures M and all X € [];cy D;. Thus, Sp(T) is a subset of [[,c 7, [~N¢p, Ny pl
with the product topology, which is compact by Tychonoft’s theorem.

Moreover, Sp(T) is a closed subset. While closedness can be expressed in terms of nets,
it can also be expressed in terms of ultralimits. A set A is closed if and only if for every
I and f : I — A and ultrafilter I/, the limit lim;_;, /(i) exists in A. It then follows from
Theorem 2.2 that if [X;];c; is an element of an ultraproduct M of L—structures M;,
then t(p™M([Xilier) = limiy tp™i(X)). O

Although many times authors choose to work with Sp(T) for each D, we find it
convenient to specify a topology on the entire space of types Sg(T) that extends the
topology on each Sp(T), so that our later results can be stated about Sg(T) globally.
The topology on Sp(T) is given by a categorical colimit of the topologies on Sp(T).

Definition 3.5 For a language L, tuple S of sorts, and theory T, let Sg(T) denote
the space of S—types for all M = T. Note that Sg(T) is the union of all Sp(T) for
all D € HJGN Ds;. We say that O C Sg(T) is open if O N Sp(T) is open for every
D e HjeN Ds;; this defines a topology on Sp(T), which we will also call the logic
topology.

Observation 3.6 For a language L, tuple S of sorts, theory T, and D € HjeN Ds;,
the inclusion map Sp(T) — Sg(T) is a topological embedding.

Proof Note that Sg(T) is Hausdorff; indeed, p» and v are two distinct types, then there
exists a formula ¢ with (@) # v(¢). One can check that the sets

U={oeSs(T): |o(®) — ()] <[o() — v(d)[}
and V ={o € Ss(T) : |o(p) — v(®)| < |o(¢) — ()|}
are open and they separate p and v.

Continuity of the inclusion map Sp(T) — Sg(T) follows from the definition of open
sets in Sp(T). Then since Sp(T) is compact and Sg(T) is Hausdorff, the map is a
topological embedding. a
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18 David Jekel

Observation 3.7 For a language L, tuple S of sorts, theory T, and topological space
2, a function 1 : Sg(T) — € is continuous if and only if 1|s,r) is continuous for
every D € [[;,cy Ds;.

Proof This follows from the definition of open sets in Sg(T). O

3.2 Definable predicates

Next, we describe definable predicates, which are certain limits of formulas. It will turn
out that definable predicates correspond precisely to continuous functions Sg(T) — R,
and thus they are a natural completion of the space of formulas in the setting of
continuous model theory. Our approach to the definition will be semantic rather than
syntactic, defining these objects immediately in terms of their interpretations.

Definition 3.8 Let £ be alanguage and T an L—theory. A definable predicate relative
to T is a collection of functions ¢ : HjeN SJM — R (for each M = T) such that for
every collection of domains D = (Dj);cy and every € > 0, there exists a finite ' C N
and an L—formula #(x; : j € F) such that whenever M |=T and X € HjeN DJM, we
have

pMX) — pMX; 1 j € F)| < .

In other words a definable predicate is an object that can be uniformly approximated
by a formula on any product of domains of quantification, where the approximation
works uniformly for all models of the theory T. This is done relative to T because, for
instance, in the study of tracial W*—algebras we do not care if the definable predicate
makes sense to evaluate on arbitrary L—structures, only those which actually come
from tracial W*-algebras.

Note that every formula defines a definable predicate. However, two formulas as defined
in the previous section (where the range bounds and moduli of continuity are part of the
definition) may reduce to the same definable predicate (especially given the restriction
that we work relative to a given theory T).

The next proposition describes definable predicates as continuous functions on the
space of types. This is an adaptation of [3, Theorem 9.9] to the setting with domains of
quantification.
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Proposition 3.9 Let £ be a language and T an L—theory. Let ¢ be a collection of
functions ¢pM : [Len S]M — R for each M |=T. The following are equivalent:

(1) ¢ is a definable predicate relative to T.

(2) There exists a continuous =y : Sg(T) — R such that ¢M(X) = 'y(tpM(X)) for all

METand X € [y SM.

Proof (1) = (2). First, suppose that ¢ is a formula. Then by definition of type,
qu (X) only depends on the type of X in M, and hence ng X) = fy(tpM (X)) for some
v : Sg(T) — R. Foreach D € HjeN Dy; , the restriction of «y to a map Sp(T) — R is
continuous by definition of the weak-« topology. Hence, by Observation 3.7, v is a
continuous function Sg(T) — R.

Now let ¢ be a general definable predicate. Fix D € [];cy Ds;. Then taking € = 1/n in
Definition 3.8, there exists a formula ¢p , depending on finitely many of the variables
x;, such that

1
(3-1) M%) — 63,00 <

forall M =T and X € HJEN DJ-M. By the previous paragraph, there exists a
continuous p , : Sp(T) — R such that qﬁﬁf‘n(X) = 7D,n(tpM(X)) for all M =T and
X € [[;en DM By (3-1),

1 1
sup ‘/YDJZ(,U’) - 7D,m(M)| <-4 —
LESH(T) n m

which implies that the sequence yp, converges as n — oo to a continuous 7p :
Sp(T) — R. Also, by (3-1),

¢™(X) = p™(X))
for M =T and X € HjeN D]M. This in turn implies that vp and 7yp’ agree on
Sp(T) N Sp/(T) forany D and D’ € HjeN Dyg;. Thus, for some function v : Sg(T) — R,
we have yp = 7|p for D € HjeN Ds;. By Observation 3.7, «y is continuous on Sg(T).

(2) = (1). Assume there exists v : Sg(T) — R continuous such that ¢ (X) =
Y(tp™M (X)) for all M |=T and X € [[;cy SM. Fix D € [Ty Ds;- Let A be the set
of functions Sp(T) — R given by the application of formulas ¢ € Fg. Then A is a
subalgebra of C(Sp(T), R) since formulas are closed under sums, products, and scalar
multiplication by real numbers. Moreover, .4 separates points because by definition two
types are the same if they agree on all formulas. Therefore, since 7|s,(t) is continuous,
the Stone-Weierstrass theorem implies that there exists a formula v depending on
finitely many of the variables x; such that |pM(X) — y™M(X)| < € whenever M |= T

and X € [,y DM ]
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Lemma 3.10 If'S is an N—tuple of types and D € HjeN Ds,, then the logic topology
on Sp(T) agrees with the weak-* topology obtained by viewing Sp(T) as a subspace
of the dual of the vector space of definable predicates.

Proof We defined the logic topology as the weak-* topology generated by the pairing of
types with formulas in variables x; € §; for j € N. Since every formula gives a definable
predicate, the weak-+ topology obtained from the pairing with definable predicates is
at least as strong as the logic topology. On other hand, for each D € HjeN Ds;, every
definable predicate can be approximated uniformly by [] jeN D]-M forall M |= T, and
hence the pairing with each definable predicate ¢ defines a map Sp(T) — R that is
continuous with respect to the logic topology, and hence the logic topology is at least as
strong as the weak-* topology obtained from pairing with definable predicates. |

Just like formulas, definable predicates are uniformly continuous on any product of
domains of quantification. But to say this properly, we should clarify what “uniform
continuity” means for a function of infinitely many variables. If €); is a metric space,
then HjeN 2; with the product topology is metrizable but without a canonical choice
of metric. However, we will say that ¢ : || jeN ; — R is uniformly continuous if for
every € > 0, there exists a finite #/ C N and ¢ > 0, such that

di(xj,yj) < dforje F = |p(x) — ¢(y)| < e.

In other words, uniform continuity is defined with respect to the product uniform
structure on ;. (See for instance James [21] for background on uniform

structures.)

jEN

Observation 3.11 If ¢ = (¢™) is a definable predicate over L relative to T, then ¢
satisfies the following uniform continuity property:

Forevery D € HjeN Ds; and € > 0, there exists a finite F C N and é > 0 such that,
forevery M =T and X, Y € [[;cy D,M,

dM(X;,Y) < d forallj € F = |¢™M(X) — o™M(Y)| < e.

Moreover, for every D € [[;.y Ds;, there exists a constant C such that |p™M| < C for
all M = T.

By construction, this result holds for formulas in finitely many X;’s, and it holds for

general definable predicates by the principle that uniform continuity and boundedness
are preserved under uniform limits.
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Another useful property is that definable predicates are closed under the same types of
operations as formulas. In fact, we can use infinitary rather than finitary operations.
Point (1) here is an adaptation of [3, Proposition 9.3].

Lemma 3.12

(1) IfF: RN — R is continuous (where RY has the product topology) and (¢;)jen
are definable predicates HJEN S; — R in L relative to T, then F((¢j)jen) 1s a
definable predicate.

(2) If ¢ is a definable predicate [[;cySj < [[;enS; — R in L relative to T and
D/ - HJEN DS]/’ then

PMXY) = inf - o(X,Y)
Ellen@p™

is also a definable predicate in L relative to T.

Proof (1) This follows from 3.9 and the fact that continuity is preserved by composition.

2)FixD € HjeN Ds; and € > 0. Then there exist a formula ¢y whose free variables are
a finite subset of the x;’s and y;’s, such that [ — ¢J| < € on [en DJM X HjeN(D]{)M
for all M = T. Note that
W= inf  #XY)
jers D

also defines a formula because the infimum is effectively over only finitely many Y;’s.
Also, [¢§! —¢y™M| < € on [Tien DJM for all M = T. Therefore, 7 is a definable
predicate. U

We conclude with a brief remark on separability since we will use the separability of Ly,
in the sequel. For a L—theory T, we equip C(Sg(T)) with the locally convex topology
generated by the family of seminorms

¢ = [|dlspmllcspemy

for D € HjeN Ds, . In other words, a net @ to ¢ converges in this topology if and only
if ||(¢ — )|spm)llcspry — 0 for all D.

Definition 3.13 A language L is separable if

(1) £ has countably many sorts.
(2) For every N—tuple S of sorts, the space C(Sg(9)) is separable, where & denotes
the empty theory.
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Observation 3.14 If £ is a separable language, T is an L—theory, and D is an N—tuple
of domains from an N—tuple of sorts S, then Sp(T) is metrizable.

Proof By separability of £, there is a dense sequence (¢,),en in C(Ss(2)). Since the
restriction maps C(Sg(2)) — C(Sp(2)) and C(Sp(2)) — C(Sp(T)) are continuous,
(¢,) also defines a dense subset in C(Sp(T)). For each n, there exists a constant K,
such that |u(¢,)| < K, for all ;1 € Sp(T); this holds because ¢, can be uniformly
approximated on D by formulas, which are also uniformly bounded. Then we may
define a metric on Sp(T) by:

1
d(p,0) = D o 1(D0) = (6
neN "

The verification that this induces the weak-* topology is routine. The types Sp(T)
induce linear functionals on C(Sp(T)), or in other words, Sp(T) is contained in the unit
ball of the dual of C(Sp(T)) so convergence on a dense subset of C(Sp(T)) is equivalent
to convergence on all of C(Sp(T)). O

Observation 3.15 The language Ly of tracial W*—algebras is separable.

Proof Consider L formulas obtained using only scalar multiplication by numbers
in Q[i] rather than C and using only suprema and infima over D, for r € Q N (0, c0).
There are only countably many such formulas, and one can show that these formulas
are dense in the space of definable predicates. |

3.3 Definable functions

Although definable functions are often defined only for finite tuples, it is useful for the
theory of covering entropy to work with infinite tuples as both the input and the output
functions. The following “functional” description of definable functions makes it easy
to prove properties relating them with definable predicates and the type space.

Definition 3.16 Let S and S’ be N—tuples of sorts in the language L. A definable
function f: [Lien Sj — Iljen S; relative to the L—theory T is a collection of maps
M [Ten SJ-M — 1_[jeN(SJ’-)M for M = T satisfying the following conditions:
(1) ForeachD ¢ HjeN Ds;, there exists D' € HjeN DS; such that for every M = T,
M maps [Ten DJM into H]EN(DJ’.)M.
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(2) Whenever S is another tuple of sorts and ¢ is a definable predicate relative to T
in the free variables x; € SJ’- and X; € §; for j € N, then ¢(f(x), X) is a definable
predicate in the variables X = (x;);en and X = (¥))jeN-

The next proposition gives a more down-to-earth characterization of definable functions
which can be more easily checked in examples. This is in fact typically used as the
definition [3, Definition 9.22].

Proposition 3.17 Let S and S’ be N—tuples of types in the language £ and let T be
an L—theory. Let f : [[;cy Sj — [[;en S} be a collection of maps M [Len SjM —
II jeN(S;)M for M |= T satistying (1) of Definition 3.16. Then f is a definable function
if and only if, for each k € N, the map ¢i(X,y) = d(fi(X),y) is a definable predicate on

Proof ( = )Let S = ', and consider the definable predicate ¢(x',X) = d(x}, ).
Taking S = S’ in Definition 3.16 (2), we see that if f is a definable function, then
o(f(x),X) = d(fi(x),X) is a definable predicate. So substituting y for X;, we have
proved the claim.

( <= ) In order to verify (2) of Definition 3.16, let S be an N—tuple of sorts, and
let ¢(x', %) be a definable predicate on [[;cy S; x []jen S;. We need to show that
P(x, X) = ¢(f(x), X) is a well-defined definable predicate relative to T. Thus, to check
Definition 3.8, fix D € [,y Ds; and Dc [Ijen D5, and € > 0. Since we assumed

that Definition 3.16 (1) holds, there exists D’ such that f maps [[;c D; into [[;cy Dj-

By Definition 3.8, there exists a formula 7 depending on finitely many of the variables
x]’~ and X; that approximates ¢ within ¢/2 on HJ-E]\](D]’.)M X (Dj)M. Let F' be
the set of indices j such that 1 depends on xj’-. For t > 0, let

jeN

. o1
N0 € F,0)+ - ]; d(f(x), ;)

u(x, %) = inf
Yi€D}jEF

which is a definable predicate by our assumption on f and by Lemma 3.12 (2).

We want to show that 1), is close to ¢ when ¢ is sufficiently small. We automatically have
PMX, X) < PMEX), X) for X € [cy(PP™M and X € [[;cn(DP™M when M |= T
since f;(X) is a value of Y participating in the infimum. To get a bound in the other
direction, first observe that since 7 is a formula, |7 is bounded on [[;cyy D} x [ ;e D;
by some constant C. We then observe using the triangle inequality that

- 1 "
nMOGX) a1 0) = M EM ), X)
JEF
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unless Zje P dM(Yj, ]SM (X)) < 2Ct, and therefore the infimum is witnessed by Y such
that Zje F dM(Yj, );M (X)) < 2Ct. Furthermore, by the uniform continuity property of
the formula 1 (Observation 3.11), there exists ¢ such thatif ) icF dM(Yj, ]?M (X)) < 2Ct,
then .

v, X) = M dx), X)) < 2.

It follows that for this value of ¢,
- € - -
A, X) - 5 < MR < M EX), X)
hence also [WMX, X) — pMX,X)| < €

for M |=Tand X € [[ oy DjM and X € H]EN(D]')M. Since 1 can be approximated
in this way by definable predicates, it is a definable predicate, which proves the claim
of the proposition. |

Corollary 3.18 Iff; : HjeN S; — Sy is a term for each k € N, then f = (fj)jen is a

definable function relative to any theory T.

Proof By definition a term maps a product of domains of quantification into some
domain of quantification, which verifies (1) of Definition 3.16. Moreover, for each £,
d(fr(x), yx) is a formula, hence a definable predicate, so by the previous proposition f is
a definable function. m]

Similar to definable predicates, definable functions are automatically uniformly con-
tinuous with respect to d on each product of domains of quantification. This is a
straightforward generalization of [3, Proposition 9.23].

Lemma 3.19 Let £ be a language, T an L—theory, S and S’ N—tuples of sorts, and
£:[ljenSi = [Lien S; a definable function. Then for every D € [ [,y Ds; and F C N
finite and € > 0, there exists E C N finite and 6 > 0 such that

dg' (X, Y;) < foralli € E = dy'(fM(X),"'(Y)) < e forallj € F
J

whenever M |= T and X, Y € [[;cy DJM.

Proof Let D’ € [[,.yDs; such that M maps [Ten DJM into HjeN(DJ’-)M for all
M ET. Fix e >0 and F C N finite. Then by Lemma 3.12 and Proposition 3.17, the
object

¢M(X, Y) = max dg' (FM(X), v))
jer %i
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is a definable predicate relative to T. Hence, by Observation 3.11 there exists £ C N
finite and J > O such that

dg (X[, X;) < & fori € E and d3/'(Y;,Y)) < 6 forj € F
7 (¥
= [pMX,Y) — MX, Y| <€

for X, X" € [[jen DJM and Y, Y € ]_[]-,a\,t(DJ’.)M and M = T. Taking Y = f(X), we
see that

6™, X)) — oM EM )] = maxdg! (X, (X)) < ¢

whenever M |= T and X, X' € [[;cy D and max;eg d§'(X;, X]) < 4, which is the
desired uniform continuity property. a

Next, we describe the relationship between definable functions and types.

Lemma3.20 Let S and S’ be N~tuples of sorts, and let £ : [[;cy Sj — [[;en S} be a
definable function relative to T.

(1) If ¢ is a definable predicate in the variables x; € S] for j € N, then ¢ of is a
definable predicate.

2 EMETandX € HjEN SJM, then tpM(fM(X)) is uniquely determined by
tpM(X) and f.

(3) Letf, : Ss(T) — Sg/(T) be the map such that tp (fM(X)) = £, tp™(X). Then
f. is continuous with respect to the logic topology.

Proof (1) Considering another N—tuple S of sorts, we may view ¢(x) as a definable
predicate in (X, X), and hence by Definition 3.16, ¢ o f is a definable predicate.

(2) For every definable predicate ¢ in x’, ¢ o f is a definable predicate, and hence
¢ o £M(X) is uniquely determined by tp™!(X) for all M |=T and X € [Tien SJ-M
Since this is true for every definable predicate ¢ in variables X/, it follows that tp™ (£(X))

is uniquely determined by f and tp™(X).

(3) Let O be an open set in Sg/(T). By definition of the topology on Sg(T), in order
to show that (£,)~'(O) is open, is suffices to show that (f,)~'(0) N Sp(T) is open for
every D € [[;cy Ds;-

For any such D, by Definition 3.16 (1), there exists D' € HjeN DSI/_ such that fM
maps HjeN DJM into HJEN(DJ’-)M for all M |= T. This implies that f, maps Sp(T)
into Sp/(T). Hence, (£.)~1(O) N Sp(T) = (£«|syr) (O N Sp(T)), so to show that
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this set is (f,)~!(0) N Sp(T) is open, it suffices to check continuity of f, as a map
Sp(T) — Sp/(T).

By Lemma 3.10, the topology on Sp/(T) is generated by the pairings of types with every
definable predicate ¢ in the variables x’. If ¢ is such a definable predicate, then ¢ of is
a definable predicate in x by (1), and therefore, it is continuous with respect to the logic
topology on Sp(T). Thus, the map £, : Sp(T) — Sp/(T) is continuous as desired. O

Finally, we verify that definable functions are closed under composition.

Observation 3.21 Let S, S, and S” be N—tuples of sorts in the language L. If
£:]LenSi = [lenS; and g: [[jen S} — [ljen ] are definable functions, then so is
gof.

Proof If D € J[;.y Ds;, then since f is definable, there exists D’ € [ [,y Dy, such
that £ maps [Len DjM into HJ.GN(DJ{)M for every M = T. Similarly, there exists
D’ € eN DS;/ such that g™ maps HJGN(D]’.)M into HjeN(DJ’»’)M. Hence, (g o f)M

maps H]EN DJM into HjeN(DJ’-’ YM, so that g o f satisfies (1) of Definition 3.16.

Let S be another N—tuple of sorts and let ¢ be a definable predicate in the variables
x/ € 8/ for j € N and X; for j € N. By the definability of g, /(x',X) := ¢(g(x'), %) is
also a definable predicate. Then by definability of f, y(f(x),X) = ¢((g o £)(x),X) is a
definable predicate. Therefore, g o f satisfies (2) of Definition 3.16, so it is a definable
function. O

3.4 Quantifier-free types and definable predicates

Quantifier-free formulas, that is, formulas defined without suprema or infima, are
the simplest kind of formula and have special significance in our study of tracial
W*-algebras.

Definition 3.22 Quantifier-free formulas are formulas obtained through the application
of relations to terms and iterative application of continuous functions R” — R, that is,
formulas obtained without using sup and inf operations. If S is an N—tuple of sorts,
we denote the set of quantifier-free formulas in variables x; € S; for j € N by Fyss.

Quantifier-free types, the space of quantifier-free types, and quantifier-free definable
predicates are defined in the same ways as the analogous objects for types, to wit:
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Definition 3.23 Let S be an N—tuple of sorts in the language £. If M is an L—structure,
then the quantifier-free type of X € HjeN S]M is the map:

o X): Fs =R, ¢ ¢MX)

Definition 3.24

* If T is an L—theory and S is an N—tuple of sorts, then Sqr s(T) will denote the
set of types tpé\f”(X) for X € [[ ey SJM and M =T.

e IfD e HjEN Dg, then S¢rp(T) will denote the set of types tpM(X) for M =T
and X € [[;cy DM.

* We equip Syf,p(T) with the weak-x topology as a subset of the dual of Fyss.

* Weequip Syf,s(T) with the topology such that O is open if and only if ONSyf p(T)

is open for every D € HJEN Dg;. We call this the (quantifier-free) logic topology.

Definition 3.25 Let T be an L—theory and S is an N—tuple of sorts. A quantifier-free
definable predicate is collection of functions ¢ : HjeN SJM — R for M =T such
that for every D € HJGN Ds, and € > 0, there exists a quantifier-free formula ¢ in
finitely many of the variables x; € S;, such that

oM (X) — pM(X)| < €
for X € HjeND]M for M =T.

The following can be verified in the same way as for types, when S is an N—tuple of
sorts and T is an L-theory:
* Foreach D € HJEN Dy;, the space Sq p(T) is a compact Hausdorff space.
* ¢ is a quantifier-free definable predicate if and only if gZ)M X) = w(tpM (X)) for
some continuous w : Sg¢f,s(T) — R.
e If ¢; is a quantifier-free definable predicate for j € N and F : RY = R is
continuous, then F((¢;);en) is a quantifier-free definable predicate.

Furthermore, the quantifier-free type space and the type space can be related as follows.

Observation 3.26 Let S be an N—tuple of sorts in £ and T an L-theory. Let
7 : Ss(T) — Sqr,s(T) be the map that sends a type (as a linear map Fs — R) to its
restriction to Fgrs. Then m(Sp(T)) = Sy p(T) for each D € HJ-GN Ds;, and 7 is a
topological quotient map.

Proof First, 7 is a continuous map Sp(T) — Sgr p(T) by definition of the weak-*
topology. Then since a set in Sg(T) is open if and only if its restriction to Sp(T)
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is open, and the same holds for the quantifier-free versions, we deduce that 7 is
continuous. It is immediate from the definitions that 7(Sp(T)) = S¢rp(T). Then
because Sp(T) is compact and Sq p(T) is Hausdorff, 7 defines a topological quotient
map Sp(T) — Sqr,p(T). Finally, using the definition of open sets in Sg(T) and Sgf s(T),
we deduce that O C Sy s(T) is open if and only if 7~1(0) is open, hence 7 is a
topological quotient map. a

Remark 3.27 A convenient feature of Ly is that F_I(Squ(Ttr)) = S;(Tg). Indeed,
suppose that M = Ty and X € L¥(M)N with tp{l\f’l(X) € S¢(Ty). Then the operator
norm of X; can be recovered from tpq/‘f’t (X) through

1G{1 = Jim (Re (7 X)) /2

hence X € HjeN Di}", so that tpM(X) € Sp(Ty).

3.5 Quantifier-free definable functions in £,

Quantifier-free definable functions are defined analogously to definable functions.

Definition 3.28 T be an L-theory, and let S and S’ be N—tuples of sorts. A
quantifier-free definable function £ : [ [,y Sj — [ [ S} is a collection of functions
M [Tjen S]-M — HJGN(SJ’»)M for all M |= T satisfying the following conditions:
(1) Foreach D € [[;cy Ds;, there exists D' € [ [,y Dy, such that for every M =T,
fM maps UjeN DJM into H/EN(DJ/')M-
(2) Whenever S is another tuple of sorts and ¢ is a quantifier-free definable predicate
relative to T in the free variables x; € S} and X; € §; for j € N, then ¢(f(x), %) is
a quantifier-free definable predicate in the variables X = (x;);en and X = (X;)jeN.

Example 3.29 1If f; is a term in a finite subset of the variables x;, then f = (f});cn is a
quantifier-free definable function relative to any L£—theory T. To see this, suppose that ¢
is a quantifier-free definable predicate and D is a tuple of domains of quantification. Let
f map D into D’. As a quantifier-free definable predicate, ¢ can, for any given € > 0,
be approximated on D’ by a quantifier-free formula ) with error smaller than € on
H.EN(D]{)M for all M |=T. Then 1 o f is a quantifier-free formula that approximates

j
¢ o f within € on [ ],y DM forall M = T.

The following facts about quantifier-free definable functions are verified just as in the
case of definable functions:
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* Quantifier-free definable functions are closed under composition.
* If ¢ is a quantifier-free definable predicate and f is a quantifier-free definable
function, then ¢ o f is a quantifier-free definable predicate.
* For each definable function f : [[;cy S; — [[;cny S} there is a continuous map
f, : Ss(T) — Sg/(T) given by tpé\f/[ (X)) =f, tpfl‘f/l(X).
o If f is a quantifier-free definable function, then for each k € N, the object
o(x,y) = ds;(fk(x), y) is a quantifier-free definable predicate.
* Hence, f is a quantifier-free definable function, then it is a definable function by
Proposition 3.17.
e Thus, a quantifier-free definable function is uniformly continuous on every
product of domains of quantification.
The proof of ( <= ) in Proposition 3.17 uses quantifiers (specifically infima) and thus
does not directly adapt to the quantifier-free setting. This is why we argued that terms
are quantifier-free functions directly in Example 3.29 rather than as in Corollary 3.18.

In the special case of L and Ty, we have the following characterizations of quantifier-
free definable functions. Recall that £, has one type S and the domains of quantification
are given by D, for each r > 0. Given r = (r)jen € (0, oo)N, we write Sqf,r(Ty) for
the set of quantifier-free types of N—tuples in || jen Dr; in Ly relative to Ty. A variant
of this theorem was proved in the author’s Ph.D. thesis [22, Proposition 13.6.4].

Theorem 3.30 Let f be a collection of functions ™ : LX(M)N — L¥(M)N for
each M |= T,.. Suppose that for every r € (0, 00)", there exists ¥’ € (0, 00)N such
that ™ maps HjeN ij\_/l into HjeN Dﬁ}/‘; assume that for each r a corresponding r’
has been chosen, which we will refer to below. Then the following are equivalent.
(1) f is a quantifier-free definable function in L relative to Ty..
(2) Foreach k € N, the object ¢(x,y) = dS]’c(fk(X)v y) is a quantifier-free definable
predicate.
(3) Foreachk € N, r € (0,00)N, and quantifier-free type 1 € Sqf,p,(Ty) and € > 0,
there exists a term g and an open neighborhood O of i in Syf r(Ty) such that,
forall M =T and X € HjeNDi]\_/‘,

g"'(X) € D,
and g X) € 0 = dMFM(X), gM(X) < e
(4) Foreach k € N, r € (0, oo)N, and € > 0, there exist m € N, quantifier-free
formulas ¢, ..., ¢, and terms g1, ..., g, such that

YoM X)gMX) € Dy and aM | fMX), Y Mg X) | < e
j=1 J=1
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whenever M |= T and X € [,y Di}A.

Proof (1) = (2) follows as in Proposition 3.17.

(2) = (3). Fixr and p and €. Let X be an N—tuple from a tracial W*-algebra M
which has quantifier-free type 1. Note that if ¢ is a quantifier-free formula and A is a
W*—subalgebra of M containing X, then ng (X) = ¢(X). Hence, the quantifier-free
type of X in V is the same as the quantifier-free type in M. In particular, we can replace
M with N' = W*(X) and thus assume without loss of generality that M = W*(X).

Recall that M is faithfully represented on the GNS space L?(M) (see § 2.1, the standard
representation). By the Kaplansky density theorem [27] (also explained in Kadison and
Ringrose [26, Theorem 5.3.5]), the ball of radius r; in the C*—algebra C*(X) generated
by X is dense in the ball of radius r} in M = W*(X) with respect to the strong operator
topology. Since approximation in the strong operator topology implies approximation
in the 2—norm associated to the trace, it follows that there exists Z € C*(X) such that
|Z|| <7, and ||Z = Y|]» = dM(Z,Y) < ¢/2.

Next, we must obtain a term g bounded by r,’< such that ¢M (gM (X), Y) < €. Because we
want g to be bounded by | on jen Dy, for all M = Ty, we view the *—polynomials
in infinitely many indeterminates as part of a universal C*-algebra. For *—polynomials
p in infinitely many variables x; : j € N, let:

Ipll = sup { (O] : X € [[ DA M = Ty
JjEN
This defines a C*—norm on C(x;,x; : j € N). Let A be the completion of C(x;,x} :
J € N) into a C*—algebra. If M |= Ty and X € HjGNDJM, then [[p(X)| < ||p||. by
definition, so there is a x~homomorphism 7 : A — C*(X) mapping x; € A to X; € M
for each j € N. By Blackadar [5, 11.5.1.5], there exists z € A such that 7(z) = Z and
I2lla < r-

Now by definition C(x;,x} : j € N) is dense in A. It follows that every element of the
r,—ball of A can be approximated by non-commutative *—polynomials in the r;—ball.
In particular, there exists some g € C(x;,x : j € N) with [|g — z[[4 < ¢/2, and we can
also arrange that ||g|[a < ;.

Then g is a term such that ||gV' (Y)|| < 7, forall Y € H]ENDQ/ for all N = Ty and
such that dM(ko(X), gM(X)) < e for our particular choice of M = W*(X) with
tp{l\f/‘ (X) = u. Now observe that ¥ (x) is a quantifier-free definable predicate since the
term g is a quantifier-free definable function. Let O = {v € Sgt r(Ty) : v(¥) < €}.
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Then O > p by our choice of g and O is open by continuity of ¢. Moreover, by
definition, if V" = T and Y € [y Dy; and tp (Y) € O, then ¢V (£V(Y), gV (Y)) <

€.

(3) = @). Fixk e N, r e (0,00)N, and § > 0. For each 1 € Sp(Ty), there
exists an open O,, C S;(T) and a term g,, such that for M =T and X € HJGN Df;/‘,
7/'(X) € Dy and

tp(X) € O = aM(g/'(X), ;M(X)) < 6.

The sets O, form an open cover of the compact set Syt (T), and hence there exists

m € Nand py, ..., i, suchthat Oy, ..., Oy, cover S¢fr(Ty). Let O; = O, and
8 = 8w+
Since Sgf r(Ty) is a compact Hausdorff space, there exists a continuous partition of
unity ¢, ..., 1, subordinated to the cover Oy, ..., O,,. In other words, there exist
Yisos Ym € C(Sqr,e(Ty)) such that ; > 0, fyj]@;- =0, and Z;”: 7 = 1. Therefore,
for M |= T and X € [[;cy D',
m m
dM |y X)gMX), M) | = (D i XM X) — £MX))
Jj=1 J=1 L2(M)
< Zv,(tpé#(X»Hgﬂ(m — MO g,
1;11
<) tpgd (X0)6
j=1
=4
m m
and D " tpf (X))gM(X) < 3 X))l X Lo my < 7
j=1 Loy =1

Because quantifier-free formulas comprise a dense subset of C(Sq¢(T)) by the Stone—
Weierstrass Theorem, there exist quantifier-free formulas 1, ..., ¥, such that

)
|¢jM(X) — (tpM(X))| < - for M =Ty and X € HDJM
jEN
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It follows that

> M X)gMX) < Y M) < 1+ 0)
j=1 Loo(M) j=1

and > it XNgMX) = > pMXgMX)| < #.
J=1 j=1

L2A(M)
Therefore, let ¢; = (1 + (5)*1%. Then
m m
> oMX)gMX) <A+ WM<
J=1 Loo(M) =1
- “ or,
and |> oMX)gMX) = Y pMXgX)||  <Hd -0+ H= 5
Jj=1 J=1 Lz(M)

Hence, by the triangle inequality:

m /

0
DM XN X) MK < oo+ f ;

J=1 12(M)
By choosing § sufficiently small, we can guarantee that the right-hand side is smaller
than a given ¢ > 0, so the quantifier-free formulas ¢;, ..., ¢, have the desired
properties for (4).

(4) = (2). Fix k and we will show that ¢(x,y) = d(fi(x),y) is a quantifier-free
definable predicate. To this end, fix r € (0, oo)N, ¥ > 0, and € > 0, and we will
approximate ¢ by a quantifier-free formula on HjeN D]M X D, within e for M |= T.
Let m € Nand ¢y, ..., ¢, and g1, ..., gy be as in (4) for our given r and ¢, and let

PMX) = oMX)gMX).
Jj=1

Then for M = Ty and X € HjeN Dﬁ;/t and Y € D,,, we have

[aMFMX), V) — aMEMX), V)| < dMEMX), M X)) < e
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But note that

dMEMX),Y) = > oM X)gMX) — ¥
J=1 Lz(M)

= (Z M XM (X) Re tr' (g1 (X)" g/ (X))
i, k=1

m 1/2
-2 Z HM(X)Re tr'M(gMY) + Re rM (¥ Y))
j=1

which is a quantifier-free formula by inspection.

(3) = (1). Let ¢ be a quantifier-free definable predicate, and we will show that ¢ o f
defines a continuous function on Syt (Ty,) for each r € (0, o0)N for each r, and hence
¢ of is a quantifier-free definable predicate. To this end, it suffices to show that for
each r € (0,00), each 1 € Sy (Ty), and each € > 0, there exists an neighborhood
O of y in Syfr(Ty) such that |pM o £M(X) — (¢ o f)| < € whenever M = Ty, and
g (X) € O.

Fix r, i, and €. Let ¥’ € (0,00)N be such that f* maps HjeN Df}’l into HjeN Df‘{/t
J

for M |= T. By the uniform continuity property of definable predicates, there exists
F C N finite and ¢ > O such that:

Y.Y € [[ D' and max (¥, ¥) <6 = |6MY) — oMY < &
‘ j keF 3
JjeN
By (3), foreach k € F, choose aterm g; and open Oy C Sy (Ty,) such that, forall M = T
and X € [[;cn D7, g (X) € Dy and tpgf!(X) € Op = aMFM(X), eM (X)) < 6.

For k & F, let gr = 0. Then, by our choice of § and gﬁ", for all M = T and
X € [[ien Dﬁj\,”:
€
g X) € (O = [6MEVX) — oMM X))| < 3
keF

Moreover, g = (gr)ren is an N—tuple of terms, hence g is a quantifier-free definable
function. This implies that ¢ o g is a quantifier-free definable predicate. This implies
that Q" := {v € Sqr(Tyr) : [V(Pp 0 8) — (P 0 )| < €/3} is open in Syt r(Ty). Let:

0:=0'n ﬁ(’)k
k=1
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Then M = Ty and tpé\f" (X) € O implies that

™M o £M(X) — (o D)
< [pM o PM(X) — oM 0 gM(X)| + ™M 0 gMX) — (p 0 g)|
+ | og) — o)
<€

as desired. O

Example 3.31 Suppose p; € C(R), and let fM(X) = pi(5(X; + X)) for M = T,
where pj(%(Xj + X7)) is defined through functional calculus. By approximating p;
uniformly on [—rj, ;] by a polynomial g; and applying the spectral theorem, we can
verify Theorem 3.30 (3) and hence conclude that f is a quantifier-free definable function
relative to Ty. Similarly, if f;(X) = ijj(XJf*Xj), then f is a quantifier-free definable
function, an observation that we will use in the proof of Proposition 3.32. In this
way, continuous functional calculus fits into the larger model-theoretic framework of
quantifier-free definable functions.

Building on Theorem 3.30 and Example 3.31, we can show that every element of
the W*-algebra can be realized as a quantifier-free definable function applied to the
generators. This fact will be use later on to show that covering entropy remains invariant
under change of generators for a tracial W*-algebra. This is a version of [22, Proposition
13.6.6] and [18, Proposition 2.4], and the idea behind the proof is a “forced limit”
construction (see Ben Yaacov and Usvyatsov [4, §3.2] or Ben Yaacov, Berenstein,
Henson, and Usvyatsov [3, §9, definable predicates]) applied to quantifier-free definable
functions rather than quantifier-free definable predicates.

Proposition 3.32 If M = (M, 1) is a tracial W*-algebra and X € ]_[jeN D,; generates
M and Y € HjeN Dﬁ\f‘, then there exists a quantifier-free definable function f in
J

Ly relative to Ty such that Y = f(X). In fact, f can be chosen so that ko maps
[Ljen L®(M) into [[jcy ij}" forall M |=T.

Proof Arguing as in (2) = (3) of Theorem 3.30, for each k € N and m € N
there exists a non-commutative polynomial g ,, such that || gﬁm(X’ Wreeny < 1y for

N ETyand X' € HjeN DQ/, and:

1
dM (g (X), Y0 < oy
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Hence also:

3
<

A (@ X0, 81 X)) < S < 5

Let F,, : R — R be the continuous function such that F,,(t) = 0 for r <3/ 2"+2 and
F,(t) = 1 for t > 1/2™ and F,, is affine on [3/2"+2,1/2™]. Then

Prem(X) = Fi(d(grm(X), 8k,m+1(X)))

is a quantifier-free formula. Moreover, by construction, ¢k/\j‘n(X) = 1 for our given M
and X, while at the same time (;Si\’/m(X’ ) is zero whenever || g{c\’/m(X’ )— g,’(\fm A1 XN 2o >
1/2" forany N = Ty, and X' € HjeNDﬁj\_/. Let

YVem = Gk 1Pk2 - - - Phom-
Then )y, satisfies the same properties that we just showed for ¢y ,, with the additional
property that ¥ mi1 < Vi
For N |= Ty and X’ € L¥(N)Y, define:

m—1
FonX)) 1= g (X + D7 X4 1 (X)) — gX'))

j=1

m—1
= (1 = )V XDg X)) + D W1 — i)V XDghX)

j=2
1 (XDghh (X))

Then f. ,, = (fi m)ken is a quantifier-free definable function by Theorem 3.30 since it is
equal to a finite sum of quantifier-free formulas multiplied by terms. Observe that for

N E Ty and X' € HJGNDQ/,

m—1

2 XD ooy < (1=t DN X+ @ — )N XD+, (XD =7
j=2

relying on the fact that vy j < 9y 1. Furthermore, for X’ € HjeN D;Y , we have:

1
WX = F 1 X200y = VXD 88X = 8ot XDl < 5

This implies that for X € [[,cy Dré/ , the sequence fk,Nm(X’ ) converges as m — oo to

some f,f\/ (X") with:
1

IV X)) = XD 2oy < T
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Furthermore, for our given M and X, we have

FMX) = g X) + ) (el ;X) — g (X)) = Yk
j=1

because we assumed that ngJ(X) — Y as j — oo.

Now this f; is only well-defined a priori on HjeN D, for our fixed choice of r. In order
to extend it to a global function, we use a cut-off trick based on Example 3.31. Let
pj : R — R be the function:

2

1
i

) = 1, t
Pj - rjfl/z, P

Let h be given by h]N X = X;pj((X]{)*Xj). Then h is a quantifier-free definable
function relative to Ty by Example 3.31. Moreover, if N/ = Ty and X’ €, we have

IV IA

1 XN Feo vy = 1Y XD 1Y (XN |z
= [l o (X XDYXD X pi (X XD oy < 17
since p;(1)* < r}. Therefore, b maps L(\)Y into [;cy DY for all V' = Ty

]
Also, BV(X') = X/ for X' € [T,y DY

Now f. ,, o h is a quantifier-free definable function since it is a composition of quantifier-
free definable functions. Because f,, converges to fi uniformly on [] jen Dy, as
m — oo, we see that f; ,, o h converges uniformly to f; o h globally as m — oo. This
implies that f o h is a quantifier-free definable function because quantifier-free functions
are closed under limits that are uniform on each product of domains (for instance, using
Theorem 3.30 (3) or (4)). Moreover, fM(hM(X)) = fM(X) = Y by construction.
Finally, (f oh)N maps into HEND/?/ forall N |= Ty, since (fie,m oh)N maps H'eN DﬁY

j r j

into D/\f O
Tk

Remark 3.33 We can also deduce from the proof that every continuous function + on
Sqf,r(Ty) extends to a continuous function on Sy¢(T), namely + o h, where h is as in
the proof. In other words, every quantifier-free definable predicate on [ | jen Dr; relative
to Ty extends to a global quantifier-free definable predicate. The same can be said for
definable predicates, dropping the word “quantifier-free” in this argument.

Proposition 3.32 also leads to a proof of the following fact, which is well-known among
W*—algebraists:
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Lemma 3.34 Let X be an N—tuple in a tracial W*-algebra M and Y an N—tuple in a
tracial W*-algebra N'. Let W*(X) and W*(Y) be the W* —subalgebras generated by X
and Y with the traces obtained from restricting the traces on M and N respectively.
Then the following are equivalent:
(1) X)) = i (V).
(2) There exists a trace-preserving x—isomorphism o : W*(X) — W*(Y) such that
cX)=Y.

Proof (2) — (1). If such a x—isomorphism o exists, then for every p € C(x;, x] :
i € N), we have A((p(X)) = Tar(0(p(X))) = 7a7(p(Y)). Hence, every atomic formula
evaluates to the same thing on X and on Y. Since general quantifier-free formulas are
obtained by applying continuous connectives to atomic formulas, it follows by induction
on complexity that ¢M(X) = qu (Y) for any quantifier-free formula Y, and hence
tpgf! (X) = tpyf (V).

(1) = (2). Let Fy(Ty) be the set of quantifier-free definable functions in £ with
respect to Ty. Since quantifier-free functions are closed under composition, Fq¢(Ty)
is a x—algebra. Moreover, the evaluation maps « : Fgi(Ty) — M, f FM(X) and
B Foi(Tw) = N, f — fN (Y) are *—homomorphisms, and by the previous proposition
the images of a and § are W*(X) and W*(Y) respectively. Since Retr(f) and
Im tr(f) are quantifier-free definable predicates, 7o 0 a(f) = tr(f)M(X) = tr(f )N (Y) =
Tn 0 B(f) for f € Fyr(Ty), hence also ||a(f)|| 2y = |82~ This implies that
ker v = ker 5. Therefore, we obtain a x—isomorphism W*(X) = Fu¢(Ty)/ ker o =
Fai(Ty)/ ker B = W*(Y), which is trace-preserving since 7o 0 o« = 7pr 0 3. O

4 Entropy for types

We define a version of Hayes’ 1-bounded entropy for types rather than only quantifier-
free types. Later, in §5, we will see that Hayes’ 1-bounded entropy of N in the
presence of M (denoted /(N : M)) can be realized as a special case of entropy for a
closed subset of the type space.

4.1 Definition of covering entropy
If K is a subset of the type space S(Ty) and r € (0, c0)Y, we define

TW(K) = X e [[ oM : p"OX) € K
JEN
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We view this as a microstate space as in Voiculescu’s free entropy theory. We will then
define the entropy of O through covering numbers of o) up to unitary conjugation.

Definition 4.1 (Orbital covering numbers) Given Q C M,(C)Y and a finite F C N
and ¢ > 0, we define N;’{E(Q) to be the set of Y € M,(C)N such that there exists
a unitary U in M,(C) and X € Q such that ||Y; — UX;U*||» < e forall i € F. If
QC Nng(Q’), we say that Q' orbitally (F,e)—covers Q2. We denote by K,‘f{E(Q) the
minimum cardinality of a set €’ that orbitally (F, €)—covers (2.

Definition 4.2 Fix a non-principal ultrafilter &/ on N. For a subset C of the S(Ty)
and F C [ finite and € > 0, we define

1
“ = i i b(n)
Enter () _operll%fgic nh_% n2 log Kp(I'Y(O)).

Observation 4.3 (Monotonicity) Let K' C K C S(Ty), let F/ C F C N finite, let
0<e<é,andletr, r € (0,00)N with r]’~ < rj. Then

Entzlff7F’,6’ (IC/) S EntZ;{F,e(IC)‘

In particular, it O C S(Ty) is open, then

) 1
Entilf.(0) = lim — log Ky2(T{(O)).

Definition 4.4 (Entropy for types) For L C S(T), define

Ent/(K) := sup Ent (K)
finite I'(“) CN
€>

and Entu(lC) 1= sup Entf[(lC).

re(0,00)N
Moreover, if i1 € S(Ty), we define Ent” (1) = Ent({11}).
4.2 Variational principle
In this section, we show that the covering entropy defines an upper semi-continuous
function on the type space, and then deduce a variational principle for the entropy of a

closed set, in the spirit of various results in the theory of entropy and large deviations.

Lemma 4.5 (Upper semi-continuity) Foreachr € (0, oo)N, F C N finite, and € > 0,
the function p +— Entzr{Fﬁ(,u) is upper semi-continuous on S(Ty).
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Proof For each open O C S(Ty), let

Ent%F,E(O), weo

0, otherwise.

Jo(u) = {

Since O is open, fp is upper semi-continuous. Moreover, Entﬁfﬂe(;ﬁ) is the infimum of
fo(u) over all open O C S(Ty;), and the infimum of a family of upper semi-continuous
functions is upper semi-continuous. |

Proposition 4.6 (Variational principle) Let X C S(Ty) and let r € (0, )N, FCN
finite, and € > 0. Then

(4-1) sup Ent!;. (1) < Ent/;. (K) < sup Enty ().
neK pecl(K)
Hence,
(4-2) sup Ent (1) < Ent(K) < sup Ent”(u).
HeK pecl(K)

Proof If 1. € K, then by monotonicity (Observation 4.3), Entff ({u:}) < Entf! (K).
Taking the supremum over ;1 € K, we obtain the first inequality of (4-1).

For the second inequality of (4-1), let C = sup,,cq Entl,ﬁg(u). If C = oo, there

is nothing to prove. Otherwise, let C' > C. For each p € cl(K) N Sy(Ty), there

exists some open neighborhood O, of 1 in S(Ty) such that Entzr’fp?e(@u) < C'. Since

{04} pecio)ns.(ty) 1 an open cover of the compact set cl(KC) N S¢(Ty), there exist ju;,
oy pg € cl(K) N Sp(Ty) such that

k
KNSTw) €O,
j=1
Let O = U]’.‘:1 O,Uj' Then
k
KFI(O) < ) KFeTYH(O,) < kmax KTy (Oy).
j=1

Thus,

1
log KP2(TU(O,,)).

€ n2 €

1 1
— log Ky Iri(0)) < —5 logh + max
Taking the limit as n — U,

EntY!;; (cl(K)) < Ent/; (0) < max Ent/; (0,) < C'.

Journal of Logic & Analysis 15:2 (2023)



40 David Jekel

Since C' > C was arbitrary,
EntY; .(K) < Entr po(cl(K)) < C = sup Ent'y (1)
pecl(K)

completing the proof of (4-1). Taking the supremum over F and € and r in (4-1), we
obtain (4-2). O

4.3 Invariance under change of coordinates

Next, we prove certain invariance properties of the covering entropy. First, Ent/ (1) is
independent of r provided that . € S;(Ty). Second, if W*(X) = W*(Y) inside M,
then Entu(tpM(X)) = Entu(tpM (Y)), which allows us to define Ent/(\ , M) for a
W*—subalgebra N inside M. Both of these properties are deduced from the following
lemma about push-forward under definable functions. This is closely related to Hayes
[16, Lemma A.8 and Theorem A.9].

Proposition 4.7 (Monotonicity under push-forward) Let f be a definable function
relative to Ty, let r € (0, 00)", and Iet ¥’ € (0, c0)" be such that f maps HJEN D,; into

HJGN Drj{. Let K C Sy(Ty) be closed. Then

Ent (£,(K)) < Ent/(K).

Remark 4.8 The analogous monotonicity property does not hold for the original
1-bounded entropy 4 of a quantifier-free type, but it does hold for 1-bounded entropy
in the presence. The monotonicity property holds for the full type and for the existential
type of X because those types already encode information about how X interacts with
the ambient algebra. For more information, see Remark 5.16.

Proof Let F’ C N finite and ¢’ € (0, 1) be given. Because f is a definable function, it
is uniformly continuous by Lemma 3.19, hence there exists a finite ¥ C [ and € > 0
such that for every M =T and X, Y € HJ.GN Dﬁ/‘ ,

(4-3) ||X;— Y|l <eforallj e F = |[fy(X) —fr(Y)|l2 < € /3 forallj € F.

Let O be a neighborhood of K in S;(Ty). By Urysohn’s lemma, there exists a
continuous function 9 : S(Ty) — [0, 1] such that ¢ = 0 on K and ¢ = 1 on
Se(Tw)\ O. As in Proposition 3.9, there exists a formula 7 such that [ — ¢™M| < ¢//3

on Df/\/‘ Next, define Y™ : [Len SQA — R by

jEN j

pMY) = ot (nM<X> + erng@M(Xx m)

Elljen D
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which is a definable predicate relative to Ty, by Lemma 3.12.

Viewing ¢ as a continuous function on Sy(Ty), let O' = =1 ((—00,2¢'/3)). Note

that £, (K) C @ since if Y = fM(X), then we can take this value of X in the infimum

defining 1 and obtain that > (Y) < ¢’ /3. Meanwhile, if M |= Ty and Y € ]y D!
J

with tpM(Y) € @', then there exists X € [en Df}/l with

/

2
(X)) + max dMEMN(X), Y) <
JEF’ J 3

which implies that t(p™(X) € O and max;ep ||[f1(Y) — X#| < 2¢//3. Applying
this with M = M,(C), we obtain[(O0') C Nyu ;3 OT™(0O))). If Q is an
(F, e)—cover of '™ (©), then by (4-3) and the fact that f is equivariant with respect to

conjugation of an N—tuple by a fixed unitary, f.(€2) is an orbital (F’, ¢ /3)—cover of
£, (D™ (©)), and therefore also an orbital (F, ¢')—cover of I'™ (). It follows that

Kb o T(0"N) < kP (TM(O)).
Hence,
Ent ;v o (£.(K)) < Ent 1 /(O") < Enty r (O).
Since O was an arbitrary neighborhood of K, we obtain
Ent 1 o (£.(K)) < Ent; (K) < Ent(K).

Since F’ and ¢’ were arbitrary, we conclude that Entzrl, () < Entzf (K),asdesired. O

Corollary 4.9 If K is a closed subset of S¢(Ty), then Ent”(KC) = Ent/(K).

Proof By definition, Ent"(C) > Ent¥/(K). On the other hand, fix some r’ € (0, co)"
and let r’ = max(r’,r). By Observation 4.3, Entzr’f(lC) < Entzr’f,(lC). Now applying
Proposition 4.7 to the identity map, since id maps HjeN D, into HjEN D,ju, it follows
that Entzrj,,(IC) < Ent?(IC). Since r’ was arbitrary, Ent/(K0) < Entzrj ). O

Corollary 4.10 Let M = (M, ) be a tracial W*-algebra and X, Y € MY, If
Y € W*X)N, then
Ent/(tp™(Y)) < Ent(tp™™(X)).

In particular, if W*(X) = W*(Y), then Ent (t(p™ (X)) = Ent (tpM(Y)).
Proof By Proposition 3.32, there exists a quantifier-free definable function f relative
to Ty such that Y = fM(X). Now tp™M(Y) = £, tpM(X). Hence, applying Proposition

47t0 K = {tpM (X)} (for an appropriate choice of r), we obtain Entu(tpM (Y)) <
Ent (tpM(X)). The second claim follows by symmetry. O
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With this invariance result in hand, it seems natural to define the covering entropy for a
separable W*—subalgebra of M as the entropy of any N—tuple of generators. However,
the following definition works even in the non-separable case.

Definition 4.11 If M = (M, 7) is a tracial W*-algebra and N is a W*—subalgebra,
we define

Ent“(NV : M) = sup Ent(tp™(X)).
XeL®(N)N

Observation 4.12 Let M be a tracial W*—algebra, and let N' be a W* —subalgebra.
If X € L®(N)Y generates N, then for any Y € NN, we have Ent (tpM(Y)) <
Ent¥ (tp™ (X)) by Corollary 4.10, and therefore,

Ent/(\V : M) = Ent (tp™ (X)).
Moreover, if P is a W*—subalgebra of N, then Ent/(P : M) < Ent/(N : M).

Remark 4.13 Furthermore, it is evident from Definition 4.11 that Ent/(N : M)
only depends on the set of types in M that are realized in L°(N)". Hence, if two
embeddings N — M and N’ — M, are elementarily equivalent—meaning that for
every definable predicate ¢ and X € L>®°(N W, we have d)Ml(X) = ¢M2(X)—then
Ent/(N : M) = Ent!(V : Mp).

4.4 Entropy and ultraproduct embeddings

Lemma 4.14 (Ultraproduct realization of types) Let Q = [],_;,M,(C). Let
€ S(Ty). Then Ent” () is either nonnegative or it is —oo. Moreover, Entu(,u) >0
if and only if there exists X € L>(Q)N such that tpS(X) = p.

Proof Note that log Kf}f‘e’(l“g")(O)) is either > O or it is —oo. Therefore, Ent?(u) is
either nonnegative or it is —oo. It remains to show the second claim of the lemma.

( = ) In light of the foregoing argument, if Ent* (1) > 0, then Ent(2) > 0 for some
r. By Observations 3.14 and 3.15, S;(Ty) is metrizable, hence there is a sequence
(Opken of neighborhoods of 4 in S(T) such that Oy C Oy and Mien Ok = {1}-
Fork € N,let Byt = {n € N : (O # @}, Now choose X™ € My(C)Y as follows.
For each n ¢ Ej, set X = 0. For each n € E; \ Eiy1, let X® be an element of
WOy, If n € Mken Ex that means that I'™({u}) # @, so in this case we may
choose X € M, (C)N with tpM©O(X®) = .
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Since U 1is an ultrafilter, either E; € U or Ej, € U. If we had E; € U, then
lim,, ¢(1/n%)log KE2(I'™(O)) would be —oo since the set would be empty for
n € E{. Hence, Ex € U. For n € E, we have tp""©O(X®) ¢ O,. Therefore,
lim,,_, tp""©(X™) € O. Since this holds for all k, lim,,_,;; tp"©O(X®) = 1. Let
X = [XM],en € L2(Q)N. Then

tp2(X) = Tim. tp O XMy = 4.

( <= ) Suppose that X is an element of the ultraproduct with type . Let r; = [|Xj||o-
Express X as [X™],en for some X™ € M,(C)Y with HXJ(")H < rj. Since the type of
X™ converges to the type of X, for every neighborhood O of 1, there exists E € U
such that tp""©(X™) € O for all n € E, and in particular, F?”(O) # @ forn €E.
This implies that Entzlf,e((’)) > 0 for every F and e. Hence, Ent () > 0. O

Recall that an embedding M — Q of tracial W*—algebras is said to be elementary if
for every definable predicate ¢ and X € L°(M)Y, we have ¢2(X) = ¢M(X). This
in particular implies that M and Q are elementarily equivalent, that is, they have the
same theory.

Corollary 4.15 Suppose that M is a separable tracial W*—algebra and N' C M is
a W*—subalgebra. If Ent{(N : M) > 0, then there exists an elementary embedding
t:M— Q.

Remark 4.16 Since the embedding ¢ : M — Q is elementary, in particular the
embeddings ' — M and N' — Q are elementarily equivalent, and hence Ent” (4(\) :
Q) = En!(NV : M).

Proof of Corollary 4.15 By Observation 4.12, Ent/(M : M) > Ent/(N : M) > 0.
Let X € L®(M)N generate M. Then by the previous lemma, there exists X' € Q
with the same type of X. In particular, since X and X’ have the same quantifier-free
type, Lemma 3.34 shows that there is an embedding ¢ : M — Q with «(X) = X'.
To show that ¢ is elementary, suppose that Y € L®(M)YN and ¢ is a definable
predicate. By Proposition 3.32, there exists a quantifier-free definable function f such
that Y = fM(X). Since f is quantifier-free, d2(u(Y)), 2(X")) = dM(Y;, fMX) =0,
hence «(Y) = £2(«(X)). Therefore, p2(«(Y)) = (¢ o f)é(x’) = (¢ o HYM(X) = HM(Y),
where the middle equality follows because th(X’ ) = tpM(X), and therefore the
embedding is elementary. a
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4.5 Entropy and Algebraicity

In this section, we show that Ent/(N : M) = Ent“(acl(\) : M), where acl(\) is
the algebraic closure of continuous model theory. At present, very little is known
about algebraic closures for tracial W*—algebras. Nonetheless, it is natural to study how
the model-theoretic 1-bounded entropy behaves under this model-theoretic operation,
analogously to how Hayes studied the behavior of 1-bounded entropy under various
W*—algebraic operations. (See Hayes [16, §2] and Hayes, Jekel, Nelson, and Sinclair
[18, §2.3].)

First, we explain the definition of algebraic closure.

Definition 4.17 (Algebraicity) Let M be a structure in some language £, and let
be a substructure. Let S be a sortin L.

« Amap ¢ : SM — R is a definable predicate in M over N if for every
D e H/EN Ds; and € > 0, there exists a formula ¢ in variables x; from S; for
Jj € N and y; from §; for j € N, and there exists Y € HjeN(SJ’»)N such that

|6(X) — M (X, Y)| < eforall X € [[DM.
JEN
» If A C SM, we say that A is definable in M over N if the map SM — R : X
d™M(X,A) is definable in M over \.

o If a € SM, we say that a is algebraic over N if there exists a compact set
A C SM such that a € A and A is definable in M over N .

Remark 4.18 It will be convenient in our arguments that for tracial W*-algebras M
and N, if a function ¢ : L>°(M) — R is definable in M over N, then there exists a
definable predicate # and Y € L®(N)N such that ¢(X) = 6(X,Y). This follows by a
forced-limit argument similar to Proposition 3.32: Since ¢ is definable in M over A/,
then for each k € N, there exists a formula 6 and Yx € LNV such that

1
|6 = OxX, Yo)| < 5 for X € DM,

Let Y by an N—tuple obtained by joining together the Y;’s into a single tuple, so
that 6; can be viewed as a definable predicate in (X,Y). Similar to the proof of
Proposition 3.32, there exists a definable predicate ¢ such that 1/1,{” X,Y)=1 and
P (9k+1 — 0 < 2/2k on Dy. Then

0:=0,+ Z¢k(0k+l — )

k=1
converges uniformly on every domain D, and satisfies ¢(X) = 6M(X,Y).
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Definition 4.19 (Algebraic closure) Let M be an L-structure and N an L-—
substructure. We define $2\) to be the set of a € SM that are algebraic in M over AV,
We let acl(N) = ($*'M))¢ 5. (Although we omit M from the notation, the algebraic
closure a priori depends on the ambient structure M)

For the properties of algebraic closure, see Ben Yaacov, Berenstein, Henson, and
Usvyatsov [3, § 10]. In particular, one can show that if A/; C acl(N>), then acl(N;) C
acl(N>) (“what is algebraic over the algebraic closure of N is algebraic over A>").
Moreover, one can verify directly from Definition 4.17 that f is a term and Y, ...,
Yy € N, then fM(Yy, ..., ;) € acl(\). By combining these properties, it follows that
acl(N) is an L£—substructure of M.

Thus, in particular, if N C M are tracial W*-algebras, then the algebraic closure
acl(\V) of N in M is a tracial W*—subalgebra of M as well. We will show that
EntY(acl(\V) : M) = Ent{(N : M). We first consider the case of adjoining to an
N-tuple X a single element Y that is algebraic over W*(X), and this case takes the
bulk of the work.

Theorem 4.20 Let X be an N—tuple in M = (M, 7). Let Y € M be algebraic over
W*(X). Then
Ent!(tp™(Y, X)) = Ent (t(p™(X)).

The inequality Entu(tpM X)) < Ent/ (tpM(Y , X)) follows from Proposition 4.7, so we
only need to prove the opposite inequality.

The idea of the argument is that ¥ comes from a definable compact set A. We can
cover A by some finite number k of e—balls. Transferring this to the microstate
approximations would tell us that for each matrix approximation X’ for X, the possible
matrix approximations for Y can be covered by k many e-balls. So the covering
number for the microstate space of (¥, X) would be at most k times that of X; the factor
of k is negligible in the large-n limit because we will take the logarithm and divide by

n?.

Proof EntY(tp™ (X)) < Ent(tpM (Y, X)) holds by Proposition 4.7.

By algebraicity of ¥ and Remark 4.18, there exists a compact A C M, a definable
predicate ¢ relative to Ty, and X' € W*(X)N such that Y € A and dM(Z,A) =
»™M(Z,X"). Since X' = f(X) for some quantifier-free definable function f, we have

dM(Z,A) = PM(Z,1(X)) = v M(Z,X)
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where ¢ is the definable predicate given by composing ¢ with f in the coordinates 2,
3,...

Fix r = (r)jen such that X; € D,; and fix r such that Z € D,. We want to show that:

1
su inf  lim — log K%°,(T™(O"y)
(e OV Xyt n? e

1
< sup inf lim —

log K&(T™ (O
(F,E) OBIPM(Y,X)”!_)M n2 g F,E( r ( ))

Here we regard N as starting at 1, and we index the tuple (Y, X) by {0} U N, where
the 0 index corresponds to Y. Fix F/ C {0} UN finite and ¢’ > 0. Since enlarging F’
would only increase the quantity inside the sup ., assume without loss of generality
that F’ contains the index 0 corresponding to the variable Y, hence F' = {0} U F; for
some F; C N.

By compactness of A, there exists kK € N and there exist Yy, ..., Y € A such that
the ¢’ /4-balls centered at Yy, ..., ¥; cover A. This implies that every point within a
distance of ¢ /4 from A is within a distance of €’ /2 from one of the points Y1, ..., ¥,
and therefore

sup min (e’ /4 — My, X), min@M(Y, Y1), ..., dM(Y, V) — e’/z) <.
YyepM

Choose #; € (0, 00) such that ¥; € Dy;. Let o and 5 be the definable predicates

a(y1, .-,k X) = sup min(¢' /4 — ¥ (y,x), min(d(y, y1), - - .,d(, ) — € /2)

yeDM
and Bx) = inf ... inf ayi,...,y,X)
y1€Dy V€D,

so that oM (Y1, ..., Y, X) < 0 and SM(X) < 0.

By uniform continuity (Observation 3.11), there exists F» C N finite and § > 0 such
that forall N |= Ty, all Y] € D, ..., Y, € D, ,andall X', X" € HjENDQ/’ we have:

E/

maxdV (X, X" < 6§ = [N, LY XD =N, YL XY <
icFy A 16

J

Fix a neighborhood O of tp™(X), and let
O = {pN (', X)) : N = T, ¥V (Y, X)) < /8, BV (X) < € /16, p" (X') € O}

which is a neighborhood of tpM(Y7 X). Let € = min(d, €’) and F = Fy U F,. We claim
that:
KPP, (D, (O) < kKFE(TH(O))

!
,€
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There exists an orbital (F,e)—cover  of I'""(0) with Q C T'"(0) and |Q] <
Kp . /Z(F(r")(O)). Indeed, we can let Q be any orbital (F, ¢/2)—cover of T'{(O) not
necessarily contained in F&")((’)) and let €2 contain one point Fﬁ")((’)) N Nr,2(Y) for
each Y € Q) where the intersection is nonempty.

For each X’ € T{(0), we have

/
Mi©)(x'y « &
FEXD) < ¢

and therefore, there exist Y| € D%"(C), .Y e D%”(C) such that

¢

16

Choose for each X’ € 2 a corresponding Y{(X'), ..., Y/(X'), and let
O = {(Yi(X’),XI), ... ,(YIQ(X/),X/) X' € Q}.

We claim that €’ is an orbital (F’, ¢’)—cover of 1“5’,’3((’)’ ). Let (Y, X") € FS’Q((’)’ ).
Then X” € T'+(O). Therefore, there exists a unitary U and X' € Q such that
UX"U* € Np(X'). Let Y] = Y{(X)), ..., Y, = Y,(X/), and note that because
dM"(Q(X;,X;’) < ¢ for j € F,, we have

MOyt YL X)) <

/

@M O, Y UXU) = oM O, VX <
hence MOyl YL UX'UY) < < + < - S/
16 16 8

By definition of «, this means that

sup  min (e’ /4 — MOy UX"UY),
y’eDMn(C)

M
~

min(@ O, ¥}, ..., d" O v}y — ¢ /2) <

oo |

Now because (Y, X") € Fﬁ'fr)((’)’), we have
wM"(C)(UY”U*, UX”U*) — @ZJM"(C)(Y”, X”) < 6//8.

It follows that
6/ /

Z _ an((C)(UYHU*, UX”U*) > %

and therefore

! /
min(@OWy"v*, Y}, ..., d"OWy"v*, ) — % < %
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hence d(UY"U*,Y;) < €' /2 + €'/8 < € forsome i € {1,..., k}. Therefore, overall
UxX"U* e Np7€(X/) C Np, ,E/(X/) and UY'U* € NE/(Yl-/)
and thus (Y”,X") € N (Y], X), which shows that T, (0") C N3®, ().
We conclude that
Kpr o (M0N) < kKp  /y(T(0)).

Hence, applying lim,_,;;(1/n%) log to both sides,
Entl! ) o o(O') < Entp (O).
Because for every O there exists such an ', we obtain
Ent] gy p o (t0™(¥, X)) < Enty o o(1p™(X)).
Then because for every (F’, ) there exists such an (F, €), we get
Ent (tp™(¥, X)) < Ent (t(p™(X)).

Taking the supremum over r and r completes the proof. |

Corollary 4.21 Let M be a tracial W*—algebra and N a tracial W* —subalgebra. Then
Ent“!(acl(\) : M) = Ent/(N : M).

Proof The inequality Ent*(acl(\) : M) > Ent*(\ : M) holds by Observation 4.12.

On the other hand, suppose that Y is an N—tuple in acl(\). Using Remark 4.18, each
Y, is algebraic over some separable W*—subalgebra of . Let Ny C N be the join
of all these subalgebras, so that A\ is separable and Y is algebraic over Nj. Let
X € L®(Np)N generate Ny. Since Y is algebraic over A, we have

Ent (t(p™ (X, ¥1)) = Ent (tp™ (X)).
Similarly, since Y, is algebraic over W*(X, Y1), we have
Ent (t(p™ (X, Y1, ¥2)) = Ent! (t(p™M(X)).
Continuing inductively, for k € N,
Ent(tp™M(X, Y1, ..., Yo) = Ent! (t(p™M(X)).

Now to analyze Ent”(tpM(X, Y)), suppose r € (0, oo)N UN'and e >0and FC NUN
is finite. Then F C NU{I,... k} for some k € N. For every neighborhood O of
tpM (X, Y1,...,Y;), there is a corresponding neighborhood O’ of tpM (X,Y) given as
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the preimage of O under map restricting the type of an N Ll N—tuple to the type of the
NU{L,..., k}—subtuple. Since F C NU{1,... k}, then

Ent; (O") = Entl ;. (O)
where 1’ is the restriction of r to NU {1, ..., k}. This implies that:
Ent'; (tp™ (X, Y)) < End ;. (pM (X, Y1,..., ¥)))
< Ent(tpM(X, Y1, ..., Yo) = En! (t(pM(X))
Since r, F, and ¢ were arbitrary, Entu(tpM X,Y) < Ent”(tpM (X)). Also,
Ent“(t(p™(Y)) < Ent(tp™ (X, Y))

by Corollary 4.10. Since Y was an arbitrary N—tuple in acl(\), we obtain Ent¥ (acl(\) :
M) < Ent‘(N : M) as desired. m|

S Entropy for quantifier-free and existential types

In this section, we explain how Hayes’ 1-bounded entropy (or covering entropy for
non-commutative laws) relates to the entropy for types in this paper. Specifically, the
1-bounded entropy for laws corresponds is the version for quantifier-free types and the
1-bounded entropy of N in the presence of a larger W*-algebra M is the version for
existential types.

5.1 Entropy for quantifier-free types

We begin with the quantifier-free version, essentially the same as orbital version of
h(M) in Hayes [16, Appendix A].

Definition 5.1 (Entropy for quantifier-free types) For K C Sy¢(T) and r € (0, o),
we define:

() =S X e [[ D@ il Ox) e K
jeN
Then we define, for F C N finite and € > 0,

1
E tu = inf li 1 Korb F(n)
Mlgtr.r.e(K) ODK open in Se(Tu) nstd 12 & F <Ir0)
and we set Entz(ff(IC) = sup Entﬁ’f,r, £, ().

r,Fe

For 1 € Si(Ty), let Entf(u) = Entli({}).
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Some earlier works such as Hayes [16] phrased the definition of Entﬁ{f(u) in terms of
particular open sets Oy (for instance, those defined by looking at moments of order
up to k being within some distance 1/k of the moments of p), following the same
conventions as Voieculescu [32] originally used. This does not change the definition
because of the following lemma.

Lemma 5.2 Letr € (0,00)Y. Let K C Sp(Ty). Let (O)ren be a sequence of open
subsets of S(Ty) such that Oy C Oy and (72, Ox = K. Then
Ent!, (K) = lim Ent!,. (Op) = inf Ent. (Oy).
Y b k*}OO Y b keN ki b

The same holds with S(Ty;) and Ent! replaced by their quantifier-free versions.

Proof By Observation 4.3,
Ent; (K) < Enty (Op41) < Enty (Op)
so that Ent (K) < inf Enty (Op) = lim Entlp (Op).

For the inequality in the other direction, fix @ O K open. Then S;(Ty) \ O is closed
and disjoint from k. Moreover, it is contained in K¢ = (Jycn Of = Upen O;. By
compactness, there is a finite subcollection of @Z’s that covers Sy(Ty) \ O. The Oy ’s
are nested, so there exists some k such that Sy(Ty) \ O C O, , hence Oy N Se(Ty) C O.
Therefore,

inf Ent' (O)) < Enty; (O).
Since O was arbitrary,

inf Entf/; (Op) < Entfly, (C).

The argument for the quantifier-free case is identical. O

This lemma also allows us to relate the entropy Entﬁ’f for quantifier-free types directly
to the entropy for types Ent.

Lemma 5.3 Let 7wy : S(Ty) — Sgr(Ty) be the canonical restriction map. Let
K C Sq¢(Ty) be closed. Then

Entt(K) = Ent" (7 (K0)).
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Proof Fix r € (0, oo)N ,and let K = K N Syt r(Tyr). Since Syt (Ty) is metrizable,
there exists a sequence of open sets Oy in Sy r(Ty) such that Ois1 € O and
N reny Ok = Ky (and these can be extended to open sets in Sq¢(Ty) since the inclusion
of Sgfr(Ty) is a topological embedding). Now 7rq_f1((9k) is open in Sy(Ty) and

ot (Ok1) € 7' Ory1) € 7 (On) and ey g (Or) = 7y (Kr). Note that
F(")(Ok) = F(")(W (Ok)). Thus, using the previous lemma:
Entqf)r7FaE(,C) = Ent%7r7F7€(lCr)
= 1:2;[;1 Entqf,r,F,e(Ok)
. -1

= Inf Entr (g (O))

= Ent! (ro (IC))

= Ent!y, (g (K))

Taking the supremum over r, F', and € completes the argument. |

In particular, by combining this with the variational principle (Proposition 4.6), we

obtain the following corollary.

Corollary 5.4 Let mqf : S(Tyr) — Sqe(Ty) be the restriction map. If p1 € Sge(Ty), then
Ent{(p) = sup Ent! (v).

very' ()

This also implies that the quantifier-free entropy of tqu (X) only depends on W*(X),
which is an important property of 1-bounded entropy previously established by Hayes
in [16, Theorem A.9].

Corollary 5.5 Let M = (M, ) be a tracial W*-algebra. Let X, Y € MY, If
W*(X) = W*(Y), then

Ent/ f(tp X)) = Ent/ f(tp Y)).
Proof By Proposition 3.32, there exist quantiﬁer—free definable functions f and g such

that fM(X) = Y and gM(Y) = X. If u € Tof (tp (X)), then f*u € Ty (tp (Y))
since myf o £, = £, o mye. Similarly, g, maps wqf (tqu (Y)) into 7r (tqu (X))

Since d(f o g(x), x) is a quantifier-free definable predicate, its value only depends on
the quantifier-free type of the input, and thus gN o fN(Z) = Z whenever N = Ty and
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tpé\f/(Z) tqu (X). In particular, if p € 7 (tpqt (X)), then g.f.pt = p. The same
holds for g o f. Hence, f and g define mutually inverse maps between Tyt (tqu X))

and 7rqf (tp (Y)). Note also that 7r_1(tp (X)) is contained in Sy(T) for some r by
Remark 3. 27 Therefore, by Proposnlon 4 7,

Ent” (7o (tp5(X))) = Ent” (! (tp(Y)))

which implies the claimed result by Lemma 5.3. O

Furthermore, since the quantifier-free type does not depend on the ambient tracial
Wr-algebra M, it follows that if X and Y in different tracial W*-algebras generate
isomorphic tracial W*-algebras, then their quantifier-free types have the same entropy.
Hence, it is consistent to define for a separable tracial W*-algebra M,

Entt(M) = Entf(tp (X))

where X is an N—tuple of generators for M (for the definition of Entg{f(/\/l) in the case
of non-separable M, see Remark 5.21 below). However, Remark 5.16 shows that there
is no quantifier-free analog of monotonicity under pushforward (Proposition 4.7).

5.2 Existential types
Now we turn our attention to existential types.

Definition 5.6 An existential formula in a language L is a formula of the form

d)(X) inf ¢( X, V15 - "7yk)

YIED1,...,yk €Dy

where 1 is a quantifier-free formula and Dy, ..., Dy are domains of quantification
in the appropriate sorts. Similarly, we say that ¢ is an existential definable predicate
relative to T if
o"X) = inf pMXY)
€lTen D

for M =T, where 1 is a quantifier-free definable predicate.

Observation 5.7 Any existential definable predicate can be approximated uniformly
on each product of domains of quantification by an existential formula.
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Definition 5.8 Let M be an L—structure, S an N—tuple of sorts, and X € HjeN sM.
Let /55 denote the space of existential formulas. The existential type tpg"l (X) is the
map

tpd(X) : Fas — R, ¢ — ¢™(X).

If T is an L—theory, we denote the set of existential types that arise in models of T by
S3s(D).

The topology for existential types, however, is not simply the weak-* topology on
S3p(T) for each tuple of domains. Rather, we define neighborhoods of a type
p = tpM(X) using sets of the form {v : v(¢) < u(¢) + €}. The idea is that if
HMX) = ianEHjeN pM M (X, Y) for some quantifier-free definable predicate ¢, then
1(¢) < ¢ means that there exists Y such that 1»(X,Y) < ¢ + 6 for any § > 0. Thus,
a neighborhood corresponds to types v where there exists Y that gets within € of the
infimum achieved by .

Definition 5.9 Let T be an L-theory, S an N—tuple of sorts, and D € HjeN Ds,;. We
say that O C S5 p(T) is open if for every i € O, there exist existential formulas ¢y,
..., ¢rand €, ..., ¢ > 0 such that

{v € Sap(D) : v(¢) < () +¢forj=1,...,k} CO.

Moreover, we say that O C S3g(T) is open if O NS5 p(T) is open in S5 p(T) for all
De HjeN Ds;.

Observation 5.10

* Any set of the form {v : v(¢1) < ci,...,v(¢x) < cx}, where ¢y, ..., ¢y are
existential definable predicates, is open in S3g(T).

* The same holds if ¢; is an existential definable predicate rather than existential
formula, since it can be uniformly approximated by existential formulas on each
product of domains of quantification, hence existential definable predicates may
be used in Definition 5.9 without changing the definition.

* The inclusion S3p(T) — S3s(T) is a topological embedding since each of the
basic open sets in S3p(T) given by v(¢;) < u(¢;) +¢; forj =1, ..., k extends
to an open set in S3g(T).

* The restriction map Ss(T) — S35(T) is continuous.

Remark 5.11 Like the Zariski topology on the space of ideals in a commutative ring,
the topology on S5 g(T) is often non-Hausdorff. For instance, the closure of a point is
given by

{1} = {v: v(d) > u(¢) forall ¢ € Fos}.
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Meanwhile, the intersection of all neighborhoods of p is given by

(5-1) Ky = {v: v(0) < () forall ¢ € Fas}.

We say that v extends p if v(¢) < u(¢) for all existential formulas ¢, which is
equivalent to saying that for ¢ € F35, we have u(¢) = 0 implies that v(¢) = 0
(since max(¢ — ¢, 0) is an existential formula if ¢ is). Then {u} = K, if and only if
it does have any proper extension, or it is maximal. These closed points correspond
to existential types from existentially closed models (see Goldbring [15, §6.2]), and
such maximal existential types in S5 p(T) form a compact Hausdorff space. However,
our present goal is to work with general tracial W*—algebras, not only those that are
existentially closed.

5.3 Entropy for existential types

Here we define the entropy for existential types which corresponds to Hayes’ entropy
of NV in the presence of M. We explain our definition in this subsection, and in the
next one we relate it with Hayes’ definition.

Definition 5.12 For IC C S5(Ty), let

K = {X e [[ DO : pl O x) € K}

jEN
and define for r € (0, oo)N, F C N, finite, and € > 0,
1
U — . . - orb ()
Ent3; p (K) (’)QIIIlec;pen nlglz}{ " log Ky (I'Y"(0)).

Then let Ent4(K) = sup Entzg’m F.e(K).

r,Fe

Because of the non-Hausdorff nature of S3(Ty.), we will be content to focus on the
existential entropy for an individual existential type rather than for a closed set of
existential types.

Lemma 5.13 Let o € S3(Ty), and Iet K, be given by (5-1). Let 7 : S(Ty) — S3(Ty)
be the canonical restriction map. Then

Ent4(u) = Ent! (77! (K,)) = sup Ent‘(v).
ver—1(K,)

Journal of Logic & Analysis 15:2 (2023)



Covering entropy for types in tracial W*-algebras 55

Proof Fix r € (0, oo)N, F C N finite,and € > 0. If O is a neighborhood of u in
S3(Ty), then it contains K, and hence 771(0) is a neighborhood of ﬂ_l(lCu) in
S(Ty). Moreover, T(0) = T (7~ 1(0)), hence

—1
Entr (17" (Ky)) < Entd, p ().

It remains to show the reverse inequality. Since the space of definable predicates on

HJGN D,; relative to Ty, is separable with respect to the uniform metric, so is the space

of existential definable predicates. Let (¢;);cn be a sequence of existential definable
predicates that are dense in this space. Let

1
O = {V € S3,r(Tw) : v(¢) < () + % forj < k} -
Note that

() Ok = {v € S3x(Tw) : (¢x) < ) or k € N} = K.
keN

Moreover,

T 1 (Oks1) C {l/ € S(Tw) : v(¢)) < puley) + forj < k+ 1} S (@9

k+1
Therefore, by Lemma 5.2 applied to 7~ !(Oy), we have

BN < J0f Bnr,(O0) = fnf Bt (1 (O0) = Bt (r )

where the last equality follows from the density of {¢ : k € N}. Thus, Entzir’ Fe(p) =
Ent%fFﬁ(ﬂ_](lCu)). Taking the supremum over r, F, and € yields the first asserted
equality Ent4 (1) = Ent(7~1(KC,)). The second equality follows from the applying
the variational principle (Proposition 4.6) to the closed set ﬂfl(ICM). O

Like the entropy for full types, the entropy for existential types satisfies a certain
monotonicity under pushforwards. First, to clarify the meaning of pushforward, note
that if f is a quantifier-free definable function and ¢ is an existential definable predicate,
say
HMX) = inf  PpM(X,Y) for M |= Ty
€llien D"
J

where 1 is a quantifier-free definable predicate; then

@ohMX) = inf MEX),Y)

€lljen Dy
J
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is also an existential definable predicate. Hence, there is a well-defined pushforward map
f. : S3(Ty) — S3(Ty) given by f, () = (¢ o f). Furthermore, f, is continuous with
respect to the topology on S3(Ty) for the same reason that ¢ of is an existential definable
predicate whenever ¢ is an existential definable predicate and f is a quantifier-free
definable function.

The following lemma can be proved directly in a similar way to Proposition 4.7, as was
essentially done by Hayes in [16]; compare also the proof of Proposition 5.23 below.
However, as one of our main goals is to illuminate the model-theoretic nature of the
existential entropy, we will give an argument to deduce this from Proposition 4.7.

Lemma 5.14 Let ;1 € S3(Ty) and let £ be a quantifier-free definable function relative
to Ty.. Then
Ent4(f, 1) < Ent4(u).

Proof Let 7 : S(Ty) — S3(Ty) be the restriction map. Let
K=K,={veSs3(Ty) : v(¢) < u(¢) for existential ¢}
and similarly, let K’ = Ky, ,,. By Lemma 5.13:
Ent4 (1) = Ent4(K) = Ent (771 (K))
Ent{(f, ;1) = Ent4(K') = Ent! (=1 (K'))

Meanwhile, by Proposition 4.7, Corollary 4.9, and Remark 3.27,

Ent”!(£,7~'(K)) < Ent’! (7~ 1(K)).
Therefore, it suffices to show that 7~ (K) = f.(7—(K)).

By continuity of the pushforward on the space of existential types, it follows that
f.(O) C K’, and hence

£ '(K) € 7' (F.(K) € 7 H(K).
To prove the reverse inclusion, fix v € 7~ '(K’). Fix r such that K C S3+(Ty) and ¥’

such that f maps [ [,y Df}/‘ into [[;cy D;}” for M = Ty. For F C N finite and ¢,

..., ¢ existential definable predicates, consider the definable predicate:
k
MY = dnf Y @MEX), Y)Y max(0, ¢ (X) — u(é))
XellienPy" | jer =1
Then 1) is an existential definable predicate: indeed, if

o1(X) = _inf (X, Z)

JEDr; j
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where 7 is quantifier-free then:

pMY) =
k
inf inf [ dMEMX), Y) + > max(0, 1M (X, Z) — p(é0)
XenjeNDf}AZfGHjeNDﬁf, JGZF J J ; i i
for i=1,....k

Since v € 7~ 1(K"), it follows that

nu(y) < fou(y) = 0;
this last equality holds because if tpd/(X’) = p and Y’ = £.(X), then ¥ (Y’) = 0
since X' participates in the infimum defining ¢V (Y’).
Unwinding the definition of v(1/) < 0, we have shown that for every ¢ > 0 and

F C N finite and ¢y, ..., ¢ existential definable predicates, there exist M = Ty and
Y € L®(M)N and X € L®(M)N with tpM(Y) = v and

k

> dMEX), ) + D max(0,67(X) — (@) < e.

JEF j=1
Using an ultraproduct argument (or equivalently using the compactness theorem in
continuous model theory, [3, Theorem 5.8], [4, Corollary 2.16]), there exists some M,
X and Y such that tp™(Y) = v, M (¥}, fM(X)) = 0, and ¢M(X) < pu(¢) for all
existential definable predicates ¢.
This implies that tpg\/‘(X) € K, = K, hence tpM(X) € 7~ 1(K). Therefore, v =
tpM(Y) = £, tpM(X) € £.(m~1(K)) as desired. O

The next corollary follows from Lemma 5.14 and Proposition 3.32.

Corollary 5.15 If M |= Ty and X, Y € L*(M)Y and W*(Y) C W*(X), then
Ent4 (tp™(Y)) < Ent4 (tp™(X)).
In particular, if W*(X) = W*(Y), then Ent4 (tp™(Y)) = Ent{ (t(pM(X)).

Remark 5.16 The monotonicity property fails for the quantifier-free entropy. For
instance, let M be the von Neumann algebra of the free group I, and R the hyperfinite
II; factor. Then Entﬁ{f(/\/l) = oo but Ent%(M@R) = 0 (by the same reasoning as in
Corollary 1.4). The proof of Lemma 5.19 breaks down because if 7 : S(Ty) — Sqf(Tyr)
is the restriction map, then 7—'(f, ;1) # f.(m—'(1)) in general. Given a Y with
tpc/l\f/‘ (Y) = £, in order to show the existence of some X with fM(X) ~ Y, we would
have to use an existential formula in Y.
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Now come to the definition of existential entropy for A/ C M, which we will show in
§5.4 is equivalent to Hayes” A(N : M).

Definition 5.17 Let M be a tracial W*-algebraand N' C M a W*—subalgebra. Then
define
Ent4(V : M) := sup Ent4(tpd(X)).
XeL®N)N

The following is immediate from Corollary 5.15.

Corollary 5.18 Let M be a tracial W*-algebra and N' C M a W* —subalgebra. If
X € L®(N)N generates N, then Ent4 (N : M) = Ent4 (tp31(X)).

Lemma 5.19 Let M; C M, C Mj be a tracial W*—algebras. Then
Ent4 (M, : M3) < Ent4(M; : M3) and Entd (M, : M3) < Entd(M; : My).

Proof The first inequality is immediate from Definition 5.17. For the second inequality,
note that for every X € L°°(M; )N and every existential formula ¢, we have ¢M3(X) <
»™2(X) since the first is the infimum over a larger set than the second. In other words,
tpé\/l3 (X) is an extension of tpg\Az(X), and hence every neighborhood of tpMz(X) isalsoa
neighborhood of tp%™(X). This implies that Ent (tp% ™ (X)) < Ent(t(p5™2(X)). Since
this holds for all X € L®(M)N, we obtain Entzé’(/\/ll t Mj) < Ent%’(/\/ll My, O

Next, we show that the quantifier-free entropy can be expressed in terms of the existential
entropy.

Lemma 5.20 Let M be a separable tracial W*—algebra. Then
Ent{t(M) = Enf(M : M).

Proof Suppose X € L>®°(M)N generates M. Fix r such that X € HjeN Dij\,/‘. Let 7 :
S3(Ty) — Sqf(Ty) be the restriction map. It suffices to show that Ents ;. Fye(tpgvt X)) =
Entijfm F’E(tpé\f/‘ (X)) for all r, F, and €, which in turn will follow if we prove that every
neighborhood O’ of tpé‘A(X) in S35 ;(T) contains 7~ 1(O) for some neighborhood O

of '[qu\fl (X) in Sgs,+(Ty) and vice versa.

Let O be a neighborhood of tpc/l\f/‘ (X). By the definition / properties of the weak-x
topology, there exist some quantifier-free definable predicates ¢, ..., ¢ and intervals
(a, by) such that

tpyf (X) € {v € Sqe(Ter) : () € (aj, by) fori=1,....k} C O.
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Then ¢; and —¢; are both existential definable predicates, hence

7 H0) D O = {v € S3(Ty) : v(y) < by, v(—dx) < —a;fori = 1,... k}.

Conversely, let O’ be a neighborhood of tpg\/‘(X) in S3,(X). Then there exists
existential definable predicates ¢, ..., ¢, and ¢y, ..., cx € R such that

tpA'(X) € {v € S3(Ty) : () < cifori=1,...,k} C O

Suppose that
N~/ . N~/ !
& (X)_Y’el‘llnf Nz/Ji X', Y)

EN T
for all N |= Ty and X/ € L®(N)Y, where ¢); is quantifier-free. Because ¢{(X) < c;,
there exists Y; € HjeN Df}/],l with 1/11/‘/‘(X, Y;) < ¢;. By Proposition 3.32, there exists a
quantifier-free definable function f; such that Y; = £!(X) and fiN maps into HjeN Dﬁ:/,
forall N = Ty Let
N (X)) =gV X V(X)) > ¢V (X)),
Then 7; is quantifier-free. Thus,
tp (X) € O := {v € Sqr(Tyr) : v(y) < ci}
and 7 HO0) C{v € S3(Tu) : () < ¢ifori=1,....k} C O

as desired. O

Remark 5.21 Therefore, it is natural to define Entﬁ’f(M) for general (not necessarily
separable M) by Entﬁ{f(M) = Entzaj (M M).

5.4 Existential entropy and entropy in the presence

Let us finally explain why the existential entropy defined here agrees with (the ultrafilter
version of) Hayes’ 1-bounded entropy of N in the presence of M in [16]. The
definition is given in terms of Voiculescu’s microstate spaces for some X in the presence
of Y from [33].

Definition 5.22 (Hayes [16]) Let M be a tracial W*-algebra. Let I and J be arbitrary

index sets and let X € L®(M) and Y € L¥(M)’. Let r € (0,00)! and v’ € (0, c0)’
such that [|X;|| < r; and [|Yj]| < rj. Let Spp g(Ty) be the set of quantifier-free
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types of tuples from [[.., D), x jeJ Dr]{ equipped with the weak-x topology. Let

iel
p : M,(CY™ — M,(C) be the canonical coordinate projection. Then we define

1
Mle(X:Y):=sup sup inf lim — log KPR(pILy(O)))
’ >0 FCI finite O3tp Y (X,Y) n—U ’ ;

where O ranges over all neighborhoods of tpé\f/‘(X, Y) in S f (Te).

Here we use arbitrary index sets I and J rather than N because we do not assume that
M is separable. This is a technical issue we will have to consider when proving that
our definition using N—tuples agrees with Hayes.” Apart from that, the idea of the proof
is that a matrix tuple X' is in the projection p[l“(r'fz,((’))] if and only if there exists some
Y’ such that tpglf"((c)(X/ ,Y) € O. If X', Y’ being in Fﬁ"z,((’)) can be detected by a
quantifier-free formula being less than some ¢ (using UryS(’)hn’s lemma), then X’ being
in p[Fﬁ’ﬂ,(O)] can be detected by an existential formula.

Proposition 5.23 In the setup of Definition 5.22, we have hzr”r, X:Y)= Entza’{(W* X) :
WX, Y)).

We remark at the start of the proof that all the facts we proved about definable predicates
and functions work for arbitrary index sets, so long as they do not invoke metrizability
of the type space. We also leave some details to the reader for the sake of space.

Proof We may assume without loss of generality that M = W*(X,Y) since restricting
to a smaller W*-algebra does not change the quantifier-free type of (X,Y).

First, let us show that hgr, X: V)< Ent%{ (W*(X) : M). Let F C I finite and € > 0.
First, to deal with changing index sets from / to N, let a : F — N be an injective
function and let f be the quantifier-free definable function that sends an I—tuple X’ to
the N—tuple obtained by putting XJ’ into the a(j)th entry for j € F and fills the other
entries with zeros. Let Z = fM(X), fix some T € (0, oo)N with Z € HjeND{/V, and
let O be a neighborhood of y = tpg\/‘(Z) in S31(Ty). Then there exist existential
definable predicates ¢1, ..., ¢ and €1, ..., ¢ > 0 such that

{v € S31(Tw) 1 v(¢)) < (@) +¢forj=1,....k} CO.
There exist quantifier-free definable predicates 1, . .., ¥ such that
Nz = inf N (@ W)

ieEN "
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for all A" and Z' € L®(N)N. Moreover, for our particular M and Z, there exists
W; € [[ien D,/i\;‘ such that

YMZ, W) < il(ey) + €.
By Proposition 3.32, W; = g;(X,Y) for some quantifier-free definable function g;.
Let ¢;(f, g;) denote the quantifier-free definable predicate defined for I LI J—tuples by
applying f to the /—tuple and g; to the I LI J—tuple and then applying 1);. Then
k
O = ({0 € Sqt.rr(Te) : o(@Wi(f,g) < () + €}
j=1
is a neighborhood of tpé‘f/t (X,Y) in Syf,r v (T) such that
pIT{LON € @O TP O)),
Therefore,
K2 (pIT(ON]) < Ko, (TF(0)).
Because for every such O, there exists such an (', we obtain that
1
inf  lim — log KZ(p[T"), (O’
ooy 0 OB KELPTEROOD
< En ) (5" (£(X))) < Entd (W*(X) : M).
Since F and e were arbitrary, we are done with the first inequality.
To prove the second inequality, we must show that for all Z € W*(X)", we have
Ent3(tpA(Z)) < hew(X 1 Y). Fix Z, let T € (0,00)Y with ||Z| < #, and write
Z = fM(X) for some quantifier-free definable function f depending on countably
many coordinates of X. Let O’ be a neighborhood of tpfl\f/‘(X,Y). Note that O
contains a neighborhood of p that depends only on finitely many coordinates of X
and Y. By Urysohn’s lemma and Remark 3.33, there exists a quantifier-free definable

predicate i with values in [0, 1] (depending on only finitely many coordinates) such
that pM(X,Y) = 0 and {0 € Sgr v (Ty) : 0(1h) < 1} C O

Fix F C N finite and € € (0, 2), and consider the existential formula:
oN(Z) = inf inf dVEN XN, Z)) + vV (X, Y)
X'€[Tie, DY Y€l e, Dj,y kez;:
J

Because f and % only depend on countably many coordinates, the infima can be
expressed using only countably many variables, so this expression is a valid existential

definable predicate. Moreover, note that for Z’ € [,y D%"(C), we have:

€ n
¢M11(C)(Z,) < 5 — Z/ S Ne/z(an((C) Op(l—‘i-’l)./)(ol))
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Let O = {p € S31(Ty) : u(¢) < €/2}. By applying the uniform continuity of f
(Lemma 3.19) for the given €/2 and F in the target space, we obtain a corresponding
F' C I and § > 0 such that

KIRT(0)) < KB o) 0 p(T 1 )(O") < KSR (p(T2(O").

Applying the definitions of the appropriate limits, suprema, and infima shows that
Ent!(tp3'(Z)) < he (X1 Y). o

5.5 Applications to ultraproduct embeddings

Theorem 5.24 Let N C M be separable tracial W*-algebras, and let Q =
1, .1, Ma(C). Suppose that Ent4(N : M) > 0. Then for every ¢ < Ent4 (N : M),
there exists an embedding ¢+ : M — Q such that

Ent4(«(N) : Q) > Ent!(uN) : Q) > c.

Proof Let X be an N—tuple of generators for N'. Let 7 : S(Ty) — S3(Ty) be the
restriction map. By Lemma 5.13,

c<En4(tpMX) = sup  Ent!(p)
ner K prx)
so there exists a type p such that w(u) € ICtpé\A(X) and Ent(11) > ¢. By Lemma 4.14,

there exists X' € Q with tp2(X’) = p. As in Corollary 4.15, there exists an embedding
t: N — Q with «(X) = X’. Observe that

Ent?((N) : Q) = Ent4(1p2(X)) > Ent(tp9(X))
=Ent‘(W(N) : Q) = Ent' () > ¢

where we apply in order Corollary 5.18, Lemma 5.13, Observation 4.12, and the choice
of p and X'.

It only remains to show that ¢ extends to an embedding of M. Let Y € L®(M)N

be a set of generators. Let r and r’ be such that X € [ [,y Df}/l and Y € [[ey Df}"

Since the quantifier-free type space Sy rr(Ty) for N LI N—tuples is metrizable, there

exists a nonnegative continuous function on Sg¢ ;. r(Ty;) that equals zero at and only at

the point tpé\f/t (X,Y). By Remark 3.33, this continuous function extends to a global

quantifier-free definable predicate ¢. Let 1) be the existential predicate given by
@)= inf  $N@ZW

€lljen "
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for N |= Ty and Z € L¥°(N)N. Thus, M (X) < ¢M(X,Y) = 0.
Because 1) is existential and tpHQ(X’) IS ,Ctpé\/l(x), we have ¥ 2(X’) < pM(X) =0. We
may write X' = [X™] ncN Where X™ ¢ HjeN D/,‘;I”(C) (this follows for instance from the

construction of X’ through Lemma 4.14). Then lim,_; /""©X®) = ¢2(X’) = 0,
hence there exists Y € HjeN D/rv,[”((c) such that lim,,_,;, ng"(C)(X(”), Y®) = 0.
J

Let Y = [Y™],en € [[;en DS Then ¢2(X’,Y') = 0, and therefore, tquf(X’, Y) =
J

tpé\f/‘ (X,Y). Hence, by Lemma 3.34, there exists an embedding ¢/ : M — Q with
J(X,Y) = (X', Y’). This is the desired extension of ¢. m|

Remark 5.25 Note that Ent%‘(L(N ): Q)< Ent%’(./\/' : M) for any such embedding
¢. Thus, the point of the theorem is that some ¢ can be chosen to make this inequality
close to an equality. It is not obvious that there is an existential type in Q extending
the tpé,‘/l (X) with close to the same amount of entropy of .. The key ingredient is the
variational principle (Proposition 4.6) applied through Lemma 5.13, which gives us not
only an existential type tpHQ(X’ ) extending tpé” (X) with large entropy, but even the full
type tpS(X’) with large entropy.

In particular, the theorem shows that if Entg{f(./\/l) > 0, then there exists an embedding
of M into Q with Ent/(M : Q) > 0, and hence also h(M : Q) = Entzf(/\/l Q) > 0.

6 Remarks on conditional entropy

In this section, we sketch how the previous results could be adapted to the setting of
entropy relative to a W*—subalgebra. However, we will not give the arguments in
detail because we will not be giving any new applications of the conditional version of
entropy. Our goal is mainly to complete our translation between the different flavors
of microstate spaces in free entropy theory and the different flavors of types in the
conditional setting.

Hayes’ original definition of 1-bounded entropy used microstate spaces relative to a
fixed microstate sequence for some self-adjoint element with diffuse spectrum. He
then showed that this was equivalent to the 1-bounded entropy defined through unitary
orbits (the definition that we have used so far in this paper). As remarked by Hayes,
Jekel, and Kunnawalkam Elayavalli [17, §4.1], the same reasoning shows that orbital
1-bounded entropy is equivalent to 1-bounded entropy relative to fixed microstates for
any diffuse amenable W*—subalgebra P of M. In fact, one can formulate the definition
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of 1-bounded entropy of M relative to any W*—subalgebra .4 with a fixed choice of
microstates Y™ with lim,,_,z tpgc"((c)(Y(")) = tpcfl\{‘ (Y). Unlike the case where A is
amenable, the 1-bounded entropy relative to .4 may, as far as we know, depend on
the choice of microstates for .4, and in general it will not coincide with the orbital
1-bounded entropy. Nonetheless, relative 1-bounded entropy for general A has a
natural motivation in terms of ultraproduct embeddings: Fixing A C N C M and an
embedding ¢ : A — Q := [[,_,;; Ma(C), arelative 1-bounded entropy h(N : M| A, )
would quantify the amount of embeddings of ¢/ : N' — Q that extend ¢ and which
admit some extension ¢’ : M — Q.

Just as we have interpreted the entropy in the presence as corresponding to existential
types in the model-theoretic framework, relative entropy naturally corresponds to types
over A. Types over A represent types in a language L 4 described as follows. Let A
be a separable tracial W*—algebra. Let L 4 be the language obtained by adding to Ly,
a constant symbol a(a) € D, for each a € A.

Let Ty 4 be the Ly 4 theory obtained from T by adding the (infinite family of) axioms

e afla+ b) = afa) + a(b) for each a,b € A.

* a(la) = Aa(a) foraec Aand X € C.

e afab) = a(a)a(b) for a,b € A.

e a(a*) = aa)* fora € A.

e al)=1.

* Retrafa) = 74(a) where 74 is the given trace on the tracial W*-algebra A.

We leave it as an exercise to the reader to verify that every model of Ty 4 is given
by a tracial W*-algebra M together with an embedding (unital, trace-preserving
sx—homomorphism) « : A — M, and conversely every such embedding defines a
model of Ty 4. Given a tracial W*-algebra M and an inclusion o : A — M, the
Ly, 4—type of a tuple X is also known as the type of X over A and denoted tpM(X/A).

Next, we want to define versions of entropy for quantifier-free, full, and existential types
over A, using covering numbers for microstate spaces corresponding to neighborhoods
of the type over A. Unfortunately, we cannot use neighborhoods in the space of
L a—types SA(Ty _4) because the matrix algebra M, (C) could never be a model of
Ty 4 since it cannot contain a copy of A unless A is finite-dimensional. In other
words, the issue is that we must work with approximate embeddings «, : A — M, (C)
rather than literal embeddings, since the latter may not exist. Thus, we will look
at Ly 4 structures that satisfy Ty but not necessarily Ty 4, which are tracial von
Neumann algebras together with a function o : A — M that is not necessarily is
a *—homomorphism or even linear but does satisfy ||a(a)| < |la|| for a € A. We

Journal of Logic & Analysis 15:2 (2023)



Covering entropy for types in tracial W*-algebras 65

will denote by S4(Ty) the set of Ly 4—types that arise from models of T, so that
SA(Ttr) 2 S.A(Ttr,A)-

Given a sequence of functions o, : A — M,(C) and O C S4(Ty), we define the
microstate space

T | o) = {X € Mu(C)N : tpM©en(X) € O}

where tp"(©-2(X) is the £4 type of X in the £ 4 structure given by M,(C) and
an © A — M,(C). We are interested only in the case when (a,),cn defines a trace-
preserving «—homomorphism o : A — Q =[] M,(C). Then for a closed set
K C Sa(Ty,4) € Sa(Ty), we define

n—U

1
_ . . (n)
Entzr"F,e(IC | o) = %Epennlmbl{ o) log Kr (I (O | @)

where the infimum is over all open neighborhoods of K in S4(Ty), and then let
Ent(K | o) be the supremum over r, F, and .

As the notation above suggests, it turns out that this quantity only depends on the
embedding « : A — Q, not on the particular lift (a,),cn. To see this, suppose 5, is
another such lift, so that for every a € A we have dM"(C)(oz,,(a), Bu(@) - 0asn—U.
Using Urysohn’s lemma, taking a smaller neighborhood if necessary, we can assume
the neighborhood O is given by ¢ < ¢ for some nonnegative formula ¢(xy, xz,...)
in Ly 4. Then ¢ can be equivalently viewed as an L formula in the variables x;
together with additional variables corresponding to the elements of 4. By uniform
continuity of the formulas, |¢(X, @,(a@))aca) — ¢(X, (Bn(@))aca)| < §/2 for n in a
small enough neighborhood of &. Thus, if the neighborhood O’ is given by ¢ < §/2,
we get F(r")(O’ | Bn) C ri”)(o | ;). The argument is finished by taking the appropriate
infima over O and limits.'

We remark that the approximate embedding «, : A — M,,(C) can be thought of as a
choice of microstates for every element of A. But, as in Hayes original description
of relative 1-bounded entropy, we could instead fix a generating set A for A, fix
microstates A" for that generating set, and define microstate spaces of matrix tuples
X such that the £ —type of (A®, X) is in a certain neighborhood O of the set K. It is

'For the analog of this argument in the existential case, we would work only with the case
when K = K, for a single existential L 4—type. The only issue adapting the above argument
to the existential case is in finding, for a given a neighborhood O of K, a sub-neighborhood
of the form ¢~'((—o0, €)) for an existential formula ¢. Since the space of existential types is
not Hausdorff, we cannot apply Urysohn’s lemma, but rather must work with the existential
formulas directly to construct such a neighborhood.
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a technical exercise to show that these definitions are equivalent, the key point being
that every element of a can be expressed as a quantifier-free definable function of the
generating tuple A.

Most of the properties we showed for Ent! adapt to the relative version with the
same method of proof. For instance, it satisfies the analog of the variational principle
(Proposition 4.6) and monotonicity under pushforward (4.7). Thus, given 4 C N C M
and an embedding o : A — Q, we can define Ent/(N : M | ) as the supremum of
Ent¥ (tp™-2(X)) for tuples X from A. Analogously to Lemma 4.14, if Ent/(M | o) >
0, then there is an embedding of A/ into Q that restricts to o on A and extends to an
elementary embedding of M. The quantifier-free and existential version of conditional
entropy are defined in a similar way, and the relationship between them works the same
way as it does for the unconditional version.
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