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Computer-aided data acquisition, analysis, and interpretation are rapidly gaining traction in numerous facets of research. One of the
subsets of this field, image processing, is most often implemented for post-processing material microstructural characterization data
to understand better and predict materials’ features, properties, and behaviors at multiple scales. However, to tackle the ambiguity
of multi-component materials analysis, spectral data can be used in combination with image processing. The current study
introduces a novel Python-based image and data processing method for in-depth analysis of energy dispersive spectroscopy (EDS)
elemental maps to analyze multi-component agglomerate size distribution, the average area of each component, and their overlap.
The framework developed in this study is applied to examine the interaction of Cerium Oxide (CeOy) and Palladium (Pd) particles
in the membrane electrode assembly (MEA) of an Anion-Exchange Membrane Fuel Cell (AEMFC) and to investigate if this
approach can be correlated to cell performance. The study also performs a sensitivity analysis of several parameters and their effect
on the computed results. The developed framework is a promising method for semi-automatic data processing and can be further
advanced towards a fully automatic analysis of similar data types in the field of clean energy materials and broader.
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With the progression of materials from being discovered coin-
cidentally to being designed and optimized strategically, there has
been an imminent need to analyze and model materials for specific
applications. This process can nowadays be facilitated by the power
of advanced microscopy, and image and data processing.' Digital
image and data processing has found a plethora of applications in the
field of materials science ranging from detailed morphological and
structural analysis of materials to the study of their degradation and
failure.>”” Image processing is most widely implemented to extract
valuable information from a more extensive set of materials
characterization data and to understand and predict structure-
property correlations. However, to ensure the accuracy of results
obtained from image processing, it is vital to have a systematic
recognition of the features and the ability to process them swiftly for
efficient analysis. Unfortunately, digital image processing comes
with complications and challenges since microstructural images
have a series of inherent issues, such as noise, low resolution, low
illumination, inadequate color balance/contrast, and insufficient
sharpness, among others. These issues can cause analysis to be
complex for manual and automated techniques.*™'' Manual image
processing is subjected to human error, experience, and bias due to
varying opinions on what constitutes a particle, grain, grain
boundary, defect, etc., within a microstructure. In addition, for the
measurements to be statistically representative, they require repeti-
tion of both the data acquisition and processing, which becomes a
burdensome and time-consuming task. Manual methods are, there-
fore, very slow and laborious.'? With automation, microstructural
analysis, and measurements are conducted within seconds with
improved consistency. However, microscopic images are often
influenced by noise, which is the inclusion of random and false
signals due to external conditions produced by contamination,
sensors, detectors, and amplifiers. Such conditions can make features

“E-mail: jasna.jankovic @uconn.edu

like particles, grain boundaries, and materials interfaces challenging
to perceive, or can create the appearance of features that are not
real. !> Therefore, one of the most difficult tasks of automated
image processing is guaranteeing that the software is representing
the material features accurately. The main image processing opera-
tion involves the digitization of the image, which can be graphically
represented by Fig. 1. However, although computer-based
automated image processing has its challenges, it is far superior
and has unarguably overshadowed manual image processing tech-
niques in recent decades.

Such favorable characteristics of image processing led re-
searchers to realize its potential for providing valuable microstruc-
tural information in the process of improving the performance and
efficiency of clean energy systems.'’™' Particularly, inspecting
individual and collective characteristics of microstructural features
of materials constituting a fuel cell such as electrodes, catalysts, and
electrolyte membranes can help predict electrochemical behavior
down to the nanoscale.?’> Besides composition, researchers
validated the current density variations, ohmic and mass transport
resistance, fuel transport mechanism, degradation, and structural
stability. Hence, the overall fuel cell performance and durability are
significantly influenced by a fuel cell’s electrode microstructure and
the distribution of each component in it.>*~*! Therefore, to facilitate
the development of efficient electrodes and fuel cells, and to
establish statistically relevant correlations between the microstruc-
ture and performance, novel methods of automated image processing
are required. In the area of fuel cells, image processing has been
successfully utilized for distinguishing between different phases,
porosity, and electrocatalyst particle size measurements, as well as
for the study of the distribution of water within the catalyst
layer.>>*! However, typically, automated image processing for
fuel cells involves using data extracted from transmission electron
microscopy (TEM) or scanning electron microscopy (SEM) without
taking into account elemental composition.*>** Furthermore, using
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Figure 1. Image digitization process.

greyscale TEM and SEM images often makes it challenging to
differentiate between various components in the material. To address
this challenge, scanning transmission electron microscopy with
energy dispersive spectroscopy (STEM-EDS) can be used to provide
elemental maps with spatial component distribution, enabling this
differentiation and offering a whole range of new possibilities for
automated spectral data analysis.

Several spectral data processing approaches using EDS data,
mainly in conjunction with SEM, have been developed and reported
for a wide range of applications such as automatic particle size
analysis of nano-materials, mineral constituents in rocks, inclusions
in metals, contaminants in pharmaceutical products, air or water
particulates, gun-shot residue in forensic science, pathological tissue
in biomedical research, and automated identification of different
phases and calculation of area, perimeter or compactness in a
sample.**™® Combined with the machine and deep learning algo-
rithms, SEM-EDS data have been used to investigate the mor-
phology, size, and structure of particles or phases in a sample and to
classify them.**~>* However, given the complexity of some nanos-
cale multi-component systems such as catalyst-coated membrane
(CCM) structures in fuel cells, the use of SEM-EDS is simply not
viable due to spatial resolution and sensitivity limitations. In such
cases, implementation of the STEM-EDS technique permits detailed
analysis of individual regions within CCMs, demonstrating the
interaction of different components such as catalyst particles, carbon
support, and ionomers that may impact the fuel cell’s performance.
Some researchers have used image analysis on STEM-EDS data to
study other complicated material systems, for example, to investi-
gate channel thicknesses for flash memory devices, precipitates in
Inconel 625 super alloy, and core and shell sizes for spherical
semiconductor nanocrystal systems with minimum human
intervention.”*® However, as far as we know, no such automated
or semi-automated approach combining both spectral and image
processing has been adopted and documented for fuel cell-related
research yet, especially not when using high-resolution STEM-EDS.
The development and application of an automated approach to
analyze large sets of statistically relevant imaging and spectroscopy
data would significantly reduce the analysis time and open new
opportunities in the systematic study of structure-property correla-
tions. Scenarios, where such an approach would have been beneficial
include confirming the distribution and agglomeration of platinum
(Pt) catalysts and ionomer in the fresh and degraded catalyst layers,
distribution of Mg on carbon support for Pt,Mg/C-based catalyst
layer in proton exchange membrane (PEM) fuel cells, quantification
of corrosion by-products (i.e. Ni and Fe cations in the anode and
membrane resulting from use of stainless steel liquid-gas diffusion
layer in PEM electrolyzers), estimating the amount of Cr deposition
in different types of lanthanum based-cathodes during polarization in
solid oxide membrane fuel cells (SOFCs), to name a few.” %3

In this study, we report an in-house developed semi-automatic
Python-based code able to process a set of spectral data within
minutes, applied to a study of anion-exchange membrane fuel cells

Digital images are stored as an
array of pixels in the computer
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(AEMFCs). Although we focus our study on AEMFCs, we believe
that with further optimization, our code can be successfully
employed in different studies pertaining to other electrochemical
systems as enumerated above, and broader. AEMFCs are fuel cells
that conduct anions through solid polyelectrolyte anion-exchange
membranes and operate under moderate temperatures (0 °C—120
°C) with a variety of fuels.**"*” AEMFCs can utilize Palladium (Pd)-
based catalysts,”®>% which are significantly more abundant alter-
natives to the scarce Pt catalysts typically used in proton-exchange
membrane fuel cells (PEMFCs). Pd-based catalysts suffer from
sluggish hydrogen oxidation reaction (HOR) kinetics, which could
be potentially avoided by combining Pd nanoparticles with Cerium
Oxide (CeOy) through controlled surface reactions and ensuring
sufficient Pd-CeOy interaction for a prospective increase in the
catalytic activity.”>””® The increase in catalytic activity is ascribed to
the flow of OH™ ions from CeOy to Pd, which not only significantly
improves the rate of the Volmer reaction but also undermines the
hydrogen binding energy in the Pd-H bond.”* Therefore, the close
and more intimate interface between Pd and CeOy is expected to
improve the performance of these catalysts. However, this hypoth-
esis, as well as the effect of other parameters, such as Pd and Ce
particle/agglomerate size distribution, in addition to the contact area
between them, needs to be further studied. A thorough investigation
can be carried out by microscopy and spectroscopy. To support this
analysis, we developed a Python-based data and image processing
framework that uses STEM-EDS elemental maps and spectral data
of Pd-CeO, catalysts to produce visual and numerical results and
correlate them to the electrochemical performance and durability of
the AEMFCs. The exclusive utilization of such processing techni-
ques on STEM-EDS data for the evaluation of fuel cell electrodes is
being reported for the first time in this study. The study also reports
the sensitivity analysis, discusses the effect of various input
parameters on the calculated results, and compares them to a
prf;\;iously reported image processing technique used by Singh et
al.”

Methodology

The script for the image and data processing framework devel-
oped in this study was written in Python (version 3.9.2). The code
uses different statistical functions, image and data processing, and
plotting modules from several open-source Python libraries, i.e.,
NumPy 1.20.1, Pillow 8.3.2, Pandas 1.3.4, OpenCV 4.5.4, SciPy
1.6.1, Scikit-Image 0.19.1, and Matplotlib 3.3.4. The graphical user
interface (GUI) was developed using the PyQTS5 toolkit. This in-
house developed Python-based code was initially conceptualized at
the Automotive Fuel Cell Cooperation, and further modified, refined,
and implemented in this study.”® The idea in this particular study
(but applicable to other multi-component systems), was built around
the fact that materials characterization data about Pd-CeO,-based
catalysts (although it can be a source of a vast amount of
information) require a rigorous analysis procedure to get
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“concealed” or underlying information not visible to the naked eye,
such as percentage of the area where Pd and CeO, overlap (contact
area, which is expected to benefit the HOR activity) and the catalyst
particle or agglomerate size. Thus, three different catalyst samples
supported by carbon (C), i.e., n CeO,-Pd/C with varying composi-
tions (where n denotes the bulk atomic ratio of Ce/Pd): 0.24
CeO,-Pd/C, 0.38 CeO4-Pd/C, and 0.59 CeO-Pd/C labeled as
DDO08, DD09, and DD16, respectively, were taken into considera-
tion. A detailed description of the samples, their fabrication, and
testing are discussed in our previous study and a thorough
comparison of the adopted approach to the image processing by
Image] used by Singh et al. is hereafter also presented.”> A graphical
overview of the whole data processing process in our study is shown
in Fig. 2 and discussed below.

Acquisition and processing of raw data.—Thermo Fisher Talos
F200 TEM operated at 200 kV in the high-angle annular dark-field
(HAADF) STEM mode with an in-built ChemiSTEM-based EDS
system was used to acquire high-resolution images and corre-
sponding elemental maps of 768 x 768 pixels for all catalyst
samples under consideration. All images were obtained at a constant
magnification of 910,000 x and their elemental maps were visualized
in hyperspectral mapping mode with Bruker Esprit Microanalysis
software (v 1.9). The feature of hyperspectral mapping in Esprit is
termed HyperMap and allows the acquisition and storage of
spectrum data for each pixel of the image and can be established
as the major data source for the program developed in this
study.””””° The types of raw elemental maps that were obtained
initially are shown in Fig. 3.

The raw maps were then pre-processed using the Esprit software
with the Cliff-Lorimer quantification method to remove background
and deconvolute the spectral peaks (to form, so-called, QMaps). The
Cliff-Lorimer method is based on the following formula:

I
A k;é(n_"‘)
13 ng

Data Acquisition

Description Value
Mean Agglomerate Size - C: 1(um) |[5.450453
Number of Agglomerates - Component1 | 272
Mean Agglomerate Size - Component 2 (um) | 3.104183
Number of Agglomerates - Component2 | 452 Numeric Output
Area Percentage - Component 1 (%) | 22.10454
Area ge - C 2(%) 20.92019 N
Overlap Area (um) 511.6979
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Area - Component 1 (um) | 1482523
Area - Component 2 (um) 1403.091
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1 1.860496 1.675984
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Figure 3. (a) Raw STEM/EDS elemental map of C, Ce, and Pd (b) HAADF
image (c) Raw Ce elemental map (d) Raw Pd elemental map (Scale bar =
20 nm).

where A and B refer to any two elements, kap is the Cliff-Lorimer
sensitivity factor between them, I, and Iz are the integrated EDS
peak intensities, and n, and ng are the atomic density percentages
for the elements A and B, respectively. In general, the formula
computes concentration ratios by relating the measured signal
intensities to the calculated intensities of pure elements. This method
is typically applied to EDS quantification in STEM (not in SEM) due
to the low sample thickness used, which allows the involved
absorption and fluorescence correction to be neglected.’ The
resulting individual elemental QMaps of EDS X-ray net intensities

W1 EDX Post Processing Interface - o P

voxelsize 0.124000 nm %

Samples List Clear List

Open Data
RUN

[ Fixed Bin Size

[C] stacked bar graphs

Threshold parameter (default = 10, 0 = otsu): 0.017000

Bin size (default = 10,000um~2); 10

Number of Bins (default = 10): 1

v
O

Visual Output

Figure 2. Visual overview of the developed image and data processing framework.
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of Ce and Pd were subsequently saved as text files in ASCII format.
ASCII format is the standard code used for information exchange
and is typically used in data processing. In ASCII format, each
character is stored in 8 bits of memory and allocated a number
between 0 and 2558152 The software thus allocates a specific
numeric value in the text file according to the X-ray net intensity
data for each pixel of the QMap. This text file is a complete roadmap
of the intensity of each X-ray net count signal and its precise
location in the respective elemental map. Pre-processing of the
elemental maps can be performed using different binning (resolu-
tions): e.g., with the resolution 1, each pixel is separately processed,
and its processed value is assigned to the same pixel; with the
resolution 0.5 (1/2), four pixels are averaged (the signal is combined,
processed and the final values equally divided between the four
pixels); with the resolution 0.125 (1/8), sixteen pixels are averaged
(For more detail, see Fig. S1). Consequently, resulting net count
values of the same pixel (e.g., ascribed to a particle) in text files of
the same QMap at different resolutions are different. An example of
different net count values at different QMap resolutions is shown in
Fig. 4. Apart from choosing the QMap resolution, Esprit also allows
users to choose between different types of map and image filters.
Map filters are applied directly on the net count signals contained in
the map while image filters are applied only to the overlay image to
enhance the visibility of features (For more detail, see Figs. S2 and
S3). The effect of the QMap resolution and filters on the results
obtained is detailed in Supplementary Material. The names of text
files for Pd were labeled as “component].txt” and all the text files for
Ce were labeled as “component2.txt” and saved in separate folders
with each sample’s name and map number. Furthermore, the STEM
image for each raw map taken with HAADF imaging was saved in
the same folder in TIFF format and labeled as Mask. The specified
labeling was carried out to be traceable by the code for processing as
well as to be able to be used with any two components at any time.

Adjustment of input parameters and sensitivity analysis.—To
start the data processing in the Python framework, the methodology
given in Fig. 5 was adopted (as described in more detail in the
Supplementary Material). The pixel size needs to be adjusted
according to the pixel size of the raw map, while an appropriate
threshold value needs to be selected to ensure that the code considers
only the specified component’s true signal and disregards any noise
the map might contain. Appropriate bin size or the number of bins
needs to be selected for an apt statistical representation of area
(agglomerate, particle, etc.) size distribution histograms.

Overview of yellow-outlined
area in Pd text file

Pd Elemental Map

. Selected Area

L]

I

DD16 - Map 9

Selected Area T am s

Selected Area

It is crucial to emphasize here that for an appropriate adjustment
of input parameters in the program interface, an optimal pre-
adjustment of parameters associated with pre-processing software,
Esprit is vital. To ensure the extraction of valid, statistically
representative, and consistent results with the developed code, a
thorough sensitivity analysis was performed here to investigate the
effect of changes in each parameter on the output generated by the
program, while keeping all other parameters constant. This local
sensitivity analysis for individual parameters helped gain insight into
the type of impact they create on the program output. The impact of
each parameter was assessed and compared against other parameters
and subsequently categorized as a no/low, moderate, or high impact
parameter. The list of input parameters, along with a detailed
discussion and a qualitative assessment of their impact on the output
results influence on results, is presented in the Supplementary
Material section.

Execution of post-processing analysis.—Once the parameters
are set and the EDS Post-Processing Program is allowed to run, the
code runs through the text files and scans all the numeric values
listed in the text file of each component, and applies the user-
thresholding algorithm. This step is accomplished using data
browsing, sorting, and processing in the NumPy library. The
program also collects and lists all the available threshold values
from the individual maps of each component being processed,
allowing users to make informed decisions regarding the best
selection of the user-defined threshold value. After the user-defined
thresholding of individual map files, statistical and mathematical
operations are applied to the data to determine the desired
parameters. For example, Pd and Ce overlap is calculated using a
mathematical comparison of signals in each pixel (e.g. if a pixel
contains Pd X-ray net counts in the Pd text file and Ce X-ray net
counts in the Ce text file, an overlap is identified). The agglomerate
or overlap areas were simply calculated by multiplying the number
of pixels containing the desired signal (e.g., Pd, Ce, or Pd/Ce
overlap) by the resolution of the pixel. Mathematical computation of
the respective individual and overlap areas and percentages are then
carried out using NumPy data processing. The processed data is then
segmented, rearranged, and saved in TIFF format using the Pillow
library. This generates the resulting individual masks and thre-
sholded images for each map and their combined overlap mask and
thresholded image. The mask refers to a binary image that has
assigned zero (black color) to all pixels above a specified threshold
value and 255 (white color) to all pixels below the specified
threshold value. Mask images of individual maps are thereby

Enlarged view of red-outlined
area in Pd text file
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Figure 4. Overview of the corresponding ASCII text files to specific elemental map resolutions.
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Process Flowchart
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Figure 5. Process flowchart for running analysis in the program interface.

generated by simply assigning zero (black color) to all original X-ray
net count signals in a map irrespective of the chosen threshold value,
while the thresholded images of individual maps are generated by
selectively removing potential noise signals from the original X-ray
net counts by considering and only visualizing signals equal to and
above the chosen user-defined threshold value. For the Pd-Ce
overlap area determination, the overlap data is already sorted using
the mask and thresholded map values, so any additional binarization
is not required for the construction of the overlapping mask and its
corresponding thresholded image. The plotting and visualization of
these images are carried out using the Matplotlib module. The
collection of these images constitutes a major part of the visual
output given by the developed code. This visual data is further
processed via image processing modules to generate further results,
as discussed below. OpenCV is utilized to load and read data from
all images, while Scikit-Image and Scipy are collectively used for
labeling, segmentation, and computation of each particle/agglom-
erate size in the individual as well as overlap maps. The program
also creates histograms for the agglomerate size distribution of each
component individually and collectively. All numerical results of the
program, including calculation of individual map areas and overlap
areas along with their corresponding percentages with or without the
user-defined threshold value, number, and size of agglomerates and
mean agglomerate sizes are automatically saved in an Excel file
using Pandas. By default, all the measurements are carried out in
micrometers (pm).

Results and Discussion

As mentioned above, the data and image processing method
introduced in this study generates two different forms of outputs:
graphical and numerical. The different results that were obtained for
each concentration of the catalyst samples under observation are
therefore presented using these outputs. It can be aptly implied that
the variety of outputs generated by the developed program in the
form of masks, thresholded images, overlap images, agglomerate
size distribution charts, component area overlap, and calculation data
sheets offer a wide range of result datasets that can be crucial for a
comprehensive study of any sample under consideration.

For reliable use of the discussed semi-automatic EDS analysis
interface, sensitivity analysis results were used as the base for the
selection of optimal input parameters. As mentioned above, these
parameters are associated with EDS pre-processing software, Esprit,
and the developed post-processing framework. A detailed argument
about the type of influence each of the input parameters depicts upon
the computed results, along with the justification for the selection of
a chosen value of each to run the main analysis, is provided in the
Supplementary Material. Moreover, for an accurate substantiation of
the developed data and image processing framework, a thorough
comparison with a conventional analysis technique (i.e., Imagel]
used by Singh et al. for calculation of interfacial contact area) is
presented.

Sensitivity analysis.—The parameter sensitivity analysis showed
a different relative effect on the code output results (quantified
through Pd and Ce area comparison), as shown in Fig. 6. The impact

Select of Bin SEE R
Size/Number Output
Required

I Low or No Impact (< 10%)
|:| Moderate Impact (< 40%)
QMap I High Impact (> 40%)
Resolution
Map Filter
Image Filter 4
Threshold |
Value

Pre-processing Post-processing

Figure 6. Sensitivity analysis of all input parameters of the study.

for each parameter is quantified by the percentage difference
between the lowest and the highest value of Pd and Ce area
calculations with respect to variations in a specific parameter while
keeping all other parameters constant. The strongest effects are
caused by the QMap resolution and EDS signal thresholding; users
need to make a careful choice to perform an accurate analysis. After
investigating the potential effects of different parameters upon
output results generated by the developed code as part of the
sensitivity analysis a set of ideal parameters were chosen
(Table I). For more information, see Supplementary Material.

Sample analysis and correlations to performance.— Interfacial
contact area calculation.—Using the set of parameters in Table I, the
code analysis for all ten maps of the three catalyst samples in
consideration was carried out, compiled, and represented. In addi-
tion, for comparison purposes, non-thresholded EDS maps were also
used.

The complete analysis of all the samples returns a large visual
and quantitative dataset which enables the investigation of how
different Pd and Ce loadings in different catalyst samples affect Pd
and Ce agglomerate size and distribution, as well as the Pd-Ce
interfacial contact area/percentage. In terms of graphical output,
Fig. 7 shows an example of a few elemental maps and their output
before and after thresholding (showing large variation) generated by
the developed code.

It should be noted that the dataset is exposed to the minimum
level of user-defined thresholding as the value of 0.016 is the lowest
possible net intensity value observed at the given map resolution
and, therefore, the threshold value of 0.017 selectively eliminates
minimum level background signals or noise (having net count value
of 0.016) from the thresholded image. It also ensures that the
presence of any actual X-ray net count signal is not missed while
computing the results.

The quantitative output of the average interfacial contact area
between Pd and Ce as well as the average percentage of Pd covered
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Table 1. List of selected parameters for running the main analysis.

List of parameters

Selected option/values

Map Resolution
Map Filter
Image Filter
Voxel Size

Threshold Values

DD08 DD09

Elemental Maps Output — Mask Output — Thresholded Elemental Maps

Output — Mask Output — Thresholded Elemental Maps

1/8
Automatic
None
0.124 nm
T = 0 (No Thresholding) & T = 0.017 (With Thresholding)

DD16

Output — Mask Output ~Thresholded

Figure 7. An example of input pre-processed elemental maps, their corresponding masks, and output results after thresholding for Pd (1st row), Ce (2nd row),
and Pd-Ce overlap data sets (3rd row) for three different catalysts, as generated by the code (Scale bar = 20 nm).

by Ce for all samples along with standard error (SE) were compiled
and illustrated in graphical form in Fig. 8. The average interfacial
contact area and the average percentage of Pd covered by Ce for
each catalyst sample were computed by averaging the values of
interfacial contact areas and individual percentages of Pd covered by
Ce for all ten maps of each sample, respectively. The comparison
with the manual processing using Image] is added as well to
illustrate the possible variation in the analysis, of which a user
needs to be aware.”

It can be noted from Fig. 8a that the average overlap area
calculations for ImageJ and the developed code not only vary to a
great extent quantitatively but also do not follow the same trends.
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While the reported Image] results show an increase in the average
interfacial area from sample DDO8 to DDO09, they also show a
decrease in the same from sample DD09 to DD16 (although within
the standard error). However, the code output shows a progressive
increase in the average interfacial area from DDO08 to DD16. It is
worth noticing that the increase in the average Pd-Ce interfacial area
determined by ImageJ in the reported study is very significant
(~40%) from sample DDO8 to DD09, yet the same decreases by a
small percentage (~3.6%) from DD09 to DD16 (even though the
actual atomic Ce/Pd ratio increases 58% from sample DDOS to
DD09, and further by 55% from DDQ9 to DD16. The reported study
explains this difference in the trends by the deposition of CeO, onto
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Figure 8. (a) The average interfacial overlap area between Pd and Ce as calculated by ImageJ and the code for each catalyst powder with standard error (b) The
average percentage of Pd covered by Ce (overlap) calculated by ImageJ and the code for the same maps for each of the catalyst powders with standard error.
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carbon rather than Pd in sample DD16 and the formation of large
CeO, agglomerates. When processed by the developed code, the
increase in the Ce/Pd overlap very well agrees with the actual
increase in Ce/Pd atomic ratio, resulting in a 58% increase from
sample DDOS8 to DD09, and an additional 42% from DD09 to DD16
for non-thresholded processing, and 72% and additional 62%
increase, respectively, for the thresholded processing. This differ-
ence between Image] and the developed code results can be
explained by their fundamentally distinct approaches. For the
calculation of the interfacial contact area of Pd and Ce, Imagel
follows an entire image processing-based methodology, relying on
user judgment, while the introduced code framework is largely based
on spectral data analysis, with minimal user influence.

The representation based on the average percentage of Pd area
covered by Ce rather than the absolute Ce/Pd contact area (in nm?)
was investigated as well, as shown in Fig. 8b. It was noticed that
even though the overall trends do not differ even in terms of overlap
percentage, the overall meaning can convey a much clear picture
when quantified in terms of the percentage of total interfacial contact
area over total Pd area. The trends show that as per the code’s
output, there is an approximately 54% increase without thresholding
and a 74% increase with thresholding in the interfacial area
percentage from sample DDO8 to DD09. This trend agrees well
with the actual increase in the Ce/Pd atomic ratio of 58%. However,
the ImageJ results show an increase of ~16% only. The interfacial
area percentage between samples DD09 to DD16 shows an increase
of 2.4% for the code without thresholding and 7.7% for the code
with thresholding, pointing to a large amount of CeO, not being in
contact with Pd (since the actual atomic Ce/Pd ratio increases by
55% from DDQ9 to DD16). The ImagelJ trend shows a decrease of
9.2% in interfacial area percentage between the same samples.
Therefore, the remaining analysis was continued using the code
only, and not Image] analysis. Furthermore, our conclusions were
further drawn from the thresholded maps, as proven to result in the
most realistic representation of the actual samples. Non-thresholded
code results were only added for the comparison and the reader’s
judgment of the accuracy of the results.

To elucidate the observed trends further, the current study also
calculated the average percentages of Pd and Ce area covering the
map area for all catalyst samples under consideration, and the
calculations are plotted in Fig. 9. The average percentages of Pd or
Ce refer to the average value of the percentages of Pd or Ce areas
divided by the total map area for all ten maps of each sample. These
Pd and Ce map area percentages would simulate the total amount of
Pd and Ce per area (areal density).

(a)

[l Pd - No Thresholding

50 | SN Pd - Thresholded at 0.017 41.66
- No Thresholding

- Thresholded at 0.017

Average Area Percentage (%)

DD08 DDO09 DD16
Samples

Figure 9 shows a gradual increase in the average area percentage
of Ce and Pd per map area from sample DDO8 to DD16. A question
arises why we would see such a trend, especially for the Pd area,
since the overall amounts of the analyzed samples should be
comparable (due to the same sample preparation method) (Ce area
is expected to increase due to an increasing Ce/Pd atomic ratio in the
actual sample). One plausible explanation would be that the
dispersion (or agglomeration) of the samples is not the same,
resulting in better dispersion and smaller agglomerates for DD08
than for DD09 and DDI16, captured by each map. Indeed, our
agglomerate size analysis in the next sections does confirm this
explanation. Taking EDS maps at a lower magnification would
normalize this Pd area trend.

When further analyzing the trends in Fig. 9b, an intersection
point between Pd and Ce can be seen for the thresholded code
results. This intercept represents a point at which average area
percentages of both Pd and Ce are the same. In other words, at this
point, there is the same areal density (amount) of Ce in a sample as
Pd. It is fairly evident that the intersection point implying the Pd and
Ce percentage for optimal interfacial contact area for maps without
thresholding lies very close to DDOS. Conversely, for the maps
thresholded at 0.017, this point lies between DDO0O8 and DDO09.
However, for both cases, the Ce area is much higher than the Pd area
for DD16. Therefore, it may be deduced that the catalyst sample
DD16 has an excessive addition of Ce. This may, in turn, affect the
properties of the Pd-Ce catalyst.®® This effect can be visually
explained by Fig. 10, which shows the different stages of interfacial
contact between Pd and Ce.®® Ideally, we are looking for optimal
interfacial contact between Pd and Ce, as shown in Fig. 10b, without
reaching a point where Ce is either too low (as in Fig. 10a) or too
high (as in Fig. 10c).

By comparing Figs. 8, 9, and 10, it can be concluded that this
excessive addition of Ce beyond the intersection point is rather
unconscionable, unnecessary and, has little or no effect on an
increase in interfacial contact area beyond a maximum coverage
point. Moreover, the performance data for these three catalysts show
the highest performance for the DD09 sample, whose Pd and Ce
areas are closest to the optimal intercept point in Fig. 9.7

Agglomerate/particle size distribution.—In addition to the inter-
facial contact area and area percentage calculations, the developed
code possesses the ability to compute agglomerate or particle size
distributions for each map of all three catalyst samples (Without
distinction between particles and agglomerates, we will use the term
“agglomerate” for all features). This information is vital to under-
standing the behavior of the Pd and Ce particles and how they may

=@ Pd - No Thresholding
45 o *+@:+Pd - Thresholded at 0.017

=8~ Ce - No Thresholding 41.66
++@--Ce - Thresholded at 0.017

T T T
DD08 DDO09 DD16
Samples

Figure 9. Average Pd and Ce area percentage per map for each catalyst sample computed by the developed code (a) Represented as a bar chart with standard

error (b) Represented as trend lines.
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(a) (b)

Pd
Carbon

Insufficient Pd/Ce contact

Adequate Pd/Ce contact

(c)

éérbén

Sufficient contact but excessive Ce

Figure 10. Different stages of interfacial contact between the Pd and Ce (a) Insufficient Pd-Ce contact (b) Adequate Pd-Ce contact (c) Sufficient Pd-Ce contact

but with excessive Ce agglomeration.

affect the performance of the catalyst samples in the fuel cell.
Figure 11 shows the combined logarithmic histogram for each
agglomerate of Pd and Ce in each of the catalyst samples with and
without thresholding. The logarithmic scale is chosen in this case to
observe the agglomerate size distribution trend for a larger variation-
based dataset of computed agglomerate sizes. All agglomerates less
than 1 nm? have been neglected.

It can be seen from Figs. 11a and 11b, that in both cases, Pd and
Ce histograms are positively skewed with a tail towards the right
end. All histograms show an asymmetric distribution of agglomerate
sizes, with most sizes ranging less than 10 nm”. In Fig. 11b, Pd
agglomerates tend to show a more homogenized size distribution in
comparison with Ce agglomerates. Moreover, Pd agglomerates
generally tend to decrease in size from sample DDO08 to DDI16,
while the Ce agglomerates on the other end show a gradual increase
in size distribution tail towards the right, implying the increased
presence of relatively bigger agglomerates in sample DD16 in
comparison with samples DD08 and DD09.

By comparing Figs. 11a and 11b, it can also be observed that
there seems to be a large degree of variation between agglomerate
sizes for Ce compared to Pd for results computed without thresh-
olding. However, Pd and Ce both show a much more homogeneous
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agglomerate size distribution for results subjected to user thresh-
olding, with homogeneity increasing progressively from sample
DDO08 to DD16. This trend of increase in homogeneity is also much
more perceptible in Ce than in Pd agglomerate size distribution. To
get an improved interpretation of agglomerate size distributions, the
average agglomerate size of Pd and Ce for each catalyst sample was
also computed with and without thresholding and plotted in Fig. 12a.

From Fig. 12a, it is evident that the average agglomerate sizes for
Pd and Ce tend to increase progressively from sample DDO8 to
DD16 with or without thresholding. However, the effect of the
increase in average agglomerate size appears more pronounced for
Ce in comparison to Pd. Sample DD08 tends to have, on average,
slightly larger Pd agglomerates than Ce with and without thresh-
olding, but eventually, in sample DD16, the average agglomerate
size for Ce is greater than that for Pd. Also, the difference in average
agglomerate size between Pd and Ce is much less in sample DDOS,
while the variation is largest in sample DD16. This behavior, in fact,
supports our assertion of excessive Ce content in sample DD16
resulting in increased agglomeration. Furthermore, examining the
lower and higher limits for standard error (SE) for each catalyst
sample indicates that sample DD16 contains a lesser number of
agglomerates compared to samples DD08 and DDO09. This
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Figure 11. Histograms for Pd (red) and Ce (green) agglomerate size distribution within each catalyst sample (a) without thresholding (b) with thresholding.
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Figure 12. (a) Average agglomerate sizes of Pd and Ce for each catalyst sample with and without thresholding (b) Number of larger agglomerates (with sizes

greater than 250 nm?) for each catalyst sample with and without thresholding.

information reflects that the estimation of mean agglomerate size is
much more accurate and reliable in DD08 and DD09 in comparison
with DD16. To elucidate the trend more clearly, agglomerate sizes
greater than 250 nm> were plotted separately for each catalyst
sample with and without thresholding in Fig. 12b.

In Fig. 12b, the number of larger agglomerates increases from
sample DDOS to DD16 for both Pd and Ce. However, there are only
a few agglomerates of Ce and Pd having sizes greater than 250 nm>
and at most represent less than 1.3% of the total number of
agglomerates in their respective samples. This result further supports
the presence of the unnecessary amount of Ce in DD16, leading to a
higher degree of agglomeration suitably substantiated by a higher
number of larger agglomerates and larger average agglomerate size
in results generated by the code. This theory can be experimentally
verified by the low dispersity of CeOy nanoparticles and their
increased susceptibilitgf to agglomeration, especially when present in
excessive amounts, %%

Furthermore, increased agglomeration of catalyst nanoparticles is
linked by various researchers to the decline in overall fuel cell

performance by decreased catalyst utilization, increased mass
transport loss, and reduced conductivity.®**® Thus, it can be
determined from the results of agglomerate size distribution that
despite demonstrating the highest interfacial contact area between Pd
and Ce, the effect of increased agglomeration might be the
governing factor in reduced electrochemical performance in sample
DD16 in comparison with sample DDO09 as established through
experimental data by Singh.” This finding also validates the fact that
the optimum bulk atomic ratio of Ce/Pd does indeed lie between
0.24 and 0.59. Moreover, since code-generated results with user-
defined thresholding have shown promising findings, it is appro-
priate to estimate that the optimum bulk atomic ratio lies closer to
0.38 (sample DD09) as justified by the intersection point of average
Pd and Ce area percentages in Fig. 9. Nevertheless, it may also
suggest that a bulk atomic ratio higher than 0.24 and slightly lesser
than 0.38 may be able to reveal superior electrochemical perfor-
mance than the one recorded.

In summation, it is befitting to note that the developed code with
the right use of user-threshold value can help uncover a lot of
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information regarding the potential performance of catalysts used in
AEMFCs. Additionally, most studies involving data processing have
computed and reported results based on imaging data alone.**~* On
the contrary, extraction of microstructural information from STEM
in combination with elemental map data from EDS gives this method
its distinctiveness in addition to the automatic computation of
agglomerate size distribution and overlap area of the particles
(which has not been reported before).

Conclusions

The data and image processing framework introduced in this
study is a unique, automated, and promising method for the semi-
automatic post-processing of STEM-EDS data, with an example
application to catalyst analysis in AEMFCs. The code runs the pixel-
by-pixel numerical analysis, keeping into account distinct agglom-
erates within the elemental maps, which might be overlooked during
manual analysis; thus, it can effectively resolve problems associated
with an extensive and exhaustive analysis of larger data sets.
However, it can be concluded that the calculations also depend
heavily upon the EDS map pre-processing software used to extract
data for the code.

The study also points out that the selection of an appropriate
threshold value is vital to ensure good precision of results generated
by the program. The comparison of the data generated by the
developed code to that reported by a previous study completed by
the image analysis proved tremendously beneficial in establishing
relevancy between excessive agglomeration, interfacial contact area
calculations of Pd/Ce, and the different bulk atomic ratios of Ce/Pd
in catalysts while potentially predicting the governing factor
influencing the electrochemical performance of AEMFCs. The study
prompted the investigation and collection of additional data about Pd
and Ce microstructural-level interactions to understand further the
electrochemical behavior of Pd/CeOy-based catalysts in AEMFCs.
Further improvements such as the automatic selection of local
threshold values and optimizing the code to work with more than
two components at the same time can help extend the usability of the
developed script. Furthermore, the code can be tailored to detect and
analyze other microstructural features of interest and can be
optimized to be used with other formats of materials characterization
data. Nevertheless, it can be asserted that the developed framework
can be invaluable not only to any research focusing on improving the
efficiency of Pd-CeOx-based catalysts for AEMFCs but also to all
other research endeavors aiming to contribute to the field of clean
energy applications and broader.
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