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Abstract

Computer-aided data acquisition, analysis and interpretation have
been employed in various research areas generating useful
information. Among these, image processing is most often
implemented for post-processing of material characterization data.
However, to tackle ambiguity of multi-component materials analysis,
spectral data analysis can be used instead. The current study
introduces a unique Python-based data processing method for in-
depth analysis of energy dispersive spectroscopy (EDS) elemental
maps to analyze agglomerate size distribution, average area of each
component and their overlap. The framework developed in this study
is applied to examine interaction of Cerium (Ce) and Palladium (Pd)
particles in membrane electrode assembly (MEA) of Anion-Exchange
Membrane Fuel Cell (AEMFC) and investigate if this approach can
be utilized to predict the fuel cell’s electrochemical behavior. The
study concludes that the developed framework is a promising method
for automatic data extraction and can be beneficial for use in a variety
of clean energy applications.

Introduction

With the progression of materials from being discovered coincidentally to being designed
and optimized strategically, there has been an imminent need to analyze and model
materials for specific applications. This process can nowadays be facilitated by the power
of microscopy and image processing (1). Image processing has found a plethora of
applications in the field of materials science ranging from detailed morphological and
structural analysis of materials to the study of their degradation and failure, including fuel
cells (2—7). Image processing is most widely implemented to extract valuable information
from a larger set of materials characterization data to better understand and predict material
features, properties, and behaviors at multiple scales. To ensure accuracy of results
obtained from image processing, it is vital for it to have a systematic recognition of
volumetric data and the ability to process it swiftly, for an efficient analysis.
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Unfortunately, image processing also comes with complications and challenges since
microstructural images have a series of inherent properties that can cause analysis to be
difficult for manual and automated techniques. Microscopic images are influenced by noise
which is the inclusion of random and false signals due to external conditions produced by
sensors, detectors, amplifiers etc., (8,9), and can make features like grain boundaries or
materials interfaces difficult to perceive or can create the appearance of features that are
not real. Consequently, it is appropriate to state that manual image processing is subjected
to human error, experience and bias due to varying opinions on what constitutes a grain,
grain boundary, defect, etc. within a microstructure. As a result, ensuing measurements are
objective and statistically representative requires repetition of the measurements, which
becomes a burdensome and time-consuming task. Manual methods are therefore very slow
and laborious (10). With automation, microstructural analysis and measurements are
conducted within seconds, can be repeated without any inter-operator variation, and human
error is reduced. One of the most difficult tasks of automated image processing is
guaranteeing that the software is representing the material features accurately. However,
although computer-based automated image processing has its challenges, it is far more
superior and has unarguably overshadowed manual image processing techniques in the
recent decades.

The main process involves digitization of the image (11,12) which can be graphically
represented by Figure 1.
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Figure 1: A graphical representation of how image processing works.

Such favorable characteristics of image processing led researchers to realize its potential
for providing valuable microstructural information in the process of improving
performance and efficiency of clean energy systems (13—15). Particularly, inspecting
individual and collective characteristics of microstructural features of materials
constituting a fuel cell such as electrodes, catalysts and electrolyte membranes can help
predict electrochemical behavior down to nanometric scale (16). Beside composition, fuel
cell performance and durability are known to depend on the electrode microstructure and
component distribution. Therefore, to facilitate the development of efficient fuel cells and
establish statistically relevant correlations between the microstructure and performance,
automated image processing is required. Typically, the automated image processing for
fuel cells involves particle or pore size distribution using Transmission Electron
Microscopy (TEM) or Scanning Electron Microscopy (SEM), without taking into account
elemental composition (17,18). However, using greyscale TEM and SEM images often
makes it challenging to differentiate between various components in the material.
Utilization of Scanning Transmission Electron Microscopy with Energy Dispersive
Spectroscopy (STEM-EDS) provides elemental maps with spatial component distribution,
enabling this differentiation and offering a whole range of new possibilities for automated
sample analysis.
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Several data processing approaches using EDS data, mainly in conjunction with SEM
have been developed and reported for a wide range of applications such as automatic
particle size analysis of nano-materials, mineral constituents in rocks, inclusions in metals,
contaminants in pharmaceutical products, air or water particulates, gun-shot residue in
forensic science, pathological tissue in biomedical research, automated identification of
different phases and calculation of area, perimeter or compactness in a sample (19-26).
Combined with machine and deep learning algorithms, SEM-EDS data have been used to
automatically investigate the microstructural features, morphology, orientation and
symmetry in samples and count, aspect ratio and dimensions of the features in the
materials. However, apparently no such automated approach has been adopted and
documented for anion exchange membrane fuel cells (AEMFCs) related research yet,
especially not when using STEM-EDS.

In this study, a python-based data processing interface was developed and subsequently
utilized to investigate STEM-EDS maps for Palladium (Pd)-based electrodes of AEMFCs.
Pd based catalysts are known low-cost alternatives to expensive Platinum (Pt) catalysts
used in lower operating temperature range fuel cells such as AEMFCs. However, this
catalyst suffers from reduced hydrogen oxidation reaction (HOR) kinetics (27). It is
reported that this problem could be potentially avoided by combining Pd with Cerium oxide
(CeOx) and ensuring sufficient Pd-CeOx interaction for increase in catalytic activity
(28,29). In this work, we report testing of an in-house developed python-based code (30)
to process Pd and Ce EDS maps for AEMFC catalyst layers, and determine Pd and Ce
particle/agglomerate size distribution, as well as overlap area between Pd and Ce particles.
The python interface uses microscopy and EDS elemental maps data of Pd-CeOx based
catalyst to produce visual and numerical results with potential to predict the
electrochemical performance and durability of the AEMFCs.

Methodology

The script for the data processing framework developed in this study was written in
Python programming language. The idea was built around the fact that materials
characterization data about Pd-CeOx based catalyst, although can be a source of vast
amount of information, it requires a rigorous analysis procedure to get “concealed” or
underlying information not visible to the naked eye such as percentage of area where Pd
and CeOx overlap (contact area, which is expected to benefit the HOR activity). Thus, three
different catalyst samples, i.e., n CeOx-Pd/C with varying compositions (where n denotes
bulk atomic fraction of Ce/Pd) 0.24 CeOx-Pd/C, 0.38 CeOx-Pd/C and 0.59 CeOx-Pd/C
labelled as DD08, DD09 and DD16, respectively were taken into consideration and three
different maps of each sample were analyzed using the data processing interface. A
graphical overview of the whole process is shown in Figure 2 and discussed below. A
detailed description of the samples, their fabrication and testing are described in a study by
Singh. et al (31).
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Figure 2: A graphical step-by-step overview of the data processing methodology

Acquisition and Processing of Raw Data

STEM-EDS mapping was used to take elemental maps of the MEA electrode cross-
section. Images were obtained at a constant magnification of 910,000X using high-angle
annular dark field (HAADF) imaging technique. This technique was combined with the
EDS to get elemental maps. The type of raw maps that are obtained are shown in Figure 3.
The raw maps were processed using the software Esprit (Version 1.9) to remove
background and deconvolute the spectral peaks. The processed individual elemental maps
of EDS X-ray net intensities of Ce and Pd were obtained and saved as text file in ASCII
format. The software allocates a specific numeric value in the text file according to the X-
ray net intensity data for each pixel of the map. However, the processing of the elemental
maps can be performed using different binning (resolutions): e.g., with the resolution 1,
each pixel is separately processed, and its processed value is assigned to the same pixel;
with the resolution 0.5 (1/2), four pixels are averaged; with the resolution 0.125 (1/8),
sixteen pixels are averaged; etc. Consequently, resulting net count values of same pixels
(e.g., ascribed to a particle) in text files of the same map at different resolutions are very
different. The net count values are smaller for lower resolution maps as compared to higher
resolution maps. An example of different net count values at different map resolutions is
shown in Figure 4. The name of all the text files for Pd were labelled as _component].txt
and all the text files for Ce were labelled as component2.txt and saved in separate folders
with each sample’s name and map number. Furthermore, the STEM image for each map
taken with HAADF imaging was saved in the same folder in TIFF format and labelled as
Mask. The specific labelling was done to be traceable by the code as well as to be able to
be used with any two components at any time.
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Figure 3: (a) Raw STEM/EDS elemental map of C, Ce & Pd (b) HAADF image (c) Raw
Ce elemental map (d) Raw Pd elemental map

Resolution 1/8 Resolution 1/2

DD16- Map 2

Figure 4: An example of magnified net count data from same region of same EDS map at
two different processed map resolutions i.e., 1/2 and 1/8

Adjustment of Input Parameters

The text files of the required components were selected using the main window of the
data processing interface as shown in Figure 5. The window allows user to change different
parameters including pixel value (from raw images/maps), threshold value (to remove the
noise), bin size and number of bins (for the area size histogram display) and type of output
that is required (image, labels, histogram). The pixel size needs to be adjusted according to
the pixel size of the raw map while appropriate threshold value needs to be selected to
ensure that the code considers only the specified component’s true signal and disregards
any noise the map might contain. Appropriate bin size and number of bins needs to be
selected for an appropriate representation of area (agglomerate, particle, etc.) size
distribution histograms. The code automatically takes into account all the text files and
mask image contained in a specific folder. Once the text file is selected and loaded, the
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analysis is allowed to run. The input parameters selected to carry out the analysis of all the
samples are given in Table 1.

B ' EDX Post Processing Interface - a %
voxelsize: 0.124000 nm
Samples List Clear List

[FIMap 1 - 0.24 CeOx-PdC

Open Data

RUN
[] Fixed Bin Size
[ Stacked bar graphs
Threshold parameter (default = 10, 0 = otsu): '0.000250
Bin size (default = 10,000um~2): 10
Number of Bins (default = 10): 10

Figure 5: Overview of the EDS Post Processing Interface

Image Map Map Image Pixel Threshold Bin
Magnification | Resolution Filter Filter size values (T) size
T =0.00025
910kx 0.5 Automatic | None | 0.124 nm & 10
T=0.50

Table 1: Input Parameters

Post Processing Analysis

Once the parameters are set and the EDS Post Processing Program is allowed to run,
the code runs the text files and scans through all the numeric values listed in the text file
of each component and runs the thresholding algorithm. The Otsu and watershed
algorithms (32,33) are used to threshold and segment both Pd and Ce maps, producing
binarized masks. The mask is a binary image which has assigned zero (black color) to all
pixels below the threshold value and 255 (white color) to all pixels above the threshold
value. The code also eliminates the noise according to the user-defined threshold value and
produces the final individual thresholded images. The program creates histograms for
agglomerate size distribution of each component individually and collectively. It calculates
the individual area occupied by each component, their overlap area, overlap percentage and
the number and size of agglomerates. This information is automatically saved in an excel
file at the completion of the analysis in the same directory. By default, all the measurements
are carried out in unit of micrometer. For each map, two different net count threshold values
(T) were selected i.e., T=10.00025 and T = 0.5. These values were selected keeping in view
the range of numerical values in input text files. The threshold value of 0.00025 is the
lowest possible value no matter which map resolution is selected and therefore, includes
all net intensity signals from a map (refer to Figure 5). However, there is at least one value
lesser than 0.5 i.e., 0.25 in the text file for maps processed at resolution of 0.5 (input
resolution), therefore it was chosen to selectively eliminate some of background signals or
noise (having net count value of 0.25) from the thresholded image.
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Results and Discussion

As mentioned above, data processing method introduced in this study generates mainly
two different forms of outputs: graphical and numerical. The different results that were
obtained for each concentration of the catalyst samples under observation are therefore
presented using these outputs. It can be aptly implied that the variety of outputs generated
by the developed program in the form of masks, thresholded images, agglomerate size
distribution charts, component area overlap, and calculation datasheet offers a wide range
of result dataset which can be crucial for comprehensive study of any sample under
consideration. Such comprehensive approach in data analysis, obtained by one
imaging/spectroscopy method and data post-processing has not been reported for
electrochemical systems, as per the authors’ knowledge.

To evaluate the use of the discussed automatic EDS analysis interface, we investigated
the effect of several parameters which are set before feeding the input data to the program.
These parameters are associated with EDS map processing software Esprit and some of
these parameters greatly influence the output given by the developed interface and might
contribute to errors. The effect of a few of such parameters is discussed below:

Effect of Different Parameters

Map Resolution. The effect of different map processing resolutions upon the graphical
and numerical results is significant, an example of which is shown in Figure 6. There are
four options for map resolutions in Esprit to choose from depending upon the pixel quality
and processing time. The highest resolution is 1 and the lowest is 0.125. The lowest
threshold value of 0.00025 was chosen to ensure inclusion of all signals from all the maps
processed at different resolutions. The code did not work out the calculations for map
resolution of 1 accurately and in most cases, it did not work at all with maps containing
low intensity signals possibly because the developed program is not sensitive to the finer
quality signals, and it eliminates many real signals along with noise. On contrary, the
lowest map resolution blurred the real signals causing confusion between agglomerates and
individual particles which contributed towards greater overlap values and incorporated
plenty of noise thereby confirming that it is also not a good selection to begin with.
Therefore, it was deduced that a reasonable selection to carry out the main calculations
without compromising on the pixel quality was map resolution of 0.5. It must be noted here
that the user must be extra cautious while choosing the threshold value when dealing with
lower resolution maps since the low quality of image is prone to inclusion of more noise.
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Figure 6: Effect of different map resolutions upon graphical and numerical results

Map and Image Filters. Esprit also allows users to choose a map and image filter out of

different options. Map filter is applied directly on the net count signals contained in the
map while image filter is applied only to the overlay image to enhance visibility of features.
The name and effect of different map and image filters is demonstrated in Figure 7 and
Figure 8, respectively. It can be clearly deduced from the Figure 7 that the effect of smooth
and average map filter is quite comparable with same calculated results. However, the
results for the automatic map filter are different and can be considered the best choice
among the rest because it is based on local noise removal instead of uniform noise removal
as in case of smooth and average filter.
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However, it is very noticeable from Figure 8 that the different image filters have either
no effect upon the results or the difference is too minimal to cause any change in the results.
Since the effect of image filters is not as pronounced as the effect of map resolution and
map filters, therefore, to carry out the analysis, the image filter was set to None.

None Average Smooth Automatic

u 00 40 0 0 0 2 00 40! 01 0 100 200 300 400 300 60 06 i’w ° 100 00 o 0 600 700
T =0.00025 None Average Smooth Automatic
Ce Area (nm?) 296.77 296.77 296.77 404.40

Figure 7: Effect of different map filters upon graphical and numerical results

None Smooth Sharpen

0 100 200 300 400 500 600 700 0 100 200 300 400 SO0 600 700 © 100 200 300 400 500 600 700

T =0.00025 None Smooth Sharpen
Pd Area (nm?) 42.24 42.24 42.24

Figure 8: Effect of different image filters upon graphical and numerical results
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Threshold value. The thresholding methods reported in the literature mostly rely upon
the Otsu thresholding for image processing of greyscale values, which despite having many
advantages, face certain limitations especially when dealing with images having large
variance discrepancy and low contrast (34—37). Moreover, using greyscale images often
complicates component differentiation, as one relies on greyscale contrast to differentiate
between the components. To avoid such issues in this work, the differentiation between
components (elements) is completed based on the spectral data, where spectral distribution
maps of each element can be separately processed and thresholded. The introduced method
uses a two-step noise removal, i.e., Otsu and a user-selected thresholding value for a finer
noise removal. The user-selected thresholding value should be selected based on the lowest
EDS spectra X-ray net count signal that is determined by Esprit software algorithm to be
the background noise.

Three maps of each sample were run through the code using two different threshold
values (T) i.e., 0.00025 and 0.50 and all the other input parameters were set to the same
values as mentioned in Table 1 to investigate effect of thresholding upon the results. For
the processed map resolution of 0.5, the lowest value in the net count data was found to be
0.25 indicating that anything lower than this value such as 0.00025 automatically includes
all the net count signals within a map. It was also observed that no other net count value
exists between 0.25 and 0.5 implying that the threshold value of 0.5 only excludes the
minimum value signals of 0.25 and keep account of the rest. The resulting visual outputs
of one map of each sample in the form of combined and individual elemental maps, masks
and thresholded images and agglomerate size distribution charts are shown in Figure 9, 10
and 11, respectively.

. oA
DDO9-Map data 1 ; om_ DD16:Mép data
MAG: $10kx HV:200kV F i MAGS 10kx HV: 200KV

DDO8-Map data 1
MAG: 910kx HV: 200kV.

Figure 9: Processed elemental maps with map resolution of 1/2 showing overlap of Ce
and Pd for sample (a) DD08 (b) DD09 (c¢) DD16
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Figure 10: Elemental maps of Ce and Pd and corresponding mask and thresholded images
with threshold values: T =0.00025 and T = 0.5
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Figure 11: Agglomerate size distribution charts for T = 0.00025 and T = 0.5 map of each
sample in Figure 9

All the calculations carried out by the code for the specified threshold values are
compiled in Table 2. A graphical representation of average percentage of Pd in contact
with Ce (Pd-Ce overlap) for each threshold value and each sample is shown in Figure 12.
The analysis of the component overlap presented here is, in the authors’ opinion, a novel
approach, which has not been reported in the previous literature (38—41).
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Average Pd | Average Ce | Average Overlap
Samples
(T=0.00025) | Area Arca Area
(nm°) (nm”) (nm?)
DDO08 626 576 164
DD09 655 736 370
DD16 1639 2266 652
Samples Average Pd | Average Ce Average Overlap
(T=0.5) Areg Are? Are?
(nm”) (nm?) (nm?)
DDO08 410 279 35
DD09 481 431 194
DD16 1155 1528 758

Table 2: Computed results for threshold value T = 0.00025 and T = 0.5

Average Percentage of Pd covered by Ce (%)
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Figure 12: Results for average percentage of Pd covered by Ce by each sample with
threshold value of T =0.00025 and T = 0.5

As evident from the results, sample DD16 shows the highest average Pd area among the
rest which also signifies that sample DD16 has relatively larger Pd particles as compared
to the other samples. Furthermore, as expected, with increasing concentration of Ce, a
considerable increase in Pd area percentage in contact with CeOx (overlap percentage) can
be observed. It can also be inferred that the thresholding value has a very pronounced effect
upon all the calculations showing a decrease of about 40-54% in the overlap percentage
with the increase in thresholding value from 0.00025 to 0.5. Besides, comparing specific
regions of original maps with the thresholded maps and their EDS spectra also represents
that maps thresholded with 0.00025 show more signs of inclusion of noise but the maps
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thresholded with 0.5 are relatively cleaner and hence can be used to acquire more accurate
results.

Generally, most studies involving data processing have computed and reported results
based upon the imaging data alone (42—47). On contrary, extraction of microstructural
information from STEM in combination with elemental map data from EDS is what gives
this method its distinctiveness. Furthermore, automatic computation of agglomerate size
distribution and overlap area of the particles has not been reported before, further
promoting exclusivity of the developed method.

Conclusion

The data processing framework introduced in this study is a unique, automated, and
promising method for an automatic post processing of STEM-EDS data. The code runs
pixel by pixel numerical analysis keeping into account distinct particles in the maps which
might be overlooked during manual analysis, thus, it can effectively resolve problems
associated with extensive and exhaustive analysis of larger data sets. However, it can be
concluded that the calculations also depend heavily upon the EDS map processing software
used to extract data for the code. The study also points out that the selection of an
appropriate threshold value is vital to ensure good precision of results generated by the
program. Minor improvements such as automatic selection of local threshold values and
optimizing the code to work with more than two components at the same time can help
extend the serviceability of the developed script. Furthermore, the code can be tailored to
detect and analyze other microstructural features and can be optimized to be used with
other formats of materials characterization data. Experimentally derived electrochemical
performance data of the samples investigated in this study can be used to verify the
accuracy of the developed method. Such information can be of paramount importance to
research focusing on improving the efficiency of Pd-CeOx based catalysts for AEMFCs by
relating the overlap area to the electrochemical performance.
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