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Abstract 

 

Computer-aided data acquisition, analysis and interpretation have 

been employed in various research areas generating useful 

information. Among these, image processing is most often 

implemented for post-processing of material characterization data. 

However, to tackle ambiguity of multi-component materials analysis, 

spectral data analysis can be used instead. The current study 

introduces a unique Python-based data processing method for in-

depth analysis of energy dispersive spectroscopy (EDS) elemental 

maps to analyze agglomerate size distribution, average area of each 

component and their overlap. The framework developed in this study 

is applied to examine interaction of Cerium (Ce) and Palladium (Pd) 

particles in membrane electrode assembly (MEA) of Anion-Exchange 

Membrane Fuel Cell (AEMFC) and investigate if this approach can 

be utilized to predict the fuel cell’s electrochemical behavior. The 

study concludes that the developed framework is a promising method 

for automatic data extraction and can be beneficial for use in a variety 

of clean energy applications. 

 

 

Introduction 

 

With the progression of materials from being discovered coincidentally to being designed 

and optimized strategically, there has been an imminent need to analyze and model 

materials for specific applications.  This process can nowadays be facilitated by the power 

of microscopy and image processing (1). Image processing has found a plethora of 

applications in the field of materials science ranging from detailed morphological and 

structural analysis of materials to the study of their degradation and failure, including fuel 

cells (2–7). Image processing is most widely implemented to extract valuable information 

from a larger set of materials characterization data to better understand and predict material 

features, properties, and behaviors at multiple scales. To ensure accuracy of results 

obtained from image processing, it is vital for it to have a systematic recognition of 

volumetric data and the ability to process it swiftly, for an efficient analysis.  
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     Unfortunately, image processing also comes with complications and challenges since 

microstructural images have a series of inherent properties that can cause analysis to be 

difficult for manual and automated techniques. Microscopic images are influenced by noise 

which is the inclusion of random and false signals due to external conditions produced by 

sensors, detectors, amplifiers etc., (8,9),  and can make features like grain boundaries or 

materials interfaces difficult to perceive or can create the appearance of features that are 

not real. Consequently, it is appropriate to state that manual image processing is subjected 

to human error, experience and bias due to varying opinions on what constitutes a grain, 

grain boundary, defect, etc. within a microstructure. As a result, ensuing measurements are 

objective and statistically representative requires repetition of the measurements, which 

becomes a burdensome and time-consuming task. Manual methods are therefore very slow 

and laborious (10). With automation, microstructural analysis and measurements are 

conducted within seconds, can be repeated without any inter-operator variation, and human 

error is reduced. One of the most difficult tasks of automated image processing is 

guaranteeing that the software is representing the material features accurately. However, 

although computer-based automated image processing has its challenges, it is far more 

superior and has unarguably overshadowed manual image processing techniques in the 

recent decades.  

 

     The main process involves digitization of the image (11,12) which can be graphically 

represented by Figure 1. 

 

 
Figure 1: A graphical representation of how image processing works. 

 

     Such favorable characteristics of image processing led researchers to realize its potential 

for providing valuable microstructural information in the process of improving 

performance and efficiency of clean energy systems (13–15). Particularly, inspecting 

individual and collective characteristics of microstructural features of materials 

constituting a fuel cell such as electrodes, catalysts and electrolyte membranes can help 

predict electrochemical behavior down to nanometric scale (16). Beside composition, fuel 

cell performance and durability are known to depend on the electrode microstructure and 

component distribution. Therefore, to facilitate the development of efficient fuel cells and 

establish statistically relevant correlations between the microstructure and performance, 

automated image processing is required. Typically, the automated image processing for 

fuel cells involves particle or pore size distribution using Transmission Electron 

Microscopy (TEM) or Scanning Electron Microscopy (SEM), without taking into account 

elemental composition (17,18). However, using greyscale TEM and SEM images often 

makes it challenging to differentiate between various components in the material.  

Utilization of Scanning Transmission Electron Microscopy with Energy Dispersive 

Spectroscopy (STEM-EDS) provides elemental maps with spatial component distribution, 

enabling this differentiation and offering a whole range of new possibilities for automated 

sample analysis.  
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     Several data processing approaches using EDS data, mainly in conjunction with SEM 

have been developed and reported for a wide range of applications such as automatic 

particle size analysis of nano-materials, mineral constituents in rocks, inclusions in metals, 

contaminants in pharmaceutical products, air or water particulates, gun-shot residue in 

forensic science, pathological tissue in biomedical research, automated identification of 

different phases and calculation of area, perimeter or compactness in a sample (19–26). 

Combined with machine and deep learning algorithms, SEM-EDS data have been used to 

automatically investigate the microstructural features, morphology, orientation and 

symmetry in samples and count, aspect ratio and dimensions of the features in the 

materials. However, apparently no such automated approach has been adopted and 

documented for anion exchange membrane fuel cells (AEMFCs) related research yet, 

especially not when using STEM-EDS. 

 

     In this study, a python-based data processing interface was developed and subsequently 

utilized to investigate STEM-EDS maps for Palladium (Pd)-based electrodes of AEMFCs. 

Pd based catalysts are known low-cost alternatives to expensive Platinum (Pt) catalysts 

used in lower operating temperature range fuel cells such as AEMFCs. However, this 

catalyst suffers from reduced hydrogen oxidation reaction (HOR) kinetics (27). It is 

reported that this problem could be potentially avoided by combining Pd with Cerium oxide 

(CeOx) and ensuring sufficient Pd-CeOx interaction for increase in catalytic activity 

(28,29). In this work, we report testing of an in-house developed python-based code (30) 

to process Pd and Ce EDS maps for AEMFC catalyst layers, and determine Pd and Ce 

particle/agglomerate size distribution, as well as overlap area between Pd and Ce particles. 

The python interface uses microscopy and EDS elemental maps data of Pd-CeOx based 

catalyst to produce visual and numerical results with potential to predict the 

electrochemical performance and durability of the AEMFCs.  

 

 

Methodology 

 

     The script for the data processing framework developed in this study was written in 

Python programming language. The idea was built around the fact that materials 

characterization data about Pd-CeOx based catalyst, although can be a source of vast 

amount of information, it requires a rigorous analysis procedure to get “concealed” or 

underlying information not visible to the naked eye such as percentage of area where Pd 

and CeOx overlap (contact area, which is expected to benefit the HOR activity). Thus, three 

different catalyst samples, i.e., n CeOx-Pd/C with varying compositions (where n denotes 

bulk atomic fraction of Ce/Pd) 0.24 CeOx-Pd/C, 0.38 CeOx-Pd/C and 0.59 CeOx-Pd/C 

labelled as DD08, DD09 and DD16, respectively were taken into consideration and three 

different maps of each sample were analyzed using the data processing interface. A 

graphical overview of the whole process is shown in Figure 2 and discussed below. A 

detailed description of the samples, their fabrication and testing are described in a study by 

Singh. et al (31). 
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Figure 2: A graphical step-by-step overview of the data processing methodology 

 

Acquisition and Processing of Raw Data  

 

     STEM-EDS mapping was used to take elemental maps of the MEA electrode cross-

section. Images were obtained at a constant magnification of 910,000X using high-angle 

annular dark field (HAADF) imaging technique. This technique was combined with the 

EDS to get elemental maps. The type of raw maps that are obtained are shown in Figure 3. 

The raw maps were processed using the software Esprit (Version 1.9) to remove 

background and deconvolute the spectral peaks. The processed individual elemental maps 

of EDS X-ray net intensities of Ce and Pd were obtained and saved as text file in ASCII 

format. The software allocates a specific numeric value in the text file according to the X-

ray net intensity data for each pixel of the map. However, the processing of the elemental 

maps can be performed using different binning (resolutions): e.g., with the resolution 1, 

each pixel is separately processed, and its processed value is assigned to the same pixel; 

with the resolution 0.5 (1/2), four pixels are averaged; with the resolution 0.125 (1/8), 

sixteen pixels are averaged; etc. Consequently, resulting net count values of same pixels 

(e.g., ascribed to a particle) in text files of the same map at different resolutions are very 

different. The net count values are smaller for lower resolution maps as compared to higher 

resolution maps. An example of different net count values at different map resolutions is 

shown in Figure 4. The name of all the text files for Pd were labelled as _component1.txt 

and all the text files for Ce were labelled as _component2.txt and saved in separate folders 

with each sample’s name and map number. Furthermore, the STEM image for each map 

taken with HAADF imaging was saved in the same folder in TIFF format and labelled as 

Mask. The specific labelling was done to be traceable by the code as well as to be able to 

be used with any two components at any time.   
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Figure 3: (a) Raw STEM/EDS elemental map of C, Ce & Pd (b) HAADF image (c) Raw 

Ce elemental map (d) Raw Pd elemental map 

 

   
Figure 4: An example of magnified net count data from same region of same EDS map at 

two different processed map resolutions i.e., 1/2 and 1/8 

 

Adjustment of Input Parameters  

 

     The text files of the required components were selected using the main window of the 

data processing interface as shown in Figure 5. The window allows user to change different 

parameters including pixel value (from raw images/maps), threshold value (to remove the 

noise), bin size and number of bins (for the area size histogram display) and type of output 

that is required (image, labels, histogram). The pixel size needs to be adjusted according to 

the pixel size of the raw map while appropriate threshold value needs to be selected to 

ensure that the code considers only the specified component’s true signal and disregards 

any noise the map might contain. Appropriate bin size and number of bins needs to be 

selected for an appropriate representation of area (agglomerate, particle, etc.) size 

distribution histograms. The code automatically takes into account all the text files and 

mask image contained in a specific folder. Once the text file is selected and loaded, the 
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analysis is allowed to run. The input parameters selected to carry out the analysis of all the 

samples are given in Table 1.  

 

 
 

Figure 5: Overview of the EDS Post Processing Interface 

 

Image 

Magnification 

Map 

Resolution 

Map 

Filter 

Image 

Filter 

Pixel 

size 

Threshold 

values (T) 

Bin 

size 

910kx 0.5 Automatic None 0.124 nm 

T = 0.00025 

& 

T = 0.50 

10 

 

Table 1: Input Parameters 

 

Post Processing Analysis 

 

     Once the parameters are set and the EDS Post Processing Program is allowed to run, 

the code runs the text files and scans through all the numeric values listed in the text file 

of each component and runs the thresholding algorithm. The Otsu and watershed 

algorithms (32,33) are used to threshold and segment both Pd and Ce maps, producing 

binarized masks. The mask is a binary image which has assigned zero (black color) to all 

pixels below the threshold value and 255 (white color) to all pixels above the threshold 

value. The code also eliminates the noise according to the user-defined threshold value and 

produces the final individual thresholded images. The program creates histograms for 

agglomerate size distribution of each component individually and collectively. It calculates 

the individual area occupied by each component, their overlap area, overlap percentage and 

the number and size of agglomerates. This information is automatically saved in an excel 

file at the completion of the analysis in the same directory. By default, all the measurements 

are carried out in unit of micrometer. For each map, two different net count threshold values 

(T) were selected i.e., T = 0.00025 and T = 0.5. These values were selected keeping in view 

the range of numerical values in input text files. The threshold value of 0.00025 is the 

lowest possible value no matter which map resolution is selected and therefore, includes 

all net intensity signals from a map (refer to Figure 5). However, there is at least one value 

lesser than 0.5 i.e., 0.25 in the text file for maps processed at resolution of 0.5 (input 

resolution), therefore it was chosen to selectively eliminate some of background signals or 

noise (having net count value of 0.25) from the thresholded image.  
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Results and Discussion 

 

     As mentioned above, data processing method introduced in this study generates mainly 

two different forms of outputs: graphical and numerical. The different results that were 

obtained for each concentration of the catalyst samples under observation are therefore 

presented using these outputs. It can be aptly implied that the variety of outputs generated 

by the developed program in the form of masks, thresholded images, agglomerate size 

distribution charts, component area overlap, and calculation datasheet offers a wide range 

of result dataset which can be crucial for comprehensive study of any sample under 

consideration. Such comprehensive approach in data analysis, obtained by one 

imaging/spectroscopy method and data post-processing has not been reported for 

electrochemical systems, as per the authors’ knowledge.    

 

     To evaluate the use of the discussed automatic EDS analysis interface, we investigated 

the effect of several parameters which are set before feeding the input data to the program. 

These parameters are associated with EDS map processing software Esprit and some of 

these parameters greatly influence the output given by the developed interface and might 

contribute to errors. The effect of a few of such parameters is discussed below:  

 

 

Effect of Different Parameters 

 

     Map Resolution. The effect of different map processing resolutions upon the graphical 

and numerical results is significant, an example of which is shown in Figure 6. There are 

four options for map resolutions in Esprit to choose from depending upon the pixel quality 

and processing time. The highest resolution is 1 and the lowest is 0.125. The lowest 

threshold value of 0.00025 was chosen to ensure inclusion of all signals from all the maps 

processed at different resolutions. The code did not work out the calculations for map 

resolution of 1 accurately and in most cases, it did not work at all with maps containing 

low intensity signals possibly because the developed program is not sensitive to the finer 

quality signals, and it eliminates many real signals along with noise. On contrary, the 

lowest map resolution blurred the real signals causing confusion between agglomerates and 

individual particles which contributed towards greater overlap values and incorporated 

plenty of noise thereby confirming that it is also not a good selection to begin with. 

Therefore, it was deduced that a reasonable selection to carry out the main calculations 

without compromising on the pixel quality was map resolution of 0.5. It must be noted here 

that the user must be extra cautious while choosing the threshold value when dealing with 

lower resolution maps since the low quality of image is prone to inclusion of more noise.  
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T = 0.00025 Resolution 1 Resolution 1/2 Resolution 1/4 Resolution 1/8 

Pd Area (nm2) 82.62 1759.71 3637.27 5561.90 

 

Figure 6: Effect of different map resolutions upon graphical and numerical results 

 

     Map and Image Filters. Esprit also allows users to choose a map and image filter out of 

different options. Map filter is applied directly on the net count signals contained in the 

map while image filter is applied only to the overlay image to enhance visibility of features. 

The name and effect of different map and image filters is demonstrated in Figure 7 and 

Figure 8, respectively. It can be clearly deduced from the Figure 7 that the effect of smooth 

and average map filter is quite comparable with same calculated results. However, the 

results for the automatic map filter are different and can be considered the best choice 

among the rest because it is based on local noise removal instead of uniform noise removal 

as in case of smooth and average filter.  
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     However, it is very noticeable from Figure 8 that the different image filters have either 

no effect upon the results or the difference is too minimal to cause any change in the results. 

Since the effect of image filters is not as pronounced as the effect of map resolution and 

map filters, therefore, to carry out the analysis, the image filter was set to None. 

 

 
  

T = 0.00025 None Average  Smooth Automatic 

Ce Area (nm2) 296.77 296.77 296.77 404.40 

 

Figure 7: Effect of different map filters upon graphical and numerical results 

 

 
 

T = 0.00025 None Smooth Sharpen 

Pd Area (nm2) 42.24 42.24 42.24 

 

Figure 8: Effect of different image filters upon graphical and numerical results 
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     Threshold value. The thresholding methods reported in the literature mostly rely  upon 

the Otsu thresholding for image processing of greyscale values, which despite having many 

advantages, face certain limitations especially when dealing with images having large 

variance discrepancy and low contrast (34–37). Moreover, using greyscale images often 

complicates component differentiation, as one relies on greyscale contrast to differentiate 

between the components. To avoid such issues in this work, the differentiation between 

components (elements) is completed based on the spectral data, where spectral distribution 

maps of each element can be separately processed and thresholded. The introduced method 

uses a two-step noise removal, i.e., Otsu and a user-selected thresholding value for a finer 

noise removal. The user-selected thresholding value should be selected based on the lowest 

EDS spectra X-ray net count signal that is determined by Esprit software algorithm to be 

the background noise.   

 

     Three maps of each sample were run through the code using two different threshold 

values (T) i.e., 0.00025 and 0.50 and all the other input parameters were set to the same 

values as mentioned in Table 1 to investigate effect of thresholding upon the results. For 

the processed map resolution of 0.5, the lowest value in the net count data was found to be 

0.25 indicating that anything lower than this value such as 0.00025 automatically includes 

all the net count signals within a map. It was also observed that no other net count value 

exists between 0.25 and 0.5 implying that the threshold value of 0.5 only excludes the 

minimum value signals of 0.25 and keep account of the rest. The resulting visual outputs 

of one map of each sample in the form of combined and individual elemental maps, masks 

and thresholded images and agglomerate size distribution charts are shown in Figure 9, 10 

and 11, respectively.  

 

 
 

Figure 9: Processed elemental maps with map resolution of 1/2 showing overlap of Ce 

and Pd for sample (a) DD08 (b) DD09 (c) DD16 
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Figure 10: Elemental maps of Ce and Pd and corresponding mask and thresholded images 

with threshold values: T = 0.00025 and T = 0.5 
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Figure 11: Agglomerate size distribution charts for T = 0.00025 and T = 0.5 map of each 

sample in Figure 9  

 

     All the calculations carried out by the code for the specified threshold values are 

compiled in Table 2. A graphical representation of average percentage of Pd in contact 

with Ce (Pd-Ce overlap) for each threshold value and each sample is shown in Figure 12. 

The analysis of the component overlap presented here is, in the authors’ opinion, a novel 
approach, which has not been reported in the previous literature (38–41). 
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Samples 

(T = 0.00025) 

Average Pd 

Area 

(nm2) 

Average Ce 

Area 

(nm2) 

Average Overlap 

Area 

(nm2) 

DD08 626 576 164 

DD09 655 736 370 

DD16 1639 2266 652 

 

Samples 

(T = 0.5) 

Average Pd 

Area 

(nm2) 

Average Ce 

Area 

(nm2) 

Average Overlap 

Area 

(nm2) 

DD08 410 279 55 

DD09 481 431 194 

DD16 1155 1528 258 

 

Table 2: Computed results for threshold value T = 0.00025 and T = 0.5 

 

 
 

Figure 12: Results for average percentage of Pd covered by Ce by each sample with 

threshold value of T = 0.00025 and T = 0.5  

 

     As evident from the results, sample DD16 shows the highest average Pd area among the 

rest which also signifies that sample DD16 has relatively larger Pd particles as compared 

to the other samples. Furthermore, as expected, with increasing concentration of Ce, a 

considerable increase in Pd area percentage in contact with CeOx (overlap percentage) can 

be observed. It can also be inferred that the thresholding value has a very pronounced effect 

upon all the calculations showing a decrease of about 40-54% in the overlap percentage 

with the increase in thresholding value from 0.00025 to 0.5. Besides, comparing specific 

regions of original maps with the thresholded maps and their EDS spectra also represents 

that maps thresholded with 0.00025 show more signs of inclusion of noise but the maps 
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thresholded with 0.5 are relatively cleaner and hence can be used to acquire more accurate 

results. 

     Generally, most studies involving data processing have computed and reported results 

based upon the imaging data alone (42–47). On contrary, extraction of microstructural 

information from STEM in combination with elemental map data from EDS is what gives 

this method its distinctiveness. Furthermore, automatic computation of agglomerate size 

distribution and overlap area of the particles has not been reported before, further 

promoting exclusivity of the developed method.  

 

 

Conclusion 

 

     The data processing framework introduced in this study is a unique, automated, and 

promising method for an automatic post processing of STEM-EDS data. The code runs 

pixel by pixel numerical analysis keeping into account distinct particles in the maps which 

might be overlooked during manual analysis, thus, it can effectively resolve problems 

associated with extensive and exhaustive analysis of larger data sets. However, it can be 

concluded that the calculations also depend heavily upon the EDS map processing software 

used to extract data for the code. The study also points out that the selection of an 

appropriate threshold value is vital to ensure good precision of results generated by the 

program. Minor improvements such as automatic selection of local threshold values and 

optimizing the code to work with more than two components at the same time can help 

extend the serviceability of the developed script. Furthermore, the code can be tailored to 

detect and analyze other microstructural features and can be optimized to be used with 

other formats of materials characterization data. Experimentally derived electrochemical 

performance data of the samples investigated in this study can be used to verify the 

accuracy of the developed method. Such information can be of paramount importance to 

research focusing on improving the efficiency of Pd-CeOx based catalysts for AEMFCs by 

relating the overlap area to the electrochemical performance.  
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