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Instabilities of fluid flows often generate turbulence. Using extensive direct numerical
simulations, we study two-dimensional turbulence driven by a wavenumber-localised
instability superposed on stochastic forcing, in contrast to previous studies of
state-independent forcing. As the contribution of the instability forcing, measured by
a parameter y, increases, the system undergoes two transitions. For y below a first
threshold, a regular large-scale vortex condensate forms. Above this threshold, shielded
vortices (SVs) emerge within the condensate. At a second, larger value of y, the
condensate breaks down, and a gas of weakly interacting vortices with broken symmetry
spontaneously emerges, characterised by preponderance of vortices of one sign only and
suppressed inverse energy cascade. The latter transition is shown to depend on the damping
mechanism. The number density of SVs in the broken symmetry state slowly increases via
a random nucleation process. Bistability is observed between the condensate and mixed
SV-condensate states. Our findings provide new evidence for a strong dependence of
two-dimensional turbulence phenomenology on the forcing.
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1. Introduction

Two-dimensional (2-D) and quasi-2-D flows arise in many systems, from soap films
(Vorobieff, Rivera & Ecke 1999) to the Earth’s atmosphere and oceans (Vallis
2017). Additional interest stems from active fluids, where suspended energy-consuming
microswimmers can generate vortices and jets (Dombrowski et al. 2004). The basic
phenomenology of 2-D turbulence was developed by Kraichnan (1967) who predicted
that in such flows energy will be transferred from small to large scales, leading to an
inverse energy cascade. This prediction was subsequently confirmed in direct numerical
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simulations (DNS) (Lilly 1969) and experiments (Sommeria 1986). In finite domains,
inverse cascades generate large-scale coherent structures, typically vortices or jets, called
condensates (Smith & Yakhot 1993).

Beyond 2-D turbulence, inverse cascades arise in highly anisotropic 3-D flows in thin
layers (Smith, Chasnov & Waleffe 1996), rapidly rotating flows (Deusebio et al. 2014),
strongly stratified flows (Sozza et al. 2015), among others. Inverse energy cascades in
quasi-2-D turbulence may also lead to a condensate if damping at large scales is small (van
Kan & Alexakis 2019). Condensates also arise in DNS of bacterial turbulence (Linkmann
et al. 2019) and rapidly rotating convection (Rubio et al. 2014), among others. Recent
reviews of 2-D and quasi-2-D turbulence are given in Boffetta & Ecke (2012) and Alexakis
& Biferale (2018).

The study of flows driven by a prescribed body force has a long history. Examples
include time-independent forcing as in the Kolmogorov flow, or random forcing with a
prescribed energy injection rate. Situations where the driving is prescribed independently
of the flow configuration, as in these two examples, are attractive since they are often
amenable to a detailed analysis. However, many real fluid flows are driven by instabilities,
for instance of convective, shear or baroclinic type (Chandrasekhar 1961; Salmon 1980).
Similarly, models of active fluid flows feature scale-dependent viscosities which can be
negative at certain scales (Stomka & Dunkel 2017), a fact consistent with the measured
rheology of such flows (Lépez et al. 2015). For instability-driven flows, the forcing
explicitly depends on the velocity field and the injected power is proportional to the
amplitude of the forcing-scale modes. In contrast, the small-scale statistics of 3-D
turbulence with hybrid forcing are mostly forcing-independent (Lundgren 2003).

Flows resulting from instabilities can differ drastically from Kraichnan’s picture of
the inverse cascade and condensation. For instance, active flows usually do not display
an inverse cascade, but form mesoscale vortices (Wensink et al. 2012). Such coherent
vortices (Burgess, Dritschel & Scott 2017) are often associated with screening (Grooms
et al. 2010; Jiménez 2021) and the resulting shielded vortices (SVs) often break up into
tripoles (Carton, Flierl & Polvani 1989) consisting of a central vortex and two satellite
vortices of opposite sign 180° apart, as seen in both experiment (Van Heijst, Kloosterziel
& Williams 1991) and DNS (Orlandi & van Heijst 1992). In fact tripolar vortices are an
exact solution of the 2-D Euler equation (Kizner & Khvoles 2004) and are known to be
stable point-vortex states (Kizner 2011).

We focus here on 2-D turbulence driven by a parametrised force that varies continuously
from purely random to pure finite-wavenumber linear instability. We show that SVs
spontaneously arise for sufficiently large instability growth rates, and that the resulting
flow displays both spontaneous symmetry breaking and bistability.

2. Set-up
We study the 2-D Navier—Stokes equation for an incompressible velocity field u = (u, v),

ou+u-Vu=—-Vp+f— vn(—Vz)”u — ﬁlulzu, V.-u=0, (2.1a,b)

in the domain D = [0,2n]*> with periodic boundary conditions, with pressure p,
hyperviscosity v, of order n (n = 4 in most runs), damping coefficient 8 > 0 and forcing

S=vLul+0-y)f.. (2.2)
Here y € [0, 1], and L[u] is a linear operator with Fourier transform
Llul(k) = vik*ak), vy > 0, (2.3)
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for wavenumbers k in the annulus k = |k| € [k, k2], and L[u](k) = 0 otherwise. This
linear term is associated with a maximum growth rate ¢ = v*k§ with v, chosen such that
the ratior = yo/ (vnk%”) between forcing and dissipation at the most strongly forced scale
ko varies from r = 0 to r > 1 as y increases from 0 to 1. The second term in (2.2) involves
the solenoidal zero-mean white stochastic force f (x, r) with random phases acting on a
thin shell of wavenumbers centred on k = k» (we also performed runs with f, acting
on all scales in [k1, k2], and found no qualitative differences in the resulting flow). Thus
the mean power injected by f, is fixed, u - f. = €, where (+) is the ensemble average.
Random forcing is often used in numerical studies of 2-D turbulence, e.g. Chan, Mitra &
Brandenburg (2012), although time-independent forcing has also been used, e.g. Tsang &
Young (2009). The choice (2.2) allows us to transition continuously from random forcing
to a wavenumber-localised instability. A similar superposition of random and deterministic
forcing was used by Jiménez & Guegan (2007) who maintained a fixed injection rate, while
we consider a true instability, injecting energy at a rate proportional to the forcing-scale
velocity. In a related study of an active fluid model with a negative viscosity forcing
like that in (2.3), Linkmann et al. (2019) observed a large-scale condensate when a large
viscosity is imposed on all scales below the forcing scale. This assumption results in low
to moderate Reynolds numbers, a regime more amenable to study (Bos, Laadhari & Agoua
2020). Here, we employ hyperviscosity, a well-established numerical device for reducing
finite-viscosity effects at moderate resolution (Borue & Orszag 1995), and focus instead
on the high-Reynolds-number regime of instability-forced flow. This procedure ensures
that our DNS are well resolved even for the large injection rates of energy and enstrophy
at large y. Nonlinear dissipation as in (2.1a,b) is commonly used in hydrodynamic models
of Toner-Tu type (Toner & Tu 1995) and is needed here to saturate the linear instability.

We use the pseudospectral Geophysical High-Order Suite for Turbulence (GHOST)
(Mininni et al. 2011) to perform DNS of the system (2.1a,b) using a fourth-order
Runge—Kutta scheme in time. Our runs consist of four sets, summarised in table 1. Set
A consists of runs with small-amplitude, random initial conditions. The runs in set B
were initialised with a large-scale condensate obtained in set A for purely random forcing
(y = 0). In set C we initialise with a vortex gas, again from set A (at y = 0.9), and vary f.
In all the runs described below we use 5122 resolution to be able to simulate the system for
long times; 10242 runs with regular viscosity (n = 1) were also performed (set D), and are
qualitatively similar to the hyperviscous runs, although they can only reach shorter times.
We record the energy E = (u?), the enstrophy £2 = (w?), with vorticity w = 9,v — Oyt
and spatial average (-), the energy spectrum

E(k) = > la(q)I?, 24)
qk—1/2<|q|<k+1/2
and the spectral energy and enstrophy fluxes through wavenumber shell k

Mek) = (ug - (u-Vuw), Hok) =(of (- Vo)), (2.5a,b)

cf. Frisch (1995), (2.52), where (-); is defined as f;~ (x) = Zq:\qlfkf(q) exp(iq - x).

3. Overview of the results

Figure 1 shows snapshots of typical solutions at different y obtained by integrating
from small-amplitude random initial conditions. At y = 0 (random forcing) a large-scale
condensate forms. At y = 0.35 a large-scale circulation persists, as indicated by the
streamfunction, but small tripolar vortices with positive and negative cores appear,

952 R4-3



A. van Kan, B. Favier, K. Julien and E. Knobloch

Set  No. of runs y B n Re,, Initial condition

A 19 0-0.95 1 x10~* 4 3x10°—4 x 10" Small-amplitude random
B 6 0.2-0.5 1x107* 4 3 x10°-5 x 1012 Large-scale condensate
C 4 0.9 Ix1074-5x 107 4 1x108-5x 10" Vortex gas

D 15 0-0.95 1x 1074 1 5% 10>-2 x 10 Small-amplitude random

Table 1. Summary of runs. Sets A—C: 5122 resolution, hyperviscosity vy = 107", v, = 0.002 and set D:
10242 resolution, v; = 0.0011, v, = 10v;. For all runs, we take k; = 33, k = 40, giving Reynolds numbers

Rey = Upns 2"~ %" f1,, with Uy = /3, E(K) and integral scale L = Y, 2k~ E(k)/ Y, E(k). Reynolds

numbers are given at late times.
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Figure 1. Visualisations of the vorticity field, with contour lines showing the streamfunction (a,b only).
(a) Large-scale condensate state at y = 0. (b) Mixed state, with SVs clustering in large-scale vortices at
y = 0.35. (¢) Dilute gas of SVs at y = 1. Note the different colour scale used in (c).

concentrating within the large-scale vortices of the corresponding sign. We stress that the
large-scale vortices evolve in time, constantly changing their position and shape. Aty = 1
a state of broken symmetry is present, with a large number of same sign vortices. We
call this state a (shielded) vortex gas. In our runs with regular viscosity, we observed the
same phenomenology as in figure 1. In figure 2, we show the time evolution of energy and
enstrophy for each of the three observed regimes. When a condensate is present, energy
and enstrophy saturate quickly, but continue to grow in the case of the vortex gas. This
case is discussed in much greater detail in § 5.
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Figure 2. Time series of non-dimensionalised energy E and enstrophy §2 for a condensate state (y = 0), a
mixed state (¥ = 0.4) and SV gas (y = 0.95). For the former two cases, a steady state is reached quickly, while
in the vortex gas, energy and enstrophy grow slowly.
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Figure 3. Energy spectra E(k) at late times, averaged over the last 500 snapshots. The grey bar indicates the
forcing range [ki, k2]. Dashed line indicates a —5/3 power law. (a) Spectra for different y from set A. The
same colour scale used here for different y is used subsequently in figures 4, 5, 8. (b) Spectra for different 8
(y = 0.9, set C), scaled by B.

The spectra associated with states at different y are shown in figure 3(a). At y = 0 and
y = 0.1, there is a —5/3 power-law range at scales larger than the forcing, and a build-up
of energy at k = 1, i.e. a condensate. As y increases through 0.2, the energy in the large
scales decreases and that in the near-forcing scales increases, marking the appearance of
SVs. The condensate is weaker but persists at y = 0.5, while the near-forcing-scale energy
grows. Finally, at y = 1 the spectrum no longer peaks at the largest scales, but rather at
scales comparable to twice the forcing scale £; = 27 /k;. The spectral bumps seen at high
k are likely related to harmonics of the main peak. Figure 3(b) shows the spectrum in the
vortex gas state (y = 0.9) at different values of the damping coefficient 8, rescaled by 8.
At the forcing scales and below, the rescaled curves collapse. At smaller k, as 8 decreases,
the peak near 2¢; becomes more pronounced, and the portion of energy in large scales
falls, due to larger vortex amplitudes at smaller S.

Figure 4 shows the energy and enstrophy fluxes at y = 0 (random forcing) and y = 1
(vortex gas). The negative (i.e. inverse) energy flux in the vortex gas state is suppressed
at scales larger than approximately 2¢;. A small forward energy flux feeds the remaining
finite dissipation at small scales. The forward enstrophy flux for random forcing remains
so in the vortex gas although a small inverse enstrophy flux is also present, reaching
to around k;/2. We stress that residual fluxes at y = 1 are strongly scale-dependent,
indicating absence of self-similar cascade, in contrast to the y = 0 case where fluxes are
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Figure 4. (a) Energy flux [1g and (b) enstrophy flux [1g, rescaled by AIT; = maxy(/1;) — ming([1;), i =
E, 2, averaged over 500 time steps at late times, for y = 0 (random forcing), and y =1 (vortex gas).
Unrescaled fluxes in the gas are significantly greater than at y = 0 and fluxes are strongly scale-dependent:
I is suppressed at large scales, while [T is forward, with a weak local inverse transfer. Shaded region
indicates forcing.

reasonably constant. The suppression of nonlinear transfers by coherent vortices is
reminiscent of that in decaying 2-D turbulence (McWilliams 1984). In our case, there
are two competing time scales, however: the instability growth rate at which energy is
injected into the forcing scales, and the rate at which energy is transferred out of the forcing
scales by nonlinearity. If energy is injected too rapidly for nonlinear transfer to remove it, it
builds up near the forcing scales, and coherent vortices form, further suppressing nonlinear
fluxes. In the absence of any cascade mechanism, nonlinear damping is required to saturate
the build-up of near-forcing-scale energy.

4. Vorticity statistics and radial profiles

The spectra and fluxes of inviscid invariants are useful tools for analysing turbulence but
have two shortcomings. First, spectral studies discard phase information and in particular
vortex signs. Second, in the presence of coherent structures, such studies do not provide
us with the corresponding physical space picture. To address these points, we begin by
considering the statistics of the signed vorticity. Figure 5 shows the probability density
function (PDF) of vorticity, P(w), for three different values of y from set A, generated
from over 800 snapshots. At y = 0 (random forcing) the central region of the PDF near
w = 0 is close to a Gaussian, but there are heavy tails at larger |w|. This is consistent
with the results of Pasquero & Falkovich (2002). For y = 0.3, the SVs that are present
manifest themselves in the form of significantly longer heavy tails in the PDF, but the PDF
remains approximately symmetric. At y = 1, the amplitude of the SVs extends to larger
|w| due to stronger driving, and a pronounced skewness in the PDF develops, reflecting the
broken symmetry. The log—log plot in figure 5 shows that the heavy tails are of power-law
form with exponent close to —1. Power-law tailed PDFs can correspond to rare events
in time or in space. Here, they represent the spatial localisation of vorticity inside SVs,
which are coherent over long times. Figure 6(a) shows the radial vorticity profile within
the SVs, computed in the vortex gas. The profile is averaged over many vortices with
arbitrary orientation, resulting in an effective azimuthal average. A nearly Gaussian core
is surrounded by a shield of opposite-sign vorticity, with |w| =0 at r = 2n/k; = {4,
i.e. the largest forcing scale. In addition to the Gaussian profile, we also compare the
vorticity profile to the theoretical result of Jiménez (1994) for hyperviscous vortices, which
also predicts a sign change in vorticity with radius, not unlike what we observe here.
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Figure 5. (a) Lin—log plot of the vorticity PDF sampled over all spatial points, aggregated over 800 snapshots,
for three different values of y from set A. The dashed curve centred on w = 0 is a Gaussian fit. (b) Same
quantities in a log—log plot. The tails have power-law form: the thick dashed line shows a power law with
exponent —1.
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Figure 6. (a) Circles: average SV profile at y = 0.9 (set A). Approximately Gaussian core (orange dash-dot
line, Gaussian fit; blue solid line, hyperviscous prediction from Jiménez (1994) with hyperviscosity
exponent n = 4 as used here) surrounded by an opposite-signed shield. Radial extent is set by £; = 27/k;.
Inset: population average over many tripolar vortices with arbitrary orientations. (b) Circulation C(r) =
271 for wo(r')r' dr’ for an average SV (black circles) becomes vanishingly small beyond r 2 ¢, indicating
vanishing azimuthal velocity and no long-range interactions. Blue solid line, as in (a).

However, figure 5(b) shows that the circulation C associated with the vortices in our
DNS vanishes beyond r > ¢£;. Since C = 27 for w((r)rdr = fc(r) u - d¢, the vanishing of
C(r) indicates that the vortices do not generate a velocity outside this radius, and that
they are thus well shielded. In contrast, the hyperviscous vortices of Jiménez (1994) are
not shielded since their circulation tends to a non-zero constant as r increases. For a
Gaussian profile w(r), the near circular symmetry of the core P(w) dw o< 2mr dr implies,
in approximate agreement with figure 5,

P(w) o« 2ntr(w) /(dw (r)/dr) | r=r(w) o L. 4.1
We have also computed the radial vorticity profile in SVs for the runs in set D, with regular
viscosity (hyperviscous exponent n = 1) and find qualitatively the same fully shielded
profiles, with the vortex size set by £ as in the hyperviscous runs. This indicates that the

shielding is not an artefact of hyperviscosity, but rather an intrinsic result of the nonlinear
dynamics.

952 R4-7



https://doi.org/10.1017/jfm.2022.935 Published online by Cambridge University Press

A. van Kan, B. Favier, K. Julien and E. Knobloch

(a)
w® 2P G (g9 @ ®
7=9494 §=9502 7=9509 7=9517 {=9532 7=9572 {=9589 {i=97.17

®)

-9 ..: “ % E Q 's » @ : ga “ " = ® s.
7=76.63 1=76.80 7=76388 ?:#.15 7=7133 i=7032 i!ﬁ& 727828 7:‘;8.37 i=178.52 51%.32 7-81.66 7=82.87

Figure 7. (a) Absorption of a weak SV into the shield of a stronger one of opposite sign. (b) Life cycle of a
dipole born from two colliding SVs of similar strength. In both cases y = 0.9. Time is given in terms of 7 = o't.
Colours show vorticity (blue positive, red negative).

5. Spontaneous symmetry breaking and vortex census

As mentioned, SVs of one core sign appear in the flow at late times, provided the instability
growth rate is large enough. Rotating turbulence also displays cyclone—anticyclone
asymmetry (Bartello, Métais & Lesieur 1994) but this asymmetry is the result of forced
symmetry breaking. Here, the flow maintains approximate symmetry in w as it develops
from unbiased small-amplitude initial conditions, but if y is large enough, this transient
leads to a symmetry-broken phase where one or other sign dominates. To understand
the physical space processes enabling symmetry breaking, we highlight in figure 7 two
examples of typical interactions in this phase between opposite-signed SVs (for y = 0.9).
In figure 7(a), a stronger vortex encounters a weaker one. The latter is stripped of its
shield, undergoes shearing, and merges with the shield of the stronger vortex. A circular
shield forms (7 = 95.89), which then breaks up into a tripolar one (f = 97.17) as seen in
experiments (Kloosterziel & Van Heijst 1991). The interaction described above is part of
the symmetry-breaking process: from random small-amplitude initial conditions emerges a
sea of vortices of both signs. Statistically, the populations are equal, but due to fluctuations,
some vortices are stronger than their nearby opposite-signed counterparts. The interaction
then eliminates the weaker vortices near stronger ones, and thus leads to a population
imbalance. Asymmetric interactions are more likely at large y, due to larger differences in
the strength of vortices born at different times.

The above scenario presumes an asymmetry between interacting vortices. Figure 7(b)
shows a typical scenario ensuing when the vortices have comparable amplitudes: both
vortices are stripped of their shields, forming a propagating dipole pair, cf. Jiménez (2020).
At 7 = 77.15, the dipole encounters a SV with a negative core, and the resulting collision
strengthens the negative vortex, leading to an asymmetric dipole at 7 = 77.32 whose
curved trajectory results in a collision with a SV with a positive core at 7 = 78.19. The
result is again an asymmetric dipole, but this time with a dominant positive vortex. Note
that after each collision the dominant component is determined by the core of the target
vortex. In a subsequent interaction the dipole shears out the subdominant vortex into a
shield around the positive core, finally becoming tripolar. The process of dipole formation,
collisions and return to a single SV does not a priori favour either vortex sign. However,
due to the asymmetric interaction described earlier, vortices of one sign may become more
numerous. Thus, dipoles are more likely to collide with vortices of the dominant sign,
thereby reinforcing their dominance.

To track the vortex population, we perform a census. For this we exploit the fact that
saturated SVs differ only weakly in strength, cf. figure 1. We thus filter the vorticity field,
setting to zero any values with magnitude below a threshold of 75 % of the maximum
vorticity magnitude (we verified that the result is insensitive to the precise choice of this
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Figure 8. Vortex census data obtained as described in the text. () Total number of vortices Ny vs. time for
different y. (b) Fraction of 4 vortices vs time. (c) Enstrophy per vortex.

threshold). Finally, we apply a maximum filter at the scale of vortex cores to determine the
position of all vortices at a given instant. Figure 8 shows the total number of vortices N,
and the fraction of positive vortices vs time for different y .

Figure 8(a) shows that for y < 0.6, the number of vortices fluctuates around N, ~
20, and does not show any increasing trend. The flow field for these runs resembles that
in figure 1(b). There the positive/negative vortices are physically separated, since they
cluster inside large-scale vortices of the same sign. For all runs at y > 0.6, however, Ny,
increases with time. The larger y, i.e. the larger the growth rate, the more rapid is this
increase. Despite the long integration time of ot < 0(10%), N, continues to slowly drift.
The moderate resolution allows us to discern this slow trend. The increase is due to random
nucleation events occurring in the sea of turbulence between vortices, which requires a
vortex seed to mature without being disrupted by shear. This is likely why Ny, rises faster
at larger y: vortices reach large amplitudes more rapidly and are harder to disrupt.

Figure 8(b) shows the fraction of vortices with positive core vs time for different y. At
y < 0.6, this quantity fluctuates between O and 1, without converging to any particular
value. At y = 0.6, a long transient, o¢ ~ 3000, leads to a state of only negative vortices.
At larger y, the elimination of vortices with one sign is more rapid, but the emergent
dominant sign is random. We quantify this transition by the enstrophy £2 defined earlier.
The enstrophy per vortex saturates quickly, and subsequently remains constant in time and
increases with y (see figure 8c). There is a striking separation between the fast saturation
in the amplitude of individual vortices, and the slow nucleation of new vortices.

6. Multistability

Figure 9 summarises the transitions between the different states shown in figure 1, as a
function of y, in terms of the late-time enstrophy £2. At small y < 0.30, the large-scale
condensate (LSC) state exists, without any coherent SVs. For y < 0.2, the LSC states
form spontaneously from small initial conditions (set A). At 0.2 < y < 0.3, LSC states
are stable when the flow is initialised in an LSC state (set B), but the system does
not spontaneously form an LSC from small initial conditions. For 0.2 <y < 0.55, one
observes an LSC with coherent vortices of both signs, as shown in figure 1(b). Over the
range 0.2 < y < 0.3, there is bistability between LSC states with and without SVs. For yet
larger growth rates y > 0.6, a state of broken symmetry forms from all initial conditions
investigated. As described in the previous section, in this regime the number of vortices
Ny steadily grows and figure 9 therefore shows the enstrophy at the end of each simulation.
We expect that Ny, will keep growing until a high-density, potentially crystalline, state is
reached. A detailed study of this saturation process and of the final steady state requires
very long simulations, and merits a separate study.
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Figure 9. Summary of states at different y in terms of the mean enstrophy (error bars indicate standard
deviation). For y < 0.3, a large-scale condensate (LSC) is observed. The LSC states at 0.2, 0.25, 0.3 are from
set B. Mixed states, where an LSC coexists with SVs of both signs, are seen for 0.2 < y < 0.55. Symmetry
breaking occurs for y > 0.6.

Given the rich state space shown in figure 9, one may ask to what extent the results
described here are specific to the choice of forcing we employed. To address this, we first
tested different widths of the forcing range by varying ki, k». For a given domain size,
when kp is close to kj, the discrete Fourier grid generates an underlying anisotropy. The
dynamics in this limit are not very relevant physically, since they originate in the numerical
discretisation alone. When the wavenumber shell is widened, this anisotropy disappears. In
this regime, we always observe SVs, provided the instability forcing is sufficiently strong.
This remains so when the dispersion relation (2.3) is modified to a top-hat profile. In
addition, we considered anisotropic forcing, illustrated in figure 11, obtained by truncating
the annulus k; < |k| < k; of instability-forced wavenumbers k = (k,, ky) by requiring that
k, be below some cutoff wavenumber k. chosen such that k. < k;, and observed both SVs
and symmetry breaking for all values of k. that we considered. We also repeated the runs
in set A with a modified random forcing f, acting on the same scales [k, k2] as the
instability (instead of a thin shell centred on k) and observed the same transitions as
shown in figure 9 at approximately the same y. We conclude that our qualitative results
are robust to changes in the details of the forcing. In addition to varying the forcing, one
can also investigate the impact of nonlinear dissipation in our model. The dissipation acts
on all scales, but the forcing is spectrally localised. To test whether this is relevant, we
performed DNS where the nonlinear dissipation is filtered in Fourier space so it only acts
on the forcing scales [k1, k2]. In this case, we find that the inverse energy cascade is no
longer suppressed, as evidenced by the energy spectrum shown in figure 10. Figure 10(b)
shows the corresponding vorticity field. Shielded vortices appear at early times, but the
shields are subsequently lost, and do not suppress the inverse cascade. This experiment
tells us that nonlinear dissipation that acts on all scales larger than the forcing scale is
crucial for suppressing the inverse cascade, by dissipating energy efficiently and keeping
it from reaching large scales. However, the suppression of the inverse cascade remains
spontaneous, since an inverse cascade persists for random forcing, and only disappears for
strong instability-type forcing. We mention, finally, that multistability occurs in quasi-2-D
turbulence (Favier, Guervilly & Knobloch 2019; van Kan, Nemoto & Alexakis 2019) and
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Figure 10. (a) Spectra for nonlinear damping S|u|?u either full or filtered in Fourier space to be non-zero only
within the forcing range. (b) Vorticity field at long time for the filtered case. Inverse energy transfer occurs when
nonlinear dissipation is filtered, but is suppressed otherwise, indicating that the damping plays an important
role in the suppression.

beyond (Ravelet et al. 2004) although we observed no spontaneous transitions between
different branches.

7. Conclusions

We have shown that 2-D turbulence forced by a combination of random forcing
and instability differs in a fundamental way in the presence of damping from the
phenomenology identified by Kraichnan. Shielded vortices with Gaussian cores and
forcing-scale size arise at y &~ (0.2, and undergo spontaneous symmetry breaking at
y ~ 0.6. We identified interactions of opposite-signed vortices reinforcing population
imbalances and enabling symmetry breaking. Bistability between condensate/mixed states
occurs for 0.2 < y < 0.3. Such dependence of the observed flow on the forcing is an
instance of non-universality, which complements other aspects of 2-D turbulence that are
known to be non-universal (Linkmann, Hohmann & Eckhardt 2020). Non-universality
has also been discussed in the context of wave turbulence in the nonlinear Schrodinger
equation (Vladimirova, Derevyanko & Falkovich 2012). There, a large-scale condensate
with an isotropic spectrum forms for random pumping, but for instability pumping
spontaneous symmetry breaking generates an anisotropic spectrum, not unlike what we
have described here.

Although mesoscale vortices have been observed in active turbulence (Wensink ef al.
2012) and 2-D turbulence with hybrid forcing (Jiménez & Guegan 2007), we reiterate that
our case differs from the former by the use of hyperviscosity (high Reynolds numbers), and
from the latter by a state-dependent injection rate. A definitive study of this system using
regular viscosity and systematically varying the Reynolds will nevertheless be required
in the future. It is interesting that the snapshot in figure 2 of Jiménez & Guegan (2007)
contains a tripolar vortex, something which is hard to extract from spectral analysis without
a parallel physical space perspective.
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Appendix. Anisotropic forcing

Here we briefly describe the case where the forcing was made anisotropic. Figure 11(a)
illustrates how the wavenumber shell of forced modes was restricted by imposing &k, < k.
Figure 11(b) shows a snapshot (from the transient regime) of the flow for k. = 20 < k; =
33 < kp = 40. Shielded vortices form, and eventually undergo, symmetry breaking. The
flow is qualitatively similar to that with isotropic forcing.
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