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The cubic-quintic Swift-Hohenberg equation (SH35) has been proposed as an order parameter
description of several convective systems with reflection symmetry in the layer midplane, including
binary fluid convection. We use numerical continuation, together with extensive direct numerical
simulations (DNSs), to study SH35 with an additional nonvariational quadratic term to model the
effects of breaking the midplane reflection symmetry. The nonvariational structure of the model leads
to the propagation of asymmetric spatially localized structures (LSs). An asymptotic prediction for
the drift velocity of such structures, derived in the limit of weak symmetry breaking, is validated
numerically. Next, we present an extensive study of possible collision scenarios between identical and
nonidentical traveling structures, varying a temperature-like control parameter. These collisions are
inelastic and result in stationary or traveling structures. Depending on system parameters and the
types of structures colliding, the final state may be a simple bound state of the initial LSs, but it can
also be longer or shorter than the sum of the two initial states as a result of nonlinear interactions.
The Maxwell point of the variational system, where the free energy of the global pattern state
equals that of the trivial state, is shown to have no bearing on which of these scenarios is realized.
Instead, we argue that the stability properties of bound states are key. While individual LSs lie on
a modified snakes-and-ladders structure in the nonvariational SH35, the multi-pulse bound states
resulting from collisions lie on isolas in parameter space, disconnected from the trivial solution. In
the gradient SH35, such isolas are always of figure-eight shape, but in the present non-gradient case
they are generically more complex, although the figure-eight shape is preserved in a small subset
of cases. Some of these complex isolas are shown to terminate in T-point bifurcations. A reduced
model is proposed to describe the interactions between the tails of the LSs. The model consists of
two coupled ordinary differential equations (ODEs) capturing the oscillatory structure of SH35 at
the linear level. It contains three parameters: two interaction amplitudes and a phase, whose values
are deduced from high-resolution DNSs using gradient descent optimization. For collisions leading to
the formation of simple bound states, the reduced model reproduces the trajectories of LSs with high
quantitative accuracy. When nonlinear interactions lead to the creation or deletion of wavelengths
the model performs less well. Finally, we propose an effective signature of a given interaction in
terms of net attraction or repulsion relative to free propagation. It is found that interactions can
be attractive or repulsive in the net, irrespective of whether the two closest interacting extrema are
of the same or opposite signs. Our findings highlight the rich temporal dynamics described by this
bistable nonvariational SH35, and show that the interactions in this system can be quantitatively
captured, to a significant extent, by a highly reduced ODE model.

I. INTRODUCTION

Spatially localized structures (LSs) are observed in
a wide variety of physical systems, from solitary water
waves [1] to neurons [2], fluid convection [3, 4], shear flows
[5, 6] and reaction-diffusion systems [7, 8], to name only
a few. Generically, these systems are subject to dissipa-
tion and require forcing to maintain the structure, see
[9] for a review of spatial localization in such systems.
A simple model of pattern formation in forced dissipa-
tive systems is provided by the bistable Swift-Hohenberg
equation, originally suggested in the context of pattern
formation in Rayleigh-Bénard convection [10, 11]. This
equation supports well-known localized solutions that are
organized in a snakes-and-ladders bifurcation structure
[12–14].
When the Swift-Hohenberg equation has gradient

structure, solutions with nontrivial time dependence are
precluded. However, nongradient generalizations of the
Swift-Hohenberg equation arise frequently in applica-
tions [15] and these permit both time dependence, see e.g.
[16], and persistent propagation, e.g. [17]. In this paper,

we consider a specific instance of such models, namely the
one-dimensional cubic-quintic Swift-Hohenberg equation
with broken reflection symmetry,

∂tu = ru− (1 + ∂2

x)
2u+ b3u

3 − u5 + ϵ(∂xu)
2. (1)

Here the parameter ϵ controls both the nongradient
structure of the equation (the equation has gradient
structure when ϵ = 0) and the breaking of the symme-
try u → −u (the equation is invariant under u → −u
when ϵ = 0). Since the equation is also symmetric under
spatial reflections, x → −x, both effects are required for
spontaneous propagation of LSs in this system.

Equation (1) was suggested in [18] as a model of binary
fluid convection with broken midplane reflection symme-
try and its properties are indeed in qualitative agreement
with direct numerical simulations of the Navier-Stokes
equations describing this system [19]. The present work
extends significantly the collision studies undertaken in
[18] and clarifies a number of key issues. In the following,
we refer to Eq. (1) as SH35. When ϵ = 0, the problem
reduces to variational form such that, on a domain of any
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FIG. 1. Bifurcation diagram for Eq. (1) with ϵ = 0. The patterned state branch is shown in blue with a sample solution profile
in red (lower left inset). The snaking branches of symmetric (L0, Lπ) and antisymmetric (Lπ/2, L3π/2) LSs are shown in black
(sample profiles in yellow and green, respectively). For clarity, only three of the interconnecting rung states are shown (detail
in upper right inset), cf. [18]. Larger norm indicates longer LSs. Stable solutions are found on branches with positive slope.

size L, there exists a free energy functional

F [u(x)] =

∫ L

0

(

−1

2
ru2 +

1

2
[(1 + ∂2

x)u]
2 − b3

4
u4 +

u6

6

)

dx,

(2)
with the property that ∂tu = − δF

δu . Thus F decreases
along trajectories towards local minima as t → ∞, and
these represent stable steady states of the system. The
free energy of spatially periodic patterns passes through
zero at a r = rM , known as the Maxwell point. In the
vicinity of the Maxwell point one can create a variety
of localized structures involving both the pattern state
and the trivial state u = 0 at little or no cost in energy.
These are of two types, localized even solutions, denoted
here as L0 (Lπ) if their maximum (minimum) is located
at their center, and localized odd solutions, denoted as
Lπ

2
(L 3π

2

) if they have a negative (positive) slope at the
center.

When 0 < ϵ ≪ 1, the symmetry u → −u as well as
the variational structure is broken but similar solutions
continue to exist, albeit with modified properties, as de-
scribed in [18]. The symmetric solution branches L0, Lπ

remain symmetric and stationary. Odd solution profiles
cease to be odd and hence propagate. In this paper, we
first study the propagation of isolated structures and then
go on to investigate in detail the collisions that can re-
sult. In contrast to the collisions familiar from studies of
integrable partial differential equations on the real line,
here the collisions are inelastic and can lead to annihila-
tion and sticking as well as scattering. One question of
interest concerns the role, if any, played by the Maxwell
point of the variational system in such collisions when
ϵ is small: for example, is the collision process accom-
panied by nucleation or annihilation of new wavelengths
according to the free energy minimization principle valid
at ϵ = 0 or, if this principle is not followed, what other
mechanism determines collision outcomes?

The remainder of this paper is structured as follows.
In section II, we describe the general bifurcation struc-
ture of Eq. (1) obtained from numerical continuation.
Next, in section III we present an asymptotic computa-
tion of the drift speed of asymmetric LS in the limit of
weak symmetry breaking 0 < ϵ ≪ 1, whose accuracy
is confirmed by comparison with direct numerical simu-
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FIG. 2. Free energy F [u], defined in Eq. (2), of the periodic
pattern state versus r. Thick (thin) lines correspond to stable
(unstable) solutions. The dotted vertical red line indicates the
Maxwell point rM ≈ −0.675, where the free energy changes
sign.

lations (DNSs) and numerical continuation. In section
IV, we present the results of extensive DNSs of all pos-
sible collision scenarios in this system, and describe the
dependence of the collision outcome on the control pa-
rameter r, with the stability of multi-pulse bound states
playing a key role. We also show that the bound-state so-
lutions arising from collisions are in many cases a part of
non-trivial isolas, whose structure depends on the sym-
metry breaking parameter ϵ. In section V, we present a
reduced model of the interactions between colliding pat-
terns, which is based on the linear structure of SH35 and
accurately captures the trajectories of LSs so long as no
significant nonlinear interactions creating or destroying
wavelengths occur. The paper concludes in section VI
with a discussion of our results. All our results are ob-
tained for the choice b3 = 2 as used in [18], employing pe-
riodic boundary conditions on a domain of size L = 40π.

II. BIFURCATION ANALYSIS

In this section we provide an overview of the solution
structure of Eq. (1), first in the case ϵ = 0, and then in the
case ϵ > 0, obtained from numerical continuation using
AUTO [20] and pde2path [21]. The results are presented
in terms of the L2 norm of the solutions u(x) given by

∥u∥2 ≡

√

1

L

∫ L

0

u2(x)dx (3)

and provide important background information for sub-
sequent sections.

A. The variational case: ϵ = 0

We first consider the variational problem with ϵ = 0
and employ numerical continuation to construct the bi-

furcation diagram shown in Fig. 1, cf. [13]. A trivial flat
state u = 0 exists at all r, and undergoes a subcritical
bifurcation to a periodic pattern at r = 0 (red profile
in lower left inset in Fig. 1). Four snaking branches bi-
furcate from the periodic pattern branch in secondary
bifurcations, corresponding to the symmetric LSs L0, Lπ

and the antisymmetric LSs Lπ/2, L3π/2 mentioned in the
introduction. The branches overlap in pairs owing to the
symmetry u → −u, and both sets display characteristic
snaking behavior in the vicinity of the Maxwell point rM
[9, 13]. In addition, rung states connect the symmet-
ric and antisymmetric snaking branches, arising in pitch-
fork bifurcations close to every saddle-node bifurcation
on these branches [18]. Each rung actually corresponds
to four branches of unstable asymmetric localized solu-
tions, related by the symmetries x → −x and u → −u
[14]. Examples of symmetric and antisymmetric solution
profiles are shown in the lower left inset in Fig. 1, to-
gether with the periodic pattern state. When the LSs fill
the available domain the snaking branches reconnect to
the periodic pattern.

Figure 2 shows the free energy of the periodic pattern
from Fig. 1 versus r. The stable part of the periodic
pattern state (thick blue line) has a free energy which
decreases monotonically with r and changes sign at the
Maxwell point rM ≈ −0.675.

B. The nonvariational case: ϵ > 0

Here we describe how the bifurcation structure changes
in the nonvariational case, specifically for ϵ = 0.03
(Fig. 3). As in the case ϵ = 0, there is a trivial branch
u = 0, a periodic pattern branch emerging subcritically
from it, and two snaking branches. However, the two
snaking branches in Fig. 3 now correspond to L0 and Lπ,
since these states are no longer related by symmetry, and
consequently snake in phase before reconnecting to the
periodic state. Moreover, the Lπ/2, L3π/2 states and the
rung states reconnect, forming a sequence of ’Z’-shaped
branches consisting of asymmetric solutions.

As a consequence of the nonvariational structure of the
problem when ϵ > 0, these asymmetric solutions drift and
hence may collide. The structure of several Z branch
solutions at different r values is shown in the inset in
Fig. 3. It is important to observe that the Z branch
states may be stable or unstable. Stable solutions are
present on the “diagonal” part of each Z, i.e. in the
range −0.70 ≲ r ≲ −0.63 (except for the lowest branch,
which is stable only between −0.65 ≲ r ≲ −0.62). The
corresponding drift velocity c depends on r, as shown in
Fig. 4 for several of the states depicted in Fig. 3. In Fig. 4,
the stable part of any given Z branch corresponds to the
segment between −0.70 ≲ r ≲ −0.63, where the drift
speed is largest. We emphasize that longer asymmetric
LSs drift more slowly than short ones.
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FIG. 3. Bifurcation diagram for Eq. (1) with ϵ = 0.03. Stable Z branch states with at least two wavelengths exist in the range
−0.70 ≲ r ≲ −0.63. Inset: sample solution profiles at color-coded locations in ascending order, cf. [18]. Larger norm indicates
longer LSs. Stable solutions are found on branches with positive slope.

FIG. 4. Drift velocity c versus r for various Z branch states
at ϵ = 0.03; colors correspond to the branches in Fig. 3. The
curves shown correspond to the Z branches for which profiles
are displayed in Fig. 3.

III. DRIFT VELOCITY OF ISOLATED

STRUCTURES

A. Asymptotic theory

To compute the drift velocity of asymmetric LSs us-
ing perturbation theory in the limit of weak symmetry
breaking, 0 < ϵ ≪ 1, we introduce the fast and slow time
variables

τ = ϵ
1

2 t, T = ϵt (4)

and denote their spatial phase by θ(T ). Following the
calculation presented in [17], we posit the expansion

u(x, t) = U0[x− θ(T )] + ϵ
1

2u1[x− θ(T ), τ ]

+ ϵu2[x− θ(T ), τ ] + o(ϵ), (5)

where U0 is a known moving pattern whose propagation
velocity we seek to determine. At leading order, Eq. (1)
implies

rU0 − (1 + ∂2

x)
2U0 + b2U

3

0 − U5

0 = 0, (6)

while at O(ϵ
1

2 ) we obtain

Lu1 = ru1 − (1 + ∂2

x)
2u1 + 3b2U

2

0u1 − 5U4

0u1 = 0, (7)
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where the operator L ≡ r − (1 + ∂2
x)

2 + 3b2U
2
0 − 5U4

0 is
self-adjoint.

Differentiating Eq. (6) with respect to x, one finds that
LU ′

0 = 0, i.e. if U0 solves (6), then U ′
0 solves (7). In

[17], the authors considered r to be asymptotically close
to the edge of the snaking interval, with a focus on the
dynamics of depinning. This required taking into ac-
count two additional solutions which lie in the null space
of L: one symmetric and one asymmetric mode. Here,
we instead consider asymmetric states which are located
within the snakes-and-ladders structure, away from the
saddle-nodes of the snaking branches. Consequently U ′

0

is the only function in the null space of L† = L. Since
this translation mode is already included in the Ansatz
(5) we can set u1 ≡ 0. Finally, at O(ϵ), we obtain

−U ′
0θT = Lu2 + (U ′

0)
2. (8)

Multiplying by U ′
0 and integrating over the domain, using

the fact that L is self-adjoint and that LU ′
0 = 0, we obtain

−θT

∫

(U ′
0)

2dx =

∫

U ′
0Lu2+(U ′

0)
3dx =

∫

(U ′
0)

3dx. (9)

Rearranging, we arrive at the drift velocity,

c ≡ ϵθT = −ϵ

∫ L

0
(U ′

0(x))
3
dx

∫ L

0
(U ′

0
(x))

2
dx

, (10)

a special case of a more general result [22].
Equation (10) is invariant under (ϵ, U0) → (−ϵ,−U0),

a symmetry that is inherited from Eq. (1). For symmetric
profiles U0(x), the numerator vanishes; symmetric states
therefore remain at rest even when ϵ > 0. However, for
the asymmetric profiles shown in Fig. 3 the velocity c
is nonzero. This is due to the nonsinusoidal nature of
these profiles and in particular the contribution from the
fronts at either end of the LS profile. We define the num-
ber n of significant extrema in any given LS as the num-
ber of extrema whose amplitude is larger than 1/e times
the maximum amplitude in the LS, and the number of
significant wavelengths as 1/2 the number of significant
extrema. The adjective significant will be dropped in
the following when there is no ambiguity. For solutions
with many significant wavelengths, n ≫ 1, the numerator
converges to a constant, while the denominator grows ap-
proximately linearly with n. This implies that c ∝ 1/n at
large n, which is quantitatively consistent with the results
from numerical continuation, as shown in Fig. 5: longer
structures move more slowly, as already highlighted in
the discussion of Fig. 4.

B. Numerical verification

To determine the range of validity of the prediction
in Eq. (10), we perform direct numerical simulations
(DNSs) of Eq. (1) for selected values of the parameter ϵ.

FIG. 5. Log plot showing c(r = −0.67) (blue) vs. number
of wavelengths n overlaid with 1/n (black). A satisfactory
agreement is observed.

FIG. 6. Comparison of the theoretically predicted drift veloc-
ity c with the corresponding DNS results for stable states on
the second lowest Z branch. Blue solid line indicates the theo-
retical prediction from Eq. (10), with the integrals evaluated
numerically. The green dash-dotted line shows the velocity
obtained from numerical continuation. Red circles indicate
the DNS results. The DNS and numerical continuation are in
excellent agreement, including the deviation from asymptotic
behavior at larger ϵ. The asymptotic theory is in close quanti-
tative agreement with both DNS and numerical continuation
at small ϵ. The Z branch states cease to exist above ϵ = 0.13.
Inset shows the Z branch solution profiles at ϵ = 0 (blue, an-
tisymmetric) and ϵ = 0.13 (red, asymmetric) at r = −0.66.

We also perform numerical continuation in ϵ. The results
reported below extend those in [22] where the asymp-
totic result was compared with numerical continuation
at only one value of ϵ, |ϵ| = 0.01. For this purpose, we
consider a one-dimensional periodic domain of the same
length L = 40π as in the numerical continuation and
solve Eq. (1) using a semi-implicit pseudo-spectral nu-
merical scheme for spatial derivatives [23] and a fourth-
order Runge-Kutta time-stepping scheme. All DNS re-
sults presented in this paper were obtained on a finely
resolved uniform spatial grid of 8192 grid points (corre-
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sponding to approximately 100 grid points per pattern
wavelength), except when specified otherwise. We use a
time step of dt = 0.01. Larger values of dt led to incorrect
drift speeds.
To verify Eq. (10), we consider a state on the second

lowest Z branch at ϵ = 0.13, r = −0.66, shown in the
inset in Fig. 6. The state is asymmetric: a small change
in peak/trough amplitudes with increasing ϵ can be dis-
cerned, a consequence of symmetry breaking when ϵ > 0.
Figure 6 shows the drift velocity c as a function of ϵ,

with excellent quantitative agreement between DNSs, nu-
merical continuation and theory for ϵ ≲ 0.1. For ϵ ≳ 0.1,
the numerically obtained drift velocities deviate from the
asymptotics, with the asymptotic prediction overestimat-
ing the numerical value by less than 10%. However, the
DNSs and numerical continuation continue to show excel-
lent agreement. At ϵ ≈ 0.13 the state under consideration
ceases to exist, since beyond this point the bifurcation
structure of the system is qualitatively altered (cf. [18]).
Additional runs with the smaller time step dt = 0.001
were also performed, and gave the same results as those
for dt = 0.01, indicating that the DNSs are well resolved
in time. We also repeated the DNSs on a coarser grid
with 2048 grid points and obtained drift velocities c that
are indistinguishable from those shown in Fig. 6, indicat-
ing that the simulations are also well resolved in space.

IV. COLLISIONS OF LOCALIZED

STRUCTURES

As shown in Fig. 3, multiple stable LSs can coexist in
the domain, and these may undergo collisions. In this
section we present the results of extensive DNSs of such
collisions between different types of LSs performed using
the numerical solver described in the previous section.
For all results described below, we take ϵ = 0.03, unless
stated otherwise.

A. Overview of DNS results

Here we describe the rich collision phenomenology that
is observed when different types of LSs collide at various
values of r, as illustrated in Fig. 7. We distinguish the
following four collision scenarios:

• Scenario A: collision between two asymmetric
states which differ in the number of significant
wavelengths, and travel in the same direction, with
the shorter, faster LS catching up to the longer,
slower LS, as predicted by Eq. (10). The two collid-
ing extrema are of opposite sign. We focus specif-
ically on collisions between two LSs of length two
and three wavelengths. Four different possible out-
comes are observed: deletion of one extremum, for-
mation of a drifting bound state without a change

in the number of extrema, and the creation of one
or four new extrema. Note that the bound states
at r = −0.68 and r = −0.645 shown in Fig. 7 dif-
fer in their separation. The cases r = −0.7 and
r = −0.635 in fact involve two separate consecu-
tive collisions due to the periodicity of the domain,
of which only the first is shown in Fig. 7. In the for-
mer case, the second collision (not shown) results
in a drifting bound state, while in the latter case
(shown in Fig. 8), the asymmetric LS is rendered
symmetric and stationary owing to the nucleation
of an additional extremum, resulting in a larger but
stationary bound state.

• Scenario B: a drifting asymmetric state collides
with a stationary symmetric state with a maximum
at its center. The two colliding extrema are of op-
posite sign. We focus on a two-wavelength asym-
metric LS and a symmetric LS with three positive
and two negative large-amplitude extrema. Four
different possible collision outcomes are observed:
deletion of one extremum, formation of a drifting
bound state without change in the number of ex-
trema, and the creation of one or four new extrema.

• Scenario C: same as scenario B but with the sym-
metric LS flipped by u → −u so that the two col-
liding extrema are of the same sign. We focus on
a two-wavelength asymmetric LS and a symmet-
ric structure with three negative and two positive
large-amplitude extrema. Five different possible
collision outcomes are observed: deletion of one ex-
tremum, formation of a drifting bound state with-
out change in the number of extrema, and the cre-
ation of one, three or five new extrema.

• Scenario D: head-on collision between two asym-
metric states. The two colliding extrema are of the
same sign. We focus on a pair of identical two-
wavelength patterns (collisions between asymmet-
ric LSs of distinct sizes were also considered, and
gave qualitatively similar results). Four different
possible collision outcomes were observed: deletion
of two extrema and the creation of three or five
new extrema. No pure bound states were observed
in this case.

Figure 7 shows a summary of the space-time plots de-
picting the different possible collision outcomes. All col-
lisions were simulated using DNS on a uniform grid of
2048 points to facilitate longer simulation times. Some
cases were also repeated with 8192 grid points and no
change in the collision behavior was observed. Stabil-
ity of the post-collision states was confirmed via linear
stability analysis.
Three qualitatively distinct collision outcomes are ob-

served across all collision scenarios: deletion of extrema,
formation of a bound state, and the creation of new ex-
trema. Some of these states travel while others are sym-
metric and hence stationary. One notices that scenarios
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FIG. 7. Space-time plots of collision scenarios A-D for five different values of r indicated by gray dashed vertical lines in Fig. 12,
shown with time along the vertical axis and space along the horizontal axis. The different collision scenarios involve different
time scales, therefore distinct time axes are specified for each case. A rich zoology of different collision outcomes is found: one
or two extrema may be deleted (for r near −0.7), or bound states can form without the creation or deletion of any extrema (in
all scenarios except scenario D), or one, three, four or five extrema may be added in the collision, depending on the value of r
and on the scenario. Some of the resulting states travel while others are symmetric and hence stationary.

A and B are quite similar to one another in terms of the
outcome realized at a given r (except near r = −0.645,
see also Fig. 12). Scenarios C and D are similar in the
same sense. Since the closest extrema in the collisions in
scenarios A and B are both of opposite sign but are of
the same (negative) sign in scenarios C and D, one might
surmise that the relative sign of interacting extrema is
important in determining the qualitative collision out-
come, cf. [18]. Our detailed results broadly support this
suggestion but indicate that this sign is not the sole fac-
tor determining the collision outcome since differences
between scenarios persist.
Figure 7 reveals that the speed c of the traveling state

plays a significant role in determining the collision out-
come. This speed is controlled by the value of the pa-
rameter r since r controls the degree of asymmetry of
each traveling state, but it also depends on the length of
the structure, cf. Fig. 4. For example, in scenario A at
r = −0.7 a narrow LS catches up to a wider LS, with

the resulting interaction stopping the former and leav-
ing the latter unaffected. Because of periodic boundary
conditions the wider, slower moving LS collides with the
stationary state in a subsequent collision, creating a drift-
ing bound state (not shown, but see Fig. 8 for a similar
multiple collision at r = −0.635). Such drifting bound
states are not observed in any of the other scenarios at
this value of r where a narrower and so faster LS inter-
acts with a broader LS at rest. Figure 9 shows an extreme
case of scenario B, where a single-wavelength asymmetric
LS collides with a stationary symmetric structure and is
annihilated. This is because this asymmetric LS is lo-
cated on the lowest Z branch in Fig. 3 and so is minimal
in the sense that no stable LS shorter than one significant
wavelength exists. Hence, the deletion of an extremum
implies annihilation of this LS.
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FIG. 8. The L2 norm versus time for a collision between two
chasing asymmetric structures from scenario A (r = −0.635)
consisting of two stages. In the first stage, the smaller asym-
metric LS is rendered symmetric and hence stationary by the
addition of an extremum. In the second stage, the larger
asymmetric LS suffers the same fate resulting in a stationary
bound state.

FIG. 9. Annihilation of a single-wavelength asymmetric struc-
ture in collision with a symmetric LS at r = −0.65. This is a
special case of scenario B with an asymmetric structure con-
sisting of only two extrema, located at the leftmost edge of
the range of stability of the lowest Z branch in Fig. 3. Note
the coarser colorbar compared to Fig. 7.

B. Change in L2 norm before and after collision

To quantify the change in pattern size during a colli-
sion, we measure the L2 norm defined in Eq. (3). Fig-
ure 10 shows a sample time series of ∥u∥2 from a chasing
collision (scenario A) at r = −0.65, where the collision
first produces a metastable bound state, but three new
extrema are generated at late times by nonlinear inter-
actions. Figure 10 suggests the simple metric

∆∥u∥2 = ∥ufinal∥2 − ∥uinitial∥2, (11)

FIG. 10. The L2 norm versus time for a collision of two
chasing asymmetric LSs (scenario A) at r = −0.65. The
collision of the two chasing structures occurs at t ≈ 20 000,
leading to the creation of a traveling metastable bound state,
whose structure changes slowly over time, as visible from the
slope in ∥u∥2. At t ≈ 40 000, three additional extrema are
nucleated by nonlinear interactions, behavior resulting in the
jump in ∥u∥2.

where uinitial is the state before the collision, i.e., when
the distance between the two structures is still large, and
ufinal is the resulting state a long time after the collision
has occurred. Importantly, the collision dynamics are in-
dependent of the initial distance between the colliding
LSs, since there is no inertia in the system. This is illus-
trated in Fig. 11, where the initial distance in scenario B
(symmetric-asymmetric collision) at r = −0.65 is varied
by fractions of the wavelength associated with the spatial
eigenvalue, λ = 2π/β, with β defined in Eq. (12). Fig-
ure 11 shows that the collision dynamics are self-similar
under shifts in the initial distance: simply accounting for
the time required to propagate over the additional dis-
tance leads to data collapse. This has also been verified
explicitly for other collisions, including from scenario D.
We deduce from these observations that the only vari-
ables affecting collision outcomes are indeed the chosen
pair of colliding structures, and the control parameter r
(at fixed ϵ).

The phenomenology illustrated in Fig. 10 is reminis-
cent of collision dynamics described in terms of scattors
[24, 25]: unstable stationary or time-periodic patterns
which direct the evolution in state space during the col-
lision process along their stable and unstable manifolds.
While these ideas were proposed in the context of models
other than SH35, they may be applicable for some of the
collision events observed here.

Figure 12 shows ∆∥u∥2 as a function of r for all four
scenarios. A value of ∆∥u∥2 ≈ 0 corresponds to the
formation of a bound state without a change in the overall
pattern size, a positive value indicates the creation of one
or more extrema, while a negative value indicates that
one or more extrema were deleted.



9

FIG. 11. The L2 norm versus time for symmetric-asymmetric
collisions from scenario B (at r = −0.65) for initial conditions
shifted by different fractions ∆x of the wavelength λ = 2π/β,
with β the imaginary part of the spatial eigenvalue defined
in Eq. (12). Inset shows the same data with time shifted by
∆t = ∆x/c, where c is the drift speed of the asymmetric
LS: all curves collapse exactly, indicating that the collision
dynamics are independent of initial separation.

The range of r shown in Fig. 12 corresponds to the
interval with stable propagating solutions when ϵ = 0.03.
Vertical gray dashed lines indicate the cases depicted in
Fig. 7. Near the leftmost edge of the existence inter-
val, at r = −0.7, one (A-C) or two extrema (D) are
deleted in the collision. Near the rightmost edge, at
r = −0.635, new extrema are created: either one (A, B)
or five extrema (C, D). Away from these boundary cases,
the scenarios differ more substantially. At r = −0.68,
one observes either the formation of bound states (A,
B), or the creation of three additional extrema (C, D).
At r = −0.66, new extrema are added in the collision in
all cases: either four additional extrema (A, B) or three
(C, D). At r = −0.645 and r = −0.65 (not shown), sce-
narios A and C revert to ∆∥u∥2 ≈ 0, i.e. the formation of
a bound state, while new extrema continue to be added
in scenarios B (four extrema) and D (three extrema).

As already mentioned in the discussion of Fig. 7, sce-
narios A and B are similar to one another, as are C and
D, in the sense that for most values of r, they display
the same number of extrema added or deleted. However,
Fig. 12 reveals deviations between these scenarios in the
interval −0.65 ≲ r ≲ −0.64. To ensure that these are not
numerical artefacts, we repeated the runs in scenarios A
and B in this range of r at higher spatial resolution, us-
ing 8192 instead of 2048 grid points, and continued the
simulation until very late times (t ≈ 150 000). We also
repeated the runs with significantly smaller time steps,
dt = 0.005 and dt = 0.001, with the same collision out-
come, confirming that the nonmonotonic dependence of
∆∥u∥2 on r is a robust result that we discuss further
below.

The black dash-dotted vertical line in Fig. 12 indicates

the location of the Maxwell point r = rM for the vari-
ational case ϵ = 0. The figure shows that the values
of r where ∆∥u∥2 changes differ between scenarios and
that, in addition, these locations lie far from r = rM .
We conclude that the Maxwell point of the variational
case has little, if any, relevance in determining the colli-
sion outcome in the nonvariational case, even in the weak
symmetry-breaking case considered here.
The overall trend of increasing ∆∥u∥2 with increas-

ing r can be viewed as a reflection, in the nonvariational
regime, of similar behavior in the variational case: when
ϵ = 0, the free energy F of the stable pattern state de-
creases with increasing r, as shown in Fig. 2, and the
periodic pattern becomes increasingly energetically fa-
vored. Apart from some exceptions at r ≥ −0.65 (to
be discussed further below), the increasing trend in the
number of extrema added in a collision is compatible with
this intuition. Finally, even for a fixed number of extrema
added or lost, Fig. 12 reveals a slow decrease in ∆∥u∥2
with increasing r. This is associated with small changes
in the profile of the extrema as r changes.

FIG. 12. Change in the L2 norm before and after a collision,
∆∥u∥2 defined in Eq. (11), for different collision scenarios,
shown as a function of r. Labels indicate the number of ex-
trema gained or lost in the collision. Vertical dashed gray lines
correspond to the values of r shown in Fig. 7. The vertical
black dash-dotted line shows the location of the Maxwell point
rM for ϵ = 0 (all remaining results shown are for ϵ = 0.03).

C. Bound states: isolas and stability

Figure-eight isola structures extending over the entire
width of the snaking region have been previously de-
scribed in the quadratic-cubic Swift-Hohenberg equation
without nonvariational terms, arising from multi-pulse
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FIG. 13. Traveling bound states obtained from numerical con-
tinuation of collision results in scenarios A and B at ϵ = 0.03.
Thin pink line: traveling state obtained from a chasing colli-
sion (scenario A) at r = −0.68. Thin light blue line: similar
traveling state obtained from a symmetric-asymmetric colli-
sion (scenario B) at r = −0.69. Starting points for continu-
ation in r are marked with circles. Continuation in ϵ to the
variational case ϵ = 0 yields isolas of stationary two-pulse
states. Thick red line: scenario A at ϵ = 0. Thick dark blue
line: scenario B at ϵ = 0.

solutions consisting of two LSs bound together in close
proximity [26, 27]. Here, we find that for bound states
formed from collisions at ϵ > 0, the properties of the iso-
las to which these states belong depend strongly on the
collision scenario.

FIG. 14. Isola structures (colored) corresponding to the trav-
eling two-pulse bound states generated in different collision
scenarios superposed on the bifurcation diagram from Fig. 3
(gray). All results are for ϵ = 0.03.

Figure 13 shows two isolas at ϵ = 0.03 (thin lines) ob-
tained from a continuation in r, starting from two bound
states generated by a collision in scenarios A and B at
r = −0.68 and r = −0.69, respectively (points high-
lighted in Fig. 13), together with the results of continuing
these isolas in ϵ to the variational case ϵ = 0 (thick lines).
The figure shows that in the former case (red curves) the

isola retains its shape as it transforms into the corre-
sponding isola of the variational problem. In the latter
and more typical case, the isola at ϵ = 0.03 takes the
form of a spaghetti-like tangle (light blue), requiring sub-
stantial simplification prior to reaching the corresponding
isola of the variational problem (thick blue). Figure 14
shows several additional isolas of traveling bound states
at ϵ = 0.03 obtained by colliding longer initial LSs and
superposed on the full bifurcation diagram (colors match
between Figs. 13 and 14). All figure-eight isolas seen in
Fig. 14 are from scenario A, while tangled isolas are from
scenario B.

It is important to note that the rightmost edge of the
figure-eight isola in scenario A shown in Fig. 13 (thin red
line) is located near r ≈ −0.66, and not at r ≈ −0.63, the
right boundary of the snaking region for ϵ = 0.03. This
is a consequence of the fact that two-pulse states with a
small separation between the LSs lie on isolas that are
significantly smaller than those for bound states with a
larger separation. This is so not only when ϵ = 0 [26]
but also when ϵ = 0.03. Figure 15 shows an example of a
narrow figure-eight isola at ϵ = 0 obtained from a bound
state at ϵ = 0.03 and r = −0.68 together with a wider
figure-eight isola obtained by continuing a bound state,
also obtained from a collision in scenario A with ϵ = 0.03,
but at r = −0.645. Despite their similarity (see profiles
in Fig. 15, top panel) these profiles are part of separate
isolas: the solution profiles of the narrow isola feature an
interaction region between the two LSs comprising the
bound state which is one wavelength shorter than that
of the larger isola solution profiles, a property that is pre-
served upon numerical continuation. As the separation
between the two LSs decreases and their interaction be-
comes stronger, the figure-eight isolas shrink, with the
rightmost edge moving farther and farther to the left.

This decrease in size plays a key role in determining
collision outcomes: the value r ≈ −0.66 (Fig. 13, thin
read line) coincides with the parameter value in Fig. 12
where new extrema are first created in scenario A. This
observation suggests the following way of understanding
the observed phenomenology: when two LSs approach
one another in a collision, there are two possibilities. Ei-
ther (a) a stable multipulse bound state exists at the
value of r in question for the given pair of LSs, or (b) no
such state exists or at least it is not stable. In case (a),
the collision will lead to the formation of a stable bound
state. In case (b), on the other hand, no such state is
available, and the system creates or deletes extrema to
reach another stable solution.

With this hypothesis, the nonmonotonic behavior in
the number of extrema created summarized in Fig. 12
can be explained as follows: at parameter values −0.65 ≲
r ≲ −0.64, there is an island of stability where stable
bound states exist. When no stable bound state exists,
a strongly nonlinear interaction must occur, resulting in
LSs with a different number of extrema; this number in-
creases with increasing r, as discussed earlier.

To test the hypothesis that the existence and stabil-
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ity of a bound state is the determining factor in set-
ting the collision outcome, we perform stability exper-
iments. Specifically, to verify that the bound state ei-
ther does not exist or is unstable in scenarios A, B with
−0.66 ≲ r ≲ 0.65 (where new extrema form), we per-
formed DNS at these values of r, initializing with the
post-collision final states from r = −0.68, r = −0.67,
r = −0.65 and r = −0.645. In each of these cases we
observed the eventual generation of additional extrema.
Only one exception was observed, at r = −0.66 in sce-
nario B, when a bound state from r = −0.68 was used as
the initial condition and found to remain a pure bound
state indefinitely, without any change in the number of
extrema. Thus collisions may trigger the creation of new
extrema despite the existence of a stable bound state,
provided the bound state has only a small basin of at-
traction.

We repeated the above study for scenario C: stable
bound states formed from collisions at r = −0.645 and
r = −0.65 were used as initial conditions at r = −0.635,
r = −0.64, r = −0.655, r = −0.66. In all cases but
one, the same number of extrema was spontaneously cre-
ated as observed in the collision experiments. The ex-
ception, where a bound state remains indefinitely stable,
was again found near the transition from a bound state
to the creation of new extrema in the collision, namely
at r = −0.64. In summary, these stability experiments
largely confirm the proposed hypothesis for explaining
Fig. 12: collisions yield bound states when these exist as
stable states, and otherwise lead to a change in the num-
ber of extrema (typically creation of new extrema). The
only deviations from this paradigm are observed when
stable bound states exist but have a small basin of at-
traction, as is the case near folds. Then the finite per-
turbation provided by a collision can trigger a change in
the number of extrema.

The isolas corresponding to multi-pulse bound states
at ϵ > 0 can take other forms as well. Figures 16 and 17
show two such cases, in which a complex tangled branch
terminates at either end in bifurcation points located at
the center of a spiral structure. These figures correspond
to the continuation of bound states resulting from sce-
nario A collisions at r = −0.645 and r = −0.7, respec-
tively. As mentioned in Sec. IVA, the latter is in fact the
result of two separate collisions. The first collision occurs
between two moving LSs and leaves one stationary and
symmetric LS and one moving LS as shown in Fig. 7.
The second collision (not shown) occurs after this, when
the moving LS collides with the stationary LS from the
other side due to periodic boundary conditions, forming
a traveling bound state.

The bifurcations identified in Figs. 16 and 17 are of
codimension two and occur as the separation between
the two LSs in the bound state grows without limit,
while the structures independently change their ampli-
tude and degree of asymmetry such that their velocities
remain the same. As the branch spirals towards the cen-
ter, the separation between the constituent LSs grows.

FIG. 15. The L2 norm vs. control parameter r for two isolas
at ϵ = 0, obtained by numerical continuation from traveling
bound states in scenario A with ϵ = 0.03 resulting from colli-
sions at r = −0.645 (large isola) and r = −0.68 (small isola),
respectively. Color-matched solution profiles are shown in the
top panel, where the red solutions (right), corresponding to
the small isola, feature a separation between the two single-
pulse LSs shorter by one wavelength as compared with the
blue profiles (left), which correspond to the large isola.

These bifurcations are highly reminiscent of T-point bi-
furcations, also known as Bykov points [28, 29], which
have been described as corresponding to an equilibrium-
to-equilibrium heteroclinic cycle, with two branches of
primary homoclinic orbits bifurcating from it. Bifur-
cations of this type have been observed in a variety of
systems, including the Lorenz63 system [30], a model of
calcium pulses in pancreatic cells [31], and in type-I ex-
citable media [32]. In contrast, here the two constituent
LSs individually approximate a homoclinic orbit to the
trivial state u = 0 and at the T-point the state of the sys-
tem corresponds to a double homoclinic cycle. Of course,
in a finite domain we cannot reach this T-point, and our
numerical continuation results therefore only produce a
periodic structure that approximates this double homo-
clinic cycle. To the best of our knowledge, a T-point bi-
furcation from such a double homoclinic cycle described
here has not been observed previously. Note that such
T-points cannot occur for stationary LSs.
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FIG. 16. Scenario A bound state isola continued from r =
−0.645 and ending in T-points at either end. Solution profiles
and parts of the spiral branch are shown at increasing levels
of magnification in the upper panels.

V. REDUCED MODEL OF INTERACTING

LOCALIZED STRUCTURES

An important concept in the analysis of LSs is the
notion of spatial dynamics that applies equally well in
the comoving frame. In the simplest case one linearizes
the equation of motion (1) about the trivial state, and
considers solutions of the form u ∝ eλx, cf. [9, 12]. The
roots λ of the resulting characteristic polynomial, known
as spatial eigenvalues, govern the behavior of the system
in the vicinity of the trivial solution u ≡ 0. They are
given by

λ = ±
√

±
√
r − 1. (12)

In the case of interest, r < 0 so that LSs exist, λ is
complex: λ = ±α ± iβ with α, β > 0. The (positive)
real part of λ describes the exponential growth of u away
from u = 0 and towards LS on a 1/α spatial scale, while
the nonzero imaginary part of λ implies that this growth
is not monotonic, but oscillatory, with wavelength 2π/β.
For stationary LS the profile decays towards u = 0 in the
same manner.
Interactions between LSs will be mediated by these

exponentially growing/decaying oscillatory tails, unless

FIG. 17. Scenario A bound state isola continued from r =
−0.7 and ending in T-points at either end. Solution profiles
and parts of the spiral branch are shown at increasing levels
of magnification in the upper panels.

the proximate (i.e. most strongly interacting) large-
amplitude extrema of the two respective structures come
close enough for nonlinear effects to become relevant.
Such interactions via oscillating tails are found in a wide
range of problems and have been studied extensively [33–
38]. Here, in a spirit similar to these works, in particular
[33], we propose a simple reduced model to quantitatively
describe these interactions.
Consider two LSs, with the closest order one ampli-

tude extrema of either structure located at xi, i = 1, 2.
Each LS is characterized by a drift velocity ci, i = 1, 2,
known from the analysis in section III. Note that ci is
zero for symmetric LS, and nonzero for asymmetric LS.
The proposed reduced model equations, reminiscent of
overdamped particle dynamics, read

dx1

dt
= c1 + g1 cos (β|x1 − x2| − ϕ) e−α|x1−x2|

dx2

dt
= c2 + g2 cos (β|x1 − x2| − ϕ) e−α|x1−x2|. (13)

Equations (13) are integrated using a fourth-order
Runge-Kutta method with initial conditions correspond-
ing to DNS data for any given collision. The model in-
volves three unknown parameters describing the interac-



13

tion: two amplitudes g1, g2 and a phase ϕ. The values of
these parameters will depend on r and on the colliding
structures in question.
Below, we compare the predictions of the reduced

model given by Eq. (13) with high-resolution DNS results
using a gradient descent optimization to determine g1, g2
and ϕ, as described in appendix A. To conveniently as-
sess the quantitative agreement between the particle-like
trajectories, we consider the deviation of the relative dis-
tance between proximate extrema from free propagation.
For x2 > x1 (without loss of generality), we define

χ(t) ≡ x2(t)− x1(t)− (c2 − c1)t− [x2(0)− x1(0)]. (14)

A. Comparison between reduced model and DNS

1. Chasing: scenario A

Figure 18 shows a comparison between the DNS results
(contour plot) and the model predictions (dashed yellow
lines) for a chasing collision of two asymmetric extrema
(scenario A). There is good agreement between the ex-
trema trajectories in both cases, including at a quantita-
tive level, as can be seen from Fig. 19.

FIG. 18. Overlay of the reduced model trajectories on top
of DNS data for scenario A. Colored contour plot shows the
DNS results at ϵ = 0.03, r = −0.68 in scenario A (collision
between two asymmetric structures that are two and three
wavelengths long, respectively). Yellow dashes indicate tra-
jectories predicted by the reduced model (13) with parameters
g1 = 0.53489982, g2 = −0.30631508 and ϕ = −1.08804942, as
well as c1 = 0.0020 and c2 = 0.00128276. See also Fig. 19.

Figure 20 shows the model parameters obtained by the
gradient descent method described in appendix A at dif-
ferent values of r for the chasing collision shown above.
In all cases shown here, a pure bound state is formed
in the collision, without the addition or deletion of any
extrema. The parameter values are seen to depend only
weakly on r, reflecting small changes in spatial structure
as r is varied for a given type of LS.

FIG. 19. Residual distance χ between proximate extrema (de-
fined in Eq. (13)) versus time from the DNS and the reduced
model in scenario A, corresponding to Fig. 18. A good quan-
tiative agreement is observed between DNS and model. The
interaction is effectively repulsive, cf. section VB.

2. Symmetric-asymmetric collision: scenario B

Figure 21 shows an overlay of the reduced model tra-
jectories on top of the DNS results, similar to Fig. 18,
but for a collision between a symmetric LS with a maxi-
mum at its center and a two-wavelength asymmetric LS
(scenario B). There is again good agreement between the
trajectories of the closest extrema in both cases, includ-
ing at a quantitative level, as one can see in terms of the
quantity χ from Fig. 22.

3. Flipped symmetric-asymmetric collision: scenario C

Figure 23 shows an overlay of the reduced model tra-
jectories on top of the DNS results, similar to Fig. 18 for
a collision from scenario C. There is good agreement be-
tween the trajectories of the proximate extrema in both
cases, including at a quantitative level, as one can see in
terms of the quantity χ from Fig. 24.

4. Head-on collision: scenario D

Figure 25 shows an overlay of the reduced model tra-
jectories on top of the DNS results for a collision from
scenario D. While the trajectories in Fig. 25 look quali-
tatively consistent, the quantitative perspective provided
by Fig. 26 reveals that the reduced model with optimal
parameters clearly deviates from the DNS results in this
case. The gradient descent method was applied with
tf = 5 500 (see appendix A) to find the set of param-
eters used in Fig. 26, but no better agreement was found
for other choices of tf , which were also tested.
The deviation between the reduced model trajectories
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FIG. 20. Parameters of the educed model obtained for sce-
nario A and different values of the control parameter r. Red
diamonds: g1, blue circles: g2, green triangles ϕ. The parame-
ters depend only weakly on r, reflecting minor changes in pro-
file with r. All cases shown correspond to collisions generat-
ing pure bound states, except r = −0.65, where a metastable
bound state forms (Fig. 10), leading to the appearance of ad-
ditional extrema at late times. In that special case r = −0.65,
the fit was performed with a cut-off time tf (cf. appendix A)
after the initial collision but before the generation of the ad-
ditional extrema. In the range −0.67 ≲ r ≲ −0.65, and at
r ≳ −0.64, the scenario A collisions do not result in bound
states, but instead generate new peaks (cf. Fig. 12).

and the DNS result is in agreement with expectations.
Since the reduced model is exclusively built on the lin-
ear structure of SH35, while the creation of new extrema
is a highly nonlinear process, the reduced model is not
expected to capture the dynamics correctly once nonlin-
ear interactions become dominant. At earlier times, the
values of χ produced by the reduced model remain close
to the DNS data, and only deviate near the time of ex-
tremum creation. This highlights the limitations of the
otherwise very successful reduced model analysed here.

B. Sign of the interaction: attractive or repulsive?

It is interesting to note that in all the cases described
above, when the interacting extrema were of opposite
signs (scenarios A, B), we found g1 > 0 and g2 < 0 (for
−π < ϕ < 0). Conversely, when the two interacting
extrema were of the same sign (scenarios C, D), we sys-
tematically found g1 < 0 and g2 > 0 (for −π < ϕ < 0).
However, it is nontrivial to deduce what this implies for
the sign of the effective interaction, due to its oscillatory
nature. We can define an effective sign of the interaction
as follows. First we introduce the equilibrium distance

deq as the value of |x2 − x1| in the bound state after
the collision has occurred. From Eq. (13), we see that

FIG. 21. Colored contour plot of the DNS of Eq. (1) at ϵ =
0.03, r = −0.69 in scenario B (collision between symmetric
and asymmetric LSs, with extrema of opposite sign facing
each other). Yellow dashes indicate the trajectories predicted
by the reduced model (13) with parameters g1 = 0.3539801,
g2 = −0.51798143, and ϕ = −1.038100556, as well as c1 = 0
and c2 = −0.0019615. See also Fig. 22.

FIG. 22. Residual distance χ between proximate extrema (de-
fined in Eq. (13)) versus time from the DNS and the reduced
model for scenario B, corresponding to Fig. 21. The zoom
shows the equilibrium separation. The interaction is effec-
tively attractive, cf. section VB.

equilibrium implies

cos (βd+ ϕ) exp(−αd) =
c2 − c1
g1 − g2

. (15)

In general, Eq. (15) has multiple solutions, as illustrated
in Fig. 27. One may surmise that these multiple solutions
are related to the overlapping isolas shown in Fig. 15,
which differ in their equilibrium distance by one wave-
length. When c2 = c1, Eq. (15) has infinitely many so-
lutions, similar to the family of bound two-pulse states
described in [26] that differ only in their equilibrium sep-
aration. By contrast, for c2 − c1 ̸= 0, the number of
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FIG. 23. Colored contour plot of the DNS of Eq. (1) at ϵ =
0.03, r = −0.645 in scenario C (collision between symmetric
and asymmetric LSs, with extrema of opposite sign facing
each other). Yellow dashes indicate the trajectories predicted
by the reduced model (13) with parameters g1 = −0.43756,
g2 = 0.55907, and ϕ = −1.013089, as well as c1 = 0 and
c2 = −0.001895. See also Fig. 24.

FIG. 24. Residual distance χ between proximate extrema (de-
fined in Eq. (13)) versus time from the DNS and the reduced
model for scenario C, corresponding to Fig. 23. The interac-
tion is effectively attractive, cf. section VB.

solutions is finite. In a generic collision at ϵ > 0, since
the colliding LSs approach from a large distance, we ex-
pect that the physical value of deq is given by the largest
positive value of d that solves Eq. (15).
We assume that deq is known for a given collision of

two LSs starting out at a distance |x2 − x1| = d0, with
c1 > c2 (which applies to all examples shown above). In
the absence of interactions, the free propagation of the
two LSs will reduce the distance from d0 to deq in a time

tfree =
d0 − deq
c1 − c2

. (16)

In the presence of interactions, this time will change to

FIG. 25. Colored contour plot of DNS of Eq. (1) at ϵ = 0.03,
r = −0.65 in scenario D (head-on collision of two identical
structures). Yellow dashes indicate trajectories predicted by
the reduced model (13), with parameters g1 = −g2 = −0.551,
ϕ = −1.90324, as well as c1 = −c2 = 0.0019291. See also
Fig. 26.

FIG. 26. Residual distance χ between proximate extrema (de-
fined in Eq. (13)) versus time from the DNS and the reduced
model, corresponding to Fig. 25. Inset shows zoom on early
times. The vertical dashed line indicates the time t ≈ 5500
when new extrema appear. The best-fit model prediction de-
viates from the DNS slightly before this, as a consequence of
nonlinear effects not captured by the model.

teq, a time that may be larger or smaller than tfree due
to the oscillatory nature of the interaction.

We propose the following terminology. If the equilib-
rium distance in the collision is reached earlier than for
free propagation, i.e. if teq < tfree, then we say that
the interaction is effectively attractive. By contrast, if
the equilibrium distance is reached later, i.e. teq > tfree,
then we say that the interaction is effectively repulsive.
We note that the effective sign of the interaction can
be determined graphically from the sign of χ(teq), since
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FIG. 27. Illustration of how the equilibrium distance deq is
determined from Eq. (15).

Eq. (14) implies

teq = tfree +
χ(teq)

|c1 − c2|
. (17)

The time t = teq, where the distance |x2 − x1| = deq
is highlighted by an arrow in Figs. 19, 22, 24 and 26;
since x2 − x1 is constant at t > teq, a linear increase in
χ = const+(c1− c2)t sets in. The sign of χ(teq), i.e. the
onset of this linear increase, determines the effective sign:
if χ(teq) > 0, then the interaction is effectively repulsive
but if χ(teq) < 0, then the interaction is effectively at-
tractive.
We highlight that even though the collisions from sce-

narios A and B shown in Figs. 18 and 21 both feature
interactions between extrema of opposite signs, the rel-
ative signs of their interaction differ: the interaction is
effectively repulsive in scenario A (Fig. 19), while it is
effectively attractive in scenario B (Fig. 22). This indi-
cates that while the relative sign of interacting extrema
does appear to be important, it is not the only factor
determining collision outcomes. This is likely related to
the observed deviation between scenarios A, B and C, D,
respectively, in the parameter range −0.65 ≲ r ≲ −0.64.

VI. CONCLUSIONS

In this paper, we have provided an in-depth analysis
of LSs in the nonvariational SH35, Eq. (1), using numer-
ical continuation, DNSs, asymptotics and reduced-order
modeling to shed new light on the propagation and in-
teraction of LSs in a canonical driven dissipative system.
These interactions are highly inelastic, in contrast to
systems described by integrable partial differential equa-
tions, and lead to both stationary and drifting structures.
Moreover, the interactions can be attracting or repelling

depending on the nature of the interacting LSs and the
parameters.

The asymptotic theory predicts a linear dependence
of the drift speed of LSs on ϵ, with excellent quantita-
tive agreement with DNSs and numerical continuation
at ϵ ≲ 0.1, but significant deviation for ϵ ≳ 0.1. The
collisions resulting from this drift are shown to display
rich phenomenology: different numbers of extrema can be
added or deleted in a collision, depending on the types of
structures interacting and the value of r. Alternatively,
a pure bound state can be formed, which preserves the
number of extrema of the initial structures. We have
found that the stability properties of these bound states
play a key role in determining whether a collision changes
the number of extrema or not: if the bound state exists
stably, and has a sufficiently large basin of attraction,
then the perturbation resulting from a collision does not
change the number of extrema. However, if this is not
the case, then extrema will be added or deleted in the
collision. When extrema are deleted, this can lead to
smaller LSs, or to annihilation in the case of the mini-
mal, single-wavelength asymmetric structure. When ex-
trema are created, metastable states may arise from col-
lisions, which undergo a further nonlinear interaction at
late times. This phenomenology is reminiscent of what
has been attributed to a scattor [24, 25]: unstable sta-
tionary or time-periodic patterns which direct orbits dur-
ing the collision process in the infinite-dimensional state
space along their stable and unstable manifolds. While
these ideas were proposed in the context of models other
than SH35, they may be applicable to some of the colli-
sion events observed here.

Bound states arising from collisions were shown to lie
on isolas which are embedded within the snakes and lad-
ders bifurcation structure. In contrast with the varia-
tional case ϵ = 0, the isolas at ϵ > 0 are typically not of
figure-eight form, but rather form a complex, spaghetti-
like tangled set. Only for the specific subclass of col-
lisions between chasing asymmetric LSs, are the result-
ing multi-pulse bound states found to lie on isolas whose
figure-eight form is preserved at ϵ > 0. In addition, we
have also described a novel example of an isola at ϵ > 0
which is not closed, but features T-point bifurcations at
either end, each of which involves the gradual separation
of a bound state into two separate asymmetric LSs, each
separately corresponding to a homoclinic connection to
u = 0 in the comoving frame. States of this type require
drift and so can only be found in nongradient systems of
the type studied here.

Finally, a reduced model was also proposed, consisting
of two coupled ordinary differential equations, describing
the interaction of LSs via their oscillatory exponential
tails. The reduced model was shown to reproduce a wide
range of collisions, with quantitative accuracy, provided
no large-amplitude extrema are created or destroyed in
the collision. If the number of large-amplitude extrema is
altered in the collision, the model still describes the tra-
jectories of the interacting proximate extrema up until
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shortly before the time at which this occurs. After this
time, the model fails to describe the DNS results since it
does not include the nonlinear structure of Eq. (1). The
fact that the trajectories of LSs can be accurately repro-
duced by the reduced model for a sizable fraction of all
observed cases is indicative of the fact that the collisions
between localized patterns are to a large extent particle-
like, with a nontrivial interaction potential correspond-
ing to the linear structure of Eq. (1). This model led to
considerable insight into the nature of the interactions
between LSs in the SH35 model and allowed a relatively
simple determination of the conditions under which the
interaction is effectively attracting or repelling.

Collisions of convectons in binary fluid convection,
such as those described in [19], feature dynamics beyond
the scope of the order parameter description provided
by SH35, in particular due to the possibility of complex
temporal behavior. Nonetheless, it remains to be under-
stood to what extent the SH35 collision phenomenology
described here can be observed between convectons or
similar structures in other continuum systems. Specifi-
cally, [19] do not observe bound states, while these play
an important role in the selection of collision outcomes
described here. It remains an open question whether such
bound states exist between convectons, given that binary
fluid convectons interact nonlocally via a large-scale so-
lute field generated by the pumping mechanism described
in [4].

A simple possibility for obtaining more complex tem-
poral behavior in SH35 would be the inclusion of higher-
order time-derivatives, e.g. a second-order term that al-
lows for inertia and wave-like solutions. In this case, the
interactions described here, which rely exclusively on the
exponential tails of LSs, would be enriched due to the
possibility of wave radiation. The study of this modi-
fied SH35 with higher-order time derivatives is left for a
future study.
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Appendix A: Reduced model parameter estimation

by gradient descent

In this appendix, we describe the details of the gra-
dient descent method used to systematically determine
the reduced model parameters g1, g2 and ϕ correspond-
ing to SH35 solutions for a given r and a given collision
scenario, based on high-resolution DNS data.
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FIG. 28. Illustration of the robustness of the gradient descent
method: starting from various different initial guesses for the
model parameters the method converges to a unique set of
parameters g1, g2, ϕ. Example shown corresponds to scenario
B at r = −0.69.

Given u(x, t) from DNS on a uniform grid with 8192
points, we track the position of the two extrema that
are located closest to one another in the collision, as a
function of time t (note that a high spatial resolution
is required for well-resolved tracking). We denote the
positions of the closest extrema by xDNS

1 (t), xDNS
2 (t),

corresponding to x1(t), x2(t) in Eq. (13). To determine
which set of reduced model parameters g1, g2, ϕ most
accurately represents the DNS results, we define a cost
function

Cg1,g2,φ[x1, x2] ≡

√

√

√

√

1

tf

∫ tf

0

2
∑

i=1

(

xi(t)− xDNS
i (t)

)2
dt,

(A1)
where at t = 0 the colliding LSs are separated by many
wavelengths, and tf can be chosen to be long after the
collision, if no large-amplitude extrema are created or
destroyed (e.g. Fig. 18), or instead may be chosen just
before nonlinear effects set in (e.g. Fig. 26). The global
minimum of the functional Cg1,g2,φ[x1, x2] corresponds to
the best fit between reduced model and DNS.
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To perform the gradient descent optimization, we start
with an initial guess for g1, g2, ϕ, and compute the gra-
dient ∇C = (∂C/∂g1, ∂C/∂g2, ∂C/∂ϕ). Then, in each
step, we update parameters by the rule

(g1, g2, ϕ) → (g1, g2, ϕ)− λ∇C, (A2)

with a parameter λ measuring the step size in parameter
space.
Figure 28 shows sample trajectories in parameter space

(top panel: projection onto the g1, ϕ plane, bottom panel:
projection onto the g2, ϕ plane) obtained by this method
for a collision from scenario B (asymmetric LS colliding
with a stationary symmetric LS) at r = −0.69 (collision
results in pure bound state). For a wide range of initial
conditions, the method converges to a well-defined set of
parameters. The resulting model trajectories accurately
reproduce those observed in the DNS, as can be seen in
Figs. 18 and 19. The significance of Fig. 28 is that it
indicates that the method is robust with respect to the
precise initial guess for the model parameters g1, g2, ϕ.
However, several complicating factors need to be taken
into account to obtain the correct optimal model trajec-
tories with this procedure.

1. Due to the very long simulation times of O(104 −
105) time units, the propagation velocities c1, c2
have to be specified with high precision in order to
accurately describe the free propagation of the LSs.
Only after carefully determining c1, c2 with a high
precision does the gradient descent algorithm con-
verge to an accurate fit between model and DNS.

2. Equations (13) are invariant under ϕ → ϕ + 2π
and ϕ → ϕ + π, (g1, g2) → (−g1,−g2). The global
minimum of C is only unique if the phase is limited
to an interval of size π. Here, we choose ϕ ∈ [−π, 0].

3. The cut-off time tf can affect the quality of the
fit: if it is too large, the final bound state will be
weighted excessively compared to the actual colli-
sion dynamics of interest. If tf is too short, it may
fail to correctly capture the later stages of the colli-
sion. We typically choose tf to be several thousand
time units after the equilibrium distance is reached,
for pure bound states, and before the nonlinear cre-
ation of new extrema, if any.
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