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Abstract. We develop the complex-analytic viewpoint on the tree convolutions studied by the sec-
ond author and Weihua Liu in Jekel and Liu (2020), which generalize the free, boolean, monotone,
and orthogonal convolutions. In particular, for each rooted subtree 7 of the N-regular tree (with
vertices labeled by alternating strings), we define the convolution By (u1,...,un) for arbitrary
probability measures pi, ..., uy on R using a certain fixed-point equation for the Cauchy trans-
forms. The convolution operations respect the operad structure of the tree operad from Jekel and
Liu (2020). We prove a general limit theorem for iterated 7-free convolution similar to Bercovici
and Pata’s results in the free case Bercovici and Pata (1999), and we deduce limit theorems for
measures in the domain of attraction of each of the classical stable laws.

1. Introduction

Voiculescu (1985, 1986) introduced free independence, which provided a probabilistic viewpoint
on free products of operator algebras. Two other forms of non-commutative independence were
studied in non-commutative probability theory around the year 2000: boolean independence in
Speicher and Woroudi (1997) and monotone/anti-monotone independence in Muraki (2000, 2001).
Besides classical independence, these are the only types of independence that provide an associative
natural product operation on non-commutative probability spaces Speicher (1997); Ben Ghorbal
and Schiirmann (2002); Muraki (2003, 2013). However, there are many other types of independence
broadly defined. For instance, Lenczewski defined m-free independences intermediate between free
and boolean independence Lenczewski (1998). One can combine several algebras using a mixture of
classical and free independence Mtotkowski (2004); Speicher and Wysoczanski (2016), boolean and
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monotone independence Wysoczanski (2010), or boolean and free independence Kula and Wysocza-
nski (2013). The notions of c-free independence Bozejko et al. (1996); Arizmendi et al. (2020) and
c-monotone Hasebe (2011); Lenczewski (2019) independence provide another way of combining free
or monotone independence with boolean independence, using pairs of states.

Weihua Liu and the second author defined a general family of non-commutative independences as-
sociated to rooted trees whose vertices are labeled by alternating strings Jekel and Liu (2020), which
would serve as a general framework for studying various convolution operations and the relation-
ships between them, such as the relation between free, monotone, and subordination convolution in
Lenczewski (2007, 2008). The independences defined by trees include free, monotone, and boolean
independence; m-free independence; mixtures of free, boolean, and monotone independence. The
introduction of Jekel and Liu (2020) noted three viewpoints on non-commutative independence (1)
operator models, (2) combinatorics of moments, and (3) complex analysis of Cauchy transforms, of
which that paper focused on only the first two. Our present goal is to develop the complex-analytic
viewpoint.

To set the stage, let us recall some of the main ideas of Jekel and Liu (2020). Let Ty free be
the tree whose vertices are alternating strings on the alphabet [N] = {1,..., N} (strings where
consecutive letters are distinct) and where two strings are adjacent precisely when one is obtained
by appending one letter to the left of the other. Let Tree(IN) be the set of rooted subtrees of
TN free, Where the root is the empty string. Each 7 € Tree(IN) describes a way of combining N
Hilbert spaces with unit vectors (H1,&1), ..., (Hy,&n) into a new Hilbert space (H, &) akin to the
free product of pointed Hilbert spaces, which is called the T-free product of pointed Hilbert spaces
Jekel and Liu (2020, §3). This in turn leads to a notion of 7T-free convolution: Suppose Xj is a
bounded operator on H; whose spectral measure with respect to &; is p;. If X1, ..., Xy are the
corresponding operators on the product space (H, &), then the convolution By (u1,...,uyN) is the
spectral measure of X1 + - - - + X with respect to £. (In fact, all of this was done in Jekel and Liu
(2020) in the more general setting where Hilbert spaces are replaced by B-B-correspondences for
some C*-algebra B, and p; is a B-valued law. But at present we are only concerned with the case
B = C where the objects reduce to Hilbert spaces and compactly supported probability measures
on R.)

In order to relate various convolution operations, the family (Tree(N))yen was equipped with
the structure of a topological symmetric operad, and the convolution operations were shown to
respect this structure Jekel and Liu (2020, §5). In particular, for 7 € Tree(k) and 71 € Tree(ny),
.oy Ti € Tree(ny), there is a well-defined composition T (7q,...,Tx) € Tree(ny + - - + ny) which
satisfies

Brr, 1) (BL1s o g e M1y - - Mg )
= ET(E'H (:U'l,lv v 7/~L17TL1)’ ERRE) Eﬂ'ﬁc (uk,lv cee 7“&”1&))
where p; ; is a compactly supported probability measure on R. Many known convolution identities
can be proved in this framework (Jekel and Liu, 2020, §6).

As a consequence, Jekel and Liu (2020, Proposition 6.8) gave a decomposition of 7-free convo-
lution into boolean and orthogonal convolutions, which generalizes the decompositions of additive
free convolution in Lenczewski (2007). Let br;(T) = {s € T free : 5j € T}, where sj denotes the
string obtained by appending j to the end of the string s. Let W denote the boolean convolution
and F the orthogonal convolution (see Examples 4.7 and 4.8 below). Then

Br (i1, i) = ) [y - By (1, i) (1.1)
JEININT
for compactly supported probability measures on R. This relation is convenient for the complex-
analytic viewpoint because the boolean and orthogonal convolutions have simple expressions in
terms of the K-transform (an analytic function related to the Cauchy transform).
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In this paper, we will use (1.1) to define the T-free convolution for arbitrary probability measures
on R. More precisely, in Theorem 4.1, we will show that there is a unique family of operations
B7 on probability measures that satisfies (1.1) and depends continuously on 7 (with respect to
local convergence with respect to the root vertex). The convolution By (u1,...,un) also depends
continuously on 1, ..., uy and agrees in the compactly supported case with the prior definition from
Jekel and Liu (2020). Because (1.1) so directly relates with the K-transforms of measures, we can
give self-contained proofs of the basic properties of T-free convolution without relying on operator
models or on the approximation of general probability measures by compactly supported ones,
making the proofs in this paper essentially independent from Jekel and Liu (2020). In particular,
in §5, we show directly from Theorem 4.1 that the convolution operation on arbitrary measures
respects the operad structure just as in the compactly supported case.

In §6 and §7, we discuss limit theorems for 7-free independence. Often when a new type of
additive convolution is introduced, a central limit theorem and Poisson limit theorem are proved
in the same paper or soon thereafter, as in e.g. Voiculescu (1985); Bozejko et al. (1996); Speicher
and Woroudi (1997); Franz and Lenczewski (1999); Muraki (2001); Wysoczanski (2010); Kula and
Wysoczanski (2013); Jekel and Liu (2020). In classical probability, more general limit theorems for
additive convolution are closely related to the study of infinitely divisible and stable distributions,
as well as the Lévy-Khintchine formula that classifies infinitely divisible distributions g in terms of
some other measure o and real number v; see Gnedenko and Kolmogorov (1954). Similar results
have been obtained for non-commutative independences, both in the scalar-valued and the operator-
valued settings; see for the free case Voiculescu (1986); Bercovici and Voiculescu (1992); Biane
(1998); Speicher (1998); Bercovici and Pata (1999); Popa and Vinnikov (2013); Anshelevich et al.
(2013); for the boolean case Speicher and Woroudi (1997); Popa and Vinnikov (2013); Anshelevich
et al. (2013); for the monotone case Muraki (2001); Belinschi (2005); Hasebe (2010a,b); Hasebe
and Saigo (2014); Anshelevich and Williams (2014, 2016); Jekel (2020); for the c-free case Krystek
(2007); Belinschi et al. (2013). One of the most influential works on the topic was Bercovici and
Pata (1999). The authors showed that if uy is a sequence of measures and ky is a sequence of

7] k¢

natural numbers tending to oo, then ,uzk converges to a measure v, if and only if MEE converges

. . Wk
to a measure vg if and only if y,"* converges to a measure vy, and the correspondence between

Vs, Vm, and vy is described in the terms of the respective Lévy-Khintchine formulas. From this
general statement, they deduced free and boolean analogs of all classical limit theorems for additive
convolution, and in particular limit theorems for the domains of attraction corresponding to each
classical stable distribution.

For a general choice of a tree 7 € Tree(N), it is unclear how to define the kth convolution
power for arbitrary k, as discussed in Jekel and Liu (2020, §8.1). However, we can define a k-fold
composition of 7 with itself, denoted 7°F; the corresponding convolution is an N*-ary operation.
Let n(7) denote the number of neighbors of the root vertex. When n(7) > 1, Jekel and Liu (2020,
§9) classified infinitely divisible laws in the B-valued setting under certain boundedness assumptions.

In this paper, in Theorem 6.1, we obtain an analog of one direction of Bercovici and Pata’s main

k
result for arbitrary probability measures on R. If ufm(ﬂ ‘5 v, then Byor, (e, - .., fe) converges

to a measure BP(7,v) (Theorem 6.1). We do not know whether the converse implication holds.
Nonetheless, the theorem already contains the “more practical” implication, where the hypothesis
is the relatively easy-to-check condition about boolean convolution and the conclusion describes
convergence for general trees 7 (and in fact gives a uniform rate over convergence over all T €
Tree(N)). In particular, Theorem 6.1 allows us to deduce limit theorems corresponding to each of
the classical domains of attraction in §7 using similar techniques as in Bercovici and Pata (1999,
§5). We sketch some of the many open questions about 7-free convolutions and limit theorems
in §8.
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The paper is organized as follows: In §2, we explain background material on probability measures
on R on their Cauchy transforms. In §3, we review the operad of rooted trees from Jekel and
Liu (2020) and establish more of its basic properties. In §4, we define the 7-free convolution of
arbitrary probability measures on R. In §5, we show that the convolution operations respect the
operad structure. In §6, we prove the general limit theorem. In §7, we deduce as special cases limit
theorems for each of the domains of attraction from classical probability theory. In §8, we propose
questions for future research.

2. Cauchy transforms of probability measures

M(R) denotes the space of finite positive Borel measures on R, P(R) denotes the space of
probability measures, equipped with the vague topology (that is, the weak-* topology when viewed
inside the dual of Cy(R); for background, see for instance Folland (1999, §7.3)). Recall that P(R)
is metrizable using the Lévy distance

dr(p,v) = inf{e >0: pu((—o00,x—€)) —e <v((—o00,2)) < p((—o0,z+€)) +eforall x e R}.

Furthermore, P(R) is a complete metric space with respect to dy. For proof, see for instance
Billingsley (1999, Theorem 6.8).

Definition 2.1. For a finite measure g on R, the Cauchy-Stieltjes transform is given by

Gul2) = [~ du)

z—1

The F-transform is given by
Fu(z) = 1/Gpu(2),
and we also define
Ku(z) =z — Fu(z).
These functions are defined for all z in C minus the closed support of u, but we usually view them
as functions defined on the upper half-plane

H:={z € C:Im(z) > 0}.

Let Hol(H, —H) be the space of holomorphic functions H — —H. Then Hol(H, —H) is a normal
family if we view the target space as a subset of the Riemann sphere, hence the topology of pointwise
convergence on Hol(H, —H) agrees with the (metrizable) topology of local uniform convergence.

Lemma 2.2. For each m > 0, the map
{1 € M(R) : ||l < m} — Hol(H, —F) : i = G,

is a homeomorphism onto its image, where we use the weak-x topology on M(R) and the topology
of local uniform convergence on Hol(H, —H).

This lemma is well-known as folklore. In order to show that p, — p if and only if G, — G,
pointwise, one can use the fact the functions of the form ¢.(t) = 1/(z — t) span a dense subspace
of Cy(R), which in turn follows from the Stone-Weierstrass theorem and the fact that ¢, ()¢, (t) =
(6:(1) — Bu(®)/(z — w).

Next, we recall the famous theorem of Nevanlinna (1922) that characterizes Cauchy transforms
of probability measures as functions G(z) such that zG(z) — 1 as z — oo non-tangentially in H.
The version we state here comes from Bercovici and Voiculescu (1992). For a > 0, let Ty C H be
the cone

[y :={z:Imz > a|z|}.
We also define for a,b,c > 0, the regions

Fop:={z:Imz > max(a|z],0)}.
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Definition 2.3. Let Y be a topological space, and let F' : H — Y. We say that F(z) — L as
z — 00 non-tangentially if for every a > 0,

lim F(:) = .

z€ly

or equivalently, for every a > 0 and every neighborhood U of y, there exists b > 0 such that
F(z) € U for every z € Iy,

Theorem 2.4 (Nevanlinna). Let G : H — C and m > 0. The following are equivalent:

(1) G is the Cauchy transform of some measure of total mass m.
(2) G maps H into —H and zG(z) — m non-tangentially as z — 0.
(3) G maps H into —H and lim,_, iyG(iy) = m over y > 0.

Besides Nevanlinna’s original paper Nevanlinna (1922), the proof of (1) <= (3) can be found for
instance in Lax (2002, §32.1, Theorem 3), and the exact theorem here is in Bercovici and Voiculescu
(1992, Proposition 5.1).

Corollary 2.5 (cf. Bercovici and Voiculescu, 1992, Proposition 5.2). A function F is the F-
transform of some probability measure on R if and only if F maps H into H and F(z)/z — 1 as
z — 00 non-tangentially. Similarly, K is the K-transform of some probability measure on R if and
only if K maps H into —H and K(2)/z — 0 as z — oo non-tangentially.

Proof: The first claim is immediate from the theorem since F),(z) = 1/G,(z). Similarly, for the
second claim, the only thing that remains to prove is that Im K, (z) < 0 for any probability measure
. For ¢ > 0, observe that the region

Qe ={z+iy: Im(1/(x +iy)) > c}
={z+iy: —y/(@® +y%) > ¢}
={z+iy:c(@®+y°) +y <0}
is a disk and in particular is convex. For z € H and t € R, we have 1/(z — t) € Qi », and hence

Gu(z) = [z(z — )"t du(t) € Qumz. Thus, Im F,(z) > Im z, or equivalently Im K, (z) < 0. O

The following result is contained in Bercovici and Pata (1999, Proof of Proposition 2.6) and thus
we leave the reader to look up or reconstruct the proof.

Lemma 2.6. If Y is a compact family of probability measures, then 2G,(z) = 1 as z — 0o non-
tangentially, uniformly over p € Y. Similarly, we have F,(2)/z = 1 and K,(2)/z = 0 as z = o0
non-tangentially, uniformly for p € Y.

3. An operad of rooted trees

Definition 3.1. For N € N, let [N] = {1,..., N}. A string on the alphabet [N] is a finite sequence
Ji-..Je with j; € [N]. We denote by the ith letter of a string s by s(¢). Given two strings s; and
s2, we denote their concatenation by s1ss.

Definition 3.2. A string j; ... j, is called alternating if j; # jiy1 for every ¢ € {1,...,4 —1}.

Definition 3.3. Let Ty free be the (simple) graph whose vertices are the alternating strings on the
alphabet [N] and where the edges are given by s ~ js for every letter j and every string s that does
not begin with j. Note that Ty free is an infinite N-regular tree. We denote the empty string by 0,
and we view () as the preferred root vertex of the graph 7T free.



1590 Ethan Davis, David Jekel and Zhichao Wang

Definition 3.4. We denote by Tree(IN) the set of rooted subtrees of Ty fee (that is, connected
subgraphs containing the vertex (). Note that if 7 € Tree(IN), then the edge set is uniquely
determined by the vertex set and vice versa. Thus, we may treat 7 merely as a set of vertices when
it is notationally convenient. If s € T and js € T for some string s and some j € [N], then we say
that js is a child of s and s is the parent of js.

Observation 3.5. For a rooted tree T C Ty free and £ >0, let By(T) C TN free be the set of strings
in T of length at most £ (or equivalently the closed ball of radius ¢ in the graph metric). Define
PN : TN,free X 7-N,free — R by

pon (T, T") = exp(—sup{l > 0: By(T) = Be(T")}).

Then pyn defines a metric on Tree(N) (and in fact an ultrametric), which makes Tree(N) into a
compact metric space.

The space Tree(NV) is similar to the space of locally finite rooted graphs with the topology of
local convergence (see e.g. Aldous and Steele, 2004), and the observation is proved in a similar
way to the literature on local convergence. To summarize, Tree(N) by definition is a subset of
the power set of Tn free. This power set can be identified with {0, 1}7V.sree - and thus we have a
injective map Tree(N) — {0, 1}7N.free. The space {0, 1}7N.free is compact in the product topology by
Tychonoff’s theorem. A basis for this topology is given by cylinder sets defined by looking at finitely
many coordinates. In particular, we can use the cylinder sets defined by looking at the coordinates
index by strings of length < ¢, for each ¢ € N, which leads to a metric py on {0,1}7NV.fee given by
pn(x,y) = exp(—¢) where ¢ is the maximum length such that z and y agree on strings of length
at most ¢. It follows that the topology we defined on Tree(V) is the restriction of the product
topology. It is straightforward to check that Tree(N) is closed in {0, 1} 7V hence compact.

As explained in Jekel and Liu (2020, §5), the sets of trees (Tree(k))ren form a topological symmet-
ric operad. (For general background on operads, see e.g. Leinster, 2004, and the complete definition
is also explained in Jekel and Liu, 2020.) We have already described the topology. The operad
structure consists of composition maps

Tree(k) x Tree(ny) X - -+ x Tree(ng) — Tree(ny + -+ +ng) : (T, 71, Te) = T (T1y- -, Tr)
for each k € N and ny, ..., ng € N, which are given as follows. Let 7 € Tree(k) and 77 € Tree(ny),
..., Ty € Tree(ny). Let Nj = nq + --- + n; (which by convention includes Ny = 0), and let
N = Nj. Define ¢; : [nj] = [N] by ¢;(i) = N;_1 + 14, so that [N] = |_|§:1 tj([n;]). For a string
5 € Tn, free, let (15)«(s) denote the string obtained by applying ¢; to each letter of s. Then we define
T(Ti,...,Ti) € Tree(N) to be the rooted subtree with vertex set

U U U i)sls1) - (u)e(s0). (3.1)
€2041..i0€T ;€T \{0}
for jel(]
In other words, the strings in T(73,...,7T;) are obtained by taking a string ¢ = 4y...4p in T
and replacing each letter i; by a string s; from 7;;, with the indices appropriately shifted by
tj : [nj] — [N]. This composition operation satisfies the operad associativity axioms. It is also
jointly continuous, and in fact, we have

pn(T(Tis - Te) s TH(T - Ti)) < max(or (T, T7), o (T T - -5 oy (T, Ti)),

where 7, 7' € Tree(k) and T;, 7] € Tree(n;) for j = 1, ..., k. This is because every string of
length L in the composed tree has the form (¢;,)«(s1) ... (¢i,)«(s¢) as above, where ¢ < L and sy,
..., 8¢ have length < L.

Finally, Tree is a symmetric operad, which means that there is a right action of the permutation
group Perm(N) on Tree(IN) that satisfies natural compatibility properties with the operad compo-
sition (see Leinster, 2004). The permutation action on Tree(N) is defined as follows: For a string



Tree convolution 1591
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FIGURE 3.1. The tree T = {0,1,2,21,31,32} and a branch br;(7) = {0, 2, 3}.

$=j1...Jo let a(s) = (j1)...0(je). Then for a tree T C Ty free, let To = {o71(s) : s € T}. This
permutation action is continuous (and in fact isometric) on Tree(N).

Central to this paper is the iterative formula from Jekel and Liu (2020, Proposition 6.8) which
expresses convolutions over a tree 7 in terms of the convolutions over the branches of 7 for each
neighbor of the root vertex; see (4.1) and (4.3) below. To set the stage, we define the branch
operations and describe how they interact with the topological symmetric operad structure of Tree.

Definition 3.6. For j € [N], we define br; : Tree(N) — Tree(N) U {@} by
brj(T) = {s € T tree : 85 € T} (3.2)
This gives the branch of T rooted at the vertex j if j € 7 and & otherwise.
We show an example of Definition 3.6 in Figure 3.1.

Observation 3.7. The map br; is a continuous (and in fact e-Lipschitz) function from the clopen
set {T € Tree(N) : j € T} into Tree(N).

The reason for this is of course that if 7 and 7’ agree on strings up to the length ¢ and both
contain j, then br;(7) and br;(7’) agree on strings up to length ¢ — 1.

Observation 3.8. For T € Tree(N) and o € Perm(N), we have br;(75) = bry;y(T)e-

In order to describe the relationship between the branch operation and operad composition, we
need some auxiliary notions. Let ¢ : [N] — [N’]. For a string s = j1...j¢ on [N], let ¥, (s) =
¥(g1) ... (je). Viewing a tree T € Tree(NN) as a set of strings, we may compute the image 1, (T)
under the map .. Of course, if s is alternating, then 1,(s) is not necessarily alternating. Thus,
¥« (T) will be an element of Tree(N') if and only if 1. (s) is alternating for every s € T, or in other
words, ¢*(T) - TN’,free'

The branches of the composition will be expressed using 72 mono := {0, 1,2,21}, a tree related to
monotone convolution (see Example 4.10). Let 7; € Tree(m;) and T3 € Tree(ms). Let ¢ : [mq] —
[m1 + mg] map [m;] monotonically onto the first m; coordinates, and let ¢o : [ma] — [my + ma]
map [ms] monotonically onto the last my coordinates. Then T3 mono(71, 7T2) consists of four types
of strings: the root vertex ), (¢1)«(s1) for nonempty strings s; € 71, (¢2)«(s2) for nonempty strings
s9 € Tz, and (¢2)«(s2)(¢1)«(s1) for nonempty strings s; € 71 and s2 € T2. This can be rewritten as

T2,mono(T1, T2) = {(P2)«(52)(P1)«(51) : 51 € T1,52 € Ta} (3.3)
since 0 = ($2)«(0)(¢1)«(0) and (f1)+(s1) = (92)«(0)(P1)+(s1) and (P2)«(s2) = (¢2)«(52)(1)«(0).

Thus, T2.mono (71, T2) represents all strings obtained by concatenating a string from 73 and a string
from 7; with the appropriate relabeling.

Lemma 3.9. Let T € Tree(k) and T1 € Tree(ny1), ..., Tr € Tree(ng). Let N =ny + -+ ny and
let vj : [nj] — [N] be the inclusions as above. Fix j € [k] and i € [nj]. Then

br, iy (T(T1, -+, Te)) = {3 (¢j)«(8") : 5 € bry(T)(T1, ..., Ta), 8" € bry(T;)}, (3.4)
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where §(1j)«(s") denotes the concatenation of § and (15)+(s'). Let ¢ : [nj + N| — [N] map the first
n; points monotonically onto vj([n;]) and map the last N points monotonically onto [N]. Then 1,

defines a bijection from Tz mono(bri(T;), br;(T)(T1,- .., T)) to br,, o) (T(Ti,- .., Te))-

Proof: To compute the left-hand side of (3.4), suppose that s is a string on the alphabet [IN] with

stj(i) € T(Ti, ..., Ti). Since s¢;(i) is not the empty string, we can express it as
s¢j(1) = (bjn)s(51) - (1) (50,
where ji...50 € T\ {0} and s; € T}, for t =1, ..., £. Since the last letter is ¢;(z), we must have

Je=j. Since ji...j¢i—1j € T, we have by definition j; ... j,—1 € br;(7) and hence
(L) (81) - (45,1 )a(8e=1) € bry(T)(Th, - .., T)-

Moreover, the string sy from 7; has i as its last letter, and therefore, s, = s'i for some s’ € br;(7;).
Hence,

§ = (40)x(81) -+ (tie_y)w(s2-1) (1) (5) = 8(15)+(s"),
where § 1= (¢5,)«(s1) ... (¢j,_1 ) (Se—1) is in brj(T)(T1,...,Tx) and s" € br;(7;). Conversely, similar
reasoning shows that whenever § is in br;(7)(71,...,T;) and s’ € br;(7;), then the concatenation
3 (1j)«(s") is in br, (T (T1, ..., Tk)), and hence (3.4) holds.

Next, we show that 1. maps T2 mono(bri(7;), br;(T)(Ti,. .., Tx)) onto br, (T (T, ..., Tk)). Let
¢1 : [nj] = [n; + N| be the map sending [n;] monotonically onto the first n; coordinates, and let
¢2 : [N] = [n; + N] be the map sending [N] monotonically onto the last N coordinates. By our
earlier observation (3.3) about composition with 72 mono,

Ta,mono (bri(T;), br (T)(T1, - .., Tr)) = {(62)+(3)(¢1)+(s") : § € br;(T)(Th,..., Ta), s" € bri(T;)}-

When we apply 9, to this set, because 1o ¢1 = ¢; and ¢ o ¢ = id|yj], we obtain the right-hand side
of (3.4). Thus, the image of 72 mono(bri(7;), br;(T)(Ti,...,Ti)) under ¢, is what we asserted.

In order to show that %, is injective on 72 mono(bri(7;), br;(T)(Ti,...,Tk)), it suffices to show
uniqueness of the decomposition of s € br,;)(T(71,...,7Tx)) into § and (z;)«(s). Note that if 5 is
not the empty string, then the last letter of 5 cannot be in ¢j([n;]). Thus, let m be the position
of the last letter in s that does not come from ¢;([n;]), and let m = 0 if all the letters come from
tj([n]). Then 5 is the substring consisting of the first m letters of s, and ¢;(s) is the remainder of
s. Since ¢; is injective, s’ is also uniquely determined. O

Next, we define isomorphism of rooted trees and describe how isomorphism relates to the branch
maps.

Definition 3.10. Let 77 € Tree(N7) and T2 € Tree(N2). We say a map ¢ : 71 — T2 is a
homomorphism if ¢(0) = () and for each vertex s € 71 and each child s’ of s, ¢(s') is a child of
o(s). We say that ¢ is an isomorphism if it is a bijective homomorphism, and in this case, we write

T =T

Observation 3.11. Let 71 € Tree(N1) and Ty € Tree(N3) and let ¢ : T1 — Tz be an isomorphism.
Then ¢ defines a bijection [N1] NT1 — [N2] N T2 and we have br;(T1) = bry(;)(7T2).

Definition 3.12. For 7 € Tree(N), let us write

n(T) = |[N]NT]
m(T) = [ [{j € [N]:jseT}l,

that is, n(7) is the number of children of the root vertex and m(7) is the maximum number of
children of any other vertex of the tree.
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Observation 3.13. The quantities n(T) and m(T) are isomorphism-invariant. If T € Tree(N),
then max(n(T),m(T) +1) < N, and T is isomorphic to some T' € Tree(N') with N' =
max(n(7),m(T) + 1).

Proof: The first claim is immediate. By construction, for 7 € Tree(N), the root has at most N
children and the other vertices have at most N —1 children. Finally, letting N = max(n(7T), m(T)+
1), any isomorphism class of trees where the root has at most N’ children and the other vertices
have at most N’ — 1 children can be realized by some subtree of T free- O

The final set of notation and results relates to compositions of several copies of the same tree;
these remarks will be used in §6.

Definition 3.14. Given trees 71 € Tree(N1) and 73 € Tree(N3), let
TioTe=Ti(T2,....T2).
—_————

N; times
This operation is associative because of the operad associativity property for Tree. Thus, expres-
sions such as 77 o T3 o T3 well-defined without writing parentheses, and in particular the following
definition makes sense.

Definition 3.15. For T € Tree(N), let 7°F be given by
T*:=To---oT.
—_————

k times

Lemma 3.16. For 71 € Tree(Ny) and Ty € Tree(Na2), we have

n(T; o T5) = n(Ti)n(7:)

m(T1 o Ta) = m(T)n(T2) + m(T2).
Moreover, (as in Jekel and Liu, 2020, Lemma 8.7) for T € Tree(N) with n(T) > 1, we have

n(T°F) = n(T)"

(1) —1
n(T)—1"
Proof: For j € [Ni], let ¢j : [N2] — [N1Na] be given by ¢;(i) = (j — 1)Na + i. The neighbors of () in
T1 o Tz have the form ¢;(i) where j is a neighbor of () in 7; and ¢ is a neighbor of () in 75, and hence
n(Ti o Ta) = n(Ti)n(Ts).

Next, consider the children of some non-root vertex of 77 o 75. This vertex has the form s =
(tjy)x(s1) -+ (¢5,)x(s¢) where ji...j¢ € Ti and s1, ..., s¢ € T2\ {0}. There are two ways to append a
letter to the front of this string such that the resulting string is still in 77 075. First, we could append
a letter ¢ to the front of s1 in 73 to obtain (15, )«(51)(4jy)«(52) - .. (¢j,)«(¢); there are at most m(7z)
possible ways to do this. Second, we could append ¢;(7) to s for some j such that jji...j5, € Ty
and some i € [Na] N 7a; there are at most m(71)n(72) possible ways to do this. Thus, the number
of children of s in 7; o Tz is at most m(71)n(72) + m(72). To show that this number of children is
achieved in 77 o T2 \ {0}, pick some j; ...j5, € T1 \ {0} with m(7;) children, pick s; € T2 \ {0} with
m(Tz) children, and pick so, ..., s € T2\ {0} arbitrarily. Then s = (¢j,)«(s1) - .. (¢5,)«(s¢) will have
exactly m(71)n(72) + m(7Tz2) children in 77 o 73 by the foregoing argument.

Clearly, n(T°%) = n(T)¥ follows by induction on k. For the next formula, note that

m(T°FDY = (T o T°F) = m(T)n(T°F) + m(T°%) = m(T)n(T)* + m(T°F).

m(T) = m(T)

Hence,

e

-1 k—
m(T*) = m(T) + Y _[m(T°VHD) —=m(T)] = Y m(T)n(T) = m(T)~ =

1 =

—_

.
Il
<
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Lemma 3.17. Let T; € Tree(Ny), Tz € Tree(Na), T{ € Tree(Ny), T3 € Tree(N)). If T1 = T/ and
T2 =T, as rooted trees, then Ty o Ta = T o T5.

Proof: Let ¢1 : Ti — T{ and ¢2 : To — T, be isomorphisms. Let ¢; : [Na] — [N1N2] be given
by ¢j(i) = (j — 1)N2 + 4, and define 1 analogously for Nj and Nj instead of N and Na. Then
we define an isomorphism ¢ : T3 0 To — T{ o 75 as follows. Any vertex of 71 o T2 has the form

(1) (s1) -+ (¢4,)x(se), where ji...jg € Ti (here £ > 0) and s; € T2\ {0}. Now ¢1(j1 ... j¢) must be
a string of the same length, so suppose that ¢1(j1...j¢) = ji...j)- Then we define

D((1)=(51) - (1) (80)) = (5 )(P2(s1)) - - (¢ )(D2(s0))-

Since ¢1 and ¢y are isomorphisms, the right-hand side will realize every possible string from 7 o
75, and in fact will be a bijection. The only thing left to prove is that v preserves parent-child
relationships, and this is done by examining the two cases of children as in the proof of the previous
lemma. O

4. Tree convolutions
The main result of this section is the following theorem:

Theorem 4.1. There exists a unique function
Tree(N) x P(R)N — P(R) : (T, pu1,- -, i) = Br(pa, - .., pun)

that is continuous in T and satisfies

KEBT(NL‘..,,UJN)(Z) = Z Ky, (z — KEEbr]-(T)(#lv--a/JN)(Z))' (4.1)
JEININT

In fact, this map is jointly continuous Tree(N) x P(R)N — P(R).

The convolution will be constructed by iteration to a fixed point similar to the description of free
and subordination convolutions in Belinschi et al. (2017). One of the main ingredients in the proof
is the Earle-Hamilton theorem, which is a fixed-point theorem for holomorphic functions between
Banach spaces.

Definition 4.2 (See Zorn, 1945a,b, 1946). Let X and ) be Banach spaces and let 2 be an open

subset of X. A function f:Q — Y is holomorphic if

(1) For each z € X, there exists r > 0 such that B(xz,r) C Q and f(B(z,r)) is bounded.

(2) For each z,2’ € X and ¢ € ), the function C — C mapping z to ¢[f(z + z2)] is holomorphic
on the region where it is defined.

Theorem 4.3 (Earle and Hamilton, 1970). Let X be a Banach space and 2 a connected open subset
of X. Suppose that F : Q — Q is holomorphic, F () is bounded, and d(F(2),Q¢) > 0. Then F
has a unique fized point in Q and for any x € Q, the iterates F°™(x) converge to the fixed point as
n — oo.

We also use the following lemma about K-transforms and truncated cones. For a € (0,1) and
0 < b < ¢, we define
Lope:={z:Imz > max(alz|,b), |z| < c}.
Note that I'g . is convex. Of course, if a were greater than 1, this set would be empty since

Im z < |z|; similarly if b were greater than ¢, then I'y . would be empty. We also remark that

Lot prer € Lagpoer if and only if a1 > ag,b1 > ba,c1 < ca.
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Lemma 4.4. Let Y C P(R) be compact, let N € N, and suppose that
1>a9>a; >0, 0<by <by<cp<ey.
and
1>a >0, 0 < by < co.
Then for sufficiently large t, we have
p €Y,z € o thotey, W E Lagthotecy = 2 — NK,(w) € Tyy iy s -
Proof: Let
€(t) =sup  sup w
HEY welay, tby,tey |wl
Note that €(t) — 0 as t — oo using Lemma 2.6. Let z € T'y; tpg.tc, and w € 'y, 4by 1c,- Note that
Im(z — NK,(w)) N Im(z) — e(t)|w] < Im(z) — €(t)(tea/tho) Im(z)
|z = NEKu(w)| = [zl +e@w] = |z[+ e(t)(tea/tho)]|2|
_ bo — €(t)co Im z N by — €(t)ca
bo +e(t)ca |z| — by + €(t)ea

where we have used the fact that |z| > Imz > tby. Since €(t) — 0, we have for sufficiently large ¢
that

ap,

bo — E(t)CQ

bo + E(t)CQ ao = a1.
Next, note that

Im(z — NK,(w)) > Im(z) — e(t)|w| > t[bg — €(t)ca].
This will be greater than or equal to tb; provided that t is large enough that by — €(t)ca > by.
Finally,
|z = NK,(w)| < |z| + €(t)|w| < teo + €(t)tea = t(co + €(t)c2).

This will be less than or equal to te; provided that t is large enough that ¢y + €(t)ca < ¢;. O

Proof of Theorem J.1: First, let us prove the uniqueness claim. Note that if 7 is a finite tree of
depth d, then (4.1) expresses K, (,,,.. uy) iD terms of the branches of 7', which are trees of depth
at most d — 1. Therefore, by induction, By (u1, ..., px) is uniquely determined for all finite trees in
Tree(N). However, finite trees are dense in Tree(N), so by continuity, By (u1, ..., uy) is uniquely
determined for every tree.

To prove the existence and continuity claims, we begin more generally. Let Y be a compact
subset of P(R), and fix some

1>a9>a1 >as >0, 0<by<by <by<cyg<ey <es.
Fix some t as in the conclusion of Lemma 4.4. We will apply the Earle-Hamilton theorem with
X = O(Tree(N) x YN x Top tpotco)s Q= C(Tree(N) x Y X Ty s tc0> (Tan thates))-

To check that Q is open, note that because Tree(N) x YV x I ao,tbo,teo 18 compact, any continuous
function f from this space into (g, tby te,)° Will have compact image, hence the image will be sepa-
rated by a positive distance § from C\I's, 1p, tc,, and then C(Tree(N) x YN x Lo tho,teo» (Dag thotes))
contains the ball of radius /2 around f in C(Tree(N) x YV X Ty tho.teo)- Clearly, € is connected
(and in fact convex) because it consists of functions with the convex target space I'gq 15y tco -

Now let F : Q2 — X be given by

f(f)(Tvula"'muNaZ):z_ Z K,Lbj(f(brj(T)aul"“aMNaZ))'
JETNIN]
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Because br; is continuous, it is straightforward to check that F(f) is continuous, hence is an element
of X. Because K,; is holomorphic, it follows that F is a holomorphic function 2 — X. Indeed, it
suffices to check for each j the holomorphicity of the map F; given by

Fi(F(T pr, s pun, 2) = Lier Ky, (f (bri(T), pas - -, v, 2)).-
Letting Tree(N); = {T € Tree(N) : j € T}, we can write F; as the composition of the following
maps:

e The map C(Tree(N) x Y™ X Ty tho teos Lag.thates) — C(Tree(IN); x YN X Ty 1bo teos Das.ths.tes)
given by precomposition in the T-coordinate with br; : Tree(N); — Tree(N). This is the
restriction of a linear transformation C(Tree(N) x YN x Tuy tpo.te0) — C(Tree(N); x YV x
Lo tbo teo ), hence is holomorphic.

e Pointwise application of K),;, which maps C(Tree(V); x YN x I ao,tbo.tco» Las ths tes) holO-
morphically into C(Tree(N); x YN x Lot teo)-

e The inclusion map C(Tree(N); x YN x Lo tho,teg) — C(Tree(N) x YN x Lo tho tey) given
by extension by zero (recall that Tree(NV); is clopen in Tree(N)). This map is linear, hence
holomorphic.

We claim that

F() C C(Tree(N) x YN x Ty tho o Laythy ter) . (4.2)
Fix f € Q, and fix T, 1, ..., pn, and z. By our choice of ¢ (see Lemma 4.4), since p; € Y and
2 € Tag thoteo and f(brj(T), g1, -, UN, 2) € Lay thy tep» We have

z— NKMj(f(brj(T)7/j’17 o 7,U’N7Z)) S Fal,tbl,tcl-

Now because I'y, 45, 1, is convex and contains z, the point

Z KM] er T)?Nla"'v/j’Naz))

JETN[N]

H \T| .t Z u]_(f(brj(T),Ml,...,MN,Z)))

JjE€ N]ﬂT

is in Ty, tby e, Therefore, F(f)(T,p1, ..., 1N, 2) € Lay thy te,» demonstrating (4.2).

Now I'g, tby te, 1S separated by a positive distance § from I'y ;. . This implies that C (Tree(N) x
YN x Lo tbo tcos Lay by tc; ) 1S separated by 0 from the complement of Q@ = C(Tree(N) x YN x
Lo tbo.teos (Dag thy tey)°). Therefore, the Earle-Hamilton theorem applies and there is a unique f €
that satisfies F(f) = f. Moreover, the iterates F°"(z) (where z represents the constant function
with value z) converge to f in C(Tree(N) x YV x Lo tho,teor (Dag tho tes)C) @8 m — 00.

Now we can prove the existence claim. Fix pq, ..., uy. In the foregoing argument, we can take
Y ={p1,...,un}, which is clearly compact. Let
(0) _
FT“LLl,...,/LN (Z) =
and (n+1) (n)
n n
FTUh 7NN<Z) =T Z K“J’<Fbrj(’f),m,'.~,uzv(z))'
JEININT
By a straightforward induction argument, Ff(rn:ll) MN(z) is well-defined and is a holomorphic map

from the upper half-plane to itself. Moreover,

F7(Z?,L)L1,...,/,LN|Fa0,tbo,tcO = ‘Fon(z)(Ta M1y .-y BN, )
n)

Hence, the preceding argument shows that F7(- A
Because Hol(H, H) is a normal family when the target space is viewed as a subset of the Riemann

converges uniformly on Iy 3 tc, a8 n — 00.

sphere, it follows that F7(—7?2“7 Ly converges locally uniformly on all of H as n — oo to some function
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Fr ... uy taking values in the closure of H in the Riemann sphere. But Fr ,, . ,.n maps Iag ho.tco
into I'a, tb, tc, Which is in H, and therefore, the open mapping theorem implies that Frr ,, . ., maps
H into H. The identity

Frop . (2) =2— Z Kuj (Fbrj(T),Ml7--~7NN (2))
JEININT

holds on 'y, 14,,t¢, by the foregoing argument, and hence it holds on all of H by the identity theorem.

Next, we argue that Fr ,, ., is the F-transform of some probability measure p. By Nevan-
linna’s theorem, it suffices to show that Fr, . (it)/t — i as t — 400 on the positive real axis.
For this purpose, let us forget the original values of a;, b;,c; and t. Given a neighborhood U of 4,

we may choose ag > a1 > ag > 0 and 0 < by < by < by < ¢y < ¢1 < ¢ such that
Fa17b1701 cu.

If ¢ is sufficiently large, then the foregoing argument shows that

FT,M,---VMN (Fao,tbothO) - Fal,tbl,tq

since the fixed point of F must be in F(Q2). In particular, since it € tLg, p.co = Lag.tho tcos WE get

FT iy (it) € Laytbrter = taype; and hence Fr, .y i)/t € U. Thus,
Bmy—y o0 Frop,.. un (it)/t = i, and hence Fr . . is the F-transform of some probability measure
B7(u1, ..., un). This concludes the existence claim.

Finally, we must show joint continuity of (7, u1,...,un) — Br(u1,...,un). Since P(R) is
metrizable by Prokhorov’s theorem, it suffices to show sequential continuity, which in turn will
follow if we show that the map is continuous on Tree(N) x YV for every compact Y C P(R). Fix
constants ag > a1 > as > 0and 0 < by < by < by < ¢y < 1 < ¢co and let ¢t be as in Lemma 4.4.
Then by the previous argument involving the Earle-Hamilton theorem, the map

Tree(N) X YN X Fao,tbo,t(}o — Fal,tbl,tcl : (T) H1y-eos UN, Z) = FT;,LLIV'WIJ’N (Z)

is jointly continuous, due to the definition of the set 2. Since the domain of this function is compact,
it is uniformly continuous, and hence

Tree(N) X YN — C(Fao,tbo,tcov Fal,tbl,tcl) : (T, M1y 7/“\7) — FT7M17"'7MN‘Fa0,tb0,tCO

is continuous. Because Hol(H, H) is a normal family, uniform convergence on Iy 14, tc, Of & sequence
F,, in Hol(H, H) to some F' € Hol(H, H) implies local uniform convergence F,, — F' on all of H.
Hence, we have continuity of the map

Tree(N) x yN Hol(HL H) : (T, po1y- - o) = Frpn iy -

But by Lemma 2.2, this is equivalent to continuity of (7, u1,...,un) — By(u1,. .., pun), which is
what we wanted to prove. ]

Corollary 4.5. The convolution operation defined in Theorem /.1 in the case of compactly supported
measures agrees with the one defined in Jekel and Liu (2020) for B = C.

Proof: Let T € Tree(N), and let py, ..., un be probability measures supported in [—R, R]. Jekel
and Liu (2020) took the viewpoint of treating the measures as positive linear functionals on the
polynomial algebra, which is equivalent in the case of compactly supported measures. The convo-
lution operation in Jekel and Liu (2020) was shown to satisfy (4.1); see Jekel and Liu (2020, §6.3,
equation (6.3)). Now the T-free convolution of p1, ..., un is supported in [-NR, NR], and the
moments depend continuously on 7 see Jekel and Liu (2020, §5.2). Therefore, the convolution in
Jekel and Liu (2020) for pq, ..., un satisfies the fixed point equation and continuity property of
Theorem 4.1, so it agrees with the convolution defined in that theorem. ([l

Here are a few simple cases of convolution operations that we will use later.
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Example 4.6. Let T = {0} € Tree(N). Then
Ky (uyeeun) (2) = 0

because it is the sum over an empty index set. Hence, By (u1,...,un) = do.

Ezample 4.7. Let Ty ool = {0} U [N] € Tree(N). Then br;(Tnbool) = {0}. Therefore,

N N
KEHTN,bool(m,...,uN)(z) = ZKM(Z — Ks,(2)) = ZKM (2).
j=1 j=1

The convolution BaTN,bool(lu’l""Hu’N) is called the boolean convolution of @i, ..., puny and it is

commonly denoted L+J§V:1 i or p - -wWun (see Speicher and Woroudi, 1997). Boolean convolution
corresponds to addition of the K-transforms. Hence, the binary boolean convolution operation @
is commutative and associative. Since the boolean convolution is independent of the order of the
measures, we may unambiguously write [/, g pts where S is a finite set.

Ezample 4.8. Let Topen = {0,1,21}. Then By, (p1, p2) is called the orthogonal convolution and is
denoted by py b pa (see Lenczewski, 2007). Note that bry(Torn) = {0, 2} and bra(7owen) = {0} and
bro(bry(Town)) = {0}. Therefore,

KMN—MQ(Z) = Kul (Z - KMQ(Z)) = Klﬂ o Fuz (Z)

Remark 4.9. The fixed point equation (4.1) can be expressed alternatively in terms of the boolean
and orthogonal convolution as

Hr (,ulv"'nuN) = L‘H (MJFEHer(T)(/’Lha/JN)> . (43)
JEININT
Iterating this formula enables us to express the convolution associated to any finite tree in terms of
the boolean and orthogonal convolutions. The case of compactly supported measures was already
done in Jekel and Liu (2020, §6.3), and this is a generalization of Lenczewski’s earlier work on
decompositions of the free convolution Lenczewski (2007).

Ezample 4.10. Let T2 mono = {0,1,2,21}. Then By, .. (111, 42) is called the monotone convolution
of p1 and pe and is denoted pp > pg (see Muraki, 2000, 2001). Computing iteratively with (4.1)
yields

pa > po = (p1 b= p2)  po (4.4)
or equivalently

KMDM (Z) = K,“l (Z - K#Q (z)) + Kuz(z)a

which implies that F),,»,, = F}, o F,,. In the next section, we will use two more simple identities
relating boolean, monotone, and orthogonal convolution. First,

A (p>v)=AFp (4.5)
holds because Ky o (F), o F,)) = (K o F},) o F,,. Second,
N N

Hw|Fv=Hw+v (4.6)
j=1 j=1

holds because (Zjvzl K)o F, = Zjvzl Ky oF,.

Ezample 4.11. Let us explain the connection between 75 frce and prior work on free convolution more
precisely. The free convolution p B v is defined in Bercovici and Voiculescu (1992) by the relation
that

Fa,=F '+F"-id
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holds in a non-tangential neighborhood of oo in the upper half-plane. In order to show that

-1 = F; '+ F;! —id, we look at (4.3) says in the case of T3 e, Which of course entails
BETQ,free (p,,l/) H v ;

looking at the branches of T3 free. Let Teup = {0,1,21,121,...}, and let 7?:11) ={0,2,12,212,...}.
We observe that

bry (7-2,free) = 7:[1}37 br2(7-2,free) = 7gub7
bry (Ta) = Tohys bra(Tawn) = 2,
brl(’]:{lb) =0 bf2(7:1rlb) = Tsub-

Thus, (4.3) yields
BT e (V) = (Bt (n,v)) W (v - By, (1, v))
B () = pE By (,0)
B (w,v)=pkBr, (1)

sub

Back-substituting the last two equations into the first yields
B free (1, v) = By, (1, ) WB (1, 0).
Similarly, using back-substitution and (4.4),
B pree (1, v) = (= Bt (0, v)) WBxt (pv) = p> 8B ().

ub
and symmetrically, Bz, .. (1, ) = v > By, (11, ). In terms of the F-transform, this means that
FEETQ,free (N‘7V) = FEETsub (H,l/) + Faatrllb (Mv’/) - ld = Fru‘ o Faattlb (Hay) = FV °© FEHTsub (,U«,l/)’

Hence, in a non-tangential neighborhood of oo, we have
—1 -1 _ _ -1 -1
(FH T FV o ld) © FHHTQ,free (H’V) - F'U' © FEHTQ,free (M’V) - FV © FE}TZfree ('u’l/) o FE}TZfree ('u’l/)

- FEE’TT (;L,V) + FEETsub(H'vV) o FEETQ,free(H’V)

sub

= id,
sothatFljl—i—F;l—id:FEg

1
T2,free
In the process of the argument, we showed that Fym, = F,oFg,

and therefore, Bz, ;. (1, v) = pB v as desired.

() which means in particular
that Fym, is analytically subordinated to F, as functions on the upper half-plane; this result has
been studied by many authors in free probability (Voiculescu, 1993, Proposition 4.4, Biane, 1998,
Theorem 3.1, Voiculescu, 2000, Voiculescu, 2002, and Belinschi et al., 2017, Lenczewski, 2007, §7,
Nica, 2009, Liu, 2018, Proposition 7.2). The convolution operation associated to 73 gup is called the
subordination convolution and is denoted p [Hv. Furthermore, it is easy to check (and follows from
Proposition 5.1 below) that EETTb(“’ v) =87, (v,pn) =v[HEp

The above relations between free and subordination convolutions imply that Fjm, and Fymp,
satisfy the fixed-point equation system

F,UEEV =id _Kﬂ o FV[E,u
FV[HM =id —KV o FM[HV‘

In order to study the subordination theory for free convolution, Belinschi et al. (2017) used iteration
to construct solutions for this fixed-point equation system (and this was done in the more general
operator-valued setting). In fact, the iterates from their paper are, in the notation of our proof of

Theorem 4.1, exactly Ff(r")b v and Ff(ﬁ) . Hence, our fixed-point iteration is a direct generalization
subsHs b7u7[/

su

of the one used for subordination convolution. However, the subordination case is simpler in that
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F%ltz’y and F(T;H) are computed in terms of Fé’:l)b,u,v and F(?) and K, and K,; no other
t

subsHsV subtH?
trees besides Tgu, and ’7;le are involved in the computation because {7Tsup, T, @} is closed under
the branch operations.
One can check also that F%?bvu,v =, where 7;53)) is the truncation of the tree 7g,, to
depth n, and

sub ?

B (p,v)=pk @k (phk...)).

sub

n terms
Hence, u [H v is the limit of iterated orthogonal convolutions of p and v, as was observed by
Lenczewski (2007).

5. Convolution and the operad structure

In this section, we describe how the convolution operation of Theorem 4.1 relates to the operations
in the operad Tree. We start out with two propositions that prove permutation-equivariance as well
as more general convolution identities. We remark that Propositions 5.1 and 5.2 imply that all the
same convolution identities as in Jekel and Liu (2020, §6) hold for arbitrary probability measures
on R since the only ingredients needed in the proofs are the relations (5.1) and (5.2).

Proposition 5.1. Let 1) : [N] — [N'] be surjective. Let Tree(1)) be the set of trees T € Tree(N) such
that 1. (s) is alternating for every s € T and such that V|7 is injective. Let uq, ..., un € P(R)
and T € Tree(y)). Then

B7 (Lp), - - Bpv)) = By, (1, - ). (5.1)

In the case of compactly supported measures, this proposition follows from Jekel and Liu (2020,
Corollary 5.15). Omne can deduce the general case by continuity because compactly supported
measures are dense in P(R). But below we give an alternative self-contained argument directly
from Theorem 4.1.

Proof of Proposition 5.1: Note that Tree(v) is closed under taking branches and rooted subtrees.
Therefore, finite trees are dense in Tree(t)), so by continuity, it suffices to prove (5.1) when T is
finite. We proceed by induction on the depth of 7. When the depth of 7T is zero, (5.1) holds because
both sides are dg. For the inductive step, consider a finite tree T of depth d. By Theorem 4.1,

Br iy, o) = 4 (Mw(j) = Bor, (1) (e (1) - - - 7/1«1/;(N))> :
jelNINT

Since 1|7 is injective, each neighbor ¢ of the root vertex in 1, (7)) is the image of a single neighbor
j of the root vertex in 7. Moreover, br; (¢ (7)) = 1.(br;(T)). Since br;(7) has depth strictly less
than d, the inductive hypothesis implies that

Bor, (7) (Bap(1) s - - - 5 Bap(v)) = B, or; (1) (15 - ).
Therefore, the above expression equals
By k) = B (i E Bowy o (s o)) = By, (B, -+ i),
1E[NIMY(T)

which completes the inductive step and hence the proof. O

Since any function is the composition of a surjection and injection, to understand the general
case of ¢ : [N] — [N'], all that is left is to handle the injective case. In order to simplify notation,
we restrict our attention to the canonical inclusion [N] — [N'] for N’ > N that maps j to itself.

Because of permutation-equivariance, whatever results we prove for this case will have analogs for
a general injective map.
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Proposition 5.2. Let N < N'. Let . : [N] — [N'] be the canonical inclusion. Then for T € Tree(N)
and py, ..., un' € P(R), we have

Br (p1,- .-, 0n) =8B, - pr)- (5.2)
Proof: Let M(T) =8, (y(p,---,unr). Note that
M(T)y = wyF By (i, o)
JEIN'INL(T)

But [N'] N w(T) = «([N]NT) and br;(e(T)) = ti(br;(T)). Thus,

MT) = W B ymys.oov)= 1w Mb(T)).
JEININT JE[NINT
Thus, M(T) satisfies the fixed-point equation (4.1). It also depends continuously on 7T since 7 —
t+(T) is isometric. Therefore, by Theorem 4.1, M(T) = By (u1,. .., uN)- O

The next theorem shows that the convolution operation H respects operad composition.

Theorem 5.3. Let T € Tree(k) and T1 € Tree(ny), ..., T € Tree(ny). Let N = ng + -+ + ng.
For each j € [k] and i € [nj], let p;; € P(R). Then we have

B (7, ) (B0 s By e Mk - s By )
= Br (@7 (L1, m)s -+ B (k15 -+ -5 Hieny,))-

In the case of compactly supported measures, this result follows immediately from Jekel and Liu
(2020, Corollary 5.13) taking B = C. Because compactly supported measures are dense in P(R) and
because of continuity of the convolution operations in Theorem 4.1, it follows that the identity holds
for all measures in P(R). Although this argument is satisfactory, we will also present an alternative
proof directly from Theorem 4.1 that is self-contained and elucidates the connection between the
fixed-point equation in Theorem 4.1, the operad structure, and the branch maps.

Proof of Theorem 5.5: First, we prove the case of the theorem where 7 = 72 mono- In other words,
we want to establish the identity

75 tmono (7,72) (1,15« ++s Blng s B2,15 -+« s H2inp) = B (11, -+ oy pang) > B3 (2,1, -+, pi2ny)  (5.3)

for 71 € Tree(n;) and T2 € Tree(ngy) and for probability measures p;;. Note that both sides depend
continuously on 77 and 73, using continuity of the operad composition in Tree and continuity of the
convolution operation in Theorem 4.1. Therefore, it suffices to prove the statement when 77 and 75
are finite trees.

We proceed by induction on the depth of 77 plus the depth of 75. In the base case of combined

depth 0, we have 77 = {0}, and hence Tomono(T1,7T2) = T2 and By (p11,. .-, fin,) = do, so the
claim holds.

For the inductive step, consider trees 71 and 75 with combined depth d. Let 7' = T2, mon0(T1, T2).
Let g1 =87 (p1a,- -5 piny) and po = B (02,1, - - -, H2.n,). Note that

[n1 +n2) NT" = 11([n1] NT1) U a([ne] N Tz).
Thus, by equation (4.3),

B (H0s o s 2,155 o) = (3 (Ml,z' = Bhor, (1) (B1,15 -5 Hang s 2,15 - - 7M2,n2)>
’i€[n1]ﬁ7—1

W H_J (:U’Q,i - EE]brLQ(i)(T’) (N1,17 sy Hlngy B2,15 - - - 7:“’2,712)) :
iE[TLQ]ﬁ'TQ
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Now by Lemma 3.9, letting ¢ : [2n1 + na] — [n1 + na] be the map sending the first n; points
monotonically onto [n;] and the last n; + ne points monotonically onto [ny + ns|, we have

br,, (i) (T') = br,, i) (T2,mono (71, 72))
= (¥1)+[T2,mono (b1 (T1), br1(72,mono) (71, 72))]
= (¥1)«[T2,mono (bri(T1), (12)«(72))]
= E,mono(bri(ﬂ)7 75)
Similarly,
brL2(z‘)(T/) = brbz(z’) (T2,mon0(T1, 72)) = (¥2)[T2,mon0 (bTi(T2), bra(T2,mono) (T1, T2))] = (t2)x(bri(72)).

where 13 : [n1 + 2n2] — [n1 + n2] sends the first ny coordinates monotonically onto t2([ng]) and the
last n1 + ny coordinates monotonically onto [ny 4+ ng|. Therefore, using the induction hypothesis,

Bor, oy (7 (1,15 s Hangs H2,15 - - - H2mg) = Be(73) (1,15 - -5 by ) B B7 (2,1, - -+ pi2ny)
= Bor,(7) (1,15 - - -5 10y ) B> pi2,
and by applying Proposition 5.2 to ¢g,
Eﬂbrbz(i>(7")(”1,1v e Mg 12,15 f2m) = B, brs (72)] (BL,15 -  Hng s H2,15 - -5 H2im)-
= Bor; (1) (H2,15 - - - s H2,m5)-
Therefore, using (4.5) and (4.6),

lH (Ml,z‘ = B, () (B115 - B 2,15 - 7:“’2,712))
1€[n1]NTh

= HJ (1 b (Bor ) (1,15 - -+ 1ny) B> p2))
iE[nl]ﬁﬂ

€

(1 b (Bor iy (1,15 -+ 1ny) > p2))
iE[nl]ﬁ'Tl

= L‘H (16 b By (1,15 - - - 1ny)) F pi2)
1€n1]NTh

= L—H (110 = Bor ey (01,15 1)) | F b2
i€[n1]NT1

= p1 = po.
Similarly,

U-J (M2,i - BabrL2<i) (T/)(ILL1,17 ceey Hlmng s M2,15 - - 7:“2,712))
1€[n2]NT2

= H—J (12,6 b B, (73) (2,15 - - - H2mo))
i€[na]NT2
=H2.
Therefore,
B (11,15 -+ o5 s 12,15 -+ 5 H2iny) = (1 - p2) © po = i1 D> pio
as desired, which completes the inductive step.

Finally, we begin the main argument to prove the general case of the theorem. Let T, T1, ..., Tg
and p;; be as in the theorem statement. Let

pj =BT (151, i)
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Let
M(T) = EET(TL...,'E)(:“LD e ,,U,Lnl, ...... ,/LkJ, ooy ukmk).

Note that 7 — M(T) is continuous because composition and convolution are continuous. Thus, by
Theorem 4.1, to show that M (7T) = By (w1, ..., uk), it suffices to show that

M(T)= |H (st Mbr;(T)). (5.4)
JERINT
Let 7" = T(Th,...,Tx). Let ¢ : [nj + N|] — [N] map the first n; elements monotonically onto

tj([n;]) and the last N elements monotonically onto [N]. Applying (4.3), Lemma 3.9, Proposi-
tion 5.1, (5.3), and (4.5),

M7= ¥ (Hj,i = Bor, ) (T(Tr ) (L1 - - aﬂk,nk))
JE[K]i€ny],
4 ENINT

= W (10 By e ors o DT T (115 k)
jelk ey,
L]'(Z')G[N}OT/

S

JERINT i€ln;INT;

<Mj,z‘ = B7s oo (bri (7). b1 (T)(Ti -, ) (K41 -+ 5 s PLL -+ 7ﬂk,nk))
- L-H H-J (M]’Z - (Eabri(f,})(ujyl’ te 7Mj7”j) > Ebrj(T)(’ﬁ,...,E)(:u'l,la e 7,uk,nk)))

(1,0 = Bor, (1) (14,15 - -+ s 1gmy)) M(brj(T)))

which demonstrates (5.4) and hence finishes the proof. U

Knowing that the convolution operations respect the operad structure of Tree, we can now discuss
the examples of boolean, free, and monotone convolution in more generality. However, we will not
give detailed justification for the claims here because the boolean, free, and monotone convolution
were already discussed in depth in Jekel and Liu (2020, §3.2, §5.5, and throughout).

Ezample 5.4. Let Ty pool = {0} U[N]. We saw in Example 4.7 that By, is the N-fold boolean
convolution. Let id = {(),1} € Tree(1). The operad identity

E,bool(ida E,bool) = E,bool(%,boolv ld)

can be checked by direct computation, and it implies that pq W (uo W ps) = (1 W pe) W us, that is,
the binary boolean convolution operation is associative. Furthermore, 73 boo1(id, 72,b001) = 73 bool
implies that the ternary boolean convolution can be obtained by iterating the binary boolean con-
volution. More generally,

E,bool(ﬁu,boola oo ank,bool) = 7;11+---+nk,b001-
Hence, the N-ary boolean convolution can be obtained by iterating lower order boolean convolutions.
Finally, Tn bool is permutation-invariant and therefore EBT]\,,bOO1 is permutation-invariant.
Example 5.5. We saw in Example 4.11 that 73 gee produces the binary free convolution operation.
One can check that

’TZ,free (ld, E,free) = B,free(%,freea ld) = 7§,freea
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and hence the binary free convolution is associative. We also deduce that B, . (p1, p2, ps) =
(1 Bug)Bpus, so that Bz, . agrees with any other definition of the ternary free convolution. Similar
reasoning shows that 7x free produces the N-ary free convolution; the N-ary free convolution can be
obtained by iterating lower-order free convolutions; the free convolution is permutation-invariant.
Alternatively, the argument in Example 4.11 can be generalized to N variables to show that

N
5 id = E : -1 .
FEHTN,frcc(ML"'nU'N) _ld_ ' 1(FM] —ld)
]:

on an appropriate domain.
Example 5.6. Let

TN mono = {DyU{jr...je: N>j1>jdo>->jp>1,0>1}
Similar to the previous examples,

E,mono(idy ’T2,mono) = E,mono(ﬁ,monm ld) = E,mono-

Hence, we have associativity of monotone convolution, and 73 meno produces the ternary monotone
convolution. More generally,

77<:,m0n0 (ﬁzhmonoa s ank,mono) = 7;L1+---+nk,mono'
The mirror image of T mono 1S
TNmonot = {0}U{j1...Jr:1<j1 <ja<---<js <N L>1},

which relates to the anti-monotone convolution instead of the monotone convolution. The permu-
tation of [IN] that reverses the order of all the elements transforms 7 mono into 7Tn monot, Which
corresponds to the fact that the anti-monotone convolution and monotone convolution are related
by reversing the order of indices.

Our final observation is that the 7-free convolution of several copies of the same measure depends
only on the isomorphism class of 7. We remark that the case of compactly supported measures
also follows from Theorem 7.8 and Proposition 7.19 (1) of Jekel and Liu (2020).

Lemma 5.7. Suppose T1 € Tree(N1) and Ta € Tree(Na). If Ti = Ta, then Br(u,...,n) =
Br (..., p) for all p € P(R).

Proof: If 71 and 7Ty are isomorphic, then their truncations ’7'1(k) and 7'2(k) to depth k are also

isomorphic for every k. Since 7'1(k) — 71 and 7'2(k) — T2 in Tree(NN1) and Tree(N2) respectively,

and since the convolution operations are continuous, it suffices to show that ElEIT(k)(M, ce ) =
1

Brw (o )

Therefore, to prove the lemma, it suffices to prove the case where 77 and 75 are finite trees.
We proceed by induction on the depth, the depth-0 case being trivial. Let ¢ : 71 — T2 be an
isomorphism. By Observation 3.11, ¢ defines a bijection [N1] N 71 — [N2] N T2, and br;(7T1) =
brg(;)(72) for each j € [N1] N 7. We may apply the induction hypothesis to each of these branches
since they have strictly smaller depth than the original trees. Hence,

Br ()= |k Bo ey (o)

jE[NﬂmT

= L-_i-J :ul—Bﬂbrj/('TQ)(u7au):BH7—2(M77“)7
J'€[N2]NT2

which completes the inductive step and hence the proof. O
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6. A general limit theorem

Bercovici and Pata (1999, Theorem 6.3) showed a bijection between limit theorems for classical,
free, and boolean convolution in the following sense: Given a sequence (u¢)eeny in P(R) and a
sequence (k¢)eeny in N tending to infinity, uzke converges weakly as £ — oo if and only if uaﬂk‘
converges if and only if ufk" converges weakly as £ — oo. Theorem 6.1 will generalize one direction
of this result to trees 7 with n(7) > 1; namely, we will show that if convergence holds for the
boolean case, then it holds for all such trees 7. Applications of this result will be discussed in §7,
and open questions in §8.

In preparation, we establish some notation. For 7 € Tree(IN) and p € P(R), let

B7 () == Br(p, .., 1)
N times

We also use boolean convolution powers defined as follows: For ¢ > 0 and pu € P(R), let u¥ be
given by

KN&JC = CK“.

For each p, such a measure pu¥ exists because a function K is the K-transform of a measure if

and only if K maps H to —H and K(z)/z — 0 as z — oo in H non-tangentially. The notation
1¥¢ is unambiguous since a measure is uniquely determined by its K-transform. If N € N, then
E—Jj.vzl p = pu®N. We also have (u¥¢1)¥e2 = y¥e1¢2. Recall also Definition 3.12 and Lemma 3.16.

Theorem 6.1. Let (pp)oen be a sequence in P(R) and let (kg)oen be a sequence of natural numbers

tending to co. Let N € N and T € Tree(N) withn(T) > 1. If i, wn(T)" converges to some probability
measure v as £ — 00, then Bror, (11g) converges as £ — oo to some probability measure BP(T,v) only

depending on T and v. Moreover, for each N € N, the convergence is uniform over all T € Tree(N)
with n(T) > 1.

Our proof relies on the following result, which gives certain continuity estimates for the 7T -free
convolution operations that are independent of V.

Theorem 6.2. For N € N, we define
Oy : Tree(N) x [0,1] x P(R) — P(R)
by

n(T)

EHT(M&JC/N’ L 7/leJ_r,lc/N)ErJl/cy = (07 1],
(Toesp) =1 ynn)
BTN c=0.

The map ®n satisfies the fized-point equation

Koy (T e () Z Kyu(2 = cKoy (br;(T),e) (2))- (6.1)
]G[N]HT

Moreover, the maps (®n)nen have the following equicontinuity property: For each compact Y C
P(R) and € > 0, there exists § > 0 such that for all N, for all Ty, Ta € Tree(N) and ¢1, ¢ € [0, 1] and
weY andv € P(R), if pn(T1, T2)+|c1—co|+dr(u,v) < 8, then dp (PN (T1, c1, 1), Pn (T2, c2,v)) < €.
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Proof: To check (6.1) for ¢ > 0, observe that

1
Koy (T e (2) = EKEET(WC/NW,WC/N) (2)

1
- Z EK/NC/N(Z - KEEbrj(T)(NwC/N:-"vNLHC/N)(Z))
JEININT

1
= N Z K“(Z - CK(I>N(bI'j(T)7C7M) (Z))
JEININT

The case ¢ = 0 is immediate and left to the reader.

Now we turn to the claim about continuity. We will show below that the family (®n)nen
is uniformly equicontinuous on Tree(/N) x [0,1] x Y. By this, we mean more precisely that the
functions are uniformly continuous with a modulus of continuity that is independent of N; even
though the domains are different, equicontinuity still makes sense because we have fixed a metric
pn for each Tree(N) from the beginning. This claim about equicontinuity for each compact Y is
enough to finish the proof. Indeed, if the conclusion of the theorem failed, then there would be a
compact set Y and e > 0 such that for each k > 0, there exist u; € Y and v, € P(R) and Ny € N
and T, T, € Tree(Ny) and ¢, ¢, € [0, 1] such that

pN(Ti, Ti) + lex — el + dp(pw,vi) < 1/k,  dp(®n, (T ¢k ), P (Ti €y vr)) > €
Then Y/ =Y U {v, : k € N} would be compact, and the above conditions would contradict the
equicontinuity on Tree(N) x [0,1] x Y.

As before, the strategy is to reframe (6.1) as a fixed-point equation for some analytic function F
on a Banach space X’ and apply the Earle-Hamilton theorem. Fix Y C P(R) compact, and fix

1>a9>a1 >a9 >0, 0<by<by <by<cy<eg <ea,

and let ¢ be as in the conclusion of Lemma 2.2. Let X to be the space of sequences (fx)nen Where
fn : Tree(N) x [0,1] x Y x g tbo,tc, — C and where (fn)nen is uniformly bounded and uniformly
equicontinuous, with the norm given by

I(fN)Nenllx = E%%HfN||C(Tree(N)x[0,1]xyxra0,tb0,tco);

it is easy to check that this is a Banach space because uniform equicontinuity is preserved under
limits in this norm. Let

Q= {(fN)NeN eX: |J Ran(fy) C (Faz,tbg,tCQ)o} :

NeN

where Ran(fy) denotes the range (image) of fy. Note that €2 is open in X'. Define F : Q — X by

F((fn)nen) = (gn)nen, where gn(T ¢, p,2) =z — % Y EKu(1=0)z+cfn(bry(T),c, 1, 2)).
jelNINT

The motivation for this definition is that fx (7, ¢, p, 2) is intended to approximate z — Kg N(T e (2),
and hence the intended approximation for z — cKg  (br;(7),e) (2) 18 (1 — )z + cfn (T, ¢, p1, 2).

We must check that (gn)nen is actually in X, that F is analytic, and F(f2) is separated by a
positive distance from Q°¢. First, to show that (g5 )nen is uniformly bounded and equicontinuous,
one combines the following facts:

(1) The modulus of continuity of the map br; (on its domain) is independent of N since it is
e-Lipschitz.
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(2) The map p — K, is continuous on Y where we use the vague topology on Y C P(R) and
the topology of uniform convergence on Iy, 45, e, Hence, the map (p,2) — K,(2) is jointly
continuous on Y xXI'y, 1, t¢,, hence uniformly continuous and uniformly bounded by compactness
Of Y and Fag,tbg,tCQ-

To show the separation of F(2) from Q€ we proceed similarly to the proof of Theorem 4.1. By our
choice of fy, we have

fN(br] (T)7 C, W, Z) € Faz,tbg,t(a?
and by convexity of 'y, 1, tc,, We have

(1 - C)Z + CfN(bI‘j(T),C,,LL, Z) € Fa2,tb2,t02-
Then by our choice of ¢,
z = KM((]' - C)Z + ch(brj(T)v C, 1, Z)) € Pao,tbo,tco'

Hence, as in Theorem 4.1, gn (T, ¢, p, 2) is a convex combination of points in Iy, 4 ¢, and so is in
Lo tho,teo- This implies the separation of F(€2) from Q°. The analyticity of F is straightforward to
check as in the proof of Theorem 4.1.

For each N € N, let f]Q,(T, ¢, p,z2) = z. Then the Earle-Hamilton theorem implies that
Fo((fY)nven) converges as n — oo to the unique fixed point (fy)nen. As in the proof of
Theorem 4.1, the iterates themselves are F-transforms of measures, and therefore the conver-
gence extends to the entire upper half-plane. And there is a measure Wy (7,c,u) such that
IN(T,cop,2) = Fy (T, (2). Because (fy) is uniformly equicontinuous, we see that (¥n)nen
is uniformly equicontinuous, since uniform convergence of a sequence of F-transforms on Iy, 5, tc,
is equivalent to weak-* convergence of the associated sequence of measures. Finally, reversing our
computations above shows that for ¢ > 0, ® (T, c, )¢ satisfies the fixed point equation defining
By (u/N) Ny = ® (T e, 1n)®e. We have also just shown that ®x (T, ¢, i) depends con-
tinuously on 7T, and thus Theorem 4.1 implies that Wy = &5 for ¢ > 0; the ¢ = 0 case can be
checked directly. Therefore, the equicontinuity properties proved for Wy hold for @ . (|

Theorem 6.3. Let N € N and T € Tree(N) with n(T) > 1. For u € P(R), we have existence of
the limit

1
BR(T, ) = Jim Bou (" 77)

Moreover, for each N, the convergence is uniform on {T € Tree(N) : n(T) > 1} x Y for every
compact subset of P(R), and hence BP is a continuous map {T € Tree(N) : n(T) > 1} x P(R) —
PR).

Remark 6.4. We call the map “BP” in honor of Bercovici and Pata (1999).

Proof: Let Tree(N,n) = {T € Tree(N) : n(T) = n}, which is a clopen subset of Tree(N). Note
that {7 € Tree(N) : n(T) > 1} = UfLQ Tree(N,n).

Fixn € {2,..., N}, and let Y be a compact subset of P(R), and we will show uniform convergence
of Byor ( ,uwni’“) on Tree(N,n) x Y. This of course will imply continuity of the limit function. And to
show uniform convergence, it suffices to show that the sequence is uniformly Cauchy with respect
to the Lévy distance dy, since (P(R),dr,) is complete. Fix an integer

N-—-1

n—1

> 1.

M >

For each T € Tree(N,n), we have by Lemma 3.16 and Observation 3.13 that

nf—1 N-1 N-—1
<

< nkSMnk.
n—1 n—1 n—1

m(T%) + 1 =m(T) (n*—1)4+1<
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Therefore, by Observation 3.13, there exists some tree T € Tree(Mn*) such that Tz = 7°F. Hence,
by Lemmas 5.7 and 3.17, we have for k,¢ > 1, and p € P(R) that

Browro (1) = Byor (Bree (1)) = By, (B7, (1) = Brior (1)-

In particular,
!
Broceso) (1277 ) = By, (Br, (W77))

Wl
:EElTk ((Eﬂn(( WM ) W)UM”k) M"k>

1
=Pk (E,l,@Mne (72, k,,u M2>)

To show the sequence is Cauchy, fix € > 0. Note that Y¥M = {;/*M . |, € Y} is compact because

Y is compact and p — p¥M is continuous by Theorem 4.1, and the same holds for ywM?, Thus,
by Theorem 6.2, there exists 7 > 0 such that for all k, for all A € Y¥M and v € P(R) and
T' € Tree(Mn*), we have

dr(nv) < = dp(®k (T 1,0), @k (T, 1,0)) < %

In particular, this estimate applies with 7' = T, for any T € Tree(NN,n). Applying Theorem 6.2
again, there exists § > 0 such that for all £ € N, for all A € Y¥M* for all T € Tree(N,n), we have
c€10,6) = dr(Pune(Te, €, A)s Poppe (T2, 0,A)) <

Note that
Bt (T3, 0, M) = ()5 = oM
Hence, if k£ > —log,,(M¢) and p € Y and ¢ > 1, then

1 e "
dr, <(I)Mné <727 WaNUM ) muUM> <,

hence
1 2 " €
dL <@M’nk (ﬁ,l,@Mnl (72, k’:u WM )) ,(I)Mnk(n,17/,LUM>> < 5

So for p € Y and 4,0 > 1,

Wiy W
do (Brot+n (0 nF7), By (o7 ) ) <e.
Therefore, the sequence is uniformly Cauchy, as desired. O

Proof of Theorem 6.1: Let T € Tree(N) and ug,v € P(R). Suppose that vy := u;m(T) " S ovas
¢ — oco. Let Y C P(R) be a compact set containing all the measures vy. Theorem 6.3 implies
uniform convergence of Hrok, (A¥"(7)” ") 5 BP(T,\) over A € Y as £ — co. Since BP(T,\) is
continuous and because of the uniform convergence, we can still take limits as { — oo with A

replaced by the sequence vy that depends on £. Thus,

w—Li
B ror, (10) = Brok, (W n l) — BP(T,v)

as desired. The convergence is uniform over 7 € Tree(IN) because the convergence in Theorem 6.3
is uniform. O
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Example 6.5. Theorem 6.1 relates to earlier work on free and monotone convolution as follows. In
light of Example 5.5, 7;’7’&66 = Tok free- Hence, if pp € P(R) and k¢ € N with k; — oo, and if
,u;ﬂ"ke — v as £ — oo, then u?"ke — BP(T free; v) as £ — co. The same can be said for monotone
convolution using Example 5.6. This result can be deduced from Bercovici and Pata (1999) in the
free case and Anshelevich and Williams (2014) in the monotone case. Of course, the results of
Bercovici and Pata (1999) and Anshelevich and Williams (2014) apply to arbitrary sequences my
tending to oo rather than only those of the form m, = n*¢. The restriction on the size of indices
is an artifact of our working with general trees T € Tree(NN), since in the general case it is unclear

how to define an m-ary T-free convolution for all m.

Remark 6.6. Although Theorem 6.1 does not recover the full free and monotone results, the tech-
niques in this paper could still be useful in future work about more general limit theorems. For
instance, suppose that (7x)ren is a sequence of trees with T € Tree(Mng,ny) for some M € N
and ni € N with ny — oo. Suppose we could show using combinatorial methods that for every
compactly supported measure p € P(R), the sequence By, (pe/ ) = @ My (Tes 1, p¥M) converges
to some measure A(p). Then using the equicontinuity result of Theorem 6.3 and the density of
compactly supported measures, ® sy, (Tk, 1, 1) converges as k — oo for arbitrary p € P(R), and the
limiting function A(p) is continuous on P(R). Furthermore, the same argument as in Theorem 6.1
would show that if ,uzmk — v as k — oo, then ®pp, (Tg, 1, 1) — A(v). For similar remarks in the
context of the central limit theorem, see Proposition 8.9 and the following discussion in Jekel and
Liu (2020).

7. Limit theorems for classical domains of attraction

Practically speaking, Theorem 6.1 means that any known limit theorem for additive boolean
convolution implies a corresponding theorem for T-free convolution. First, we have the following
central limit theorem. Below, if 1 € P(R) and ¢ € R, then ¢ - 1 denotes the dilation of x by ¢, that
is, the push-forward of u by the function t — ct.

Proposition 7.1 (Central limit theorem). Let T € Tree(N) with n(T) > 1 and let pn € P(R) be a
measure with mean zero and variance 1. Let vy be the Bernoulli distribution (1/2)(5—1 4 01). Then

lim n(7) "%/ Brox (1) = BP(T, ),

k—o0

and the convergence is uniform in the Lévy distance over all T € Tree(N) with n(T) > 1.

We use the notation v because the central limit theorem fits into a general class of limit theorems
corresponding to stability indices « € (0, 2], which we discuss below. The central limit distributions
for boolean, free, and monotone independence were computed early on in the development of non-
commutative probability theory, Speicher and Woroudi (1997) for the boolean case, Voiculescu
(1985, 1986) for the free case, and Muraki (2000, 2001) for the monotone case. For another example,
see Jekel and Liu (2020, Corollary 9.23), which computes the central limit distribution for a tree T
where the root vertex has n children, and all the other vertices have d children.

The proposition will be an immediate consequence of Speicher and Woroudi (1997, Theorem 3.4)
and Theorem 6.1, once we first establish the basic properties of dilations.

Lemma 7.2.
(1) For ¢ #0, have K..,(z) = cK,(z/c).
(2) For T € Tree(N), we have

EBT(C’,LLl,...,C'HN) = C'EE'T(H:[,...,,UN).
(3) When n(T) > 1, the map BP from Theorem 6.3 satisfies
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(4) When n(T) > 1, we have
B (BE(T, ) = BB(T, 1),
Proof: (1) Note that

Genl) = [ = dut) =4 [ o du(t) = Gulz/o).

R Z—ct cJrzfc—t

Hence, Fi.,(2) = cFu(z/c) and K., (z) = K,(z/c).
(2) In the case ¢ = 0, both sides are dyg. For ¢ # 0, note that ¢ - By (u1,...,un) depends
continuously on 7 and satisfies the fixed-point equation

KC'EET(M:WMN)(Z) = Z KC'NJ'(Z - KC'EEbrj(T)(#lr"'vNN)(Z))7
JEININT

hence, by Theorem 4.1, we have the desired equality.
(3) From (1) it follows that (c- u)¥ = c- (u*) for ¢ € R and t > 0. Therefore, using (2),

)7

BP(T,c-pn) = kli)ngo By ((c- p

W 1
= lim Brox(c- (u ~M"))

k—o0
= lim ¢ Byor( LJ'dn(;)’“)
- k—o0 A
=c-BP(T, p).
(4) Observe that

. w—L
By (BP(T, 1)) = lim By (@B (u "))
w1
= lim EETO(,H_I)((Iu&m(T))Un(T)kﬂ)
k—o00

=BP(T, (7). -
Proof of Proposition 7.1: It follows from Speicher and Woroudi (1997, Theorem 3.4) that
R(T) M2 = (T2 T (1/2)(6 4 ).

Therefore, the proposition follows from Theorem 6.1 and the fact that n(7)*/?2 . Bro(u) =
Bror (n(T) 72 - ). O

Following a similar strategy as Bercovici and Pata (1999), we can use Theorem 6.1 to prove
analogs of classical limit theorems associated to other stable distributions. To set the stage, we
recall some terminology used in the classification of domains of attraction in classical probability
theory; see Bercovici and Pata (1999, §5).

Definition 7.3. We say that two measures p and v are equivalent if 4 = a+b- v for some a € R
and b > 0. A measure p is said to be x-stable if its equivalence class is closed under the classical
convolution operation *; H-stable is defined analogously.

Definition 7.4. A function f : [0,00) — [0, 00) wvaries slowly if

t
m M =1fort > 0.
y=oo f(y)
We say that f varies reqularly with index o if f(y)/y® varies slowly, or equivalently
f(ty)

=1 for ¢t > 0.

ygrolo tof(y)
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We make the same definitions for functions only defined on [m, co) for some m > 0.

Definition 7.5. We say that a measure p belongs to Cs if the function y — ffy 2 du(t) varies
slowly.

Definition 7.6. For o € (0,2) and 6 € [—1, 1], we say that p belongs to C, g if
(1) the function y — ffy 2 du(t) varies regularly with index 2 — o
(2) we have
t,00)) — p((—o0, —t
iy #U(E00)) — p((=00, —t) _
t=00 pu((t, 00)) + p((—00, —1)

The following is a classical result due to Lévy (1937), Gnedenko and Kolmogorov (1954).

Theorem 7.7. There exists a unique equivalence class of x-stable laws in each of the sets Co and
Cap for a € (0,2) and § € [-1,1]. Let v5 and V.o be representatives of these equivalence classes.
Then for each p € Co or p € Cqop, there ewists a sequence of measures i, ~ p such that py"* — v
or uy — 1/;79 respectively (that is, u is in the domain of attraction of Vi or 1/;’0).

Bercovici and Pata (1999) used this theorem together with their Theorem 6.3 to deduce limit
laws for free and boolean convolution. We want to do the same thing for 7-free convolution. One
obstacle for the general case is that translation of measures does not behave well with respect
to T-free convolutions. If ¢ 4+ u denotes the translation of y by ¢ € R, then we do not have
Br(c+ u) = n(T)c+ By(p). For instance, the measure . By = d. x p = p> 9. = ¢ + p has
K-transform equal to K, (z — c¢) 4+ ¢; however, d.W 1 = 0. > p has K-transform K,,(z)+ ¢, and hence
does not agree with ¢ + p.

In the case a € (0,1), the measure has a large enough tail that the translation is irrelevant to
the limiting behavior. In the case a € (1,2), it is known that any measure in C, ¢ has finite mean,
and hence we will restrict our attention to the set of measures in C, ¢ with mean zero, which we
denote by Cg ¢- The case a = 1 is difficult because the mean may or may not be defined, and one
must inevitaBly deal with drift, which brings up the tricky question of translation. In Theorem 7.9,
we handle the cases of Cy g with a € (0,1) and C° , with o € (1,2); the proof is based on Cauchy
transforms and thus independent of the classical results. For the cases a = 1 and a = 2, we will
deduce a less sharp result from the classical theory and Bercovici and Pata (1999).

Proposition 7.8. For a € (0,2) and § € [—1,1], there is a measure vy g with

K, () = —(i — tan Z2)(—iz)' 7, a #1,
P00 ] 2010g(—iz) — i, a=1,

for z € H, where we use the branch of the logarithm with argument in (—m,w]. For o € (0,1)U(1,2)
and ¢ > 0, we have ¢ - vy 9 = V(L;Jc;“ Moreover, for ¢ >0, we have ¢ - vap = (0_2010gc W Va,0) .

Proof: Let K, ¢ be the function on the right-hand side. One can verify by direct computation that
K, ¢ maps the upper half-plane into the lower half-plane and that K, (z)/z — 0 as z — oo non-
tangentially. Thus, by Corollary 2.5, K, ¢ is the K-transform of some measure v, . The final claim
follows from direct computation using Lemma 7.2 (1) and the definition of boolean convolution
powers. ]

Theorem 7.9. Suppose that o € (0,1)U(1,2), 6 € [-1,1], and pu € Cqp. If o € (1,2), then assume
in addition that p has mean zero. Then there exists some ¢ : [0,400) — [0,400) which varies
reqularly with index —1/a such that for all N and for all T € Tree(N) with n(T) > 1,

O((T)") - Brow () = BP(T, V).
For each (a,0) and for each N, the convergence is uniform over T € Tree(N) with n(T) > 1.
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For examples of the distributions BP(7,v4,), see Figures 7.2 and 7.3 in §3. In preparation for
the proof, we recall the following facts about regularly varying functions. They can be found in
Bingham et al. (1989), but we include an elementary proof here for the reader’s convenience.
Lemma 7.10.

(1) If limy_, 4o f(y) exists and is positive, then f varies slowly.

(2) If [ varies reqularly with index a and g varies regularly with index 3, then fg varies regularly
with index o + .

(3) If f varies regularly with index o, and if B € R, then f(y®) varies regularly with index of3.

(4) If f is bounded above and below on any compact set and varies reqularly with index o # 0, then

lim f(y) = {OO’ >0

y—>00 0, a<O.

(5) Let f:[m,o00) = [0,00) be continuous and vary reqularly with index o > 0. Let

g(y) =inf{x >m: f(z) > y}.
Then fog(y) =y fory > f(m), and g varies reqularly with index 1/c.

Proof: Claims (1) - (3) are straightforward to check from the definition.
To prove (4), suppose a > 0 and write f(y) = y*g(y), where g varies slowly. Then there exists
M > 0 such that
2—a/2 < f(2y) < 2a/2 for y > M.
f)
By hypothesis, f is bounded below by some ¢ on the set [M,2M]. Any y > M can be written as
2"y for y' € [M,2M] and n > 0, and then we have

g(y) _ g(2ny/) > 2—na/29(y/) > Ma/2(2nM)—a/25 > Ma/25y—a/2‘

Therefore, y®/2g(y) has a positive lower bound for sufficiently large y, which implies that y®g(y) —
oo. The case for a < 0 follows by considering 1/f.

(5) Because f(x) — oo as © — oo, the infimum in the definition of g is well-defined. If y > f(m),
then by continuity f must achieve the value y by the intermediate value theorem. Furthermore,
f(z) <y for x in a neighborhood of m, and hence the infimum z¢ of {z : f(x) > y} must be strictly
larger than m. Then we have f(z) < y for < xy and there is a sequence of points converging to
xo from above that satisfy f(z) >y, so by continuity f(zo) =y, or f(g9(y)) = y.

Because f is bounded on any compact set, we must have g(y) — oo as y — oo. Given any t > 0
and € > 0, since f varies regularly with index «, we have

. f((A 4 tectag(y)
lim =
y=oo  (L+€)ef(g(y))
If y is large enough that the left-hand side is larger than 1/(1 4 €), then we obtain

F(A+ el g(y)) > ey.

Thus, by definition of g,
gley) < (1+ )/ (y),
so that ()
. glcy
ISP g (y)
Since € was arbitrary, the lim sup is bounded above by 1. However, because the same thing holds
with ¢ replaced by 1/c, we get

< (1+ el

-1/«
lim inf ¢ 9(cy)

R ey ="



Tree convolution 1613

Therefore, g varies regularly with index 1/a. O

The proof of Theorem 7.9 relies on the following characterization of C, ¢ in terms of the Cauchy
transform.

Proposition 7.11 (Bercovici and Pata, 1999, Proposition 5.10-5.11). Let a € (0,1) U (1,2), 6 €
[—1,1], and p € P(R). The following are equivalent:

(1) p€Cap ifac(0,1) orpel,yifac(l2).

(2) There exists some f that varies reqularly with index —1 — « such that

Gu(iy) — ZZ = <z — ftan %) f(y)(1+o0(1)) as y — oo.

Although the proof of this proposition in Bercovici and Pata (1999) is correct, the statement
contains a sign error. Thus, we have corrected the 6 to —6 in the statement of the proposition and
in the definition of v, 9. For the case a € (1,2), Bercovici and Pata (1999) state p having mean
zero as a global assumption rather than part of the equivalent condition (1), so that their statement
does not technically imply (2) = (1) of Proposition 7.11. Hence, we will include a proof of (2)
= (1) for a € (1,2) for completeness.

Proof of Proposition 7.11 (2) = (1), a € (1,2): Note that

e -3 fm (- ) o=} o

By assumption, this equals (1 4+ o(1))f(y), where f varies regularly of index —1 — «. Thus, by
Lemma 7.10 (1) and (2), [, t*/(y* + t*) du(t) varies regularly with index —a. By Bercovici and
Pata (1999, Proposition 5.8, (2) <= (4)), this is equivalent to ffy t? du(t) varying regularly with
index 2 — o, which is the first condition needed for u € Cq 6.

Next, let us show that [ |t[du(t) < co. Let 0 < e < o — 1. Then

1 Yy
s / 1 du(t) < Syt / 2 dy(t).
y/2<t|<y 2 —y

The right-hand side varies regularly with index 2—a+1—€¢=1—a — ¢ < 0, and hence by Lemma
7.10 (4), it tends to zero as y — oo. In particular, y© fy |t| du(t) is bounded by some constant

/2<[tI<y
M. Thus,
o0 o0 )
[anr< [ wduo+> [ dew < [ + 3 e <o
R jf<1 o J2i<i<2in jt1<1 =

Therefore, the mean of u is well-defined. Now observe that
t t t3 1 1 t3
ReG,(iy) = | ——=du(t) = — = 5 | du(t) = = | tult) — = | ———=du(t).
,u( y) /Ry2+t2 /'L( ) /]R{(Z/Q y2(y2+t2)> lu’( ) yZ/R :u( ) y2/y2+t2 /’L( )
By Bercovici and Pata (1999, Proposition 5.8),

3 juxe
/Ryz‘t_l_tz dt = —(1+ 0(1))c052% yu({t: |t] > y}), (7.1)

and this varies regularly with index 1 — . Hence, y=2 [o [t[3/(y* + ¢*) du(t) varies regularly with
index —1 — o < —2, which implies it is o(1/y?) as y — +oo. Similarly, using assumption (2), since
f(y) varies regularly with index —1 — &, we have G ,(iy) = o(1/y?) as y — +oc. Hence,

1 ‘ t3 1
2 /th/ﬁ@f) = Re Gy (iy) + /R e du(t) = o <y2) )

which implies that [t du(t) = 0, so p has mean zero.
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Finally, we check the second condition of Definition 7.6. By assumption (2) and Bercovici and
Pata (1999, Proposition 5.8),

Guliy) = - = (1+0(1)) (i = 0tan 57 £(1)

= (1+40(1)) (i—etan%) ;/}Rﬂﬂdu(t)

v+
T T
= (1+o(1)) (i - otan T2 ) 2 £t .
(o) (i = p1an ") SEgun(e: 1> })
Hence, examining the real parts, we have
t? T

——— du(t) = —(0 + o(1)) —2 tolt . 7.2
[ ot (0 = (0 o) gttt 1> ) (7.2)

Applying Bercovici and Pata (1999, Proposition 5.8) to the restriction of p to the positive axis,

o oo 3
(o +2)) = =1+ o) —cos T [ s ()

o 3 3
=—(1+ 0(1))7;?; cos - (; /]R gﬂ’t—i’—tQ du(t) + ;/RyQtthQ du(t))
= (557 o)t > ),

where the last line follows from (7.1) and (7.2). This implies that

ply, +00)) — pl(=00, —y)) _ o
v=o0 p((y, +00)) — p((—00, —y))
Therefore, i1 € C, 9 and p has mean zero. O

Proposition 7.11 can be restated in terms of the K-transform and boolean convolution as follows.

Proposition 7.12. Let a € (0,1) U (1,2). Then the following are equivalent:

(1) € Cop for a <1 oruecgﬂ fora > 1.
(2) There exists a function g that varies reqularly with index 1 — « such that

K, (iy) = — (z — ftan %) g(y)(L+o0(1)) as y — oo.

(8) There exists a slowly varying function h such that

—1/a _, We/h(c/®)

c I

Furthermore, in (2), we can take g(y) = —Im K, (iy).

— Vo 6-

Remark 7.13. It follows immediately that v, 9 € Cq 9 when o € (0,1) and v, 9 € Cg g when o € (1,2).

Proof: (1) <= (2). Observe that

. . . . , _ 1 1
K (i) = iy = Folin) = ivFlin) (Gtin) = ) = =1 (Gulw) = ) (1 o(0)
By Lemma 7.10 (2), f(y) varies regularly with index —1 — « if and only if g(y) = y?f(y) varies
regularly with index 1 — a. Hence, (1) <= (2) follows from Proposition 7.11.
(2) = (3). Let g be as in (2), and write g(y) = y'~*h(y) for some slowly varying function h.
Because K-transforms are contained in the normal family Hol(H, —H) (where the target space is

1/a, Iutdc/h(cl/o‘)

the closure in the Riemann sphere), to show ¢~ — Vg, it suffices to prove pointwise
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convergence of the K-transforms on the imaginary axis. By the definition of the boolean convolution
power,
lel/a

N Ve
ch/a_uwc/h(cl/a)(l?/) = WKN(C /O‘zy).

By (2), this is equal to

clfl/a ' o o X
— W (Z — ftan ?> (cl/ y)l h(cl/ y)(1+ Ocl/ay(l))
= ) o 11—« h(cl/ay)
T (““an7>y W<1+Ocuay(1)),

where the subscript on the o(1) term means that it vanishes as ¢'/*y — oo. If  is fixed and ¢ — oo,
then because g varies slowly, we obtain

; may 1o h(c/y) , T\ 1 4 ,
_ (z—@tan7)y W(1+0c1/0y(1)) - — (z—@tan?)y = Ky, ,(1y).
(3) = (2). Suppose that (3) holds for some function h. Let g(y) = y'~*h(y), so that g varies
regularly with index 1 — a. Observe that

KH(Cl/ai) _ Cl_Uah(cl/a)Kc_l/a#wc/h(cl/a) (Z)

= ! Hepe ) (K, , (i) + o(1))
= (z — ftan %) g(Cl/a)(l +0o(1)).

where the error o(1) goes to zero as ¢ — oo. Then we substitute ¢ = y® and obtain (2).

For the final claim regarding g in (2), observe that —Im K, (iy) > 0 and —Im K, (iy) = g(y)(1 +
o(1)). Tt is straightforward to check that this function varies regularly of index 1 — . (The 1+ o(1)
term in the original theorem statement is complex-valued, but the one used here is positive.) Thus,
we can replace g(y) with K, (iy) by absorbing g(y)/K,(iy) into the 1+ o(1) term. O

We can conclude the proof as follows:

Proof of Theorem 7.9: Let i € Cop if @ € (0,1) and pu € C2, if @ € (1,2). Let h be as in
Proposition 7.12. By Lemma 7.10, the function ¢ — ¢/h(c'/®) varies regularly with index 1. Let
¥(t) be the function associated to t/h(t'/) as in Lemma 7.10 (5), so that t(t)/h(1(t)"/*) = t for
sufficiently large ¢ and ) (t) varies regularly with index 1. Then let ¢(t) = (t)~1/*. Then ¢ varies
regularly with index —1/a, and
B(t) - u = p(t) "V . OO oy, o
In particular, for each 7 € Tree(N) with n(7) > 1, we have
(n(T)) - 17" = v,
and hence by Theorem 6.1, we have
S(UT)®) - Bron (1) = BP(T, vayp)

for 7 € Tree(IN) with n(7) > 1. That theorem also implies that the convergence is uniform over
T. O

By appealing to Theorem 6.1, we did not have to check that C, ¢ is closed under the operations
w— Br(n) or uw— BP(T,u) in order to prove Theorem 7.9. However, as one would intuitively
hope, this is indeed the case.
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Proposition 7.14. Let a € (0,1) and 6 € [—1,1]. Suppose p € Cqp.
(1) Fort >0, we have u®" € Co .

(2) For any T € Tree(N) with n(T) > 1, we have Br(u) € Cap

(3) For T € Tree(N) with n(T) > 1, we have BP(T, 1) € Cqp.

The same claims hold with C, ¢ replaced by ngg for a € (1,2).

Proof: Let o € (0,1). By Proposition 7.12 (3) and Lemma 7.10 (2) and (3), we have pu € Cqp if
and only if there is a function f that varies regularly with index 1 such that ¢=1/@p®/(©) — Va0 8S
¢ — 0.

In the remainder of the argument, assume ;. € Co 9 and let f be a function that varies regularly

with index 1 with ¢~ 1/@u#f©) — 4.
(1) If ¢ > 0, then ¢~/ . (u&0)9f(/t = c=Ve . 81 5y o The function f(c)/t also varies
regularly with index 1, so p¥* € Cyp.
(2) Let @5 be as in Theorem 6.2. Then using Lemma 7.2, we have
e By () OT) = (¢ e o (@)W1 (e wf(e)/n(T)
WN/n(T)
= 0 (T, N/ 1(e), (- ety 0) D
Of course, f(c) — 0o as ¢ — oo. Thus, by joint continuity of ® 5, we obtain that

lim Cfl/a . ET(M)&Jf(c)/n(’T) — (I)N(T,O, VQ,Q)MN/H(T) _ (V;dz(T)/N)&JN/n(T) = Vg

c—00

Thus, By () satisfies the desired condition with the function f/n(T).
(3) Let n = n(T). As in the proof of Theorem 6.3, fix M > (N —1)/(n — 1), and let T €
Tree(Mn*) be isomorphic to 7°F. Recall that

. w1 /mk . w1 /mk
BP(T, ) = lim Bree(u®'/™") = lim By (u*/™)

Then observe that
- R0 _ . 1\ W)
Ve (Bﬂn (MUnk>> = B ((c la Muf(c))f(c)nk>

WM
= @y (T M/ (), (7 1))

By Theorem 6.2, we have

WM
WM +i
lim @ (Tos M/ F(0), (7% 800N = (T, 0, 10) ™ = (9) = Voo,
and the rate of convergence is uniform for all k. Uniform convergence implies that
g1\ &S (0) w1\ &S0
lim lim ¢~/ . (EETk (Munlk)) = lim lim ¢/ (Bﬂfrk (;}%)) ,

c—00 k—o0 k—00 c—00

and hence

lim ¢ VOBP(T, p)¥f(©) = Va0,

c—00
so BP(T, i) € Cop-
This concludes the proof for o € (0,1). The same proof works for a € (1,2) with C, ¢ replaced
by Cg 0 O

In the cases of @« = 1 and o = 2, the tools which Bercovici and Pata used to prove the charac-
terization of Cq ¢ in terms of Cauchy transforms (Bercovici and Pata, 1999, Propositions 5.10 and
5.11) are not available in the same form; specifically, Bercovici and Pata (1999, Proposition 5.8)
does not handle the case o = 2, and the later parts of that proposition do not handle the case
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a = 1. To study the T-free convolution for the regions C; 9 and Cy requires either a much more
delicate analysis or a different approach. We will be content here to deduce limit theorems from
the classical theory and Bercovici and Pata’s results.

Proposition 7.15. Let § € [—1,1] and let o € C19. Then there exists a sequence of measures
(5)jen equivalent to p such that, for all N, for all T € Tree(N) with n(T), we have

Brok (n(yr) = BP(T, v19),
where for each N, the convergence is uniform over T.

Proposition 7.16. Let 1 € Co with mean zero. Then there ewists a sequence R; tending to infinity
such that for all N, for all T € Tree(N) with n(T), we have

R;(lT)k Bk (1) — BP(T, va),

where for each N, the convergence is uniform over T .

To set the stage for the proof, we recall the results from Bercovici and Pata (1999) in more detail.
The infinitely divisible distributions for , H, and W are parametrized by a v € R and finite measure
o on R, and the infinitely divisible distributions corresponding to (v, o) for the three convolutions

are denoted respectively by v, V%’U, and v)?. For a sequence of probability measures p; and

kj — oo, we have ,u;kj — )7 if and only if ,u?akj — vg? if and only if ;L;dkj — 7.
It follows that for every IV,

X k k
BP(TNVfree, V&,O’) _ kli)rgo((yg,a)tdl/N )HHN — I/%’U,

Moreover, let ®, denote the Voiculescu transform ®,(2) = F; L(2) — z, defined in a non-tangential

neighborhood of co. The correspondence between the free and boolean cases is such that
1412
B () =7+ [ TEEdu(t) = Koo (2), (7.3)

It follows from Bercovici and Pata (1999, §5) that the freely stable laws correspond precisely to
the classically stable laws. However, these do not correspond to boolean stable laws in the naive
sense. Rather, for a € R, it follows from (7.3) that

BP(’TZfree? 5(1 W M) = 5(1 H BP(’TQ,frem ,U') =a+ BP(E,freea ,U/)v

and thus stability in the boolean setting should be understood with respect to the shift operations
p = 0, W p for a € R rather than p +— a+ p. The laws v, g in Proposition 7.8 above are the boolean
stable laws with this modified notion of stability, and the freely stable distributions in Bercovici
and Pata (1999, Proposition 5.12) are exactly the distributions BP(7x free, Va,0), Where v g.
Proposition 7.15 is now proved as follows: Let p,g be the classical stable distribution corre-
sponding to the boolean infinitely divisible distribution v, . From classical results, if p € Cyp,
there are measures j; equivalent to p such that ,ujj — p1,9. Hence by Bercovici and Pata (1999,

Theorem 6.3), we have M?j — Va,p- Then by Theorem 6.1, we have Byor (ti,, (k) — BP(T,v10).
The proof of Proposition 7.16 is the same.

8. Open questions

The following questions around Theorems 6.1 and 7.9 remain unanswered.

Question 8.1. Does the converse implication hold in Theorem 6.17 More precisely, let T € Tree(N)

wn(T)F o
with n(7) > 1. If Bk, (1¢) converges as £ — oo, then does 'uzm(T) ‘ converge? A positive answer

is known for free independence by Bercovici and Pata (1999), and in the monotone case, provided
that the limit measure is monotonically infinitely divisible, by Anshelevich and Williams (2014).
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a=17 0 =0.0 a=12 6 =0.0

FIGURE 7.2. Approximations of BP(T,v,g) for T = {0,1,2,3,21,31,12,13} and
for (a,0) € {1.7,1.2} x {0.0,0.4,0.8}.

Question 8.2. Is the map BP(7, ) injective and is the inverse continuous? For compactly supported
measures, the inverse map was studied using combinatorial methods in Jekel and Liu (2020, §9).
We anticipate that the answer to this question and the previous one will be easier in the case of
finite variance than in the general case.

Question 8.3. What is the correct notion of stable law for 7-free convolution? Is there a classifi-
cation of such laws that is parallel to the classical case? Of course, this question is one of the main
motivations for the previous two questions.

Question 8.4. Is there a limit theorem which allows us to bring the translation operation outside
the convolution operations? That is, if 1 € C, g or C2, then can we describe the asymptotic behavior
of some sequence gy ~ Byor(1)?
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a=0.7 a=0.2
I I I I I I
-2 -1 0 1 2 -2 -1
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-2 -1 0 1 2 —2 —1
a=0.7 0 =0.8 a=0.2 6 =028
+0.4 +0.4
+0.2 J*( 2
[ I I I I [ I I
A 0 ] 2 2 -1 0 1 2

FIGURE 7.3. Approximations of BP(T,v,g) for T = {0,1,2,3,21,31,12,13} and
for (a,0) € {0.7,0.2} x {0.0,0.4,0.8}.

Question 8.5. Does Proposition 7.14 generalize to the o = 1 and a = 2 cases? What is the correct
substitute for Proposition 7.12 in these cases?

There are many interesting questions about the limiting distributions BP(7,v49) themselves.

" —k
We know that B or (1/57;(7—) ) — BP(T,va,0), and in the case o € (0,1) U (1,2), we also have

w —k . . . .
EHTok(V(L;z(T) ) = n(T)"* - Bror(Vay). Furthermore, the Stieltjes inversion formula says that

under sufficient regularity conditions, the probability density of a measure y can be recovered from
the Cauchy transform by p(z) = lim,_,q+ —%Gu(a: +dy). As an example, we considered the tree
T =1{0,1,2,3,21,31,12,13}. To approximate the density for BP(T, v4), we computed

1 .
_; Im GEH7—06 (1/539_6) (x + ZG)

for e = 107° and for values of z spaced at intervals of 0.1, and the results are shown in Figures 7.2
and 7.3. Experimentally, replacing £ = 6 by k = 7 or shrinking e did not change the values much.
However, because the size of the tree 7°F increases very quickly with &, this approximation scheme
has high computational complexity and is thus impractical to evaluate for large k.



1620 Ethan Davis, David Jekel and Zhichao Wang

—k
Question 8.6. Are there practical numerical error bounds for the convergence of H ok (VSZ(T) ) —
BP(7,va,0)? Similarly, what is the rate of convergence to Bz (g1, ..., un) of the approximations

given by truncation of T to finite trees? Are there better estimates for special classes of trees?

Already for a single tree 7 = {0,1,2,3,21,31,12,13}, we saw a variety of phenomena occur.
For a € (0,1) there is a singularity at 0 in the boolean case, but in the free case the stable laws
have analytic densities on their supports Bercovici and Pata (1999, Propositions A.1.2-A.1.4). For
this 7, the presence or absence of a singularity appears to depend on the value of o € (0,1). For
a € (1,2), the distribution can have several local extrema and inflection points. By contrast, the
free case, the stable distributions are unimodal (Bercovici and Pata, 1999, Proposition A.2.2); in
the monotone and boolean cases, they are either unimodal or bimodal (Hasebe and Sakuma, 2015).

Question 8.7. What can we say about the regularity of the limit distributions BP(7,v4,9)? Do
they have analytic densities? How does this vary with 7, «, and 07 In general, what can we say
about the regularity of 7T-free convolutions of several measures? Under what conditions on 7 do
the regularity results from the free case (Anshelevich et al.; 2013; Bercovici and Voiculescu, 1998;
Belinschi, 2003; Belinschi and Bercovici, 2004; Belinschi, 2006) generalize?

Another open question concerns the operator models for T-free convolution. In this paper, we
focused exclusively on the complex-analytic viewpoint for T-free convolutions, even though the
original definition of the convolution for compactly supported measures was in terms of addition of
“independent” bounded self-adjoint operators Jekel and Liu (2020). Moreover, the free convolution
of arbitrary measures on R can be expressed using the addition of freely independent unbounded self-
adjoint operators, thanks to the theory of unbounded operators affiliated to a tracial von Neumann
algebra Bercovici and Voiculescu (1992).

Question 8.8. Can the T-free convolution of arbitrary probability measures on R be formulated
in terms of addition T-free independent unbounded self-adjoint operators?

Because the sum of unbounded self-adjoint operators need not be densely defined, the challenge
is to use the additional structure of 7-free independence (or perhaps of the T-free product Hilbert
space) to make sense of the sum of independent operators. Again, we believe that the solution for
finite-variance measures is significantly easier than for the general case.
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