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Abstract. We develop the complex-analytic viewpoint on the tree convolutions studied by the sec-
ond author and Weihua Liu in Jekel and Liu (2020), which generalize the free, boolean, monotone,
and orthogonal convolutions. In particular, for each rooted subtree T of the N -regular tree (with
vertices labeled by alternating strings), we define the convolution �T (µ1, . . . , µN ) for arbitrary
probability measures µ1, . . . , µN on R using a certain fixed-point equation for the Cauchy trans-
forms. The convolution operations respect the operad structure of the tree operad from Jekel and
Liu (2020). We prove a general limit theorem for iterated T -free convolution similar to Bercovici
and Pata’s results in the free case Bercovici and Pata (1999), and we deduce limit theorems for
measures in the domain of attraction of each of the classical stable laws.

1. Introduction

Voiculescu (1985, 1986) introduced free independence, which provided a probabilistic viewpoint
on free products of operator algebras. Two other forms of non-commutative independence were
studied in non-commutative probability theory around the year 2000: boolean independence in
Speicher and Woroudi (1997) and monotone/anti-monotone independence in Muraki (2000, 2001).
Besides classical independence, these are the only types of independence that provide an associative
natural product operation on non-commutative probability spaces Speicher (1997); Ben Ghorbal
and Schürmann (2002); Muraki (2003, 2013). However, there are many other types of independence
broadly defined. For instance, Lenczewski defined m-free independences intermediate between free
and boolean independence Lenczewski (1998). One can combine several algebras using a mixture of
classical and free independence Młotkowski (2004); Speicher and Wysoczański (2016), boolean and
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monotone independence Wysoczański (2010), or boolean and free independence Kula and Wysocza-
ński (2013). The notions of c-free independence Bożejko et al. (1996); Arizmendi et al. (2020) and
c-monotone Hasebe (2011); Lenczewski (2019) independence provide another way of combining free
or monotone independence with boolean independence, using pairs of states.

Weihua Liu and the second author defined a general family of non-commutative independences as-
sociated to rooted trees whose vertices are labeled by alternating strings Jekel and Liu (2020), which
would serve as a general framework for studying various convolution operations and the relation-
ships between them, such as the relation between free, monotone, and subordination convolution in
Lenczewski (2007, 2008). The independences defined by trees include free, monotone, and boolean
independence; m-free independence; mixtures of free, boolean, and monotone independence. The
introduction of Jekel and Liu (2020) noted three viewpoints on non-commutative independence (1)
operator models, (2) combinatorics of moments, and (3) complex analysis of Cauchy transforms, of
which that paper focused on only the first two. Our present goal is to develop the complex-analytic
viewpoint.

To set the stage, let us recall some of the main ideas of Jekel and Liu (2020). Let TN,free be
the tree whose vertices are alternating strings on the alphabet [N ] = {1, . . . , N} (strings where
consecutive letters are distinct) and where two strings are adjacent precisely when one is obtained
by appending one letter to the left of the other. Let Tree(N) be the set of rooted subtrees of
TN,free, where the root is the empty string. Each T ∈ Tree(N) describes a way of combining N
Hilbert spaces with unit vectors (H1, ξ1), . . . , (HN , ξN ) into a new Hilbert space (H, ξ) akin to the
free product of pointed Hilbert spaces, which is called the T -free product of pointed Hilbert spaces
Jekel and Liu (2020, §3). This in turn leads to a notion of T -free convolution: Suppose Xj is a
bounded operator on Hj whose spectral measure with respect to ξj is µj . If X̃1, . . . , X̃N are the
corresponding operators on the product space (H, ξ), then the convolution �T (µ1, . . . , µN ) is the
spectral measure of X̃1 + · · ·+ X̃N with respect to ξ. (In fact, all of this was done in Jekel and Liu
(2020) in the more general setting where Hilbert spaces are replaced by B-B-correspondences for
some C∗-algebra B, and µj is a B-valued law. But at present we are only concerned with the case
B = C where the objects reduce to Hilbert spaces and compactly supported probability measures
on R.)

In order to relate various convolution operations, the family (Tree(N))N∈N was equipped with
the structure of a topological symmetric operad, and the convolution operations were shown to
respect this structure Jekel and Liu (2020, §5). In particular, for T ∈ Tree(k) and T1 ∈ Tree(n1),
. . . , Tk ∈ Tree(nk), there is a well-defined composition T (T1, . . . , Tk) ∈ Tree(n1 + · · · + nk) which
satisfies

�T (T1,...,Tk) (µ1,1, . . . , µ1,n1 , . . . . . . , µk,1, . . . , µk,nk)

= �T (�T1(µ1,1, . . . , µ1,n1), . . . ,�Tk(µk,1, . . . , µk,nk))

where µi,j is a compactly supported probability measure on R. Many known convolution identities
can be proved in this framework (Jekel and Liu, 2020, §6).

As a consequence, Jekel and Liu (2020, Proposition 6.8) gave a decomposition of T -free convo-
lution into boolean and orthogonal convolutions, which generalizes the decompositions of additive
free convolution in Lenczewski (2007). Let brj(T ) = {s ∈ TN,free : sj ∈ T }, where sj denotes the
string obtained by appending j to the end of the string s. Let ] denote the boolean convolution
and ` the orthogonal convolution (see Examples 4.7 and 4.8 below). Then

�T (µ1, . . . , µN ) =
⊎

j∈[N ]∩T

[µj ` �brj(T )(µ1, . . . , µN )] (1.1)

for compactly supported probability measures on R. This relation is convenient for the complex-
analytic viewpoint because the boolean and orthogonal convolutions have simple expressions in
terms of the K-transform (an analytic function related to the Cauchy transform).
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In this paper, we will use (1.1) to define the T -free convolution for arbitrary probability measures
on R. More precisely, in Theorem 4.1, we will show that there is a unique family of operations
�T on probability measures that satisfies (1.1) and depends continuously on T (with respect to
local convergence with respect to the root vertex). The convolution �T (µ1, . . . , µN ) also depends
continuously on µ1, . . . , µN and agrees in the compactly supported case with the prior definition from
Jekel and Liu (2020). Because (1.1) so directly relates with the K-transforms of measures, we can
give self-contained proofs of the basic properties of T -free convolution without relying on operator
models or on the approximation of general probability measures by compactly supported ones,
making the proofs in this paper essentially independent from Jekel and Liu (2020). In particular,
in §5, we show directly from Theorem 4.1 that the convolution operation on arbitrary measures
respects the operad structure just as in the compactly supported case.

In §6 and §7, we discuss limit theorems for T -free independence. Often when a new type of
additive convolution is introduced, a central limit theorem and Poisson limit theorem are proved
in the same paper or soon thereafter, as in e.g. Voiculescu (1985); Bożejko et al. (1996); Speicher
and Woroudi (1997); Franz and Lenczewski (1999); Muraki (2001); Wysoczański (2010); Kula and
Wysoczański (2013); Jekel and Liu (2020). In classical probability, more general limit theorems for
additive convolution are closely related to the study of infinitely divisible and stable distributions,
as well as the Lévy-Khintchine formula that classifies infinitely divisible distributions µ in terms of
some other measure σ and real number γ; see Gnedenko and Kolmogorov (1954). Similar results
have been obtained for non-commutative independences, both in the scalar-valued and the operator-
valued settings; see for the free case Voiculescu (1986); Bercovici and Voiculescu (1992); Biane
(1998); Speicher (1998); Bercovici and Pata (1999); Popa and Vinnikov (2013); Anshelevich et al.
(2013); for the boolean case Speicher and Woroudi (1997); Popa and Vinnikov (2013); Anshelevich
et al. (2013); for the monotone case Muraki (2001); Belinschi (2005); Hasebe (2010a,b); Hasebe
and Saigo (2014); Anshelevich and Williams (2014, 2016); Jekel (2020); for the c-free case Krystek
(2007); Belinschi et al. (2013). One of the most influential works on the topic was Bercovici and
Pata (1999). The authors showed that if µ` is a sequence of measures and k` is a sequence of
natural numbers tending to ∞, then µ∗k`` converges to a measure ν∗ if and only if µ�k`` converges
to a measure ν� if and only if µ]k`` converges to a measure ν], and the correspondence between
ν∗, ν�, and ν] is described in the terms of the respective Lévy-Khintchine formulas. From this
general statement, they deduced free and boolean analogs of all classical limit theorems for additive
convolution, and in particular limit theorems for the domains of attraction corresponding to each
classical stable distribution.

For a general choice of a tree T ∈ Tree(N), it is unclear how to define the kth convolution
power for arbitrary k, as discussed in Jekel and Liu (2020, §8.1). However, we can define a k-fold
composition of T with itself, denoted T ◦k; the corresponding convolution is an Nk-ary operation.
Let n(T ) denote the number of neighbors of the root vertex. When n(T ) > 1, Jekel and Liu (2020,
§9) classified infinitely divisible laws in the B-valued setting under certain boundedness assumptions.
In this paper, in Theorem 6.1, we obtain an analog of one direction of Bercovici and Pata’s main
result for arbitrary probability measures on R. If µ]n(T )k`

` → ν, then �T ◦k` (µ`, . . . , µ`) converges
to a measure BP(T , ν) (Theorem 6.1). We do not know whether the converse implication holds.
Nonetheless, the theorem already contains the “more practical” implication, where the hypothesis
is the relatively easy-to-check condition about boolean convolution and the conclusion describes
convergence for general trees T (and in fact gives a uniform rate over convergence over all T ∈
Tree(N)). In particular, Theorem 6.1 allows us to deduce limit theorems corresponding to each of
the classical domains of attraction in §7 using similar techniques as in Bercovici and Pata (1999,
§5). We sketch some of the many open questions about T -free convolutions and limit theorems
in §8.
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The paper is organized as follows: In §2, we explain background material on probability measures
on R on their Cauchy transforms. In §3, we review the operad of rooted trees from Jekel and
Liu (2020) and establish more of its basic properties. In §4, we define the T -free convolution of
arbitrary probability measures on R. In §5, we show that the convolution operations respect the
operad structure. In §6, we prove the general limit theorem. In §7, we deduce as special cases limit
theorems for each of the domains of attraction from classical probability theory. In §8, we propose
questions for future research.

2. Cauchy transforms of probability measures

M(R) denotes the space of finite positive Borel measures on R, P(R) denotes the space of
probability measures, equipped with the vague topology (that is, the weak-∗ topology when viewed
inside the dual of C0(R); for background, see for instance Folland (1999, §7.3)). Recall that P(R)
is metrizable using the Lévy distance

dL(µ, ν) := inf
{
ε > 0 : µ((−∞, x− ε))− ε ≤ ν((−∞, x)) ≤ µ((−∞, x+ ε)) + ε for all x ∈ R

}
.

Furthermore, P(R) is a complete metric space with respect to dL. For proof, see for instance
Billingsley (1999, Theorem 6.8).

Definition 2.1. For a finite measure µ on R, the Cauchy-Stieltjes transform is given by

Gµ(z) =

∫
R

1

z − t
dµ(t).

The F -transform is given by
Fµ(z) = 1/Gµ(z),

and we also define
Kµ(z) = z − Fµ(z).

These functions are defined for all z in C minus the closed support of µ, but we usually view them
as functions defined on the upper half-plane

H := {z ∈ C : Im(z) > 0}.

Let Hol(H,−H) be the space of holomorphic functions H → −H. Then Hol(H,−H) is a normal
family if we view the target space as a subset of the Riemann sphere, hence the topology of pointwise
convergence on Hol(H,−H) agrees with the (metrizable) topology of local uniform convergence.

Lemma 2.2. For each m > 0, the map

{µ ∈M(R) : ‖µ‖ ≤ m} → Hol(H,−H) : µ 7→ Gµ

is a homeomorphism onto its image, where we use the weak-∗ topology on M(R) and the topology
of local uniform convergence on Hol(H,−H).

This lemma is well-known as folklore. In order to show that µn → µ if and only if Gµn → Gµ
pointwise, one can use the fact the functions of the form φz(t) = 1/(z − t) span a dense subspace
of C0(R), which in turn follows from the Stone-Weierstrass theorem and the fact that φz(t)φw(t) =
(φz(t)− φw(t))/(z − w).

Next, we recall the famous theorem of Nevanlinna (1922) that characterizes Cauchy transforms
of probability measures as functions G(z) such that zG(z) → 1 as z → ∞ non-tangentially in H.
The version we state here comes from Bercovici and Voiculescu (1992). For a > 0, let Γa ⊆ H be
the cone

Γa := {z : Im z ≥ a|z|}.
We also define for a, b, c > 0, the regions

Γa,b := {z : Im z ≥ max(a|z|, b)}.
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Definition 2.3. Let Y be a topological space, and let F : H → Y . We say that F (z) → L as
z →∞ non-tangentially if for every a > 0,

lim
z→∞
z∈Γa

F (z) = y,

or equivalently, for every a > 0 and every neighborhood U of y, there exists b > 0 such that
F (z) ∈ U for every z ∈ Γa,b.

Theorem 2.4 (Nevanlinna). Let G : H→ C and m > 0. The following are equivalent:
(1) G is the Cauchy transform of some measure of total mass m.
(2) G maps H into −H and zG(z)→ m non-tangentially as z →∞.
(3) G maps H into −H and limy→∞ iyG(iy) = m over y > 0.

Besides Nevanlinna’s original paper Nevanlinna (1922), the proof of (1) ⇐⇒ (3) can be found for
instance in Lax (2002, §32.1, Theorem 3), and the exact theorem here is in Bercovici and Voiculescu
(1992, Proposition 5.1).

Corollary 2.5 (cf. Bercovici and Voiculescu, 1992, Proposition 5.2). A function F is the F -
transform of some probability measure on R if and only if F maps H into H and F (z)/z → 1 as
z →∞ non-tangentially. Similarly, K is the K-transform of some probability measure on R if and
only if K maps H into −H and K(z)/z → 0 as z →∞ non-tangentially.

Proof : The first claim is immediate from the theorem since Fµ(z) = 1/Gµ(z). Similarly, for the
second claim, the only thing that remains to prove is that ImKµ(z) ≤ 0 for any probability measure
µ. For c > 0, observe that the region

Ωc = {x+ iy : Im(1/(x+ iy)) ≥ c}
= {x+ iy : −y/(x2 + y2) ≥ c}
= {x+ iy : c(x2 + y2) + y ≤ 0}

is a disk and in particular is convex. For z ∈ H and t ∈ R, we have 1/(z − t) ∈ ΩIm z, and hence
Gµ(z) =

∫
R(z − t)−1 dµ(t) ∈ ΩIm z. Thus, ImFµ(z) ≥ Im z, or equivalently ImKµ(z) ≤ 0. �

The following result is contained in Bercovici and Pata (1999, Proof of Proposition 2.6) and thus
we leave the reader to look up or reconstruct the proof.

Lemma 2.6. If Y is a compact family of probability measures, then zGµ(z) → 1 as z → ∞ non-
tangentially, uniformly over µ ∈ Y . Similarly, we have Fµ(z)/z → 1 and Kµ(z)/z → 0 as z → ∞
non-tangentially, uniformly for µ ∈ Y .

3. An operad of rooted trees

Definition 3.1. For N ∈ N, let [N ] = {1, . . . , N}. A string on the alphabet [N ] is a finite sequence
j1 . . . j` with ji ∈ [N ]. We denote by the ith letter of a string s by s(i). Given two strings s1 and
s2, we denote their concatenation by s1s2.

Definition 3.2. A string j1 . . . j` is called alternating if ji 6= ji+1 for every i ∈ {1, . . . , `− 1}.

Definition 3.3. Let TN,free be the (simple) graph whose vertices are the alternating strings on the
alphabet [N ] and where the edges are given by s ∼ js for every letter j and every string s that does
not begin with j. Note that TN,free is an infinite N -regular tree. We denote the empty string by ∅,
and we view ∅ as the preferred root vertex of the graph TN,free.
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Definition 3.4. We denote by Tree(N) the set of rooted subtrees of TN,free (that is, connected
subgraphs containing the vertex ∅). Note that if T ∈ Tree(N), then the edge set is uniquely
determined by the vertex set and vice versa. Thus, we may treat T merely as a set of vertices when
it is notationally convenient. If s ∈ T and js ∈ T for some string s and some j ∈ [N ], then we say
that js is a child of s and s is the parent of js.

Observation 3.5. For a rooted tree T ⊆ TN,free and ` ≥ 0, let B`(T ) ⊆ TN,free be the set of strings
in T of length at most ` (or equivalently the closed ball of radius ` in the graph metric). Define
ρN : TN,free × TN,free → R by

ρN (T , T ′) = exp(− sup{` ≥ 0 : B`(T ) = B`(T ′)}).
Then ρN defines a metric on Tree(N) (and in fact an ultrametric), which makes Tree(N) into a
compact metric space.

The space Tree(N) is similar to the space of locally finite rooted graphs with the topology of
local convergence (see e.g. Aldous and Steele, 2004), and the observation is proved in a similar
way to the literature on local convergence. To summarize, Tree(N) by definition is a subset of
the power set of TN,free. This power set can be identified with {0, 1}TN,free , and thus we have a
injective map Tree(N)→ {0, 1}TN,free . The space {0, 1}TN,free is compact in the product topology by
Tychonoff’s theorem. A basis for this topology is given by cylinder sets defined by looking at finitely
many coordinates. In particular, we can use the cylinder sets defined by looking at the coordinates
index by strings of length ≤ `, for each ` ∈ N, which leads to a metric ρ̃N on {0, 1}TN,free given by
ρ̃N (x, y) = exp(−`) where ` is the maximum length such that x and y agree on strings of length
at most `. It follows that the topology we defined on Tree(N) is the restriction of the product
topology. It is straightforward to check that Tree(N) is closed in {0, 1}TN,free hence compact.

As explained in Jekel and Liu (2020, §5), the sets of trees (Tree(k))k∈N form a topological symmet-
ric operad. (For general background on operads, see e.g. Leinster, 2004, and the complete definition
is also explained in Jekel and Liu, 2020.) We have already described the topology. The operad
structure consists of composition maps

Tree(k)× Tree(n1)× · · · × Tree(nk)→ Tree(n1 + · · ·+ nk) : (T , T1, . . . , Tk) 7→ T (T1, . . . , Tk)
for each k ∈ N and n1, . . . , nk ∈ N, which are given as follows. Let T ∈ Tree(k) and T1 ∈ Tree(n1),
. . . , Tk ∈ Tree(nk). Let Nj = n1 + · · · + nj (which by convention includes N0 = 0), and let
N = Nk. Define ιj : [nj ] → [N ] by ιj(i) = Nj−1 + i, so that [N ] =

⊔k
j=1 ιj([nj ]). For a string

s ∈ Tnj ,free, let (ιj)∗(s) denote the string obtained by applying ιj to each letter of s. Then we define
T (T1, . . . , Tk) ∈ Tree(N) to be the rooted subtree with vertex set⋃

`≥0

⋃
i1...i`∈T

⋃
sj∈Tij \{∅}

for j∈[`]

(ιi1)∗(s1) . . . (ιi`)∗(s`). (3.1)

In other words, the strings in T (T1, . . . , Tk) are obtained by taking a string t = i1 . . . i` in T
and replacing each letter ij by a string sj from Tij , with the indices appropriately shifted by
ιj : [nj ] → [N ]. This composition operation satisfies the operad associativity axioms. It is also
jointly continuous, and in fact, we have

ρN (T (T1, . . . , Tk), T ′(T ′1 , . . . , T ′k)) ≤ max(ρk(T , T ′), ρn1(T1, T ′1 ), . . . , ρnk(Tk, T ′k)),

where T , T ′ ∈ Tree(k) and Tj , T ′j ∈ Tree(nj) for j = 1, . . . , k. This is because every string of
length L in the composed tree has the form (ιi1)∗(s1) . . . (ιi`)∗(s`) as above, where ` ≤ L and s1,
. . . , s` have length ≤ L.

Finally, Tree is a symmetric operad, which means that there is a right action of the permutation
group Perm(N) on Tree(N) that satisfies natural compatibility properties with the operad compo-
sition (see Leinster, 2004). The permutation action on Tree(N) is defined as follows: For a string
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Figure 3.1. The tree T = {∅, 1, 2, 21, 31, 32} and a branch br1(T ) = {∅, 2, 3}.

s = j1 . . . j`, let σ(s) = σ(j1) . . . σ(j`). Then for a tree T ⊆ TN,free, let Tσ = {σ−1(s) : s ∈ T }. This
permutation action is continuous (and in fact isometric) on Tree(N).

Central to this paper is the iterative formula from Jekel and Liu (2020, Proposition 6.8) which
expresses convolutions over a tree T in terms of the convolutions over the branches of T for each
neighbor of the root vertex; see (4.1) and (4.3) below. To set the stage, we define the branch
operations and describe how they interact with the topological symmetric operad structure of Tree.

Definition 3.6. For j ∈ [N ], we define brj : Tree(N)→ Tree(N) ∪ {∅} by
brj(T ) = {s ∈ TN,free : sj ∈ T }. (3.2)

This gives the branch of T rooted at the vertex j if j ∈ T and ∅ otherwise.

We show an example of Definition 3.6 in Figure 3.1.

Observation 3.7. The map brj is a continuous (and in fact e-Lipschitz) function from the clopen
set {T ∈ Tree(N) : j ∈ T } into Tree(N).

The reason for this is of course that if T and T ′ agree on strings up to the length ` and both
contain j, then brj(T ) and brj(T ′) agree on strings up to length `− 1.

Observation 3.8. For T ∈ Tree(N) and σ ∈ Perm(N), we have brj(Tσ) = brσ(j)(T )σ.

In order to describe the relationship between the branch operation and operad composition, we
need some auxiliary notions. Let ψ : [N ] → [N ′]. For a string s = j1 . . . j` on [N ], let ψ∗(s) =
ψ(j1) . . . ψ(j`). Viewing a tree T ∈ Tree(N) as a set of strings, we may compute the image ψ∗(T )
under the map ψ∗. Of course, if s is alternating, then ψ∗(s) is not necessarily alternating. Thus,
ψ∗(T ) will be an element of Tree(N ′) if and only if ψ∗(s) is alternating for every s ∈ T , or in other
words, ψ∗(T ) ⊆ TN ′,free.

The branches of the composition will be expressed using T2,mono := {∅, 1, 2, 21}, a tree related to
monotone convolution (see Example 4.10). Let T1 ∈ Tree(m1) and T2 ∈ Tree(m2). Let φ1 : [m1]→
[m1 + m2] map [m1] monotonically onto the first m1 coordinates, and let φ2 : [m2] → [m1 + m2]
map [m2] monotonically onto the last m2 coordinates. Then T2,mono(T1, T2) consists of four types
of strings: the root vertex ∅, (φ1)∗(s1) for nonempty strings s1 ∈ T1, (φ2)∗(s2) for nonempty strings
s2 ∈ T2, and (φ2)∗(s2)(φ1)∗(s1) for nonempty strings s1 ∈ T1 and s2 ∈ T2. This can be rewritten as

T2,mono(T1, T2) = {(φ2)∗(s2)(φ1)∗(s1) : s1 ∈ T1, s2 ∈ T2} (3.3)

since ∅ = (φ2)∗(∅)(φ1)∗(∅) and (φ1)∗(s1) = (φ2)∗(∅)(φ1)∗(s1) and (φ2)∗(s2) = (φ2)∗(s2)(φ1)∗(∅).
Thus, T2,mono(T1, T2) represents all strings obtained by concatenating a string from T2 and a string
from T1 with the appropriate relabeling.

Lemma 3.9. Let T ∈ Tree(k) and T1 ∈ Tree(n1), . . . , Tk ∈ Tree(nk). Let N = n1 + · · · + nk and
let ιj : [nj ]→ [N ] be the inclusions as above. Fix j ∈ [k] and i ∈ [nj ]. Then

brιj(i)(T (T1, . . . , Tk)) = {s̃ (ιj)∗(s
′) : s̃ ∈ brj(T )(T1, . . . , Tk), s′ ∈ bri(Tj)}, (3.4)
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where s̃ (ιj)∗(s
′) denotes the concatenation of s̃ and (ιj)∗(s

′). Let ψ : [nj +N ]→ [N ] map the first
nj points monotonically onto ιj([nj ]) and map the last N points monotonically onto [N ]. Then ψ∗
defines a bijection from T2,mono(bri(Tj), brj(T )(T1, . . . , Tk)) to brιj(i)(T (T1, . . . , Tk)).

Proof : To compute the left-hand side of (3.4), suppose that s is a string on the alphabet [N ] with
s ιj(i) ∈ T (T1, . . . , Tk). Since sιj(i) is not the empty string, we can express it as

s ιj(i) = (ιj1)∗(s1) . . . (ιj`)∗(s`),

where j1 . . . j` ∈ T \ {∅} and st ∈ Tjt for t = 1, . . . , `. Since the last letter is ιj(i), we must have
j` = j. Since j1 . . . j`−1j ∈ T , we have by definition j1 . . . j`−1 ∈ brj(T ) and hence

(ιj1)∗(s1) . . . (ιj`−1
)∗(s`−1) ∈ brj(T )(T1, . . . , Tk).

Moreover, the string s` from Tj has i as its last letter, and therefore, s` = s′i for some s′ ∈ bri(Tj).
Hence,

s = (ιj1)∗(s1) . . . (ιj`−1
)∗(s`−1)(ιj)∗(s

′
`) = s̃(ιj)∗(s

′),

where s̃ := (ιj1)∗(s1) . . . (ιj`−1
)∗(s`−1) is in brj(T )(T1, . . . , Tk) and s′ ∈ bri(Tj). Conversely, similar

reasoning shows that whenever s̃ is in brj(T )(T1, . . . , Tk) and s′ ∈ bri(Tj), then the concatenation
s̃ (ιj)∗(s

′) is in brιj(i)(T (T1, . . . , Tk)), and hence (3.4) holds.
Next, we show that ψ∗ maps T2,mono(bri(Tj), brj(T )(T1, . . . , Tk)) onto brιj(i)(T (T1, . . . , Tk)). Let

φ1 : [nj ] → [nj + N ] be the map sending [nj ] monotonically onto the first nj coordinates, and let
φ2 : [N ] → [nj + N ] be the map sending [N ] monotonically onto the last N coordinates. By our
earlier observation (3.3) about composition with T2,mono,

T2,mono(bri(Tj), brj(T )(T1, . . . , Tk)) = {(φ2)∗(s̃)(φ1)∗(s
′) : s̃ ∈ brj(T )(T1, . . . , Tk), s′ ∈ bri(Tj)}.

When we apply ψ∗ to this set, because ψ ◦φ1 = ιj and ψ ◦φ2 = id[N ], we obtain the right-hand side
of (3.4). Thus, the image of T2,mono(bri(Tj), brj(T )(T1, . . . , Tk)) under ψ∗ is what we asserted.

In order to show that ψ∗ is injective on T2,mono(bri(Tj), brj(T )(T1, . . . , Tk)), it suffices to show
uniqueness of the decomposition of s ∈ brιj(i)(T (T1, . . . , Tk)) into s̃ and (ιj)∗(s

′). Note that if s̃ is
not the empty string, then the last letter of s̃ cannot be in ιj([nj ]). Thus, let m be the position
of the last letter in s that does not come from ιj([nj ]), and let m = 0 if all the letters come from
ιj([nj ]). Then s̃ is the substring consisting of the first m letters of s, and ιj(s′) is the remainder of
s. Since ιj is injective, s′ is also uniquely determined. �

Next, we define isomorphism of rooted trees and describe how isomorphism relates to the branch
maps.

Definition 3.10. Let T1 ∈ Tree(N1) and T2 ∈ Tree(N2). We say a map φ : T1 → T2 is a
homomorphism if φ(∅) = ∅ and for each vertex s ∈ T1 and each child s′ of s, φ(s′) is a child of
φ(s). We say that φ is an isomorphism if it is a bijective homomorphism, and in this case, we write
T1
∼= T2.

Observation 3.11. Let T1 ∈ Tree(N1) and T2 ∈ Tree(N2) and let φ : T1 → T2 be an isomorphism.
Then φ defines a bijection [N1] ∩ T1 → [N2] ∩ T2 and we have brj(T1) ∼= brφ(j)(T2).

Definition 3.12. For T ∈ Tree(N), let us write

n(T ) = |[N ] ∩ T |
m(T ) = max

s∈T \{∅}
|{j ∈ [N ] : js ∈ T }|,

that is, n(T ) is the number of children of the root vertex and m(T ) is the maximum number of
children of any other vertex of the tree.
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Observation 3.13. The quantities n(T ) and m(T ) are isomorphism-invariant. If T ∈ Tree(N),
then max(n(T ),m(T ) + 1) ≤ N , and T is isomorphic to some T ′ ∈ Tree(N ′) with N ′ =
max(n(T ),m(T ) + 1).

Proof : The first claim is immediate. By construction, for T ∈ Tree(N), the root has at most N
children and the other vertices have at most N−1 children. Finally, letting N ′ = max(n(T ),m(T )+
1), any isomorphism class of trees where the root has at most N ′ children and the other vertices
have at most N ′ − 1 children can be realized by some subtree of TN ′,free. �

The final set of notation and results relates to compositions of several copies of the same tree;
these remarks will be used in §6.

Definition 3.14. Given trees T1 ∈ Tree(N1) and T2 ∈ Tree(N2), let

T1 ◦ T2 := T1(T2, . . . , T2︸ ︷︷ ︸
N1 times

).

This operation is associative because of the operad associativity property for Tree. Thus, expres-
sions such as T1 ◦ T2 ◦ T3 well-defined without writing parentheses, and in particular the following
definition makes sense.

Definition 3.15. For T ∈ Tree(N), let T ◦k be given by

T ◦k := T ◦ · · · ◦ T︸ ︷︷ ︸
k times

.

Lemma 3.16. For T1 ∈ Tree(N1) and T2 ∈ Tree(N2), we have

n(T1 ◦ T2) = n(T1)n(T2)

m(T1 ◦ T2) = m(T1)n(T2) +m(T2).

Moreover, (as in Jekel and Liu, 2020, Lemma 8.7) for T ∈ Tree(N) with n(T ) > 1, we have

n(T ◦k) = n(T )k

m(T ◦k) = m(T )
n(T )k − 1

n(T )− 1
.

Proof : For j ∈ [N1], let ιj : [N2]→ [N1N2] be given by ιj(i) = (j − 1)N2 + i. The neighbors of ∅ in
T1 ◦ T2 have the form ιj(i) where j is a neighbor of ∅ in T1 and i is a neighbor of ∅ in T2, and hence
n(T1 ◦ T2) = n(T1)n(T2).

Next, consider the children of some non-root vertex of T1 ◦ T2. This vertex has the form s =
(ιj1)∗(s1) . . . (ιj`)∗(s`) where j1 . . . j` ∈ T1 and s1, . . . , s` ∈ T2 \{∅}. There are two ways to append a
letter to the front of this string such that the resulting string is still in T1◦T2. First, we could append
a letter i to the front of s1 in T2 to obtain (ιj1)∗(is1)(ιj2)∗(s2) . . . (ιj`)∗(s`); there are at most m(T2)
possible ways to do this. Second, we could append ιj(i) to s for some j such that jj1 . . . j` ∈ T1

and some i ∈ [N2] ∩ T2; there are at most m(T1)n(T2) possible ways to do this. Thus, the number
of children of s in T1 ◦ T2 is at most m(T1)n(T2) +m(T2). To show that this number of children is
achieved in T1 ◦ T2 \ {∅}, pick some j1 . . . j` ∈ T1 \ {∅} with m(T1) children, pick s1 ∈ T2 \ {∅} with
m(T2) children, and pick s2, . . . , s` ∈ T2 \ {∅} arbitrarily. Then s = (ιj1)∗(s1) . . . (ιj`)∗(s`) will have
exactly m(T1)n(T2) +m(T2) children in T1 ◦ T2 by the foregoing argument.

Clearly, n(T ◦k) = n(T )k follows by induction on k. For the next formula, note that

m(T ◦(k+1)) = m(T ◦ T ◦k) = m(T )n(T ◦k) +m(T ◦k) = m(T )n(T )k +m(T ◦k).
Hence,

m(T ◦k) = m(T ) +
k−1∑
j=1

[m(T ◦(j+1))−m(T ◦j)] =
k−1∑
j=0

m(T )n(T )j = m(T )
n(T )k − 1

n(T )− 1
. �
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Lemma 3.17. Let T1 ∈ Tree(N1), T2 ∈ Tree(N2), T ′1 ∈ Tree(N ′1), T ′2 ∈ Tree(N ′2). If T1
∼= T ′1 and

T2
∼= T ′2 as rooted trees, then T1 ◦ T2

∼= T ′1 ◦ T ′2 .

Proof : Let φ1 : T1 → T ′1 and φ2 : T2 → T ′2 be isomorphisms. Let ιj : [N2] → [N1N2] be given
by ιj(i) = (j − 1)N2 + i, and define ι′j analogously for N ′1 and N ′2 instead of N1 and N2. Then
we define an isomorphism ψ : T1 ◦ T2 → T ′1 ◦ T ′2 as follows. Any vertex of T1 ◦ T2 has the form
(ιj1)∗(s1) . . . (ιj`)∗(s`), where j1 . . . j` ∈ T1 (here ` ≥ 0) and si ∈ T2 \ {∅}. Now φ1(j1 . . . j`) must be
a string of the same length, so suppose that φ1(j1 . . . j`) = j′1 . . . j

′
`. Then we define

ψ((ιj1)∗(s1) . . . (ιj`)∗(s`)) = (ι′j′1
)∗(φ2(s1)) . . . (ι′j′`

)∗(φ2(s`)).

Since φ1 and φ2 are isomorphisms, the right-hand side will realize every possible string from T ′1 ◦
T ′2 , and in fact will be a bijection. The only thing left to prove is that ψ preserves parent-child
relationships, and this is done by examining the two cases of children as in the proof of the previous
lemma. �

4. Tree convolutions

The main result of this section is the following theorem:

Theorem 4.1. There exists a unique function

Tree(N)× P(R)N → P(R) : (T , µ1, . . . , µN ) 7→ �T (µ1, . . . , µN )

that is continuous in T and satisfies

K�T (µ1,...,µN )(z) =
∑

j∈[N ]∩T

Kµj (z −K�brj(T )(µ1,...,µN )(z)). (4.1)

In fact, this map is jointly continuous Tree(N)× P(R)N → P(R).

The convolution will be constructed by iteration to a fixed point similar to the description of free
and subordination convolutions in Belinschi et al. (2017). One of the main ingredients in the proof
is the Earle-Hamilton theorem, which is a fixed-point theorem for holomorphic functions between
Banach spaces.

Definition 4.2 (See Zorn, 1945a,b, 1946). Let X and Y be Banach spaces and let Ω be an open
subset of X . A function f : Ω→ Y is holomorphic if
(1) For each x ∈ X , there exists r > 0 such that B(x, r) ⊆ Ω and f(B(x, r)) is bounded.
(2) For each x, x′ ∈ X and φ ∈ Y ′, the function C→ C mapping z to φ[f(x+ zx′)] is holomorphic

on the region where it is defined.

Theorem 4.3 (Earle and Hamilton, 1970). Let X be a Banach space and Ω a connected open subset
of X . Suppose that F : Ω → Ω is holomorphic, F(Ω) is bounded, and d(F(Ω),Ωc) > 0. Then F
has a unique fixed point in Ω and for any x ∈ Ω, the iterates F◦n(x) converge to the fixed point as
n→∞.

We also use the following lemma about K-transforms and truncated cones. For a ∈ (0, 1) and
0 < b < c, we define

Γa,b,c := {z : Im z ≥ max(a|z|, b), |z| ≤ c}.
Note that Γa,b,c is convex. Of course, if a were greater than 1, this set would be empty since
Im z ≤ |z|; similarly if b were greater than c, then Γa,b,c would be empty. We also remark that

Γa1,b1,c1 ⊆ Γa2,b2,c2 if and only if a1 ≥ a2, b1 ≥ b2, c1 ≤ c2.
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Lemma 4.4. Let Y ⊆ P(R) be compact, let N ∈ N, and suppose that

1 > a0 > a1 > 0, 0 < b1 < b0 < c0 < c1.

and
1 > a2 > 0, 0 < b2 < c2.

Then for sufficiently large t, we have

µ ∈ Y, z ∈ Γa0,tb0,tc0 , w ∈ Γa2,tb2,tc2 =⇒ z −NKµ(w) ∈ Γa1,tb1,tc1 .

Proof : Let

ε(t) = sup
µ∈Y

sup
w∈Γa2,tb2,tc2

N |Kµ(w)|
|w|

.

Note that ε(t)→ 0 as t→∞ using Lemma 2.6. Let z ∈ Γa0,tb0,tc0 and w ∈ Γa2,tb2,tc2 . Note that

Im(z −NKµ(w))

|z −NKµ(w)|
≥ Im(z)− ε(t)|w|
|z|+ ε(t)|w|

≥ Im(z)− ε(t)(tc2/tb0) Im(z)

|z|+ ε(t)(tc2/tb0)|z|

=
b0 − ε(t)c2

b0 + ε(t)c2

Im z

|z|
≥ b0 − ε(t)c2

b0 + ε(t)c2
a0,

where we have used the fact that |z| ≥ Im z ≥ tb0. Since ε(t) → 0, we have for sufficiently large t
that

b0 − ε(t)c2

b0 + ε(t)c2
a0 ≥ a1.

Next, note that
Im(z −NKµ(w)) ≥ Im(z)− ε(t)|w| ≥ t[b0 − ε(t)c2].

This will be greater than or equal to tb1 provided that t is large enough that b0 − ε(t)c2 ≥ b1.
Finally,

|z −NKµ(w)| ≤ |z|+ ε(t)|w| ≤ tc0 + ε(t)tc2 = t(c0 + ε(t)c2).

This will be less than or equal to tc1 provided that t is large enough that c0 + ε(t)c2 ≤ c1. �

Proof of Theorem 4.1: First, let us prove the uniqueness claim. Note that if T is a finite tree of
depth d, then (4.1) expresses K�T (µ1,...,µN ) in terms of the branches of T , which are trees of depth
at most d− 1. Therefore, by induction, �T (µ1, . . . , µN ) is uniquely determined for all finite trees in
Tree(N). However, finite trees are dense in Tree(N), so by continuity, �T (µ1, . . . , µN ) is uniquely
determined for every tree.

To prove the existence and continuity claims, we begin more generally. Let Y be a compact
subset of P(R), and fix some

1 > a0 > a1 > a2 > 0, 0 < b2 < b1 < b0 < c0 < c1 < c2.

Fix some t as in the conclusion of Lemma 4.4. We will apply the Earle-Hamilton theorem with

X = C(Tree(N)× Y N × Γa0,tb0,tc0), Ω = C(Tree(N)× Y N × Γa0,tb0,tc0 , (Γa2,tb2,tc2)◦).

To check that Ω is open, note that because Tree(N)× Y N × Γa0,tb0,tc0 is compact, any continuous
function f from this space into (Γa2,tb2,tc2)◦ will have compact image, hence the image will be sepa-
rated by a positive distance δ from C\Γa2,tb2,tc2 , and then C(Tree(N)×Y N×Γa0,tb0,tc0 , (Γa2,tb2,tc2)◦)

contains the ball of radius δ/2 around f in C(Tree(N)× Y N × Γa0,tb0,tc0). Clearly, Ω is connected
(and in fact convex) because it consists of functions with the convex target space Γa0,tb0,tc0 .

Now let F : Ω→ X be given by

F(f)(T , µ1, . . . , µN , z) = z −
∑

j∈T ∩[N ]

Kµj (f(brj(T ), µ1, . . . , µN , z)).
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Because brj is continuous, it is straightforward to check that F(f) is continuous, hence is an element
of X . Because Kµj is holomorphic, it follows that F is a holomorphic function Ω → X . Indeed, it
suffices to check for each j the holomorphicity of the map Fj given by

Fj(f)(T , µ1, . . . , µN , z) = 1j∈TKµj (f(brj(T ), µ1, . . . , µN , z)).

Letting Tree(N)j = {T ∈ Tree(N) : j ∈ T }, we can write Fj as the composition of the following
maps:

• The map C(Tree(N)×Y N×Γa0,tb0,tc0 ,Γa2,tb2,tc2)→ C(Tree(N)j×Y N×Γa0,tb0,tc0 ,Γa2,tb2,tc2)
given by precomposition in the T -coordinate with brj : Tree(N)j → Tree(N). This is the
restriction of a linear transformation C(Tree(N)× Y N × Γa0,tb0,tc0)→ C(Tree(N)j × Y N ×
Γa0,tb0,tc0), hence is holomorphic.
• Pointwise application of Kµj , which maps C(Tree(N)j × Y N × Γa0,tb0,tc0 ,Γa2,tb2,tc2) holo-
morphically into C(Tree(N)j × Y N × Γa0,tb0,tc0).
• The inclusion map C(Tree(N)j × Y N × Γa0,tb0,tc0) → C(Tree(N) × Y N × Γa0,tb0,tc0) given
by extension by zero (recall that Tree(N)j is clopen in Tree(N)). This map is linear, hence
holomorphic.

We claim that
F(Ω) ⊆ C(Tree(N)× Y N × Γa0,tb0,tc0 ,Γa1,tb1,tc1) ⊆ Ω. (4.2)

Fix f ∈ Ω, and fix T , µ1, . . . , µN , and z. By our choice of t (see Lemma 4.4), since µj ∈ Y and
z ∈ Γa0,tb0,tc0 and f(brj(T ), µ1, . . . , µN , z) ∈ Γa2,tb2,tc2 , we have

z −NKµj (f(brj(T ), µ1, . . . , µN , z)) ∈ Γa1,tb1,tc1 .

Now because Γa1,tb1,tc1 is convex and contains z, the point

z −
∑

j∈T ∩[N ]

Kµj (f(brj(T ), µ1, . . . , µN , z))

=
|[N ] \ T |

N
z +

∑
j∈[N ]∩T

1

N

(
z −NKµj (f(brj(T ), µ1, . . . , µN , z))

)
is in Γa1,tb1,tc1 . Therefore, F(f)(T , µ1, . . . , µN , z) ∈ Γa1,tb1,tc1 , demonstrating (4.2).

Now Γa1,tb1,tc1 is separated by a positive distance δ from Γca2,tb2,tc2 . This implies that C(Tree(N)×
Y N × Γa0,tb0,tc0 ,Γa1,tb1,tc1) is separated by δ from the complement of Ω = C(Tree(N) × Y N ×
Γa0,tb0,tc0 , (Γa2,tb2,tc2)◦). Therefore, the Earle-Hamilton theorem applies and there is a unique f ∈ Ω
that satisfies F(f) = f . Moreover, the iterates F◦n(z) (where z represents the constant function
with value z) converge to f in C(Tree(N)× Y N × Γa0,tb0,tc0 , (Γa2,tb2,tc2)◦) as n→∞.

Now we can prove the existence claim. Fix µ1, . . . , µN . In the foregoing argument, we can take
Y = {µ1, . . . , µN}, which is clearly compact. Let

F
(0)
T ,µ1,...,µN (z) = z

and
F

(n+1)
T ,µ1,...,µN (z) = z −

∑
j∈[N ]∩T

Kµj (F
(n)
brj(T ),µ1,...,µN

(z)).

By a straightforward induction argument, F (n+1)
T ,µ1,...,µN (z) is well-defined and is a holomorphic map

from the upper half-plane to itself. Moreover,

F
(n)
T ,µ1,...,µN |Γa0,tb0,tc0 = F◦n(z)(T , µ1, . . . , µN , ·).

Hence, the preceding argument shows that F (n)
T ,µ1,...,µN converges uniformly on Γa0,tb0,tc0 as n→∞.

Because Hol(H,H) is a normal family when the target space is viewed as a subset of the Riemann
sphere, it follows that F (n)

T ,µ1,...,µN converges locally uniformly on all of H as n→∞ to some function
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FT ,µ1,...,µN taking values in the closure of H in the Riemann sphere. But FT ,µ1,...,µN maps Γa0,tb0,tc0
into Γa2,tb2,tc2 which is in H, and therefore, the open mapping theorem implies that FT ,µ1,...,µN maps
H into H. The identity

FT ,µ1,...,µN (z) = z −
∑

j∈[N ]∩T

Kµj (Fbrj(T ),µ1,...,µN (z))

holds on Γa0,tb0,tc0 by the foregoing argument, and hence it holds on all of H by the identity theorem.
Next, we argue that FT ,µ1,...,µN is the F -transform of some probability measure µ. By Nevan-

linna’s theorem, it suffices to show that FT ,µ1,...,µN (it)/t → i as t → +∞ on the positive real axis.
For this purpose, let us forget the original values of aj , bj , cj and t. Given a neighborhood U of i,
we may choose a0 > a1 > a2 > 0 and 0 < b2 < b1 < b0 < c0 < c1 < c2 such that

Γa1,b1,c1 ⊆ U.

If t is sufficiently large, then the foregoing argument shows that

FT ,µ1,...,µN (Γa0,tb0,tc0) ⊆ Γa1,tb1,tc1

since the fixed point of F must be in F(Ω). In particular, since it ∈ tΓa0,b0,c0 = Γa0,tb0,tc0 , we get
FT ,µ1,...,µN (it) ∈ Γa1,tb1,tc1 = tΓa1,b1,c1 and hence FT ,µ1,...,µN (it)/t ∈ U . Thus,
limt→+∞ FT ,µ1,...,µN (it)/t = i, and hence FT ,µ1,...,µN is the F -transform of some probability measure
�T (µ1, . . . , µN ). This concludes the existence claim.

Finally, we must show joint continuity of (T , µ1, . . . , µN ) 7→ �T (µ1, . . . , µN ). Since P(R) is
metrizable by Prokhorov’s theorem, it suffices to show sequential continuity, which in turn will
follow if we show that the map is continuous on Tree(N) × Y N for every compact Y ⊆ P(R). Fix
constants a0 > a1 > a2 > 0 and 0 < b2 < b1 < b0 < c0 < c1 < c2 and let t be as in Lemma 4.4.
Then by the previous argument involving the Earle-Hamilton theorem, the map

Tree(N)× Y N × Γa0,tb0,tc0 → Γa1,tb1,tc1 : (T , µ1, . . . , µN , z) 7→ FT ,µ1,...,µN (z)

is jointly continuous, due to the definition of the set Ω. Since the domain of this function is compact,
it is uniformly continuous, and hence

Tree(N)× Y N → C(Γa0,tb0,tc0 ,Γa1,tb1,tc1) : (T , µ1, . . . , µN ) 7→ FT ,µ1,...,µN |Γa0,tb0,tc0
is continuous. Because Hol(H,H) is a normal family, uniform convergence on Γa0,tb0,tc0 of a sequence
Fn in Hol(H,H) to some F ∈ Hol(H,H) implies local uniform convergence Fn → F on all of H.
Hence, we have continuity of the map

Tree(N)× Y N → Hol(H,H) : (T , µ1, . . . , µN ) 7→ FT ,µ1,...,µN .

But by Lemma 2.2, this is equivalent to continuity of (T , µ1, . . . , µN ) 7→ �T (µ1, . . . , µN ), which is
what we wanted to prove. �

Corollary 4.5. The convolution operation defined in Theorem 4.1 in the case of compactly supported
measures agrees with the one defined in Jekel and Liu (2020) for B = C.

Proof : Let T ∈ Tree(N), and let µ1, . . . , µN be probability measures supported in [−R,R]. Jekel
and Liu (2020) took the viewpoint of treating the measures as positive linear functionals on the
polynomial algebra, which is equivalent in the case of compactly supported measures. The convo-
lution operation in Jekel and Liu (2020) was shown to satisfy (4.1); see Jekel and Liu (2020, §6.3,
equation (6.3)). Now the T -free convolution of µ1, . . . , µN is supported in [−NR,NR], and the
moments depend continuously on T ; see Jekel and Liu (2020, §5.2). Therefore, the convolution in
Jekel and Liu (2020) for µ1, . . . , µN satisfies the fixed point equation and continuity property of
Theorem 4.1, so it agrees with the convolution defined in that theorem. �

Here are a few simple cases of convolution operations that we will use later.
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Example 4.6. Let T = {∅} ∈ Tree(N). Then

K�T (µ1,...,µN )(z) = 0

because it is the sum over an empty index set. Hence, �T (µ1, . . . , µN ) = δ0.

Example 4.7. Let TN,bool = {∅} ∪ [N ] ∈ Tree(N). Then brj(TN,bool) = {∅}. Therefore,

K�TN,bool (µ1,...,µN )(z) =

N∑
j=1

Kµj (z −Kδ0(z)) =

N∑
j=1

Kµj (z).

The convolution �TN,bool(µ1, . . . , µN ) is called the boolean convolution of µ1, . . . , µN and it is
commonly denoted

⊎N
j=1 µj or µ1]· · ·]µN (see Speicher and Woroudi, 1997). Boolean convolution

corresponds to addition of the K-transforms. Hence, the binary boolean convolution operation ]
is commutative and associative. Since the boolean convolution is independent of the order of the
measures, we may unambiguously write

⊎
s∈S µs where S is a finite set.

Example 4.8. Let Torth = {∅, 1, 21}. Then �Torth(µ1, µ2) is called the orthogonal convolution and is
denoted by µ1 ` µ2 (see Lenczewski, 2007). Note that br1(Torth) = {∅, 2} and br2(Torth) = {∅} and
br2(br1(Torth)) = {∅}. Therefore,

Kµ1`µ2(z) = Kµ1(z −Kµ2(z)) = Kµ1 ◦ Fµ2(z).

Remark 4.9. The fixed point equation (4.1) can be expressed alternatively in terms of the boolean
and orthogonal convolution as

�T (µ1, . . . , µN ) =
⊎

j∈[N ]∩T

(
µj ` �brj(T )(µ1, . . . , µN )

)
. (4.3)

Iterating this formula enables us to express the convolution associated to any finite tree in terms of
the boolean and orthogonal convolutions. The case of compactly supported measures was already
done in Jekel and Liu (2020, §6.3), and this is a generalization of Lenczewski’s earlier work on
decompositions of the free convolution Lenczewski (2007).

Example 4.10. Let T2,mono = {∅, 1, 2, 21}. Then �T2,mono(µ1, µ2) is called the monotone convolution
of µ1 and µ2 and is denoted µ1 B µ2 (see Muraki, 2000, 2001). Computing iteratively with (4.1)
yields

µ1 B µ2 = (µ1 ` µ2) ] µ2 (4.4)
or equivalently

Kµ1Bµ2(z) = Kµ1(z −Kµ2(z)) +Kµ2(z),

which implies that Fµ1Bµ2 = Fµ1 ◦ Fµ2 . In the next section, we will use two more simple identities
relating boolean, monotone, and orthogonal convolution. First,

λ ` (µB ν) = (λ ` µ) ` ν, (4.5)

holds because Kλ ◦ (Fµ ◦ Fν) = (Kλ ◦ Fµ) ◦ Fν . Second, N⊎
j=1

µj

 ` ν =

N⊎
j=1

(µj ` ν) (4.6)

holds because (
∑N

j=1Kµj ) ◦ Fν =
∑N

j=1Kµj ◦ Fν .

Example 4.11. Let us explain the connection between T2,free and prior work on free convolution more
precisely. The free convolution µ � ν is defined in Bercovici and Voiculescu (1992) by the relation
that

F−1
µ�ν = F−1

µ + F−1
ν − id
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holds in a non-tangential neighborhood of ∞ in the upper half-plane. In order to show that
F−1
�T2,free (µ,ν) = F−1

µ + F−1
ν − id, we look at (4.3) says in the case of T2,free, which of course entails

looking at the branches of T2,free. Let Tsub = {∅, 1, 21, 121, . . . }, and let T †sub = {∅, 2, 12, 212, . . . }.
We observe that

br1(T2,free) = T †sub, br2(T2,free) = Tsub,

br1(Tsub) = T †sub, br2(Tsub) = ∅,

br1(T †sub) = ∅ br2(T †sub) = Tsub.

Thus, (4.3) yields

�T2,free(µ, ν) = (µ ` �T †sub(µ, ν)) ] (ν ` �Tsub(µ, ν))

�Tsub(µ, ν) = µ ` �T †sub(µ, ν)

�T †sub
(µ, ν) = µ ` �Tsub(µ, ν).

Back-substituting the last two equations into the first yields

�T2,free(µ, ν) = �Tsub(µ, ν) ]�T †sub(µ, ν).

Similarly, using back-substitution and (4.4),

�T2,free(µ, ν) = (µ ` �T †sub(µ, ν)) ]�T †sub(µ, ν) = µB�T †sub
(µ, ν).

and symmetrically, �T2,free(µ, ν) = ν B�Tsub(µ, ν). In terms of the F -transform, this means that

F�T2,free (µ,ν) = F�Tsub (µ,ν) + F�
T †
sub

(µ,ν) − id = Fµ ◦ F�
T †
sub

(µ,ν) = Fν ◦ F�Tsub (µ,ν).

Hence, in a non-tangential neighborhood of ∞, we have

(F−1
µ + F−1

ν − id) ◦ F�T2,free (µ,ν) = F−1
µ ◦ F�T2,free (µ,ν) + F−1

ν ◦ F�T2,free (µ,ν) − F�T2,free (µ,ν)

= F�
T †
sub

(µ,ν) + F�Tsub (µ,ν) − F�T2,free (µ,ν)

= id,

so that F−1
µ + F−1

ν − id = F−1
�T2,free

and therefore, �T2,free(µ, ν) = µ� ν as desired.
In the process of the argument, we showed that Fµ�ν = Fν◦F�Tsub (µ,ν)), which means in particular

that Fµ�ν is analytically subordinated to Fν as functions on the upper half-plane; this result has
been studied by many authors in free probability (Voiculescu, 1993, Proposition 4.4, Biane, 1998,
Theorem 3.1, Voiculescu, 2000, Voiculescu, 2002, and Belinschi et al., 2017, Lenczewski, 2007, §7,
Nica, 2009, Liu, 2018, Proposition 7.2). The convolution operation associated to T2,sub is called the
subordination convolution and is denoted µ i ν. Furthermore, it is easy to check (and follows from
Proposition 5.1 below) that �T †sub

(µ, ν) = �Tsub(ν, µ) = ν i µ.
The above relations between free and subordination convolutions imply that Fµiν and Fνiµ

satisfy the fixed-point equation system

Fµiν = id−Kµ ◦ Fνiµ

Fνiµ = id−Kν ◦ Fµiν .

In order to study the subordination theory for free convolution, Belinschi et al. (2017) used iteration
to construct solutions for this fixed-point equation system (and this was done in the more general
operator-valued setting). In fact, the iterates from their paper are, in the notation of our proof of
Theorem 4.1, exactly F (n)

Tsub,µ,ν and F
(n)

T †sub,µ,ν
. Hence, our fixed-point iteration is a direct generalization

of the one used for subordination convolution. However, the subordination case is simpler in that
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F
(n+1)
Tsub,µ,ν and F

(n+1)

T †sub,µ,ν
are computed in terms of F (n)

Tsub,µ,ν and F
(n)

T †sub,µ,ν
and Kµ and Kν ; no other

trees besides Tsub and T †sub are involved in the computation because {Tsub, T †sub,∅} is closed under
the branch operations.

One can check also that F (n)
Tsub,µ,ν = FT (n)

sub ,µ,ν
, where T (n)

sub is the truncation of the tree Tsub to
depth n, and

�T (n)
sub

(µ, ν) = µ ` (ν ` (µ ` . . . ))︸ ︷︷ ︸
n terms

.

Hence, µ i ν is the limit of iterated orthogonal convolutions of µ and ν, as was observed by
Lenczewski (2007).

5. Convolution and the operad structure

In this section, we describe how the convolution operation of Theorem 4.1 relates to the operations
in the operad Tree. We start out with two propositions that prove permutation-equivariance as well
as more general convolution identities. We remark that Propositions 5.1 and 5.2 imply that all the
same convolution identities as in Jekel and Liu (2020, §6) hold for arbitrary probability measures
on R since the only ingredients needed in the proofs are the relations (5.1) and (5.2).

Proposition 5.1. Let ψ : [N ]→ [N ′] be surjective. Let Tree(ψ) be the set of trees T ∈ Tree(N) such
that ψ∗(s) is alternating for every s ∈ T and such that ψ∗|T is injective. Let µ1, . . . , µN ′ ∈ P(R)
and T ∈ Tree(ψ). Then

�T (µψ(1), . . . , µψ(N)) = �ψ∗(T )(µ1, . . . , µN ′). (5.1)

In the case of compactly supported measures, this proposition follows from Jekel and Liu (2020,
Corollary 5.15). One can deduce the general case by continuity because compactly supported
measures are dense in P(R). But below we give an alternative self-contained argument directly
from Theorem 4.1.

Proof of Proposition 5.1: Note that Tree(ψ) is closed under taking branches and rooted subtrees.
Therefore, finite trees are dense in Tree(ψ), so by continuity, it suffices to prove (5.1) when T is
finite. We proceed by induction on the depth of T . When the depth of T is zero, (5.1) holds because
both sides are δ0. For the inductive step, consider a finite tree T of depth d. By Theorem 4.1,

�T (µψ(1), . . . , µψ(N)) =
⊎

j∈[N ]∩T

(
µψ(j) ` �brj(T )(µψ(1), . . . , µψ(N))

)
.

Since ψ∗|T is injective, each neighbor i of the root vertex in ψ∗(T ) is the image of a single neighbor
j of the root vertex in T . Moreover, bri(ψ∗(T )) = ψ∗(brj(T )). Since brj(T ) has depth strictly less
than d, the inductive hypothesis implies that

�brj(T )(µψ(1), . . . , µψ(N)) = �ψ∗(brj(T ))(µ1, . . . , µN ′).

Therefore, the above expression equals

�T (µψ(1), . . . , µψ(N)) =
⊎

i∈[N ′]∩ψ∗(T )

(
µi ` �bri(ψ∗(T ))(µ1, . . . , µN ′)

)
= �ψ∗(T )(µ1, . . . , µN ′),

which completes the inductive step and hence the proof. �

Since any function is the composition of a surjection and injection, to understand the general
case of ψ : [N ]→ [N ′], all that is left is to handle the injective case. In order to simplify notation,
we restrict our attention to the canonical inclusion [N ] → [N ′] for N ′ > N that maps j to itself.
Because of permutation-equivariance, whatever results we prove for this case will have analogs for
a general injective map.
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Proposition 5.2. Let N < N ′. Let ι : [N ]→ [N ′] be the canonical inclusion. Then for T ∈ Tree(N)
and µ1, . . . , µN ′ ∈ P(R), we have

�T (µ1, . . . , µN ) = �ι∗(T )(µ1, . . . , µN ′). (5.2)

Proof : Let M(T ) = �ι∗(T )(µ1, . . . , µN ′). Note that

M(T ) =
⊎

j∈[N ′]∩ι∗(T )

µj ` �brj(ι∗(T ))(µ1, . . . , µN ′).

But [N ′] ∩ ι∗(T ) = ι([N ] ∩ T ) and brj(ι∗(T )) = ι∗(brj(T )). Thus,

M(T ) =
⊎

j∈[N ]∩T

µj ` �ι∗(brj(T ))(µ1, . . . , µN ′) =
⊎

j∈[N ]∩T

µj `M(brj(T )).

Thus, M(T ) satisfies the fixed-point equation (4.1). It also depends continuously on T since T 7→
ι∗(T ) is isometric. Therefore, by Theorem 4.1, M(T ) = �T (µ1, . . . , µN ). �

The next theorem shows that the convolution operation �T respects operad composition.

Theorem 5.3. Let T ∈ Tree(k) and T1 ∈ Tree(n1), . . . , Tk ∈ Tree(nk). Let N = n1 + · · · + nk.
For each j ∈ [k] and i ∈ [nj ], let µj,i ∈ P(R). Then we have

�T (T1,...,Tk) (µ1,1, . . . , µ1,n1 , . . . . . . , µk,1, . . . , µk,nk)

= �T (�T1(µ1,1, . . . , µ1,n1), . . . ,�Tk(µk,1, . . . , µk,nk)).

In the case of compactly supported measures, this result follows immediately from Jekel and Liu
(2020, Corollary 5.13) taking B = C. Because compactly supported measures are dense in P(R) and
because of continuity of the convolution operations in Theorem 4.1, it follows that the identity holds
for all measures in P(R). Although this argument is satisfactory, we will also present an alternative
proof directly from Theorem 4.1 that is self-contained and elucidates the connection between the
fixed-point equation in Theorem 4.1, the operad structure, and the branch maps.

Proof of Theorem 5.3: First, we prove the case of the theorem where T = T2,mono. In other words,
we want to establish the identity

�T2,mono(T1,T2) (µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2) = �T1(µ1,1, . . . , µ1,n1)B�T2(µ2,1, . . . , µ2,n2) (5.3)

for T1 ∈ Tree(n1) and T2 ∈ Tree(n2) and for probability measures µj,i. Note that both sides depend
continuously on T1 and T2, using continuity of the operad composition in Tree and continuity of the
convolution operation in Theorem 4.1. Therefore, it suffices to prove the statement when T1 and T2

are finite trees.
We proceed by induction on the depth of T1 plus the depth of T2. In the base case of combined

depth 0, we have T1 = {∅}, and hence T2,mono(T1, T2) = T2 and �T1(µ1,1, . . . , µ1,n1) = δ0, so the
claim holds.

For the inductive step, consider trees T1 and T2 with combined depth d. Let T ′ = T2,mono(T1, T2).
Let µ1 = �T1(µ1,1, . . . , µ1,n1) and µ2 = �T2(µ2,1, . . . , µ2,n2). Note that

[n1 + n2] ∩ T ′ = ι1([n1] ∩ T1) t ι2([n2] ∩ T2).

Thus, by equation (4.3),

�T ′ (µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2) =
⊎

i∈[n1]∩T1

(
µ1,i ` �brι1(i)(T

′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2)
)

]
⊎

i∈[n2]∩T2

(
µ2,i ` �brι2(i)(T

′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2)
)
.
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Now by Lemma 3.9, letting ψ1 : [2n1 + n2] → [n1 + n2] be the map sending the first n1 points
monotonically onto [n1] and the last n1 + n2 points monotonically onto [n1 + n2], we have

brι1(i)(T ′) = brι1(i)(T2,mono(T1, T2))

= (ψ1)∗[T2,mono(bri(T1), br1(T2,mono)(T1, T2))]

= (ψ1)∗[T2,mono(bri(T1), (ι2)∗(T2))]

= T2,mono(bri(T1), T2).

Similarly,

brι2(i)(T ′) = brι2(i)(T2,mono(T1, T2)) = (ψ2)∗[T2,mono(bri(T2), br2(T2,mono)(T1, T2))] = (ι2)∗(bri(T2)).

where ψ2 : [n1 + 2n2]→ [n1 +n2] sends the first n2 coordinates monotonically onto ι2([n2]) and the
last n1 + n2 coordinates monotonically onto [n1 + n2]. Therefore, using the induction hypothesis,

�brι1(i)(T
′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2) = �bri(T1)(µ1,1, . . . , µ1,n1)B�T2(µ2,1, . . . , µ2,n2)

= �bri(T1)(µ1,1, . . . , µ1,n1)B µ2,

and by applying Proposition 5.2 to ι2,

�brι2(i)(T
′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2) = �(ι2)∗[bri(T2)](µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2).

= �bri(T2)(µ2,1, . . . , µ2,n2).

Therefore, using (4.5) and (4.6),⊎
i∈[n1]∩T1

(
µ1,i ` �brι1(i)(T

′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2)
)

=
⊎

i∈[n1]∩T1

(
µ1,i `

(
�bri(T1)(µ1,1, . . . , µ1,n1)B µ2

))
=

⊎
i∈[n1]∩T1

(
µ1,i `

(
�bri(T1)(µ1,1, . . . , µ1,n1)B µ2

))
=

⊎
i∈[n1]∩T1

((
µ1,i ` �bri(T1)(µ1,1, . . . , µ1,n1)

)
` µ2

)

=

 ⊎
i∈[n1]∩T1

(
µ1,i ` �bri(T1)(µ1,1, . . . , µ1,n1)

) ` µ2

= µ1 ` µ2.

Similarly, ⊎
i∈[n2]∩T2

(
µ2,i ` �brι2(i)(T

′)(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2)
)

=
⊎

i∈[n2]∩T2

(
µ2,i ` �bri(T2)(µ2,1, . . . , µ2,n2)

)
=µ2.

Therefore,
�T ′(µ1,1, . . . , µ1,n1 , µ2,1, . . . , µ2,n2) = (µ1 ` µ2) ] µ2 = µ1 B µ2

as desired, which completes the inductive step.
Finally, we begin the main argument to prove the general case of the theorem. Let T , T1, . . . , Tk

and µj,i be as in the theorem statement. Let

µj = �Tj (µj,1, . . . , µj,nj ).
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Let
M(T ) = �T (T1,...,Tk)(µ1,1, . . . , µ1,n1 , . . . . . . , µk,1, . . . , µk,nk).

Note that T 7→M(T ) is continuous because composition and convolution are continuous. Thus, by
Theorem 4.1, to show that M(T ) = �T (µ1, . . . , µk), it suffices to show that

M(T ) =
⊎

j∈[k]∩T

(µj `M(brj(T ))) . (5.4)

Let T ′ = T (T1, . . . , Tk). Let ψj : [nj + N ] → [N ] map the first nj elements monotonically onto
ιj([nj ]) and the last N elements monotonically onto [N ]. Applying (4.3), Lemma 3.9, Proposi-
tion 5.1, (5.3), and (4.5),

M(T ) =
⊎

j∈[k],i∈[nj ],
ιj(i)∈[N ]∩T ′

(
µj,i ` �brιj(i)(T (T1,...,Tk))(µ1,1, . . . , µk,nk)

)

=
⊎

j∈[k],i∈[nj ],
ιj(i)∈[N ]∩T ′

(
µj,i ` �(ψj)∗[T2,mono(bri(Tj),brj(T )(T1,...,Tk))](µ1,1, . . . , µk,nk)

)

=
⊎

j∈[k]∩T

⊎
i∈[nj ]∩Tj

(
µj,i ` �T2,mono(bri(Tj),brj(T )(T1,...,Tk))(µj,1, . . . , µj,nj , µ1,1, . . . , µk,nk)

)
=

⊎
j∈[k]∩T

⊎
i∈[nj ]∩Tj

(
µj,i ` (�bri(Tj)(µj,1, . . . , µj,nj )B�brj(T )(T1,...,Tk)(µ1,1, . . . , µk,nk))

)
=

⊎
j∈[k]∩T

⊎
i∈[nj ]∩Tj

(
(µj,i ` �bri(Tj)(µj,1, . . . , µj,nj )) `M(brj(T ))

)
=

⊎
j∈[k]∩T

(µj `M(brj(T ))) ,

which demonstrates (5.4) and hence finishes the proof. �

Knowing that the convolution operations respect the operad structure of Tree, we can now discuss
the examples of boolean, free, and monotone convolution in more generality. However, we will not
give detailed justification for the claims here because the boolean, free, and monotone convolution
were already discussed in depth in Jekel and Liu (2020, §3.2, §5.5, and throughout).

Example 5.4. Let TN,bool = {∅} ∪ [N ]. We saw in Example 4.7 that �TN,bool is the N -fold boolean
convolution. Let id = {∅, 1} ∈ Tree(1). The operad identity

T2,bool(id, T2,bool) = T2,bool(T2,bool, id)

can be checked by direct computation, and it implies that µ1 ] (µ2 ] µ3) = (µ1 ] µ2) ] µ3, that is,
the binary boolean convolution operation is associative. Furthermore, T2,bool(id, T2,bool) = T3,bool

implies that the ternary boolean convolution can be obtained by iterating the binary boolean con-
volution. More generally,

Tk,bool(Tn1,bool, . . . , Tnk,bool) = Tn1+···+nk,bool.

Hence, theN -ary boolean convolution can be obtained by iterating lower order boolean convolutions.
Finally, TN,bool is permutation-invariant and therefore �TN,bool is permutation-invariant.

Example 5.5. We saw in Example 4.11 that T2,free produces the binary free convolution operation.
One can check that

T2,free(id, T2,free) = T2,free(T2,free, id) = T3,free,
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and hence the binary free convolution is associative. We also deduce that �T3,free(µ1, µ2, µ3) =
(µ1�µ2)�µ3, so that �T3,free agrees with any other definition of the ternary free convolution. Similar
reasoning shows that TN,free produces the N -ary free convolution; the N -ary free convolution can be
obtained by iterating lower-order free convolutions; the free convolution is permutation-invariant.
Alternatively, the argument in Example 4.11 can be generalized to N variables to show that

F−1
�TN,free (µ1,...,µN ) − id =

N∑
j=1

(F−1
µj − id)

on an appropriate domain.

Example 5.6. Let

TN,mono := {∅} ∪ {j1 . . . j` : N ≥ j1 > j2 > · · · > j` ≥ 1, ` ≥ 1}.

Similar to the previous examples,

T2,mono(id, T2,mono) = T2,mono(T2,mono, id) = T3,mono.

Hence, we have associativity of monotone convolution, and T3,mono produces the ternary monotone
convolution. More generally,

Tk,mono(Tn1,mono, . . . , Tnk,mono) = Tn1+···+nk,mono.

The mirror image of TN,mono is

TN,mono † := {∅} ∪ {j1 . . . j` : 1 ≤ j1 < j2 < · · · < j` ≤ N, ` ≥ 1},

which relates to the anti-monotone convolution instead of the monotone convolution. The permu-
tation of [N ] that reverses the order of all the elements transforms TN,mono into TN,mono †, which
corresponds to the fact that the anti-monotone convolution and monotone convolution are related
by reversing the order of indices.

Our final observation is that the T -free convolution of several copies of the same measure depends
only on the isomorphism class of T . We remark that the case of compactly supported measures
also follows from Theorem 7.8 and Proposition 7.19 (1) of Jekel and Liu (2020).

Lemma 5.7. Suppose T1 ∈ Tree(N1) and T2 ∈ Tree(N2). If T1
∼= T2, then �T1(µ, . . . , µ) =

�T2(µ, . . . , µ) for all µ ∈ P(R).

Proof : If T1 and T2 are isomorphic, then their truncations T (k)
1 and T (k)

2 to depth k are also
isomorphic for every k. Since T (k)

1 → T1 and T (k)
2 → T2 in Tree(N1) and Tree(N2) respectively,

and since the convolution operations are continuous, it suffices to show that �T (k)
1

(µ, . . . , µ) =

�T (k)
2

(µ, . . . , µ).
Therefore, to prove the lemma, it suffices to prove the case where T1 and T2 are finite trees.

We proceed by induction on the depth, the depth-0 case being trivial. Let φ : T1 → T2 be an
isomorphism. By Observation 3.11, φ defines a bijection [N1] ∩ T1 → [N2] ∩ T2, and brj(T1) ∼=
brφ(j)(T2) for each j ∈ [N1]∩ T1. We may apply the induction hypothesis to each of these branches
since they have strictly smaller depth than the original trees. Hence,

�T1(µ, . . . , µ) =
⊎

j∈[N1]∩T

µ ` �brj(T1)(µ, . . . , µ)

=
⊎

j′∈[N2]∩T2

µ ` �brj′ (T2)(µ, . . . , µ) = �T2(µ, . . . , µ),

which completes the inductive step and hence the proof. �
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6. A general limit theorem

Bercovici and Pata (1999, Theorem 6.3) showed a bijection between limit theorems for classical,
free, and boolean convolution in the following sense: Given a sequence (µ`)`∈N in P(R) and a
sequence (k`)`∈N in N tending to infinity, µ∗k`` converges weakly as ` → ∞ if and only if µ�k``

converges if and only if µ]k`` converges weakly as `→∞. Theorem 6.1 will generalize one direction
of this result to trees T with n(T ) > 1; namely, we will show that if convergence holds for the
boolean case, then it holds for all such trees T . Applications of this result will be discussed in §7,
and open questions in §8.

In preparation, we establish some notation. For T ∈ Tree(N) and µ ∈ P(R), let

�T (µ) := �T (µ, . . . , µ︸ ︷︷ ︸
N times

).

We also use boolean convolution powers defined as follows: For c > 0 and µ ∈ P(R), let µ]c be
given by

Kµ]c = cKµ.

For each µ, such a measure µ]c exists because a function K is the K-transform of a measure if
and only if K maps H to −H and K(z)/z → 0 as z → ∞ in H non-tangentially. The notation
µ]c is unambiguous since a measure is uniquely determined by its K-transform. If N ∈ N, then⊎N
j=1 µ = µ]N . We also have (µ]c1)]c2 = µ]c1c2 . Recall also Definition 3.12 and Lemma 3.16.

Theorem 6.1. Let (µ`)`∈N be a sequence in P(R) and let (k`)`∈N be a sequence of natural numbers
tending to∞. Let N ∈ N and T ∈ Tree(N) with n(T ) > 1. If µ]n(T )k`

` converges to some probability
measure ν as `→∞, then �T ◦k` (µ`) converges as `→∞ to some probability measure BP(T , ν) only
depending on T and ν. Moreover, for each N ∈ N, the convergence is uniform over all T ∈ Tree(N)
with n(T ) > 1.

Our proof relies on the following result, which gives certain continuity estimates for the T -free
convolution operations that are independent of N .

Theorem 6.2. For N ∈ N, we define

ΦN : Tree(N)× [0, 1]× P(R)→ P(R)

by

ΦN (T , c, µ) :=

{
�T (µ]c/N , . . . , µ]c/N )]1/c, c ∈ (0, 1],

µ]
n(T )
N , c = 0.

The map ΦN satisfies the fixed-point equation

KΦN (T ,c,µ)(z) =
1

N

∑
j∈[N ]∩T

Kµ(z − cKΦN (brj(T ),c,µ)(z)). (6.1)

Moreover, the maps (ΦN )N∈N have the following equicontinuity property: For each compact Y ⊆
P(R) and ε > 0, there exists δ > 0 such that for all N , for all T1, T2 ∈ Tree(N) and c1, c2 ∈ [0, 1] and
µ ∈ Y and ν ∈ P(R), if ρN (T1, T2)+|c1−c2|+dL(µ, ν) < δ, then dL(ΦN (T1, c1, µ),ΦN (T2, c2, ν)) < ε.
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Proof : To check (6.1) for c > 0, observe that

KΦN (T ,c,µ)(z) =
1

c
K�T (µ]c/N ,...,µ]c/N )(z)

=
∑

j∈[N ]∩T

1

c
Kµ]c/N (z −K�brj(T )(µ

]c/N ,...,µ]c/N )(z))

=
1

N

∑
j∈[N ]∩T

Kµ(z − cKΦN (brj(T ),c,µ)(z)).

The case c = 0 is immediate and left to the reader.
Now we turn to the claim about continuity. We will show below that the family (ΦN )N∈N

is uniformly equicontinuous on Tree(N) × [0, 1] × Y . By this, we mean more precisely that the
functions are uniformly continuous with a modulus of continuity that is independent of N ; even
though the domains are different, equicontinuity still makes sense because we have fixed a metric
ρN for each Tree(N) from the beginning. This claim about equicontinuity for each compact Y is
enough to finish the proof. Indeed, if the conclusion of the theorem failed, then there would be a
compact set Y and ε > 0 such that for each k > 0, there exist µk ∈ Y and νk ∈ P(R) and Nk ∈ N
and Tk, T ′k ∈ Tree(Nk) and ck, c′k ∈ [0, 1] such that

ρN (Tk, T ′k) + |ck − c′k|+ dL(µk, νk) < 1/k, dL(ΦNk(Tk, ck, µk),ΦNk(T ′k , c′k, νk)) ≥ ε.

Then Y ′ = Y ∪ {νk : k ∈ N} would be compact, and the above conditions would contradict the
equicontinuity on Tree(N)× [0, 1]× Y ′.

As before, the strategy is to reframe (6.1) as a fixed-point equation for some analytic function F
on a Banach space X and apply the Earle-Hamilton theorem. Fix Y ⊆ P(R) compact, and fix

1 > a0 > a1 > a2 > 0, 0 < b2 < b1 < b0 < c0 < c1 < c2,

and let t be as in the conclusion of Lemma 2.2. Let X to be the space of sequences (fN )N∈N where
fN : Tree(N)× [0, 1]× Y ×Γa0,tb0,tc0 → C and where (fN )N∈N is uniformly bounded and uniformly
equicontinuous, with the norm given by

‖(fN )N∈N‖X = sup
N∈N
‖fN‖C(Tree(N)×[0,1]×Y×Γa0,tb0,tc0 );

it is easy to check that this is a Banach space because uniform equicontinuity is preserved under
limits in this norm. Let

Ω =

{
(fN )N∈N ∈ X :

⋃
N∈N

Ran(fN ) ⊆ (Γa2,tb2,tc2)◦

}
,

where Ran(fN ) denotes the range (image) of fN . Note that Ω is open in X . Define F : Ω→ X by

F((fN )N∈N) := (gN )N∈N, where gN (T , c, µ, z) = z − 1

N

∑
j∈[N ]∩T

Kµ((1− c)z + cfN (brj(T ), c, µ, z)).

The motivation for this definition is that fN (T , c, µ, z) is intended to approximate z−KΦN (T ,c,µ)(z),
and hence the intended approximation for z − cKΦN (brj(T ),c,µ)(z) is (1− c)z + cfN (T , c, µ, z).

We must check that (gN )N∈N is actually in X , that F is analytic, and F(Ω) is separated by a
positive distance from Ωc. First, to show that (gN )N∈N is uniformly bounded and equicontinuous,
one combines the following facts:
(1) The modulus of continuity of the map brj (on its domain) is independent of N since it is

e-Lipschitz.
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(2) The map µ 7→ Kµ is continuous on Y where we use the vague topology on Y ⊆ P(R) and
the topology of uniform convergence on Γa2,tb2,tc2 . Hence, the map (µ, z) 7→ Kµ(z) is jointly
continuous on Y ×Γa2,tb2,tc2 , hence uniformly continuous and uniformly bounded by compactness
of Y and Γa2,tb2,tc2 .

To show the separation of F(Ω) from Ωc, we proceed similarly to the proof of Theorem 4.1. By our
choice of fN , we have

fN (brj(T ), c, µ, z) ∈ Γa2,tb2,tc2 ,

and by convexity of Γa2,tb2,tc2 , we have

(1− c)z + cfN (brj(T ), c, µ, z) ∈ Γa2,tb2,tc2 .

Then by our choice of t,

z −Kµ((1− c)z + cfN (brj(T ), c, µ, z)) ∈ Γa0,tb0,tc0 .

Hence, as in Theorem 4.1, gN (T , c, µ, z) is a convex combination of points in Γa0,tb0,tc0 and so is in
Γa0,tb0,tc0 . This implies the separation of F(Ω) from Ωc. The analyticity of F is straightforward to
check as in the proof of Theorem 4.1.

For each N ∈ N, let f0
N (T , c, µ, z) = z. Then the Earle-Hamilton theorem implies that

F◦n((f0
N )N∈N) converges as n → ∞ to the unique fixed point (fN )N∈N. As in the proof of

Theorem 4.1, the iterates themselves are F -transforms of measures, and therefore the conver-
gence extends to the entire upper half-plane. And there is a measure ΨN (T , c, µ) such that
fN (T , c, µ, z) = FΨN (T ,c,µ)(z). Because (fN ) is uniformly equicontinuous, we see that (ΨN )N∈N
is uniformly equicontinuous, since uniform convergence of a sequence of F -transforms on Γa2,tb2,tc2
is equivalent to weak-∗ convergence of the associated sequence of measures. Finally, reversing our
computations above shows that for c > 0, ΦN (T , c, µ)]c satisfies the fixed point equation defining
�T (µ](c/N), . . . , µ](c/N)) = ΦN (T , c, µ)]c. We have also just shown that ΦN (T , c, µ) depends con-
tinuously on T , and thus Theorem 4.1 implies that ΨN = ΦN for c > 0; the c = 0 case can be
checked directly. Therefore, the equicontinuity properties proved for ΨN hold for ΦN . �

Theorem 6.3. Let N ∈ N and T ∈ Tree(N) with n(T ) > 1. For µ ∈ P(R), we have existence of
the limit

BP(T , µ) := lim
k→∞

�T ◦k(µ
] 1

n(T )k ).

Moreover, for each N , the convergence is uniform on {T ∈ Tree(N) : n(T ) > 1} × Y for every
compact subset of P(R), and hence BP is a continuous map {T ∈ Tree(N) : n(T ) > 1} × P(R) →
P(R).

Remark 6.4. We call the map “BP” in honor of Bercovici and Pata (1999).

Proof : Let Tree(N,n) = {T ∈ Tree(N) : n(T ) = n}, which is a clopen subset of Tree(N). Note
that {T ∈ Tree(N) : n(T ) > 1} =

⋃N
n=2 Tree(N,n).

Fix n ∈ {2, . . . , N}, and let Y be a compact subset of P(R), and we will show uniform convergence
of �T ◦k(µ

] 1

nk ) on Tree(N,n)×Y . This of course will imply continuity of the limit function. And to
show uniform convergence, it suffices to show that the sequence is uniformly Cauchy with respect
to the Lévy distance dL since (P(R), dL) is complete. Fix an integer

M ≥ N − 1

n− 1
≥ 1.

For each T ∈ Tree(N,n), we have by Lemma 3.16 and Observation 3.13 that

m(T ◦k) + 1 = m(T )
nk − 1

n− 1
≤ N − 1

n− 1
(nk − 1) + 1 ≤ N − 1

n− 1
nk ≤Mnk.
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Therefore, by Observation 3.13, there exists some tree Tk ∈ Tree(Mnk) such that Tk ∼= T ◦k. Hence,
by Lemmas 5.7 and 3.17, we have for k, ` ≥ 1, and µ ∈ P(R) that

�T ◦(k+`)(µ) = �T ◦k(�T ◦`(µ)) = �Tk(�T`(µ)) = �Tk◦T`(µ).

In particular,

�T ◦(k+`)(µ
] 1

nk+` ) = �Tk(�T`(µ
] 1

nk+` ))

= �Tk

((
�T`((µ

]M2
)
] 1

Mn`Mnk )]Mnk
)] 1

Mnk

)
= ΦMnk

(
Tk, 1,ΦMn`

(
T`,

1

Mnk
, µ]M

2

))
.

To show the sequence is Cauchy, fix ε > 0. Note that Y ]M = {µ]M : µ ∈ Y } is compact because
Y is compact and µ 7→ µ]M is continuous by Theorem 4.1, and the same holds for Y ]M2 . Thus,
by Theorem 6.2, there exists η > 0 such that for all k, for all λ ∈ Y ]M and ν ∈ P(R) and
T ′ ∈ Tree(Mnk), we have

dL(λ, ν) < η =⇒ dL(ΦMnk(T ′, 1, λ),ΦMnk(T ′, 1, ν)) <
ε

2
.

In particular, this estimate applies with T ′ = Tk, for any T ∈ Tree(N,n). Applying Theorem 6.2
again, there exists δ > 0 such that for all ` ∈ N, for all λ ∈ Y ]M2 , for all T ∈ Tree(N,n), we have

c ∈ [0, δ) =⇒ dL(ΦMn`(T`, c, λ),ΦMn`(T`, 0, λ)) < η.

Note that

ΦMn`(T`, 0, µ]M
2
) = (µ]M

2
)
] n`

Mn` = µ]M .

Hence, if k > − logn(Mδ) and µ ∈ Y and ` ≥ 1, then

dL

(
ΦMn`

(
T`,

1

Mnk
, µ]M

2

)
, µ]M

)
< η,

hence

dL

(
ΦMnk

(
Tk, 1,ΦMn`

(
T`,

1

Mnk
, µ]M

2

))
,ΦMnk(Tk, 1, µ]M )

)
<
ε

2
.

So for µ ∈ Y and `, `′ ≥ 1,

d`

(
�T ◦(k+`)(µ

] 1

nk+` ),�T ◦(k+`′)(µ
] 1

nk+`
′ )
)
< ε.

Therefore, the sequence is uniformly Cauchy, as desired. �

Proof of Theorem 6.1: Let T ∈ Tree(N) and µ`, ν ∈ P(R). Suppose that ν` := µ
]n(T )k`

` → ν as
` → ∞. Let Y ⊆ P(R) be a compact set containing all the measures ν`. Theorem 6.3 implies
uniform convergence of �T ◦k` (λ

]n(T )−k` ) → BP(T , λ) over λ ∈ Y as ` → ∞. Since BP(T , λ) is
continuous and because of the uniform convergence, we can still take limits as ` → ∞ with λ
replaced by the sequence ν` that depends on `. Thus,

�T ◦k` (µ`) = �T ◦k`

(
ν
] 1

n(T )k`

`

)
→ BP(T , ν)

as desired. The convergence is uniform over T ∈ Tree(N) because the convergence in Theorem 6.3
is uniform. �



Tree convolution 1609

Example 6.5. Theorem 6.1 relates to earlier work on free and monotone convolution as follows. In
light of Example 5.5, T ◦kn,free = Tnk,free. Hence, if µ` ∈ P(R) and k` ∈ N with k` → ∞, and if
µ]n

k`

` → ν as ` → ∞, then µ�n
k`

` → BP(Tn,free, ν) as ` → ∞. The same can be said for monotone
convolution using Example 5.6. This result can be deduced from Bercovici and Pata (1999) in the
free case and Anshelevich and Williams (2014) in the monotone case. Of course, the results of
Bercovici and Pata (1999) and Anshelevich and Williams (2014) apply to arbitrary sequences m`

tending to ∞ rather than only those of the form m` = nk` . The restriction on the size of indices
is an artifact of our working with general trees T ∈ Tree(N), since in the general case it is unclear
how to define an m-ary T -free convolution for all m.

Remark 6.6. Although Theorem 6.1 does not recover the full free and monotone results, the tech-
niques in this paper could still be useful in future work about more general limit theorems. For
instance, suppose that (Tk)k∈N is a sequence of trees with Tk ∈ Tree(Mnk, nk) for some M ∈ N
and nk ∈ N with nk → ∞. Suppose we could show using combinatorial methods that for every
compactly supported measure µ ∈ P(R), the sequence �Tk(µ]1/nk) = ΦMnk(Tk, 1, µ]M ) converges
to some measure Λ(µ). Then using the equicontinuity result of Theorem 6.3 and the density of
compactly supported measures, ΦMnk(Tk, 1, µ) converges as k →∞ for arbitrary µ ∈ P(R), and the
limiting function Λ(µ) is continuous on P(R). Furthermore, the same argument as in Theorem 6.1
would show that if µ]nkk → ν as k → ∞, then ΦMnk(Tk, 1, µk) → Λ(ν). For similar remarks in the
context of the central limit theorem, see Proposition 8.9 and the following discussion in Jekel and
Liu (2020).

7. Limit theorems for classical domains of attraction

Practically speaking, Theorem 6.1 means that any known limit theorem for additive boolean
convolution implies a corresponding theorem for T -free convolution. First, we have the following
central limit theorem. Below, if µ ∈ P(R) and c ∈ R, then c · µ denotes the dilation of µ by c, that
is, the push-forward of µ by the function t 7→ ct.

Proposition 7.1 (Central limit theorem). Let T ∈ Tree(N) with n(T ) > 1 and let µ ∈ P(R) be a
measure with mean zero and variance 1. Let ν2 be the Bernoulli distribution (1/2)(δ−1 + δ1). Then

lim
k→∞

n(T )−k/2 �T ◦k (µ) = BP(T , ν2),

and the convergence is uniform in the Lévy distance over all T ∈ Tree(N) with n(T ) > 1.

We use the notation ν2 because the central limit theorem fits into a general class of limit theorems
corresponding to stability indices α ∈ (0, 2], which we discuss below. The central limit distributions
for boolean, free, and monotone independence were computed early on in the development of non-
commutative probability theory, Speicher and Woroudi (1997) for the boolean case, Voiculescu
(1985, 1986) for the free case, and Muraki (2000, 2001) for the monotone case. For another example,
see Jekel and Liu (2020, Corollary 9.23), which computes the central limit distribution for a tree T
where the root vertex has n children, and all the other vertices have d children.

The proposition will be an immediate consequence of Speicher and Woroudi (1997, Theorem 3.4)
and Theorem 6.1, once we first establish the basic properties of dilations.
Lemma 7.2.
(1) For c 6= 0, have Kc·µ(z) = cKµ(z/c).
(2) For T ∈ Tree(N), we have

�T (c · µ1, . . . , c · µN ) = c ·�T (µ1, . . . , µN ).

(3) When n(T ) > 1, the map BP from Theorem 6.3 satisfies

BP(T , c · µ) = c · BP(T , µ).
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(4) When n(T ) > 1, we have

�T (BP(T , µ)) = BP(T , µ]n(T )).

Proof : (1) Note that

Gc·µ(z) =

∫
R

1

z − ct
dµ(t) =

1

c

∫
R

1

z/c− t
dµ(t) =

1

c
Gµ(z/c).

Hence, Fc·µ(z) = cFµ(z/c) and Kc·µ(z) = Kµ(z/c).
(2) In the case c = 0, both sides are δ0. For c 6= 0, note that c · �T (µ1, . . . , µN ) depends

continuously on T and satisfies the fixed-point equation

Kc·�T (µ1,...,µN )(z) =
∑

j∈[N ]∩T

Kc·µj (z −Kc·�brj(T )(µ1,...,µN )(z)),

hence, by Theorem 4.1, we have the desired equality.
(3) From (1) it follows that (c · µ)]t = c · (µ]t) for c ∈ R and t > 0. Therefore, using (2),

BP(T , c · µ) = lim
k→∞

�T ◦k((c · µ)
] 1

n(T )k )

= lim
k→∞

�T ◦k(c · (µ]
1

n(T )k ))

= lim
k→∞

c ·�T ◦k(µ
] 1

n(T )k )

= c · BP(T , µ).

(4) Observe that

�T (BP(T , µ)) = lim
k→∞

�T (�T ◦k(µ
] 1

n(T )k ))

= lim
k→∞

�T ◦(k+1)((µ]n(T ))
] 1

n(T )k+1 )

= BP(T , µ]n(T )). �

Proof of Proposition 7.1: It follows from Speicher and Woroudi (1997, Theorem 3.4) that

n(T )−k/2 · µ]n(T )k = (n(T )−k/2 · µ)]n(T )k → (1/2)(δ−1 + δ1).

Therefore, the proposition follows from Theorem 6.1 and the fact that n(T )−k/2 · �T ◦k(µ) =

�T ◦k(n(T )−k/2 · µ). �

Following a similar strategy as Bercovici and Pata (1999), we can use Theorem 6.1 to prove
analogs of classical limit theorems associated to other stable distributions. To set the stage, we
recall some terminology used in the classification of domains of attraction in classical probability
theory; see Bercovici and Pata (1999, §5).

Definition 7.3. We say that two measures µ and ν are equivalent if µ = a + b · ν for some a ∈ R
and b > 0. A measure µ is said to be ∗-stable if its equivalence class is closed under the classical
convolution operation ∗; �-stable is defined analogously.

Definition 7.4. A function f : [0,∞)→ [0,∞) varies slowly if

lim
y→∞

f(ty)

f(y)
= 1 for t > 0.

We say that f varies regularly with index α if f(y)/yα varies slowly, or equivalently

lim
y→∞

f(ty)

tαf(y)
= 1 for t > 0.
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We make the same definitions for functions only defined on [m,∞) for some m > 0.

Definition 7.5. We say that a measure µ belongs to C2 if the function y 7→
∫ y
−y t

2 dµ(t) varies
slowly.

Definition 7.6. For α ∈ (0, 2) and θ ∈ [−1, 1], we say that µ belongs to Cα,θ if
(1) the function y 7→

∫ y
−y t

2 dµ(t) varies regularly with index 2− α;
(2) we have

lim
t→∞

µ((t,∞))− µ((−∞,−t)
µ((t,∞)) + µ((−∞,−t)

= θ.

The following is a classical result due to Lévy (1937), Gnedenko and Kolmogorov (1954).

Theorem 7.7. There exists a unique equivalence class of ∗-stable laws in each of the sets C2 and
Cα,θ for α ∈ (0, 2) and θ ∈ [−1, 1]. Let ν∗2 and ν∗α,θ be representatives of these equivalence classes.
Then for each µ ∈ C2 or µ ∈ Cα,θ, there exists a sequence of measures µn ∼ µ such that µ∗nn → ν∗2
or µ∗nn → ν∗α,θ respectively (that is, µ is in the domain of attraction of ν∗2 or ν∗α,θ).

Bercovici and Pata (1999) used this theorem together with their Theorem 6.3 to deduce limit
laws for free and boolean convolution. We want to do the same thing for T -free convolution. One
obstacle for the general case is that translation of measures does not behave well with respect
to T -free convolutions. If c + µ denotes the translation of µ by c ∈ R, then we do not have
�T (c + µ) = n(T )c + �T (µ). For instance, the measure δc � µ = δc ∗ µ = µ B δc = c + µ has
K-transform equal to Kµ(z− c) + c; however, δc]µ = δcBµ has K-transform Kµ(z) + c, and hence
does not agree with c+ µ.

In the case α ∈ (0, 1), the measure has a large enough tail that the translation is irrelevant to
the limiting behavior. In the case α ∈ (1, 2), it is known that any measure in Cα,θ has finite mean,
and hence we will restrict our attention to the set of measures in Cα,θ with mean zero, which we
denote by C0

α,θ. The case α = 1 is difficult because the mean may or may not be defined, and one
must inevitably deal with drift, which brings up the tricky question of translation. In Theorem 7.9,
we handle the cases of Cα,θ with α ∈ (0, 1) and C0

α,θ with α ∈ (1, 2); the proof is based on Cauchy
transforms and thus independent of the classical results. For the cases α = 1 and α = 2, we will
deduce a less sharp result from the classical theory and Bercovici and Pata (1999).

Proposition 7.8. For α ∈ (0, 2) and θ ∈ [−1, 1], there is a measure να,θ with

Kνα,θ(z) =

{
−(i− θ tan πα

2 )(−iz)1−α, α 6= 1,

2θ log(−iz)− iπ, α = 1,

for z ∈ H, where we use the branch of the logarithm with argument in (−π, π]. For α ∈ (0, 1)∪ (1, 2)
and c > 0, we have c · να,θ = ν]c

α

α,θ . Moreover, for c > 0, we have c · να,θ = (δ−2θ log c ] να,θ)]c.

Proof : Let Kα,θ be the function on the right-hand side. One can verify by direct computation that
Kα,θ maps the upper half-plane into the lower half-plane and that Kα,θ(z)/z → 0 as z → ∞ non-
tangentially. Thus, by Corollary 2.5, Kα,θ is the K-transform of some measure να,θ. The final claim
follows from direct computation using Lemma 7.2 (1) and the definition of boolean convolution
powers. �

Theorem 7.9. Suppose that α ∈ (0, 1)∪ (1, 2), θ ∈ [−1, 1], and µ ∈ Cα,θ. If α ∈ (1, 2), then assume
in addition that µ has mean zero. Then there exists some φ : [0,+∞) → [0,+∞) which varies
regularly with index −1/α such that for all N and for all T ∈ Tree(N) with n(T ) > 1,

φ(n(T )k) ·�T ◦k(µ)→ BP(T , να,θ).
For each (α, θ) and for each N , the convergence is uniform over T ∈ Tree(N) with n(T ) > 1.
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For examples of the distributions BP(T , να,θ), see Figures 7.2 and 7.3 in §8. In preparation for
the proof, we recall the following facts about regularly varying functions. They can be found in
Bingham et al. (1989), but we include an elementary proof here for the reader’s convenience.
Lemma 7.10.
(1) If limy→+∞ f(y) exists and is positive, then f varies slowly.
(2) If f varies regularly with index α and g varies regularly with index β, then fg varies regularly

with index α+ β.
(3) If f varies regularly with index α, and if β ∈ R, then f(yβ) varies regularly with index αβ.
(4) If f is bounded above and below on any compact set and varies regularly with index α 6= 0, then

lim
y→∞

f(y) =

{
∞, α > 0,

0, α < 0.

(5) Let f : [m,∞)→ [0,∞) be continuous and vary regularly with index α > 0. Let

g(y) = inf{x ≥ m : f(x) ≥ y}.
Then f ◦ g(y) = y for y > f(m), and g varies regularly with index 1/α.

Proof : Claims (1) - (3) are straightforward to check from the definition.
To prove (4), suppose α > 0 and write f(y) = yαg(y), where g varies slowly. Then there exists

M > 0 such that

2−α/2 ≤ f(2y)

f(y)
≤ 2α/2 for y ≥M.

By hypothesis, f is bounded below by some δ on the set [M, 2M ]. Any y ≥ M can be written as
2ny′ for y′ ∈ [M, 2M ] and n ≥ 0, and then we have

g(y) = g(2ny′) ≥ 2−nα/2g(y′) ≥Mα/2(2nM)−α/2δ ≥Mα/2δy−α/2.

Therefore, yα/2g(y) has a positive lower bound for sufficiently large y, which implies that yαg(y)→
∞. The case for α < 0 follows by considering 1/f .

(5) Because f(x)→∞ as x→∞, the infimum in the definition of g is well-defined. If y > f(m),
then by continuity f must achieve the value y by the intermediate value theorem. Furthermore,
f(x) < y for x in a neighborhood of m, and hence the infimum x0 of {x : f(x) ≥ y} must be strictly
larger than m. Then we have f(x) < y for x < x0 and there is a sequence of points converging to
x0 from above that satisfy f(x) ≥ y, so by continuity f(x0) = y, or f(g(y)) = y.

Because f is bounded on any compact set, we must have g(y)→∞ as y →∞. Given any t > 0
and ε > 0, since f varies regularly with index α, we have

lim
y→∞

f((1 + ε)1/αc1/αg(y)

(1 + ε)cf(g(y))
= 1.

If y is large enough that the left-hand side is larger than 1/(1 + ε), then we obtain

f((1 + ε)1/αc1/αg(y)) ≥ cy.
Thus, by definition of g,

g(cy) ≤ (1 + ε)1/αc1/αg(y),

so that

lim sup
n→∞

g(cy)

c1/αg(y)
≤ (1 + ε)1/α.

Since ε was arbitrary, the lim sup is bounded above by 1. However, because the same thing holds
with c replaced by 1/c, we get

lim inf
n→∞

c−1/αg(cy)

g(c(1/c)y)
≥ 1.
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Therefore, g varies regularly with index 1/α. �

The proof of Theorem 7.9 relies on the following characterization of Cα,θ in terms of the Cauchy
transform.

Proposition 7.11 (Bercovici and Pata, 1999, Proposition 5.10-5.11). Let α ∈ (0, 1) ∪ (1, 2), θ ∈
[−1, 1], and µ ∈ P(R). The following are equivalent:
(1) µ ∈ Cα,θ if α ∈ (0, 1) or µ ∈ C0

α,θ if α ∈ (1, 2).
(2) There exists some f that varies regularly with index −1− α such that

Gµ(iy)− 1

iy
=
(
i− θ tan

πα

2

)
f(y)(1 + o(1)) as y →∞.

Although the proof of this proposition in Bercovici and Pata (1999) is correct, the statement
contains a sign error. Thus, we have corrected the θ to −θ in the statement of the proposition and
in the definition of να,θ. For the case α ∈ (1, 2), Bercovici and Pata (1999) state µ having mean
zero as a global assumption rather than part of the equivalent condition (1), so that their statement
does not technically imply (2) =⇒ (1) of Proposition 7.11. Hence, we will include a proof of (2)
=⇒ (1) for α ∈ (1, 2) for completeness.

Proof of Proposition 7.11 (2) =⇒ (1), α ∈ (1, 2): Note that

Im

[
Gµ(iy)− 1

iy

]
=

∫
R

Im

(
1

iy − t
− 1

iy

)
dµ(t) =

1

y

∫
R

t2

y2 + t2
dµ(t).

By assumption, this equals (1 + o(1))f(y), where f varies regularly of index −1 − α. Thus, by
Lemma 7.10 (1) and (2),

∫
R t

2/(y2 + t2) dµ(t) varies regularly with index −α. By Bercovici and
Pata (1999, Proposition 5.8, (2) ⇐⇒ (4)), this is equivalent to

∫ y
−y t

2 dµ(t) varying regularly with
index 2− α, which is the first condition needed for µ ∈ Cα,θ.

Next, let us show that
∫
R |t| dµ(t) <∞. Let 0 < ε < α− 1. Then

yε
∫
y/2≤|t|≤y

|t| dµ(t) ≤ 1

2
y−1+ε

∫ y

−y
t2 dµ(t).

The right-hand side varies regularly with index 2−α+ 1− ε = 1−α− ε < 0, and hence by Lemma
7.10 (4), it tends to zero as y →∞. In particular, yε

∫
y/2≤|t|≤y |t| dµ(t) is bounded by some constant

M . Thus,∫
R
|t| dµ(t) ≤

∫
|t|≤1
|t| dµ(t) +

∞∑
j=0

∫
2j≤|t|≤2j+1

|t| dµ(t) ≤
∫
|t|≤1
|t| dµ(t) +

∞∑
j=0

M(2j+1)−ε <∞.

Therefore, the mean of µ is well-defined. Now observe that

ReGµ(iy) =

∫
R

t

y2 + t2
dµ(t) =

∫
R

(
t

y2
− t3

y2(y2 + t2)

)
dµ(t) =

1

y2

∫
R
t µ(t)− 1

y2

∫
t3

y2 + t2
dµ(t).

By Bercovici and Pata (1999, Proposition 5.8),∫
R

|t|3

y2 + t2
dt = −(1 + o(1))

πα
2

cos πα2
yµ({t : |t| > y}), (7.1)

and this varies regularly with index 1 − α. Hence, y−2
∫
R |t|

3/(y2 + t2) dµ(t) varies regularly with
index −1− α < −2, which implies it is o(1/y2) as y → +∞. Similarly, using assumption (2), since
f(y) varies regularly with index −1− α, we have Gµ(iy) = o(1/y2) as y → +∞. Hence,

1

y2

∫
R
t dµ(t) = ReGµ(iy) +

∫
R

t3

y2 + t2
dµ(t) = o

(
1

y2

)
,

which implies that
∫
R t dµ(t) = 0, so µ has mean zero.
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Finally, we check the second condition of Definition 7.6. By assumption (2) and Bercovici and
Pata (1999, Proposition 5.8),

Gµ(iy)− 1

iy
= (1 + o(1))

(
i− θ tan

πα

2

)
f(y)

= (1 + o(1))
(
i− θ tan

πα

2

) 1

y

∫
R

t2

y2 + t2
dµ(t)

= (1 + o(1))
(
i− θ tan

πα

2

) πα
2

sin πα
2

yµ({t : |t| > y}}).

Hence, examining the real parts, we have∫
R

t3

y2 + t2
dµ(t) = −(θ + o(1))

πα
2

cos πα2
yµ({t : |t| > y}). (7.2)

Applying Bercovici and Pata (1999, Proposition 5.8) to the restriction of µ to the positive axis,

µ((y,+∞)) = −(1 + o(1))
2

παy
cos

πα

2

∫ ∞
0

t3

y2 + t2
dµ(t)

= −(1 + o(1))
2

παy
cos

πα

2

(
1

2

∫
R

|t|3

y2 + t2
dµ(t) +

1

2

∫
R

t3

y2 + t2
dµ(t)

)
=

(
1 + θ

2
+ o(1)

)
µ({t : |t| > y}),

where the last line follows from (7.1) and (7.2). This implies that

lim
y→∞

µ((y,+∞))− µ((−∞,−y))

µ((y,+∞))− µ((−∞,−y))
= θ.

Therefore, µ ∈ Cα,θ and µ has mean zero. �

Proposition 7.11 can be restated in terms of the K-transform and boolean convolution as follows.

Proposition 7.12. Let α ∈ (0, 1) ∪ (1, 2). Then the following are equivalent:
(1) µ ∈ Cα,θ for α < 1 or µ ∈ C0

α,θ for α > 1.
(2) There exists a function g that varies regularly with index 1− α such that

Kµ(iy) = −
(
i− θ tan

πα

2

)
g(y)(1 + o(1)) as y →∞.

(3) There exists a slowly varying function h such that

c−1/α · µ]c/h(c1/α) → να,θ.

Furthermore, in (2), we can take g(y) = − ImKµ(iy).

Remark 7.13. It follows immediately that να,θ ∈ Cα,θ when α ∈ (0, 1) and να,θ ∈ C0
α,θ when α ∈ (1, 2).

Proof : (1) ⇐⇒ (2). Observe that

Kµ(iy) = iy − Fµ(iy) = iyFµ(iy)

(
Gµ(iy)− 1

iy

)
= −y2

(
Gµ(y)− 1

iy

)
(1 + o(1)).

By Lemma 7.10 (2), f(y) varies regularly with index −1 − α if and only if g(y) = y2f(y) varies
regularly with index 1− α. Hence, (1) ⇐⇒ (2) follows from Proposition 7.11.

(2) =⇒ (3). Let g be as in (2), and write g(y) = y1−αh(y) for some slowly varying function h.
Because K-transforms are contained in the normal family Hol(H,−H) (where the target space is
the closure in the Riemann sphere), to show c−1/α · µ]c/h(c1/α) → να,θ it suffices to prove pointwise
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convergence of the K-transforms on the imaginary axis. By the definition of the boolean convolution
power,

K
c−1/α·µ]c/h(c1/α)(iy) =

c1−1/α

h(c1/α)
Kµ(c1/αiy).

By (2), this is equal to

− c1−1/α

h(c1/α)

(
i− θ tan

πα

2

)
(c1/αy)1−αh(c1/αy)(1 + oc1/αy(1))

= −
(
i− θ tan

πα

2

)
y1−αh(c1/αy)

h(c1/α)
(1 + oc1/αy(1)),

where the subscript on the o(1) term means that it vanishes as c1/αy →∞. If y is fixed and c→∞,
then because g varies slowly, we obtain

−
(
i− θ tan

πα

2

)
y1−αh(c1/αy)

h(c1/α)
(1 + oc1/αy(1))→ −

(
i− θ tan

πα

2

)
y1−α = Kνα,θ(iy).

(3) =⇒ (2). Suppose that (3) holds for some function h. Let g(y) = y1−αh(y), so that g varies
regularly with index 1− α. Observe that

Kµ(c1/αi) = c1−1/αh(c1/α)K
c−1/αµ]c/h(c

1/α)(i)

= c1−1/αh(c1/α)(Kνα,θ(i) + o(1))

=
(
i− θ tan

πα

2

)
g(c1/α)(1 + o(1)).

where the error o(1) goes to zero as c→∞. Then we substitute c = yα and obtain (2).
For the final claim regarding g in (2), observe that − ImKµ(iy) ≥ 0 and − ImKµ(iy) = g(y)(1 +

o(1)). It is straightforward to check that this function varies regularly of index 1−α. (The 1 + o(1)
term in the original theorem statement is complex-valued, but the one used here is positive.) Thus,
we can replace g(y) with Kµ(iy) by absorbing g(y)/Kµ(iy) into the 1 + o(1) term. �

We can conclude the proof as follows:

Proof of Theorem 7.9: Let µ ∈ Cα,θ if α ∈ (0, 1) and µ ∈ C0
α,θ if α ∈ (1, 2). Let h be as in

Proposition 7.12. By Lemma 7.10, the function c 7→ c/h(c1/α) varies regularly with index 1. Let
ψ(t) be the function associated to t/h(t1/α) as in Lemma 7.10 (5), so that ψ(t)/h(ψ(t)1/α) = t for
sufficiently large t and ψ(t) varies regularly with index 1. Then let φ(t) = ψ(t)−1/α. Then φ varies
regularly with index −1/α, and

φ(t) · µ]t = ψ(t)−1/α · µ]ψ(t)/h(ψ(t)1/α) → να,θ.

In particular, for each T ∈ Tree(N) with n(T ) > 1, we have

φ(n(T )k) · µ]n(T )k → να,θ,

and hence by Theorem 6.1, we have

φ(n(T )k) ·�T ◦k(µ)→ BP(T , να,θ)

for T ∈ Tree(N) with n(T ) > 1. That theorem also implies that the convergence is uniform over
T . �

By appealing to Theorem 6.1, we did not have to check that Cα,θ is closed under the operations
µ 7→ �T (µ) or µ 7→ BP(T , µ) in order to prove Theorem 7.9. However, as one would intuitively
hope, this is indeed the case.
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Proposition 7.14. Let α ∈ (0, 1) and θ ∈ [−1, 1]. Suppose µ ∈ Cα,θ.
(1) For t > 0, we have µ]t ∈ Cα,θ.
(2) For any T ∈ Tree(N) with n(T ) > 1, we have �T (µ) ∈ Cα,θ
(3) For T ∈ Tree(N) with n(T ) > 1, we have BP(T , µ) ∈ Cα,θ.
The same claims hold with Cα,θ replaced by C0

α,θ for α ∈ (1, 2).

Proof : Let α ∈ (0, 1). By Proposition 7.12 (3) and Lemma 7.10 (2) and (3), we have µ ∈ Cα,θ if
and only if there is a function f that varies regularly with index 1 such that c−1/αµ]f(c) → να,θ as
c→∞.

In the remainder of the argument, assume µ ∈ Cα,θ and let f be a function that varies regularly
with index 1 with c−1/αµ]f(c) → να,θ.

(1) If t > 0, then c−1/α · (µ]t)]f(c)/t = c−1/α · µ]f(c) → να,θ. The function f(c)/t also varies
regularly with index 1, so µ]t ∈ Cα,θ.

(2) Let ΦN be as in Theorem 6.2. Then using Lemma 7.2, we have

c−1/α ·�T (µ)]f(c)/n(T ) = �T ((c−1/α · µ]f(c))]1/f(c))]f(c)/n(T )

= ΦN

(
T , N/f(c), (c−1/α · µ]f(c))]1/f(c)

)]N/n(T )
.

Of course, f(c)→∞ as c→∞. Thus, by joint continuity of ΦN , we obtain that

lim
c→∞

c−1/α ·�T (µ)]f(c)/n(T ) = ΦN (T , 0, να,θ)]N/n(T ) = (ν
]n(T )/N
α,θ )]N/n(T ) = να,θ.

Thus, �T (µ) satisfies the desired condition with the function f/n(T ).
(3) Let n = n(T ). As in the proof of Theorem 6.3, fix M ≥ (N − 1)/(n − 1), and let Tk ∈

Tree(Mnk) be isomorphic to T ◦k. Recall that

BP(T , µ) = lim
k→∞

�T ◦k(µ]1/nk) = lim
k→∞

�Tk(µ]1/nk)

Then observe that

c−1/α ·
(
�Tk

(
µ
] 1

nk

))]f(c)
= �Tk

(
(c−1/α · µ]f(c))

1

f(c)nk

)]f(c)

= ΦMnk

(
Tk,M/f(c), (c−1/α · µ]f(c))

)]M
.

By Theorem 6.2, we have

lim
c→∞

ΦMnk

(
Tk,M/f(c), (c−1/α · µ]f(c))

)]M
= ΦMnk(Tk, 0, να,θ)]M =

(
ν
] nk

Mnk

α,θ

)]M
= να,θ,

and the rate of convergence is uniform for all k. Uniform convergence implies that

lim
c→∞

lim
k→∞

c−1/α ·
(
�Tk

(
µ
] 1

nk

))]f(c)
= lim

k→∞
lim
c→∞

c−1/α ·
(
�Tk

(
µ
] 1

nk

))]f(c)
,

and hence
lim
c→∞

c−1/αBP(T , µ)]f(c) = να,θ,

so BP(T , µ) ∈ Cα,θ.
This concludes the proof for α ∈ (0, 1). The same proof works for α ∈ (1, 2) with Cα,θ replaced

by C0
α,θ. �

In the cases of α = 1 and α = 2, the tools which Bercovici and Pata used to prove the charac-
terization of Cα,θ in terms of Cauchy transforms (Bercovici and Pata, 1999, Propositions 5.10 and
5.11) are not available in the same form; specifically, Bercovici and Pata (1999, Proposition 5.8)
does not handle the case α = 2, and the later parts of that proposition do not handle the case
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α = 1. To study the T -free convolution for the regions C1,θ and C2 requires either a much more
delicate analysis or a different approach. We will be content here to deduce limit theorems from
the classical theory and Bercovici and Pata’s results.

Proposition 7.15. Let θ ∈ [−1, 1] and let µ ∈ C1,θ. Then there exists a sequence of measures
(µj)j∈N equivalent to µ such that, for all N , for all T ∈ Tree(N) with n(T ), we have

�T ◦k(µn(T )k)→ BP(T , ν1,θ),

where for each N , the convergence is uniform over T .

Proposition 7.16. Let µ ∈ C2 with mean zero. Then there exists a sequence Rj tending to infinity
such that for all N , for all T ∈ Tree(N) with n(T ), we have

R−1
n(T )k

·�T ◦k(µ)→ BP(T , ν2),

where for each N , the convergence is uniform over T .

To set the stage for the proof, we recall the results from Bercovici and Pata (1999) in more detail.
The infinitely divisible distributions for ∗, �, and ] are parametrized by a γ ∈ R and finite measure
σ on R, and the infinitely divisible distributions corresponding to (γ, σ) for the three convolutions
are denoted respectively by νγ,σ∗ , νγ,σ� , and νγ,σ] . For a sequence of probability measures µj and
kj →∞, we have µ∗kjj → νγ,σ∗ if and only if µ�kjj → νγ,σ� if and only if µ]kjj → νγ,σ] .

It follows that for every N ,

BP(TN,free, ν
γ,σ
] ) = lim

k→∞
((νγ,σ] )]1/Nk

)�N
k

= νγ,σ� .

Moreover, let Φµ denote the Voiculescu transform Φµ(z) = F−1
µ (z)− z, defined in a non-tangential

neighborhood of ∞. The correspondence between the free and boolean cases is such that

Φνγ,σ�
(z) = γ +

∫
R

1 + tz

z − t
dµ(t) = Kνγ,σ]

(z). (7.3)

It follows from Bercovici and Pata (1999, §5) that the freely stable laws correspond precisely to
the classically stable laws. However, these do not correspond to boolean stable laws in the naïve
sense. Rather, for a ∈ R, it follows from (7.3) that

BP(T2,free, δa ] µ) = δa � BP(T2,free, µ) = a+ BP(T2,free, µ),

and thus stability in the boolean setting should be understood with respect to the shift operations
µ 7→ δa]µ for a ∈ R rather than µ 7→ a+µ. The laws να,θ in Proposition 7.8 above are the boolean
stable laws with this modified notion of stability, and the freely stable distributions in Bercovici
and Pata (1999, Proposition 5.12) are exactly the distributions BP(TN,free, να,θ), where να,θ.

Proposition 7.15 is now proved as follows: Let ρα,θ be the classical stable distribution corre-
sponding to the boolean infinitely divisible distribution να,θ. From classical results, if µ ∈ C1,θ,
there are measures µj equivalent to µ such that µ∗jj → ρ1,θ. Hence by Bercovici and Pata (1999,
Theorem 6.3), we have µ]jj → να,θ. Then by Theorem 6.1, we have �T ◦k(µn(T )k) → BP(T , ν1,θ).
The proof of Proposition 7.16 is the same.

8. Open questions

The following questions around Theorems 6.1 and 7.9 remain unanswered.

Question 8.1. Does the converse implication hold in Theorem 6.1? More precisely, let T ∈ Tree(N)

with n(T ) > 1. If �T ◦k` (µ`) converges as `→∞, then does µ]n(T )k`

` converge? A positive answer
is known for free independence by Bercovici and Pata (1999), and in the monotone case, provided
that the limit measure is monotonically infinitely divisible, by Anshelevich and Williams (2014).
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Figure 7.2. Approximations of BP(T , να,θ) for T = {∅, 1, 2, 3, 21, 31, 12, 13} and
for (α, θ) ∈ {1.7, 1.2} × {0.0, 0.4, 0.8}.

Question 8.2. Is the map BP(T , ·) injective and is the inverse continuous? For compactly supported
measures, the inverse map was studied using combinatorial methods in Jekel and Liu (2020, §9).
We anticipate that the answer to this question and the previous one will be easier in the case of
finite variance than in the general case.

Question 8.3. What is the correct notion of stable law for T -free convolution? Is there a classifi-
cation of such laws that is parallel to the classical case? Of course, this question is one of the main
motivations for the previous two questions.

Question 8.4. Is there a limit theorem which allows us to bring the translation operation outside
the convolution operations? That is, if µ ∈ Cα,θ or C2, then can we describe the asymptotic behavior
of some sequence µk ∼ �T ◦k(µ)?
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Figure 7.3. Approximations of BP(T , να,θ) for T = {∅, 1, 2, 3, 21, 31, 12, 13} and
for (α, θ) ∈ {0.7, 0.2} × {0.0, 0.4, 0.8}.

Question 8.5. Does Proposition 7.14 generalize to the α = 1 and α = 2 cases? What is the correct
substitute for Proposition 7.12 in these cases?

There are many interesting questions about the limiting distributions BP(T , να,θ) themselves.
We know that �T ◦k(ν

]n(T )−k

α,θ ) → BP(T , να,θ), and in the case α ∈ (0, 1) ∪ (1, 2), we also have

�T ◦k(ν
]n(T )−k

α,θ ) = n(T )−1/α · �T ◦k(να,θ). Furthermore, the Stieltjes inversion formula says that
under sufficient regularity conditions, the probability density of a measure µ can be recovered from
the Cauchy transform by ρ(x) = limε→0+ − 1

πGµ(x + iy). As an example, we considered the tree
T = {∅, 1, 2, 3, 21, 31, 12, 13}. To approximate the density for BP(T , να,θ), we computed

− 1

π
ImG

�T ◦6 (ν]3
−6

α,θ )
(x+ iε)

for ε = 10−5 and for values of x spaced at intervals of 0.1, and the results are shown in Figures 7.2
and 7.3. Experimentally, replacing k = 6 by k = 7 or shrinking ε did not change the values much.
However, because the size of the tree T ◦k increases very quickly with k, this approximation scheme
has high computational complexity and is thus impractical to evaluate for large k.
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Question 8.6. Are there practical numerical error bounds for the convergence of �T ◦k(ν
]n(T )−k

α,θ )→
BP(T , να,θ)? Similarly, what is the rate of convergence to �T (µ1, . . . , µN ) of the approximations
given by truncation of T to finite trees? Are there better estimates for special classes of trees?

Already for a single tree T = {∅, 1, 2, 3, 21, 31, 12, 13}, we saw a variety of phenomena occur.
For α ∈ (0, 1) there is a singularity at 0 in the boolean case, but in the free case the stable laws
have analytic densities on their supports Bercovici and Pata (1999, Propositions A.1.2-A.1.4). For
this T , the presence or absence of a singularity appears to depend on the value of α ∈ (0, 1). For
α ∈ (1, 2), the distribution can have several local extrema and inflection points. By contrast, the
free case, the stable distributions are unimodal (Bercovici and Pata, 1999, Proposition A.2.2); in
the monotone and boolean cases, they are either unimodal or bimodal (Hasebe and Sakuma, 2015).

Question 8.7. What can we say about the regularity of the limit distributions BP(T , να,θ)? Do
they have analytic densities? How does this vary with T , α, and θ? In general, what can we say
about the regularity of T -free convolutions of several measures? Under what conditions on T do
the regularity results from the free case (Anshelevich et al., 2013; Bercovici and Voiculescu, 1998;
Belinschi, 2003; Belinschi and Bercovici, 2004; Belinschi, 2006) generalize?

Another open question concerns the operator models for T -free convolution. In this paper, we
focused exclusively on the complex-analytic viewpoint for T -free convolutions, even though the
original definition of the convolution for compactly supported measures was in terms of addition of
“independent” bounded self-adjoint operators Jekel and Liu (2020). Moreover, the free convolution
of arbitrary measures on R can be expressed using the addition of freely independent unbounded self-
adjoint operators, thanks to the theory of unbounded operators affiliated to a tracial von Neumann
algebra Bercovici and Voiculescu (1992).

Question 8.8. Can the T -free convolution of arbitrary probability measures on R be formulated
in terms of addition T -free independent unbounded self-adjoint operators?

Because the sum of unbounded self-adjoint operators need not be densely defined, the challenge
is to use the additional structure of T -free independence (or perhaps of the T -free product Hilbert
space) to make sense of the sum of independent operators. Again, we believe that the solution for
finite-variance measures is significantly easier than for the general case.
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