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ABSTRACT: Transcriptional programming leverages systems Of Single-Input Measurement 2-Input Gate Prediction Experimental Evaluation
engineered transcription factors to impart decision-making (e.g, 8 g e e

Boolean logic) in chassis cells. The number of components used to _‘@""""“ —-@:ﬂé‘—-’— 20
construct said decision-making systems is rapidly increasing,
making an exhaustive experimental evaluation of iterations of
biological circuits impractical. Accordingly, we posited that a
predictive tool is needed to guide and accelerate the design of NoT
transcriptional programs. The work described here involves the
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development and experimental characterization of a large T )

collection of network-capable single-INPUT logical operations— : @ p

ie, engineered BUFFER (repressor) and engineered NOT : T o B e W %
(antirepressor) logical operations. Using this single-INPUT data 0 "™=™ © \NiwpLy & % HodePrecitn

and developed metrology, we were able to model and predict the

performances of all fundamental two-INPUT compressed logical operations (i.c., compressed AND gates and compressed NOR
gates). In addition, we were able to model and predict the performance of compressed mixed phenotype logical operations (A
NIMPLY B gates and complementary B NIMPLY A gates). These results demonstrate that single-INPUT data is sufficient to
accurately predict both the qualitative and quantitative performance of a complex circuit. Accordingly, this work has set the stage for
the predictive design of transcriptional programs of greater complexity.

KEYWORDS: synthetic gene circuits, transcriptional programming, biological circuit prediction, synthetic transcription factors,
antirepressors

B INTRODUCTION inversion of a repressor function to achieve a NOT logical
operation (see Supporting Note 1). Another important feature
of transcriptional programing is the ability to direct two or more
engineered transcription factors to a single DNA operator

Significant efforts have been devoted to engineering logical
(decision-making) responses within a variety of chassis cells as a
general proof-of-concept,'™” and for a variety of logic-based

applications—e.g., biosensing,”'”"" biological clocks,'*™"* element—enabling the systematic construction of 2-INPUT
oscillators,"”'*™" controllers,”*°~>* and therapeutics.B_28 An logical operations, see Figure 1F,G and Supporting Note 2. The
emerging techn010§y in biotic decision-making is transcriptional engineered transcription factors used in transcriptional pro-
programming.”*~*" Transcriptional programming makes use of gramming were developed via modular design (see Figure 1C
fundamental logic principles by assigning an inducer molecule as and Supporting Note 3). Briefly, the design template is based on

the INPUT and by assigning a coupled regulated reading frame the lactose repressor (Lacl) topology, which can be decomposed
(coding or noncoding) as the OUTPUT. The operating into two functional regions: (i) a regulatory core domain (RCD)

constraints for said biotic programs are predicated on digitizing and (ii) a DNA binding domain (DBD). Given that LacI belongs
the INPUT to O or 1, where an INPUT 1 is achieved via the to a large family of homologous transcription factors with a
maintenance of saturating concentrations of the cognate inducer similar topology that can process different INPUT ligands and

molecule—typically 10 mM. Digitizing the INPUT facilitates a bind to different DNA operators,”*>
constant level of OUTPUT—e.g, the amount of green
fluorescent protein (GFP) is present at a steady state. The
fundamental 1-INPUT logical operations in transcriptional - ——
programming are (i) BUFFER gates regulated via engineered Rece'lVEd: November 4, 2022 UL
repressors (see Figure 1A) and (ii) NOT gates regulated via Published: March 20, 2023
engineered antirepressors (see Figure 1B). Notably, antirepres-
sors are an important and unique feature of transcriptional
programming in that said transcription factors enable circuit
compression—i.e., the antirepressor eliminates the need for the

a putative design space can
be gleaned. Accordingly, several groups have demonstrated that
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Figure 1. Modular components used in a design space. (A) Performance card of a repressor (X") and abstraction of metrics to a logical BUFFER
operation. (B) Performance card of an antirepressor (X*) and abstraction of metrics to a logical NOT operation. (C) Design space overview. Each of
the 5 X* or X* RCDs can be paired with 1 of 8 ADRs and directed to 1 of 2 operator positions (OPs), resulting in a putative design space of 80 BUFFER
and 80 NOT operations. Genetic architectures (D—G). (D) PROXIMAL architecture with an operator position downstream of the promoter.
Transcription factor interferes with the RNA polymerase’s ability to transcribe DNA. (E) CORE architecture featuring an operator intercalated
between the —35 and —10 hexamers of the synthetic trc promoter in Escherichia coli. The transcription factor competes with RNA polymerase binding
to DNA. (F—G) Two-input architectures. (F) PROXIMAL SE-PA architecture, as shown in panel (D), with two transcription factors directed to the
operator. (G) CORE SE-PA architecture, as shown in panel (E), with two transcription factors directed to the DNA operator.
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functional chimeras can be constructed based on the given
engineering p1‘inciples.29’33_37

Wilson et al, in a collection of studies, posited and
demonstrated that modular design could be applied to
engineered domains—i.e., alternate (engineered) DNA binding
functions,””** alternate (engineered) allosteric communica-
tion,””*>*7% and alternate (engineered) ligand binding
functions®”*’—to create a system of transcription factors
(repressors and antirepressors) that are network capable. To
date, using this collection of engineered repressors and
antirepressors, transcriptional programs are designed and
constructed intuitively—though with an apparent rule set (see
Supporting Note 4). As a result, transcriptional programs often
require iterative tuning and redesign. While intuitive program
design and construction have proven to be effective, the said
approach is time-consuming and expensive. What is needed now
is a means to predictively design transcriptional programs—i.e.,
in terms of qualitative outcomes and quantitative performances.
To accomplish the aforesaid, in this study, we leverage and build
upon the model introduced by Zong et al.”” to predict multiple-
INPUT single-OUTPUT (MISO) logical operations from
single-INPUT single-OUTPUT (SISO) data—without requir-
ing parameter fitting of the model from MISO experiments.
Namely, we have systematically designed, built, and tested a
large collection of BUFFER SISO and NOT SISO with
corresponding metrology for the given fundamental logical
operations. In turn, we have leveraged our standardized SISO
data to design, build, and test the corresponding set of MISO
logical operations (via transcriptional programming) allowed at
a single operator—promoter position—i.e., forming AND, NOR,
A NIMPLY B, and B NIMPLY A operations. Finally, we show
that using simple (coarse-grained) models, we can qualitatively
design and quantitatively predict the fundamental performances
of MISO logical operations from SISO data only—establishing
the foundation for the predictive design of transcriptional
programs.

B RESULTS

Design, Metrology, and Modeling for Single-INPUT
Single-OUTPUT (SISO) Logical Operations. In previous
studies, we established metrology for SISO Xjpy BUFFER” and
SISO Xhpx NOT™ gate performance—which we extend and
further develop in this study. For a given engineered
transcription, factor X (or Y) defines the regulatory core domain
(RCD), the superscript “+” defines the repressor phenotype
(Figure 1A), the superscript “A” defines the antirepressor
phenotype (Figure 1B), and the subscript defines the alternate
(engineered) DNA recognition (ADR) function. The putative
design space for said engineered transcription factors is given in
Figure 1C.

Briefly, given a transcription factor and cognate operator
DNA element regulating a green fluorescent protein (GFP)
OUTPUT, the performance metrics of a BUFFER gate can be
given by the (i) fold induction, (ii) repression strength, and (iii)
two-part traceability score—i.c., induction units (IU) and
repression units (RU)—relative to a reference system (see
Figure 1A, and Supporting Note 5). Likewise, for a NOT gate,
the performance can be reported by similar metrics; however, (i)
fold anti-induction replaces fold induction to reflect the change
in the phenotype, and the two-part traceability score is modified
accordingly—i.e., reporting anti-induction units (AIU)—
relative to the same reference system (see Figure 1B, and
Supporting Note 5).
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In addition to reporting the metrology for a given SISO
operation, we can model the induction profile for an
experimentally verified SISO BUFFER operation via a coarse-
grained binding function defined as

Q1) = oA(Q) + ¢ (1)

where o is a constant representing the maximum fluorescence—
relative to the basal expression of the OFF state, A*(I) is the
coarse-grained Hill function that can assume a value of 0 or 1,
and € represents fluorescence in the absence of an inducer—i.e.,
the OFF state (see Figure 1A). Given that the transition region
cannot maintain a setpoint, we excluded intermediate INPUT
concentrations, analogous to the naive Hill model reported by
Zong et al.”’—as we are only interested in the steady-state
(binary) performance of a given open-loop operation.

Likewise, to model the performance of a given SISO NOT
gate, we used an analogous coarse-grained binding function—
though for antirepression—defined as

Q1) = o AM) + ¢ 2)

where o is a constant representing the maximum fluorescence,
minus the ligand—relative to the basal expression of the OFF
state, A*(I) is the coarse-grained antithetical Hill function for
antirepression where 0-INPUT corresponds to the ON state and
I-INPUT corresponds to the OFF state, and & represents
fluorescence in the presence of an inducer—i.e., the OFF state
(see Figure 1B).

In this study, we designed, built, and tested 80 BUFFER
operations and 80 NOT operations congruent with the design
space given in Figure 1C—i.e., 40 systems at the PROXIMAL
position (see Figure 1D and Supporting Figure S1) and 40
systems at the CORE position (see Figure 1E and Supporting
Figure S2) for each putative logical operation. In addition, we
performed metrological analysis on and modeling of said
transcription factors (see Supporting Note S and Supporting
Data Set 1). For the BUFFER operations, the design space
consisted of 5 nonsynonymous regulatory core domains, 8
alternate DNA binding operations, and 2 operator positions (see
Figure 1C). Similarly, the design space for the purported NOT
operations was composed of S anti-RCDs (4 of which were
antithetical to a given X*), with complete overlap with respect to
the given alternate DNA binding functions and cognate DNA
operators. Out of the 40 transcription factors tested at the
PROXIMAL position, 35 (~87%) resulted in objective
(qualitative) BUFFER logic gating—i.e, having statistically
significant differences between the ON state (with ligand) and
OFF state (without ligand) based on a student t-test. Whereas
38 (~95%) out of the 40 transcription factors tested at the
CORE position resulted in BUFFER logic (see Supporting Data
Set 1). Together, this resulted in 73 (out of 80 — or ~91%)
functional BUFFER SISO control systems. In contrast, 36 (out
of 40) PROXIMAL and 40 (out of 40) CORE antirepressor
transcription factors resulted in objective NOT logic gate
performance—for a total of 76 (~95%) operational NOT SISO
(see Supporting Data Set 1). We posited that any differences
observed in performance between the PROXIMAL and CORE
operator positions for a given (equivalent) logical operation can
be attributed to the variation in binding competition between
the two sites (see Figure 1D,E). In general, for a given logical
operation, the CORE position had fewer nonoperational gates
relative to the PROXIMAL position. Nonoperational gates can
be classified by two additional phenotypes: (i) super-repressor
(X%) or (ii) nonfunctional (X~); see Supporting Figure S3.
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Figure 2. Combinatorial set of SE-PA AND gates. (A) Illustration of nonsynonymous repressor pairs combined with 8 ADRs yields 80 putative
PROXIMAL SE-PA AND gates. Repressors classified as nonoperational (see Figure S3) are shown faded and incompatible repressor pairs (see Figure
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Figure 3. SE-PA AND operation and NOR operation predictive models using BUFFER SISO and NOT SISO parameters. (A) AND gate logic is
modeled using a quadratic function of Iy and Iy, which control the repressor state functions Ay and Ay, respectively. Each term has a coefficient o, @,
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Notably, the majority of the nonoperational SISO gates were
classified as nonfunctional (X7). Finally, the overlap in DNA
binding functions for said BUFFER and NOT operations can
facilitate networked cooperation between SISO—i.e., when sets
of transcription factors are directed to a single DNA operator
element. The aforesaid networking capability can enable the
bottom-up construction of multiple-INPUT single-OUTPUT
(MISO) logical operations—illustrated in the following
sections.

Developing Design Rules for MISO AND Logical Gate
Construction from BUFFER SISO Data. The construction of
an AND (MISO) logical gate via transcriptional programming
can be achieved using either a (i) series (SERI) (Supporting
Figure S4) or (ii) series-parallel (SE-PA) (Figure 1F,G) genetic
architecture. Here, we focused on the construction of 2-INPUT
AND gates using the SE-PA iteration, as this particular design
simplifies the accounting of independent transcription factor
operator interactions—as both transcription factors are directed
to the same DNA element. To identify putative sets of BUFFER
logical operations that can be paired (via SE-PA DNA
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operators) to form objective 2-INPUT AND logical gates, we
initially used a two-step decision process informed by the SISO
data alone. Namely, first, we identified all BUFFER SISO logical
operations with measurable dynamic ranges (ie., statistical
differences between the ON and OFF states), and in the second
tier of the decision process, we evaluated compatibility between
two networked transcription factors. When sufficient inequality
(i.e., MISO compeatibility) exists between the ON state and OFF
state of SE-PA networked BUFFER gates, we posited that an
objective 2-INPUT AND logic gate can be constructed—see
example in Supporting Figure SSA. In this illustration, SISO data
for Iyqr was compared to SISO data from Ryqr—where X =T or
R, ADR = YQR, and + = repressor phenotype. Here, the OFF
state of Iyqg has a lower threshold relative to the ON state of
Ryqr—Tlikewise for the complementary ON and OFF states.
Accordingly, we can regard the two BUFFER operations as
compatible with respect to forming a 2-INPUT, SE-PA directed
AND logic gate—i.e., when directed to a cognate operator at a
fixed position. In contrast, given two functional BUFFER gates, a
potential incompatibility can arise when a pair of logical
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Figure 4. Results showing the correlation between the predicted and measured OUTPUT of 133 SE-PA AND gates. Under-predictions and over-
predictions fall above and below the theoretical value of 1 (red line), respectively. (A) Correlation results for 61 PROXIMAL SE-PA AND gates across
the 4 INPUT conditions. INPUTs A and B correspond to repressors X* and Y*, respectively, and can be inferred from each BUFFER pair depicted in
Figure 2A. (B) Correlation between the predicted and measured OUTPUT of 72 CORE SE-PA AND gates. INPUTs A and B correspond to repressors
X"and Y" and can be inferred from each BUFFER pair depicted in Figure 2B. Tracer data is given as sets of blue dots, illustrating the mean performance

prediction across all systems.

operations do not have sufficient inequality (ie, MISO
incompatibility) between the ON state of one transcription
factor (i.e, Fyqg), relative to the OFF state of the
complementary (networked) transcription factor (i.e., E{’{QR)—

see Supporting Figure S5B.

Unmitigated, the pairwise (2-INPUT) network space for
AND gate construction is represented by 80 operations at the
PROXIMAL position and 80 operations at the CORE position.
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However, with the initial constraints imposed by the number of
functional BUFFER SISO (i.e, 35 PROXIMAL, 38 CORE), the
putative network space is reduced to 62 PROXIMAL AND gates
(see Figure 2A) and 72 CORE AND gates (see Figure 2B)—
without factoring in putative incompatibilities. Including said
incompatibilities, the putative networked space is further
reduced by one—i.e, to 61 PROXIMAL AND gates and 72
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Figure 5. Combinatorial set of 131 SE-PA NOR gates. (A) Illustration of nonsynonymous antirepressor pairs combined with 8 ADRs yields 80 putative
PROXIMAL SE-PA NOR gates. Antirepressors classified as nonoperational (see Figure S3) are shown faded and incompatible antirepressor pairs (see
Figure 7B) are highlighted in red. These nonoperational pairs result in a reduced space of 60 proximal SE-PA NOR gates. (B) CORE SE-PA
architecture NOR gates. Elimination of nonoperational and incompatible antirepressors results in 71 CORE SE-PA NOR gates.
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Figure 6. Results showing the correlation between the predicted and measured OUTPUT of 131 SE-PA NOR gates. Under-predictions and over-
predictions fall above and below the theoretical value of 1 (red line), respectively. (A) Correlation results for 60 PROXIMAL SE-PA NOR gates across
the 4 INPUT conditions. INPUTSs A and B correspond to antirepressors X* and Y*, respectively, and can be inferred from each NOT pair depicted in
Figure SA. (B) Correlation between the predicted and measured OUTPUT of 71 CORE SE-PA NOR gates. INPUTs A and B correspond to
antirepressors X" and Y* and can be inferred from each NOT pair depicted in Figure 5B. Tracer data is given as sets of blue dots, illustrating the mean

performance prediction across all systems.

CORE AND gates—resulting in a total of 133 2-INPUT logical
operations that are purportedly functional (see Figure 2).
Building, Testing, and Modeling AND Logic Gates.
After designing said AND logic gates, we built and tested the
complete set of gates with the predicted function—i.e., 61
PROXIMAL AND gates (see Figure 2A) and 72 CORE AND

1101

gates (see Figure 2B). Briefly, each AND gate was
experimentally tested in the same E. coli chassis cell as the
SISO systems and regulated the same GFP OUTPUT. All of the
AND gates were functional with qualitative (objective)
performances congruent with the intended logical operation
(see Supporting Data Set 2). To further validate our qualitative
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Figure 7. Results for 12 SE-PA NIMPLY logic gates at the CORE operator position. Signal INPUTSs (IPTG, ribose, fucose, and fructose) were selected
based on the ability to perform both the BUFFER and NOT logic (i.e., induce repressors and antirepressors). This corresponds to 6 A and B INPUT
pairs which cover the full combinatorial space for the NIMPLY logic. (A—F) A NIMPLY B logic employing a repressor (X}pr), which responds to
INPUT A, and an antirepressor (YApg), which responds to INPUT B. (G—L) Complimentary A NIMPLY B logic utilizing an antirepressor (Xapg) and

repressor (Yipr)-

predictions, we constructed several systems that were predicted
to be nonoperational (see Supporting Data Set 3). In general,
both sets of data affirmed our qualitative prediction. Namely, on
average, the nonoperational gates did not result in objective
logic gating (or had poor quantitative performance—i.c., had

dynamic ranges <2) when experimentally tested.
To better interpret and predict the quantitative performance

of our 2-INPUT AND logic gates, we constructed a coarse-

grained model—defined as follows:

1102

Qoo Iy) = a, + o AX(1,) + a,AY(Ly)

+ aAx (L) Ay (Iy) (3)
where Q,yp is the OUTPUT expression, A is the Hill state
function of repressor X", Ay is the Hill state function of repressor
Y*, Iy is the inducer state of X" (either 0 or 1), Iy is the inducer
state of Y* (either 0 or 1), and a,, a3, ,, and @ are parameters
determined from the SISO gates by a set of four equations; see
Figure 3A. Qualitatively, @, is the minimum OUTPUT of the
gate (or overall leakiness, ie., &x or &y), @, is the OUTPUT
increase (from the baseline «,) in response to Iy, @, is the
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Figure 8. NIMPLY predictive models using BUFFER and NOT gate parameters. (A) A NIMPLY B gate logic is modeled using a quadratic function of
Ix and Iy, which controls the repressor state function A} and antirepressor state function A%. Each term has a coefficient @, a;, @,, or a3, which are
estimated as functions of BUFFER and NOT gate parameters €, €y, 0y, and oy. Functions for parameters o, @, @,, and @; are derived using a set of
four assumptions corresponding to each INPUT condition. (B) B NIMPLY A gate logic is modeled analogous to the A NIMPLY B logic but with an

antirepressor state function A% and repressor state function A3,

OUTPUT increase (from the baseline @,) in response to Iy, and
a; is the OUTPUT increase from the maximum OFF state to the
ON state (also see Supporting Note 6).

In general, the AND gate model predicted the quantitative
performances of experimental outcomes with a high degree of
accuracy—with a mean error (measured output/predicted
output) of 1.256; see Figure 4 and Supporting Figure S6A.
Only ~12% of the values had a 2-fold or greater difference
relative to the predicted value—i.e., the model could accurately
predict the qualitative and quantitative performance of
measured values in the context of the AND logic in ~88% of
cases. Interestingly, PROXIMAL AND logic gates (Figure 4A)
had a greater degree of spread—i.e., for a given data set per
individual operation—relative to the CORE AND logic gates
(Figure 4B). We attributed this difference to the presence of a
variable ‘S-UTR (untranslated region) in the PROXIMAL
systems, which can variably affect ribosome binding and thus the
apparent level of translation.

Developing Design Rules for MISO NOR Logical Gate
Construction from NOT SISO Data. Akin to our workflow for
identifying functional AND gates, a similar process can be used
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to identify putative 2-INPUT NOR logical gates—paired via SE-
PA operators. Namely, the initial selection (design) criteria
required the identification of said NOT SISO operations with
statistically significant differences between the ON state
(without a ligand) and the OFF state (with a ligand)—i.e,
adequate dynamic ranges for a set of network-capable
antirepressors. The second hierarchical design criteria required
sufficient inequality between complementary ON and OFF
states (see Supporting Figure S7A). In other words—with the
design goal of forming a 2-INPUT NOR logical operation—
incompatibility between two NOT gates occurs when said SISO
operations do not have a sufficient distinction between the ON
state of one operation (Pqg) relative to the OFF state of the
complementary operation (I452); see Supporting Figure S7B.
The unrestricted, 2-INPUT network space for NOR gate
construction is represented by 80 operations at the PROXIMAL
position and 80 operations at the CORE position. However,
when accounting for the nonfunctional SISO logic gates at the
PROXIMAL position, the network space is reduced to 64
putative NOR gates (Figure SA). Moreover, including the four
incompatible sets, the PROXIMAL network space is reduced to
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60 putative NOR gates. In contrast, the CORE position did not
contain any nonfunctional NOT gates. However, nine putative
incompatible NOR sets were predicted at the CORE position—
resulting in 71 putative NOR gates (Figure SB).

Building, Testing, and Modeling NOR Logic Gates.
Inspired by the workflow developed for the AND logic gates, we
built and experimentally tested all putative NOR gates—60
putative PROXIMAL NOR gates and 71 putative CORE NOR
gates. In addition, we constructed a model to better interpret
and predict the quantitative performance of our 2-INPUT NOR
logic gates given the corresponding SISO data as follows:

Quor(Iy Iy) = a, + AR (Iy) + a,AY(Ty)

+ a3A§(Ix)A$(IY) (4)

where Qo is the OUTPUT expression, A% is the Hill state
function of antirepressor X%, A% is the Hill state function of
antirepressor Y4, Iy is the inducer state of X* (either 0 or 1), Iy is
the inducer state of Y* (either 0 or 1), and @, @;, ,, and a; are
parameters determined by the set of four equations described
previously; also see Figure 3B and Supporting Note 7.

Qualitatively, all of the predicted NOR gates were func-
tional—i.e., validated by the experiment (see Figure 6).
Quantitatively, the model accurately predicted the experimental
values in ~89% of cases, with a mean error of 1.28 (see
Supporting Figure S6B). Moreover, select nonoperational data
affirmed our expectations—i.e, on average, objective (qual-
itative) NOR gating was not observed or had poor performance
(see Supporting Data Set 3). Congruent with the observation
made for differences in performance at the PROXIMAL versus
CORE positions for the AND gates, the tested NOR gates had
similar differences in data spread between the two operator
positions. Namely, PROXIMAL NOR gates (Figure 6A) had a
greater degree of spread in the standard deviation per data point
relative to CORE NOR gates (Figure 6B)—which we again
attributed to a variable ‘S-UTR in the PROXIMAL operations.

Building, Testing, and Modeling Nonimplication
Logic Gates. In principle, we can direct (network) two
transcription factors with divergent phenotypes (i.e., repressor
and antirepressor) to a shared (SE-PA) DNA operator. This
class of simply mixed networks objectively results in an A
NIMPLY B logical operation; see Supporting Figure S8.
Likewise, using the complementary set of transcription factors
(i.e, Rygr and IQQR), we can generate the complementary logical
operation B NIMPLY A; see Supporting Figure S8. In the given
illustrations, we qualitatively predicted that repressor Iyqg can be
paired with antirepressor RQQR, and this operation will only
produce an OUTPUT when the INPUT signal that corresponds
to the repressor is present; see Figure 7 and Supporting Figure
So.

As with previous 2-INPUT operations, we can model
nonimplication logic gates to better interpret quantitative
performances. Namely, for 2-INPUT A NIMPLY B logic
gates, we modified the model shown in eq 3 to include one
repressor and one antirepressor state function pertaining to both
BUFFER and NOT SISO logic. The model for A NIMPLY B is
shown below:

QA NIMPLY B(IX’ IY)

=a, + alA;(Ix) + azAé(Iy) + a3A;(Ix)A$(Iy) (5)

where Q, nivpry 5 i the OUTPUT expression, Ax is the Hill
state function of repressor X*, A is the Hill state function of
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antirepressor Y*, Iy is the inducer state of X* (either 0 or 1), Iy is
the inducer state of Y* (either 0 or 1), and a, @;, ,, and a; are
parameters determined by the set of four equations described
previously; also see Figure 8A and Supporting Note 8.

The model for 2-INPUT B NIMPLY A logic gates follows that
described above for A NIMPLY B gates, with the modification
that TFs X and Y phenotypes are switched so that this system
contains antirepressor X* and repressor Y*. The model is,
therefore

QB NIMPLYA(IX) IY)

= a, + A (Iy) + A (L) + o, AR (L)AT(L)  (6)
where Qg \ivpLy 4 is the OUTPUT expression, A% is the Hill
state function of antirepressor X*, A is the Hill state function of
repressor Y*, I is the inducer state of X* (either 0 or 1), Iy is the
inducer state of Y (either 0 or 1), and a,, @, @,, and a; are
parameters determined by the set of four equations described;
also see Figure 8B and Supporting Note 9.

Given that the total combinatorial space for said non-
implication logic gates is represented by 160 operations per
operator position (i.e., a total of 320 logical operations), we
selected 12 exemplars (i.e, 24 when considering CORE and
PROXIMAL operator positions) to illustrate gate construction
and to test our model’s accuracy given the corresponding SISO
data (see Figure 7, Supporting Figure S9, and Supporting Data
Set 2). Qualitatively, all of the tested nonimplication logic gates
performed as expected. Moreover, the model accurately
predicted the qualitative performance in all cases and
quantitatively predicted the performance of said nonimplication
gates in ~86% of the tested cases.

B DISCUSSION

As circuit complexity increases in synthetic biology, there is a
growing need to predict the performance of a desired complex
system (i, qualitatively and quantitatively) prior to con-
struction. Ideally, this would begin with modeled interaction
data—which would involve comprehensive predictions of
protein—ligand interactions, protein—DNA interactions, and
allosteric communication in terms of binding energetics. While
such predictive capabilities are not practical, the extrapolation of
simple SISO data to predict the performance of MISO logical
operations has shown great promise.”” Accordingly, in this work,
we have taken the first steps toward predicting circuit
performance for simple (single promoter) transcriptional
programs that can potentially scale to more complex operations
that involve feeding forward information. Moreover, we
achieved the aforesaid using coarse-grained models. In principle,
we could increase the granularity of the models via the inclusion
of transition state data similar to Zong et al.*” The value added
using a finer-grained approach could potentially allow for the
inclusion of information regarding the sensitivity of a tran-
scription factor to a cognate ligand—which could be important
if knowing the minimal amount of ligand to achieve a setpoint is
important. However, as demonstrated by Zong et al. ,*? the use of
a fine-grained approach did not result in predictive capability
within the transition region, which can be attributed to the high
degree of fluctuation in OUTPUT dictated by small changes in
INPUT concentrations. In other words, the maintenance of a
setpoint in the transition region for a given pair of SISO
operations that form a MISO operation cannot be predicted
with any degree of certainty.
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Figure 9. Results for 6 SERI AND operations and 6 SERI NOR operations. (A—F) AND logic gates employing a repressor (Xjpr) directed to a
cognate PROXIMAL operator (top input) and a second repressor (Yxpg) directed to a cognate CORE operator (bottom input). Results for OUTPUT
prediction using SE-PA SISO parameters, prediction using SERI SISO parameters, and measured OUTPUT are shown on the right. (G—L) NOR logic

gates employing antirepressors Xapp and Yapg.

While our ability to predict 2-INPUT circuit performance
from SISO data was remarkably accurate, in some cases, we
intimated that the properties of the circuit were responsible for
increased variability in the performance of a given state of a
circuit. Namely, we posited that the variable 5’-UTR in
PROXIMAL circuits contributed to decreased accuracy in our
predictions—as the CORE circuits had better correlations with
said predictions (see Figures 4 and 6). To test this assertion, we
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inserted a genetic insulator upstream of the putative UTR in a
subset of PROXIMAL AND circuits and NOR circuits—i.e.,
gates with the largest prediction error for each 2-INPUT
combinatorial pair—followed by a retest of circuit performance

(see Supporting Data Set 4). With the addition of the genetic

insulator, we observed an ~3-fold and ~6-fold improvement in
the accuracy of the prediction of experimental results relative to
the model for AND gates and NOR gates, respectively.
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An important feature of transcriptional programming is the
ability to network repressors and antirepressors to build
multiple-INPUT operations that are compressed.”** In our
current study, we accomplished this with the SE-PA architecture
to form simple two-node networks of transcription factors
binned via the alternate DNA binding function—e.g,, YQRIO!,
HQNIO", or GKRIO#*, This SE-PA network form resulted in
seven orthogonal (binned) DNA binding networks, with
interbin communication facilitated via the INPUT signals (see
Supporting Note 10). Given seven nonsynonymous ADR and §
RCD, each with the capacity to interact with one of five
nonsynonymous INPUTS, resulted in a putative network space
of 70 operations (i.e., restricted to the given AND gates and
NOR gates), with 10° signal coupled operations. When
considering mixed unit operations (ie, said A NIMPLY B
gates and B NIMPLY A gates), the network space is represented
by 350 putative operations, with signal coupling three times
larger than AND gate (or NOR gate) coupled operations.

In the context of network development, the DNA binding
network in transcriptional programming can be expanded via the
SERI architecture. Namely, in a given SERI genetic architecture,
two nonsynonymous DNA operators can be paired in tandem—
ie., one located at the CORE position and the other at the
PROXIMAL position (see Supporting Figure S4E). When
extrapolated based on the engineered transcription factors and
cognate DNA operators used in this study, the putative SERI
networked DNA space results in 10° operations, with a signal
coupling on the order of 10° (see Supporting Note 10).

To determine if SERI circuits are amenable to modeling (i.e.,
MISO predictions from SISO data), we leveraged the workflows
that we established for SE-PA circuits. Given the enormous
combinatorial space for SERI circuits, we opted to demonstrate
predictive capacity as a proof-of-concept using a small sample
set—i.e., six AND gates (see Figure 9A—F) + six NOR gates (see
Figure 9G—L). Congruent with our previous workflows, first, we
collected SISO data for each transcription factor—however, in
this case, operating in the context of a given SERI operator—
promoter (opposed to SE-PA). The rationale for recollecting
SISO data is evidenced in the differences in performances
between SE-PA and SERI 1-INPUT operations for equivalent
transcription factors and cognate DNA interactions. In turn, we
built, tested, and modeled the corresponding SERI AND gates
(see Supporting Data Set S). In all cases, the experimental data
and model predictions were in good agreement. Likewise, the
experimental data and corresponding model of NOR gates were
in good agreement; however, many SERI NOR circuits had
divergent performance relative to synonymous SE-PA circuits.
For example, Rﬁgi) and Iﬁ(ﬂ)(, in principle, should form an
objective NOR gate based on the SE-PA SISO data. However, in
the context of the SERI architecture, said operations are
incompatible and, as predicted, result in a nonfunctional
operation (see Figure 9K). Moreover, the inclusion of a genetic
insulator does not improve circuit fidelity, indicating that
properties and functions that precede translation (e.g., changes
in transcription factor DNA interactions and possibly changes in
promoter strength) impact the performance of the SERI circuit;
see Supporting Figure S10.

B MATERIALS AND METHODS

BUFFER and NOT Plasmids. Each SISO system is
comprised of (1) a single transcription factor expressed on the
pLacl plasmid (Novagen), which contains the p15a origin (copy
number 20—30/cell), and (2) a super folder green fluorescent
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protein (GFP) reporter expressed on the pZS*22-sfGFP
plasmid which contains the pSC101 origin (copy number 3—
S/cell). Chloramphenicol and kanamycin resistance genes were
used as selection markers for transcription factor and reporter
plasmids, respectively. The transcription factor and reporter
plasmids were obtained from previous works (Rondon et al,
Groseclose et al.) and when necessary, ADR or operator variants
were cloned using site-directed mutagenesis PCR (Phusion
DNA Polymerase, NEB) with custom primers (Eurofins
Genomics), followed by kinase, ligase, and Dpnl reactions
(KLD enzyme mix, NEB). The reactions were transformed into
chemically competent DHSa cells (huA2 A(argF-lacZ)U169
phoA gInV44 p80A (IacZ)M1S gyrA96 recAl relAl endAl thi-1
hsdR17; New England Biolabs) and plated on LB agar with an
appropriate antibiotic. A transformant was cultured overnight in
LB broth (Fisher BioReagents) and mini-prepped (Omega Bio-
Tek) to yield each plasmid, and the sequence was confirmed
with DNA sequencing (Eurofins Genomics).

AND, NOR, and NIMPLY Transcription Factor Plas-
mids. Transcription factor plasmids used in MISO systems are
identical to those in SISO systems, except they contain two
independently driven transcription factor genes. AND, NOR,
and NIMPLY transcription factor plasmids were cloned using a
modular Golden Gate Assembly method. Transcription factor
inserts were PCR amplified (QS DNA Polymerase, NEB) using
BUFFER and NOT plasmids as templates, gel extracted
(Qiagen), and desired pairs were matched and assembled with
BsmBI-v2 and T4 DNA ligase (BsmBI-v2 Golden Gate
Assembly Kit, NEB). The resulting plasmids were transformed
and isolated according to the methods described above.

Microwell Plate Assay. For each logic gate, the tran-
scription factor plasmid contains a single repressor (BUFFER),
single antirepressor (NOT), repressor pair (AND), antirepres-
sor pair (NOR), or repressor/antirepressor pair (NIMPLY).
The transcription factor and corresponding reporter plasmids
were double-transformed into homemade chemically competent
3.32 E. coli cells (Genotype 1acZ13(Oc), lacI22, LAM—, el4—,
relAl, spoT1, and thiE1, Yale CGSC #5237) and transformants
were precultured for 6 hours in LB media with chloramphenicol
(25 pg/mL, VWR Life Sciences) and kanamycin (35 pg/mL,
VWR Life Sciences) antibiotics. Precultures were then diluted in
sextuplicate into glucose (100 mM, Fisher Scientific) M9
minimal media supplemented with 0.2% (w/v) casamino acids
(VWR Life Sciences), 1 mM thiamine HCl (Alfa Aesar),
antibiotics, and respective inducers, and grown in a flat bottom
96-well microplate (Costar) for 16 hours (37 °C, 300 rpm).
Microwell plates were sealed with Breathe-Easy membranes
(Diversified Biotech) to prevent evaporation. Inducer concen-
trations used are as follows: isopropyl-f#-D-thiogalactoside
(IPTG; 10 mM, reduced to 1 mM for IPTG-fucose gates), D-
ribose (10 mM), cellobiose (10 mM), D-fucose (10 mM),
fructose (10 mM), and adenine (1 mM). Optical density
(ODgy,) and GFP fluorescence (4., = 485 nm, A, = 510 nm)
were measured with a Spectramax M2e plate reader (Molecular
Devices).

Data and Statistical Analysis. Raw ODg, and GFP
fluorescence measurements were corrected by subtracting
values of blank media from sample values, and fluorescence
values were normalized to ODyg, in Excel (Microsoft). Mean
fluorescence and standard deviation were calculated across the
six replicates (n = 6) and then normalized to a global maximum
of 75,000 relative fluorescence units (RFU), generating a scale
from 0 to 1. A two-tailed t-test was used to determine statistical
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significance between ON and OFF states for each BUFFER and
NOT gate (significance level = 0.001). Gates with a p-value >
0.001 were regarded as not significant and classified as either
nonfunctional (X~) or super-repressor (X°) phenotypes,
depending on the expression level. Gates with a p-value <
0.001 were regarded as functional with either repressor (X*) or
antirepressor (X*) phenotype classification. Cohen’s d-values
were also calculated to determine the effect size between the two
means. For AND, NOR, and NIMPLY gates, a one-way
ANOVA test was performed across the four inducer conditions,
followed by a Tukey—Kramer test to determine which
treatments were statistically different from each other in each
gate. We used a p-value cutoff of < 0.01 for significance (see
Supporting Data Set 2—5).

AND, NOR, and NIMPLY Gate Prediction. Compatibility
tests and OUTPUT predictions for AND, NOR, and NIMPLY
gates were performed in Excel using the appropriate models and
experimental BUFFER and NOT data (see Supplemental Data).
First, o and € values were calculated using normalized ON and
OFF state OUTPUTs. Compatibility tests were performed with
a true/false assessment of each inequality (see Supporting Data
Set 2). Model parameters a,, a;, a,, and a; were then evaluated
using ¢ and € values and plugged into the respective model
equation for each 2-INPUT gate. Prediction values were
calculated for each inducer condition and plotted against
experimental data using GraphPad (Prism) for correlation
analysis. The prediction error was calculated for each INPUT
condition across all gates as the ratio of the measured OUTPUT
to the predicted OUTPUT.

Insulated SE-PA and SERI Logic Gates. For each proximal
AND and NOR RCD pair, the ADR variant with the largest
mean prediction error (determined as the magnitude of fold
change, averaged across all four INPUT conditions) was
selected for the insulated genetic architecture case study.
Insulated reporters were cloned using site-directed mutagenesis
PCR (using a template O*8 core O"8 proximal RiboJ10 GFP
reporter provided by Groseclose et al.). This reaction was
performed with a QS High-Fidelity DNA Polymerase (NEB),
the product was verified with gel electrophoresis, and the
amplicon was circularized using kinase, ligase, and Dpnl
enzymes (KLD). The reactions were transformed into chemi-
cally competent DHSa cells and plated on LB agar
supplemented with kanamycin. Transformants were isolated,
cultured overnight, and mini-prepped to yield each plasmid and
the sequence was confirmed with DNA sequencing. The
transcription factor and insulated reporter plasmids were
double-transformed and both SISO (BUFFER or NOT) and
MISO (AND or NOR) operations were constructed and
assayed, as described previously. For SERI gates, core operators
were inserted with site-directed mutagenesis PCR (using
proximal SE-PA reporters as templates) according to the KLD
method described above, and both SISO and MISO operations
were constructed and assayed according to the procedure above.

B ASSOCIATED CONTENT
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