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Abstract—Federated learning (FL) is a promising paradigm that
enables collaboratively learning a sharved model across massive
clients while keeping the training data locally. However, for many
existing FL systems, clients need to frequently exchange model pa-
rameters of large data size with the remote cloud server divectly via
wide-area networks (WAN), leading to significant communication
overhead and long transmission time, To mitigate the communi-
cation hottleneck, we resort to the hierarchical federated learning
paradigm of HiFL. which reaps the benefits of mobile edge comput-
ing and combines synchronons client-edge model aggregation and
asynchronous edge-cloud model aggregation together to greatly re-
duce the traffic volumes of WAN transmissions. Specifically, we first
analyze the convergence bound of HiFL theoretically and identify
the key controllable factors for model performance improvement.
We then advocate an enhanced design of HiFlash by innovatively
integrating deep reinforcement learning based adaptive staleness
control and heterogeneity-aware client-edge association strategy to
boost the system efficiency and mitigate the staleness effect without
compromising model accuracy. Extensive experiments corroborate
the superior performance of HiFlash in model accuracy, commu-
nication reduction, and system elficiency.

Index Terms—Client-edge association, federated learning,
hierarchical mechanism, staleness control,

I. INTRODUCTION

OWADAYS, federated learning (FL) has gained growing
attention as it collaboratively trains a global machine
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learning (ML) model in distributed manner without exposing the
data from private clients [1], [2]. During the training procedure
of FL, the (local/global) model updates are iteratively exchanged
between clients and the cloud server until reaching a desirable
accurate model, thus it achieves a privacy-preserving learning
by leaving training data on local clients. Various popular AT ap-
plications such as computer vision [3], language processing [4]
and human activity recognition [3] have been derived within this
tramework.

For many existing FL. systems, regardless of synchronous
update (ec.g., FedAvg [1] and its variants [6]. [7]) or asyn-
chronous update (e.g., FedAsync [8]), massive model parame-
ters need to be exchanged in multiple update iterations. However,
clients geographically scattered over the edges of networks
are usually connected to a remote cloud server through wide-
area networks (WAN) and long-distance transmissions, which
would incur high communication cost and serious network
congestion. Such communication inefficiency would greatly
deteriorate the systemn performance of large-scale distributed
training and further hinder the wide deployment of FL sys-
tems in practice. Hence, the research issue of boosting the
communication efficiency of FL has recently drawn great
attention [9].

Hierarchical architecture is a promising solution to alleviate
the huge communication pressure of the cloud server, since an
order of magnitude fewer data-size of model update would be
transferred to cloud by aggregating local models at the lower
layer in advance. Due to the merits of mobile edge computing
(MEC) in practice, edge nodes (e.g., 5G edge servers) can be
set as the intermediates for local model aggregation [10]. The
rationales are as follows: 1) due to shorter routing path and
less hop distance in the local-area network (LAN). a lower
network delay and reduced network jitter are offered in the edge
layer [11]. Further, the straggler problem caused by less effective
communication between cloud and clients can be significantly
alleviated; 2) compared to high monetary cost of WAN usage
in traditional FL., abundant cheaper LAN resources at the edge
nodes promote FL deployment in reality [12]: 3) FL applica-
tions are commonly scattered over massive devices, which are
naturally clustered into many edge domains (e.g.. campus and
hospital). This distributed pattern can be well accommodated in
hierarchical FL.
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Motivated by these facts, a new paradigm of client-edge-cloud
hierarchical FL has recently been put forward [13], [14], which
involves two levels of synchronous model aggregations, ie.,
client model aggregation controlled by the edge nodes at lower
layer, edge model aggregation controlled by the cloud server at
higher layer. This framework aims at leveraging the advantage
of synchronous update to train global model with high accuracy
and fast convergence at the lower layer, benefited from high
LAN bandwidth and sufficient computation resources at the edge
nodes. However, a severe straggler problem at the higher layer
would be incurred due to the edge heterogeneity (e.g., diverse
WAN connection conditions and heterogeneous edge aggrega-
tion time due to different client size) and the communication
bottleneck from edge to cloud. More explicitly, large wailing
time in synchronous global model aggregation at the higher layer
is inevitable,

To fully unleash the benefits of hierarchical FL., in this paper
we incorporates the merits of synchronous and asynchronous op-
erations in different aggregation layers into the hierarchical FL,
which we call HiFL in order to differentiate it from HierFAVG,
the version of hierarchical FL with two levels of synchronous
model aggregations. As depicted in Fig. 1, contronted with
huge edge heterogeneity and complicated WAN environment
among edge nodes and cloud, asynchronous update is adopted
tor edge-cloud model aggregation to improve learning efficiency
via wail-free communication. At the lower layer, synchronous
maodel aggregation between clients and edge nodes ensures
high accuracy and fast convergence. Moreover, benefited from
high LAN bandwidth and sufficient computation resources at
the edges in the communication-efficient one-hop access edge
network environment, the straggler problem is very mild and
can be neglected during synchronous client-edge apgregation,
compared with the asynchronous edge-cloud aggregation com-
munications over the latency-significant WAN.

Mevertheless, HiFL also brings in new challenges on account
of the asynchronous aggregation and hierarchical mechanism
design. On one hand, staleness effect arised in asynchronous
update negatively impacts on the model accuracy and con-
vergence speed [15]. Existing staleness-tolerant mechanisms
usually dampen the impacts of stale model updates by only
controlling the trade-off between convergence rate and variance
reduction according to the staleness [8]. However, its impact
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on system efficiency {e.g., training time, resource efficiency) is
much less considered. For example, a model with large staleness
may marginally contribute to the global model, which results
in more rounds of communication to reach a targel accuracy
for asynchronous FL. Thus, it is critical to control the model
staleness for communication-efficient model learning. On the
other hand, the hierarchical mechanism introduces data het-
erogencilty among edges, which can be further amplified by
the hierarchical client-edge-cloud model aggregation and lead
to degraded model performance [15]. Besides, the resource
heterogeneily among the edge-associated clients can exacerbate
the straggler effects, possibly prolonging the waiting time in
client-edge model aggregation.

To cope with the above challenges, in this paper we first
investigate HiFL to gain useful theoretical insights about its
performance bound and system efficiency, and then identify
the key controllable parameters that affect the learning per-
formance. Motivated by our theoretical resulls, we devise an
adaptive staleness control strategy for edge-cloud layer and
a heterogeneity-aware association mechanism for client-edge
layer to improve the overall efficiency of HiFL. For staleness
control, existing approaches usually assume a pre-defined fixed
threshold for the participating clients, which can not well adapt
to the realistic dynamic environment. Moreover, the threshold
determination is non-trivial due to the complicated FL environ-
mentis (e.g., data and resource heterogeneity of clients, current
running stages of FL model). Differently, we resort to the deep
reinforcement learning (DRL) method and design a DRL agent
based on Deep Q-Network (DOQN) [16] to wisely make adaptive
staleness threshold decisions tailored to the dynamic and com-
plicated FL. environments. The DRL agent is trained through
a Double DON for increased efficiency and robustness. For
client-edge association, we devise an efficient weighted heuristic
to find a near optimal solution that jointly minimizes the data
heterogeneily among the edges and resource heterogeneity in
the edge-associated clients.

In summary, this paper makes the following contributions:

* To achieve communication-efficient and accurate model
learning, we resort o HiFL, a hierarchical federated leamn-
ing approach that performs synchronous client-edge model
aggregation and asynchronous edge-cloud model aggrega-
tion. Rigorous theoretical analysis for the convergence of
HiFL is provided, including both convex and non-convex
learning objectives.

* Inspired by the theoretical convergence analysis, we further
advocate an enhanced design of HiFlash, which introduces
adaptive staleness control and heterogeneity-aware client-
edge association based on HiFL. The HiFlash approach
enables large-scale deployment with boosted model per-
formance and system efficiency.

* Wedevise a DRL agent based on a Deep Q-Network (DON)
for adaptive staleness control with elaborative learning re-
ward design in order to improve system efficiency without
compromising model accuracy. To mitigate the accuracy
degradation and straggler effect caused by data and re-
source heterogeneity, we establish an efficient weighted
heuristic of low-complexity for client-edge association that
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well balances the trade-off between model accuracy and
system efficiency.

* Extensive experiments are conducted using three widely
adopted image classification datasets to evaluate the ef-
fectiveness of HiFlash, demonstrating that HiFlash signifi-
cantly outperforms other FL. based approaches in commu-
nication efficiency without compromising model accuracy.
For example, even under highly skewed data distributions
among clients, HiFlash can still achieve a high model
accuracy, and meanwhile greatly reduces communication
overhead, e.g.. with a reduction ratio of 42% and 89% over
the benchmarks of HierFAVG and Fed Avg, respectively.

The rest of this paper is organized as follows: Section 11

presents the preliminaries on FL and DRL. Section III intro-
duces a hierarchical FL approach named HiFL. In Section IV,
we provide theoretical analysis for HiFL, and further devise
HiFlash, an enhanced HIiFL with adaptive staleness control
and heterogeneity-aware client-edge association in Section V.
Extensive experiments are conducted in Section V1. We review
the related work in Section VII and conclude the paper in
Section VIIIL

II. PRELIMINARIES

A. Federated Learning

Federated learning [1]. first proposed by Google in 2016,
trains a global shared model among massive clients in a privacy-
preserving manner, where a central server serving as an aggre-
gator coordinates client model learning. In general, a FL system
consists one cloud server and [V dispersed clients. Each client k

has a collection of local dataset Dy, = {x;,5;} J.Ii“ll. where x; is
the feature of training sample j and y; is its ground-truth label.
To collaboratively train a global ML model w € RY, its loss
function associated with the data sample (x;, ¥;) is denoted as
(%, 1y, w). where d is the total number of trainable parameters.
For ease of exposition, we use f;(w) to replace f(x;.u;,w)
notation. As a result, the learning objective of FL is to minimize
the loss function over the collection of training data at V clients,
ie.,

(1)

where Fi{w) = ]T"lk_ > jep, Jilw) is the loss empirical objec-
tive over the data samples at client &, which is task-specified,
for example, the leamning objective can be cross-entropy loss for
image classification tasks. Assuming Dy N Dy = 0 for k £ k',
we define D = U Dy and use | - | to denote the size of a set.

To solve the optimization problem in (1), FedAvg, the most
widely used FL framework, proposes to mn local stochastic
gradient descent (SGIY) in parallel on a sampled subset of clients
and conducts synchronous model aggregation viaa central server
once in a while [1]. The process is repeated until the model
reaches a desired accuracy. Due to slow and expensive network
connection (e.g., frequent backhaul and long communication
distance) between the cloud server and the geographically dis-
tributed clients [10], FedAvg performs multiple local learning
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steps before uploading the model updates into the cloud server,
so that the number of communication rounds is considerably
reduced and the network burden is further relieved,

B. Deep Reinforcement Learning

In reinforcement learning (RL), a RL agent interacts with the
environment in discrete time slots to maximize its reward in the
long run. At each time slot 4, the RL agent observes state s°,
executes action a* and receives a reward v from the environ-
ment. The state s* of the environment then transits to s**? for
the action decision making of next time slot. The whole process
follows a Markov Decision Process (MDP) [17] which can be
described as a tuple M =< &, A, P, R, v > wherein & is the
state space, A is the action space and P : 8 =« A = & — [0, 1]
is a probabilistic transition function. R is the immediate reward
function and v € [0, 1] is a factor discounting the future rewards.
The objective of the RL agent is to learn a policy =*, a mapping
between states and actions that maximizes the cumulative dis-
counted reward R — Y1_, 4% 1%, where T is the total running
slots.

To estimate the expected cumulative discounted reward start-
ing from state s, value-based RL approaches adopt an action-
value function

=]
Qw{ﬁi1 ai} — E:IT Z "fi 1?.1'+i llﬁi1 ai
i=1

_ E-,T[:r'i + TQﬂ{St+1J at+1.:||s1!_. at]:l (2)

where 7 is the state-action mapping policy. The optimal action-
value function ()" (s°, a') is defined as the maximum expectation
of the cumulative discounted reward:

Q(s' a') = Eqfri + ymax Q" (s a)ls 0. (3)
Hence, we could apply function approximation technigues to
learn the action-value funtion £y (s*, ', #;) approximating the
optimal function ¢J*.

MNevertheless, for many real-world problems, the state space
becomes too large to keep track of all the Q-values. To alleviate
this issue, deep reinforcement learning (DRL) proposes to adopt
DNN as the approximator of the action-value function ), by
leveraging the powerful generalization abilities of DNNs. For
example, Deep Q-Network (DON) [16] uses a DNN to estimate
the Q-values of states and actions, and the objective of DQN
is minimizing the mean-squared error (MSE) loss between the
target 7+ maxg 1 Qr (51, a'* #;) and the approximator
described as follows:

argminL(0;) = (r' +ymax Qa(s", 2", ;)
B it

— Q(s',a",6;))". (4)

For ease of convergence, DOQN transforms DRL as a form of
supervised learning and induces experience replay [ 18], which
contains abundant transition samples, for correlation reduction
between samples.
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Fig, 2.  Model training procedure of HiFL.

III. HIFL DESIGN
A. Problem Definition and HiFIL. Overview

We first provide the problem definition of HiFL based on the
traditional FL. As depicted in Fig. 2, client model updates are
not directly sent to the cloud but edge nodes. More explicitly, vV
participant clients are divided into M disjoint groups based on
their characteristics (e.g., geographical locations), each of which
is associated with one edge node. In general, the number of edge
nodes is far less than clients, ie., M < N. We denote C™ as
the client set of edge node m, and total participant clients can
be defined as A" = UM_ ™. Thus, based on this hierarchical
FL archilecture, the learning objective in (1) is extended as:

D™
Bpfw= Z o7

where F™(w] =% 1com Dm = F (w) denotes the objective on
edge node m. which is a Ilncar combination of the empirical
objectives of clients in O™ |[D™| =57, .. | Dy is the data size
of all samples across the clients associated with edge node m.
Table T lists the key notations in our paper.

Based on the disparate behaviors of cloud and edges, HiFL
adopts synchronous client-edge model aggregation and asyn-
chronous edge-cloud model aggregation to synergistically train
a high-quality ML model in a cost-efficient way. At the side of
edge, high LAN bandwidth and reduced network jitter consider-
ably shorten the communication latency for gradient exchanges
or model download. Within the same LAN environment, syn-
chromous model aggregation is more desired between edge nodes
and clients, due to its high model training precision and tfast
convergence speed. However, at the side of cloud, model training
suffers from communication bottleneck in the complicated WAN
environment (e.g., highly fluctuating long-distance transmission
time and diverse edge model aggregation time due to different
size of clients with different edges), which leads to severe
straggler problem. Thus, asynchronous aggregation is adopted
to mitigate this straggler effect via reducing the waiting time of
maodel updates between the central server and the edge nodes.

As shown in Fig. 2, we design two core components, ie.,
scheduler and updater, minning asynchronously in parallel on

(5)
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TABLET
LIST OF KEY NOTATIONS
Symbaol Descripticn
In General Federated Learning Settings
N the mumber of clienis
M the number of edges
Dy the dataset of client &
[ the: set of clients associated with edge e
te, e edge counter and cloud counter
[ learning rate of federated learning
wte) the cloud model at £.-th global iteration
W (e, Ea) edge model at £.-th iteration computed based on w{t.]
wi(te, te) client model at ¢,-th iteration computed based on w{t.)
| Fn Client-edee Model Aggregation
H the number of chient-edge model aggregation

the number of leaming epochs on the client
before synchromizing with the edge node
In Edgs-d:md Madel Aggregation
the staleness of the edge model
initial mode] weight of the edee model and penalty
coefficient for calculating mixing hyperparameter
a0 cloud model aggrepation
In Adaptive Stalenesy Conirol
st at the state and action of DREL agent in time slot i
re total system cost at time slot £
iy, T3 penalty factors for computation and communicalion costs
I'n Heterogeneity-aware Association
A weighting parameter for data and resource beterogeneity
L™ response latency for client & associated with edge m

=

o, W

the cloud server to achieve the wail-free goal, where the former
one is in charge of latest model distribution {which can be
integrated with control functionality by DRL agent specified
later on}, and the latter one is for global model aggregation,
More explicitly, once an idle edge node gets engaged in model
training for its interest, it will actively inform the cloud server
to download the latest version of global model. Then the cloud
server will check its updater and immediately send the result
to corresponding edge node. Receiving the global model, the
edge node quickly broadcasts it to the associated clients and
leverages their local datasets to collaboratively train a shared
edge model in a synchronous manner with efficient client-edge
communication. If the cloud server receives a trained model
from an edge node, the updater will update the global model
immediately, without waiting for other edge nodes. In order
to control the model staleness caused by asynchronous aggre-
gation, the updater conducts model aggregation with a weight
penalty on the received model update, which will be elaborated
in Section HI-B.

MNote that to improve the throughput of HiFL, multiple edge
model training processes can be executed in parallel, which
results in multiple updater threads with read-write lock on the
global model. This asynchronous model aggrepation strategy
relieves the network congestion on the cloud side and enables
wail-free global model learning, further reducing the commu-
nication overhead and speeding up the model training process.
Particularly, different counters are set to record the model update
times in this hierarchical sellings, since the clients update the
edge model without the coordination of the cloud server. Thus,
we design clond counter ¢, and edge counter ¢ for asynchronous
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cloud model aggregation and synchronous edge model aggrega-
tion, respectively.

B. HiFL Training Process

The learning process of HiFL contains two main procedures,
including 1) client-edge model aggregation, and 2) edge-cloud
model aggregation, as elaborated below.

1) Synchronous client-edge model aggrepation: When edge
node m receives current global model w(t.) from the cloud
server, the edge model is initialized as w™ (f,,t:) = w(t.) with
t. = 0, where {. indicates the number of global aggregations
conducted on the cloud model, ¢, denotes the number of local
maodel updates for edge model aggregation after receiving cloud
model w(t.).! The edge model is further sent to the associated
clients for client model update.

We adopt the widely used FedAvg algorithm [1] to collab-
oratively train a satisfactory edge model. Specifically, at {.-th
iteration, client k € C™ performs model update with its local
data. To reduce communication overhead, the classical FedAvg
method aggregates all client models associated with edge node
m and synchronizes with edge model ™ after every c steps of
local updates on each client. Denote w" (., .} as the model
parameters of client k e C™, then w'(t..£.) evolves in the
tollowing way:

wh (teste) =

wit(te, te—1) =gV Fp(wi (te, te—1)), temodc#0 ©)
W (ta, te), temode=0
where
w (te, b
_ | D | [ (te, te— 1) — gV Fi (wi (te. te— 1))
— Z (D
o™

Without loss of generality, we assume that the edge node
performs a number of H model agpregations (e.g.. {. < He)
in each global training round, which indicates that He client
maodel updates have been performed for one client during the
client-edge model aggregation. After this collaborative model
training, the edge model is updated as w™ (., He) and will
asynchronously update the global model with the cloud server.

2) Asyachronous edge-cloud model aggregation: The asyn-
chronous mechanism in edge-cloud model aggregation intro-
duces the challenge of staleness as multiple edge nodes are free
to perform model training and uploading at arbitrary times. For
example, at the global counter {., the cloud server receives a
stale model w™(t, — 7, He) which is trained by edge node m
based on the global model w(t, — ), where T represents the
staleness of the edge model. As the edge model is trained based
on an outdated cloud model version, the stale model will add
noise to the cloud model training procedure, slow down or even
prevent the training convergence [19].

I'The muximum value of £, can be determined by the cloud server based on
the convergence of the model, while the maximum value of . can be set by
euach edge node and hence is different across various nodes.
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To control the error caused by asynchrony, HiFL updates the
global model with the stale edge model by introducing a mixing
hyperparameter cx, as in [8],

wite) = (1 — ar )t — 1) + a;w™(t: — 7. He),  (8)

where o, is the weight that the edge model w™(t, — v, He)
with staleness T contributes to the global model. A smaller o
will result in more FL training rounds while a bigger value
of cr can cause large accuracy fluctuation. By adjusting the
value of «,, we can adaptively conirol the trade-off between
convergence speed and variance reduction in the model learning
process. In this paper, we use the following exponential function
to determine the value of o,

()

where o < (0, 1) is the initial model weight of the edge model.
We can decrease « o mitigate the error caused by large staleness
T with the penalty coefficient v £ (0,1).

The cloud server and edge nodes in HiFL conducts model
updates asynchronously until the cloud model converges. The
synchronous client-edge aggregations on different client groups
can be conducted in parallel, and the asynchronous edge-cloud
model aggregation avoids from long waiting time, both of which
contribute to the fast model learning and wait-free commu-
nication. The details of the HiFL algorithm is elaborated in
Algorithm 1.

or =a-u',

IV. CONVERGENCE ANALYSIS
A. Definitions and Assumptions

For the purpose of the analysis, we introduce the following
definitions and assumptions to the loss function.

Assumption 1: (Smoothness). The function Fplw) is 4-
smooth if Yuw, w',

IV Fi(w) — VE(w")]| < Bllw — /],

where 3 = (.
Assumption 2: (Strong convexity). The function Fy(w) is p-
strongly convex if W, o',

(10)

(VFi(w'),w — o) + %Hw —o||* < Fi(w) - Fe(w), (1D

where ¢ = (0. Note that if p = 0, Fy.{w) is convex.

Assumption 3: (Weak convexity). The function Fi(w) is p-
weakly convex if the function G(w) = Fy(w) +%||m||2 is
convex, where p = 0. Specifically, F(w) is convex if p =0
and potentially non-convex it u = 0.

Assumption 4; (Lipschitz). The function Fy.(w) is p-Lipschitz
if Y, o',

|[Fi(w) — Fi(w')]] < pllw — w']|. (12)

Under these assumptions, Lemma | holds for the loss func-
tions of the edge models and the cloud model.

Lemma 1: F™(w) and Flw) are p-strongly convex, 5-
smooth and p-Lipschitz.

Proaf: 1tis straightforward from the aforementioned assump-
tions, the definition of F' (w), F'{w) and triangle inequality.
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Algorithm 1: HiFL Training Procedure.

Input: Datasets from N distributed clients {74, D;, ...,
Dy }, number of local updates ¢, and learning rate .
1: Conduct client clustering based on some predefined
criteria (e.g., geographical locations) or by
heterogeneily-aware client-edge association strategy in
Algorithm 3

2:  Cloud server executes:

3: Initialize the cloud model w, £, + 0

4: Scheduler:

5 Periodically distribute global model w(t.) and
global counter £, to one edge node for edge model
update

: Updater:

T: fort, =1,2,..., 7. do

8: Receive a pair (w™ (£, He), 1) from one edge

node

9: Calculate the model staleness = £, — £,

10: Update cloud model with (8)

11: end for

12: Edge node executes:

13: form € 1,2,..., M in parallel do

14: if received a pair of the cloud model and the cloud
counter (wi(t.),t.) trom Scheduler then

15: Set f, = t, and w™(f,,0) = w(t,)

16: Initialize wi™ (., 0) = w™(i,, 0) for k € C™

17: fort,. =1,. . Hedo

18: EClient executes*®/

19: for k = C™ do

20: Calculate current client model by (6)

21: end for

22: end for

23 Send ("™ (f.. He), i) to the cloud server.

24: end ir

25: end for

Output: Cloud model wiT,.).

In the cloud model training process of HiFL, there are two
levels of model aggregation, client-cdge model aggregation and
edge-cloud model aggrepation, conducted in parallel. Follow-
ing [6], we introduce the notion of virfual cluster model learning
in Definition 1 to find the loss divergence between the edge
maoidel trained by synchronous client-edge model aggregation
and a virtual cluster model where the training data is assumed to
exist on a virtual central repository. Next, we formalize cluster-
based pradient divergence in Assumption 5 to characterize the
impact of the difference in data distributions across clients and
edge nodes on HiFL.

Definition 1 (Virtual cluster model leaming). For client-
edge model aggregation, we use the shorthand notation [h] =
[(h = 1}e, he) to indicate an interval between two successive
edge model aggregation. Given a certain client cluster C™
associated with edge node m and the initialized edge model
w™(t., 0) = w(t.), for any interval [h], h=1,2,... H, the
virtual cluster model 1'E“L‘]|[tc,£¢]| are updated by performing
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gradient descent on the centralized data examples D™ owned
by C™, and synchronizes with the federated edge model w™
the beginning of each interval, as shown in (13),

UEI,':][Eﬂ, —1)— qu"*{uM{ t—1}),
U[mh]{.fc: te)= t,mod c# 0
w™(ta, te), temod o = 0.

(13)

Assumption 5: (Cluster-Based Gradient Divergence), For

any client k= C™, 47 is assumed as an upper bound of the

gradient difference between the local loss function of client k and

the edge loss function of edge node m, which can be expresses
as follows,

IV Fye(w)

Then, we have 4™ £ —Ef‘-::—“#Tl:ﬁ for the client cluster as-
sociated with edge node m and &, as the biggest gradient
difference across {&™}M_ .

We assume A as an upper bound of the gradient difference
between the loss function of any edge node m and that of the
global loss function, i.e.,

IVE™(w) — VF(w)|I* < A.

— VF™w]|| = 6", (14)

(15)

We call dynar as the client-edge divergence and A as the edge-
cloud divergence. In addition, the expected squared norm of
stochastic gradients on any client & is defined to be uniformly
bounded, i.e.,

E||W Fe(w)||* < V. (16)

For p-weakly convex loss function Fx {which can be non-
convex if g > 0), we define Gy = F(w) + §|lw — @2 with
fi = p. Similarly with the convex settings, we assume Gy
d-smooth and j-Lipschite. & € By, we have ||[VGz( ]I —

n m Sm & Term | D |7
VGE (W) =8, b LLEJ. b for the client cluster

associated with edge node m and bmax as the biggest gra-
dient difference across {5™}_ . Furthermore, we assume
IVGE (w) = VGa(w)|* < Aland IVGra(w)|? < V.

B. Convergence of HiFL

Based on the assumptions and definitions above, we have the
following convergence guarantees.

Lemma 2: During client-edge model aggregation, for any
interval [h] and ¢, € [k], we have

||--'-:| (te,te) — “E:][tn; te)|| £ glte — (R — 1)), (rrn
where
& -
glr) = n:;r (ind+ ljx — 1) — ndmarT, (18)
forany x =10,1,2,---.
Furthermore, as F™(.) is p-Lipschite, we have
F™ (W™ (te, te)) — F™ (vjp) (te, te)) = pglte—(h —1)c).

Proof: Please refer to Appendm A, which can be found
on the Computer Society Digital Library at hitp://doi.
ieeecomputersociety.org/10.1109/TPD5.2023.3238049, of the
separate supplementary file for details.
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Thus, when the client-edge model aggregation finishes, e.g.,
t. = He, the loss divergence between the edge model trained
by FL and the virtual cluster model is F™(w™(t., He)) —
Fm (ﬂi}}l (te, He)l < pgle). With the help of the weight devi-
ation upper bound, we are now ready to prove the convergence
of HiFL for both convex and non-convex loss functions.

Thearem 1: Suppose the loss function Fj. is u-strongly con-
vex, and each edge node executes H € [H i, Hpae| client-
edge aggregations betore pushing the edge model to the clond
server. Taking n < % the convergence upper bound of HiFL
after T global updates on the cloud server can be expressed as,

E[F(w(T,) — F(w")] < s[F(w(0)) — Fw")]
AV +Agfimar +Aad

+(1—x) 2] ;
(19)
where & = |[]_ — ey +u‘1—{l _ n#]cﬂmiu}'rn* Ay = ﬁ’ Ap =
pH g (LI — e, A — Haastl and B—1—(1-

na ) ol min

Proaf: Please refer to Appendix B, available in the online
supplemental material, of the separate supplementary file for
details.

Thearem 2: Suppose the loss function Fy, is y-weakly con-
vex (which can be non-convex if ¢ = 0), and each edge node
executes H € [Hon, Hyas| client-edge aggregations before
pushing tgre edge model to the cloud server. Taking n <

m.in{%, 77 ). the convergence upper bound of HiFL after T,

global updates on the cloud server can be expressed as,

E[F(w(Te) — F(w")] < &[F(w(0)) — F(o")]

T:

3 eHomin -

o o _ _ _ _
Bellnge 4 2y, Ay = Blgaa((nf+1)° — 1 - Bre),
Ag — Ymsz and B — 1 - (1 - 2 ”])nH“‘"_

[

Proaf: We first give the convergence guaraniee between the
client model and the virtual cluster model and then provide
the details of convergence analysis for the cloud model in
Appendix C, available in the online supplemental material, of
the separate supplementary file.

Based on Theorems 1 and 2, we draw the following three
notable remarks for the convergence of HiFL.

Remark I: {Convergence rate.) The hyperparameter o con-
trols the convergence rate of HiFL. Since o increases with the
decrease of 7, if a smaller v is adopted, « will decrease to () faster
as the total number of global aggregations T, grows, indicating
a faster convergence rate.

Remark2: {Convergence bound.) WhenT,, — oo, k —+ 0, the
convergence bound is reduced to i'ﬁﬁﬁgﬁi"—‘lﬂé for strongly
convex function, which is dominantly affected by the stochastic
gradient of client V', the client-edge divergence d,,,;. and the
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Fig. 3. The model performance of HIFL in different aspecis with varying
values of edge model staleness threshold T on MNIST dataset. (a) shows that &
higzer value of T will cause huge accuracy fluctuation. (h) gives the computation
cost of clients, communication cost of edges and the training time of HiFL with

varying .

edge-cloud divergence A, Here, the values of the two coupled
items, 0 and A, are determined by the client-edge association
strategy. Similar observations can be found for weakly convex
function.

Remark 3: (Impact of v on convergence bound.) The
right side of (19) can be reformulated as U7 = (€))7 (Cy —
C3) +Ca, where Cy =1 —a; + ar(l —qu)Hme, Cp =
F{w(0)) — Fw*) and Oy = Slbdelpat Db Since (J is
usually very large, we assume Cy — Oy = (. Hence, I7 mono-
tonically increases with . As ) increases with =, given a
fixed value of T, in practice, a bigger value of 7 indicates a
bigger upper bound [/, Similar obhservations can be found for
weakly convex function.

V. HiFLasH: HIFL. WITH ADAPTIVE STALENESS CONTROL
AND HETEROGENEITY-AWARE CLIENT-EDGE ASSOCIATION

In this section, with the theorectical analysis above, we first
conduct a preliminary evaluation on the performance of HiFL
with different model staleness values and client-edge association
mechanisms. Inspired by the empirical insights from experimen-
tal results, we then devise an enhanced design of HiFL, named
HiFlash, with adaptive staleness control and heterogeneity-
aware client-edge association to achieve high efficiency.

A. Performance of HiFL in Deployment

We first use MNIST dataset [20] as an example to study
the model training performance of HiFL under varying model
staleness values from both model performance and system cost
perspectives. As depicted in Fig. 3(a), = < 8 means that all the
edge nodes have the same maximum staleness threshold, which
is 8. Hence, each edge node can upload its trained edge model
with different 7 to the cloud if 7 is less than 8. For HiFL without
staleness control {e.g., 7 — oc), all the edge models uploaded
by the edge nodes can be utilized for the cloud model updating,
no matter the edge model staleness. As we can see, it requires
5.3 x 10° training epochs on clients to reach a target test accu-
racy of 0.9 for HiFL with v — oo, since large model staleness
results in slow convergence and dramatic accuracy Auctuation.
While HiFl. with staleness-restricted adjustment only allows
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Fig. 4. EdgellDd association strategy results in smaller edge-clond model
divergence and ultimately achieves fast convergence and high model accuracy
than Fdge-MonllD,

edge model updates within a smaller staleness, ensuring a satis-
factory convergence speed. For example, when + < 2, the clond
model can reach a test accuracy of 0.9 within 9.8 x 10? training
epochs on clients, less than 1/5 of the computation cost in the
case of 7 — oo,

Besides, the overall system cost should be better quantified
and jointly considered in realistic large-scale FL system. Thus,
we introduce three performance metrics for HiFL: total training
time of the cloud, communication cost of the edges, and com-
putation cost of the clients. As observed in Fig. 3(b), higher
communication and computation costs are incurred in HiFL
without staleness control in the long run. Nevertheless, smaller
indicates decreased model parallelism, where fewer edge nodes
are allowed to simultancously train the model, considerably
prolonging the training time of FL. model learning. For example,
in HiFL with + = 0, an edge can perform model training only
when all the others are idle. Hence, staleness control for HiFL is
critical for fast and cost-efficient model learning, which should
be well designed to achieve a better trade-off between training
time and cost efficiency.

Since the data heterogeneity [21] can be a critical issue in FL,
we study the influence of varying client-edge divergences and
edge-cloud divergences on HiFL via multiple different client-
edge association strategies. A useful insight is derived from
the results, that is, edge-cloud divergence M, as the dominant
factor, negatively impacts the cloud model accuracy. As shown
in Fig. 4, we consider a FL. system with a cloud server, 10
edge nodes and 100 clients. Each client owns samples from
only one single class in MNIST dataset. Edge-1ID} means that
the clients are clustered into different edge groups and the
data distributions on the edge nodes are 1D (e.g., identical
number of samples from 10 classes). While in Edge-NonllD
case, the samples maintained by an edge node are from 5
classes. Edge-1ID association strategy groups the clients with
a smaller edge-cloud model divergence, and ultimately leads to
tast convergence and high accuracy. Therefore, given the clients
with Non-TID distributions, a heterogeneity-aware client-edge
association strategy is desired to make the data distributions on
the edge nodes similar to the global 11D distribution.

Motivated by the observations above, we devise HiFlash, an
enhanced HiFL approach equipped with adaptive staleness con-
trol at the edge-cloud layer and heterogeneity-aware association
at the client-edge layer, as elaborated below.
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Fig. 5. The illustration of the relations among <, & and é*,

B. Adaptive Staleness Control At Edge-Cloud Layer

Fixed staleness control (e.g., 7 <= & in Fig. 3) requires a
predefined staleness threshold for all the edge nodes, which can
work poorly in the complex dynamic FL. environment (e.g.,
highly dynamic communication capabilities of edges, time-
varying number of current training edges) and further degrades
model performance. Thus, we design an adaptive edge staleness
threshold for the edge nodes which are willing to join the global
maodel training based on the condition of its control domain (e.g..
the computation resources of clients, the communication capa-
bilities and training time of edges). Specifically, we formulate the
system cost model and then adopt a deep reinforcement learning
approach to dynamically control the staleness threshold.

System Cost Model: To fully characterize the environment
dynamics, we adopt a slotted structure for staleness control to
divide a long-term time horizon into a series of discrete time
slol. Note that the length of each time slot is usually short, thus
we assume there are at most one edge node sends a check-in
request to the cloud at the beginning of time slot i. Similarly,
al most one edge node will finish the edge model training and
upload the model updates to the cloud server at the end of a time
slot. We define the running/idle modes of edges at time slot i as
e', which is composed of the edges &' that do not finish the edge
model training task at previous time slot, and the edge &' which
sends a check-in request and is accepted by the cloud server
for participating the FL training. An example of the relationship
among the definitions of ', & and &' is illustrated in Fig. 5.

1) Computation cost: At a given time slot 1, we define the
computation cost of an edge node m as the sum of computation
cost of its associated clients:

Chomg = 2 Cogrnp: 21)
kel

where (3*0;,':“? denotes the computation cost of client k. Similarly
to many existing works [22], [23], [24], following the empirical

measurement study [13], we assume C%F = ﬂ—”*fi where

Six is the processing speed of client £ at time slcir't i, and gy
is processing density for client k.2 [y, is the total number of bits
for the training data of client & in one local iteration and ¢ is
the number of local iterations. Hence, the product of ¢ and Dy,

Mt is possible to train local model with GPU for devices with GPU re-
sources, and sccordingly, the computation cost is calculsted with GPU cycle
frequency and GPLU processing density of the devices, which can be obtained by
measurements.
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indicates the workload for client k. The computation cost of all
clients at time slot ¢ is denoted as

M

Coomp = D *m

m=1

Ci LTTL

COTILE

22)

where e € {0,1} indicates the idle/running modes of edge
node e at time slot 4,

2) Communication cost: The communication cost at time slot
i is denoted as

cim

E:';-l-'_l} COTTRTTE T

-y

m=1

where Clim = 3 icc,, Chami, is the communication cost of
edge node m at time slot +. Following [25], the communication
cost between edge m and client k at time slot ¢ is calculated
by Cljnd, = Feriiusmnges where By s is the allocated
bandwidth for client k by edge node m at time slot 4, B, is the
number of parameters of w and SNR is set to be 17 dB.

The DRI Ageni for Adaptive Staleness Control: The primary
objective of model staleness control is to minimize the total
system cost (including total training time of the cloud, commu-
nication cost of the edges, and computation cost of the clients)
of HiFL system while achieving a target model training perfor-
mance (e.g., a targel accuracy £1). Due to the complicated FL
learning environment, we design an experience-driven algorithm
based on DRL for adaptive staleness control. We first formulate
the adaptive staleness threshold optimization problem as a MDP
as follows:

1) State: At each time slot ¢, the system state is composed of
three kinds of information to characterize current HiFL training
environment, as elaborated below:

®* The information of edge (raining performance

consists the estimated computation cost Cj,,., =

23)

l'}DTﬂ-lﬂ-

[C;u'mp C" tomspl: the estimaled communication cost
Clomm = [ mm? . ng'imjf and the estimated time
3
stots T}, o = [Tl o TieM | required for each edge

node to complete edge mudel calculation.

* The information of current running edges is charamcr—
ized as the remaining iraining lime of currenl edges &t
denoted as T, = [T%1 ., ..., T5M], where T3 =0 it
edge node m is idle (e.g., €], = 0).

* The information of current check-in request of the edges
¢* indicates the edge which will be informed of a staleness
threshold by the DRL agent. Note that at most one check-in
request from the idle edges happens at one time slot (e.g.,
|6*] £ {0,1}). Moreover, the edge node m that requests
tor check-in does not belong to the set of current running
edges, which means 3" &6 . Tim =,

In summary, the stale can hc represented as s' =
[Cemnpi Cmmﬂi Tr,mim Tre-m! é ] It is Wl]l'ﬂl.l’lOTJ.ng that the
estimated cost and training time information in the state can be
profiled and collected jointly by the edge nodes and cloud server,
such that the cloud server will be aware of the cost information
of an edge node with a check-in request.
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2) Action: Al the beginning of each time slot i, the DRL agent
needs to decide the maximum staleness a' that can tolerate
based on current state s for the idle edge node who requests
for check-in (€], = 1). In this paper, we sel an upper bound
Tinae 10T slaleness threshold @' and a lower bound —1 which
means the check-in request is rejected by the cloud server.
Here, the rejection operation can adjust the number of running
edges (control the model parallelism) and hence mitigate the
straggler effect. As a consequence, the decision space of action
a' is {—1,0,1,..., Tmasz }- Once an action a’ is performed,
the idlefrunning modes of edges will be changed based on the
following equation

iy Al
o — e’ + e,
=

3) Reward: We define the reward function r* as the total system
cost at time slot i:

T __ T
rt = —JICmmp

al ==10,

al < 0, 24

— ! -1

CEFTETTL 1

(25)

where oy and &g are two penalty factors for computation cost
and communication cost, respectively.

The DEL agent aims to find the action (staleness threshold)
which can minimize the long-term system cost, while guaran-
teeing a cerlain level of learning quality (e.g., reaching a target
accuracy {1). Thus, the problem can be formulated to maximize
the expectation of the cumulative discounted reward starting
from time slot i given by:

I

i 1 t+1 1_ i—1 iti—1 iti—1
ZT —0 Ccamp o lf:"cr:-\-ﬂ-wn. l}s
i=1

||M-.,

(26)
where € (0, 1] is a factor discounts future rewards and [ is the
total training slots for reaching the target model accuracy.

We now explain the motivations of the reward design. The
reward r* is defined as a weighted sum of computation cost, com-
munication cost and training time. The first two terms incentivize
the agent selects action that results in smaller communication
and computation costs. The last term, —1, encourages the agent
to complete training in fewer time slots (e.g., a smaller value
of the total training slots [). By adjusting the non-negative
parameters o and oo, it is able to meet diverse preferences of
different FL. learning tasks on resource efficiency and learning
time. For example, we can assign higher weights to resource
cost so that smaller staleness threshold are prefer to be chosen in
fear of severe staleness effect and resource waste. While smaller
weights of resource cost indicates that training time is critical
for a FL training task and more decisions with bigger staleness
threshold are made to facilitate more parallel model training.

Training Procedure of DRL Agent: Considering the continu-
ous and high-dimensional space and the limited available traces
from FL tasks, we adopt DQN as the DRL agent to efficiently
learn the optimal staleness control policy. Due to the compli-
cated dynamics in FL system, overestimation issue can easily
arise due to insufficient exploration by DQN. Hence, to solve
the overestimation problem, we propose to use Double Deep
Q-learning (DDOQN) to learn the approximator Q5 (s®, «') that
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Reward ' )

Fig. 6.  The DRL agent interacting with the FL environment.

approximates to the optimal action-value function J*(s',a')
[26]. DDQN introduces a double estimator ('(s*, a’, &, ), which
frozes every [V updates, to stabilize the action-value function
estimation.

To train the DRL agent, as depicted in Fig. 6, current state
information s is fed into action-value function ¢ and then DQN
generates action o' as the staleness threshold for the edge node
which is willing to join the FL. model training. After interacting
with the FL environment for several rounds, the DRL agent
samples a few state-action pairs from the experience memory
to solve (4) as

argminL(6;) = (¥/ — Qx(s",a",6:))", (27)

where the target Y, is defined as
V=t Qs argmax Q' a™+ 0,),6),  (28)
artl

where f; is the online parameters updated per time step and &
is the parameters of double estimator ().

The action-value function Q(s*, a*) is updated by minimizing
IL:(#;) with gradient descent, i.e.,

Oip1 = 0 +ag(V, — Q(s',a',,)Ve,Q(s",a", 8;))., (29)

where c is a scalar step size. Besides, the classical e-greedy
policy is adopted in DDON model training to aid explo-
ratiom [26]. The details of the DRL-based staleness control
process is elaborated in Algorithm 2.

The DRL agent is deployed in the scheduler component of the
cloud server, thus the scheduler can inform an edge about the
staleness threshold while distributing the latest global model to
the edge who sends a check-in request.

C. Heterogeneity-Aware Association At Client-Edge Layer

Inspired by the convergence analysis in Section TV and the
discussion in Section V-A, we identify the controllable factors
for learning performance enhancement and aim to design a
client-edge association mechanism that minimizes the edge-
cloud model divergence. Due to the synchronous mechanism, the
edge model aggregation can be conducted until the associated
slowest client uploads its newly-updated model. Hence, the
resource heterogeneity (e.g., response latency) among the clients
should also be taken into consideration. We strike a nice balance
between data heterogeneity of edges and resource heterogeneity
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Algorithm 2: DDON Training Procedure for Adaptive Stal-
eness Control.

Input: discount factor -y, larget accuracy Ar:r:m,.gﬂ,
experience memory maximum size By, .., update
frequency of target network 17,

I: Initialize experience memory Eo.p

2:  Initialize action-value network ) with initial weight &
3: Initialize the target network ()" as a copy of @

4:  for each episode epi = 1,2,3,. .. do

5: fori=1,2 ... Tdo

N Get current state s* from the FL learning
environment
T Generate action o’ based on e-greedy policy and
execute it
& Observe reward r* and next state 5°
9: Store the tuple (s°, a’, r*, 8") into Eey
10: if |[Ecrp| > Brmgr then
11: Remove the oldest tuple
12 end if
13: Sample a minibatch of tuples (s, a, 7, 3) from By
14: Get target values with {28)
135: Train and update the action-value network with the
objective of (27) and (29)
16: Update the target network as a copy of the weights
of action-value network every U steps
17: Get the accuracy Ace of the cloud model
18: it Ace >= Accrarge: then
19: break out of current episode
20: end if
21:  end for
22:  end lor

inherent in clients to establish a heterogeneity-aware client-
edge association mechanism for fast and accurate cloud model
leaming.

For data heterogeneity in FL, we primarily investigate the
lahel distribution skew which always exists in real-world appli-
cations [27]. As the edge-cloud model divergence is attributed
to data heterogeneity between the edge node and the cloud
server, we resort o Jensen-Shannon (JS) divergence [28], which
is based on Kullback-Leibler (KL) divergence, to calculate the
dissimilarity between two datasets. Considering two probability
distributions [ and ", the IS divergence between P and ' is
defined as

JS(P||P“]=%KL(P||P+F)+%KL (FHP*P),

2 2

Py(x)
Plx)’

KL(P,||P;) = Y Pi(x)log (30)

e X

I8 divergence has appealing properties of symmetry and nor-
malized values between [0.1], which is contrast with unbounded
KL divergence. J5(P||P') = 0 indicates identical distributions
of PP and P while JS[P||P) — 1 means the distributions
are considered highly distant. When facing feature distribution
skew, we can leverage FedBN [29] as the aggregation method to
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help harmonizing local feature distributions in the collaborative
training process, which would be an interesting future research
direction.

For resource heterogeneity of clients, we first define the
response latency for client k associated with edge node m as:

L™* =1, (31)

m Kk
TR + JJI.'s.—.-trm: 1

where Eﬁmm is the average value of the computation latency
Cr[_';::l:'np for client k over the time span and I7%  is the average
value of the communication latency 7i/%E between edge m
and client k over the time span. Here, both I, and I75:%, can
be obtained from the historical records. As a result, the latency
for edge model aggregation can be formulated as

L™ = max L™,

3
kec™ (32)

indicating that one edge node should form its client cluster
by selecting clients with lower response latency to mitigate
straggler effect and accelerate model training process.

Before performing client-edge association, each of the edge
nodes first probes the clients in its communication range to mea-
sure the response latency and collect the data distributions of the
clients. The data distribution of a client records the proportion of
samples for different classes. For instance, given an application
with 4 distinct labels and a client dataset Dy, that has one example
with label 0, and two examples with label 2, the client’s label
distribution can be defined as LD (D) = [,0, £, 0]. Note that
label information of a client is only revealed in an aggregated
formal (see (33)) by using secure multiparty compulation {e.g.,
privacy-preserving k-secure sum protocol [30]) and after noise
is added, so no violation of individual label privacy happens.

After obtaining the response latency and label distribution of
clients in the communication range, the edge node m can strike
a balance between measured latency and edge-cloud model
divergence by calculating the cost defined as

COST™ = L™* + 118

(|1:=m| - LD™ + |Dy| - LDy
ID™| + | Dx|

,Lﬂrm) )
(33)

where A is a weighting parameter for the trade-off between
resource heterogeneity and data heterogeneity. LD™ represents
the label distribution on edge node m, the weighted average
of the label distributions in current client cluster C™. LD,
denotes the 11D 1abel distribution hold by the cloud server, Here,
we consider the global data distribution is 11D as the cloud server
coordinates the model learning on multiple edge nodes, reaching
a large amount of samples from different classes.

Hence, the edge node can conduct heterogeneity-aware client-

edge association in the following two-way selection manner:

1 TF the client cluster for edge node m is emply, the edge
node selects the client with the lowest response latency
trom the unassociated clients in its communication range.
Otherwise, the edge node will select client & with smallest
cost COSTT

2} If one client is currently selected by multiple edge nodes,
the client will choose an edge node randomly.
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Algorithm  3:
Associalion.

Heterogeneity-Aware  Client-Edge

Input: Label distribution of all the clients { LDy HY_ || the
response latency {1}, for edge node
me{1,2,...,M}.

I: Construct a client pool ClientPool = {1,2,..., N}

2:  Construct empty client cluster for each edge node:
C™ =0form e {1,2,..., M}, and empty edge set
S, = 0 foreach client k € {1.2,... N}

3: While Client Pool # 0 do
drform e {1,2,..., M} do

5: ifC™ = {) then
6: Choose client k& with lowest response latency
and set C™ = [k}
7: Remove client k from Client Pool
8: else
o: Choose client & by minimizing (33)
10: Sy =8 U{m}

11: end il

12: end for

13 forkc{1,2,...N}do
14: if 55 # i then

15: Randomly select an edge node m from Sy

16: cm=Cmu{k}

17: Remove client & from Client Pool and clear Sy
| &: end il

19: end for

Output: Client clusters C™ for m < {1,2,.... M }.

Fig. 7. The contour plot of response latency of the clients communicated
to different edge nodes. The samples in each client are from only one class,
represented by the number in the square. For edge 1, after selecting client 1 and
client 2, it is better to choose client 4 rather than client 3, taking consideration
of the trade-off between response lstency and data distribution of the client.

The two-way selection procedure continues until all the
clients are associated with one edge node. The detailed
heterogeneily-aware client-edge association strategy is pre-
sented in Algorithm 3.

For a more intuitive illustration, as depicted in Fig. 7, after
adding client 1 and client 2 into the client cluster of edge 1,
it is better to choose client 4, rather than client 3, in order to
make the data distribution of edge 1 close to the [ID distribution.
Similarly to many existing studies such as [31], [32], we consider
that the clients are stationary or their locations change slowly
during FL training process. This can be mainly motivated by
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TABLETT
[DATASETS AND THE CORRESPONDING MODELS

Dataset Model Parameter number

MMNIST LeMet 21,840
CIFARID | ResMNel-1% 504,554
FEMNIST CNN 214,590

that since FL requires intensive computing and frequent com-
munication, most clients would like to participate FL. when they
are in stable conditions (e.g., when charging their batteries at
home/office) [2]. For the case that clients’ locations change
fast, we can apply the adaptive client-edge association strategies
to periodically update the clients’ edge node selections. And
some online optimization algorithms can be further leveraged to
improve the performance of dynamic client-edge associations.
Nevertheless, the theoretical analysis of such case is much more
involved, and will be considered as a future work due to space
limit.,

In practice, with the label distributions of all the clients and
the measured latency among clients and edges, we can easily
get different client-edge association strategies under different A.
Hence, we can obtain the total J§ divergence of all the edges
under different & and then select the client-edge association
strategy with smaller JS divergence for fast FL. model training.
HiFlash can be seen as an enhanced HiFL approach equipped
with adaptive staleness control and heterogeneity-aware client-
edge association, hence we can choose either HiFL or HiFlash
for efficient FL. model training. In HiFlash, adaptive staleness
control and heterogeneity-aware client-edge association are de-
signed to alleviate the staleness issue in asynchronous aggre-
gation at the cloud server and data heterogeneity among the
edges, respectively. As a result, it is possible to combine each
of these two parts with existing works with asynchronous FL
for performance enhancement, by following the similar ideas
developed in our paper.

VL. EXPERIMENTS
A, Simulation Settings

In order to gauge the effectiveness of our proposed algorithm,
we conduct extensive evaluations in a simulated environment
with 100 clients, 10 edge nodes and a cloud server. We consider
image classification as the FL task and evaluate the perfor-
mance of HiFL and HiFlash with three real-world datasets:
MNIST [20], CIFAR10 [33] and FEMNIST [34]. As FEMNIST
is a federated version of Extended MNIST dataset [35] whith
805,263 samples from 3,550 writers, we randomly select 100
writers as the clients to participate the model training of in our
experiments. For the 10-class hand-written digit classification
dataset MNIST, we use LeNet [36] as the model trained on the
clients. For the CIFARIO dataset, a standard ResMNet-18 [37]
model is adopted. For the 62-class hand-written digit classi-
fication dataset FEMNIST, we design a convolutional neural
network (CNN) with 214,590 learning parameters as the learning
maodel. The datasets and the corresponding models are sum-
marized in Table 1. All the experiments are conducted on one
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Tesla P100 12 GB GPU and the algorithms are implemented by
Pytorch version 1.10.0.

For the local computation of the training on each client, we
employ mini-batch Stochastic Gradient Descent (SGDY) with a
batch size of 60 for MNIST and FEMNIST, and 50 for CIFAR10,
respectively. The initial learning rates are 0.01 for MNIST and
FEMMNIST, and 0.1 for CIFAR 10 as in [13], both of which decay
exponentially at a rate of 0.99 every 100 epochs. The number of
local updates « for each client in one client-edge communication
round is set to be 3 and the number of client-edge aggregations
before pushing the edge model to the cloud server is setas H <
11,2,3}.7 The hyperparameters o and v in coefficient o can
be determined by grid search in practice.

For DRL training, we set different threshold bounds (7., =
16 for MNIST and FEMMNIST datasets. and 70 = 4 for Cl-
FAR10 dataset) for the three datasets as a bigper staleness thresh-
old will result in much longer training time for the complicated
CIFAR10 dataset. Hence, according to different action size, the
DDOQMN model in the DRL agent, which is implemented by two
two-layer multi-layer perceptron (MLP) networks, has 4,607
and 4,235 trainable parameters for MNIST (and FEMNIST), and
CIFAR 10 datasets, respectively. The output of the MLP network
passing through a softmax layer becomes the probability of
selecting a staleness threshold. The DDQN is lightweighted and
each training iteration takes seconds on GPU.

Data Heterogeneiry: For MNIST and CIFAR 10 datasets, to
simulate the data heterogeneity of clients in real world, we
generate three Kinds of data distributions for clients as below:

* [iD: Each client is randomly assigned a uniform data

distribution over 10 classes.

* Non-ITD{1): Each client possesses only one random class

of images.

* Non-IID{2): The samples in each client are assigned from

two randomly selected classes.

While the FEMNIST dataset naturally falls in the following
three data heterogeneily cases:

* [abel distribution skew: The label distributions are totally

different among the writers.

®  Feature distribution skew: There is a natural feature distri-

bution skew among ditferent writers due to their different
character features (e.g., stroke width, slant).

*  Quantity skew: The samples in each client are ranging from

[4,525].

The data distribution on an edge node can be obtained by
calculating the weighted average of the data distributions of its
associated clients. We can use I8 divergence to measure the data
heterogeneity of the edge nodes.

Resource Heterogeneify: The highly heterogeneous hardware
resources (CPU. network connection) among clients can be
reflected by the computing latency C';;j,ﬂp and communication
latency C*"-% For the computation ability of each client k, we

comm*

assume fi. = [1, 2] GHz as the CPU cycle frequency and { = 20

3The values of = and H depend on the computation budgets of the devices in
practice. Due to the computing resource limitation of our research lsh, we set
small values for both ¢ and H, but it is sufficient to evaluate the effectiveness of
HiFlash.
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cycles/bit as the number of CPU cycles to execute one bit. For
the communication ability, the bandwidth Bj r, is ranging from
1 MHz to 10 MHz when associated with different edge node m.

B. Merrics and Baselines

Performance Metrics. We consider fesf accuracy, the number
af communications with the cloud, and overall system cost as
three metrics for performance evaluation of HiFlash. Besides,
we also calculate the response latency L™ and waiting time
L iting during synchronous client-edge aggregation to evalu-
ate the effectiveness of client-edge association strategy. Here,
the waiting time Li};,;.n, is measured by the average waiting
time for the straggler in the clients associated to edge node m,
denoted as

3 peem (L™F — min L™:k)

m kg
waiting |

Baselines. We compare our proposed algorithm with both
traditional centralized method and federated learning based
schemes for performance evaluation:

* Centralized Learning: This scheme collects all the raw data
to the cloud for training and provides an upper bound for
model accuracy.

* FedAvg [1]: A cloud-based FL scheme with synchronous
aggregation. Each time, it randomly selects 10 clients for
local model training and global model aggregation.

* FedAsync [8]: A cloud-based asynchronous federated
learning algorithm which updates the global model without
wailing for straggling clients.

* HierFAVG [I13]: A cloud-edge-client hierarchical FL
scheme that performs synchronous update in both client-
edge aggregation and edge-cloud aggregation. For fair
comparison, 5 clients are randomly selected for edge model
aggregation and 2 edge nodes contribute to the cloud model
update in each global training round.

o FedAT [i15]: A hierarchical FL scheme thal combines
synchronous intra-tier training and asynchronous cross-tier
training. FedAT conducts client clustering based on their
response latencies, without considering the data hetero-
geneity of the clients.

It is worthnoting that we adopt random staleness control
mechanism with a fixed staleness threshold for the asynchronous
FL schemes {e.g., FedAsync, FedAT and HiFL) for fair com-
parison with HiFlash. For MNIST dataset, we set a bigger
value (T, = 16) to facilitate more parallel mode] training and
shorten the total training time. While for the complex CIFAR10
dataset, we set a smaller value (7pq> = 4) to reduce resource
waste as the local training of CIFARI0 dataset incurs high
resource cost. When facing new datasets, we can determine
the staleness threshold based on our preferences (e.g., cost
efficiency, training time) of the FL learning task.

(34)

C. Experimental Results

Performance Evaluation for Various Hyperparameter Set-
tings: As the global model updating of HiFL and HiFlash is
controlled by « which is related to the initial weight of edge
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Fig. 8. Test accuracy of MNIST dataset under Non-1ID¢2) data distribution
with different mixing hyperparameters.

model o and penalty coeflicient v, we first evaluate the test
accuracy of HiFL under ditferent settings of o and v. As shown
in Fig. 8 HiFL is robust and can converge within 1,000 com-
munication rounds under the non-11D4{2) data distribution with
different mixing hyperparameter settings. However, a too large
or too small value of a will result in a slow convergence speed.
For example, when o is oo large (e.g., o = 0,95, a = 1.0), the
current global model fails to retain information about the global
model from the previous round. While a smaller o (e.g., 0.5)
will prevent the global model learning from the newly uploaded
edge model.

Hence, we adopt grid search to find a proper choice for o and
v. We can see from Fig. 8 that the global model converges tast
when o = 0.9 and «« = 0.7, however, the test accuracy becomes
more fluctuating with a = (.9 due to the deviation of the edge
model. Besides, to deal with model staleness, a proper v (e.g.,
0.99) is effective for fast and stable model convergence. As the
convergence resulis of different datasets under various mixing
hyperparameter settings are similar, we set o = 0.7 and v =
(.99 for the following experiments.

Model Accuracy and Computation Efficiency Evaluation:
Considering the fact that hierarchical FL executes more local
computations in one global round to reduce the costly com-
munication with the cloud, we propose to evaluate the test
accuracy with respect to the total number of training epochs
on clients. As depicted in Figs. 9 and 10, we investipate the
model accuracy and computation efficiency of different training
methods under three kinds of data heterogeneity for MNIST
and CIFAR 10 datasets, respectively. As the centralized training
method collects all the data to the cloud for model learning, it
does not incur any computation cost on devices, Hence, we only
use the test accuracy of centralized learning to provide an upper
bound of model accuracy for other comparing methods.

We can see that by incorporating the merits of synchronous
and asynchronous model aggregation and dampening the neg-
ative effect of model staleness, HiFL. and HiFlash can achieve
comparable training performance with FedAvg method in 11D
cases. For Non-11D cases, HiFL and HiFlash perform slightly
less well than FedAvg when comparing test accuracy with
respect to total number of training epochs on clients. This is
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becanse that the multiple rounds of client-edge aggregation
in HiFL. and HiFlash might lead to some degree of gradient
divergence, and hence degrade the model performance. More-
over, as HiFL and HiFlash are designed with asynchronous
model aggregation, they inevitably suffer from staleness etfect,
comparing with FedAvg,

HiFL and HiFlash perform better than other hierarchical
FL. methods (e.g., HierFAVG). Since hierarchical FL is de-
signed to reduce the costly communication at the price of
more local computations, HierFAVG, the extension of Fe-
dAvg in the hierarchical setting, is computationally ineffi-
cient comparing with FedAvg as shown in Figs. 9 and 10.
This is because that HierFAVG performs fewer edge-cloud
aggregations than FedAvg for the same amount of local train-
ing epochs. While with the asynchronous update mechanism
which well balances the global model and the uploaded edge
model in HIFL and HiFlash, we can see that the perfor-
mance gap between HiFL and FedAvg narrows significantly,
comparing with that between HierFAVG and FedAvg, indicat-
ing that the asynchronous aggregation in HiFL and HiFlash
is more computationally efficient than other hierarchical FL
schemes.

HiFL and HiFlash perform better than other synchronous or
asynchronous based methods. For example, asynchronous FL
methods (e.g., FedAsync and FedAT) have lower test accuracy
than HiFL and HiFlash, since they ignore the negative impacts
of biased data distribution and model staleness on the cloud
model accuracy. The sharp oscillation in the curves of Fed Async
algorithm attributes to the following two reasons: (1) the global
maoidel in FedAsyne algorithm is updated once one client uploads
its updated model without waiting for stragglers. This kind of

asynchronous aggregation induces much uncertainty into the
performance of the resulting global model, especially in Non-11D
cases. While other algorithms fuse different client models to
ensure the generalization ability of the global model; and (2) the
staleness effect makes the convergence of Fed Async slower and
causes the performance instability when facing large staleness.

Communication Efficiency Evaluation: We define the number
of communications in FL. process as the total communication
number between edge nodes (or clients in two-layer FL frame-
works) and the cloud server for model exchange. A smaller
number of communications with the cloud indicates a smaller
data size of models transferred to the cloud. To evaluate com-
munication efficiency of HiFlash, we investigate the number of
communications between the edges and the cloud to reach a
target accuracy for all the FL. based approaches.

As shown in Fig. 11, for MNIST dataset, the required commu-
nication numbers for different methods grow with the increase
of target accuracy and data heterogeneity of clients. Except
FedAsync algorithm, our proposed HiFL scheme is the most
communication-efficient than other FL. based methods regard-
less of data distribution and target accuracy. For example, HiFL
can reduce the communication numbers by up to 31.9% than
FedAT, 28.2% than HierFAVG and 77.6% than FedAvg on
MNIST dataset with Non-11D(2) distribution and target accuracy
of 90%. Although FedAsync can reach a target accuracy with
fewer communication numbers than our proposed HiFL method
in 11D setting for MNIST dataset, it fails to deal with the data het-
erogeneity (e.g.. Non-111%2) and Non-11D{1) cases) inherent in
the participating clients. For example, Fed Async can not achieve
the target accuracy of 90% under Non-1ID{(2) distribution and
even fails to reach the target accuracy of 70% in Non-1IDV1)
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case, indicating that FedAsync is not applicable in realistic FL.
scenarios where data is distributed in a Non-11D fashion.

The hierarchical FL. methods (e.g., HiFL, HierFAVG) sig-
nificantly reduce the costly communications with the cloud
duge to the client-edge aggregations. Moreover, the enhanced
HiFlash framework, equipped with adaptive staleness control,
can further accelerate the model training process and reduce
the communication rounds with the cloud comparing with HiFL
(e.g.. 105% communication round reduction under Non-IID(1)
data distribution case). This result is consistant with the conver-
gzence analysis that the model will converge within fewer com-
munication rounds T, by controlling 7 in a smaller value. Thus,
the client-edge aggregation and staleness control contribute to
the communication efficiency of HiFL and HiFlash.

As for the comparison of FedAvg and HierFAVG, there
are 10 clients communicating with the cloud in each training
round for FedAvg, while 5 edges communicate with the cloud
in HierFAVG method. Moreover, HierFAVG uses more local
computation on the clients in each round to decrease the number
of global training rounds, thus, HierFAVG is much better than
FedAvg in terms of communication cost (e.g., the number of
communications with the cloud).

For a more complicated dataset (i.e., CIFAR10), HiFlash can
reach different target accuracies with the smallest communica-
tion rounds in all data distribution situations, comparing with all
the FL based methods. As depicted in Fig. 12, HiFlash requires
43 communication numbers with the cloud to reach the target
accuracy of 60% in Non-1ID( 1) data distribution scenario, which
i85 23.07%, 42.23% and 89.82% smaller than Fed AT, HierFAVG,

The number of needed communications between the edge nodes and cloud server to reach a target accuracy for HiFlash comparing with different FL
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; 0.6 f —— Cantralized Training
] L = F
2o ..JJ.J Fedfng
-E' lerl —--= HierFaNG
Fazl i === FedAT

ol — = HIFL
. —— HiFlash
0 0.7 14 21 2.4 i.g

Tatal number of training epochs on dients

Fig. 13, Test accuracy of FEMNIST dataset w.r.L. the total number of training
epochs on the clients,

and Fed Avg, respectively. 1t shows that HiFlash outperforms cur-
rent existing hierarchical FL algorithms, no matter asynchronous
based FedAT or synchronous based HierFAVG method.

Evaluation Results on FEMNIST Dataser: We also evaluate
the performance of HiFlash under FEMNIST dataset where the
data distributions of clients are naturally non-TTD {in feature
distribution, label distribution and quantity distribution). As
shown in Fig. 13, HiFlash still performs better than other hi-
erarchical FL. methods (e.g., HierFAVG), which is similar with
the experimental results under MNIST dataset. Moreover, the
number of communications with the cloud of HiFlash approach
is the smallest comparing with other FL. methods, which can be
seen in Fig. 14, The evaluation results show that our HiFlash
approach can be applied in real-world datasets with skews in
both label distribution and feature distribution.
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Accuracy-Communication Trade-Off: To clearly show the
superiority of HiFlash, we further investigate the accuracy-
communication trade-off for different FL. methods. Giving CI-
FARI0 dataset with Non-IID{2) distributions as an example,
we plot the highest model accuracy and the communication
rounds with the cloud in Fig. 15. We can see that the popular
FedAvg approach suffers from high communication cost, while
asynchronous based FedAsync approach and hierarchical FL
methods (e.g., HierFAVG and FedAT) fails to achieve a sal-
isfactory accuracy. In contrary, HiFlash is able to strike a nice
balance between model accuracy and communication efficiency.
Specifically, HiFlash significantly reduces the communication
cost (e.g., 87% than FedAvg) with a slight model accuracy
degradation (e.g., 2.1%). When comparing with hierarchical
FL approaches (e.g., Fed AT and HierFAVG), HiFlash is able to
achieve more than 5% communication cost reduction and 16%
maodel accuracy improvement. Furthermore, the superiority of
HiFlash can be amplified as data heterogeneity increases (see
Figs. 11 and 12).

The Effect of Staleness Threshold Control: The fast model
convergence speed and high communication efficiency achieved
by HiFlash are attributed to the well design of DRI -based
adaptive staleness control that makes a wise decision according
to the past experiences and current environment. As illustrated
in Fig. 16, the DRL agent for adaptive staleness control im-
proves the staleness threshold decision policy unremittingly
as il interacts with the FL environment and learns from the
DEL training episodes. We adopt boxplot to graphically depict
the five-number summary of the distribution of the staleness
threshold decisions in different training episodes, which con-
sists of the smallest observation, lower quartile, median, upper
quartile and largest observation. The upper quartile, median and
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lower quartile make up a box with compartments. The spacings
between different parts indicate the variance and skew in the
data distribution and the mean of staleness thresholds in shown
with the green triangles. The decision policy in episode 0 is
the random staleness control policy adopted in HiFL while
the improved policy in episode 150 is utilized by the HiFlash
approach. We can learn from the skewed data distribution that
more decisions made in HiFlash choose a smaller staleness
threshold compared with random decision policy, resulting in
communication-efficient model training.

To compare the system costs (including computation cost of
the clients, communication cost of the edges and training time of
the cloud) of HiFL and HiFlash, we normalize the system cost to
[0,1] by simply dividing the biggest value. With this normaliza-
tion method, the computation cost and communication cost are
scaled down accordingly. As shown in Fig. 17, the normalized
cost of HiFL is 1, indicating that HiFL brings high system
cost. While the lower system cost of HiFlash is credited to the
effectiveness of our adaptive staleness control strategy design. Tt
is worthnoting that although the DON training in HiFlash brings
additional computation overhead, it can be conducted on the
cloud server with sufficient computation resources in an offline
manner.

We also examine the policy differences with various reward
designs by assigning different weights to computation cost,
communication cost and training time (adjusting the values of
oy and g ). As shown in Fig. 18, when assigning higher weights
to resource cost {e.g., computation and communication cost),
the DRL. agent for staleness control tends to choose smaller
threshold in fear of severe staleness effect. While for a higher
weight of training time, more decisions with bigger staleness
threshold are made to facilitate model parallelism.
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The Effect of Heterogeneity-Aware Client-Edge Association:
Besides, we also evaluate the response latency L™ * and waiting
time L} i¢ing Of the edge-associated clients in the client-edge
aggregation phase. For HiFlash, we set & = 300 (will be dis-
cussed in next paragraph) to form a more label-balanced dataset
for each edge node. Thus, the average response latency may
be longer due to the trade-off between data heterogeneity and
latency reduction. As shown in Fig. 19, the average response
latency and waiting time of FedAsync are the lowest since
there is no need to wait for stragglers. Fed AT, an asynchronous
hierarchical FL. scheme similar with our proposed HiFL, also
has lower response latency and waiting time. However, it only
focuses on latency reduction in clieni-edge association proce-
dure without the consideration of data heterogeneity mitigation.
Thus, both FedAsync and Fed AT result in degraded accuracy as
in Figs. 9 and 10 and more communications as in Figs. 11 and 12.
While our proposed HiFlash can enforce a trade-off between the
response latency and data heterogeneity, achieving a satisfactory
model performance.

We further investigate the total IS divergence on all the edges
nodes, the resulted average response latency, and the model
accuracy of HiFlash with varying A. As depicted in Fig. 20,
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Fig. 21.  Policy differences when facing various reward designs.

a higger A denotes that we are more concerned about the data
distributions on the edge nodes compared with response latency,
thus the total IS divergence decreases with the increasing A in
both Non-111%1) and Non-1D2) cases. In Fig. 21, a biased edge
data distribution (larger IS divergence) will cause significant
accuracy degradation. For example, the achievable accuracy
drops from 77% to 65% when the total JS divergence over
all edge nodes increases from 0.4 to 1.9. By controlling the
parameter A, our proposed HiFlash can be flexible for edge nodes
to strike a balance between response latency and model accuracy.

WIL. RELATED WORK

A. Communication-Efficient Federated Learning

Classical two-layer FL. frameworks (e.g., FedAvg [1] and
FedAsync [8]) inevitably suffer from excessive communication
overhead and network congestion in large-scale distributed ma-
chine learning, due to massive model exchanges between clients
and central server. To reduce the bits on gradient exchanges
in FL, technigues such as neural network pruning [38], weight
quantization [39]. message sparsification [40] and knowledge
distillation [41] focus on ML model compression to reduce the
amount of transmitted information while maintaining the high
learning performance.

To further improve communication efficiency, hierarchical FL.
is proposed by introducing an edge layer, which leverages edge
nodes as intermediaries to perform partial model aggregation
with efficient client-edge communication, and thus relieves core
network transmission overhead in the cloud server [14]. For
example, Liu et al. propose HierFAVG that performs two level of
synchronous model aggregation by extending the conventional
FedAvg algorithm to the hierarchical setting [13]. However, a
severe straggler problem would incur in HierFAVG due to the
nature of synchronous model aggregation. Chai et al. present
FedAT, a novel FL. method that synergistically combines syn-
chronous intra-tier training and asynchronous cross-tier training
to improve the convergence speed and reduce communication
cost [15]. Nevertheless, Fed AT uses a weighted sum of all the
latest edge models for global model update, which is different
from our asynchronous aggregation mechanism. Moreover, it
ignores the staleness effect, which is inevitable in asynchronous
aggregation.
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B. Model Staleness Control

Staleness effect is a commaon challenge in the asynchronous
maodel aggregation. Most of existing FL solutions tolerate stal-
eness by dampening the impacts of stale result that is computed
on an outdated global model version. For example, Zhang et
al. propose a staleness-aware async-SGD algorithm in which
the learning rate is modulated according to the gradient stale-
ness [42]. Xie et al. use a weighted average for global model up-
date and introduce a mixed hyperparameter to adaptively control
the error caused by staleness [8]. An gradient correction term is
designed to compensate the staleness in [43]. Nevertheless, these
approaches only focus on the negative impact of staleness on
maoidel accuracy and convergence speed. The system efficiency,
such as computation/communication cost, and training time, is
less considered,

A stale model may marginally contribute to the global model,
but cause large resource waste and time consumption without
timely terminating model training and uploading. To address this
issue, FedS A [44], astaleness-aware asynchronous FL algorithm
sels a staleness threshold for each participating client based on its
computing speed. However, this approach ignores the commu-
nication cost and the training time in the whole process, Besides,
the staleness threshold in FedSA is fixed for each client, which
can not well adapt to the realistic dynamic environment. Zhang
et al. propose a clustered semi-asynchronous federated learning
{CSAFL) approach [45], which alleviates the model staleness
problem by dividing clients with different learning objectives
into multiple groups and limiting the model delay. However,
CSAFL aims to learn personalized models, i.e., different proup
models for different client groups, while the HiFlash approach
has a different goal and aims to learn a common global model
that merits the commonality of the global knowledge sharing
based on all the local data generated on clients.

Staleness control in asynchronous FL is similar with the
client selection in synchronous FL, as they are both decision
making problems. Hence, the multi-arm bandit based selection
methods, deep reinforcement learning algorithms used in client
selection problem can also be adopted in staleness control.
However, client selection approaches in synchronous FL usually
strike a balance among model accuracy, system efficiency and
selection fairness. As staleness control problem does not need to
ensure fairness for each threshold choice due to asynchronous
aggregation which only involves one client, the client selection
approaches (e.g., [46], [47]) with faimess consideration can not
be utilized in staleness control problem. Moreover, in client
selection approaches, the server often needs to send the global
maoidel to all the clients for local loss estimation before making
selection decisions (e.g., [47], [48]), which is not required for
staleness control,

. Client-Edpe Association in Hierarchical FL

The client-edge association strategy in hierarchical FL. has
a significant impact on model learning performance due to the
data and resource helerogeneily across the dispersed clients [49].
HierFAVG ignores the varying training speed of the dis-
tributed clients and randomly groups them into different clusters,
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which may prolong the communication time of each training
round [13]. Considering the straggler effect, both TiFL [49]
and FedAT [15] divide the clients into different tiers based on
the measured latency so that the resource heterogeneily can be
mitigated [49]. To tackle the data heterogeneity in FL., Duan et al.
propose FedGroup, which clusters clients into multiple groups
based on the cosine similarity of their parameter updates [50]. In
FedCluster, the authors provide several representative clustering
approaches, including random uniform clustering, timezone-
based clustering and availability-based clustering, to support
for various application scenarios [51]. Unfortunately, current
client-edge association schemes only focus on one dimension
of heterogeneity, without considering the trade-off between data
and resource heterogeneities.

Existing convergence analysis of hierarchical FL schemes
mainly focus on FL with two levels of synchronous model
aggregations. For example, the convergence of HierFAVG mea-
sures two-level of non-IIDness (i.e., the client level and the
edge level) for data distribution in the hierarchical system,
and provides gualitative guidelines on picking the aggregation
frequencies at two levels [13]. While the theoretical analysis
in [21] further proves that reducing the non-I1Dness at the edge
level is important for the model convergence. Although Fe-
dAT [15] is designed with synchronous client-edge aggregation
and asynchronous edge-cloud aggregation, the asynchronous
aggregation mechanism in FedAT is a weighted sum of all the
latest edge models, which is different from our asynchronous
update mechanism in (8). Moreover, the convergence analysis
of FedAT ignores the staleness effect and hence fails to provide
insights for staleness effect alleviation. Nevertheless, our con-
vergence analysis for HiFL considers both staleness introduced
by asynchronous model aggregation and non-11Dness inherent
in FL, and further draws some insights for staleness control and
non-1Dness reduction to achieve a fast convergence rate and a
low convergence bound.

VI CoNCLUSION

In this paper, we resorl to HiFL, a hierarchical FL approach
that synergistically employs synchronous client-edge model ag-
gregation and asynchronous edge-cloud model aggregation for
communication-efficient model learning. Based on the conver-
gence analysis of HiFL, we identify the controllable factors for
maodel convergence and further advocate HiFlash, an enhanced
HiFL with adaptive staleness control and heterogeneity-aware
client-edge association, for large-scale deployment in reality.
We propose a DRL-based staleness threshold decision algorithm
for accurate and cost-efficient FL. model learning. To tackle
the inherent resource and data heterogeneily among clienls, we
design a heterogeneity-aware client-edge association strategy
that strikes a nice balance between communication latency
and the heterogeneity of edge data distributions. Our empirical
evaluation based on three image classification datasets validates
our theoretical analysis, and demonstrates that HiFlash achieves
satisfactory prediction performance for different levels of data
heterogeneily and is communication-efficient compared with
existing FL. methods.
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